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Abstract Gross primary productivity (GPP) is the largest flux in the global carbon cycle and satellite-based
GPP estimates have long been used to study the trends and interannual variability of GPP. With recent updates
to geostationary satellites, we can now explore the diurnal variability of GPP at a comparable spatial resolution
to polar-orbiting satellites and at temporal frequencies comparable to eddy covariance (EC) tower sites. We
used observations from the Advanced Baseline Imager on the Geostationary Operational Environmental
Satellite-R series (GOES-R) to test the ability of subdaily satellite data to capture the shifts in the diurnal
course of GPP at an oak savanna EC site in California, USA that is subject to seasonal soil moisture declines.
We compared three methods to estimate GPP: (a) a light-use efficiency model, (b) a linear relationship between
the product of near-infrared reflectance of vegetation and photosynthetically active radiation (LIN-NIR P) and
EC tower GPP, and (c) a light response curve (LRC-NIR P) between NIR P and EC GPP. The LRC-NIR P
achieved the lowest mean absolute error for winter (2 pmol CO, m~2 s71), spring (2.51 pmol CO, m~2s71),
summer (1.43 umol CO, m~2s71), and fall (1.35 umol CO, m~2 s~!). The ecosystem experienced the largest
shift in daily peak GPP in relation to the peak of incoming solar radiation toward the morning hours during

the dry summers. The LRC-NIR P and the light-use efficiency model were in agreement with these patterns

of a shift in peak daily GPP toward the morning hours during summer. Our results can help develop diurnal
estimates of GPP from geostationary satellites that are sensitive to fluctuating environmental conditions during
the day.

Plain Language Summary Gross primary productivity (GPP) quantifies the drawdown of
atmospheric CO, through ecosystem-scale photosynthesis. Large-scale estimates of GPP are a crucial
component of carbon cycle science and can be estimated using satellites. Motivated by the recent advances

in the spectral coverage and spatial resolution of geostationary (“‘weather”) satellites, we demonstrate how

the Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite-R series

can provide satellite-based, half-hourly GPP estimates at the Tonzi Ranch Ameriflux eddy covariance site in
California, USA. We found that a light response curve is able to achieve the best agreement between ABI-based
estimates of GPP and GPP partitioned from gas exchange measurements at the eddy covariance site. Previous
research has demonstrated that the diurnal peak of GPP shifts increasingly toward the morning at Tonzi Ranch
as the year progresses into the dry season. We found that ABI can capture this characteristic seasonal shift

of peak diurnal GPP, which highlights its ability to measure ecosystem dynamics in addition to the weather
patterns that help cause them.

1. Introduction

Gross primary productivity (GPP) is a critical flux in the global carbon cycle because it represents the CO, that is
drawn down from the atmosphere by ecosystems through gross photosynthesis. Remotely sensed observations of
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the Earth have provided critical inputs for global carbon cycle studies, provided observation-based GPP estimates
for comparisons with Earth System Models and terrestrial carbon cycle models, and have revolutionized our
understanding of the carbon cycle (Anav et al., 2015; Chen et al., 2017; Cramer et al., 1999; Field et al., 1995;
Jung et al., 2020; Keenan et al., 2012; O’Sullivan et al., 2020; Prince & Goward, 1995; Ruimy et al., 1996;
Running et al., 2004; Xiao et al., 2019; Zhang et al., 2016; Zscheischler et al., 2014). The diurnal to interannual
variability of GPP is determined by limiting resources, climate, weather conditions, disturbance, phenology,
and extreme events (Beer et al., 2010; Gu et al., 2002; Kannenberg et al., 2020; Randazzo et al., 2020; Roby
et al., 2020; Stoy et al., 2005; Zscheischler et al., 2014). However, with existing polar-orbiting satellites we have
been largely limited to studying the multiday to interannual variability of GPP rather than its dynamic response
to environmental variability across the course of a day. With recent advances in the spectral coverage and spatial
resolution of geostationary imagers commonly used for weather monitoring, we argue that we can estimate GPP
from space-based observations at subdaily temporal frequencies (Khan et al., 2021; Xiao et al., 2021). This opens
up new opportunities to study the diurnal cycles of GPP and its response to environmental conditions in near
real time (Khan et al., 2021; Xiao et al., 2021). Our ability to develop diurnal estimates of carbon fluxes that can
respond to changing environmental conditions will allow us to provide space-based GPP estimates for compar-
isons between GPP estimates, scaling up ground estimates at eddy covariance towers, and model ensemble esti-
mates at a comparatively higher temporal frequency.

To start estimating GPP at a subdaily temporal resolution from space-based observations, we can look toward
various formulations of GPP's response to environmental conditions such as incoming solar radiation. The devel-
opment of space-based GPP estimates has largely relied on relationships between the fraction of photosyntheti-
cally active radiation (PAR) absorbed by plants (fAPAR) and vegetation indices and light-use efficiency (LUE)
models that can convert absorbed PAR (APAR) to net primary production (NPP) or GPP (Anderson et al., 2000;
Cramer et al., 1999; Field et al., 1995; Joiner et al., 2018; Mahadevan et al., 2008; Running et al., 2004; Xiao
et al., 2019; Yuan et al., 2014). Vegetation indices developed from remotely sensed reflectance in visible to
near-infrared wavelengths, such as the Normalized Difference Vegetation Index or the Enhanced Vegeta-
tion Index, have served as indicators of fAPAR and are often used to estimate APAR in LUE models (Joiner
et al., 2018; Mahadevan et al., 2008; Running et al., 2004; Xiao et al., 2019; Yuan et al., 2007). Based on the idea
that the near-infrared radiation reflected by plants is proportional to the PAR absorbed by plants, the near-in-
frared reflectance of vegetation (NIR ) has shown strong linear relationships with GPP and can be correlated
with fAPAR (Badgley et al., 2017, 2019; Baldocchi et al., 2020; Wu et al., 2020). Furthermore, a radiance based
(NIR,) was also correlated with GPP and APAR across agricultural sites and tropical forest canopies (Merrick
et al., 2021; Wu et al., 2020). On the ground, temperature-respiration relationships and light response curves
calculated from solar radiation incident on the surface are widely used to partition Net Ecosystem Exchange
(NEE) from eddy covariance towers into GPP and ecosystem respiration (R__; Lasslop et al., 2010; Reichstein
etal., 2012; Stoy et al., 2006). In terms of capturing the impact of environmental variability, this is mainly accom-
plished by developing environmental stressors from vapor pressure deficit (VPD), air temperature, land surface
temperature (LST), and other variables that can capture moisture or temperature stress on GPP (Field et al., 1995;
Joiner & Yoshida, 2020; Lasslop et al., 2010; Li et al., 2021; Running et al., 2004; Yuan et al., 2007).

The models used to estimate GPP from space-based observations have demonstrated a bias during times of
soil moisture stress (Sims et al., 2014; Stocker et al., 2019). However, models that can couple transpiration and
carbon uptake have shown success in capturing the response of carbon uptake to soil moisture stress (Anderson
et al., 2000). Subdaily observations from the Advanced Baseline Imager (ABI) on the Geostationary Operational
Environmental Satellite-R Series (GOES-R) provide an ideal set of observations to test whether space-based
GPP estimates capture the effects of water limitation on GPP. This is because the diurnal course of carbon uptake
and water loss shift in a distinct way that can be indicative of soil moisture deficits due to stomatal regulation of
water loss (Baldocchi, 1997; Schulze & Hall, 1982; Tuzet et al., 2003). With ongoing projections of increasing
drought conditions and heat stress, a key priority for space-based GPP estimates is to capture the impact of water
stress. The proper investigation of diurnal water-use efficiency requires that diurnal relationships between GPP
and water fluxes are appropriately captured (Nelson et al., 2018) and this should extend to diurnal space-based
GPP estimates as well (Xiao et al., 2021).

As we begin to leverage the wealth of subdaily temporal information available from the ABI which has similar
spectral sensitivity to MODIS and Landsat (Schmit & Gunshor, 2020), we need to assess how the diurnal patterns
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of ecosystem carbon uptake estimated from remote sensing compare with our current understanding of diurnal
patterns in ecosystem carbon uptake. Stomatal regulation through adjustments in stomatal conductance is the
dominant mechanism by which carbon uptake and water loss are coupled in plants (Cowan & Farquhar, 1977).
There are various physiological and environmental signals that exert a control on stomatal conductance such
as CO, concentrations inside the leaf, sugar accumulation, leaf and guard cell water potential, VPD, and PAR
(Grossiord et al., 2020; Jalakas et al., 2021; Lawson, 2009; Matthews et al., 2017; Meinzer et al., 2017; Novick
et al., 2016). PAR and VPD have been recognized as the dominant environmental drivers of NEE and GPP
at diurnal scales if soil moisture, temperature, and vegetation phenology do not limit photosynthesis (Stoy
et al., 2005). However, during times of soil moisture stress, the diurnal course of stomatal conductance, carbon
uptake, and water loss do not always follow the symmetric course of solar radiation due to additional controls on
stomatal conductance (Schulze & Hall, 1982). Diurnal asymmetry in ecosystem fluxes of carbon and water have
been identified across various climates and plant functional types resulting in differences in these fluxes between
the morning and afternoon and a shift in peak GPP to morning hours (Anderson et al., 2008; Baldocchi, 1997,
Bucci et al., 2019; Lasslop et al., 2010; Lin et al., 2019; Konings, Yu et al., 2017; Matheny et al., 2014; Nelson
et al., 2018; Wilson et al., 2003). The diurnal shift of peak GPP and evapotranspiration (ET) has been shown to
vary closely with moisture availability because the increased VPD during the afternoons in the face of low soil
moisture can result in stomatal closure during the afternoon (Matthews et al., 2017; Nelson et al., 2018; Schulze
& Hall, 1982). If geostationary satellites can capture these dynamics, we can strengthen our basis for estimating
subdaily GPP from space.

Here, we provide diurnal estimates of GPP at a 30-min temporal resolution using 5-min mulitspectral data from
the ABI on board the GOES-R and other subdaily products from the GOES-R ABI along with estimates of GPP
from the Tonzi Ranch (US-Ton) Ameriflux eddy covariance tower in California, USA. During the dry summers,
the Tonzi Ranch woody savanna experiences declines in precipitation and soil moisture characteristic of its
Mediterranean climate. The oak canopy at Tonzi Ranch is able to remain photosynthetically active during the
dry summers through regulation of water loss and access to deep ground water resources (Baldocchi et al., 2004;
Miller et al., 2010). However, canopy photosynthesis at the Tonzi Ranch and other Mediterranean ecosystems
can be impacted by soil moisture stress during the dry summers, and soil moisture stress could be one of many
reasons why dry season diurnal asymmetry in GPP has been observed in Mediterranean ecosystems in the past
(Keenan et al., 2009; Tang et al., 2005). This provides an ideal case study to test the ability of widely used GPP
estimation methods and ABI-based estimates of APAR to ask: How well can diurnal estimates of GPP based
on radiation inputs from ABI capture diurnal and seasonal patterns in GPP at a site experiencing seasonal soil
moisture deficits? We analyze the diurnal peaks of GPP and latent heat flux (LE) to test whether ABI-based GPP
estimates can capture the shifting diurnal patterns of CO, uptake and water loss that can be indicative of soil
moisture stress at this site. We also focus our discussion on opportunities to extend GPP estimation using ABI to
other ecosystems including key uncertainties that need to be addressed to advance our ability to monitor GPP in
near real time.

2. Materials and Methods
2.1. Study Site

Our study site is an oak savanna Ameriflux eddy covariance site located at the Tonzi Ranch at the foothills of
the Sierra Nevada mountain range near Ione, CA (38.4309°N, —120.9660°W, 177 m asl). The annual mean air
temperature from 1926 to 2016 near the site was reported as 16.6°C and the average annual precipitation was
reported as 546 mm (Ma et al., 2020). The rainy season can last from October to April and is characterized by
lower levels of incoming solar radiation, net radiation, VPD, and lower diurnal variation in temperatures (i.e., the
difference between daily maximum and minimum temperatures; Baldocchi et al., 2004; Xu & Baldocchi, 2003).
The site experiences clear days, the highest levels of incoming solar radiation, and very little to no precipitation
during the summer months (Baldocchi et al., 2004; Xu & Baldocchi, 2003). The site also experiences the highest
VPD during the year along with rapidly declining soil moisture during the summer (Baldocchi et al., 2004, 2021;
Xu & Baldocchi, 2003). Diurnal variation in temperature also increases during the summer months (Xu &
Baldocchi, 2003). The oak savanna has been reported as a carbon sink over 15 years (2001-2015) with a mean
annual GPP (+standard deviation) of 1,056 gCm™=2 yr~! + 145 gCm~2 yr~! and NEE of —110 gCm™2 yr~! + 5
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7 gCm~2 yr~! during that time (Ma et al., 2016). A mean annual ET (+standard deviation) of 419 + 85 mm has
been reported at the site (Ma et al., 2020).

For our study, we characterized the seasons experienced at our site according to Ma et al. (2016) as: winter (Janu-
ary-March), spring (April-June), summer (July-September), and fall (October-December). Breaking the year into
these distinct groups helped us to identify times when photosynthetically active vegetation, soil moisture, poten-
tial ET, and precipitation have distinguishable impacts on gas exchange and provides meaningful break points to
identify the different diurnal GPP patterns throughout the year (Ma et al., 2016; Ryu et al., 2008). For example,
during July to September, ET has shown a weak relationship with solar radiation at a nearby Mediterranean
grassland indicating that the lack of available soil moisture classifies these months as a water-limited time of
the year (Ryu et al., 2008). On the other hand, the nearby ecosystem enters an energy limited phase during the
rainy season of December to April when ET has a positive relationship with solar radiation (Ryu et al., 2008).
Furthermore, breaking the year into these seasons has also shown that the spring months contribute the largest
portion of annual GPP (60-80% of annual) and Reco (50-70% of annual) at this site during a 15-year time period
(Maet al., 2016). Below, we further discuss how the photosynthetically active vegetation during any given season
impacts gas exchange at the Tonzi Ranch.

The trees at the Tonzi Ranch have a mean stem biomass of 440.43 kg + 739.6 kg (standard deviation; Baldocchi
et al., 2021). Blue oak trees (Quercus douglassi) make up the deciduous overstory of the oak savanna while the
understory consists of C, annual grasses and herbs (Baldocchi et al., 2004; Ma et al., 2020). The tree canopy
is dormant during the rainy winter and leaves out during the spring and has been reported to reach full photo-
synthetic capacity around Day 137 (Xu & Baldocchi, 2003). The rainy season provides soil moisture for the
trees which is drawn down gradually through transpiration into the summer months (Baldocchi et al., 2004; Ma
et al., 2016). The tree canopy is able to maintain photosynthesis and transpiration during the dry season through
the ability to regulate water loss and access of some roots to ground water (Baldocchi et al., 2004). The trees
lose their leaves in late autumn and the understory grasses germinate after the first rainfall of autumn (Baldocchi
et al., 2004; Ma et al., 2016). The understory grows throughout the winter and spring, but dies before the dry
summer months (Baldocchi et al., 2004; Ma et al., 2020). Both GPP and evapotranspiration peak during the
spring after the trees become photosynthetically active (Baldocchi et al., 2021; Ma et al., 2016, 2020). The soil
is an Auburn very rocky silty loam with 37.5-48% sand, 42-45% silt, and 10-17.5% clay depending on under
canopy or open space areas (Baldocchi et al., 2004).

2.2. Data
2.2.1. ABI

We used the GOES-R ABI Level 1b top-of-atmosphere (TOA) radiances (ABI-L1b-RadC) from GOES-16 and
GOES-17. ABI-L1b-RadC is delivered at a 5-min temporal resolution over the conterminous United States
(CONUS). The spatial resolution of the near-infrared (NIR) band (central wavelength: 0.86 pm) is 1 km at
nadir and the spatial resolution of the red band (central wavelength: 0.64 pm) is 0.5 km at nadir (Schmit &
Gunshor, 2020). The red band TOA radiance was aggregated to the 1 km at nadir scale using the median TOA
radiance. ABI-L1b-RadC is available on Amazon Web Services and was accessed with S3Fs, a python module
for accessing Amazon S3 buckets with ABI data. The TOA radiances (L,,,) were converted to TOA reflectance
factors (pf,,,) as described in the GOES-R Product Definition and User's Guide (PUG; NASA, 2019):

meu = K Loa (1)
d?
k=% @)

where d is the Earth-Sun distance (Astronomical Units) and E, is the solar irradiance for a given band
(Wm~2 pm~!; NASA, 2019). «, d, and E, , are provided in the product metadata for each band (NASA, 2019).
The 5-min ABI Level 2 Clear Sky Mask for CONUS (ABI-L2-ACMC) was used to identify clear observations.
ABI-L2-ACMC and the hourly Downward Shortwave Radiation (DSR; ABI-L2-DSRC; NASA, 2018) were
downloaded through the National Oceanic and Atmospheric Administration's Comprehensive Large Array-Data
Stewardship System (CLASS). At the coordinates of the Tonzi Ranch, we extracted the TOA reflectance factors

for the NIR band and the red band calculated from ABI-L1b-RadC along with DSR values from ABI-L2-DSRC
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Table 1

and clear/cloudy flags from ABI-L2-ACMC. Quality flags provided in the

Number of Clear Sky and Good Quality Observations Available From 5-min metadata of ABI-L1b-RadC and the clear sky flag from ABI-L2-ACMC were

ABI-L1b-RadC and Hourly ABI-L2-DSRC by Season and the ABI on GOES- used to identify clear and good quality observations from ABI-L1b-RadC to
16 (16) and GOES-17 (17)

estimate surface reflectance. Table 1 shows the number of good quality clear

Season ABI ABI-L1b-RadC ABI-L2-DSRC observations from ABI-L1b-RadC and ABI-L2-DSRC for each season.
Winter 16 18,494 1,233 The surface bidirectional reflectance was estimated from TOA bidirectional
Winter 17 15,366 1,216 reflectance factors from ABI using the radiative transfer equations of Qin
Spring 16 24,761 1,853 et al. (2001) as previously used by He et al. (2019) to estimate surface reflec-
S 17 25.877 1.867 tance from ABI TOA data. Similar to previous efforts with ABI and MODIS
data (He et al., 2012, 2019), we used The Second Simulation of a Satellite
Summer 16 35324 1,828 Signal in the Solar Spectrum (6S) radiative transfer model with the python-
Summer 17 31,798 1,825 based Py6S (Wilson, 2013) to estimate the following atmospheric parameters
Fall 16 32,467 1,108 with the assumption of a Lambertian ground reflectance: path reflectance,
Fall 17 24,644 1,102 spherical albedo, atmospheric transmittance, direct fraction of incoming

radiation, diffuse fraction of incoming radiation, and spectral irradiance. The
surface anisotropy of reflected radiation was characterized by the Ross-Thick

and the Li-Sparse geometric kernel, K, (Wanner et al., 1995). The Bidirectional Reflec-

volumetric kernel, K o

vol?
tance Distribution Function (BRDF) was estimated as:

R(esa 61!5 d’r) = fr'.w + fual KUUI(ess ew d)r) + fgeo nga(es, 00, ¢r) (3)

where 0, is the solar zenith angle (SZA), 0, is the view zenith angle (VZA), and ¢, is the relative azimuth angle.
We estimated f, f,,» and f,,, through minimizing a least squares cost function between the TOA reflectance
factor calculated from GOES-16 and GOES-17 ABI radiances and the TOA reflectance factor estimated by the
radiative transfer model of Qin et al. (2001). The BRDF coefficients were estimated using observations collected
at a SZA less than 70° for each day when there were at least 10 observations available during the day for the red
and NIR ABI bands. For each day, the VZA from GOES-16 and GOES-17 along with diurnally varying SZA
at 5-min intervals was used to fit the BRDF model. We used discrete values of aerosol optical depth at 550 nm
(AOD) as explained in He et al. (2019) with different aerosol types (biomass burning, continental, maritime,
urban, and stratospheric) to estimate atmospheric parameters from 6S. The AOD and aerosol type combination
that resulted in the smallest least squares cost function between observed and estimated TOA reflectance was
used as the values for AOD and aerosol type for the day. To approximate surface reflectance at nadir viewing, we
calculated the geometric and volumetric kernels at each SZA value during the day with a fixed VZA of 0°. Then,
we used the BRDF kernel coefficients (f;,,. ., f..,) to estimate the surface reflectance at nadir throughout the day.

i geo:

2.2.2. Ameriflux Eddy Covariance Tower

Instrumentation to measure micrometeoriological variables and fluxes were installed on a 23 m tower ~10 m
above the tree canopy and a separate set of understory flux measurements were collected 2 m above the ground
(Baldocchi et al., 2021; Ma et al., 2001). Wind velocity was measured with a three-dimensional ultrasonic
anemometer (WindMaster, Gill Instruments) and CO, and water vapor fluxes were measured at 10-20 times per
second using an open-path infrared absorption gas analyzer (LI-7500A, LICOR) (Baldocchi et al., 2004, 2021).
NEE was calculated using the eddy covariance technique and the partitioned GPP and R_. were provided to
Ameriflux (Baldocchi et al., 2021; Ma et al., 2001). Upward and downward facing quantum sensors (PAR-LITE,
Kipp & Zonen) and a net radiometer consisting of upward and downward facing pyranometers and pyrgeometers
(CNR1, Kipp & Zonen; Baldocchi et al., 2021) measure broadband radiation flux densities in photosyntheti-
cally active (400-700 nm), shortwave (305-2,800 nm), and longwave (5,000-50,000 nm) regions. Incident and
reflected narrow band radiation in the red (central wavelength: 650 nm) and NIR (central wavelength: 810 nm)
regions was measured with spectral reflectance sensors (SRS-Ni NDVI, Decagon-METER) with a hemispherical
180° field of view (Baldocchi et al., 2020). Air temperature and relative humidity were measured with a platinum
resistance temperature detector and humicap (HMP45AC, Vaisala). A set of segmented time domain reflectom-
etry probes (Moisture Point PRB-K, Environmental Sensors Inc.) and Theta probes (ML2x, Delta-D Devices)
measure volumetric soil moisture content at depths of 5-60 cm (Baldocchi et al., 2021; Chen et al., 2008).

The cumulative daytime footprint around the overstory tower from where 80% of the fluxes originate covers oak
trees, the understory layer, and open spaces of the savanna (Ma et al., 2020). The footprint fetch is asymmetric

KHAN ET AL.

5of 28



ALt . . .
NI Journal of Geophysical Research: Biogeosciences 10.1029/2021JG006701

ADVANCING EARTH
AND SPACE SCIENCE

around the tower and varied between 318 and 384 m during the daytime and 648—-866 m during nighttime for
2014-2017 (Chu et al., 2021). The area of the footprint varied between 234,771 and 230,237 m2 during the day
and 419,838 and 656,611 m? at night (Chu et al., 2021). The dominant land cover type is classified as grassland/
herbaceous in the National Landcover Database and makes up a little over 50% of the area that is 1,000-3,000 m
around the tower (Chu et al., 2021). The site's footprint's representativeness of its surroundings is classified as
medium at scales of 1,000-3,000 m around the tower during the day (Chu et al., 2021). Since the Tonzi Ranch
is located on the northwest of the ABI pixel, the daytime footprint of 318-384 m around the tower fits within
the ABI pixel to the south and to the east, but stretches slightly outside of the ABI pixel in the north and west
directions from the tower. The majority of the footprint lies in the ABI pixel in which the Tonzi Ranch is located.
Previous analysis of energy balance closure at the site with a linear regression between net radiation and the
sum of sensible heat flux, latent heat flux, soil heat flux, and canopy heat storage has resulted in an intercept
of —10.6 W m~? and a slope of 1.04 (r> = 0.94; Baldocchi et al., 2004). Data collected under heavy rainfall
(>10 mm) were removed (Baldocchi et al., 2021).

The hourly ABI DSR data were linearly interpolated to the half hour temporal resolution of the Ameriflux data.
Vegetation indices were calculated from the clear sky, 5-min, nadir-adjusted surface reflectance estimates. The
midday medians of the vegetation indices for each day were calculated between hour 10 and 14. Finally, we used
all available daytime data with a solar zenith angle of less than 70° from 2019 to 2020 from ABI and Ameriflux
for GPP estimation.

2.3. Estimating GPP

GPP was estimated using a light-use efficiency model (LUE-NDVI), a linear relationship between the prod-
uct of NIR, and PAR (NIR P) and GPP (LIN-NIR P), and a light response curve between NIR P and GPP
(LRC-NIR P). The normalized difference vegetation index (NDVI) calculated from ABI surface reflectance was
used in the LUE-NDVI model (Running et al., 2004). NIR, calculated from ABI surface reflectance was used in
LIN-NIR P and the light response curve between NIR P and GPP (Baldocchi et al., 2020; Dechant et al., 2022).
The midday median value of NDVI and NIR was used and incoming PAR drives the diurnal variation in NIR P
or NDVIP (Dechant et al., 2022). The LUE-NDVI model was specified as (Running et al., 2004):

GPP = €max Tscale I/I/srale APAR (4)

where €, is the maximum canopy LUE (pmol CO, J=!) under ideal environmental conditions and APAR is
absorbed photosynthetically active radiation (PAR; W m~2) and is calculated as:

APAR = fAPAR X PAR 5)

where fAPAR is the fraction of absorbed PAR and is approximated by the daily midday median NDVI. NDVI
was calculated as:

PNIR — PRed
PNIR + PRed

NDVI = 6)

where p,,, is the reflectance in the ABI NIR band and p,,, is the reflectance in the ABI red band. PAR was esti-
mated as (Meek et al., 1984; Weiss & Norman, 1985):

PAR = 0.45DSR (N

where DSR is the linearly interpolated ABI Downward Shortwave Radiation from ABI-L2-DSRC. We calculated
T, . and W . according to the MODIS LUE model (Running & Zhao, 2015). T, ,, was calculated as (Huang

scale scale

et al., 2021; Running & Zhao, 2015):

0, if Tair' S T;nin

Tscate = 7714# ~ Tnin N if Thin < Tair < Tiax (8
Tmax - Tmin
1, if Tair Z Tmux
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where T, (°C) is the air temperature measured at the EC tower. T, (°C) is the temperature at which LUE is
minimum (LUE = 0 pmol CO, J~!) at any VPD value and T, (°C) is the temperature, under ideal VPD, at which
LUE is maximum (LUE = ¢ Running & Zhao, 2015). W,

cale Was calculated as (Huang et al., 2021; Running
& Zhao, 2015):

max?

1, if VPD < VPDyi
Wieate = 4 —FPPmax = VPD_ 4 yppy - VPD < VPDy ©
VPDmax - VPDmin
0. if VPD > VPDyu

where VPD (hPa) is the vapor pressure deficit from the EC tower. VPD, . (hPa) is the VPD at which LUE is maxi-
mum (LUE = ¢, ) and VPD,  (hPa)is the VPD at which LUE is minimum (LUE = Opmol CO, J='; Running &
Zhao, 2015). The linear relationship between NIR P and GPP was approximated as:

max

GPP = ¢, NIR,P (10)

where ¢, s the slope between GPP and NIR P. NIR P was calculated as (Dechant et al., 2022):

NIR,P = NIR, x PAR a1
NIR, was calculated as (Badgley et al., 2017):
NIRV = PNIR NDVI (12)

We estimated the GPP term using a light response curve between EC tower partitioned GPP and ABI NIR P:
13)

where a is the canopy LUE before light saturation is reached (pmol CO, J=!) or the initial slope of the relationship
between GPP and NIR P and /3 is the maximum CO, uptake rate at the point of light saturation (pmol CO, m=2s!;
Lasslop et al., 2010; Reichstein et al., 2012). Light response curves can be used to partition NEE into GPP and
R, , using incoming solar radiation at the surface (Lasslop et al., 2010). In this case, «a is directly approximated
as the initial LUE of the incident light response. When replacing incoming solar radiation with NIR P, a more
specific description of @ would be the initial amount of CO, taken up with increases in NIR P (Figure 1). NIR P's
proportionality with APAR is the basis by which an NIR P-based «a could approximate an APAR based a. The
impact of increasing VPD and the resulting stress on the maximum CO, uptake rate at light saturation, 5, was

estimated according to Lasslop et al. (2010) (Figure 2):

5o {ﬁ(, exp(—k (VPD — VPDy), if VPD > VPD, (14)

Po, otherwise

where k is the sensitivity of the maximum CO, uptake rate at light saturation, , to VPD. f, is the maximum CO,
uptake rate at light saturation during conditions of ideal VPD (VPD < VPD,). VPD, was set as 10 hPa (Lasslop
et al., 2010). Atmospheric VPD from the EC tower was used here.

We estimated €,,,., T,,» 1,00 VPD,0 VPD,,5 €, @, By, and k through minimization of a cost function imple-

mented in the Python-based open-source software, SciPy (Virtanen et al., 2020) as:
minimize 0.5 X Z pi (15)
i=1

To reduce the influence of outliers, the Huber loss function was used to calculate the vector p which is also imple-
mented in the Python-based open-source software, SciPy (Virtanen et al., 2020) as:
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Figure 1. Eddy covariance tower GPP versus ABI normalized difference vegetation index (NDVI) X photosynthetically active radiation (NDVIP) X the environmental
stresses developed for the LUE-NDVI model (first column). The black line displays the GPP estimates from the LUE-NDVI model. The response of eddy covariance
tower GPP to the ABI near-infrared reflectance of vegetation X PAR (NIR P) (second column). The dashed black line displays the GPP estimates using LIN-NIR P.
The solid black line displays the GPP estimates from LRC-NIR P with = f3. The response of GPP to the photosynthetic photon flux density measured at the eddy
covariance tower (third column).
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z if z<1 (16)
p —
z—1 otherwise

where z is a vector of the squared errors between estimated GPP and EC tower GPP for a daytime half hour i in 1,
..., n during the month for the 2 years of data. We estimated parameters for each month separately using 2 years
of diurnal observations. Seventy percent of the data for a given month was used for estimating the parameters and
30% was used to test GPP estimates against EC tower GPP. The data was split into test and training data using the
python module Scikit-learn (Pedregosa et al., 2011). To test the impact of NEE partitioning, we also estimated all
parameters using GPP partitioned from two different NEE partitioning approaches in addition to the Ameriflux
provided GPP (Appendix B).

2.4. Model Evaluation

We used a robust regression implemented in Python's statsmodels module to fit a linear model between the ABI
GPP estimates and the EC tower GPP estimates using our test and training data (Seabold & Perktold, 2010). For
each method used to estimate GPP from ABI inputs, a linear model was fit by gathering the training and test
data used for each month into one training and test set for the 2 years study period. Furthermore, the training
and test data used for each month were also pooled into seasonal training and test data for each method. We used
these seasonal pools of training and test data to calculate the mean absolute error, the normalized mean absolute
error, and the mean error between ABI GPP estimates and EC tower GPP estimates for each season. These error
summaries were calculated as:

> GPP; — GPP,

n

Mean Error = (17)

>, IGPP, — GPP|

n

(18)

Mean Absolute Error =

Normalized M ean Absolute Error = Mean Absolute Error (19)

GPP

where @ is the ABI-based estimate of GPP and GPP, is the EC tower estimate of GPP for a daytime half hour
iin 1, ..., nin a given season. GPP is the seasonal mean of daytime EC tower estimates of GPP.

A reflectance-based NIR could be proportional to the fraction of absorbed PAR and NIR P could be proportional
to a radiance-based NIR, which has shown proportionality to APAR (Wu et al., 2020). Therefore, the difference
between NIR P and incident PAR could be indicative of the differences between incident PAR and APAR. We
tested if using NIR P in the light response curve rather than incident PAR contributed to the errors between GPP
and GPP. We compared the errors from each GPP estimate to the difference between a PPFD (photosynthetic
photon flux density) based NIR P and incident PPFD measured at the EC tower as: NIR Ppy., — PPFD. To
match the units of tower PPFD, PAR (W m~2) calculated from ABI DSR was converted to PAR in PPFD units
(pmol Photons m~2 s7!) as (Thimijan & Heins, 1983):

PPFDap; = 4.57 umol Photons J~' x PAR (20)

NIR Py, Was calculated as:

NIR,Ppprp = NIR, X PPFD g1 (21)

2.5. Diurnal Centroids

The diurnal centroid method (Nelson et al., 2018; Wilson et al., 2003) was used to compare diurnal patterns in
water loss and carbon uptake between ABI estimates of GPP and EC tower estimates. A diurnal centroid for a

given flux, C, , was calculated as (Nelson et al., 2018; Wilson et al., 2003):

var®
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15
o flux t
Cyur = Z'—"# (22)

Zx]=59 Slux,

where ¢ is the time in decimal hours from the daylight hours of 9-15 and flux, is the value of a given flux or other
variable at time 7. We only used days when continuous cloud-free observations were available between these
hours to calculate the diurnal centroid. C, , has been used as an indicator of diurnal asymmetry in ecosystem
fluxes of water and CO, (Nelson et al., 2018; Wilson et al., 2003). For example, a C,, less than 12 would indicate
a shift of the flux toward the morning hours and a C,, of greater than 12 would indicate a shift of the flux toward
the afternoon (Wilson et al., 2003). Furthermore, the difference between the diurnal centroids of different fluxes
was used to study the (mis)alignment of peak fluxes throughout the year (Wilson et al., 2003). To compare the
departure of peak GPP from diurnal peak solar radiation, we took the difference between the diurnal centroids
of all GPP estimates from the diurnal centroid of incoming shortwave (SW) radiation measured at the EC tower

(Nelson et al., 2018).
Coppx = Copp — Csw,, (23)

The shift of both peak GPP and ET to morning hours could imply declining soil moisture (Wilson et al., 2003).
To test whether the (mis)alignment of diurnal peak GPP and LE using ABI-based GPP estimates agreed with EC
tower (mis)alignment of the diurnal peaks of these two fluxes with varying soil moisture throughout the year,
we also calculated the daily diurnal centroid of EC tower LE. For each GPP estimate, the difference between the
centroids of GPP and EC tower LE was calculated as:

Copp-LE = Copp — CLE 24

3. Results
3.1. Model Evaluation

Estimates of GPP using LRC-NIR P achieved the lowest mean error, mean absolute error, and normalized mean
absolute error for the training data during all seasons (Table 2). The lowest training normalized mean absolute
error (0.28) was achieved during the spring season and the highest (0.46) was during the fall. Among the test
data, LRC-NIR P GPP estimates also achieved the lowest mean error, mean absolute error, and normalized mean
absolute error during all seasons (Table 2). Similar to the training data, the lowest test normalized mean absolute
error (0.26) was during the spring and the highest test normalized mean absolute error was during the fall (0.46).
All ABI-based GPP estimates resulted in an underestimate of GPP compared to EC tower GPP during all seasons
among the training and test data with the exception of winter test data (Table 2).

Diurnal GPP estimates from LRC-NIR P and LUE-NDVI follow the diurnal course of EC tower estimates of
GPP more closely compared to the LIN-NIR P GPP during the spring and summer (Figure 3). LRC-NIR P GPP
estimates appear to follow the shift of peak GPP toward the morning hours during the summer. None of the
ABI-based GPP estimates are able to capture some of the higher diurnal peaks in GPP during all four seasons
(Figure 3). The LRC-NIR P GPP estimates also show better agreement with the course of seasonal half-hourly
means of GPP from EC tower estimates during all seasons during the study period (Figure 4).

The robust regression between GPP estimated with ABI inputs and EC tower GPP revealed a similar diver-
gence from a 1:1 relationship among all three methods and training and test data (Figure 5). At low EC tower
GPP values, GPP estimates from all three methods were slightly higher and at high EC tower GPP values, GPP
estimates from all three methods were lower (Figure 5). A robust regression between the daily median GPP esti-
mates resulted in relationships that were closer to the 1:1 line for all three GPP estimates (Figure 5). The errors
between EC tower GPP and estimates of GPP from the LRC-NIR P show a tendency of the LRC-NIR P to under-
estimate EC tower GPP during times of much higher incident PPFD relative to NIR Py (NIR Pppry — PPFD
< —1,500 pmol Photons m~2 s~!; Figure 6). These patterns are consistent when using both ABI NIR P, and
EC tower NIR P, (Figure 6).
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Table 2
Comparison of Mean Error (ME), Mean Absolute Error (MAE), and Normalized MAE (NMAE) Between ABI-Based GPP
Estimates and Eddy Covariance Tower GPP Estimates

Training data Test data

Season Model ME MAE NMAE ME MAE NMAE

Winter LIN-NIR P —1.199 2.686 0.442 -1.114 2.619 0.442
Winter LUE-NDVI —0.843 2.333 0.384 —0.705 2314 0.390
Winter LRC-NIR P -0.214 1.840 0.303 —-0.011 1.978 0.334
Spring LIN-NIR P —1.566 3.734 0.400 —1.449 3.815 0.399
Spring LUE-NDVI -1.212 3.230 0.346 —1.138 3.231 0.338
Spring LRC-NIR P —-0.309 2.585 0.277 —-0.397 2.511 0.263
Summer LIN-NIR P —1.269 2.365 0.611 —1.273 2.344 0.613
Summer LUE-NDVI -1.014 2.065 0.534 —1.055 2.076 0.543
Summer LRC-NIR P —0.168 1.486 0.384 —-0.146 1.434 0.375
Fall LIN-NIR P -0.514 1.646 0.546 —0.382 1.570 0.534
Fall LUE-NDVI —0.429 1.531 0.508 —0.363 1.429 0.485
Fall LRC-NIR P -0.218 1.378 0.457 —-0.164 1.351 0.459
Note. The units for ME and MAE are pmol CO, m=2s~!.

3.2. Diurnal Centroids

Data on GPP, LE, and soil water content in the top 15 cm from the EC tower reveal that the soil water content
in this layer declines rapidly from April to June and the lowest soil water content occurs during July-November
(Figure 7). Cgpp is shifted increasingly earlier in the day matching the rapid decline in soil water content through
May, June, and July (Figure 7). During times of low soil water content, C, ; also shifted to earlier in the day;
it occurred after Csw,, during the spring and early summer and before Csw,, during the months with the lowest
soil water content (Figure 7). Since VPD peaks during the afternoon throughout the year, C, ; and Cp, became
increasingly aligned as soil water content decreased (Figure 7). Below we discuss the results for how these diur-
nal patterns in the (mis)alignment of C,; and Cgp, compare with our estimates of GPP from the LRC-NIR P,
LIN-NIR P, and LUE-NDVIL

The diurnal centroids of EC tower GPP and GPP estimates from the LRC-NIR P and LUE-NDVI reveal shifting
peaks in GPP toward earlier in the day as the ecosystem experiences decreasing soil moisture with the progression
into the summer months (Figure 7). The EC tower GPP estimates resulted in the largest median Cpp* during the
summer months (July-September) with the largest shift of peak GPP in September at a median of 0.41 hr before
the peak of incoming solar radiation. GPP estimates from LRC-NIR P and LUE-NDVI resulted in the largest
median Cgpp* during the summer months of July and August in agreement with the EC tower (Figure 7).

The lowest median Cgpp* from EC tower estimates occurred during December and January when peak GPP
was aligned with the peak of incoming solar radiation (Figure 7). The lowest median Cg,p,* according to the
LRC-NIR P estimates also occurred during January (Figure 7). The lowest median Cgpp* according to the
LUE-NDVI estimates occurred during November (Figure 7). GPP estimates from LIN-NIR P resulted in very
small shifts in peak GPP in relation to incoming shortwave radiation compared to the other GPP estimates
throughout the year (Figure 7).

Using tower estimates of GPP, the largest median lag between Cgpp, and C i occurred in July when Cpp lagged
0.47 br before C, and the smallest median lag occurred in November when median Cg,, was aligned with
median C|; (Figure 7). GPP estimates from LRC-NIR P and LUE-NDVI resulted in the largest median lag
between Cgpp and C,; during July as well and the smallest median lag during January. Estimates of GPP from
the LIN-NIR P resulted in the largest median lag between Cpp and C, i during April and the smallest median lag
occurred in January (Figure 7).
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Figure 3. Subsets of seasonal time series of estimates of GPP from all methods compared to estimates of GPP from the eddy
covariance tower. The bottom plot shows 8-day means for all GPP estimates for the study period.
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Figure 4. Seasonal diurnal means of estimates of GPP from all methods and diurnal means of estimates of GPP from the eddy covariance tower. The purple shaded
region shows +2 standard error of the mean eddy covariance tower GPP. The data spans from January 2019 to December 2020. The mean diurnal cycle estimated from
LRC-NIR P GPP estimates is best able to respond to the increasing diurnal asymmetry in GPP in the summer months. LUE-NDVI GPP estimates result in mean diurnal
cycles that are able to shift slightly toward morning peaks during the summer. LIN-NIR P GPP estimates result in symmetric mean diurnal cycles throughout the year.

4. Discussion

4.1. Diurnal Environmental Stresses

The impact of environmental stresses on GPP at the Tonzi Ranch results from the seasonality in available
resources along with the active vegetation type during any given season (grasses versus tree canopy; Baldocchi
et al., 2004). Below we discuss how the methods we tested were able or unable to capture the seasonal shifts from
radiation limitation to water limitation on GPP. During the rainy winter, spring, and fall, the Tonzi Ranch receives
the lowest incoming solar radiation and the oak savanna has some of the lowest amounts of net radiation available
during this time of the year (Baldocchi et al., 2004). Both the Tonzi Ranch and a nearby Mediterranean grassland
is energy limited during the winter rainy season when precipitation exceeds evaporative demand and evaporation
is more sensitive to potential evaporation driven by radiation (Baldocchi et al., 2021; Ryu et al., 2008).
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Figure 5. Scatter plots of test data and training data with eddy covariance tower estimates of GPP versus GPP estimated from LUE-NDVI (a—d), LIN-NIRVP (e-h), and
LRC-NIRVP (i-1). The diurnal observations were used for plots labeled as “Diurnal.” The daily medians of diurnal GPP estimates were used in plots labeled as “Daily.”
The black line shows the 1:1 line. The gray line shows the robust regression line.

The initial light-use efficiency before saturation is reached, a, was lower during the fall, winter and spring months
compared to summer. We found the slope between GPP and NIR P in LIN-NIR P is the highest during the winter
and fall months. Furthermore, according to the LUE-NDVI model, the air temperature and VPD stress on maxi-
mum LUE was negligible and absorbed radiation tended to be the main control on GPP during the wet winter
months (Figure 2). Regardless of each method being able to respond to the increasing radiation limitation during
the rainy season, LRC-NIR P achieved the highest agreement with EC tower GPP.

As previously discussed, the summer months at the Tonzi Ranch oak savanna are characterized by high incoming
solar radiation, declining soil moisture, high air temperatures, and high VPD (Baldocchi et al., 2021). This is also
the case for the nearby Vaira grassland which is water-limited during the summer months when high incoming
solar radiation increases evaporative demand and evaporation is more sensitive to increases in precipitation (Ryu
et al., 2008). At the Tonzi Ranch, low soil moisture can limit summertime ET and the stomatal response of the
oak trees to increasing VPD can serve as an indicator of soil moisture stress (Baldocchi et al., 2021). The best
agreement was achieved between tower GPP and LRC-NIR P GPP during the water-limited summer through a
more accurate specification of the response of GPP to rising VPD during the day. Among the air temperature
and VPD stressors of the LUE-NDVI model, the VPD stress on maximum light-use efficiency was the dominant
stress on GPP during the summer.

The linear relationship between EC tower GPP and NIR P was the least successful in capturing diurnal asym-
metry in GPP because it closely follows the course of solar radiation throughout the day and does not capture
the impact of increasing diurnal VPD. We found the best agreement between the diurnal centroids of GPP from
LIN-NIR P and the diurnal centroids of GPP from the EC tower during December and January. These months
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correspond to the rainy season when radiation can limit GPP and when peak diurnal GPP tended to be aligned
with incoming solar radiation. This could explain why these are the only months when LIN-NIR P, which only
relies on a linear relationship between a potential indicator of absorbed PAR (NIR P) and GPP, tended to agree
with the diurnal course of GPP. It has been noted that linearities between GPP proxies and GPP are observed at
coarse spatiotemporal scales because such scales integrate the structural components and physiological processes
(the sun-exposed and shaded leaves on a canopy, the impact of light saturation, etc.) at fine spatiotemporal scales
(Anderson et al., 2000; Magney et al., 2020). Our results suggest that fine temporal scales even when the spatial
scale is >1 km could be enough to degrade a linear relationship between GPP and NIR P because the impacts of
high light and/or other nonlinearities driven by micrometerological variation during the day are not captured by
linear relationships between GPP and NIR P.

4.2. Diurnal Dynamics of GPP in Relation to Soil Moisture and Evapotranspiration

The shift of the peak of GPP toward the morning hours with progression into the summer months that we found
from the LRC-NIR P and LUE-NDVI is consistent with reported shifts in the timing of peak photosynthesis at
the Tonzi Ranch (Tang et al., 2005). The peak of photosynthesis at this site has been reported to shift to 9.5 hr
in July and 9 hr during the day in September (Tang et al., 2005). Summertime understory measurements of
NEE when the grasses are dead have shown that soil respiration at the Tonzi Ranch peaks during the afternoon
in phase with soil temperature during the drought months, while soil respiration under tree cover has shown to
peak later than soil temperature (Tang et al., 2005). Soil respiration under the tree has shown to peak 7-12 hr
after photosynthesis (Tang et al., 2005). The diurnal variation of soil moisture during the summer months is
small compared to temperature and photosynthesis which has suggested that both the diurnal variations of tree
photosynthesis and soil temperature drive the diurnal variation in soil and stem respiration at the Tonzi Ranch
(Tang et al., 2005). In line with EC tower GPP, the increasing shift of GPP toward the morning hours that we
found using the light response curve and the LUE model have been previously explained by rising temperatures,
increasing R, , increasing VPD in the afternoon, and stomatal closure during the afternoons at the Tonzi Ranch
(Tang et al., 2005).

Previously, the mean annual integrated GPP (+standard deviation) at Tonzi Ranch has been reported as 1,05
6 gCm~2 yr~! + 145 gCm~2 yr~! over a course of 15 years (Ma et al., 2016), and the mean annual integrated
ET (+standard deviation) at the site has been reported as 419 + 85 mm (Ma et al., 2020). Seasonally, the peak
in surface conductance, GPP, and ET all occur during the rainy spring months after the oak canopy becomes
photosynthetically active (Baldocchi et al., 2004, 2021; Ma et al., 2020). During this time LE (1ET) tended to
peak after incoming SW resulting in larger differences between the peak of EC tower LE and GPP compared to
the late summer, fall, and winter months. The light response curve and the LUE model were slightly better at
capturing the difference. This indicates that the high surface conductance and soil moisture that is characteristic
of the rainy spring results in the ecosystem being able to respond and maintain LE during high afternoon VPD.
On the other hand, the Tonzi Ranch savanna experiences the lowest surface conductance and LE during the dry
summer months (Baldocchi et al., 2004). The oak trees also experience a decline in maximum net photosynthesis,
maximum carboxylation rate, and maximum electron transport rate as the dry season progresses (Xu & Baldoc-
chi, 2003). With volumetric soil water contents below 15%, the ecosystem begins to experience sharp declines
in ET/ET,

equilibrium

the differences between the peak of EC tower LE and GPP are some of the smallest. Morning shifts in GPP and

(Baldocchi et al., 2004). During these months, LE shifts increasingly toward the morning and

ET have been previously identified in Mediterranean/dry climates (Nelson et al., 2018; Wilson et al., 2003). The
ability of the oak trees to access deep ground water resources, their ability to reduce leaf area index, and their
ability to regulate water loss allows them to transpire well into the dry summer months possibly maintaining
low stomatal conductance or stomatal closure in response to high afternoon VPD (Baldocchi et al., 2004, 2021;
Tang et al., 2005). We found that the GPP estimates from the light response curve with a VPD stress and the
LUE-NDVI model were best able to follow the increasing alignment of peak GPP and LE with decreasing soil
moisture.
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4.3. Uncertainties and Moving Forward

We found that a light response curve between GPP and NIR P was able to capture the increasing diurnal asym-
metry in GPP at the Tonzi Ranch. Previous research has suggested that the relationship between daily LUE
and instantaneous LUE can vary with the time of day during which instantaneous LUE is estimated (Zhang
et al., 2018). Midday light saturation could result in instantaneous LUE to be different from estimates of daily
LUE (Zhang et al., 2018). However, the light-saturated part of the light response curve is hard to reach at the
canopy level because entire canopies include both saturated and unsaturated leaves and space-based sensors
capture the integrated response of larger areas that include multiple canopies, shaded leaves, and saturated leaves
(Magney et al., 2020). The increasing saturation in the shape of a light response curve that we found during
summer can result from high afternoon VPD during conditions of high light and the ecosystem regulating water
loss during dry conditions through down regulation of transpiration through stomatal regulation rather than the
sole impact of light saturation.

Our analysis of errors from the GPP estimates revealed that the light response curves tended to underestimate
GPP compared to EC tower GPP when the differences between incident PPFD and NIR Py, are very high. This
could mean that LRC-NIR P is unable to capture the higher EC tower GPP fluxes because of the light saturation
point in LRC-NIR P. On the other hand, the error patterns could also arise from the use of NIR P and the result-
ing underestimation of GPP compared to EC tower GPP when there are large differences in incident PPFD and
absorbed PPFD. The large differences between NIR Py, and PPFD could occur when the ecosystem receives
high PPFD, but NIR Py, could be much lower due to seasonal variations in LAI lowering the estimated GPP.
Since this pattern of errors is replicated with the use of NIR, from tower mounted sensors, the uncertainties asso-
ciated with atmospheric and angular correction of ABI TOA reflectances, the disagreement between ABI DSR
and tower incoming SW, and the conversion of ABI downwelling shortwave radiation to PPFD do not seem to
play a major role in these error patterns.

Finally, our atmospheric correction and BRDF correction could have introduced additional uncertainty in NIR P
estimates. We found that the diurnal shape of NIR from our nadir approximation of surface reflectance matched
the diurnal shape of NIR, from the tower mounted sensors at the Tonzi Ranch. However, we did find that the
magnitude of NIR differed between the two sources. This could result from differences in the field of view of
the sensors, calibration differences between the sensors, the difference between an albedo-based and reflec-
tance-based NIR , or the specification of the atmosphere by 6S in our atmospheric correction. We also used a
simple least squares cost function between observed TOA and estimated TOA compared to cost functions that
have been previously applied to ABI TOA reflectances which could impact atmospheric and angular correction
(He et al., 2019).

Higher-level surface reflectance products from efforts such as the GeoNEX pipeline will be crucial for large-scale
estimates of GPP from geostationary satellites (Li et al., 2019). Various gap-filling and smoothing techniques
need to be tested and developed for very high temporal resolution estimates from geostationary satellites in order
to start providing integrated GPP at daily to longer timescales. Diurnal gridded estimates of meteorological
variables from reanalysis datasets are also needed for large-scale GPP estimates from ABI as have been used for
diurnal space-based GPP estimates (Li et al., 2021). The response of GPP or R, to land surface temperature
could potentially be used to develop gridded estimates of GPP (Li et al., 2021) from ABI with ABI LST being
offered hourly. Here, we have tested the use of ABI LST as opposed to VPD as an environmental stress on the
maximum CO, uptake rate of the light response curve (Figure Al). The resulting GPP estimates result in similar
agreement to EC tower GPP compared to the LRC-NIR P estimates (Figures A2 and A3).

The approaches of partitioning NEE into GPP and ecosystem respiration can impact both fluxes (Lasslop
etal., 2010; Stoy et al., 2006) and therefore, future studies that evaluate the use of multiple partitioning approaches
for estimating GPP from remotely sensed inputs could be insightful. Here, we tested all three ABI-based GPP
estimates with GPP partitioned using approaches that rely on nighttime data alone and both nighttime and daytime
data (Appendix B). Using the LRC-NIR P and LUE-NDVI, we found better agreement between GPP estimates
and EC tower GPP using the Lasslop et al. (2010) approach that relies on both daytime and nighttime NEE data
(Figures B1 and B2). The better agreement between LRC-NIR P GPP estimates and the Lasslop et al. (2010)
partitioned GPP is obvious since they both rely on the same underlying assumptions for the response of GPP to
light and the VPD stress on GPP.
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Coupled carbon-water-energy dynamics could in principle be studied by estimating GPP using the Atmosphere-Land
Exchange Inverse (ALEXI) model which is already used to estimate ET using GOES. In other words, there are opportu-
nities to couple carbon and water fluxes using ABI observations that may improve our understanding of both (Anderson
et al., 2000, 2008). Finally, it has been suggested that plant strategies for regulating water loss through stomatal regu-
lation in the face of drops in soil water potential can impact how sensitive plant productivity is to VPD or precipitation
(Konings, Williams, & Gentine, 2017). Ecosystem water regulation strategies can be characterized on a continuum of
isohydricity to anisohydricity based on both ground-based and space-based measurements (Konings & Gentine, 2017
Novick et al., 2019). ABI-based diurnal GPP estimates can help us investigate how quickly ecosystem carbon uptake
is responding to water stress through diurnal shifts in GPP according to ecosystem water regulation strategies (Nelson
et al., 2018) and the agreement in these dynamics between ground and space-based estimates.

5. Conclusion

Diurnal estimates of GPP from geostationary satellites can provide us with observation-based estimates of GPP
at very high temporal resolutions for studying diurnal dynamics at large scales. They can provide GPP esti-
mates integrated at daily to longer timescales for intercomparison studies and provide near-real time estimates
of GPP. Half hour space-based estimates are also comparable to the timescale at which ecosystem gas exchange
measurements from eddy covariance towers are reported. We tested three methods to estimate GPP with 5-min
inputs from the Advanced Baseline Imager on the GOES-R series in an oak savanna ecosystem that experiences
seasonal moisture stress and shifts in resource limitations throughout the year. We found that a light response
curve with a proper VPD stress is in best agreement with ground-based ecosystem gas exchange measurements
and the increasing diurnal asymmetry in GPP the ecosystem experiences during the dry summer season. We also
found that GPP estimated with the light response curve is in best agreement with ground estimates during all
other seasons highlighting the flexibility of the light response curve with proper environmental stresses for diur-
nal estimates. However, we did find that the light saturation point from light response curves underestimated GPP
compared to GPP partitioned from gas exchange measurements during times of high incoming photosynthetic
photon flux density. We found that linearities between NIR P and GPP appear to break down at the diurnal scale
due to stomatal and nonstomatal responses to changing irradiance and other environmental variables during the
day. Finally, we found that GPP estimates from light response curves with a VPD stress and light-use efficiency
models are in best agreement with the diurnal (mis)alignment of GPP and latent heat exchange in response to
diurnal environmental variation. This agreement can be important for studying diurnal water-use efficiency and
vegetation responses to environmental stresses. Moving forward to estimating diurnal ABI-based GPP at other
ecosystems with eddy covariance towers, we find that it is important to test multiple GPP formulations at the
diurnal scale to understand how seasonal resource availability and environmental conditions impact the diurnal
GPP estimates. Surface reflectance and angular corrected reflectances could greatly facilitate the development of
diurnal GPP estimates from remotely sensed inputs at regional to hemispheric scales.

Appendix A: Land Surface Temperature Stress on Maximum CO, Uptake Rate in the
Light Response Curve

To test a LST stress on GPP, the light response curve of Equation 13 was modified with GOES-R ABI LST
(ABI-L2-LSTC) as an input. Similar to ABI DSR, we linearly interpolated the hourly ABI LST to half hour time
steps to match the data from eddy covariance tower. Using a light response curve similar to Lasslop et al. (2010),
GPP was estimated as:

arst NIRVP frst

GPP= —M¥ —
Prst + arst NIR,P

(AD)

where a; ¢; is the canopy LUE before light saturation is reached (pmol CO, J=!) or the initial slope of the rela-
tionship between GPP and NIR P and | ¢; is the maximum CO, uptake rate at the point of light saturation (pmol
CO, m~2 s7!). The impact of increasing LST and the resulting stress on the maximum CO, uptake rate at light
saturation, f3 o7, was estimated as:

ﬁo[_ST

st =17 exp(=b x (LST — LSTy)) (A2)
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Table A1
Comparison of Mean Error (ME), Mean Absolute Error (MAE), and Normalized MAE (NMAE) Between ABI-Based GPP
Estimates and Eddy Covriance Tower GPP Estimates

Training data Test data

Season ME MAE NMAE ME MAE NMAE

Winter
Spring
Summer

Fall

—0.222 1.867
—0.394 2.655
—0.210 1.724
—-0.283 1.366

0.316
0.284
0.447
0.453

—0.190
—0.567
—0.207
—0.157

1.831
2.658
1.734
1.456

0.312
0.283
0.456
0.500

Note. The units for ME and MAE are pmol CO, m~2 5.

where fo, ¢, is the maximum CO, uptake rate at light saturation during conditions of ideal LST. The parame-
ters o or, fo - b, and LST, were optimized using EC tower GPP as described in Equations 15 and 16 from
Section 2.3.

The lowest training mean error was achieved during the summer (—0.21) and the lowest testing mean error
was achieved during the fall (—0.16). The lowest training and testing normalized mean absolute error were
achieved during the spring (0.28; Table Al). The error summaries are some of the lowest among all the meth-
ods and are comparable to LRC-NIR P (Table 2). Similarly, the robust regression between GPP estimated from
LRC-NIR P-LST and EC tower GPP (Figure A3) was similar to the robust regression between GPP estimated
from the other three methods and EC tower GPP (Figure 5). The diurnal means of GPP from LRC-NIR P-LST
were also most in agreement with EC tower GPP and LRC-NIR P throughout the year (Figure A2). The disagree-
ment between specifying a LST or VPD stress on the maximum CO, uptake rate was most evident during summer
from late afternoon to early evening. As LST began to decrease in the early evening hours, LRC-NIR P-LST GPP
increased which was not in agreement with GPP partitioned at the EC tower.
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Figure Al. The response of eddy covariance tower GPP to land surface temperature (LST). The black lines show the values
of f, ¢ estimated using Equation A2.
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Figure A2. Seasonal diurnal means of estimates of GPP from all methods and diurnal means of estimates of GPP from the eddy covariance tower. The purple shaded
region shows +2 standard error of mean eddy covariance tower GPP. The data spans from January 2019 to December 2020.
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Figure A3. Scatter plots of test data (left) and training data (right) with eddy covariance tower estimates of GPP versus GPP
estimated from LRC-NIR P-LST. The black line shows the 1:1 line and the gray line shows the robust regression line.
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Appendix B: Comparison of NEE Partitioning Approaches

To test the impact of different EC tower NEE partitioning approaches on GPP estimates with ABI inputs, we
tested optimizing the parameters of LRC-NIR P, LUE-NDVI, and LIN-NIR P with two different EC tower
GPP estimates from partitioning NEE using REddyProc (Wutzler et al., 2018). The first method has no explicit
assumptions about the response of GPP to light and only uses nighttime data to estimate a temporally varying
respiration-temperature relationship for vegetation that does not utilize Crassulacean acid metabolism as (Reich-
stein et al., 2005):

1 1
Reco(T) = Rpe E -
(T) Rfexp[ 0<TRef_T0 T—To)] (BI)

where T is air temperature °C, E, is the temperature sensitivity, T; is held constant at —46.02°C, and T, is held
at 15°C (Reichstein et al., 2005; Wutzler et al., 2018). E; is estimated using 15-day windows of nighttime data
and the short-term E|, estimates are aggregated to an annual value (Reichstein et al., 2005; Wutzler et al., 2018).
Using the annual E; estimate, the Ry, parameter is estimated with 7-day windows that are shifted for 4 days.
The resulting Ry, is assigned to the central time point of the 4 days and linearly interpolated between estimates
(Reichstein et al., 2005; Wutzler et al., 2018). The R, and air temperature relationship is extrapolated to daytime
data to obtain estimates of R, during the day. Finally, R,  estimates are used to estimate GPP as (Reichstein

eco

et al., 2005; Wutzler et al., 2018):

GPP = R.., — NEE (B2)
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Figure B1. Scatter plots of test data and training data with eddy covariance tower estimates of GPP using the NEE partitioning approach based on nighttime NEE data
versus GPP estimated from LUE-NDVI (a—d), LIN-NIR P (e-h), and LRC-NIR P (i-1). The diurnal observations were used for plots labeled as “Diurnal.” The daily
medians of diurnal GPP estimates were used in plots labeled as “Daily.” The black line shows the 1:1 line. The gray line shows the robust regression line.
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The second method includes a daytime light response function for GPP along with the response of R, to air

eco

temperature and uses both nighttime data and daytime data to estimate NEE as (Lasslop et al., 2010; Wutzler

et al., 2018):
afRg
NEE= — + B3
aR; +f 4 (B3)
afR, 1 1
= —— — 4+ Rge E -
aR, +J ’”eXp[ °(TM—T0 T—To>] (B4)

where « is the canopy LUE before light saturation is reached (pmol CO, J~!) and f is the maximum CO, uptake
rate at the point of light saturation (pmol CO, m2s7!), R 18 incoming shortwave radiation at the surface of the
Earth, and y (pmol CO, m~2 s7!) is R, . The impact of increasing VPD and the resulting stress on the maximum
CO, uptake rate at light saturation, 3, was estimated according to Lasslop et al. (2010) using Equation 14. T,
is fixed according to the nighttime partitioning (Wutzler et al., 2018). Ty,
the median temperature in the window and E; is estimated from nighttime data for windows shifted by 2 days

is fixed within moving windows to

(Wutzler et al., 2018). E, estimates are smoothed and a prior R, is estimated from nighttime data for each
window (Wutzler et al., 2018). Finally, the parameters of the light response curve (R, a, f, k) are estimated
using daytime data for each window (Wutzler et al., 2018).

Both nighttime and daytime partitioning methods resulted in similar relationships with GPP estimates from ABI
inputs using both diurnal observations and daily medians (Figures B1 and B2). Daytime partitioning resulted in
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Figure B2. Scatter plots of test data and training data with eddy covariance tower estimates of GPP using the NEE partitioning approach based on nighttime and
daytime NEE data versus GPP estimated from LUE-NDVI (a—d), LIN-NIR P (e-h), and LRC-NIR P (i-1). The diurnal observations were used for plots labeled as
”Diurnal.”’s The daily medians of diurnal GPP estimates were used in plots labeled as Daily.” The black line shows the 1:1 line. The gray line shows the robust
regression line.
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relationships between diurnal EC tower GPP and LRC-NIR P and LUE-NDVI GPP estimates that were slightly
closer to a 1:1 line compared to nighttime partitioning (Figures B1 and B2). The slightly better linear relationship
between GPP estimated from daytime partitioning and from LRC-NIR P is expected considering that both GPP
estimates are derived from the same equations as outlined by Lasslop et al. (2010).

Data Availability Statement

The GOES-16/17 ABI Level 1b top-of-atmosphere radiance (ABI-L1b-RadC; NASA, 2019) is available through
https://registry.opendata.aws/noaa-goes. The GOES-16/17 ABI Level 2 Clear Sky Mask (ABI-L2-ACMC;
Heidinger & Straka, 2018), Land Surface Temperature (ABI-L2-LSTC; Yu et al., 2012), and Downward Short-
wave Radiation (ABI-L2-DSRC; NASA, 2018) are available through NOAA's Comprehensive Large Array-
Data Stewardship System (CLASS). The Tonzi Ranch Ameriflux data (Ma et al., 2001) are available at https://
ameriflux.lbl.gov/sites/siteinfo/US-Ton. The code to produce the figures will be available at https://github.com/
anmikhan/goes-gpp-tonzi.git upon publication.
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