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Nonlinear electrophoresis of colloidal particles
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Abstract

Advances over the past decade in nonlinear electrophoresis of charged, dielectric colloidal particles in aqueous
electrolytes are reviewed. Here, the word nonlinear refers to the fact that the ratio of the electrophoretic
speed of the particle to the magnitude of the applied electric field — the electrophoretic mobility — is not
independent of field strength. This is in stark contrast to the vast majority of work on (linear) colloidal elec-
trophoresis over the last century, where the mobility is assumed to be a material property dependent only on
the particle-electrolyte combination. The present discussion is focused on: (i) experimental measurements of
the field-dependent mobility; (ii) an asymptotic scheme to calculate the mobility in the common thin-Debye-
layer limit; and (iii) computations of nonlinear electrophoresis from numerical solution of the electrokinetic
equations. The article concludes with suggestions for future work in this evolving area of colloid science.
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1. Introduction

Electrophoresis refers to the movement of a charged particle in a liquid electrolyte under an imposed electric
field. Historical developments in electrophoresis, and more generally electrokinetic phenomena, are reviewed
by Wall [1]. An early experimental observation of electrophoresis is often attributed to the German scientist
Reuss in 1808, who noticed the migration of clay particles in water under an applied voltage. Biscombe
[2] suggests, in fact, that electrophoresis was discovered by the French scientist Gautherot in 1801, who
observed the drift of a water drop between electrified metal plates. Today, electrophoresis finds applications in
microfluidics, colloidal directed assembly, DNA sequencing, iontophoretic drug delivery, analytical chemistry,
and display devices, to name but a few areas. Electrophoresis is a scientifically rich subject, comprising (low
Reynolds number) fluid mechanics, electrostatics, physical chemistry, and ion transport. A central goal is
to determine the electrophoretic mobility of a particle, which is the quantity relating the particle motion
to the applied field. In this article, we focus on the specific case of a rigid, spherical, dielectric particle
of uniform surface charge density residing in an unbounded, strong (i.e., fully ionized) electrolyte. The
electrophoretic motion of the particle is animated by a spatially uniform and steady electric field. Here, under
the assumption that the particle undergoes steady, rectilinear motion, there is a scalar relation between the

particle velocity Ugp and applied field E*, Ugrp = MpEpE", where M is the electrophoretic mobility.
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Above and henceforth, dimensional quantities will be adorned with an asterisk superscript; dimensionless
quantities will carry no superscript. In principle, this velocity-field relation is nonlinear, since the mobility
itself can be a function of the electric field strength, E* = |E*|. Most theoretical analyses have focused
on the limit of a ‘weak’ applied field, 8 = a*E*/¢h <« 1, where a* is the particle radius and ¢%. is the
thermal voltage scale. In a binary electrolyte with anion and cation valences —Z and +2Z, respectively,
o = kpT*/Ze*, where k}; is Boltzmann’s constant; T is the absolute temperature, and e* is the charge
on a proton: for reference, ¢} ~ 25mV at T™ = 298K and Z = 1. For a particle with ¢ = 1pum a field
E* = 0.25kV /cm is required to yield g = 1.

The mobility can be calculated in the weak-field limit through linearization to first order in [ of the
electrokinetic equations governing electrophoresis [3]. In this regime, M}, is independent of field strength.
In 1903 Smoluchowski [4] calculated that M}, p = £*¢*/n*, where €* and n* are the dielectric permittivity
and viscosity of the electrolyte, respectively, and (* is ‘zeta potential’ of the particle. In the weak-field limit
the zeta potential is equivalent to the electric potential at the ‘plane of shear.” Here, we will not deal with
the presence of a Stern layer; hence, the particle surface and plane of shear are the same. Smoluchowski’s
formula is valid in the so-called ‘thin-Debye-layer limit,” where the Debye length 1/x*, which characterizes
the width of the diffuse charge cloud screening the surface charge of the particle, is small compared to particle
size: § = 1/(k*a*) < 1. At the opposite extreme of a thick Debye cloud, § > 1, Debye and Hiickel in 1924
[5] found M},p = 2¢*¢*/(3n*). These two results were bridged by Henry in 1931 [6], who calculated M}, p
for arbitrary d, under the assumption that ¢*/¢% is small.

Formally, Henry’s result is valid to first order in (*/¢%., and the mobility was later computed as a pertur-
bation expansion through fourth order in this ratio by Booth [7]. Booth’s analysis revealed that at fixed §
the mobility does increase linearly with ¢* indefinitely. For example, in figure 3 of that paper the mobility is
plotted versus (*/¢% at § = 0.16: after an initial linear increase up to ¢*/¢% ~ 1 (in accordance with Smolu-
chowski’s formula) the mobility increases sub-linearly and eventually attains a maximum at (*/¢% ~ 3.2,
after which it decreases until ¢*/¢% = 4, the largest value of (*/¢%. considered. A numerical computation
of the mobility was undertaken by Wiersema et al. in 1966 [8] for a binary electrolyte, and their results also
show a sub-linear increase of M} p with (*/¢% beyond small (*/¢%; however, a mobility maximum was not
evident. In their landmark 1978 paper, O’Brien and White [9] employed symmetry arguments and utilized
the linearity of the weak-field electrokinetic equations to numerically compute the mobility for an (in princi-
ple) arbitrary electrolyte up to larger values of (*/¢% than [8]. Their results shows a mobility maximum for
a particle in a KCI solution for 6 < 1/3. S. S. Dukhin had, in fact, some years earlier performed a boundary
layer analysis of the weak-field equations for a symmetric binary electrolyte in the thin-Debye-layer limit,
which furnished an analytical formula for M} p that exhibited a mobility maximum [10]. Dukhin’s analysis
was streamlined by O’Brien and Hunter in 1981 [11] and generalized to a multicomponent electrolyte by
O’Brien in 1983 [12]. An interesting finding in the latter paper is that Mgp ~ In4(¢khe* /n*) as (*/¢5 — oo,
which is independent of zeta potential and particle size. The departure from Smoluchowski’s formula is due

to tangential ionic currents, or ‘surface conduction,” in the Debye layer, which occur due to the appreciable
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counter-ion buildup therein at sufficiently large zeta potentials. Specifically, surface conduction becomes
important at ‘logarithmically large’ zeta potentials, ¢(*/¢% = O(In(1/6)) [12, 13]. The non-uniformity of
surface conduction over the curved particle necessitates compensating (normal) ionic fluxes across the Debye
layer, which affect the electric potential and ionic concentration distributions in the ‘bulk’ electroneutral
electrolyte outside it. Hence, M} departs from Smoluchowski’s formula.

Contributions to our understanding of weak-field, or linear, electrophoresis were made essentially through-
out the last century. Here, by contrast, we focus on nonlinear electrophoresis, which has seen major advances
— theoretical, computational, and experimental — over the last decade; this is the period that the present
review is centered on. Crucially, in nonlinear electrophoresis the mobility is no longer independent of the
field strength, which, as we shall see, presents new experimental opportunities and theoretical challenges.
The rest of this article is organized as follows. We start by reviewing experimental evidence for nonlinear
electrophoresis. Next, we present the electrokinetic equations governing nonlinear electrophoresis, which,
being nonlinear, require asymptotic or numerical treatment. In the former vein, we review recent asymptotic
approximations in the thin-Debye-layer limit, and connect said approximations to the aforementioned ex-
perimental studies. This is followed by a discussion of numerical computations of nonlinear electrophoresis.

We close by charting directions for future work.

2. Experiments on nonlinear electrophoresis

Here, we discuss recent studies on nonlinear electrophoresis of dielectric colloids in aqueous electrolytes. In
2020, Cardenas-Benitez et al. [14] measured the electrophoretic velocity of negatively charged carboxylated
polystyrene spheres at varying field strength in a PDMS microchannel. The largest particles had radii a* =
2.55um and were exposed to a maximum field strength of E* = 0.8kV/cm. The surface charge density, o*
say, on the colloids is reported as being between —1.41 and —5.93uC/cm?; we will take o* = —5uC/cm? as a
representative value. The particles were immersed at low concentration (to avoid multi-particle interactions)
in deionized water, to which different amounts of KCI were added depending on the colloid size: a 53.3uM KCl
solution (for which 1/k* = 41.6nm) was used for the 5.1um diameter colloids. The electrolyte concentration
was chosen to minimize Joule heating while remaining in the thin-Debye-layer limit. Particle motion under
an applied field was recorded using particle tracking velocimetry. This measurement yields the ‘total’ particle
velocity, U, which is a sum of oppositely directed contributions from the electrophoretic velocity Uy p and
the electro-osmotic flow at the negatively charged walls. The latter is assumed to advect the particle at a
velocity given by the the Helmholtz-Smoluchowski formula Uy = —eCE™/n, where ¢, is the wall zeta
potential. At small fields an initial positive linear increase in U7 with field strength is seen. Here, a positive
velocity indicates the particles are traveling in the direction of the applied field; thus, Ujo must be greater
than U}, p, since the particles and wall are negatively charged. The regime of nonlinear electrophoresis is
reached upon further increase of the field strength, where U} proceeds to increase sub-linearly with E*;
reaches a maximum; crosses zero; and finally becomes negative. This last behavior indicates the dominance

of Uy p over Ug, at large field strengths. Note, the latter can reasonably be assumed to always be linear
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in the field strength, since the channels walls are flat and, therefore, non-uniform surface conduction should
be negligible in their adjacent Debye layers. Further work from this group has reported similar findings
for the nonlinear electrophoretic velocity of other types of particles and biological cells [15]. Additionally,
they have proposed that nonlinear electrophoresis plays an important role in ‘direct current insulator-based
electrokinetics (DC-iEK),” which is a microfluidic protocol to manipulate micro-particles and cells via non-
uniform electric fields.

Tottori et al. [16] in 2019 reported on the nonlinear electrophoresis of polystyrene particles (a* = 0.31um,
o* = —51.2mC/m?) and poly(methylmethacrylate) (PMMA) particles (a* = 0.26um, o* = —13.1mC/m?)
in a PDMS microchannel under a dc voltage. The microchannel is connected to two open reservoirs
whose heights are adjusted to eliminate pressure-driven flow. A 1ImM KCI solution was used, for which
1/k* = 9.6nm. The largest field strength tested was E* = 2.5kV/cm. The measured particle velocity is
again a sum of electrophoretic and electro-osmotic contributions. At field strengths below approximately
1kV/cm the particle velocity is linear in the field strength, and at larger field strengths the nonlinear
electrophoretic velocity is found by subtracting this linear component from the total particle velocity. A
nonlinear dependence of the electrophoretic velocity on field strength is clearly evident; further, the experi-
ments compare reasonably well to a numerical solution of the electrokinetic equations via COMSOL and a
weakly-nonlinear asymptotic theory from Schnitzer & Yariv [17], of which more will be said later. Finally,

the nonlinear electrophoretic response was used to enable field-driven particle trapping in a micro-channel.

In 2016 Youssefi and Diez [18] reported ‘ultrafast’ electrophoretic motion of carboxyl functionalized polystyrene

spheres (¢* = 0.1um) suspended in deionized water through a PDMS microchannel. We assume 1/k* =
0.96pm [19] since the Debye length was not reported in [18]. The surface charge of the particles was also
not stated, although they assumed a zeta potential of magnitude |(*| = 100mV when comparing various
theoretical predictions to their experiments. The electrophoretic particle velocity is found from the difference
between the total particle velocity and electro-osmotic velocity: the former is measured via PIV and the
latter via the rate of filling of one of the two reservoirs that the channel is connected to. A maximum field
strength of E* = 250kV /m was used, for which the electrophoretic velocity is reported as 2.3m/s. Remark-
ably, this implies that the particle translates at approximately twenty three times its radius per microsecond.
Such large speeds call into question whether inertial effects are relevant; the Reynolds number based on the
electrophoretic velocity is around 0.23, which is certainly not negligibly small. The electrophoretic velocity
U p at the largest field strengths appears to increases faster than linearly with E* but slower than E*3/2
which implies a sublinear increase of the mobility with field strength.

Mishchuk and Barinova [20] in 2011 reported measurements on the electrophoresis of latex particles in
horizontal and vertical working cells, using pulsed and steady electric fields. A largest field of around
0.8kV/cm was applied to drive the motion of 6um radii particles with zeta potential of magnitude 28mV.
The electrolyte used is not reported; however, a nonlinear dependence of the EP velocity on field strength is
clearly seen.

In 2009, Barany [21] reviewed studies of electrophoresis in strong fields, which included presentation of
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experimental data for the electrophoretic velocity of ‘bare’ (i.e., uncoated) dielectric particles; polymer
coated particles; and ‘unipolar’ conducting particles. The latter refers to a particle through which a counter-
ion current can flow, such as an ion-exchange granule, and electron-conducting or semi-conducting particles.
We restrict our attention to uncoated dielectric particles. Here, Barany reports earlier experiments of Shilov
et al. [22] on emulsifier-free latex particles of * = 15um in 5mM KCI (for which 1/£* = 4.29nm). This work
used an apparatus where a voltage is applied orthogonal to the direction of gravity, such that a sedimenting
particle experiences a lateral drift under an electric field, from which its electrophoretic velocity is inferred.
A maximum field strength of E* = 0.25kV /m was used. A nonlinear variation in the electrophoretic velocity
with field strength is evident, which is compared to a theoretical model developed in [22]. The particle
surface charge was not reported; however, a value of 0.8 x 1078m?/Vs is given for the magnitude of the
electrophoretic mobility in the weak-field regime. This is converted to a zeta potential of magnitude 11.2mV
through Smoluchowski’s formula, which in turn yields a surface charge of magnitude |o*| = 1.86mC/m?, via
the Gouy-Chapman relation, o* = 2e*k* @5 sinh(¢*/2¢7).

In 2006, Kumar et al. [23] measured the electrophoresis of carboxylated latex particles of a* = 2.1um
in deionized water under steady and alternating fields through a silica capillary that is connected to open
reservoirs. A maximum field strength of 1kV /cm was used. They estimate 1/k* = 0.16um from the known
solution conductivity and calculate (* = —20mV from Smoluchowski’s formula. The latter corresponds
to a surface charge density of o* = —91.2uC/m? from the Gouy-Chapman relation. The total particle
velocity is observed via microscope and the electro-osmotic flow velocity is inferred by measurement of the
fluid collection rate into one of the reservoirs. Thus, the electrophoretic velocity is the difference between
the total velocity and electro-osmotic velocity: this is essentially the same approach adopted by [18, 14],
but differs from [16] who did not attempt to measure the electro-osmotic flow. A linear increase in the
electrophoretic velocity with field strength is reported up to the maximum field strength used; there is no
evidence for nonlinear electrophoresis. Thus, the results in [23] seemingly stand apart from the other studies
discussed above, which exhibit nonlinear electrophoresis at sufficiently large field strengths. To put these
experimental efforts into a proper context requires formulation of a mathematical model to predict nonlinear

electrophoresis, which is presented next.

3. Electrokinetic equations for nonlinear electrophoresis

Having discussed the relevant experimental observations, we present governing equations for nonlinear
electrophoresis, based on the standard electrokinetic model of dilute electrolyte solutions [3]. We focus on
the simplest geometrical case of a rigid, neutrally buoyant, spherical particle of radius a¢* immersed in an
unbounded electrolyte (Fig. 1). The particle is a dielectric with uniform surface charge density o*. The
electrolyte is binary and fully ionized: the cations have valence +Z2Z and diffusion coefficient D, and anions

have valence —Z and diffusion coefficient D*. Thus, the Debye length 1/k* = \/e*k*T*/2n*22¢*2, where

2n* is the ion concentration far from the particle. A steady, uniform electric field E* is applied at large

distances from the particle. We shall assume that the particle translates at a steady velocity U”, from which
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Figure 1: Definition sketch for electrophoresis of a dielectric, charged sphere of radius a*. The particle is shown with a
uniform, positive surface charge distribution, and r* denotes the position vector from the centroid of the particle. In (a) the
particle rests in the absence of an applied field; hence, the Debye layer of counterions around it, of characteristic width 1/k*, is
spherically symmetric. Here, the ionic concentrations are only a function of r* = |r*|. The electrolyte outside the Debye layer
is electroneutral. In (b) the particle is set into motion by an electric field E*; consequently, the counter-ion cloud deforms from
its equilibrium configuration and looses spherical symmetry. As the field strength increases, the cloud will compress(extend) at
the front(back) of the particle. This can be understood from the electric force on the ions due to applied field, which results
in electro-migration of cations(anions) to the right(left), as depicted by the arrows. The goal is to calculate the velocity U*
at which the particle moves, from which the electrophoretic mobility M}, = |[U*|/|E*|. The field dependence of the mobility

can be rationalized in a pictorial sense as due to the increased deformation of the Debye layer with increasing field strength.

the electrophoretic mobility is M}, = |[U"|/|E™|.

The variables of interest are the electric potential in the electrolyte, ¢*; the fluid velocity, w*, and pressure,
p*; and the cation, n%, and anion, n*, number concentrations. In principle, Gauss’ law at the particle
surface introduces a coupling to the potential in the solid particle. However, this can typically be neglected
for a dielectric particle in an aqueous electrolyte, due to the small solid-to-liquid permittivity ratio. The
ionic flux density is given by the Nernst-Planck equation
D} Ze*

kT

-k

JL=F niV*¢* — DiV*ni +u*nl, (1)

which includes electro-migration (the first term); diffusion (the second term); and advection. In (1) the
plus sign is taken for cations and the minus sign for anions. At steady state V*-3% = 0. The problem is
made dimensionless by normalizing distance with a*; electric potential with ¢%.; velocity by e*¢4?/n*a* and

pressure by e*¢4? /a*?; and ion concentrations by n*. Thus, the electric potential satisfies the (dimensionless)
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Poisson equation,

82V3ip = —%(n+ —n_). (2)

The absence of an asterisk superscript on a variable indicates that it is the dimensionless counterpart of the
appropriate dimensional variable: for example, the dimensionless potential ¢ = ¢*/¢%. The fluid flow is

governed by the Stokes equations
V2u — Vp+ (V2¢)Vé =0 and V-u = 0. (3)

The first equation in (3) is a momentum balance on an inertialess fluid element accounting for hydrodynamic
stresses and an electric (Coulomb) body force, and the second is the continuity equation for an incompressible

fluid. Using the continuity equation with V*-57% = 0 yields
V- (neVe¢) — Vng +myu-Vng = 0. (4)

Here, my = ¢*¢3?/p* D} are ionic drag coefficients with a value of around 0.5 for univalent aqueous elec-
trolytes at room temperature [3].

We adopt an (inertial) frame of reference translating with the particle. Let (7,6, ) be spherical polar
coordinates anchored at the particle centroid, where r is the distance from the centroid; 6 is the polar angle
from the direction of the applied field (denoted by unit vector 2); and ¢ is the azimuthal angle about 2.

Hence, far from the particle
u— —SMgpz, p—0, ny =1, and V¢ = —2 as r — oo, (5)

where Mgp = M} p/(e*¢%/n*). Since the fluid is incompressible, the pressure is only defined up to an
additive constant and hence we state that it attenuates at large distances. At the surface of the sphere,
r =1, we impose

u=0, —n-Vé=0 and n-(FnVop —Vny) =0 at r =1, (6)

where 71 is the outward unit vector to the particle surface. The first condition in (6) stipulates no slip and no
fluid penetration at the particle surface. The second condition is Gauss’s law, in which o = 0* /e*k* ¢4, is the
dimensionless surface charge density. We have asserted that the surface charge density retains its equilibrium
distribution, despite the particle being in motion. A common alternative is to specify the potential at the
particle surface. O'Brien and White [9] state that the weak-field mobility is independent of the electrostatic
condition at the particle surface: that is, any perturbation to the equilibrium charge density (or surface
potential, if that is specified) due to the applied field does not affect the value of the mobility. However,
there is no reason to believe that this holds beyond the weak-field regime, as they also note. The third
condition imposes zero ionic flux across the inert particle surface.

The problem is closed by enforcing zero net force on the particle,

/S(N+M)-ﬁd5:0, (7)
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Carndenas-Benitez et al. [14] 15.7 0.02 113 2.26
Kumar et al. [23] 7.94 0.08 0.78 0.06
Tottori et al. [16] 2.98 0.03 26.7 0.80
Shilov et al. [22] 14.4 0.00029 0.43 0.00012
Youssefi & Diez [18] 96 9.6 unknown unknown

Table 1: Estimated dimensionless field strength 8, dimensionless Debye length ¢, dimensionless surface charge density o, and
Bikerman number Bi for the experimental studies discussed in section 2. The value of § is for the maximum field strength in
each experiment. The values for [16] pertain to their experiments using polystyrene particles. The surface charge density and
zeta potential of the particles in [18] were not reported; hence, we cannot reliably estimate o or Bi here. A field-dependent

mobility is observed in all experiments excepting [23].

where S is the particle surface; N = —pI + Vu + (Vu)' is the Newtonian hydrodynamic stress (with I the
identity tensor and { denoting transposition); and M = V¢V ¢ — %(ng - V) I is the Maxwell stress. The
axial symmetry of the problem about z, whereby no field variables depend on ¢, means that Maxwell stresses
do not generate an electrical torque on the sphere; the particle does not rotate. Since V.-.N =V - M =0
the integral (7) may, in fact, be taken over any closed surface enclosing the particle. Choosing that surface
to lie far from the particle, it may be shown that Maxwell stresses do not contribute to the integral in
the weak-field limit. Hence, there is zero hydrodynamic force on the particle to first order in O(f3), which
implies that the velocity field decays faster than 1/r at large distances from the particle. Consequently,
hydrodynamic interactions between a pair of particles undergoing linear electrophoresis are weak compared
to a sedimenting pair. Application of (7) can be cumbersome as the velocity gradient must be computed.

As an alternative, the Lorentz reciprocal theorem yields a direct quadrature for the mobility [24]

e [e [ ) (- 2w o
where 7 is the position vector from the particle centroid, and the integral is over the fluid volume. In summary,
the nonlinear electrophoresis problem is governed by the field equations (2)-(4), boundary conditions (5)-(6),
and constraint (7). There are three dimensionless groups: o, ¢ and §.

It is instructive to characterize the experimental studies discussed in section 2 in terms of these dimen-
sionless groups (table 1). All the studies except for [18] fall within the thin-Debye-layer limit, where § is
considerably smaller than unity. The nonlinear electrophoresis problem is amenable to asymptotic analysis
in this limit, as discussed in the next section. Note, the thick-Debye-layer limit § > 1 can also be tackled by
asymptotic methods [25]. Here, the colloid can be approximated as a point charge to leading order in 1/4,
yielding an analytic formula for the field-dependent mobility. This prediction compares reasonably well to

experiments on the electrophoresis of polystyrene particles in a surfactant-doped aliphatic hydrocarbon [26].



220

225

230

235

240

245

250

4. Thin-Debye-layer limit

4.1. The Schnitzer and Yariv macro-scale model

A systematic analysis of the thin-Debye-layer limit for nonlinear electrokinetic transport has been conducted
by Schnitzer and Yariv (hereafter SY) [13]. Previous analyses of linear electrophoresis first assumed a weak
applied field (8 < 1) and then took the limit 6 — 0 [10, 11, 12]. In contrast, SY [13] let 6 — 0 without the
imposition of a weak field. Conceptually, when ¢ < 1 the electrolyte can be partitioned into two regions: an
‘outer,” or ‘bulk,” region with r = O(1) as § — 0; and an ‘inner’ region, the Debye layer, with (r—1)/§ = O(1)
as  — 0. The singular nature of the limit 6 — 0 is evidenced by the small parameter § multiplying the
highest order derivative in the Poisson equation (2). Setting 6 = 0 in this equation gives leading order bulk
electroneutrality: ny = n_ = ¢, where c¢ is the mean ‘salt’ concentration. Hence, the ionic species balances

(4) reduce to
Vi — %(m +m)u-Ve, ()
V- (cVg) = %(m+ —m_)u-Ve. (10)

The salt concentration satisfies an advection-diffusion equation, and the potential is non-harmonic in the
event of salt gradients, or ‘concentration polarization.” The Stokes equations remain of the form (3); thus,
(3), (9) and (10) describe the leading order bulk dynamics. The leading order bulk charge density is O(&?)
from (2), and it is this charge density that generates the Coulomb body forces on the bulk fluid. The
bulk equations can meet the far-field boundary conditions (5) but cannot satisfy the boundary conditions
at the particle surface (6). As mentioned above, there exists a boundary layer, or inner region, of width
0O(9) adjacent to the particle — the Debye layer — in which electroneutrality is violated at leading order,
enabling the surface boundary conditions to be met. Separate asymptotic expansions must be performed in
the Debye layer, which are then matched to the bulk equations to yield effective boundary conditions on the
bulk variables applied at » = 1. Here, » = 1 does not correspond to the actual particle surface; rather, it
represents the outer edge of the Debye layer; in the thin-Debye-layer limit the two are indistinguishable when
viewed on the particle scale. Hence, SY arrive at a ‘macro-scale’ model, wherein the Debye-scale transport
is coarse-grained into the effective boundary conditions. Since the weak-field limit has not been invoked,
their approach captures the effects of nonlinear (i.e. field dependent) surface conduction for highly charged
particles under strong fields, which is the essential mechanism for a field-dependent mobility.

SY [13] identify ‘moderate’ and ‘high’ surface charge regimes based on the value of o. The moderate regime
corresponds to 0 = O(1). Here, the effective boundary conditions at » = 1 are simply the homogenous
Neumann conditions 9¢/dr = 0 and d¢/dr = 0, which signify the absence of surface conduction over a

moderately charged particle. The fluid velocity is subject to the slip condition

u=_V,p+2In <l—tanh2 (i)) Vlne, (11)

where the surface gradient operator V, = (I — fain)-V. The first term at the right side of (11) represents

electro-osmotic slip, and the second term is a diffusio-osmotic slip owing to gradients in the bulk salt. This
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form of the slip velocity appears in a 1961 paper by Derjaguin et al. [27]. Finally, the surface charge is
related to the zeta potential via o = 2y/csinh(¢/2). Here, the zeta potential is defined as the difference
between the uniform potential at the actual particle surface and the potential at the outer edge of the Debye
layer. The latter is given by the value of the bulk potential ¢ at » = 1. Clearly, variations in the bulk
salt concentration ¢ at r = 1 will lead to a non-uniform zeta potential. However, it is evident from (5) and
the effective Neumann conditions that the bulk salt is uniform, ¢ = 1. Consequently, the bulk potential is
harmonic, and the bulk flow solves the homogeneous Stokes equations subject to only the electro-osmotic slip
portion of (11), wherein the uniform zeta potential is ¢ = 2sinh™'(¢/2). Thus, o = O(1) for a moderately
charged particle implies that ¢ = O(1). Note, the Debye-Huckel limit corresponds to ¢ and ¢ much less
than unity. The disturbance to the imposed electric field due to the particle decays as a dipole, 1/r3, and
therefore Maxwell stresses do not contribute to the force balance (7). Morrison [28] originally showed that
the velocity field has the potential flow solution u = (V¢ with zero accompanying pressure field, which
satisfies the reduced condition of zero hydrodynamic force on any surface enclosing the particle. From (5)
and the irrotational flow solution it is seen that the particle translates at velocity 8¢z in the laboratory
frame; hence, the mobility is a constant: Mgp = {. This is, of course, nothing but Smoluchowski’s formula.
However, as pointed out in [13], this result is not restricted to the weak-field limit for o = O(1). Indeed,
in a earlier paper [29] these authors showed that Smoluchowski’s formula holds even under a strong field
B = O(1/6) for a moderately charged particle, despite the strong field animating surface conduction that
renders the bulk concentration non-uniform within a O(5'/?) thin diffusive boundary later atop the Debye
layer. In another paper SY suggest that Smoluchowski’s formula could be invalidated at such large fields by
polarization of the dielectric particle [30].

The high surface charge regime is 0 = O(1/6). Here, SY [13] show that there exists a nested boundary
layer structure consisting of the O(1) wide electroneutral bulk; the O(d) wide Debye layer; and a ‘Dukhin
(sub-) layer,” i.e. an inner-inner layer, of width O(62). The presence of the latter at a highly charged surface
was identified by Hinch et al. [31] in their study of the low-frequency dielectric response of particles with
thin Debye layers. Surface conduction occurs primarily in the Dukhin layer due to the large accumulation of
counterions near the highly charged surface. The inevitable non-uniformity of the resulting tangential ionic
fluxes over the curved particle surface necessitates that ions must be exchanged between the Dukhin layer,
Debye layer, and bulk. Hence, the effective boundary conditions of the moderate surface charge regime are
no longer valid. Instead, SY [13] derive the following conditions at » = 1 for a positively charged particle

(0 >0)

dc 09
ar " Cor =% .
%—Bi(1+2m_)vi(¢—ln0) =0, (13)

where Bi = 0o is a ‘Bikerman number’ that, by definition, is O(1) for a highly charged surface and O(6) for

a moderately charged surface. The grouping Du = Bi(1 4+ 2m_) can be viewed as a Dukhin number. The
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slip boundary boundary condition on the fluid velocity now reads
u=4In2V,Inc+(V,(¢p—Inc), (14)

where ( = 2Ino — Inc. For a negatively charged particle the above conditions are modified by replacing m _
with m4; ¢ with —¢; and ¢ with —(. Further, in this case, ( = —21In(—0)+1Inc and Bi = —do. The effective
boundary conditions (12) and (13) cannot allow a uniform salt distribution. An important consequence is
that the zeta potential is non-uniform even though the particle surface bears a uniform charge distribution.
Hence, the notion of a ‘particle zeta potential’ needs to be treated with caution.

The macro-scale model at high surface charge density must generally be solved numerically. However
perturbation methods can be applied in certain limits. For instance, consider a weak applied field g < 1.

Here, the mobility has the asymptotic expansion
Mgp = Mgpo + Mgp2B? + O(B%), (15)

where the absence of odd powers of 3 is dictated by the fore-aft symmetry of a uniformly-charged spherical

particle (or any fore-aft symmetric particle, for that matter). SY [13] find the leading order mobility

Co+ Duln16

16
14+ Du ’ (16)

MEgpo =

where (o = 2Ino is the equilibrium zeta potential. Equation (16) agrees with previous calculations based
on a weak-field linearization of the electrokinetic equations [11, 12]. In a subsequent paper, SY computed
the mobility through O(8?) [17]. Here, they show that the weak-field limit is, in fact, singular, due to
the competition between salt advection versus diffusion. To illustrate this, in [17] the advection-diffusion
equation (9) is re-written as

Vi = %(m +m_)pu- Ve, (17)

in terms of a rescaled velocity w = Su and salt concentration ¢ = 1+ f¢. The O(1) contribution to ¢, say
¢1, is a diffusive dipole decaying as 1/r%. Hence, advection balances diffusion in (17) at (large) distances
r = O(1/8), even though f is assumed small. This situation is analogous to the classic problem of forced
convection of heat or mass from a particle in a uniform stream at small Péclet number [32]. The resolution
is to employ matched inner-outer asymptotic expansions on the macro-scale model, with the inner and outer
regions corresponding to 7 = 1 and r = O(1/83), respectively. Since 3¢; ~ B3 at r = O(1/83), the first
contribution to the non-uniform salt distribution in the outer region is at O(3%). This contribution is needed
to determine the O(3%) salt and potential variations in the inner region, say c3 and ¢3, respectively, which in
turn are needed for calculation of the O(3?) contribution to the mobility Mpgps. That calculation requires
one to determine the force balance (7) at O(%); there are four components to the balance at this order: (i)
the Stokes drag; (ii) the hydrodynamic force due to the (electro- and diffusio-osmotic) slip velocity; (iii) the
hydrodynamic force due to the Coulomb body force distribution; and (iv) an electrostatic (Maxwell) force.
The existence of a non-zero electric force acting on the particle and its (polarized) Debye layer beyond the

weak-field regime was previously identified by O‘Brien and White [9] and Shilov et al. [22]. An important
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consequence of this net electric force is that there will be a non-zero hydrodynamic force on any surface
enclosing the particle. Hence, the velocity field due to a particle undergoing nonlinear electrophoresis will
decay as 1/r at large distances. This should be contrasted to the weak-field regime, where the velocity
decay is faster than 1/r due to the zero electric force on the particle at first order in 5. Thus, the notion
that hydrodynamic interactions between particles undergoing electrophoresis are weaker than sedimenting
particles [33] is valid only in the weak-field regime.

An analytical formula for Mgp2 is provided in equation (5.9) of [17]; we do not state it here due to its
length. However, we note that Mgp2 is a function of Du, my, m_, and (y. The numerical value of Mgp
is particularly sensitive to m4 and m_ and may even change sign depending on the values thereof, which
illustrates the highly ion-specific nature of nonlinear electrophoresis. SY [17] demonstrate good agreement
between their asymptotic calculation of Mgp2 and a finite-volume solution of the macro-scale model up to
B = 0.8. The form of Mgpo derived by [17] differs from an expression for Mgp 2 derived by [22]; the latter
work neglects ion advection and asserts a uniform zeta potential, which are questionable approximations. It
should be acknowledged, nonetheless, that Shilov et al. [22] did identify that the first nonlinear contribution
to the mobility occurs at O(3?), following earlier works by Siminova and Dukhin [34, 35]. Indeed, A. S.
Dukhin and S. S. Dukhin [36] proposed that a field-squared contribution could lead to net electrophoretic
drift of a particle in an alternating applied field, which they termed ‘aperiodic electrophoresis.’

A second case where asymptotic analysis is possible is when Du < 1 with § fixed. Here, SY [37] expand

the bulk variables to first order in Du as
¢=d¢o+ Dupr+--+,c=1+Duci +-+-,u=wug+ Duuy + -, p=po+ Dup1 +---, (18)

where the zeroth order terms correspond to Morrison’s solution[28], for which the irrotational flow ug =

(o V¢ is accompanied by a null pressure field pg = 0. Consequently, the mobility has the expansion
MEp:MEP’0+DUMEP71+"' s (19)

where Mgpo = (o, and Mgp; is the field-dependent O(Du) correction. The essential step in determining
Mgp1 is to solve an advection-diffusion equation for the perturbed salt field c¢;, wherein the relative im-
portance of advection versus diffusion is parametrized by a Péclet number Pe = (my + m_)(p5/2. The
perturbed potential ¢; can be immediately determined from knowledge of ¢;, and it is only these two quan-
tities that are required to evaluate Mgp; from an appropriate approximation of the force balance (7). The
advection-diffusion equation is amenable to analytic treatment for small and large Pe. The former case is
realized (assuming ¢, fixed) at weak fields, 8 < 1, or for small ions (my +m_) < 1. In the weak-field limit,
SY [37] show that for a positively-charged particle Mgp1 ~ —[41ncosh(¢y/4) + (o]B, which corresponds to
a retardation in the particle motion, since Mgp; is evidently negative. The retarding influence of surface
conduction at weak fields is in agreement with previous calculations [12]. A more surprising result occurs
for small ions: here, SY [37] show that Mpp; ~ —[41Incosh((o/4) + (o] B +26%/21. Hence, Mgp transitions
from negative to positive values as [ increases, which corresponds to a transition from retardation to en-

hancement of particle motion. At large Pe (realized by 3> 1) a diffusive boundary layer of width O(5~'/2)
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develops at 7 = 1 in which the salt is strongly polarized, ¢; ~ O(f8 1 2). This salt scaling has been previously
recognized [38, 39]. SY [37] solve for ¢; to yield an asymptotic formula that shows Mgp; ~ 3/ at large
Pe. This scaling has been derived in previous studies [20, 39, 40]; however, the coefficients therein of the
O(B%/?) term differ from [37]. SY also solve the advection-diffusion equation for ¢; by a numerical scheme
to bridge the above-mentioned limiting cases.

It is time to revist the experimental conditions summarized in table 1. The lack of a field-dependent
mobility in the [23] can be now be understood as these experiments are in the moderate surface charge
regime, Bi = 0.06. However, so too are the experiments of [22], which do exhibit a field-dependent mobility:
indeed Bi is much smaller than unity here. The reason for this is unclear, although, recall, these experiments
measured the lateral field-induced drift of sedimenting particles, unlike the microfluidic approach of the other
studies in table 1. Finally, the conditions in [14] and, arguably, [16] correspond to O(1) values of § and Bi
(and thus Du), which are beyond the range of validity of the asymptotic approximations to the SY model

discussed above. Numerical computations of the SY model are required at such values of 5 and Bi.

4.2. Applications of the SY model

Sherwood and Ghosal [41] used concepts from the SY macro-scale model to study nonlinear electrophoresis
of a tightly fitting sphere in a tube of circular cross section. The sphere travels along the axis of the tube at
a speed proportional to E*(¢ — () to first order in field strength, where (¥ and (* are the zeta potentials of
the sphere and tube wall. Interestingly, the first nonlinear correction to this speed is found to be proportional
to E*3(CF+()%(of +07), where of and o} are the surface charge densities of the sphere and wall. Therefore,
this correction should be measurable, in principe, for particles and tubes with zeta potentials close to one
another, since the linear speed will be small.

Calero et al. [42] used the small-Du approximation to the SY model [37] to calculate the flow around a
charged, dielectric circular cylinder immersed in a symmetric binary electrolyte under an alternating electric
field. Under the assumption that Pe is small, they predicted that surface conduction is responsible for a
rectified, or stationary, quadrupolar flow around the cylinder whose magnitude is proportional to the square
of the field strength. The flow is directed such that fluid is drawn toward the cylinder along the direction of
the applied field and pushed outward along the direction perpendicular to the field. This field-squared scaling
can loosely be understood as follows: ‘one power’ of the field induces a non-uniform (dipolar) zeta potential
via surface-conduction, the action of the applied field (the ‘second power’) on this induced potential drives a
quadrupolar flow. Such flows were also predicted by Gamayunov et al. [43], who suggested that they would
lead to net relative motion between a pair of particles in an alternating field. Indeed, experiments by Mittal
[44] observed a steady force between two polystyrene latex particles in a KCI solution under an alternating
field, where one particle is held fixed in an optical trap and the other is brought successively closer to it. Calero
et al. [42] compare their theoretical predictions against experimental observation of the flow around a square
array of cylindrical pillars, where the diameter of an individual pillar is 20um. Reasonably good agreement

between their theory and experiments is observed: in particular, both suggest that the flow velocity decays

13



385

390

395

400

405

410

415

420

in magnitude with the inverse square root of the field frequency. These authors term the observed rectified
flow as ‘concentration-polarization electro-osmosis’ (CPEQ), perhaps to a draw a distinction with the well
known quadrupolar induced-charge electro-osmotic (ICEO) flow around an ideally polarizable, uncharged
cylinder [45, 46]. For instance, the characteristic ICEO flow velocity for their experimental conditions is
about an order of magnitude smaller than what is observed. Another paper by this group [47] observed the
CPEO flow around a charged dielectric latex sphere of 3um diameter. Here, the particle size is such that
the Dukhin number is not small; hence, calculations based on the weak-field approximation to the SY model
[17] are performed, which, again, compare favorably to the experiments. In [42] and [47] unsteadiness is
accounted for by adding the time derivative of salt, dc/0t, to the right side of the bulk equations (9) and
(10). However, the steady effective boundary conditions (12) and (13) are employed; that is, the dynamics

of Debye-layer charging are unaccounted for. This is an assumption worth revisiting.

5. Numerical computations

Asymptotic techniques can be utilized to analyze nonlinear electrophoresis for § < 1 and § > 1. Computa-
tions are required to bridge the gap between these limiting cases. Here we discuss a few papers that analyze
nonlinear electrophoresis from numerical solution of the electrokinetic equations. Fixman and Jagannathan
[48] used multipole expansions of these equations to compute the nonlinear electrophoresis of a charged
dielectric sphere of fixed surface potential (p) in a uniform field. Their framework can, in principle, account
for a gravitational force on the sphere and hydrodynamic slippage at the particle surface, although results
are only presented for a neutrally buoyant particle. One set of computations was conducted for {, = 6 and
0 = 0.02 up to a maximum field strength of g = 2. This value of § falls within the thin-Debye-layer limit,
and the surface potential corresponds to an equilibrium surface charge density of o9 = 2sinh((y/2) = 20.
Hence, these conditions correspond to the moderate surface charge regime described above; therefore, it is
reassuring that [48] do not observe a dependence of electrophoretic mobility on field strength. A second set
of computations is conducted for ¢y = 3 with § = 1/3 up to 8 = 1.8; again, a field-independent mobility is
obtained. However, these authors show that the net charge and dipole moment of the sphere do vary with
field strength. Additionally, they present a lucid discussion of how the structure of the ion concentration
distributions change with increasing field strength. In particular, at the largest fields considered variation in
the bulk salt concentration can extend for many Debye lengths from the particle surface, in a fore-aft asym-
metric manner that is reminiscent of the boundary-layer/wake structure encountered in forced convection of
heat and mass past a particle [32].

Bhattacharyya and Gopmandal [49] used a finite volume scheme to solve the electrokinetic equations for a
a dielectric sphere with fixed surface potential, under the actions of collinear uniform flow and electric fields.
Their computations use the Navier-Stokes equations, as opposed to creeping flow equations. Figures 8 and
9 of their paper plots the anion concentration and charge density around a positively charged particle for
0 = 0.03125, {p = 1, and B = 1. The magnitude of the imposed flow is characterized by a number «, where

a = 1 corresponds to no flow (solely electrophoretic motion, that is), and increasing « increases the flow
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strength. Only a slight for-aft asymmetry in the ionic distribution is seen at o = 1, which is to be expected
as f =1 is a rather modest value. However, a prominent fore-after asymmetry is seen when « is increased
to 500 and then 1000. Here, the strong imposed flow sweeps ions past the particle; a thin boundary layer of
rapid ion concentration variation forms at the upstream face of the particle, and a wake persists downstream.
A similar ion distribution was shown by Keller et al. [50] in their finite element computation of a charged
particle held fixed in a uniform flow of an electrolyte.

The above studies assume that a steady imposed field (and/or flow) elicits steady electrophoretic motion.
A recent paper by Frants et al. [51] has challenged this assumption. These authors used a finite-difference
scheme coupled with semi-implicit Runge-Kutta time stepping to compute the electrophoresis of a dielectric
sphere of fixed surface charge. Their computations indicate that a long-time steady state is attained for
0 = O(1); a markedly different situation occurs at small §. Specifically, streamlines around the particle are
presented in their figure 3 for 8 = 320, § = 0.0086, and ¢ = 5, which indicate the presence of steady toroidal
vortices at the rear of the sphere. Similar vortices have been observed around ion-selective particles [52, 53].
Under these conditions f6 = 2.752 and 04 = 0.043, corresponding to a very strong field applied around a
moderately charged particle. Upon further increase of £ the flow becomes unsteady: at first the vortices are
shed periodically from the sphere and then at even larger /3 the shedding is chaotic. Frants et al. [51] draw
an analogy of this situation with the Karman vortex street, which refers to inertially-driven vortex shedding
in flow past a bluff body. The computations in [51] are, in contrast, at zero-Reynolds-number, which begs
the question: what is the origin of the vortex shedding? Clearly, shedding must arise from some nonlinear
feature of the flow problem: Frants et al. [51] suggest it is due to the Coulomb body force on the fluid, which
is nonlinear in the electrostatic potential. Additionally, the ion conservation equations involve a nonlinear
coupling through the material derivative of the ion concentration. These seem like plausible ingredients for a
transition from steady to chaotic flow, which, naturally, would be accompanied by a transition from steady
to unsteady particle motion, where the instantaneous particle velocity possesses components misaligned with
the electric field. (However, it is expected that the time-averaged particle motion is along the field direction.)
Hence, as suggested in section 1, it is not guaranteed that a particle undergoes steady, rectilinear translation
under a steady applied field. Indeed, the work of Frants et al. [51] hints at a rich, dynamical response for
sufficiently large field strengths. Of course, it is questionable if such field strengths are feasible in experiment
without complicating factors, such as Joule heating: for example, E* = 81.3kV /cm for a* = 1um at § = 325.

The discussion in this section is synthesized into a regime map, with axes ¢ and (3, for nonlinear elec-
trophoresis in the thin-Debye-layer limit (Fig. 2). Smoluchowski’s formula for Mgp is valid for o = O(1)
and 8 = O(1), corresponding to a moderately charged particle in a moderate strength field. SY’s weak-field
expansion [17] is applicable to a highly charged particle (¢ = O(1/4§)) in a weak field (8 < O(1)). In the
transition zone from a moderately to highly charged particle, such that do < 1 but not much smaller than
unity, the small Dukhin number expansion of SY [37] can be used to compute Mgp up to moderate fields.
Numerical computations are required to determine Mgp for a highly charged particle 0 = O(1/6) in a moder-

ate field 8 = O(1). These computations could involve solving the SY macro-scale model or full electrokinetic
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Figure 2: A regime map for nonlinear electrophoresis in the thin Debye layer limit, § < 1.

equations under these conditions. For ¢ = O(1) and 8 = O(1/§) a moderately charged particle is exposed
to a strong field. Here, Smoluchowski’s mobility may be invalidated by solid polarization. Additionally, the
computations of Frants et al. [51] suggest a progression from steady to unsteady to chaotic dynamics as
increases in this range. The final area of this map, which remains to be explored, is for a highly charged
particle 0 = O(1/0) in a strong field 8 = O(1/6). Here, numerical computations must be used: it is expected

that this regime also exhibits a transition to unsteady motion.

6. Aspects not covered here

This short review is focused on electrophoresis of a dielectric particle with a fixed surface charge density.
While the electrostatic condition at the particle surface makes no impact on the linear electrophoretic
mobility, this does not hold in the nonlinear regime. In this regard, consider the field-dependent mobility of a
charged, ideally polarizable (e.g. metallic) particle [54, 55, 56]. Here, an imposed field induces a non-uniform
surface charge distribution, in addition to the uniform equilibrium distribution. Consequently, the uniform
potential of the conducting particle must adjust from its equilibrium value to maintain the same total charge
on the particle. There is, in general, a nonlinear relation between the surface potential and particle charge,
i.e. a voltage-dependent differential capacitance, which yields a field-dependent electro-osmotic slip velocity
and, thereby, a field-dependent mobility. Thus, surface conduction is not required for a field-dependent
mobility, although it can be an additional factor for conductors with a sufficiently large equilibrium charge

[57]. This should be contrasted to a dielectric particle with fixed charge, for which the charge distribution
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is unaffected by an applied field. In this case, a non-uniform, field-dependent zeta potential is induced by
surface conduction, which then yields a field-dependent mobility. There has also been work performed on
the electrophoresis of ion selective particles. Here, concentration polarization occurs even in the absence
of surface conduction due to charge selective transport through the particle. At sufficiently large imposed
fields, an over-limiting current (i.e., exceeding the Nernst limit) is sustained by a non-equilibrium space-
charge later atop the Debye layer on the ‘cathodic’(‘anodic’) side of a cation(anion) selective particle. A
‘second-kind’ electro-osmotic flow is set up in this space-charge layer [58], leading to second-kind, or ‘super-
fast,” electrophoresis, where the mobility is field dependent [52, 53, 59]. Finally, our discussion has been
restricted to particle motion in strong electrolytes. There exists a body of work on the field-dependent
mobility of dielectric particles in surfactant-doped non-polar fluids [60, 26]. The low conductivity of these
fluids relative to aqueous ionic solutions means that much larger field strengths can be applied without
Joule heating or electrochemical reactions at the driving electrodes [61]. The charge carriers in these weak
electrolytes are inverse micelles of the surfactant. Positively and negatively charged micelles can be separated
in the vicinity of a charged particle by an imposed electric field: the field strength determines the extent of
separation and thus changes the local ionic atmosphere around the particle, which yields a field-dependent
mobility [62]. These systems can also exhibit ‘field-induced charging’ [63], where the surface charge varies

with the applied field strength, which is an additional factor leading to a field-dependent mobility.

7. Conclusion and future directions

Major advances in nonlinear electrophoresis have been made over the last decade, including asymptotic
schemes for thick and thin Debye layers; numerical computations using the full electrokinetic equations; and
experimental measurements of field-dependent mobilities. However, we would be remiss not to acknowledge
the contributions to this subject over several decades from the Ukrainian school of S. S. Dukhin and col-
leagues. We close this review by suggesting directions for future research. It would be of interest to pursue
numerical computations of the SY macro-scale model for O(1) values of the field strength S and Dukhin
number Du, which are experimentally relevant (cf. table 1). The results thereof should be compared against
numerical solutions of the full electrokinetic equations where possible. In this regard, we reiterate the utility
of the SY scheme [13], which encapsulates the Debye-scale transport into effective boundary conditions on a
macro-scale model that is, consequently, free from the scale disparity between the Debye length and particle
size that renders the full electrokinetic equations difficult to solve. Further, one could use the SY model to
compute the field-dependent, anisotropic mobility of non-spherical particles, with spheroids being a natural
case to examine first. Here, note that SY used their macro-scale model to compute the mobility of rod-like
particles in the weak field limit [64]. Extension of the SY model to alternating fields, or more general un-
steady fields, would also be useful in light of the recent work on CPEOQO, and also to predict net interaction
between particles in time periodic fields. This extension would require consideration of the time dependence
of the bulk salt and flow (as done in [42]), and dynamical charging of the Debye layer.

As mentioned before, the nonlinear electrophoretic mobility is dependent of the electrostatic condition at
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the particle surface. Thus, the field-dependent mobility may provide a route to infer the nonequilibrium
physicochemical state of a particle-electrolyte interface. This provides motivation to analyze the nonlinear
electrophoresis of: (i) a solid particle whose surface charge is regulated by the local pH; or (ii) a drop
with ionic charges that advect, diffuse, or electro-migrate along the drop interface, and are in adsorption-
desorption equilibrium with the bulk electrolyte [65]. It would also be interesting to consider nonlinear
electrophoresis in weak electrolytes, accounting for incomplete dissociation of ionic species [66].

The field-dependence of the mobility at 5 = O(1) for a dielectric particle of fixed charge is caused by
surface conduction of counterions. Surface conduction arises due to the large accumulation of counterions
near a particle of sufficiently high charge, o = O(1/4). This accumulation is allowed by the inherent
assumption within the PNP model that ions are non-interacting, point-sized charges. An implication of this
assumption is that the PNP model can predict impossibly large ion concentrations near a highly charged
surface, which has prompted analysis of linear electrophoresis with modified PNP equations that account for
non-dilute effects, such as steric repulsion between finite-sized ions [67] or electrostatic correlations [68]. A
natural question to ask, therefore, is whether nonlinear surface conduction is of physical relevance or merely a
consequence of the unphysical predictions of the PNP model. The answer, provided by SY [13], is that surface
conduction plays a dominant role relative to non-dilute effects over the range O(1) < Bi < Bi,,. Here, the
critical Bikerman number is Bi, = (e*k*T*/(22%e*21*3))"/2(NaM*a*)~", where I* = Ze*2/(4ne*k*T™) is
the Bjerrum length, N4 is Avogadro’s number, and M* is the molar electrolyte concentration. Using this
definition of Bi,,, surface conduction should dominate over non-dilute effects in a monovalent electrolyte
provided that M*a* < 6.8 x 1074, where M* is in molars and @* is in microns. For an electrolyte at
millimolar concentration this requires a* < 0.68um. It would, nonetheless, be of interest to analyze the
field-dependent mobility including non-dilute effects, to ascertain the interplay of such effects and surface
conduction. Figliuzzi et al. [69] took a step in this direction by computing the nonlinear electrophoresis
of fixed charge and ideally polarizable spheres in an electrolyte with steric repulsion between ions. These
authors also incorporated the effect of ‘dielectric decrement,” which refers to the linear reduction of the
permittivity with ion concentration [70].

There are opportunities for experimental studies that parallel the suggestions made above, including:
(i) probing larger field strengths, with one (ambitious) goal here being to test the predicted transition to
unsteady motion [51]; (ii) expanding the library of particle-electrolyte surface chemistries on which nonlinear
mobility measurements are made; (iii) measurement of the field-dependent mobility of non-spherical particles;
(iii) observation of the field-dependent net interaction between pairs (or even multiple) particles driven by
CPEO; (iv) quantifying the dynamic nonlinear mobility under alternating fields; and (v) measurements of
nonlinear electrophoresis on drops or bubbles.

In conclusion, it is without question that linear electrophoresis played a central role in the development
of colloid science over the twentieth century. It is hoped that this review has persuaded the reader that

nonlinear electrophoresis has the potential to do the same over this century.
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