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Abstract This article investigates stationary surfaces with boundaries, which
arise as the critical points of functionals dependent on curvature. Precisely, a gen-
eralized “bending energy” functional W is considered which involves a Lagrangian
that is symmetric in the principal curvatures. The first variation ofW is computed,
and a stress tensor is extracted whose divergence quantifies deviation from W-
criticality. Boundary-value problems are then examined, and a characterization of
free-boundary W-surfaces with rotational symmetry is given for scaling-invariant
W-functionals. In case the functional is not scaling-invariant, certain boundary-
to-interior consequences are discussed. Finally, some applications to the conformal
Willmore energy and the p-Willmore energy of surfaces are presented.

Keywords curvature functionals · Willmore energy · free boundary problems ·
surfaces with boundary · minimal surfaces
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1 Introduction

Surfaces with boundaries are fascinating objects which are ubiquitous across math-
ematics and the natural sciences. Indeed, many examples of minimal and Willmore
surfaces (among others) now serve as idealized models for physically-observable
quantities such as surfactant films, lipid membranes, and material interfaces. Since
a large number of relevant surfaces with boundary arise as the minimizers of an
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energy functional, it is becoming more and more useful to investigate the behavior
of these functionals so as to better understand their critical surfaces.

Many significant results reflecting this idea can already be found in the cur-
rent literature. In [25], variational problems for surfaces with boundary are studied
which involve functionals quadratic in the principal curvatures, and some existence
results are proven. Additionally, [12,9,28,2,17,4,8,16,14,15,22,27,29,32] investi-
gate questions of existence and regularity related to boundary-value problems in-
volving the conformally-invariant Willmore functional. Moreover, related prob-
lems involving curvature-dependent energy functionals for surfaces with bound-
aries have been studied from the perspective of mathematical physics. In [34,7,1],
such functionals are used to investigate the elastic properties of lipid membranes,
while related functionals are used in [31] for the analysis and development of lens
design.

Despite the work done so far, much is still unknown regarding the behavior of
functionals which depend on surface curvature, especially when the integrand is no
longer a quadratic function of the principal curvatures. To address this, we consider
a generalized model, originally proposed by Sophie Germain [18], for the bending
energy of a thin plate. In particular, if r : Σ → R3 is an isometric immersion
of the oriented surface Σ with unit normal n : Σ → S2 into Euclidean 3-space,
the functional of interest will be given as the integral of a symmetric polynomial
function in the principal curvatures, which (by a classical theorem of Newton) may
be alternatively expressed as (see e.g. [23])

W(r) :=

∫
Σ

F̃ (κ1, κ2) dµ =

∫
Σ

F (H,K) dµ. (1)

Here, H = κ1 + κ2 and K = κ1κ2 are the mean and Gauss curvatures of the
surface, respectively, and dµ is the area element on Σ induced by the immersion
r. Additionally, we allow the possibility of general smooth functions which are
symmetric in κ1 and κ2.

Remark 1 Note that our convention for H = κ1 +κ2 is twice the arithmetic mean
of the principal curvatures.

Remark 2 Note thatW reduces to the area functional when F = 1 and the confor-
mal Willmore functional when F = H2−4K. Moreover, other functionals of higher-
order have been proposed on physical grounds (see [25] and references therein),
which are also amenable to this formulation.

In this article, we study smooth, oriented, compact surfaces with (potentially
empty) boundaries. Our motivation is framed by a general question in the calcu-
lus of variations, eloquently phrased by B. Palmer in [28], which asks whether or
not the interior solution to a variational problem necessarily inherits the symme-
tries of its boundary. This is natural to consider, as the importance of symmetry
in variational problems has been widely-recognized due to a classical theorem of
Noether (circa 1918) in [26]. In particular, Noether’s Theorem establishes a valu-
able correspondence between the symmetries of a Lagrangian (integrand) and the
quantities that are conserved under its perturbation. Among other things, this
correspondence encourages the search for divergence-free tensor expressions, often
called conservation laws, which encode significant information about the varia-
tional problem at hand. As has been seen in the literature, such expressions can
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be exceedingly useful in weakening the regularity requirements necessary to prove
results (e.g. [30,3]). Additionally, conservation laws have also been used to obtain
regularity results in geometrically relevant cases (see e.g. [4]). The present con-
tribution to this line of work begins with a first variation formula for W, which
is computed in Section 3. This result, combined with the invariances of W un-
der translation, rotation, and (when applicable) rescaling leads to flux formulas,
which are further used to establish a “stress tensor” whose divergence encodes
the failure of a surface to be W-critical. This gives a divergence-form expression
of the W-surface Euler-Lagrange equation, which is related to results previously
obtained by Y. Bernard and T. Riviere. More precisely, in [30] it is shown that all
conformally-invariant PDE in 2-dimensions which are non-linear and elliptic admit
a divergence-form expression, and in [4] this computation is extended to more gen-
eral Euler-Lagrange equations for functionals involving arbitrary functions of the
squared mean curvature and the squared norm of the second fundamental form. A
similar expression is presently derived for the Euler-Lagrange PDE characterizing
W-surfaces, despite the general lack of conformal invariance in the functional W.

Returning to the question of boundary versus interior inheritance, a partial
characterization of rotationally-symmetric W-surfaces with free boundary is given
in Section 5. In this case, it is seen that the answer as to how much the symmetries
of the boundary control the solution on the interior is highly dependent on the
behavior of the functional W with respect to rescalings (c.f. Definition 1). Using
subscripts to denote partial derivatives with respect to the subscripted quantity,
the first main result is as follows.

Theorem 1 Let W be scaling invariant, and Σ ⊂ R3 be an immersed W-surface
having free boundary with respect to Ω2 ⊂ R3. Suppose that Σ and Ω share a
common axis of rotational symmetry, and Ω is strictly convex. Then, one of the
following holds:

1. Σ is spherical and F ≡ 0 on Σ.
2. FH ≡ 0 and FK is constant on Σ.

Remark 3 Either case is certainly possible; see Remark 10. For the latter, if FK 6= 0
then, along ∂Σ, the unit vector of the axis of symmetry is normal to the surface.

Remark 4 When W is the conformal Willmore functional, the convexity assump-
tion on Ω is unnecessary. See Theorem 6.

This gives a characterization of rotationally-symmetric free-boundaryW-surfaces
for functionals which are scaling invariant, and also extends what was obtained
in [28] for the conformal Willmore functional. Moreover, this particular Theorem
is seen to hinge on the scaling invariance property of W, as it is not difficult to
construct counterexamples when the functional is not scaling invariant (see Re-
mark 13). This and other applications to conformal Willmore surfaces are discussed
further in Section 5.

On the other hand, there are many interesting W-functionals that do not re-
main static under rescaling. For example, the well-known Helfrich-Canham func-
tional [6] for measuring bio-membrane energy per unit area is expressed as

WHC(r) :=

∫
Σ)

kc(H + c0)2 + kK dµ, (2)
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where k, kc are some physical rigidity constants, and c0 is known as the sponta-
neous curvature of the membrane. From a physical point of view, it is clear that
this functional should not be scaling invariant, and indeed it is not. In fact, know-
ing that this property does not hold goes a long way toward determining how much
control the boundary of a critical surface can exert over the interior. To study this
precisely, we make the following definition.

Definition 1 A W-functional will be called scaling-invariant provided that

F (tH, t2K) = t2F (H,K), (3)

for any t > 0. On the other hand, W will be called expanding (resp. shrinking)
provided that

2F −HFH − 2KFK ≥ 0(
resp. 2F −HFH − 2KFK ≤ 0

)
.

In particular, a scaling invariant functional is both expanding and shrinking.

With this terminology in place, the following is proved.

Theorem 2 Suppose W is a functional which is either shrinking or expanding,
and let Σ ⊂ R3 be an immersed W-surface with boundary ∂Σ and adapted or-
thonormal frame field {T,n,η} such that T is tangent to ∂Σ, n is everywhere
normal to Σ, and η = T × n. Suppose additionally that the following boundary
conditions are satisfied:

0 = τgFH ,

0 = F − h(η,η)FH −KFK ,
0 = h(∇FK ,η)−∇ηFH −H∇ηFK ,

where h : TΣ × TΣ → R denotes the second fundamental form of Σ and τg =
h(T,η) is the geodesic torsion of ∂Σ. Then, 2F −HFH − 2KFK ≡ 0 on Σ.

This result shows that the interior behavior of dilation-sensitive W-functionals
is highly affected by conditions on the boundary, and suggests a partial explana-
tion for the differences seen between boundary-value problems for the conformal
Willmore functional when compared to those for more rigid W-functionals like the
Helfrich-Canham energy (c.f. [28],[34],[17],[5]). The consequences of this are dis-
cussed further in Section 6. One particularly interesting application involves the
p-Willmore energy functional discussed in [21,24],∫

Σ

|H|p dµ, p ∈ R.

Consideration of Theorem 2 shows that in this case, for some values of p, there
are no non-minimal critical surfaces which have zero mean curvature on their
boundary. More precisely, the following is observed.

Theorem 3 When p > 2, any p-Willmore surface Σ ⊂ R3 with boundary which
satisfies H = 0 on ∂Σ must be a minimal surface.
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Remark 5 Note that it is possible to deduce from Theorem 3 that there are no
closed p-Willmore surfaces Σ immersed in R3 when p > 2. Indeed, equation the
result asserts that any such surface must be minimal, but there are no closed
minimal surfaces immersed in R3, a contradiction. This recovers a result proved
in [21].

To summarize, this manuscript is structured as follows: Section 2 briefly recalls
the necessary mathematical background; Section 3 demonstrates the first variation
of (1) and collects its ramifications; Section 4 considers how different conditions
on the boundary influence the critical surfaces of W-functionals; Section 5 studies
such boundary-value problems subject to a rotational symmetry constraint and
establishes Theorem 1; Section 6 examines these problems for W-functionals that
are not scaling invariant, and establishes Theorems 2 and 3.

Remark 6 It is interesting to note that many of the Theorems established here
should have an analogue for hypersurfaces in any dimension, as the notion (but not
the expression) of scaling invariance and the existence of n are independent of these
notions. On the other hand, it is unlikely that these results extend to arbitrary
codimension in their present form without some assumptions on the normal bundle
to the immersion (e.g. flatness, parallel mean curvature). Since a general curvature
functional of interest

∫
Σ
F (κ1, ..., κn) dµ is also more complicated in dimension n,

the results presented here leave plenty of compelling questions for future work.

2 Preliminaries

In this section, we will fix the notation and conventions that will be used through-
out the paper, and collect variation formulas for a surface in Euclidean space.
First, let Σ be a smooth oriented surface with potential boundaries and let r be
an isometric immersion,

r : Σ2 7→ R3,

with choice of unit normal field n. Let g be the metric on Σ induced from the
standard metric on R3, and let dµ denote its associated volume form. Let D,∇ be
the connections on R3 and (Σ, g) respectively. The second fundamental form h,
mean curvature H, and Gaussian curvature K are then defined as follows (Einstein
summation assumed). For orthonormal vector fields ei, ej ∈ TM , it follows that

hij = 〈Deiej ,n〉 = −〈Dein, ej〉 ;

H = gijhij ;

K = det
(
gikhkj

)
=

deth

det g
,

where 〈·, ·〉 denotes the standard inner product on R3. Moreover, along boundaries
∂Σ we let η be the outward co-normal unit vector, T the unit tangential vector
field, and ds the associated arc length. As a consequence, the curvatures on the
boundary can be expressed as,

H = h(T,T) + h(η,η) = κn + h(η,η),

K = h(T,T)h(η,η)− h(T,η)2 = h(η,η)κn − τ2g ,
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where the quantities

κn = 〈∇TT,n〉 = h(T,T),

τg = 〈∇Tη,n〉 = h(T,η)

are, respectively, the normal curvature and geodesic torsion of ∂Σ when considered
as a curve in Σ. Note that κn measures how fast T rotates into n along the
boundary curve, while τg measures how fast η rotates into n (c.f. Figure 1).

T n

η

n

T

η

τg

κn

∂Σ

Fig. 1 κn and τg as rates of rotation (for a left-handed frame).

2.1 Functionals of interest

The primary objects of study in this work will be functionals of the form

W(r) :=

∫
Σ

F̃ dµ,

where F̃ is a smooth symmetric function in the principal curvatures of r(Σ) ⊂ R3.

Expressed differently, this implies that F̃ = F (H,K) is a smooth function of H
and K.

As mentioned in the Introduction, it is useful to keep in mind the symmetries
that are present. It is clear that a general W-functional is invariant under trans-
lations and rotations of R3 (since H and K are rigid-motion invariant). However,
any particular W-functional need not be invariant under changes of scale. To see
this, recall the consequences of rescaling an immersion r 7→ (1/t)r by some t > 0.
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In particular,

g 7→ 1

t2
g,

dµ 7→ 1

t2
dµ,

H 7→ tH,

K 7→ t2K,

∆ 7→ t2∆

From this, it follows that the derivative of W under rescaling satisfies

d

dt

∣∣∣∣
t=1

∫
Σ

F (tH, t2K)
1

t2
dµ =

∫
Σ

(HFH + 2KFK − 2F ) dµ,

which forms the motivation for Definition 1. Note that a functional is either strictly
expanding or shrinking if and only if the scaling excess 2F−HFH−2KFK is strictly
positive or negative. Moreover, consideration of equation (3) immediately yields
the relationships

FH(tH, t2K) = tFH(H,K),

FK(tH, t2K) = FK(H,K),

F (0, 0) = FH(0, 0) = 0.

In particular, FK is itself scaling invariant whenever W is.

2.2 Variation of geometric quantities

It is advantageous to collect the various evolution equations that will be needed for
the analysis of W-functionals. To that end, consider a variation of the immersion
r by a velocity vector field X = un + ζ where u is smooth on Σ, n is a choice of
unit normal, and ζ is tangential to the surface:

δXr :=
d

dt
r
∣∣∣
t=0

= X. (4)

There are then the following well known normal evolution equations; for example,
see [21].

δung = −2uh,

δung
ij = 2uhij ,

δunhij = (Hessu)ij − uh`ih`j ,
δundµ = −uH dµ,

δun|h|2 = 2 〈h,Hessu〉+ 2u|h|3,
δun = −∇u,

δunH = u|h|2 +∆u,

δunK = H∆u− 〈h,Hessu〉+HKu,
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where Hessu denotes the Hessian of u and |h|2 = H2 − 2K denotes the squared
norm of the second fundamental form. Moreover, the surface Laplacian evolves by
the following equation,

δun(∆f) = 2u 〈h,Hess f〉+∆
(
d
dtf
)

+ 2h(∇u,∇f)−H〈∇u,∇f〉+ u〈∇H,∇f〉.

In addition, the variation induced by the tangential vector field ζ is tracked as
a Lie derivative. That is, for any function f , we have

δζ

∫
Σ

f dµ =

∫
Σ

Lζ (f dµ) =

∫
∂Σ

f 〈ζ,η〉 ds,

where the final equality is due to Stokes’ Theorem and the fact that df ∧ dµ ≡ 0
on Σ, since µ is a volume form.

3 First Variation

It is now opportune to compute the first variation formula corresponding to (1),
which will facilitate the analysis of W-functionals. In particular, the formulation
presented here is applicable to both closed surfaces as well as surfaces with non-
trivial boundary. Further, symmetries of theW-surface variational problem will be
used to generate flux formulas, and a stress tensor will be given whose divergence
measures the deviation of a surface from W-criticality.

Theorem 4 Let Σ be a compact smooth surface and r(t) : Σ 7→ R3 be a family of
diffeomorphisms with velocity

δXr =
d

dt
r
∣∣∣
t=0

= X.

Then, the first variation of the functional W is given by

δXW =

∫
∂Σ

F 〈X,η〉 ds+

∫
∂Σ

〈X,n〉
(
h(∇FK ,η)−∇ηFH −H∇ηFK

)
ds

+

∫
∂Σ

(
(FH +HFK)∇η 〈X,n〉 − FKh(∇〈X,n〉 ,η)

)
ds

+

∫
Σ

〈X,n〉
(
∆FH +H∆FK − 〈h,HessFK〉+ FH |h|2 +HKFK −HF

)
dµ.

Proof For X = un + ζ, the formulas from Section 2.2 yield

δunW =

∫
Σ

(
FH(δunH) + FK(δunK)

)
dµ+

∫
Σ

F (δun dµ)

=

∫
Σ

(
FH(u|h|2 +∆u) + FK(H∆u− 〈h,Hessu〉+HKu)− uHF

)
dµ

=

∫
Σ

(
(FH +HFK)∆u+ (FH |h|2 +HKFK −HF )u− FK 〈h,Hessu〉

)
dµ.
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Moreover, it follows from integration by parts and the Codazzi equation divg h =
∇H that∫

Σ

(FH +HFK)∆udµ =

∫
Σ

u∆(FH +HFK) dµ

+

∫
∂Σ

(
(FH +HFK)∇ηu− u∇η(FH +HFK)

)
ds,∫

Σ

FK 〈h,Hessu〉 dµ =

∫
Σ

u(〈h,HessFK〉+ 2〈∇FK ,∇H〉+ FK∆H) dµ

+

∫
∂Σ

(
FKh(∇u,η)− uh(∇FK ,η)− uFK∇ηH

)
ds.

Putting the above expressions together, we obtain

δunW =

∫
Σ

u
(
∆(FH +HFK)− 〈h,HessFK〉 − 2∇FK∇H − FK∆H

)
dµ

+

∫
Σ

u(FH |h|2 +HKFK −HF ) dµ

+

∫
∂Σ

(
(FH +HFK)∇ηu− u∇η(FH +HFK)

)
ds

+

∫
∂Σ

(
− FKh(∇u,η) + uh(∇FK ,η) + uFK∇ηH

)
ds,

=

∫
Σ

u
(
∆FH +H∆FK − 〈h,HessFK〉+ FH |h|2 +HKFK −HF

)
dµ

+

∫
∂Σ

(
(FH +HFK)∇ηu− FKh(∇u,η)

)
ds

+

∫
∂Σ

u
(
h(∇FK ,η)−∇ηFH −H∇ηFK

)
ds.

Finally, recall that the tangential variation can be computed as

δζW = δζ

∫
Σ

F dµ =

∫
∂Σ

F 〈ζ,η〉 ds.

The result then follows.

Remark 7 In the case F = H2 − 4K corresponding to the conformally-invariant
Willmore functional, we immediately recover the following (c.f. [28]),

δX

∫
M

(H2 − 4K) dµ =

∫
Σ

〈X,n〉 (2∆H +H(|h|2 − 2K)) dµ

+

∫
∂Σ

(
4h− 2Hg

)
(∇〈X,n〉 ,η) ds

+

∫
∂Σ

(
(H2 − 4K) 〈X,η〉 − 2 〈X,n〉 〈η,∇H〉

)
ds.

The results of Theorem 4 motivate the following definition.

Definition 2 Σ is said to be a stationary surface with respect to W (or, in short,
a W-surface) provided it satisfies the Euler-Lagrange equation

∆FH +H∆FK − 〈h,HessFK〉+ FH |h|2 +HKFK −HF = 0.
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The first variation above immediately leads to some useful flux formulas.

Corollary 1 Let Σ be a compactW-surface with boundary and e a constant vector
field. Then, the following hold:

0 =

∫
∂Σ

(
(FH +HFK)∇η 〈e,n〉 − FKh(∇〈e,n〉 ,η)

)
ds (5)

+

∫
∂Σ

〈e,n〉
(
h(∇FK ,η)−∇ηFH −H∇ηFK

)
ds+

∫
∂Σ

F 〈e,η〉 ds;∫
Σ

(2F −HFH − 2KFK) dµ (6)

=

∫
∂Σ

(
(FH +HFK)∇η 〈r,n〉 − FKh(∇〈r,n〉 ,η)

)
ds

+

∫
∂Σ

〈r,n〉
(
h(∇FK ,η)−∇ηFH −H∇ηFK

)
ds+

∫
∂Σ

F 〈r,η〉 ds;

0 =

∫
∂Σ

(
(FH +HFK)∇η 〈e× r,n〉 − FKh(∇〈e× r,n〉 ,η)

)
ds (7)

+

∫
∂Σ

〈e× r,n〉
(
h(∇FK ,η)−∇ηFH −H∇ηFK

)
ds+

∫
∂Σ

F 〈e× r,η〉 ds.

Proof First, consider a continuous family of translations r(t) = r + te for (−ε ≤
t ≤ ε). It follows that

d

dt
r(t)

∣∣∣
t=0

= e,

W(r(t)) =W(r(0)).

The first expression now follows from Theorem 4. Next, consider a continuous
family of rescalings r(t) = tr for (1− ε ≤ t ≤ 1 + ε). Then, it follows that

d

dt
r(t)

∣∣∣
t=1

= r,

Moreover, the consequences of rescaling recalled in Section 2 imply that

W(r(t)) =

∫
Σ

F

(
H

t
,
K

t2

)
t2 dµ.

Taking the derivative at t = 1 and applying Theorem 4 now yields the second ex-
pression. Finally, consider a continuous family of rotations around a unit constant
vector e ∈ S2. By Rodrigues’ rotation formula, it follows that

r(t) = r cos(t) + (e× r) sin(t) + 〈r, e〉 (1− cos(t))e,

d

dt
r(t)

∣∣∣
t=0

= e× r,

W(r(t)) =W(r(0)),

where × denotes the standard right-handed cross product on R3. Again, applying
Theorem 4 leads to the third identity.
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These flux formulas are useful to examine in the broader context of conservation
laws. To that end, recall the usual shape operator S : TΣ → TΣ defined by

〈S(v),w〉 = 〈−∇vn,w〉 = h(v,w),

for all vector fields v,w ⊂ TΣ, and recall that S is known to be a linear map
which is self-adjoint with respect to the metric inner product on Σ [20, Chapter
13]. Since the Euclidean inner product 〈·, ·〉 on R3 restricts to give the metric inner
product on Σ ⊂ R3, it follows that

〈S(v),w〉 = 〈v, S(w)〉 ,

for all v,w ⊂ TΣ. As a consequence of this, note that〈
S2(v),w

〉
= 〈S (S(v)) ,w〉 = 〈S(v), S(w)〉 =

〈
v, S2(w)

〉
.

Moreover, since ∇vn ⊂ TΣ for all v ⊂ TΣ, it is evident that any ambient vector
field e ⊂ TR3 satisfies

〈e,∇vn〉 =
〈
e>,∇vn

〉
,

where e> denotes the projection of e onto TΣ. In view of this, S(e) will be used
to denote the vector S

(
e>
)

in the sequel.
With these additional notions in place, it is now possible to construct a stress

tensor associated to the W-functional whose divergence encodes deviation from
W-criticality. This implies a conservation law for W-surfaces as expressed by the
following result.

Theorem 5 Let

T = FK S2 − (FH +HFK)S + (S(∇FK)−∇FH −H∇FK)⊗ n + F∇r,

W = ∆FH +H∆FK − 〈h,HessFK〉+ FH |h|2 +HKFK −HF.

Then, it follows that

divg T = −Wn.

In particular, Σ is a W-surface if and only if T is divergence-free.

Proof Though this can be verified by direct computation, it is more instructive to
derive this result as a consequence of translation invariance and Theorem 4. First,
note that ∇vr = v for any tangent vector v. Moreover, let e be a constant vector
field. Then, it follows from the definition of S and the discussion above that∫

∂Σ

(FH +HFK)〈e,∇ηn〉 − FK h (∇en,η) ds

+

∫
∂Σ

〈e,n〉 (h(∇FK ,η)−∇ηFH −H∇ηFK) + F 〈e,η〉 ds

=

∫
∂Σ

〈(
− (FH +HFK)S(e) + FK S2(e),η

〉
ds

+

∫
∂Σ

〈
(S(∇FK)−∇FH −H∇FK) 〈e,n〉+ F∇er

)
,η
〉
ds.
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Moreover, using integration by parts, the above can be expressed as∫
∂Σ

〈Te,η〉 ds =

∫
Σ

divg (Te) dµ =

∫
Σ

〈e, divg T 〉 dµ,

where divg denotes the divergence with respect to the metric g and the constancy
of e was used in the last equality. Translation invariance and Theorem 4 now imply
that for any constant vector field e and any surface Σ,

0 = δeW =

∫
Σ

〈e,Wn + divg T 〉 dµ. (8)

To complete the argument, we claim that the above implies that

Wn + divg T ≡ 0.

To verify this, suppose it is not true. Then, there must be a constant vector field
e0 such that (8) is true for all Σ but Wn + divg T is nonzero. First, notice that e0

cannot be everywhere orthogonal to Wn+divg T in this case, since the latter field
is not constant. Indeed, if it were, choosing e0 = Wn+divg T in (8) would produce
a contradiction. Moreover, smoothness implies that the function 〈e0,Wn + divg T 〉
varies continuously on any Σ, so for any p ∈ Σ\∂Σ where Wn+divg T 6= 0 we may
choose a local surface Σ0 ⊂ Σ containing p on which this field is strictly positive or
strictly negative. Without loss of generality, suppose that 〈e0,Wn + divg T 〉 > 0
on Σ0. In this case, ∫

Σ0

〈e0,Wn + divg T 〉 dµ > 0

which contradicts equation (8). Hence, the claim is true and the result follows.

Remark 8 In the case where F = H2, the stress tensor above reduces to

T = −2H S − 2∇H ⊗ n +H2∇r,

which coincides with the expression in [3] up to our convention for H. Moreover,
considering the special cases F = F (H2) and F = F (|h|2) recovers Proposition
2.1 in [4].

Besides their pleasing physical interpretation as conservation laws, divergence-
form expressions have been historically helpful for the study of problems involv-
ing harmonic maps, minimal surfaces, and Willmore immersions. Particularly, the
ability to suppress one derivative in the Euler-Lagrange equation has enabled re-
searchers to prove interesting results under much lighter regularity requirements
than would otherwise be possible (see e.g. [30] and the references therein). As
mentioned in the Introduction, the result of Theorem 5 is similar in nature to a
result of T. Rivière which asserts that all conformally-invariant PDE in 2 dimen-
sions which are non-linear and elliptic admit a divergence-form expression. Indeed,
when the conformally-invariant PDE in question comes from a W-functional, this
result is recovered from Theorem 5 (see e.g. Remark 8).
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4 Boundary Considerations

To develop knowledge about surfaces with boundaries, critical points of a generic
functionalW are now studied subject to different conditions at the boundary. First,
the fixed-boundary condition is investigated. Note that in this case all variations
must vanish along ∂Σ.

Proposition 1 Let r : Σ 7→ M ⊂ R3 be a smooth isometric immersion of a
surface with boundary. Then Σ is a critical point of W under the fixed-boundary
condition if and only if,

0 = ∆FH +H∆FK − 〈h,HessFK〉+ FH |h|2 +HKFK −HF, in Σ

0 = FH + κnFK on ∂Σ.

Proof Let X be a velocity vector field on Σ. It follows from the fixed-boundary
condition that X ≡ 0 on ∂Σ. Furthermore, ∇T 〈X,n〉 = 0 on ∂Σ. Thus, Theorem
4 implies,

δXW =

∫
∂Σ

(
(FH +HFK − FKh(η,η)

)
∇η 〈X,n〉 ds

+

∫
Σ

〈X,n〉
(
∆FH +H∆FK − 〈h,HessFK〉+ FH |h|2 +HKFK −HF

)
dµ.

Note that Σ is a critical point if and only if δXW = 0 for all such X. The first
equation follows since it is possible to choose 〈X,n〉 to be zero everywhere except
for any arbitrary small interior disk. Then, as Σ is smooth, elliptic theory (see e.g.
[19]) allows one to solve the biharmonic Dirichlet-Neumann problem

∆2u = 0 in Σ,

u = 0 on ∂Σ,

∇ηu = FH + (H − h(η,η))FK on ∂Σ,

where X = un was chosen. The second equation now follows since H−h(η,η) = κn
on ∂Σ.

On the other hand, it is reasonable to consider the possibility of a surface with
free boundary, as is the case in many applications. That is, let Ω be a smooth
surface in R3, and consider all variations of r : Σ 7→ R3 such that r(∂Σ) ⊂ Ω. The
following result characterizes W-surfaces with free boundary.

Proposition 2 Let r : Σ 7→ M ⊂ R3, r(∂Σ) ⊂ Ω be a smooth isometric immer-
sion of a surface with boundary, and let v be a unit normal to Ω compatible with
the normal n to Σ (i.e. such that 〈v,n〉 ≥ 0). Then, Σ is a critical point of W
under the free-boundary condition if and only if the following hold:

0 = ∆FH +H∆FK − 〈h,HessFK〉+ FH |h|2 +HKFK −HF in Σ,

0 = FH + κnFK on ∂Σ,

0 =
〈
v, Fn−

(
∇T(τgFK) + h(∇FK ,η)−∇ηFH −H∇ηFK

)
η
〉

on ∂Σ.

(9)
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Proof The free-boundary condition implies that any velocity vector field X along
∂Ω must satisfy

〈X,v〉 = 0.

First, choose X ≡ 0 along ∂Ω. The first two equations are established through a
similar argument as in the proof of Proposition 1. For the final equation, note that
by Theorem 4,

0 = δXW =

∫
∂Σ

−FKh(η,T)∇T 〈X,n〉 ds+

∫
∂Σ

F 〈X,η〉 ds

+

∫
∂Σ

〈X,n〉
(
h(∇FK ,η)−∇ηFH −H∇ηFK

)
ds.

Integrating the first term by parts, it follows that

0 =

∫
∂Σ

〈X,V〉 ds,

V = Fη +
(
∇T(FKh(η,T)) + h(∇FK ,η)−∇ηFH −H∇ηFK

)
n.

Criticality implies that the equations above hold for all X such that 〈X,v〉 = 0
along ∂Σ. Therefore, V must be parallel to v.

Moreover, observe that v, n, and η lie in the same plane perpendicular to
∂Σ. Therefore, the condition that V be parallel to v translates equivalently to
〈V, R(v)〉 = 0, where R denotes a 90-degree rotation in this plane. Consequently,〈

v, Fn−
(
∇T(FKh(η,T)) + h(∇FK ,η)−∇ηFH −H∇ηFK

)
η
〉

= 0.

The last equation now follows under the observation that h(T,η) = τg on ∂Σ.

As an immediate consequence of this calculation, we make the following defi-
nition.

Definition 3 Σ is called a W-surface with free boundary provided it is a critical
point of the functional W under the free-boundary condition.

Notice that when the conformal Willmore functional is considered, meaning
when F = H2 − 4K, these computations recover the critical conditions observed
by B. Palmer in [28] for conformal Willmore surfaces with free boundary.

0 = 2∆H +H(|h|2 − 2K) inside Σ,

0 = h(η,η)− h(T,T) on ∂Σ,

0 = (H2 − 4K) 〈n,v〉+ (2∇ηH + 4∇Th(T,η)) 〈η,v〉 on ∂Σ.

In particular, note that the second condition implies that the principal curvatures
are everywhere equal at the boundary, meaning the boundary must be totally
umbilical.
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5 Rotational Symmetry

Free boundary W-surfaces with rotational symmetry will now be studied, leading
to the proof of Theorem 1. To that end, suppose that Σ has an axis of rotational
symmetry, and (without loss of generality) assume Σ is symmetric about the x-
axis. Then, it is possible to truncate Σ by some planes perpendicular to the x-axis,
so that the boundary ∂Σ of the truncated surface has components ∂iΣ, each of
which is circular.

r

n
T

e1

η

Ω

Σ

∂iΣ

Fig. 2 A visual aid depicting the surface Σ with boundary components ∂iΣ and support
surface Ω, along with the frame {T,n,η}, position vector r, and axis of symmetry e1.

Let T denote a choice of a unit tangential vector field along ∂Σ. At each
point along this boundary, it follows that the position vector r, the co-normal
vector η, the normal vector n, and the constant vector e = e1 are all co-planar,
since all are perpendicular to T (see Figure 2 for an illustration). Moreover, note
that along ∂Σ we also have τg = h(T,η) = 0, ∇η〈e,n〉 = −h(η,η)〈e,η〉, and
h(∇f,η) = h(η,η)∇ηf for any smooth f : Σ → R. Thus, the flux formula (5)
becomes

0 =

∫
∂Σ

(FH + h(T,T)FK)∇η 〈e,n〉 ds

−
∫
∂Σ

〈e,n〉 (∇ηFH + h(T,T)∇ηFK) ds+

∫
∂Σ

F 〈e,η〉 ds

=

∫
∂Σ

〈
e,
(
F − h(η,η)(FH + h(T,T)FK)

)
η −

(
∇ηFH + h(T,T)∇ηFK

)
n
〉
ds.

Similarly, (6) becomes∫
Σ

(2F −HFH − 2KFK) dµ =

∫
∂Σ

(FH + h(T,T)FK)∇η 〈r,n〉 ds

−
∫
∂Σ

〈r,n〉 (∇ηFH + h(T,T)∇ηFK) ds+

∫
∂Σ

F 〈r,η〉 ds

=

∫
∂Σ

〈
r,
(
F − h(η,η)(FH + h(T,T)FK)

)
η −

(
∇ηFH + h(T,T)∇ηFK

)
n
〉
ds.
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Therefore, let

V =
(
F − h(η,η)(FH + h(T,T)FK)

)
η −

(
∇ηFH + h(T,T)∇ηFK

)
n,

`i = |∂iΣ|.

Then, since the principal curvatures are constant along each component of the
boundary, the calculations above imply

0 =
∑
i

`i 〈e,V|∂iΣ〉 ; (10)∫
Σ

(2F −HFH − 2KFK) dµ =
∑
i

`i 〈r|∂iΣ ,V|∂iΣ〉 . (11)

Remark 9 The above formulas are comparable with those in [11, Proof of Theorem
3]. In that paper, Σ satisfies an additional reflection symmetry. As a consequence,
it is possible to truncate Σ such that, for some i, 〈r|∂iΣ ,V|∂iΣ〉 = 0. Also, that
article and [35,10,13] show there are plenty of Willmore surfaces with rotational
symmetry.

For the rest of this section, it is assumed that W is scaling invariant. In this
case, recall that

2F −HFH − 2KFK = 0.

Since τg = h(T,η) ≡ 0 on ∂Σ (the boundary is a line of curvature), it follows
from this invariance that V|∂iΣ reduces to

V|∂iΣ =
1

2

(
κn − h(η,η)

)
FHη −

(
∇ηFH + κn∇ηFK

)
n. (12)

The following result will be used repeatedly in the proof of our main theorems.

Lemma 1 Let Σ be a rotationally symmetric W-surface and suppose W is scaling
invariant. The following are equivalent.

1. V = 0 on at least one boundary component ∂iΣ.
2. V ≡ 0 on ∂Σ.
3. Either Σ is spherical or FH ≡ 0, FK = c for some constant c, and F = cK on

Σ.

Proof First, we show that (1) → (2). Without loss of generality, we can assume
that Σ has at most 2 boundary components. If ∂Σ has one component, then the
statement follows vacuously. If ∂Σ has two connected components, assume that
Vj 6= 0 for j 6= i. Then, we can choose the origin along the x-axis, in which case〈
r|∂jΣ ,V|∂jΣ

〉
6= 0 for j 6= i. But this contradicts equation (11),

0 =
∑
k

`k 〈r|∂kΣ ,V|∂kΣ〉 ,

so we must have V ≡ 0 on ∂Σ in this case as well.
Next, we’ll show (2)→ (3). Observe that (10) and (11) hold for any truncated

surface. As a consequence, the above argument can be repeated for a sequence of
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surfaces whose boundaries exhaust Σ to obtain that V ≡ 0. Thus, on the entire
surface Σ,

0 = (h(T,T)− h(η,η))FH ,

0 = ∇ηFH + h(T,T)∇ηFK ,

where η = T × n is the unique extension of the outward co-normal field to the
interior of Σ (which exists since Σ is rotational). It follows by continuity that for
any connected and rotationally symmetric submanifold Σ0 ⊂ Σ, either FH = 0 or
h(T,T) = h(η,η) holds. We consider two possible cases:

Case 1: h(T,T) = h(η,η) and Σ0 is totally umbilical. By rotational symmetry,
Σ0 ⊂ Σ must be spherical, hence both H and K are constant on Σ0. Moreover, this
implies that FH is constant on Σ0 as well. On the other hand, if Σ is not entirely
spherical, then taking Σ0 to be the maximally connected spherical submanifold
contained in Σ (guaranteed by Zorn’s Lemma) we conclude there is a rotationally
symmetric Σ1 ⊂ Σ which is nonspherical and has nontrivial intersection with Σ0.
This is only possible if FH ≡ 0 everywhere on Σ.

Case 2: FH ≡ 0 on Σ. Then, the second equation implies that

h(T,T)∇ηFK = 0.

Again, it must hold for any connected and rotationally symmetric Σ0 ⊂ Σ that
either h(T,T) = 0 or ∇ηFK = 0. Suppose h(T,T) = 0 on Σ0. By rotational
symmetry, ∇TT is perpendicular to both e,T. Thus, h(T,T) = 0 if and only if
n ‖ e. As a consequence, n = ±e, so h(η,η) = 0 and Σ0 is flat. Hence, FK is
constant on Σ0. On the other hand, if ∇ηFK = 0 on Σ0, then rotational symmetry
implies that FK is constant on Σ0 also since ∇TFK = 0. Therefore, in either case
it follows that FH ≡ 0 and FK is constant, implying F = cK on Σ0. Taking an
overlapping sequence of rotationally symmetric subsurfaces which exhaust Σ then
yields the conclusion.

Finally, consider the implication (3)→ (1). This is clear from the expression of
V|∂iΣ in (12) when FH ≡ 0, FK = c ∈ R. Also, Σ spherical implies κn = h(η,η)
as well as H,K constant, so that the implication again follows from (12).

Lemma 2 Let W be scaling invariant and let Σ be a rotationally symmetric
W-surface. Denote the unit vector aligned with the axis of rotation by e. Either
〈e,V〉 = 0 holds on Σ or it is possible to choose an origin such that 〈r,V〉 = 0 on
Σ.

Proof Suppose there is some boundary component ∂iΣ on which 〈e,V〉 6= 0. Since
V is a constant combination of η,n on ∂iΣ, it is then possible using planar ge-
ometry (see e.g. Figure 3) to choose an origin on the x-axis such that 〈r,V〉 = 0
there. More precisely, because ∂iΣ is circular, the planes spanned by T and T×V
at each point will intersect the x-axis in a common point (when V ∦ η), which
serves as the new origin of r (when V ‖ η the new origin can be placed at the
center of ∂iΣ). Applying the flux formula corresponding to dilation now leads to
〈r,V〉 = 0 on Σ.

Next, we consider the surfaces with free boundary in addition to rotational
symmetry. That is, suppose Σ,Ω ⊂ R3 share a common axis of rotational sym-
metry and satisfy the system of equations (9). Again, without loss of generality,
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r
e1

V

η

T

n

Fig. 3 An illustration depicting the new choice of origin in Lemma 2. Note that r is orthogonal
to V, as desired.

it may be assumed that the axis of symmetry is the x-axis, and Σ has at most 2
boundary components. Furthermore, due to the shared symmetry, each connected
component ∂iΣ of ∂Σ is circular around the x-axis. Moreover, it follows that Σ
intersects Ω at a constant angle. Consequentially, 〈n,v〉 is constant along ∂Σ,
where v is an appropriate normal vector to Ω. This leads to the following well
known observation illustrated in Figure 4.

Lemma 3 Suppose that Σ is a surface which has free boundary with respect to a
support surface Ω. If Σ intersects Ω at a constant nonzero angle, then ∂Σ ⊂ Ω is
formed by lines of curvature if and only if so is ∂Σ ⊂ Σ.

Proof Let T be a unit vector field tangent to ∂Σ. Since 〈n,v〉 is constant, we have

0 = ∇T 〈n,v〉
= 〈∇Tn,v〉+ 〈n,∇Tv〉

= hΣ(T,η) 〈η,v〉+ hΩ(ζ,T) 〈n, ζ〉 ,

where ζ is an appropriate unit co-normal vector to ∂Σ ⊂ Ω. Since {n,η} and
{v, ζ} are pairs of perpendicular vectors in the same plane and the angle between
n and v is nonzero, the result follows.

As a consequence of this, ∂iΣ is a line of curvature on both Σ and Ω. By the
calculations above Lemma 1, Σ is a rotationally symmetric and scale-invariant
W-surface with free boundary with respect to Ω if and only if the following hold:

V =
1

2

(
h(T,T)− h(η,η)

)
FHη −

(
∇ηFH + h(T,T)∇ηFK

)
n, (13)

0 =
∑
i

`i 〈e,Vi〉 , (14)

0 =
∑
i

`i 〈ri,Vi〉 , (15)

0 = ∆FH +H∆FK − 〈h,HessFK〉+ FH |h|2 +HKFK −HF, on Σ, (16)

0 = FH + κnFK on ∂Σ, (17)

v ‖ V or V = 0 on ∂Σ. (18)



Stationary Surfaces with Boundaries 19

T

n

v

ζ
η

Ω

∂Σ

Σ

Fig. 4 An illustration depicting Lemma 3. Note that v,n, ζ,η are all co-planar.

Note that the last equation follows from arguments similar to those in the proof
of Proposition 2. An immediate consequence of this system is the following.

Proposition 3 Suppose that W is scaling invariant and Σ is a rotationally sym-
metric free-boundary W-surface with exactly one boundary component. Then, one
of the following holds:

1. Σ is spherical and F ≡ 0.
2. FH ≡ 0, FK is constant.

Proof Since there is only one boundary component, by (14) and (15), we have

0 = 〈e,V〉 = 〈r,V〉 .

Moreover, e and r are not parallel, so V ≡ 0. By Lemma 1, either Σ is spherical
or FH ≡ 0 and FK is constant. In the former case, note that K = H2/4 = κ2n on
∂Σ, so that multiplying equation (17) by κn and using scaling invariance yields
that F = 0 on ∂Σ. Moreover, since Σ is spherical, H and K are constant and
hence F is constantly equal to zero on Σ.

It is now possible to eliminate the dependence on the number of boundary
components, hence establishing Theorem 1.

Proof (Proof of Theorem 1) Without loss of generality, suppose that Σ has at most
2 boundary components. If Σ has only one component, then the result follows from
Proposition 3. So, suppose that Σ has 2 boundary components.

Let Π be any plane containing the x-axis. Since Ω is strictly convex, its inter-
section with Π is a convex simple curve γ. It follows that the normal vector map of
γ in Π, from γ to the unit circle, is one-to-one and onto [20, Chapter 6]. Further-
more, each boundary component of ∂Σ intersects Π at two points whose normal
vectors are symmetrical over the x-axis. Since Σ has 2 boundary components, its
intersection with Π consists of 4 points, 2 on each side of the x-axis. Now, apply
Lemma 2 to choose the origin on the x-axis such that 〈r|∂iΣ ,V|∂iΣ〉 = 0 for some
i. If V|∂iΣ = 0, then by Lemma 1 either Σ is spherical or FH ≡ 0 and FK is
constant. Therefore, the conclusion follows from an argument similar to the proof
of Proposition 3.

Conversely, suppose V|∂iΣ 6= 0. Since v ‖ V on ∂iΣ from (18), it follows that
〈r|∂iΣ ,v|∂iΣ〉 = 0. Moreover, γ is strictly convex, therefore the strictly convex
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region it bounds lies entirely on one side of the tangent line directed with r|∂iΣ .
As a consequence,

〈
r|∂jΣ ,v|∂jΣ

〉
6= 0 for j 6= i. By the flux formula (15) and the

free boundary condition (18), it follows that v cannot be parallel to V along ∂jΣ,
so that

V|∂jΣ = 0.

The rest now follows from the preceding argument.

Remark 10 The first case could happen if, for example, F = (H2 − 4K) KH2 . The

second case can happen if, for example, F = 4K and Σ is a C2 surface which is
rotationally symmetric and flat in a neighborhood of its boundary.

With this in place, Theorem 1 will now be used to establish some interesting re-
sults about the free-boundary critical points of the conformal Willmore functional.
Such surfaces Σ ⊂ R3 are known as conformal Willmore surfaces.

Corollary 2 Let Σ ⊂ R3 be an immersed conformal Willmore surface which has
free boundary with respect to Ω. Suppose that Σ and Ω share a common axis of
rotational symmetry, and Ω is strictly convex. Then Σ must be either spherical or
flat.

Proof For a conformal Willmore surface, F = H2 − 4K so FH = 2H and FK = 4.
Thus, by Theorem 1, either Σ is spherical or FH = 2H ≡ 0. Thus, Σ is minimal.
Equation 17 implies κn = 0 on ∂Ω. The conclusion follows from the well known
fact that rotationally symmetric minimal surfaces are flat. Indeed, such surfaces
satisfy h(η,η) = −h(T,T) = c ∈ R, so that K = h(T,η)2 = 0 since h(T,η) = 0
on any circular curve perpendicular to the axis of rotation.

Indeed, as mentioned in the Introduction, the convexity assumption is actually
unnecessary in this case.

Theorem 6 Let Σ ⊂ R3 be an immersed conformal Willmore surface that has
free boundary with respect to Ω. Suppose that Σ and Ω share a common axis of
rotational symmetry, and Σ intersects Ω transversally. Then Σ must be either
spherical or flat.

Proof Since F = H2 − 4K, by equation (17),

h(T,T) = h(η,η) on ∂Σ. (19)

Thus, it follows from (12) that

V|∂Σ = −(∇ηH)n.

Since Σ meets Ω transversally, n is not parallel to v on ∂Σ. Therefore, by equation
(18), V = 0 on ∂Σ. By Lemma 1, V = 0 on Σ and Σ is either spherical or minimal.
When Σ is not spherical, it is minimal and rotationally symmetric, hence must be
flat.

Remark 11 Note that the totally umbilical condition (19) is equivalent to the
condition in [28] that H = 2κn, since κn = H − h(η,η) on ∂Σ.
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6 Functions Without Scaling Invariance

Many important functionals do not share the dilation-invariance seen in the Will-
more energy. It is easy to verify that even very similar functionals such as the
Helfrich-Canham energy (2) do not remain static when a surface is rescaled. Be-
cause of this, it is enlightening to also examine the properties of W-functionals
that are not scaling invariant. In particular, flux formula (6) can be used to show
the following.

Lemma 4 The equation∫
Σ

(2F −HFH − 2KFK) dµ = 0,

holds for anyW-critical surface immersion r(Σ) provided the following expressions
hold on ∂Σ:

0 = τgFH , (20)

0 = F − h(η,η)FH −KFK , (21)

0 = h(∇FK ,η)−∇ηFH −H∇ηFK . (22)

Proof First, notice that ∇ηr ⊥ n, so that

∇η〈r,n〉 = 〈r,∇ηn〉 = −〈r, τgT + h(η,η)η〉 .

Also, writing ∇〈r,n〉 = ∇T〈r,n〉T +∇η〈r,n〉η, it follows that

h (∇〈r,n〉,η) = −
〈
r, HτgT +

(
τ2g + h(η,η)2

)
η
〉
.

With this, the right-hand side of equation (6) becomes∫
∂Σ

(
(FH +HFK)∇η 〈r,n〉 − FKh(∇〈r,n〉 ,η)

)
ds

+

∫
∂Σ

〈r,n〉
(
h(∇FK ,η)−∇ηFH −H∇ηFK

)
ds+

∫
∂Σ

F 〈r,η〉 ds

=

∫
∂Σ

〈
r,−τgFHT +

(
F − (FH +HFK)h(η,η) +

(
τ2g + h(η,η)2

)
FK
)
η
〉
ds

+

∫
∂Σ

〈r, (h(∇FK ,η)−∇ηFH −H∇ηFK) n〉 ds.

The inner product 〈r,V〉 inside the above integral expression vanishes for any
immersion r when each component of the vector field V vanishes identically. This
combined with the fact that H = h(T,T) +h(η,η) on ∂Σ now yields the claimed
boundary conditions.

Remark 12 For immersions that meet a planar boundary tangentially, κn = τg = 0
and the flux formula reduces to∫

Σ

(2F −HFH − 2KFK) dµ =

∫
∂Σ

(F −HFH)〈r,η〉 ds.
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In the case where F is the (scaling invariant) Willmore functional, this implies the
result of Dall’Acqua [9] that h(X,Y) = 0 for all vector fields X,Y tangent to Σ
at the boundary. More precisely, 〈r,η〉 is of constant sign on ∂Σ, so it follows that
H ≡ 0 there. Since κn is zero also, this implies that h(η,η) = 0, so both principal
curvatures must be zero on ∂Σ.

It is now appropriate to give the proof of Theorem 2, which details a situation
where conditions on the boundary of a W-critical surface can exert control over
the interior.

Proof (Proof of Theorem 2) It follows from the hypotheses and Lemma 4 that any
critical surface Σ must satisfy the integral equality∫

Σ

(2F −HFH − 2KFK) dµ = 0.

However,W is assumed to be shrinking or expanding, so the integrand is vanishing.

6.1 Corollaries

With Theorem 2 now established, some interesting corollaries can be extracted.
First, consider the case where Σ has an axis of rotational symmetry.

Corollary 3 Let W be expanding or shrinking, and let Σ be a rotationally sym-
metric W-surface with boundary. Suppose additionally that the following hold:

1. F − h(η,η)FH −KFK = 0 on ∂Σ,
2. ∇ηFH + κn∇ηFK = 0 on ∂Σ.

Then, either Σ is spherical or there is a constant c such that FH ≡ 0, FK ≡ c,
and F ≡ cK on Σ.

Proof Since Σ is rotationally symmetric by assumption, its boundaries are lines of
curvature. As such, τg ≡ 0 on ∂Σ, hence (20) is satisfied. The result then follows
from Theorem 2 and Lemma 1.

Remark 13 For example, the first case occurs when F = (H2 − 4K)2, while the
second case happens if F = H4 +K and Σ is minimal.

Moreover, it is worthwhile to consider functionals which are independent of the
Gauss curvature K, as many of these objects appear quite naturally in practice, e.g.
the surface area, total mean curvature, and (non-conformal) Willmore functionals.
To that end, there is the following Corollary which details the case where F =
F (H) is a real analytic function of H alone.

Corollary 4 Let W be expanding or shrinking, Σ be a W-critical surface, and
F = F (H) be a real analytic function of H alone. Suppose F = FH = ∇ηFH = 0
on ∂Σ. Then, one of the following holds:

1. F ≡ 0 everywhere on Σ,
2. F ≡ cH2 for some c ∈ R and W is scaling invariant,
3. Σ has constant mean curvature and F = 0 on Σ.
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Proof Notice that the system in Lemma 4 is satisfied under these assumptions.
Hence, it must follow that ∫

Σ

(2F −HFH) dµ = 0.

SinceW is either shrinking or expanding, this implies that 2F−HFH = 0 pointwise
on Σ. If H is not constant on Σ, then by continuity this equation is satisfied for
an open set in H, so either F ≡ cH2 for some c or F ≡ 0 on Σ by analyticity.
Otherwise, Σ has constant mean curvature, and F = 0 on ∂Σ implies that F ≡ 0
on Σ.

Remark 14 If F is assumed to be smooth instead of analytic, the conclusions of
Corollary 4 remain true only in a local sense. That is, either F = cH2 or F = 0
pointwise on Σ, but this need not extend to the whole domain of W. To see this,
take for example F (H) = ϕ(H)H2, where ϕ(H) is a smooth bump function which
is identically 1 on [−1, 1] and supported on [−

√
2,
√

2] (see [33, Chapter 13] for a
construction). In this case, one can verify that 2F −HFH ≥ 0 everywhere, so W
is expanding, and also that all derivatives of ϕ vanish on [−1, 1]. This means that
the Clifford torus Σ ⊂ R3 which has been rescaled so that its mean curvature lies
in [−1, 1] is critical for W, and (vacuously) satisfies the boundary conditions in
Corollary 4. However, W is certainly not scaling invariant nor identically zero on
its domain.

This particular Corollary can be used to show that, in some cases, minimizers
of a W-functional can only be minimal surfaces. In particular, for a surface with
boundary Σ ⊂ R3 there is the notion of p-Willmore energy mentioned in the
Introduction,

Wp(r) =

∫
Σ

|H|p dµ p ∈ R.

Clearly, this coincides up to a constant factor with the usual, scaling invariant,
definition of the (non-conformal) Willmore energy when p = 2. On the other hand,
this functional is not scaling invariant for p 6= 2, since

2F −HFH − 2KFK = 2|H|p −H ∂H
(

(H2)p/2
)

= (2− p)|H|p 6= 0.

As seen before, this lack of scaling invariance has significant consequences on the
critical surfaces of Wp. In particular, we observe that conditions on the boundary
of a p-Willmore surface when p > 2 exert much more control over what happens
in the interior when compared to the case p = 2. To illustrate this, first note that
the flux formula (6) reduces immediately to

(2− p)
∫
Σ

|H|p dµ

=

∫
∂Σ

(
|H|p〈r,η〉+ p|H|p−2 (H∇η〈r,n〉 − (p− 1)〈r,n〉∇ηH)

)
ds.

(23)

Corollary 4 can now be applied to establish the statement of Theorem 3.



24 Anthony Gruber, Magdalena Toda, Hung Tran

Proof (Proof of Theorem 3) By Corollary 4, it is sufficient to consider

|H|p = p|H|p−2H = p(p− 1)Hp−2∇ηH = 0 on ∂Σ,

which is clearly satisfied under the hypothesis that p > 2 and H = 0 on the
boundary. Since |H|p is not scaling invariant for p 6= 2, it follows that |H|p ≡ 0 on
Σ. Hence, H ≡ 0 and Σ must be minimal.

Remark 15 This result can also be deduced directly from (23) without appealing
to Corollary 4, as the flux formula (23) reduces to∫

Σ

|H|p = 0,

implying that |H| ≡ 0 on Σ by continuity.

Clearly this is quite different from the Willmore case of p = 2, where there
are many known and non-minimal solutions to the same boundary-value problem
(e.g. [13]). It is likely true that otherW-functionals which lack scale-invariance are
similarly influenced by their boundary data, but this is a study for future work. It
is hoped that the results and Corollaries developed here will be of use in answering
such questions.
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