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Abstract—Sparsity is a desirable property as our natural
environment can be described by a small number of structural
primitives. Strong evidence demonstrates that the brain’s repre-
sentation is both explicit and sparse, which makes it metabolically
efficient by reducing the cost of code transmission. In current
standardized machine learning practices, end-to-end classification
pipelines are much more prevalent. For the brain, there is
no single classification objective function optimized by back-
propagation. Instead, the brain is highly modular and learns
based on local information and learning rules.

In our work, we seek to show that an unsupervised, bio-
logically inspired sparse coding algorithm can create a sparse
representation that achieves a classification accuracy on par
with standard supervised learning algorithms. We leverage the
concept of multi-modality to show that we can link the embedding
space with multiple, heterogeneous modalities. Furthermore, we
demonstrate a sparse coding model which controls the latent
space and creates a sparse disentangled representation, while
maintaining a high classification accuracy.

Keywords—Classification, machine learning, neuro-inspired ar-
tificial intelligence, representation learning.

I. INTRODUCTION

Representation learning is the process of encoding raw input
data and transforming it into a vector embedding that can
be used for subsequent tasks. In machine learning, a useful
embedding would make the encoded information explicit, thus
supporting less complex decoding downstream. Furthermore, a
good representation extracts the underlying explanatory factors
for a given input, which can be used as input to a supervised
predictor [1].

Likewise, in the brain, strong evidence demonstrates that
the brain’s representation (neural code) is both explicit and
sparse [2] where neurons fire selectively to specific stimuli.
Olshausen and Field [3] show that sparsity is a desirable
property as our natural environment can be described by a
small number of structural primitives. Biologically, the sparsity
of neural codes are more metabolically efficient and reduce
the cost of code transmission [4]. As an example, we can
observe explicit information in biology when using two-photon
calcium imaging in head-fixed Drosophila melanogaster i.e.
observing the brain of a fruit fly. Brain activity is monitored
as the fly walks on a ball in a virtual reality arena. When
monitoring the activity the ellipsoid body, the orientation and

angular path can be explicitly observed. More specifically,
a neural population encodes the fly’s azimuth and a simple
population vector average (PVA) suffices to decode the fly’s
orientation [5]. Thus, we postulate that a neuromorphic rep-
resentation learning algorithm should find a sparse, explicit
encoding of an input stimulus.

However, in current standardized machine learning prac-
tices, end-to-end classification pipelines are much more preva-
lent. In these cases, representation and class discrimination
are entangled as shown when opening the black box of
deep learning through the lens of information theory [6].
Supervised learning seeks to optimize a narrow objective
function, carelessly tuning all the parameters of the model
towards maximizing this single objective. Thus, supervised
learning creates representations that do well in one task, but
fail to extend themselves to other tasks. This failure manifests
itself in the lack of generalizability and catastrophic forgetting
observed in supervised models. For the brain, there is no
single classification objective function optimized by back-
propagation [7]. Instead, the brain is highly modular and learns
based on local information and learning rules [8].

In this paper, we seek to show that an unsupervised,
biologically-inspired sparse coding algorithm can create a
representation embedding that is explicit and sparse. Even with
no supervision, we show that a sparse representation achieves
a classification accuracy on par with standard supervised
learning algorithms. Second, we show that we can link the em-
bedding space with multiple, heterogeneous modalities without
loss of classification accuracy. This linking process enables
the representation to encode multiple heterogeneous signals
in a single vector. Finally, we show that we can control the
latent space using current-induced drivers to specific neurons,
yielding a disentangled and interpretable activity response.

II. BACKGROUND

The advantages of sparsity in an artificial neural net-
work are supported by the research and include information
disentangling, efficient variable-size representation, efficient
computing, and evidence that sparse representations are more
linearly separable [9]. Indeed, within deep neural networks,
the literature has shown that one can sparsify some networks
up to 90% (only 10% non zeros) and still achieve the same



(a) Dictionary 1: MNIST digits (b) Dictionary 2: Arial digits

Fig. 1: Linked Dictionaries
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Fig. 2: (a) MNIST non-zero activations (b) Arial non-zero activations (c) MNIST reconstruction quality (d) Arial reconstruction
quality

level of classification accuracy [10]. Algorithmically, we can
demonstrate that we can recover the causes of image data
through the use of a brain inspired algorithm called sparse
coding.

Sparse coding has primarily been developed for computer
vision, with successful applications including denoising, up-
sampling, compression and object detection. Sparse coding
can be considered a self-supervised learning algorithm for
signal reconstruction. Moreover, sparse and predictive coding
explains many of the response properties of simple cells in the
mammalian primary visual cortex, including both classical and
non-classical phenomena [2], [11], [12].

Aside from sparsity, another crucial concept is the invari-
ance of neurons to different modalities, i.e. neurons would
fire from various sensory information such as image, sound
or text [13]. Leveraging this concept, a multi-modal sparse
coding model is presented in [14] that learns invariant, joint
representations between two modalities, vision and language,
by alternating between the optimization of a sparse signal
representation and optimization of the dictionary elements.
In this work, we leverage the concept of multi-modality to
show that we can link the embedding space with multiple,
heterogeneous modalities.

Finally, our reconstruction model creates a sparse disentan-
gled representation. Disentangled representation means that
independent latent units are being mapped to single data
generative factors. In this work, we demonstrate a sparse
coding model which controls the latent space and creates a

sparse disentangled representation, while maintaining a high
classification accuracy.

III. METHODOLOGY

Given an overcomplete basis, sparse coding algorithms seek
to identify the minimal set of generators that most accurately
reconstruct each input image. In neural terms, each dictionary
element is a neuron (generator) that adds its associated feature
vector to the reconstructed image with an amplitude equal
to its activation. For any particular input image, the optimal
sparse representation is given by the vector of sparse activation
coefficients that minimizes both image reconstruction error and
the number of non-zero coefficients. Formally, finding a sparse
representation involves finding the minimum of the following
cost function:

E =
1

2
||I− {Φ ∗ a}||22 + λ||a||1 (1)

Where I is an input stimulus, which may be spatiotemporal
and/or multi-modal and Φ is a dictionary of features, which
may span a range of frames, camera views, and/or data
modalities, all of which are combined linearly with the cor-
responding coefficients that constitute a sparse representation
of the stimulus. The λ factor is a tradeoff parameter; larger
values encourage greater sparsity (fewer non-zero coefficients)
at the cost of greater reconstruction error.

Both the sparse coefficients and the dictionary of features
can be determined by a variety of methods. Here, we solve for



the sparse coefficients using a biologically plausible approach
based on the Locally Competitive Algorithm (LCA) [15].
LCA finds a local minimum of the above cost function by
introducing the dynamical variables (membrane potentials),
such that the output of each neuron is given by a soft-threshold
transfer function, with threshold λ, of the membrane potential
u:

a = Tλ(u) = H(u− λ)u (2)

where H is the Heaviside (step) function. The cost function
defined above is then minimized by taking the gradient of the
cost function with respect to a and solving the resulting set of
coupled differential equations for the membrane potentials,

u̇ ∝ −∂E

∂a
= −u+ΦT {I−ΦTλ(u)}+ Tλ(u). (3)

A learning rule can be defined by taking the gradient of the
cost function with respect to Φ, which leads to a local Hebbian
learning rule that reduces reconstruction error given a sparse
representation.

∆Φ ∝ −∂E

∂Φ
= a⊗ {I−Φa} = a⊗R (4)

Dictionary learning will be performed via Stochastic Gradient
Descent (SGD), using training data. As mathematically de-
fined, sparse coding is a reconstruction algorithm that attempts
to find a sparse representation and activation that can best
match the input stimulus. However, in the case of our appli-
cation, the energy function can be modified to accommodate
multiple heterogeneous signals in the following way,

E =
1

2
(||(I1−{Φ1∗a})||22+||(I2−{Φ2∗a})||22)+λ||a||1 (5)

Conceptually, one can see that there are now two distinct input
stimuli, I1 and I2. Each input has an associated dictionary, yet
share the same activation, a. We define this methodology as
“linking” the different dictionaries of heterogeneous inputs.
We can generalize this method to cases where there are more
than two modalities as follows:

E =
1

2

n∑
i=1

||(Ii − {Φi ∗ a})||22 + λ||a||1 (6)

IV. RESULTS AND CONCLUSION

In this experiment, we train our dictionaries of 256 neurons
on MNIST dataset. In the linked dictionaries model, the input
of the first dictionary is MNIST digits, and the input of the
second dictionary is the Arial digits corresponding to the
MNIST digits. As can be observed in Figure 1, the dictionaries
are linked, i.e. they share the same activation vector. The
model alternates between the optimization of activity vectors
and optimization of the dictionary elements. The dictionaries
are linked during the learning process, which means that
similar neurons would fire in both dictionaries, given a par-
ticular digit. For example, if after the training process, we
use just an MNIST digit and the MNIST dictionary to get an
activation vector, we can use that activation to reconstruct the
corresponding Arial digit (Figure 3).

(a) (b) (c)

Fig. 3: (a) Input: MNIST digit (b) Reconstruction: Φ2 ∗ a (c)
Expected Arial digit

To evaluate our model, we perform SVM and logistic
regression (LR) on top of the linked-dictionary models, as
well as on raw pixels, with accuracy as our metric. Our
goal is not to improve performance on MNIST, but rather
to demonstrate modifications to the framework that enable
linking and controlling of the linked space, without sacrificing
accuracy in classification. As can be observed in Table I, we
can classify MNIST digits, using their sparse activation vectors
and still achieve a high accuracy.

TABLE I: Accuracy results

LR SVM (linear) SVM (non-linear)

Raw pixels 0.9167 0.8522 0.9250
Linked dictionaries 0.9633 0.9619 0.981
Ordinal-linked dictionaries 0.9541 0.9542 0.9738

Fig. 4: Ordinal-linked dictionary where the latent space is class
controlled through the use of current-induced neuronal drivers.

Aside from maintaining accuracy, another advantage of
sparsity in neural networks is information disentanglement and
controlling the latent space. As shown in Figure 1, our linked
dictionaries are randomly generated, and we cannot find a
specific order in dictionary neurons corresponding to digits.
However, we can enforce a specific structure on dictionary
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Fig. 5: MNIST digits clusters resulted from performing PCA (first row) and t-SNE (second row) on (a) Raw pixels, (b) Single
dictionary, (c) Linked dictionaries and, (d) Ordinal-linked dictionaries.

neurons, using ordinal-linked approach. Our goal here is to
control the latent space by forcing certain neurons to be active
during the dictionary update. We can choose which neurons
control the generation of which digits, using a vector of 0s
and 1s as our third input. Assuming our inputs are a 0 digit in
MNIST and the corresponding 0 digit in Arial, our third input
will be a vector of size 256, with 1s in the first 25 bins and
0s elsewhere. In that way, we are going to artificially activate
the first 25 neurons out of 256 neurons. Thus, we can control
the latent space and encourage certain blocks of neurons to
be active for certain classes. Using this approach, neurons 0
to 24 will control the generation of 0s, neurons 25 to 49 will
control the generation of 1s, and so on (Figure 4). Therefore,
we are controlling the latent space by enforcing specific order
on it, as well as creating a sparse disentangled representation,
since the response of the dictionary corresponds directly to the
class of the input image.

Finally, we believe that sparse representation encodes crit-
ical information, thus we perform PCA and t-SNE on the
activation vectors as well as raw pixels (Figure 5). t-SNE (t-
Distributed Stochastic Neighbor Embedding) is an unsuper-
vised, non-linear technique used for dimensionality reduction
[16]. Both PCA and t-SNE are used for visualizing and
exploring high-dimensional data by transforming it into a 2-
dimensional space. Performing t-SNE on the activation vectors
should improve the result by making stronger clusters than the
result of t-SNE on raw pixels. As can be observed in Figure 5,
the result of t-SNE on the activation vectors is more separated
clusters, and using linked dictionaries further improves the
separation.
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