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In this paper, we consider the statistical inference for several low-rank
tensor models. Specifically, in the Tucker low-rank tensor PCA or regression
model, provided with any estimates achieving some attainable error rate, we
develop the data-driven confidence regions for the singular subspace of the
parameter tensor based on the asymptotic distribution of an updated estimate
by two-iteration alternating minimization. The asymptotic distributions are
established under some essential conditions on the signal-to-noise ratio (in
PCA model) or sample size (in regression model). If the parameter tensor is
further orthogonally decomposable, we develop the methods and nonasymp-
totic theory for inference on each individual singular vector. For the rank-one
tensor PCA model, we establish the asymptotic distribution for general linear
forms of principal components and confidence interval for each entry of the
parameter tensor. Finally, numerical simulations are presented to corroborate
our theoretical discoveries.

In all of these models, we observe that different from many matrix/vector
settings in existing work, debiasing is not required to establish the asymptotic
distribution of estimates or to make statistical inference on low-rank tensors.
In fact, due to the widely observed statistical-computational-gap for low-rank
tensor estimation, one usually requires stronger conditions than the statistical
(or information-theoretic) limit to ensure the computationally feasible esti-
mation is achievable. Surprisingly, such conditions “incidentally” render a
feasible low-rank tensor inference without debiasing.

1. Introduction. An mth order tensor is a multiway array along m directions. Recent
years have witnessed a fast growing demand for the collection, processing and analysis of
data in the form of tensors. These tensor data commonly arise, to name a few, when features
are collected from different domains, or when multiple data copies are provided by various
agents or sources. For instances, the worldwide food trading flows [25, 38] produce a fourth-
order tensor (countries x countries x food x years); the online click-through data [32, 60] in
e-commerce form a third-order tensor (users x categories X periods); Berkeley human mor-
tality data [67, 76] yield a third-order tensor (ages x years x countries). In addition, the ap-
plications of tensor also include collaborative filtering [39, 57], recommender system design
[9], computational imaging [79] and neuroimaging [84]. Researchers have made tremendous
efforts to innovate effective methods for the analysis of tensor data.

Low-rank models have rendered fundamental toolkits to analyze tensor data. A tensor
T e RP1*Pm has low Tucker rank (or multilinear rank) if all fibers' of 7 along different
ways lie in rank-reduced subspaces of high dimension, say {U j};f’: 1» respectively [62]. The
core assumption of low-rank tensor models is that the observed data is driven by an unknown

Received October 2020; revised June 2021.
MSC2020 subject classifications. 62H10, 62H25.
Key words and phrases. Asymptotic distribution, confidence region, tensor principal component analysis, ten-
sor regression, statistical inference.
Here, the tensor fibers are the counterpart of matrix columns and rows for tensors; see [42] for a review.
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low-rank tensor 7, while the Tucker low-rank conditions can significantly reduce the model
complexity. Consequently, the analysis of tensor data often boils down to the estimation and
inference of the low-rank tensor 7 or its principal components based on the given data sets.

In the literature, a rich list of methods have been developed for the estimation of low-
rank tensor 7 and the associated subspace U, such as alternating minimization [1], convex
regularization [61, 74], power iterations [1], orthogonal iteration [23, 77], vanilla gradient
descent with spectral initialization [11], projected gradient descent [18], simultaneous gradi-
ent descent [32], etc. However, in many practical scenarios, to enable more reliable decision
making and prediction, it is important to quantify the estimation error in addition to point es-
timations. This task, referred to as uncertainty quantification or statistical inference, usually
involves the construction of confidence intervals/regions for the unknown parameters through
the development of the (approximate) distributions of the estimators. The statistical inference
or uncertainty quantification for low-rank tensor models remains largely unexplored. In this
paper, we aim to make an attempt to this fundamental and challenging problem. Our focus
is on two basic yet important settings: low-rank tensor PCA and tensor regression, which we
briefly summarize as follows.

Tensor principal component analysis (PCA) is among the most basic problem of unsuper-
vised inference for low-rank tensors. We consider the tensor PCA model [1, 20, 47, 52, 55,
77], which assumes

(1.1) A=T+Z,

where the signal 7 admits a low-rank decomposition (2.1) and the noise Z contains i.i.d.
entries with mean zero and variance 2. A central goal of tensor PCA is on the estima-
tion and inference of 7 and/or {U}};, that is, the low-rank structure from 4. Tensor PCA
has been proven effective for learning hidden components in Gaussian mixture models [1],
where {U}; represent the hidden components. By constructing confidence regions of {U};,
we are able to make uncertainty quantification for the hidden components of Gaussian mix-
ture models. In addition, confidence regions of {U;}; can be useful for the inference of spatial
and temporal patterns of gene regulation during brain development [47]. When applying the
tensor PCA model to community detection in hypergraph networks [40] or multilayer net-
works [38], U; is directly related to the estimated community structures and the confidence
region of U; is an important tool to quantify the uncertainty of community detection. This
also applies to the uncertainty quantification for tensor/high-order clustering [31, 48].

Low-rank tensor regression can be seen as one of the most basic setting of supervised infer-
ence for low-rank tensors. Specifically, suppose we observe a set of random pairs {&;, ¥;}7_,
associated as

(1.2) Y; = (T, &) +5§i.

Here, the main point of interest is 7, a low-rank tensor that characterizes the association
between response Y and covariate X', and &; is the noise term. When the tensor order is m = 2,
this problem is reduced to the widely studied trace matrix regression model in the literature
[14, 15, 18, 28, 43, 44, 53, 54, 61]. This model can also be used as the prototype of many
problems in high-dimensional statistics and machine learning, including phase retrieval [16]
and blind deconvolution [45]. When m > 3, this problem has been studied under the scenario
of high-order interaction pursuit [33] and large-scale linear system from partial differential
equations [50]. In applications of tensor regression to neuroimaging analysis, the principal
components of 7 are useful in the understanding of the association between disease outcomes
and brain image patterns [84]. In addition, the principal components determine the cluster
memberships of neuroimaging data [59]. Confidence regions of {U;}; in the aforementioned
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applications allow us to make significance test for the detected regions of interest, and to
make uncertainty quantification for clustering outcomes, respectively.

In addition to tensor PCA and regression, there is a broad range of low-rank tensor models,
such as tensor completion [51, 71, 74, 75], generalized tensor estimation [32] and tensor high-
order clustering [22, 29, 31, 48, 59, 68]. A common goal of these problems is to accurately
estimate and make inference on some type of low-rank structures.

1.1. Summary of the main results. In this paper, we aim to develop the methods and
nonasymptotic theory for statistical inference under the low-rank tensor PCA and regression
models. First, suppose the target tensor 7 is Tucker low-rank with singular subspace U; as
the point of interest. Given any estimator ﬁj(.o) that achieves some reasonable estimation error,
we introduce a straightforward two-iteration alternating minimization scheme (Algorithms 1
and 2 in Section 3.1) and obtain U j- Surprisingly, we are able to derive an asymptotic distri-
bution of | sin @(U iU j)||}2; (definition of sin-theta distance is postponed to Section 2) even
though U ;j is from nonconvex iterations. Under the tensor PCA model with some essential
conditions on SNR, we prove that

: 3 2 214 =12
(1.3) Isin OO, Il mamfhismqnawfem
2pjo2| ATk

Here, A is the diagonal matrix containing all nonzero singular values of the jth matricization
of G (see definition of matricization in Section 2). Under the tensor regression model with
some essential conditions on sample size and SNR, we prove that

Isin® ;. Up)IE — pjn~'o?||AT" |12
(1.4) AL L F 4N, 1) as pj— oo

J2pin='a2IAT |k

We also develop the nonasymptotic Berry—Essen-type bounds for the limiting distributions
in (1.3) and (1.4).

Then we consider a special class of orthogonally decomposable tensors T in the sense that
T = Z;zl Aj-uj®@v; @wj e RP1*P2XP3 for orthonormal vectors {u;};, {v;};, and {w;};.
The orthogonally decomposable tensor has been widely studied as a benchmark setting for
tensor decomposition in the literature [4, 7, 19, 41, 56]. In addition, the (near-)orthogonally
decomposable tensors have been used in various applications of statistics and machine learn-
ing, such as latent variable model [1], hidden Markov models [3], etc. Under the tensor PCA
model, we prove that

N 2 24 =2
(1.5) W) — (L= pjo7h; ) LU N©O, 1) as pr— 0o
2pjon;?

for j =1,...,r when some essential SNR condition holds. Here, {it;, 0;, W;}; are the es-
timates of {u;,v;,w;}; (up to some permutation of index j) based on a two-step power
iteration (Algorithm 3). Similar results can also be obtained for (9;, v j)2 and (W;, w j)z.

Next, we propose the estimates of A, A, o2 that are involved in the asymptotic distribu-
tions of || sin@(l}j, Uj)||12: in (1.3), (1.4) and (i, uj)2 in (1.5). We prove that the asymptotic
normality in (1.3), (1.4) and (1.5) still hold after plugging in these estimates. These results
immediately yield the data-driven confidence regions for U; (Tucker low-rank settings) or
{u;}; (orthogonally decomposable settings).

If A is a rank-1 tensor, the low-rank tensor PCA model reduces to the widely studied
rank-1 tensor PCA (see a literature survey in Section 1.2). Under this model, we establish the
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asymptotic normality of any linear functionals for the power iteration estimators i, 0, w: for
all unit vectors g; € R”, under regularity conditions, we have

~ pilqi,u) ~n P2{q,v) A P3{q3, w)
( <QI» u M) + 2(}\/0.)2 (612’ v U) + 2(}»/(7)2 (CI3» w w) + 2(}\/0)2 i) N(O 13)
plgn? 1=l [palgpn? | 1=@o? [palgw)? | 1-lgau? ’
2(1/0)* (A/0)? 2(0/0)* (A0)? 2(1 /o) (A0)?

as pi, p2, p3 — o0o. We further derive the entrywise asymptotic distribution for each entry
of the estimator 7, and propose a thresholding procedure to construct the asymptotic 1 — «
entrywise confidence interval for 7, which is the first of such work to our best knowledge.
Our theoretical results reveal a key message: under the tensor PCA and regression model,
the inference of principal components can be efficiently done when a computationally feasible
optimal estimate is achievable. In recent literature, it is widely observed in many low-rank
tensor models (see 1.2 for a review of literature) that in order to achieve an accurate estimation
in polynomial time, one often requires a more stringent condition than what is needed in the
statistical (or information-theoretic) limit. Such a statistical and computational gap becomes
a “blessing” to the statistical inference of low-rank tensor models, as debiasing can become
unnecessary if those strong but essential conditions for computational feasibility are met.

1.2. Related prior work. This paper is related to a broad range of literature in high-
dimensional statistics and matrix/tensor analysis. First, a variety of methods have been pro-
posed for tensor PCA in the literature. A nonexhaustive list include high-order orthogonal
iteration [23]; sequential-HOSVD [63], inference for low-rank matrix completion [21, 30],
(truncated) power iteration [2, 47, 60], STAT-SVD [76]. In addition, the computational hard-
ness was widely considered for tensor PCA. Particularly in the worse case scenario, the best
low-rank approximation of tensors can be NP hard [24, 34]. The average-case computational
complexity for tensor PCA model has also been widely studied under various computational
models, including the sum-of-squares [35], optimization landscape [8], average-case reduc-
tion [10, 48, 49, 77] and statistical query [26]. It has now been widely justified that the SNR
condition Apin /o > C p3/ 4 is essential to ensure tensor PCA is solvable in polynomial time.

Regression of low-rank tensor has attracted enormous attention recently. Various methods,
such as the (regularized) alternating minimization [46, 58, 84], convex regularization [53, 61],
projected gradient descent [18, 54] and importance sketching [78] were studied. Recently,
[32] proved that a gradient descent algorithm can recover a low-rank third-order tensor 7
with statistically optimal convergence rate when the sample size n is much greater than the
tensor dimension p3/2. It was widely conjectured that n > Cp>/? is essential for the problem
being solvable in polynomial time (see [6] for the evidence).

While the statistical inference for low-rank tensor models remain largely unexplored,
there have been several recent results demystifying the statistical inference for low-rank ma-
trix models. For matrix PCA, [70] introduced an explicit representation formula for U j UJT

A more precise characterization of the distribution of || sin ®(LA/‘,-, Uj) ||% was established in
[5] by random matrix theory. On the other hand, the estimators of tensor PCA are often cal-
culated from iterative optimization algorithms (e.g., power iterations or gradient descent) in
existing literature, while the estimator of matrix PCA is based on noniterative schemes. Due
to the complex statistical dependence involved in iterative optimization algorithms, it is sig-
nificantly more challenging to analyze the asymptotic distribution of the estimator in tensor
PCA than the one in matrix PCA. We also note that, when studying the asymptotic distribu-
tions of individual eigenvectors, an eigengap condition is often crucial for matrix PCA but
not required for tensor PCA.
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The inference and uncertainty quantification were also considered for low-rank matrix
regression. For example, [17] introduced a debiased estimator based on the nuclear norm pe-
nalized low-rank estimator. [13] introduced another debiasing technique and characterize the
entrywise distribution of the debiased estimator under the restricted isometry property. [69]
studied a debiased estimator for matrix regression under the isotropic Gaussian design and es-
tablished the distribution of || sin ® (U i»Uj) ||12: under nearly optimal sample size conditions.
All of these approaches rely on suitable debiasing of certain initial estimates. In addition to
low-rank estimation, an appropriate debias was found crucial for high-dimensional sparse
regression [80], and various debiasing schemes were introduced [37, 64, 81]. Interestingly,
as will be shown in Section 3, our estimating and inference procedure for low-rank tensor
regression does not involve debiasing.

Statistical inference for low-rank models are particularly challenging for tensor problems.
In a concurrent work, [36] studied the statistical inference and power iteration for tensor PCA.
Recently, [12] studied the entrywise statistical inference for noisy low-rank tensor completion
based on a nearly unbiased estimator and an incoherence condition on Ujs, that is, all the
rows of U; have comparable magnitudes. In comparison, our results do not require further
conditions on U;s or debiasing.

1.3. Organizations. The rest of the paper is organized as follows. After an introduction
on notation and preliminaries in Section 2, we discuss the inference for principal components
under the Tucker low-rank models in Section 3. Specifically, a general two-iteration alternat-
ing minimization procedure, inference for tensor PCA, inference for tensor regression, and a
proof sketch are given in Sections 3.1, 3.2, 3.3 and 3.4, respectively. In Section 4, we focus
on the inference for individual singular vectors of orthogonally decomposable tensors. The
asymptotic distribution and entrywise confidence interval are discussed for the rank-1 tensor
PCA model in Section 5. In the Supplementary Material [73], Section A includes some algo-
rithms for tensor PCA and regression in the literature. All proofs of the main technical results
are collected in Section B.

2. Notation and preliminaries. Let {a;} and {bi} be two sequences of nonnegative
numbers. We denote a; < by if limg_ o ar /by = 0 and ai > by if limg— o ax /by = 0.
We use calligraphic letters 7, G to denote tensors, uppercase letters U, W to denote matrices
and lowercase letters u, w to denote vectors or scalars. For a random variable X and o > O,
the Orlicz ¥, -norm of X is defined as

I X1ly, =inf{K > 0:E{exp(|X|/K)"} <2}.

Specifically, a random variable with finite y»-norm or ¥;-norm is called the sub-Gaussian
or subexponential random variable, respectively. Let e; denote the jth canonical basis vector
whose dimension varies at different places. Let rank(7") be the Tucker rank of 7 and write
(@i, ...,am) < (b1,...,by)ifaj <bjforall j € [m]. We use || - || for Frobenius norm, || - ||
for matrix spectral norm and || - ||, for vector £,-norm. Denote S” T={veR?:|v|,<1}as
the set of p-dimensional unit vectors. Define O, , = {U e RP*" : U TU = I,} as the set of all
p-by-r matrices with orthonormal columns. In particular, O, is the set of all  x r orthogonal
matrices.

We denote x ; the jth multilinear product between a tensor and matrix. For instance, if
G e Rt>*12x13 gnd Vi € RP1*"1 | then

gx1Vi= (Z G, i2,i3)V (i1, j1)

ji=1 )i1€[P1],i2€[r2]J3€[r3]
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We write (Uy, ..., Uy) - G in short for G x| Uy x3 --+ X, Up,. Let M be the jth tensor
matricization that rearranges each mode-j fiber of 7 € RP1*"*Pd to a column of M ;(T) €
RP;*(P1--pPa/Pj)

We say T has Tucker rank (rq, ..., ry) if it admits a Tucker decomposition
(2.1) T=Ui,....Un) -G,

where G € R and U; € Qp, ,, for i € [m]. The Tucker decomposition (2.1) can be
roughly seen as a generalization of matrix singular value decomposition (SVD) to higher-
order tensors, where U can be viewed as principal components of the jth matricization of T,
and G contains the singular values. In the case that r] = --- =r,, =r and G is diagonalizable,
we say 7 is orthogonally decomposable. If T satisfies Tucker decomposition (2.1), one has

MM =UiM;@U1®  ®Uj—1 QUjy1 ® - ®Uy) ' €RPI*Prrn/py),

Here ® stands for Kronecker product so that U ® W e R(P1P2)*x(1m2) if 7 ¢ RP1*"1 and
W e RP2*"2_The readers are referred to [42] for a comprehensive survey on tensor algebra.

Let o, () be the rth largest singular value of a matrix. If 7 has Tucker ranks (r1, ..., 1),
the signal strength of 7 is defined by

Amin 1= Amin(T) = min{arl (Ml (7—))» Or, (MZ(T)), <5 Oy, (Mm(T))},
that is, the smallest positive singular value of all matricizations. Similarly, define Amax :=
kmax (T) =max; o1(M (T)). The condition number of 7 is defined by « (7) := Amax(T) X

L(T). We let A j be the r; x r;j diagonal matrix containing the singular values of M ;(G)

m|n
(or equivalently the singular values of M ;(T)). Note that A ;s are not necessarily equal for
different j, although [|Ai[lr="---= ”Am”F =T llr.
We define the principle angles between U, U € Op,r as an r-by-r diagonal matrix:
e, U ) = diag(arccos(ay), . .., arccos(oy)), where o1 > -+ > 0, > 0 are the singular val-

ues of U TU. Then the sin ® dlstances between U and U are deﬁned as

|sin®(U, U)| = | diag(sin(arccos(ay)), . .., sin(arccos(o,))) | = /1 — o2,

- 1/2 , 12
|sin®U, U) g = (Z sinz(arccos(ai))) = (r — Zai2> )
i=1

i=1

3. Inference for principal components of Tucker low-rank tensor. For notational sim-
plicity, we focus on the inference for third-order tensors, that is, m = 3, while the results for
general mth order tensor essentially follows and will be briefly discussed in Section 7.

3.1. Estimating procedure. An accurate estimation is often the starting point for statisti-
cal inference and uncertainty quantification. In this section, we briefly discuss the estimation
procedure for both tensor regression and PCA models. First, we summarize both models as
follows:

Y, =X, T)+&, i=1,...,n.

Here, &; can be the covariate in tensor regression; n = p1 p2p3, Y; = A(j1, j2, j3) and X; =

(€j2ejpejs) -1 with i =(ji = Dpap3 + (2 — Dp3 + j3. j1 €[p1l, j2 € [pa]. j3 € [p3] in
tensor PCA. Let 1,(T) = Y1 (Y; — (&}, T))? be the loss function in both settings. Then a
straightforward solution to both problems is via the following Tucker rank constrained least
squares estimator:

1Z )
i Ly Y — (&, ,
rank(ﬂngl(rrll,rz,rs) (7):= lzl( P T>)
(3.1 A
or equivalently (G, Uy, Ua, Uz) := arg min £,((Uy, Uz, U3) - G).

GeRI1X2Xr3 Uj EQPJ'JJ‘
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Algorithm 1: Power Iteration for Tensor PCA
Input: ¢, (-): Objective function (3.1); Initializations (U © U © 03(0) );
fort=0,1do
(jl(ﬂrl) = leading r; left singular vectors of M (A x» U(Z)T X3 U(t)T),
(j(t“) = leading r; left singular vectors of M (A x U(’)T X3 U(I)T),

U(HD = leading r3 left singular vectors of M3(A x U( T U(t)T),
end

Output: Test statistic U} := ﬁ(z) U, =02, 05 := l73(2), and
G (U(z)T U(Z)T (2)T) A

Since the objective function (3.1) is highly nonconvex, an efficient algorithm with provable
guarantees is crucial for both tensor PCA and regression. As discussed earlier, various com-
putationally feasible procedures have been proposed in the literature. For tensor regression,
[32] recently introduced a simultaneous gradient descent algorithm and proved their pro-
posed procedure achieves the minimax optimal estimation error; for tensor PCA, a simpler
and more direct approach, higher-order orthogonal iteration (HOOI), was introduced by [23].
The implementation details of both algorithms are provided in Section A in the Supplemen-
tary Material.

Moreover, the primary interest of this paper is on the statistical inference for 7 or U, far
beyond deriving estimators achieving optimal estimation error. In general, even estimators
achieving minimax optimal estimation error rate may not enjoy a proper asymptotic distribu-
tion. For example, the true parameter 7 or U; plus a small enough perturbation can achieve
optimal estimation error but does not satisfy any tractable distribution.

To this end, we introduce a two-iteration alternating minimization algorithm for both the
Tucker low-rank tensor PCA and tensor regression in Algorithms 1 and 2, respectively. Our
theory in later this section reveals a surprising fact: if any estimator T = U, 7 U © 03(0)) .

go achieving some attainable estimation error is provided as the input, the two-iteration

Algorithm 2: Alternating Minimization for Tensor Regression

Input: £, (-): Objective function (3.1); Initializations (U, (O) (O) 03(0)), and Q(O) is the

solution of argming ¢, ((U © , Uy 7O U3(O)) G) for tensor regression model;
fort=0,1do

Solve Vi, £, (0", 05, 05) - G = 0 to obtain {'**;
Update by UGH) SVD,] (Ul(““o 5))

Solve Vi, £, (0", U509, ") . 60 = 0 to obtain T3
Update by U(H-l) SVDr2 (U(l‘-‘ro 5))

Solve Vi, <<U(’> 0y, U (09 . G0) ~ 010 obtain o0,
Update by U3 " SVDra(U (1+0.5),).

Solve Vgt ()7, 0y, U5"") - G+D) = 0 to obtain G+

end
Output: Test statistic U1 = U(Z), (72 = U(z), 0 U(z) and é = é(z).
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alternating minimization in Algorithms 1 and 2 will provide an estimator enjoying asymptotic
normality and being ready to use for confidence region construction.

REMARK 1 (Interpretation of alternating minimization update in tensor PCA). A key
observation by [23], Theorems 4.1, 4.2, shows minimizing MiNgank(7)<(ry,r2.r3) |7 — A||}2: is
equivalent to maximizing maxy,co, ., | (U, Uy ,U;) - Al Therefore, the optimization
in tensor PCA is equivalent to

(01, U2, U3) := argmin €,((Uy, Ua, Us) - G) := argmax |[(U}, Uy, Uy ) - Alp
Uje(OJ,,j,,-j Uje@),,j,,j

2
= argmax [UjM (A X1 Ujrr X2 Uj2) g
Uj€Opj )

Here, for convenience of notation, Uy = Uy, Us = Uj, r4 = ry, rs = rp. Note that, given
fixed U; 7" 41 and o i +2, the Eckart—Young—Mirsky theorem [27] implies the optimal solution

”(UT’UU)T FOT

to maXUjE@p j+1° J+2

) - A||F is attainable via singular value decomposition:

A G+1) AT
U ).

= leading r; left singular vectors of M (A X 41 U )1 Xj+2 U}y

This explains the alternating minimization update steps for tensor PCA in Algorithm 1.

Hereinafter, we denote 0 the output of Algorithms 1 and 2, p = max{p1, p2, p3} and
rmax = max{ry, r2, r3}. Next, we establish the asymptotic distribution and develop the infer-
ence procedure for || sm@(U i»Uj )||F in tensor PCA and tensor regression models when 7
admits the Tucker decomposition (2.1).

3.2. Inference for the Tucker low-rank tensor PCA. We assume the following condition
on initialization (U, 7 0 (O), 03(0)) of Algorithm 1 holds.

ASSUMPTION 1. Under tensor PCA model (1.1) with Z;, ;, ;, L N(0, c2), there is an
event & with P(&y) > 1 — Cie™ 1P for some absolute constants ¢;, C; > 0 so that, under &,
the initialization (U(O) U(O), (73(0)) satisfy max ;-1 23 || sin@(l}](.o), Ul < Cr/po/Amin for
some absolute constant Cp > 0.

The claimed error rates in Assumption 1 are attainable by the algorithm HOOI under the
SNR condition Amin/o > Cp3/ 4 [77], Theorem 1. Such the SNR condition is essential to
ensure a consistent estimator is achievable in polynomial time as illustrated by the liter-
ature reviewed in Section 1.2. Note that [77], Theorem 1, presented an expectation error
bound E|| sin @(l}j(.o), U;) ||, while its proof indeed involved a desired probabilistic bound as
claimed by Assumption 1. If a given initialization estimation error upper bound is in a met-
ric other than the sin ® distance described in Assumption 1, we may apply Lemma 4 in the
Supplementary Material to “translate” the upper bound in another metric to the desired sin ©®
distance.

Suppose U j 1is the output of Algorithm 1. Built on Assumption 1, we characterize the

distribution of || sin G)(ﬁ i»Uj) ||% by the following theorem.

THEOREM 1 (Asymptotic normality of principal components in tensor PCA). Suppose
Assumption 1 holds for tensor PCA model (1.1), Z(iy, iz, i3) L N(0,0?), pj =< pforj=
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1,2,3, and k(T) < ko. Let ﬁjs be the output of Algorithm 1 for tensor PCA model. There
exist absolute constants c1, Co, C1, Ca2, C3 > 0 such that if Amin/0 > C()(p3/4 +K§p1/2), then

sup|P

<|| sin®(U;, U1z — Pj02||A;1||12:
xeR

-2
2p;02 AT

< x) —d(x)

3/2
Kg(Prmax)3/2 K(%(P lng)]/2> e ”m{ax

()Lmin/U)2 Amin/O : \/ﬁ ,

where Aj = diag(kﬁj ), ...,)Lg)) is the diagonal matrix containing the singular values of
M (G), and ®(x) is the cumulative distribution function of N (0, 1).

<Cie "7+ CZ(

If the condition number kg = O (1), (prmax)>’*(rmin/o) "' — O and r3_/p — O as p —
oo, Theorem 1 yields

Isin@U;, Uz — pjo?| AT
Al _; I 4N, 1) as p— oo
2pjo2| ATk

By the proof of Theorem 1, we can further establish the following joint distribution of all
Ujs:

<|| sin®(Uy, UD|E — p1o?IAT 13 |Isin® (U2, Un)|IE — pao 2l A5 12
2p10 2| AT IR 20202 AL I

Isin @ (U3, U3)|I3 — p3o A7 12
2030 2| AT I

)i>N(o, L) asp— oo.

REMARK 2. We briefly compare Theorem 1 with the existing results in the literature. The
asymptotic normality of || sin e i-Uj) ||% in Theorem 1 requires SNR condition Amjn/o >
(rmaxp)>’*, which is slightly stronger than the optimal SNR condition Amin/o > Cop>/* for
achieving the consistent estimation in [77], Theorem 1 (if » > 1), matches the condition in
[83], Theorem 1, (if » = 1), and weaker than the condition in [55], Theorem 4, (if r = 1).
Second, note that Theorem 1 implies E||sin ®(U;, U;) ||z = (1 + o(1))pjaz||A;‘ ||2. To the
best of our knowledge, this is the first result with a precise constant characterization of the
estimation error in tensor PCA.

Compared with the conditions for consistent estimation in [77], our Theorem 1 is for valid
statistical inference, which requires the additional Kg p'/? term in SNR and a rank condition
”%ax /p — 0. These terms emerge from technical issues, in particular from the way we bound
the higher-order terms in the empirical spectral projector U | lA]]—r to better cope with the depen-
dence across iterations. We note [20] proves that a rank-one planted tensor is distinguishable
from the pure noise tensor if SNR Amin/o > Cop pl/ 2 holds for a certain positive constant
threshold Cy. In comparison, our Theorem 1 requires a stronger condition Amjn/o > p3/ 4. In
fact, the gap between p!/? and p3/4 is fundamental. Without considering the computational
feasibility, the SNR threshold p!/? is sufficient not only for detection but also for estimation
(see [77], Theorem 2). However, when SNR falls below the threshold p3/ 4. various pieces of
evidence were established in the literature, as described in the first paragraph of Section 1.2,
that show no polynomial time algorithms can reliably estimate the principal components.

While Theorem 1 characterizes the asymptotic distribution of || sin @(0 i»Uj) ||% for tensor
PCA model, the result is not immediately applicable to uncertainty quantification of U since
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I A;l ||12:, I A;z |k and o2 are often unknown in practice. We thus propose an estimate for A s
o:

A j = diagonal matrix with the top r; singular values of
(32) MjAx 1 Ul x 02 Uf4),
6= A= Axi 0] x2 00 x3 U303 |/ /P1p2ps.
We can prove a deviation bound for 6 and the normal approximation for || sin @((7 i»Uj) ||12:

with the proposed plug-in estimators.

LEMMA 1. Under conditions of Theorem 1, there exist two constants C1, Cy > 0 such
that

P{|62/0% — 1| < Ca(kov/Fmaxp ™" + p/*[log(p))} = 1 — C1p~>.

THEOREM 2 (Inference for Tucker low-rank tensor PCA).  Suppose the conditions in
Theorem 1 hold. Let Ay € R""*"1 and & be defined as (3.2). There exist absolute constants
c1, Co, C1, Ca, C3 > 0 such that if Amin/o > Co(p3/4 + K&pl/z), then for j =1,2, 3,

Isin@U;, UpIE — pio?| AT
( J JAFA,QJ j fo)—cp(x)
2p;62| A7 |k

sup|P
xeR

r,?ﬁx/cng KS\/prmax(r,%ax +log p) log(p) n KO«/rmax>

<Cie 17 + C2<
()\min/a)2 Amin/O P1/4 \/ﬁ
32
"max

+ C3 .
VP

When the condition number xy = O (1), (prmax)3/4()\min/a)_1 — 0, and r%ax/p — 0 as
p — oo, Theorem 2 implies
Isin®U;, Ul — pj6*IAT I
(3.3) d ’AFA_Z’ I FE 4 NO, 1) as p— oo.
2p;62|A T g

Equation (3.3) is readily applicable to statistical inference for U;. After getting U j by Algo-
rithm 1, we propose a (1 — a)-level confidence region for U; as

(34) CRy(U)):={V e, :[sin®U;. V)|f < p;j6*|A7 [ +2a/2p;6 2| AT? |}

where z4 = (1 — @) is the (1 — &) quantile of the standard normal distribution. The
following corollary is an immediate result of Theorem 2, which confirms that the confidence
region CR, (U1) is indeed asymptotically accurate.

COROLLARY 1 (Confidence region for tensor PCA). Suppose the conditions of The-
orem 2 hold and the confidence region CRa(ﬁ j) is defined in (3.4). If Kg(r%é%(py z 4
Fmax P 10€ ) (emin/0) ™2 — 0 and r%ax/p — 0as p — o0, then

pli)ngoP(Uj € CRa(Uj)) =1—-c.
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We note that, through a more sophisticated analysis, Theorem 1 can be generalized to the
setting with sub-Gaussian noise. For simplicity, we only prove the following rank-one case,
which has been the focus of many papers on tensor PCA.

THEOREM 3 (Rank-one tensor PCA under sub-Gaussian noise). Suppose Assumption 1
holds for tensor PCA model (1.1) withr =1, p; < p for j =1,2,3, Z has i.i.d. entries with
EZ(i1,i2,i3) = 0, E[Z(i1, i2,i3)*] = 0%, B2 (i1, i2,13)*]/0% = v and || Z(i1, i2,i3)lly, <
Co for some constant C > 0. There exist absolute constants cy, Co, C1, C2, C3 > 0 such that
if \Jo = Cop3/*, then

in® U, U |2 - pro2r2
supIP( I sin® (U1, UDlg — p1o fx)—CD(x)
skl \o22=2,/p12+ (v = 324131
< CZ
T P22+ (v =3I U2
Jplo 32 1o 1 \
+C3< plogp » _+ gp). 4 Cre P,
Moo O/ VP a0 =3l

Similar results can be derived for || sin@(lA]z, Uy) ||12: and || sin@(Ug, Us) ||12:.

If v — 1 > ¢( for some absolute constant ¢y > 0 and A~ 'op3/4 — 0 as p — oo, Theorem 3
implies
sin® (U1, U2 — pro?a—2
| (U, UDllg — p1 S NO.1) as p— oo
02/\‘2\/171(2 + (v =3)U2l51U3119)
The SNR condition in Theorem 3 is the same as that in Theorem 1. Moreover, the asymptotic
variance of || sin® (U, Uj) ||12: includes the kurtosis of the noise distribution v, which can be

challenging to estimate. We leave the estimation of the kurtosis and the data-driven inference
for Uy as future research.

3.3. Inference for Tucker low-rank tensor regression. This section is devoted to the
asymptotic distribution and inference in low-rank tensor regression. We first introduce the
following assumption on the initialization for Algorithm 2.

ASSUMPTION 2. Under tensor regression model (1.2) with X' (i, iz, i3) ik N(0,1),
Var(¢;) = o2 and || ly, < Co for some constant C > 0, there is an event & with P(&) >
1 — Cie “1? for some absolute constants ¢, C; > 0 so that, under &, the initialization T =
0", 037, 05" - GO satisty |7 — TI2 < Caprmac/n or max; |[sin®U ", U))| <
Cy/p/no [ kmin for some absolute constant C, > 0.

The claimed bound of |7 — 7'||l2: in Assumption 2 is attainable, for instance, by the gra-
dient descent algorithm developed in [32] and the importance sketching algorithm devel-
oped in [78] under the SNR condition 7 (Amin /(7)2 >C p3/ 2 and the sample size condition
n>C p3/ 2y max. The theoretical guarantees for this claim can be found in [32], Theorem 4.2,
and [78], Theorem 4.

Based on Assumption 2, we establish the following asymptotic results for tensor regres-
sion.
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THEOREM 4. Suppose Assumption 2 holds for tensor regression model (1.2), X (i, i2,
i3) Lid N(0, 1), Var(§;) = o2 and 1&illy, < Co for some constant C > 0, p; < p for
Jj=1,2,3, and «(T) < kg. Let U S be the output of two-iteration alternating minimiza-
tion (Algorithm 2). There exist absolute constants cy, Co, C1, C2, C3, C4 > 0 such that if

n()»min/a)2 > Co(p3/2 \Y2 K(A)'prr%]ax) and n > C2(p3/2 \% Kgpr%ax), then

Isin® (0}, UplE — pin~'o?| AT |2
sup D) Sx —(D()C)
xeR /2pjl’l_10’2||Aj i3

4.5/2 32 2 5.2 5.3/2
< C3K()”r;lqaxp / +C3K3<r§]axpnlog n>1/2+ C3P3/2<K0rmax KT max )

n Amin/0 ()Lmin/o’)2
3 lo 1/2 3/2
+ C3Kg<prmax + I’maxp2 gp) 4 CleP 4 Cy I’max’
n(Amin/0) N7

where A j is the r;j x r; diagonal matrix containing the singular values of M ;(T).

If the condition number xo = O (1), r%ax/p — 0, (r%/aZXpyz + r%axp log2 n)/n — 0 and
r%ézxpS/z/(n (Amin/0)?) = 0 as p — oo, Theorem 4 implies

Isin® (U, UpIIE — pjn~ "o IAT IR o

—> N(0,1) asp— oc.
V2pin~ o2 IIAT |k

To make inference for tensor regression, we develop the following asymptotic normal
distribution for || sin ® (U}, U;) || with the plug-in estimates of A ;.

THEOREM 5 (Tensor regression). Suppose the conditions in Theorem 4 hold. Let A ji=
diag(il, e, )A»rj) be a diagonal matrix containing the singular values of M (Q), where Q is
the output of Algorithm 2. There exist absolute constants c1, Co, C1, Ca, C3, C4 > 0 such that
if n(kmin/0)? = Co(p>? v Kgpr%ax) andn > Cy(p3/? v Kgpr%ax), then for j =1,2, 3,

Isin®(U;, UplE — pjn~'o?|A" |3
supIP’( Jr YiNFE 7 j F5x>_¢(x)
xeR J2pin 1o AT
5/2 3/2
3Kgrm/alxp3/2 + C3K3<r%axplog2”>l/2 + C3p3/2 (Kgr%ax Kgrm/ax )
0 n n )\min/o' ()Vmin/o')2
3 lo 1/2 3/2
+C3K6L<Prmax+rmaxl72 gp) +C16_CIP+C4rmaX,
n(Amin/0) \/ﬁ

We propose the following (1 — «)-level confidence region for U;:

204 —1,2 )
— . ) R pio?|AT 2pjo | AT g
(3.5) CRq(Uj) := {V €0y, r; : [sin®U}, V)||% < j F + Za / }

n

The following corollary establishes the coverage probability of the proposed confidence re-
gion.

COROLLARY 2 (Confidence region for tensor regression). Suppose the conditions of

Theorem 5 hold and the confidence region 61/(0,(0 j) is defined by (3.5). If (Kgr%ézx p3/ 24
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maxplog n)/n — 0, Kgr%xp 2 /(n(Amin/0)?) = 0 and r%ax/p — 0as p — o0, then

Jim P(U; € CRa(U))) =1~ a.

REMARK 3 (Selection of o). When o is unknown, we can estimate it by a sample split-

3/2
ting scheme as follows. First, we retain a part of sample {(Xg, Yz)} ,Ei | 1 and use the other
samples to compute the estimator 7. Define

32 »
6= 00— (T )R],

Under Assumption 2 and conditions of Theorem 4, we can show with probability at least
1—p73,162/0% = 1| = 0(p~3/*/Tog p + rmaxpn™"). By plugging in & to (3.5), we obtain
a data-driven (1 — o) asymptotic confidence region for U;.

3.4. Proof sketch. In this section, we briefly explain the proof strategy for tensor PCA
model, that is, Theorem 1. The proof for tensor regression model is more complicated but
shares similar spirits. Without loss of generality, we assume o = 1. First,

2|sin® 0y, U |3 =|010] — U] |E =2r —2(0,0], U, U])
=—2u, U], 0,0 — Uy,

It thus suffices to investigate the distribution of (U;U," 1 s 0,0  — U IT ). By Algorithm 1,

U1 are the top-ry left singular vectors of M (A x, U (I)T X3 U(I)T) As a result, 01 lle is

the spectral projector and can be decomposed as
MiMO5" 00T @ OOV TYMT () = MyTHIMT (T) + DY,

The high-level ideas of the proof include the following steps.
Step I: We apply the spectral representation formula ([70]; also see the statement in
Lemma 2 from the Supplementary Material) and expand

0,07 =0,0] + 51(D{") + $2(D{") + $3(D{V) + 3~ 51 (DY),

k>4
where Si(-) denotes the kth order perturbation term:
S(0)= 3 =D BD B DB B DB
S+ Asp1=k
where Bl_k = U]Al_kulT for each positive integer k, B? =1, — U UlT, S1,...,Sk+] are

nonnegative integers, and t(s) = ZI;“:LII I(s; > 0).

Step 2: Since (U U, S1(DI")) = 0 and ||Sx(D\")|| < (C1&2 /B /*min)* with high prob-
ability, we can write

4
min

8 2
(0107 ~ 0T 0T = ($:0). DU+ (55(04"), Uy T+ 2208
In other words, the higher-order terms (k > 4) can be bounded with high probability, which

becomes small-order terms.
Step 3: We show, with high probability, the third-order term can be bounded by

3/2
Kgpv Tmax log p + Kopzrm/ax>
A A

min min

(s3(p{), Uy Uy = o(
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and becomes a small-order term. Now, it suffices to only investigate the second-order term
carefully.

Step 4: We decompose the second-order term (Sz(Dil)), Uu IT ( into a leading term and
remainder terms. Similar to Step 2 and Step 3, we show that the remainder terms are, with
high probability, bounded by O (k3 p/Tmax 108 PAms + K3 P2 ramhmih).

Step 5: We prove that the leading term of (Sz(Dgl)), Uu IT ) can be written as a sum of
independent random variables, which yields a normal approximation by the Berry—Essen
theorem. Finally, combining all these steps, we get the normal approximation for || U0 IT —
U U 2.

Among these steps, Steps 4 and 5 are the most technically involved. Throughout the proof,
we apply the spectral representation formula at multiple stages to prove sharp upper bounds
for higher-order terms, and establish central limit theorem for the second-order term.

The following lemmas are used in our proof and could be of independent interest. First,
Lemma 2 is used to establish the concentration inequalities for the sum of random variables
that have heavier tails than Gaussian.

LEMMA 2 (Orlicz q-norm for product of random variables). Suppose Xi,..., Xp
are n random variables (not necessarily independent) satisfying ||Xi||1”wi < K;. Define

&= o)7L Then

n
fl_[Ki-
i=1

Next, Lemma 3 provides a tight probabilistic upper bound for sum of third moments of
Gaussian random matrices.

LEMMA 3. Suppose Zi,...,Z, € RP*" are independent random matrices satisfying
Zi(j, k) L N (0, 1). Then there exist two universal constants C, Cy > 0 such that for fixed

Mi,...,M, € RP*",
n 1/2
> Cpr (Z I M; ||%) \/log(m) <p ‘.

]P><
i=1

4. PCA for orthogonally decomposable tensors. In this section, we specifically focus
on the tensor PCA model (1.1) with orthogonally decomposable signal tensor 7 :

n
S NZillgZi, My)

i=1

.
4.1 TZZ)»i'Mi®Ui®wi,

i=1
where U = (uy,...,u;) € Qp, . V=_(v1,...,v) €0p, ,,and W = (w1, ..., w;) € OQp, ,
all have orthonormal columns; the singular values satisfy Amin = min{Ay, ..., A} > 0. Here,

foranyu e RP1, v e R”2, w e R, u ® v®@w is a p1 X pa X p3 tensor whose (i, j, k)th entry
isu(@)v(jwk).

Our goal is to make inference on the principal components based on a noisy observa-
tion A =T + Z. Different from the inference for Tucker low-rank tensor discussed in Sec-
tion 3, where an accurate estimation is hopeful only for the joint column space of U; due
to the nonidentifiability of Tucker decomposition, we can make inference for each individ-
ual vector {u;,v;, w;} if T is orthogonally decomposable as (4.1). Given some estimates

~(0) ~0) ~(0
@, 50, 50

Ui v, i=1» We propose to pass them to a post-processing step by two-iteration pro-

cedure in Algorithm 3 to obtain the test statistics {ii;, 0;, W };:1.
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Algorithm 3: Power Iterations for Orthogonally decomposable T

(0) (0) A(O)} .
Vi Witij=1

Input: A, initialization {i;
fort=0,1do

for j=1,2,...,rdo
Compute u(/’+0 S _ 4 X7 O 3 zi)y)T Update M(z+1) ﬁ§ 1+0. 5)||A(t+0 5)”2 :
Compute vEH'O D = Ax 007 x5 ﬁ)y)T Update ©; A(H'l) ﬁ; 1+0. 5)|| A(HO 5)||
Compute DT = A% 40T x, ﬁy)T; Update
A (tH1) A (t40.5) A (140.5) 1 —1
B0 = 09 09,
end
end
Output: i —u( ) ,0j = 135.2) and w; = 12)5-2) forall j=1,...,r.

Since our primary interest is about the statistical inference for {u j, v;, w;}, we assume that
the initializations of Algorithm 3 satisfies the following Assumption 3. Such an assumption is
achievable by the power iteration method with k-means initialization introduced in [1] along
with the theoretical guarantees developed in [47] when A /o > Cp3/4.

ASSUMPTION 3. Under the tensor PCA model (1.1) with 7 being orthogonally de-
composable as (4.1), there is an event & with P(&)) > 1 — C1e “'? for some abso-
10 50 5O

vji W

lute constants c¢j, C1 > 0 such that, under &, the initializations {u j satisfy

max{||un(j) — ujll2, ||v7r(j) — vjll2, ||wﬂ(j) — wjll2} < C0,/p/Aj for some permutation
w:[r]—[r],all 1 <j <r, and some absolute constant C, > 0.

We establish the asymptotic normality for the outcome of Algorithm 3 as follows.

THEOREM 6 (PCA for orthogonally decomposable tensors). Suppose Assumption 3
holds for tensor PCA model (1.1) with an orthogonally decomposable T as (4.1), Z(iy, ia,
13) 1 "N(0, 0?), pj=<pfor j=1,2,3 and k(T) =< ko. Let {u,,v],wj} _ be the output
of Algorithm 3. There exist absolute constants c1, Cy, C1,C2,C3 >0 such that if Amin/0 >
C()(p3/4 + Kgpl/z), then

(fn(jy uj)* — (1= pjo2ri?)
sup IP’( Tur A §x> — d(x)
xeR 2pj62)nf2
4.2) J
62 3/2 2 | 12 32
: kgo“(pr kjo(plo
Scle—clp+C2< 0 (2p ) + 0 (p gp) >+C3r—
min Amin \/ﬁ
for all j =1,...,r. Here, m(-) is the permutation introduced in Assumption 3. More-

over, let ):j = |4 x» ﬁ.T X3 @Tllz Then, (4.2) also holds if A; is replaced by ):‘,- and

Kga(p log p)l/z)\mlln is replaced by KOJ,/pr(r + log p))»mln Similar results also hold for
(D) v5)? and (i, ;).
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By Theorem 6, if Amin/0 > K 3(pr)3* + Kg(p log p)!/? and r <« p'/3, then for each j =
1,...,r,
Gin() 1) = (1= pjo*3;") o
2
2pja2)»j

—> N(0,1) asp— oo.

Similar to Section 3.2, we plug in data-driven estimates of A ; and o2 and construct a (1 — a)
confidence region for u; as

CRq (lin(j)) :={v €R" :|lv|l, =1 and

A A2% / 2
(Ur(jy,V ) (1 —pjo A.n(]) — Zay/ 2P o )»n(])
The confidence region for v;, w; can be constructed similarly.

4.3)

5. Entrywise inference for rank-1 tensors. In this section, we consider the statistical
inference for tensor PCA model with a rank-1 signal tensor:

(5.1) A=T+Z, T=ru®vQuw.

Here, u € SP1~ 1, v e SP2~1 w e SP371| the singular value A > 0, and Z b N(0,02%). We
specifically aim to study the inference for any linear form of u, v, w, that is, (g1, u), (g2, v)
and (g3, w), with arbitrary deterministic unit vectors {qi, g2, g3}. We also aim to study the
inference for each entry 7;jx,i € [p1], j € [p2], k € [p3]. To this end, we first apply the
rank-1 power iteration in Algorithm 4 [55, 82]. Algorithm 4 can be roughly seen as a rank-1
special case of Algorithm 3 for the Tucker low-rank tensor PCA and Algorithm 1 for the
orthogonally decomposable tensor PCA.

Next, we establish the asymptotic normality for the output of Algorithm 4, &, 0, W, under
the essential SNR condition that ensures tensor PCA is solvable in polynomial time. With-
out loss of generality, we assume that the signs of i, v, w satisfy (i, u) >0, (0, v) > 0 and
(w, w) > 0 (otherwise one can flip the sign of &, 0, w without changing the problem essen-
tially). With a slight abuse of notation, let u;, v; and wy be the ith entry of u, the jth entry
of v, and the kth entry of w, respectively.

THEOREM 7. Consider the tensor PCA model (1.1) wzth Gaussian noise Z(iy, iz, 13) kg
N(0,02) and rank(T) =1, pj=<pforj=123. Let A i, 0,0, T be the outputs of Algo-
rithm 4 with iteration number tmax > C1log( p) for constant Cy > 0. Suppose Lo > p3/4.

Algorithm 4: Power iterations for rank-1 tensor 7

Input: A

Initialize 4¥) = SVD{ (M (A)), © = SVD (M1 (A)), B ¥ = SVD;(M3(A)), t = 1;

while 1 < tnax do
Compute 20 +09) = A x5 50T x3 H®T; Update a0+ = 40+0-9 ) +05)) 71,
Compute 94109 = A x; ™7 x3 »©T; Update ¢+ = §+09) ) 5¢+0-5) =1,
Compute 109 = A x| 40T x; 80T Update 1+ = ¢ +09) (05 1.
t=t+1;

end

5\' =A X1 ﬁ(l‘max)—r X2 {)(tmax)—r X3 L’[)(fmax)—r;

’7\' — i(ﬁ(fmax) ® ﬁ(lmax) ® ﬁ)(tmax));

Output: i = ;a0 | § = {ma) 1 = pmad) |} and 7.
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For any deterministic array {q(k), qék), q3k)},fi | satisfying ql-(k) e SK=1, denote

T op w2 oy
41174227‘133

Py (p2)
(p1) =~ pilg, u) (r2) 5 p2(ai"? )
_<<q] ’M—M>+W <q2 ) _v>+W
\/m(q(m) w? | 1ig" w2 \/pz<q(p2) 0?2 1—(g? )2
20/0)* (A/0)? 2G:/0)F o)?

(p3)
(p3) A p3{qs ", w)
(3" —w) + 32(;/0)2 )T

/m#?ﬂ+h@mw2
20/0 ) /o)

Then

d.
(5.2) T op vy w9 — N(0,13) as p— oo.
41 492 7 .43
Specifically, if |u;l, |v;|, lwi| K min{A/(op), 1} for some i € [p1], j € [p2], k € [p3], then
A AL A T
(5.3) <;(ui — i), — () —vj), — (W = wk)) — N, ) asp— co.

If, furthermore, o /X <K |u;l, |vj|, lwi| K min{A /(o p), 1//log(p)}, then
%]’k —T'jk
\/u v +v ,% 12

Theorem 7 establishes the asymptotic distribution for any linear functional qlTﬁ qu 0

(5.4) L N@©,1) as p— oo.

q;ﬁ) Theorem 7 also implies that [’f}jk — za/za\/u 4 2 wk ~|—wku T]k + Zay2 X

0\/ u2v2 + v w2 s ﬁ),%ﬁiz] is an asymptotic (I — «) confidence interval for 7;;; under
some boundedness conditions of |u;|, |vj|, lwg|. Here, the upper bound |u;], |v;], |wi| <K
min{A/(op), 1//log(p)} is significantly weaker than the incoherence condition commonly
used in the matrix/tensor estimation/inference literature. On the other hand, the low§r bound
condition, |u;|, |vjl], lwk| > o/A, is essential to ensure the asymptotic normality of 7. To see
this, consider a special case that u; = v; = wy =0, then (5.3) implies

)\, T]k

Uk % G1GaGs as p— 00, (G1.G2.G3)| ~ N, Iy).
o

In other words, 7} « satisfies a third moment Gaussian, not a Gaussian distribution.

To cover the broader scenarios that the lower bound conditions are absent, we consider
the following lower-thresholding procedure. Let s(#) = max{z, log( ;))(72):*2}2 for > 0 and
define the confidence interval for 7;j as

Clo(Ti0) = [Tiik _MU¢ (62) + s(62)s (F) + s (W7)s (@?).

Tijk + 2ap0 /s (@3)s (53) + 5 (03)s (0F) + s (7)s (?)].

(5.5)

We can prove Cl o (’f}jk) is a valid (1 — «)-level asymptotic confidence interval.

2Here, log(p) can be replaced by any value that grows to infinity as p grows.
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THEOREM 8. Suppose the conditions in Theorem 7 hold. If »/o > p3/* and |u;|, lvjl,
lwi| K min{r/(op), 1/+/log(p)} fori € [p1l, j € [p2], k € [p3], then

(5.6) iminfP(7;x € Clo(Tijr)) = 1 —a.
p—>00

REMARK 4 (Proof sketch of Theorem 7). The proof scheme for Theorem 7 is essentially
different from many recent literature on the entrywise inference [12, 21, 72] and we provide
a proof sketch here. Without loss generality, we assume o = 1 and (u, i), (v, ), (w, w) > 0.
First, we can decompose (i, g1) into two terms:

(5.7) (qu. i) = (i, uu " q1)+ (i, (I —uu")q1) = (g w)i "u+ (U] q1) Ui
Similar decompositions hold for (0, ¢2) and (w, g3). For any O; € O pi—1, We construct three
rotation matrices as
0~1 =uu' + UJ_OIUI €0,,,
02 = + VJ_OQVI € 0p,,
Oz =ww' + WL03WI € 0,,,
where U1 € Op, p—1, VL €0y, p,—1, W1 € ©m ps—1 are the orthogonal complement of u,

v, w, respectively. A key observation is that A = A x 0 X2 02 X3 03 and A share
the same distribution. Suppose u, v, w are the outputs of Algorithm 4. Then we have
u= 01 i, v= 02 v, W= O3 w and can further prove that given (u, ), (v, 0) and (w, W),

TUL TVL W Wl i Ul ] VL W Wl g
| ~ and 0, 0,, - 03) have the same distribu-
(‘IIUIMHz IV ol2” W[l ) (nUT 2 v ol = W bl 3)
tion. By the uniqueness of the Haar measure [65 66] and Theorem 1, we can further prove

for any fixed vectors f; € SP172, f» € SP272, f3 € SP372, we have

(AﬁTULfl, ATV AT W f,

i@lu—(1=p1272/2) 7o —(1=p2r2/2) &Tw—(1—psh” 2/2)) = N, Is).

V12372 ’ V22072 ’ Vp3/2272
This inequality and (5.7) result in (5.2), (5.3) and (5.4).

REMARK 5. The entrywise inference for Tucker low-rank or orthogonal decomposable
tensor PCA can be significantly more challenging due to the dependence among different
factors. We leave it as future research.

6. Numerical simulations. We now conduct numerical studies to support our theoretical
findings in previous sections. Each experiment is repeated for 2000 times, from which we
obtain 2000 realizations of the respective statistics. Then we draw histograms or boxplots,
and compare with the corresponding baselines. In each histogram, the red line is the density
of the standard normal distribution.

We begin with the inference for principal components of Tucker low-rank tensors. Specif-
ically, we randomly draw U ; € RPi*"j with i.i.d. standard normal entries and normalize to
Uj = QR(U j). We then draw core tensor G € R™"" with i.i.d. standard normal entries
and rescale to G =G - pY/ (Amin(©)). Consequently, U; is uniform randomly selected from
(O)pj,rj and Amin(G) = A = p¥. For p; = p» = p3 =200, r =3 and o = 1, each value of
y € {0.80, 0.85, 0.90, 0.95}, we observe A under tensor PCA model (1.1) and apply Algo-
rithm 1 to obtain realizations of

: 3 2 —1,2 : 3 2 ~20 A =12
leIISln®(U1,U1)IIF—pIIA1 E g T2:||81n®(U1,U1)||F—po 1A e

VZPiIAT IR V2p&2AT Ik
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) = p"80 m) — 0%

0.4+ 0.4+
0.35 - 0.35 -
0.3+ 0.3+
0.25 - 0.25 -
0.2+ 0.2+
0.15 1 0.15 -
0.1} 0.1+
0.05 - 0.05 -
0-4 0-4 -2 0 2 4

IIsin© (U1, UDIE—plA]

NerINe
(1.1). Here, py = pp = p3=p=200,r =3,0 =1.

12
I for order-3 Tucker low-rank tensor PCA model

F1G. 1. Normal approximation of

We repeat this procedure for 2000 times, from which we obtain 2000 realizations of the
respective statistics and plot the density histograms in Figures 1 and 2, respectively. We can
see T1 and T» both achieve good normal approximation in these settings.

-)\:po.S’ a4l -A:p0.857

0 0
-4 -2 0 2 4 -4 -2 0 2 4

i 2 a2 A-1p2
I Sm@a\]/z_UlA)ZHHFA _pz(i 14y T Sfor order-3 Tucker low-rank tensor PCA model
po 1 IF
(1.1). Here, py = pp =p3=p=200,r =3,0 =1.

FI1G. 2.  Normal approximation of
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0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

0
-4 2 0 2 4 -4 2 0 2 4

P 2 -2
F1G. 3.  Normal approximation of % for tensor PCA model (1.1) when T is a third-order or-
thogonally decomposable tensor and o = 1. Here, p1 = pp = p3 = p =200, r =3, Amin = A.

We then consider the asymptotic normality in orthogonally decomposable tensors un-
der the tensor PCA model. Similarly, we fix p = 200, » = 3, and construct the orthogo-
nally decomposable tensor as 7 =Y ;_(r + 1 —i)A - (u; ® v; ® w;), where [ug, ..., u,l,
[vi,...,v ], [wy,..., w,] are drawn uniform randomly from O, , similar to the previous
setting and A = p¥ with y = 0.80, 0.85, 0.90, 0.95. For each y, we obtain 2000 replicates of
T = l3.u3)’—(1—pr~?)

V2pr—2

see the normal approximation of 7 becomes more accurate as the signal strength A grows.

Though the focus of this paper is on third-order tensors, we will explain later in Sec-
tion 7 that the results can be generalized to higher-order ones. Next, we conduct simula-
tion study on tensor PCA model for fourth-order orthogonally decomposable tensors when
p = 100 and r = 1. With a few modifications on the proof, we can show ({i1, u1)2 - -
A2 (V2Zpr~3) ! is asymptotically normal under the required SNR assumption for effi-
cient computation: SNR > Cp. The simulation results in Figure 4 show that equipped with a
warm initialization, the two-iteration alternating minimization yields an estimator achieving
good normal approximation even if SNR a p%°, which is strictly weaker than the required
SNR assumption for efficient computation. See more discussions in Section 7.

Then we consider the entrywise inference under the rank-1 tensor PCA model. We con-
struct T =A-u ® v® w € RP*PXP, whereu=v:w=(1/«/_,...,1/«/ﬁ)T and A = pY¥
with y € {0.80, 0.85,0.90, 0.95}. For each value of y, we draw a random observation A
under the tensor PCA model (1.1) and apply Algorithm 4 with fhax = 10. We present the

, draw the density histogram and plot the results in Figure 3. We can

histogram in Figure 5 based on 2000 replicate values of ——/LL="LLL__ The simulation
N e
11 171 1%1
results validate the asymptotic normality of AZA;rij’i ;ij —— when u, v, w have balanced
u; vj-i—vjwk—i-wkui

entry values, which are in line with the theory in Theorem 7.
Finally, we consider the accuracy of the asymptotic entrywise confidence interval proposed
in (5.5) under the tensor PCA model. Let 7T = A - u ® v ® w be a rank-1 tensor, where
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.)\ — p0.85 |

-2

PG -2
of % for tensor PCA model (1.1) when

T=x-(u; ® v ® w; ® q1) is a fourth-order tensor and o = 1. Here, p| = pp = p3 = p4 = p = 100,
r=1and Anjin = .

FiG. 4. Normal approximation

u, v, w are uniform randomly drawn from SP~! for p € {100,200} and A = p? for y €
{0.80,0.85,0.90, 0.95}. For each combination of (p,y), we report the empirical coverage
rates for the 0.95 confidence interval CR;;; by boxplots in Figure 6. The results show the

0.4 0.4
0.35 0.35
0.3 0.3

0.25 0.25
0.2 0.2¢
0.15 0.15¢
0.1 0.1
0.05 0.05
% %
0.4 0.4
0.35 0.35
0.3 0.3
0.25 0.25
0.2 0.2¢
0.15 0.15
0.1 0.1
0.05 0.05
0 o,
FIG. 5. Normal approximation of % for tensor PCA model (1.1) when T is a rank-1 tensor
UV v Wy winy

and o = 1. The parameters are p| = pr = p3 = p = 200 with signal strength X.
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0.85- ' '
100 200
p

FI1G. 6. Boxplots for empirical coverage of entrywise confidence interval Eﬁi k-

empirical coverage rates are close to 0.95 in all settings and larger values of (y, p) lead to
more accurate coverage.

7. Discussion. In this paper, we investigate the inference for low-rank tensors under two
basic and fundamentally important tensor models: tensor PCA and regression. Based on an
initial estimator achieving a reasonable estimation error, we propose to update by a two-
iteration alternating minimization algorithm then establish the asymptotic distribution for the
singular subspace outcomes. Distributions of general linear forms of the singular vectors
are also established for rank-one tensor PCA model, which further enables the entrywise
inference on the parameter tensor.

Although our main focus is on third-order tensors, the results in this paper can be extended
to higher-order tensors. For example, suppose m > 4 and T = Z;-:l Aj ug-l) Q- ® u&m)
is orthogonally decomposable. Given A from the tensor PCA model (1.1) and Assump-
tion 3 holds, we can refine by two power iterations similar to Algorithm 3, then obtain

{ﬁ§l), 12&2), e ﬁgm)};zl. Similar to Theorem 6, we can prove

(k) A~(k)\2 -2 2

(", u;")" =1 —prr;707)

! j\/z—)\'—z 2 / iN(0v1)7 k=1,...,m,
Pk j o

if Amin/o > p3/ 4 and other regularity conditions holds. If m > 4, the SNR condition Amjn >
p3/* is weaker than the condition that ensure a computationally feasible estimator exists, that
iS, Amin/0 > pm/ 4 [77]. In other words, if an sufficiently good initial estimate is already
available, a weaker SNR condition Amin/0 3> p*/* is sufficient to guarantee the asymptotic
normality of our final estimates. This phenomenon is further justified by the simulation results
in Figure 4.
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