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This paper describes a flexible framework for generalized low-rank ten-
sor estimation problems that includes many important instances arising from
applications in computational imaging, genomics, and network analysis. The
proposed estimator consists of finding a low-rank tensor fit to the data under
generalized parametric models. To overcome the difficulty of nonconvexity
in these problems, we introduce a unified approach of projected gradient de-
scent that adapts to the underlying low-rank structure. Under mild conditions
on the loss function, we establish both an upper bound on statistical error and
the linear rate of computational convergence through a general determinis-
tic analysis. Then we further consider a suite of generalized tensor estimation
problems, including sub-Gaussian tensor PCA, tensor regression, and Poisson
and binomial tensor PCA. We prove that the proposed algorithm achieves the
minimax optimal rate of convergence in estimation error. Finally, we demon-
strate the superiority of the proposed framework via extensive experiments
on both simulated and real data.

1. Introduction. In recent years, the analysis of tensors or high-order arrays has
emerged as an active topic in statistics, applied mathematics, machine learning, and data sci-
ence. Datasets in the form of tensors arise from various scientific applications (Kroonenberg
(2008)), such as collaborative filtering (Bi, Qu and Shen (2018), Shah (2018)), neuroimag-
ing analysis (Li et al. (2018), Zhou, Li and Zhu (2013)), hyperspectral imaging (Li and Li
(2010)), longitudinal data analysis (Hoff (2015)), and more. In many of these problems, al-
though the tensor of interest is high-dimensional in the sense that the ambient dimension of
the dataset is substantially greater than the sample size, there is often hidden low-dimensional
structures in the tensor that can be exploited to facilitate the data analysis. In particular, the
low-rank condition renders convenient decomposable structure and has been proposed and
widely used in the analysis of tensor data (Kolda and Bader (2009), Kroonenberg (2008)).
However, leveraging these hidden low-rank structures in estimation and inference can pose
great statistical and computational challenges in real practice.

1.1. Generalized tensor estimation. In this paper, we consider a statistical and optimiza-
tion framework for generalized tensor estimation. Suppose we observe a random sample
D drawn from some distribution parametrized by an unknown low-rank tensor parameter
X* e RP1>P2xPs | A straightforward idea to estimate X' is via optimization:

(1.1) X = argmin L(X; D).

X is low-rank

Here, L(X; D) can be taken as the negative log-likelihood function (then X becomes the
maximum likelihood estimator (MLE)) or any more general loss function. We can even
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broaden the scope of this framework to a deterministic setting: suppose we observe D that is
“associated” with an unknown tensor parameter X'* € RP1*P2*P3; to estimate X'™*, we try to
minimize the loss function L(X’; D) that is specified by the problem scenario. This general
framework includes many important instances arising in real applications. For example:

e Computational imaging. Photon-limited imaging appears in signal processing (Salmon
et al. (2014)), material science (Yankovich et al. (2016)), astronomy (Timmermann and
Nowak (1999), Willett and Nowak (2007)), and often involves arrays with nonnegative
photon counts contaminated by substantial noise. Data from photon-limited imaging are
often in the form of tensors (e.g., stacks of spectral images in which each image corre-
sponds to a different wavelength of light). How to denoise these images is often crucial for
the subsequent analysis. To this end, Poisson tensor PCA serves as a prototypical model
for tensor photon-limited imaging analysis; see Sections 4.3 and 7.2 for more details.

e Analysis of multilayer network data. In network analysis, one often observes multiple snap-
shots of static or dynamic networks (Arroyo et al. (2021), Lei, Chen and Lynch (2020),
Pensky and Zhang (2019), Sewell and Chen (2015)). How to perform an integrative analy-
sis for the network structure using multilayer network data has become an important prob-
lem in practice. By stacking adjacency matrices from multiple snapshots to an adjacency
tensor, the hidden community structure of network can be transformed to the low-rankness
of adjacency tensor, and the generalized tensor learning framework can provide a new
perspective on the analysis of multilayer network data.

e Biological sequencing data analysis. Tensor data also commonly appear in biological se-
quencing data analysis (Faust et al. (2012), Flores et al. (2014), Wang, Fischer and Song
(2017)). The identification of significant triclusters or modules, that is, coexpressions of
different genes or coexistence of different microbes, often has significant biological mean-
ings (Henriques and Madeira (2019)). From a statistical perspective, these modules of-
ten correspond to low-rank tensor structure, so the generalized tensor learning framework
could be naturally applied.

e Online-click through Prediction. Online click-through data analysis in e-commerce has
become an increasingly important tool in building the online recommendation system
(McMabhan et al. (2013), Shan et al. (2016), Sun and Li (2017)). There are three major
entities: users, items, and time, and the data can be organized as a tensor, where each entry
represents the click times of one user on a specific category of items in a time period (e.g.,
noon or evening). Then generalized tensor estimation could be applied to study the implicit
features of users and items for better prediction of user behaviors.

Additional applications include neuroimaging analysis (Zhou, Li and Zhu (2013)), collabora-
tive filtering (Yu, Gupta and Kolar (2020)), mortality rate analysis (Wilmoth and Shkolnikov
(2006)), and more. We also elucidate specific model setups and real data examples in detail
later in Sections 4 and 7.2, respectively.

The central tasks of generalized tensor estimation problems include two elements. From
a statistical perspective, it is important to investigate how well one can estimate the target
tensor parameter X'* and the optimal rates of estimation error. From an optimization per-
spective, it is crucial to develop a computationally efficient procedure for estimating X* with
provable theoretical guarantees. To estimate the low-rank tensor parameter X'*, a straightfor-
ward idea is to perform the rank constrained minimization on the loss function L(X'; D) in
(1.1). Since the low-rank constraint is highly nonconvex, the direct implementation of (1.1)
is computationally infeasible in practice. If X'* is a sparse vector or low-rank matrix, com-
mon substitutions often involve convex regularization methods, such as M-estimators with an
£1 penalty or matrix nuclear norm penalty for estimating sparse or low-rank structure (Fazel
(2002), Tibshirani (1996)). These methods enjoy great empirical and theoretical success for
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vector/matrix estimators, but it is unclear whether they can achieve good performance on
generalized tensor estimation problems. First, different from the matrix nuclear norm, tensor
nuclear norm is generally NP-hard to even approximate (Friedland and Lim (2018)), so that
the tensor nuclear norm regularization approach can be computationally intractable. Second,
other computationally feasible convex regularization methods, such as the overlapped nuclear
norm minimization (Tomioka and Suzuki (2013), Tomioka et al. (2011)), may be statistical
sub-optimal based on the theory of simultaneously structured model estimation (Oymak et al.
(2015)).

In contrast, we focus on a unified nonconvex approach for generalized tensor estima-
tion problems in this paper. Our central idea is to decompose the low-rank tensor into
X = [[S; Uy, Uy, Us] (see Section 2.1 for explanations of tensor algebra) and reformulate
the original problem to

(12) (85,01, 0,,U3) = argmin {L([S; Uy, Uy, Us]; D) + Z||U[Uk—b21,k1|F,
S,U1,Up,Us k 1

which can be efﬁ01ently solved by (projected) gradient descent on all components. The re-
sulting X = IIS U1 , Uz, U3]] naturally admits a low-rank structure. The auxiliary regularizers
||Uk bZIrk ||F in (1.2) can keep Uy from being singular. It is actually easy to check that
(1.1) and (1.2) are exactly equivalent.

We provide strong theoretical guarantees for the proposed procedure on generalized tensor
estimation problems. In particular, we establish the linear rate of local convergence for gra-
dient descent methods under a general deterministic setting with the Restricted Correlated
Gradient condition (see Section 3.1 for details). An informal statement of the result is given
below,

(1.3) Jx® —x*2<E2+ 1 -0 |Xx©Q —x*|; forallr>1

with high probability. Here, we use £ to characterize the statistical noise and its definition
and interpretation will be given in Section 3.2. Then for specific statistical models, includ-
ing sub-Gaussian tensor PCA, tensor regression, Poisson tensor PCA, and binomial tensor
PCA, based on the general result (1.3), we prove that the proposed algorithm achieves the
minimax optimal rate of convergence in estimation error. Specifically for the low-rank tensor
regression problem, Table 1 illustrates the advantage of our method through a comparison
with existing ones.

Finally, we apply the proposed framework to synthetic and real data examples, includ-
ing photon-limited 4D-STEM (scanning transmission electron microscopy) imaging data and
click-through e-commerce data. The comparison of performance with existing methods illus-
trates the merit of our proposed procedure.

1.2. Related literature. This work is related to a broad range of literature on tensor
analysis. For example, tensor decomposition/SVD/PCA focuses on the extraction of low-
rank structures from noisy tensor observations (Anandkumar et al. (2014), Chen (2019),
Hopkins, Shi and Steurer (2015), Johndrow, Bhattacharya and Dunson (2017), Lesieur, Krza-
kala and Zdeborova (2017), Montanari, Reichman and Zeitouni (2017), Richard and Monta-
nari (2014)). Correspondingly, a number of methods have been proposed and analyzed under
either deterministic or random Gaussian noise, such as the maximum likelihood estimation
(Richard and Montanari (2014)), (truncated) power iterations (Anandkumar et al. (2014), Sun
et al. (2017)), higher-order SVD (De Lathauwer, De Moor and Vandewalle (2000a)), higher-
order orthogonal iteration (HOOI) (De Lathauwer, De Moor and Vandewalle (2000b), Zhang
and Xia (2018)), STAT-SVD (Zhang and Han (2019)).
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TABLE 1
Comparison of different tensor regression methods when the rank is known. For simplicity, we assume
ry=rp=r3=r,p|=py=p3=pand ol « [1x* ||12; Here, the sample complexity™® is the minimal sample size
required to achieve the corresponding estimation error

Estimation Error

Algorithm Sample complexity™ Upper Bound Recovery (noiseless)
Our Method p3/ 2y o2 pr/n Exact
Tucker reg. (Zhou, Li and Zhu (2013)) N.A. N.A. Exact
Nonconvex-PGD. p2r o2 p2r /n Exact
(Chen, Raskutti and Yuan (2019))

Nuclear Norm Min. N.A. Uzprz/n Exact
(Raskutti, Yuan and Chen (2019))

Schatten-1 Norm Min. p2r o2 p2r /n Exact
(Tomioka and Suzuki (2013))

ISLET (Zhang et al. (2020)) p3/2r oZpr/n Inexact
Iterative Hard Thresholding? pr o2 Exact

(Rauhut, Schneider and Stojanac (2017))

4The analysis in Rauhut, Schneider and Stojanac (2017) relies on an assumption that the projection on low-rank
tensor manifold can be approximately done by high-order SVD. It is, however, unclear whether this assumption
holds in general.

Since non-Gaussian-valued tensor data also commonly appear in practice, Chi and Kolda
(2012), Hong, Kolda and Duersch (2020), Signoretto et al. (2011) considered the generalized
tensor decomposition and introduced computational efficient algorithms. However, the the-
oretical guarantees for these procedures and the statistical performances of the generalized
tensor decomposition still remain open.

Our proposed framework includes the topic of tensor recovery and tensor regression. Var-
ious methods, such as the convex regularization (Raskutti, Yuan and Chen (2019), Tomioka
and Suzuki (2013)), alternating minimization (Zhou, Li and Zhu (2013)), hard thresholding
iteration (Chen, Raskutti and Yuan (2019), Rauhut, Schneider and Stojanac (2017, 2015)),
importance-sketching (Zhang et al. (2020)) were introduced and studied. A more detailed
comparison of these methods is summarized in Table 1.

In addition, high-order interaction pursuits (Hao, Zhang and Cheng (2020)), tensor com-
pletion (Cai et al. (2019), Liu et al. (2013), Montanari and Sun (2018), Xia and Yuan (2019),
Xia, Yuan and Zhang (2021), Yuan and Zhang (2016), Zhang (2019)), and tensor block mod-
els (Chi et al. (2020), Lei, Chen and Lynch (2020), Wang and Zeng (2019)) are important
topics in tensor analysis that have attracted enormous attention recently. Departing from the
existing results, this paper, to the best of our knowledge, is the first to give a unified treat-
ment for a broad range of tensor estimation problems with both statistical optimality and
computational efficiency.

This work is also related to a substantial body of literature on low-rank matrix recovery,
where the goal is to estimate a low-rank matrix based on a limited number of observations.
Specific examples of this topic include matrix completion (Candes and Plan (2010), Candes
and Recht (2009)), phase retrieval (Cai, Li and Ma (2016), Candes, Li and Soltanolkotabi
(2015)), blind deconvolution (Ahmed, Recht and Romberg (2014)), low-rank matrix trace
regression (Chen and Chi (2018), Fan, Gong and Zhu (2019), Keshavan, Montanari and Oh
(2010), Koltchinskii, Lounici and Tsybakov (2011)), and many others. A common approach
for low-rank matrix recovery is via explicit low-rank factorization: one can decompose the
target pi-by-p, rank-r matrix X into X = UV, where U € RP1*", V € RP2*" | then mini-
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mize the loss function L(UV ") with respect to both U and V (Wen, Yin and Zhang (2012)).
Previously, (Zhao, Wang and Liu (2015)) considered the noiseless setting of trace regres-
sion and proved that under good initialization, the first order alternating optimization on U
and V achieves exact recovery. (Park et al. (2018), Tu et al. (2016)) established the local
convergence of gradient descent for strongly convex and smooth loss function L. The read-
ers are referred to a recent survey paper (Chi, Lu and Chen (2019)) on the applications and
optimization landmarks of the nonconvex factorized optimization. Despite significant devel-
opments in low-rank matrix recovery and nonconvex optimization, they cannot be directly
generalized to tensor estimation problems for many reasons. First, many basic matrix con-
cepts or methods cannot be directly generalized to high-order ones (Hillar and Lim (2013)).
Naive generalization of matrix concepts (e.g., operator norm, singular values, eigenvalues)
are possible but often computationally NP-hard. Second, tensors have more complicated al-
gebraic structure than matrices. As what we will illustrate later, one has to simultaneously
handle all arm matrices (i.e., Uy, Up, and U3) and the core tensor (i.e., S) with distinct di-
mensions in the theoretical error contraction analysis. To this end, we develop new tech-
nical tools on tensor algebra and perturbation results (e.g., E.2, Lemmas E.3 in the Ap-
pendix). More technical issues of generalized tensor estimation will be addressed in Sec-
tion 3.3.

The projected gradient schemes, which apply gradient descent on the parameter tensor X’
followed by the low-rank tensor retraction/projection operators, form another important class
of methods in the literature (Rauhut, Schneider and Stojanac (2015, 2017), Chen, Raskutti
and Yuan (2019)):

U+ — p(;((t) _ nVL()((’))).

Different from the low-rank projection for matrices, the exact low-rank tensor projection
(i.e., the best rank-(ry, r2, r3) approximation: P(X) = arg miny i rank-(r,. rp. 1) | 7 — XIE) 18
NP-hard in general (Hillar and Lim (2013)) and less practical. Several inexact but efficient
projection methods were developed and studied to overcome this issue. In particular, Rauhut,
Schneider and Stojanac (2015) proposed a polynomial-time computable projected gradient
scheme that converges linearly to the true tensor parameter for the noiseless tensor completion
problem, given the initialization is sufficiently close to the solution. On the other hand, it is
not clear if such schemes with inexact projection operators can achieve optimal statistical
rate in the noisy setting (Chen, Raskutti and Yuan (2019)). In contrast, the proposed method
in this paper is both computationally efficient and statistically optimal in a variety of settings
with provable guarantees.

1.3. Organization of the paper. The rest of the article is organized as follows. After a
brief introduction of the notation and preliminaries in Section 2.1, we introduce the general
problem formulation in Section 2.2. A deterministic error and local convergence analysis of
the projected gradient descent algorithm for order-3 tensor estimation is discussed in Sec-
tion 3. Then we apply the results on a variety of generalized tensor estimation problems in
Section 4, including sub-Gaussian tensor PCA, tensor regression, Poisson tensor PCA, and
binomial tensor PCA. We develop the upper and minimax matching lower bounds in each of
these scenarios. In Section 5, we propose a data-driven rank selection method with theoret-
ical guarantee. The extension to general order-d tensor estimation is discussed in Section 6.
Simulation and real data analysis are presented in Section 7. All proofs of technical results
and more implementation details of algorithms are collected in the Supplementary Material
(Han, Willett and Zhang (2021)).
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2. Generalized tensor estimation model.

2.1. Notation and preliminaries. The following notation and preliminaries are used
throughout this paper. The lowercase letters, for example, x, y, u, v, are used to denote scalars
or vectors. For any a,b € R, let a A b and a Vv b be the minimum and maximum of a and
b, respectively. We use C, Co, Cy, ... and c, cp, c1, . .. to represent generic large and small
positive constants respectively. The actual values of these generic symbols may differ from
line to line.

We use bold uppercase letters A, B to denote matrices. Let O, , be the collection of all
p-by-r matrices with orthonormal columns: O, , = {U € RP*" : U'U=1,}, where I, is
the r-by-r identity matrix. For any matrix A € RP1*P2 let 01 (A) > --- > op ap,(A) ... >0
be its singular values in descending order. We also define SVD, (A) € O, , to be the matrix
comprised of the top r left singular vectors of A. For any matrix A, let A;;, A;., and A.; be the
entry on the ith row and jth column, the ith row, and the jth column of A, respectively. The
inner product of two matrices with the same dimension is defined as (A, B) = tr(A " B), where
tr(-) is the trace operator. We use ||A| = o1(A) to denote the spectral norm of A, use ||A||r =

Vi Aizj = ,/Z,fl:/;m of to denote the Frobenius norm of A, and use [|A |, = >"F}"? o to

denote the nuclear norm of A. The /5 o, norm of A is defined as the largest row-wise /2 norm
of A: ||A]2.00 = max; ||A;.||2. For any matrix A = [ay, ...,a;] € R’/ and B € RKXL | the
Kronecker product is defined as the (/ K)-by-(JL) matrix A B=[a; ®B---a; ® B].

In addition, we use calligraphic letters, for example, S, X, ), to denote higher-order ten-
sors. To simplify the presentation, we mainly focuses on order-3 tensors in this paper while
all results for higher-order tensors can be carried out similarly. For tensor S € R"1*"2*'3 and
matrix U € RP1*1 | the mode-1 tensor-matrix product is defined as:

ry
S x1 Uy € RPPX72X73, (S x Upiyinis = Zsji2i3(U1)i1j-
=1

For any U, € RP2*"2 Us € RP3*’3 | the tensor-matrix products S x5 Up and S x3 Us are de-
fined in a similarly way. Importantly, multiplication along different directions is commutative
invariant: (S X, Uk,) Xk, Ug, = (S Xi, Ux,) xk, Uy, for any ky # kp. We simply denote

S x1 Uy x2 Uy x3 Uz =[S; Uy, Uz, Us],

as this formula commonly appears in the analysis. We also introduce the matricization oper-
ator that transforms tensors to matrices: for X € RP1*P2*P3define

M, (X) e RPXP2PS - where [M(X)]; ;45— 1) = Xiiniss
My (X) € RP2XPIP3 - where [MZ(X)]iz,i3+p3(i|—l) = X\ iyis»
M3 (X) € RP3*PIP2 where [M3(X)]i3,i1+p1(iz—l) = Xi\ipiz»

and /\/lk_l : RPEX(Prt1Piet2) s RPIXP2XP3 ag the inverse operator of My where k + 1 and
k + 2 are computed modulo 3. Essentially, M “flattens” all but the kth directions of any
tensor. The following identity that relates the matrix-tensor product and matricization plays
an important role in our analysis:

Mi(S x1 U x2 Up x3U3) = Gu M (S)(Up 12 @ Ug1) ', k=1,2,3.

Here again, k + 1 and k + 2 are computed modulo 3. The inner product of two tensors with
the same dimension is defined as (X, V) =3 ; ik AXijxVijk- The Frobenius norm of a tensor X'

isdefined as | X|lp =/ j « XS/« For any smooth tensor-variate function f : RP1*P2XP3 —
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R,let V f : RP1>*P2XP3 — RP1*P2>P3 be the gradient function such that (V (X)), jx = %
ij
We simply write this as V f when there is no confusion. Finally, the readers are also referred
to Kolda and Bader (2009) for a comprehensive discussions on tensor algebra. The focus of
this paper is on the following low-Tucker-rank tensors.

DEFINITION 2.1 (Low Tucker rank). We say X'* € RP1XP2*P3 jg Tucker rank-(r1, 12, 13)
if and only if X* can be decomposed as

X* =S* X1 UT X2 U; X3 Uz = [[S*; T,U;,U;H

for some S* € R">*"2*3 and Uy € RPF>7* [k =1,2,3.

In addition, X* is Tucker rank-(ry, r, r3) if and only if rank(M (X*)) < ry fork = 1,2, 3.
For convenience of presentation, we denote p = max{pi, p2, p3}, r = max{r1,r2,r3}, p =
min{pi, p2, p3}, r =min{ry, r2, 13}, p—k = p1p2p3/pk and r—x = rirar3/r—.

2.2. Generalized tensor estimation. Suppose we observe a dataset D associated with an
unknown parameter X'*. Here, X'™* is a p(-by-p-by-p3 rank-(r(, 12, r3) tensor and ry < py.
For example, D can be a random sample drawn from some distribution parametrized by X*
or a deterministic perturbation of X*. The central goal of this paper is to have an efficient
and accurate estimation of X'*.

Let L(X; D) be an empirical loss function known a priori, such as the negative log-
likelihood function from the generating distribution or more general objective function. Then
the following rank constrained optimization provides a straightforward way to estimate X'™*:

2.1 m)énL(X; D) subjectto rank(My(X)) <ri, k=1,2,3.
As mentioned earlier, this framework includes many instances arising from applications in

various fields. Due to the connection between low Tucker rank and the decomposition dis-
cussed in Section (2.1), it is natural to consider the following minimization problem:

)3:5' x1ﬁ1 Xzﬁz X3ﬁ3,
(2.2) 51 LT :
(S,U1,Up,Uz) = argmin L(S x1 Uy x2 Uy x3Us; D),
S,U1,0,,U3

and consider a gradient-based optimization algorithm to estimate X*. Let VL : RP1XP2XP3 —
RP1*P2XP3 be the gradient of loss function. The following lemma gives the partial gradients
of L on Uy and S. The proof is provided in the Supplementary Material (Appendix E.1).

LEMMA 2.1 (Partial gradients of loss).
Vu, L([S; U1, Us, Us]) = M (VL) (U3 @ UM (S) T,
Vu,L([S; U, Uz, Us]) = Ma(VL)(U; @ U Ma(S) T,
Vu, L([S: Uy, Us, Us]) = M3(VL) (U @ UNM3(S) T,
VsL([S; U1, U, Us]) = VL x; U] x2U; x3U;.
Here, VL is short for VL([[S; Uy, Uy, Us])).

(2.3)

As mentioned earlier, we consider optimizing the following objective function:

2
F

3
a
@4 F(S, 01,0z, U3) = L([S; U1, Up, Us]; D) + 5 3 [U¢ U = 171,
k=1
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where a > 0,b > 0 are tuning parameters to be discussed later. By adding regularizers
||U,;rUk - bQIrk ||12:, we can prevent Uy from being singular throughout gradient descent, while
do not alter the minimizer. This can be summarized as the following proposition, whose proof
is provided in Appendix E.2.

PROPOSITION 2.1.  Suppose (S, Uy, U, Up) = argmin F(S, Uy, Ua, U3) for F defined
in (2.4). Then

X = [[3, Uy, U, ﬁzﬂ = arg min L(X; D).
X:rank(X)<(r1,r2,r3)

Similar regularizers have been widely used on nonconvex low-rank matrix optimization
(Park et al. (2018), Tu et al. (2016)) and more technical interpretations are provided in Sec-
tion 3.3.

3. Projected gradient descent. In this section, we study the local convergence of the
projected gradient descent under a general deterministic framework.

3.1. Restricted correlated gradient condition. We first introduce the regularity condition
on the loss function L and set C.

DEFINITION 3.1 (Restricted Correlated Gradient (RCG)). Let f be a real-valued func-
tion. We say f satisfies RCG(«, 8, C) condition for , 8 > 0 and the set C if

(3.1) (VF(x) = Vf(x"),x—x*)>a|x —x*H%—i—ﬂ”Vf(x) — Vf(x*)”%

for any x € C. Here, x* is some fixed target parameter.

Our later analysis will be based on the assumption that L satisfies the RCG condition on
to-be-specified sets of tensors with x* = X being the true parameter tensor.

REMARK 3.1 (Interpretation of the RCG condition). The RCG condition is similar to the
“regularity condition” appearing in recent nonconvex optimization literature (Candes, Li and
Soltanolkotabi (2015), Chen and Candes (2015), Chi, Lu and Chen (2019), Yonel and Yazici
(2020)):

(3.2) (V) x —x*) > a|x —x*|2+ 8| Vi3

where f(-) is the objective function in their context and x* is the minimizer of f(-). The RCG
condition can be seen as a generalization of (3.2): in the deterministic case without statistical
noise, the target x* usually becomes an exact stationery point of f(-) and (3.1) reduces to
(3.2). In addition, it is worthy noting that RCG condition does not require the function f to
be convex since x* is only a fixed target parameter in the requirement (3.2) (also see Figure 1
in Chi, Lu and Chen (2019), for an example).

3.2. Theoretical analysis. We now consider a general setting that the loss function L
satisfies the RCG condition in a constrained domain:

(3.3) C={X eRPXPXP3 . x = [8; Uy, Uy, Us], Uy € G, S € Cs),

where the true parameter tensor X'* is feasible—that is, X* € C. Here, C; and Cg are
some convex and rotation invariant sets: for any Uy € Ci, S € Cs, we have UgRy € C; and
[[S; R1, Ry, R3]] € Cs for arbitrary orthogonal matrices Ry € O, . Some specific problems of
this general setting will be discussed in Section 4.
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Algorithm 1 Projected Gradient Descent

Require: Initialization (S 0 U(lo), Ugo), Ugo)), constraint sets {Ck}z: |» Cs, tuning parame-
ters a, b > 0, step size 7.
forallt=0to T —1do
f0r~all k=1,2,3do
U =0 - (v, LSO, U7, 09, UY) +aU U U — p7D)
U,(:H) =Pc, (fJ,(fH)), where Pg, () is the projection onto Cy.
end for
S+ — g _ nVsL(S(t), UY)’ Ug), Ug'))
St =P (ST, where Pc, (+) is the projection onto Cs.
end for
return X7 =81 UgT) X2 U;T) X3 UéT)

When L and X'* satisfy the condition above, we introduce the projected gradient descent in
Algorithm 1. In addition to the vanilla gradient descent, the proposed Algorithm 1 includes
multiple projection steps to ensure that X* is in the regularized domain C throughout the
iterations.

Suppose the true parameter X'* is of Tucker rank-(ry, 2, r3). We also introduce the follow-
ing value to quantify how different the X'™* is from being a stationary point of L(X’; D):

§i= sup VLX), T
(3.4) TERPI*P2XP3 | T||p<1
rank(7)<(r1,72,73)

Intuitively speaking, & measures the amplitude of VL (X*) projected onto the manifold of
low-rank tensors. In many statistical models, £ essentially characterizes the amplitude of
statistical noise. Specifically in the noiseless setting, X'™* is exactly a stationary point of
L, then VL(X*) =0, & = 0. In various probabilistic settings, a suitable L often satisfies
EVL(X*) = 0; then & reflects the reduction of variance of VL(X*) after projection onto the
low-rank tensor manifold. We also define

X = max{ | M (X) |, [M2(X*) ], M3 (X*)|},
A :=min{o, (M (X™)), 0, (M2(X¥)), 0,5 (M3(X7))},

’

and k = A /A can be regarded as a tensor condition number, as similarly defined for matrices.
It is note worthy that the curvature of Tucker rank-(ry, 2, r3) tensor manifold on X* can be
bounded by A~! Lubich et al. (2013), Lemma 4.5.

We are now in position to establish a deterministic upper bound on the estimation error
and a linear rate of convergence for the proposed Algorithm 1 when a warm initialization
is provided. Specific initialization algorithms for different applications will be discussed in
Section 4.

THEOREM 3.1 (Local convergence). Suppose L satisfies RCG(a, 8,C) for C de-
fined in (3.3) and b < X1/4, a= % in (2.4). Assume X* = [[§*; U}, U3, U3l such
that UZ‘TUZ = bzlrk, U; € Cr,k=1,2,3, and S* € Cs. Suppose the initialization X0 =
[S©; UEO), Uéo),UgO)]] satisfies | X© — X*||% < C‘MKZA2 for some small constant ¢ > 0,
U,(CO) U,(CO) = bzlrk, U,((O) €Cr,k=1,2,3 and SO e Cs. Also, the signal-noise-ratio satisfies

4 . . .
22> Co O:%—ﬂé 2 for some universal constant Co. Then there exists a constant ¢ > 0 such that if
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0B
6

n=-, for ng < c, we have

4 t
2 K 2paBno 2
|20 =2} < (S8 421 = L) a0 - ).

In addition, the following corollary provides a theoretical guarantee for the estimation loss
of the proposed Algorithm 1 after a logarithmic number of iterations.

COROLLARY 3.1. Suppose the conditions of Theorem 3.1 hold and «, 8, k are constants.
Then after at most T = Q(log(HX(O) — X*||g/§)) iterations and for a constant C that only
relies on a, B, k > 0, we have

[xT —x|p < ce?.

REMARK 3.2. When VL(X™*) =0, that is, there is no statistical noise or perturbation,
we have & = 0. In this case, Theorem 3.1 and Corollary 3.1 imply that the proposed algorithm
converges to the true target parameter X'™* at a linear rate:

2pafno\’
HX(t) _ X*Ué < C<1 — T) HX((» X HI%‘

When VL(X™*) # 0, we have £ > 0 and X'™* is not an exact stationary point of the loss func-
tion L. Then the estimation error || X' ) — x* ||12: is naturally not expected to go to zero, which
matches the upper bounds of Theorem 3.1 and Corollary 3.1. In a statistical model where
noise or perturbation is in presence, the upper bound on the estimation error can be deter-
mined by evaluating & under the specific random environment and these bounds are often
minimax-optimal. See Section 4 for more detail.

REMARK 3.3. If Cs and C; are unbounded domains, then C is the set of all rank-
(r1, r2, r3) tensors, Peg, Pe, are identity operators, and the proposed Algorithm 1 essentially
becomes the vanilla gradient descent. When Cs and Cj are nontrivial convex subsets, the
projection steps ensure that X = [S®; U?), Ug), Ug)]] € C and the RCG condition can be
applied throughout the iterations. In fact, we found that the projection steps can be omitted
in many numerical cases even if L does not satisfy the RCG condition for the full set of low-
rank tensors, such as the forthcoming Poisson and binomial tensor PCA. See Sections 4 and
7 for more discussions.

3.3. Proof sketch of main results. We briefly discuss the idea for the proof of Theo-
rem 3.1 here. The complete proof is provided in Appendix C. A key step in our analysis
is to establish an error contraction inequality to characterize the estimation error of X' ¢+D
based on the one of X®. Since the proposed nonconvex gradient descent is performed on
SO, 0", Uy, 0" jointly in lieu of X directly, it becomes technically difficult to de-
velop a direct link between |XU*+D — x*|2 and |X") — X*||Z. To overcome this diffi-
culty, a “lifting” scheme was proposed and widely used in the recent literature on low-rank
asymmetric matrix optimization (Tu et al. (2016), Zhu et al. (2017), Park et al. (2018)):
one can factorize any rank-r matrix estimator A®) and the target matrix parameter A* into
AW =D VT A* =U*(V*) T, where U?, V) (or U*, V*) both have r columns and
share the same singular values. Then, one can stack them into one matrix

A2 U*
WO — [Vm} L W= [V*} .
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By establishing the equivalence between mingcg, [|[W® — W”‘Rll2 and ||[A®) — A"‘||F and
analyzing on mingreo, W@ — W*R||F, a local convergence of A(’) to A* can be estab-
lished. However, the “lifting” scheme is not applicable to the tensor problem here since
Uy, Uy, U3, S have distinct shapes and cannot be simply stacked together. To overcome this
technical issue in the generalized tensor estimation problems, we propose to assess the fol-
lowing criterion:

: @ _ 2 T T DTTI2
35 ~ EV=_min ZIIU UiRe[r+ [ — [S* R{, R}, R{ ][5 -
Rke(OJ,,k % =1
k=1,2,3
Intuitively, £® measures the difference between a pair of tensor components (S*, Uy, U,

U3) and (S, UY), Ug) (t)) under rotation. The introduction of E®) enables a convenient
error contraction analysis as being an additive form of tensor components. In particular, the
following lemma exhibits that £ @ is equivalent to the estimation error || X’ O _ x* ||% under
regularity conditions.

LEMMA 3.1 (An informal version of Lemma E.2).

B < [0 € 31000 Tl = B
k=1
under the regularity conditions to be specified in Lemma E.2.

Note that there is no equivalence between E) and | X®) — X* ||12: unless we force Uy and
U} have similar singular structures, and this is the reason why we introduce the regularizer

term in (2.4) to keep U,(f) from being singular.
Based on Lemma 3.1, the proof of Theorem 3.1 reduces to establishing an error contraction
inequality between E) and EUFD:

(3.6) EMD <1 —9)ED + Cg?

for constants 0 < y < 1 and C > 0. Define the best rotation matrices

3
(R, RS, RY) = argmin { > |U) — UjRe[7 + | — [S* R], Ry, R{ ][ {-
Ri€Opyrye k=1
k=1,2,3

By plugging in the gradient of L(X) and X =S x| U; x3 Uy x3 U3, we can show

1 12 2
a7 U - URV R - U - URY |

| 7

~ 2 — 0 VLX)~ DU — b,

(3.8) [0 — 8% RIVT RSV REVIE — 8O — [ RPTLRY T RO
mx® — x, vL(xO)),

where

X =8O 5 (URY) xi1 UY) | 442U, k=1,2,3; and
T
X0 =157 U R VYR UORYT)

Note E/+tD — g® corresponds to the summation of (3.7) and (3.8), whose right-hand sides
are dominated by the inner product between VL(X®) and 3X") — Zi: (t) - Xg O We

develop a new tensor perturbation lemma to characterize 3X'®) — Z/%:] Xk(t) X (t).
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LEMMA 3.2 (An informal version of Lemma E.3). Under regularity conditions to be
specified in Lemma E.3, we have

W

(3.9) X0 _ x* = ((t) X(’) Z x® X(t) e

where H, is some low-rank residual tensor with | H. ”F =o0((EM)?).
Combining (3.7), (3.8) and Lemma 3.2, we can connect E¢*D and E® as
(3.10)  ECTDx O _op(x® — x* — 94, vL(x0)) - L Z Ju@Tu® —urTup 3.

Then, we introduce another decomposition
(X® —x* —H,, VL(XD))

= (X0 —x* VL(XD) - VL(X*))

(3.11) e
— (He, VL(XW) = VL(X*)) + (XD — X% + H,, VL(X™))
Ar A3

The three terms can be bounded separately:

Az afx® - X*HéJrﬁIIVL(X”)) — VLX)

(3.12) sl = B VL)~ VL@ 4 S el

2p
43| <VE® & <cEV 4 CE.
Here the first inequality comes from RCG condition; the second inequality comes from

Cauchy-Schwarz inequality and the fact ab < %(a2 + b?); and the last inequality utilizes
the definition of &, as well as Lemma 3.2. Combining (3.11) and (3.12), we obtain

(X® — 2* —H, VLX) + (XD — X* + M, VL(XY))
2 2
(3.13) > (o X = X5+ B VLX) = VL))

— LIVL0) = VL@ — (B + CY),

Then by choosing a suitable step size n and applying (3.10) together with (3.13), one obtains

ECD < EO 4 cEO 4 CE? — o X0 — x*|2 — ¢ Z [ U —ur U
k=1

Applying the equivalence between [|X® — X*[2 + C ¥ (U TUY — UFTUF||2 and E®
(Lemma 3.1), we can obtain (3.6) and finish the proof of Theorem 3.1.

4. Applications of generalized tensor estimation. Next, we apply the deterministic re-
sult to a number of generalized tensor estimation problems, including sub-Gaussian tensor
PCA, tensor regression, Poisson tensor PCA, and binomial tensor PCA to obtain the esti-
mation error bound of (projected) gradient descent. In each case, Algorithm 1 is used with
different initialization schemes specified by the problem settings. All the proofs are provided
in Appendix D. In addition, the generalized tensor estimation framework covers many other
problems. A nonexhaustive list is provided in the Introduction. See Section 8 for more dis-
cussions.
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Algorithm 2 Initialization for Sub-Gaussian Tensor PCA

Requlre y € RP1>P2xP3 Tucker rank (rq, ro, r3), scaling parameter b.
X =Y, 0 _HeteroPCArk (Mp(XOMp(X)T) fork=1,2,3
S=[X;0],0],0]]

SO =8/ 0 =pU fork =1,2,3
return (S© Uio) , U(O) (0))

4.1. Sub-Gaussian tensor PCA. Suppose we observe ) € RP1*P2XP3 where E) = X'*,
AX* is Tucker low-rank, and {V;x — Xl’; «Jijk are independent and sub-Gaussian distributed.
In literature, much attention has been focused on various setups related to this model, for ex-
ample, Vjr — lek are i.i.d. Gaussian, X'* is sparse, symmetric, rank-1, or CP-low-rank, etc
(Chen (2019), Lesieur, Krzakala and Zdeborova (2017), Montanari, Reichman and Zeitouni
(2017), Perry, Wein and Bandeira (2020), Richard and Montanari (2014), Sun and Luo
(2015), Zhang and Han (2019)). Particularly when {V;jx — Xz’j’k}ijk are i.i.d. Gaussian dis-
tributed, it has been shown that the higher-order orthogonal iteration (HOOI) (De Lathauwer,
De Moor and Vandewalle (2000b)) achieves the optimal statistical performance on the es-
timation of X'* (Zhang and Xia (2018)). It is however unclear whether HOOI works in the
more general heteroskedastic setting, where the entries of ) have different variances.

Departing from the existing methods, we consider the estimation of X™* via minimizing
the quadratic loss function L(X) = %HX — y||1% using gradient descent. It is easy to check
that L satisfies RCG(%, % RP1*P2%P3) g0 the projection steps in Algorithm 1 can be skipped
throughout the iterations. To accommodate possible heteroskedastic noise, we apply Het-
eroPCA (Zhang, Cai and Wu (2018)), an iterative algorithm for PCA when heteroskedas-
tic noise appears instead of the regular PCA for initialization. (The implementation of Het-
eroPCA in Algorithm 2 is provided in Appendix A).

Now we can establish the theoretical guarantee of Algorithms 1 and 2 for sub-Gaussian
tensor PCA based on the deterministic result in Theorem 3.1.

THEOREM 4.1. Suppose we observe Y € RPI*P2XP3 ywhere EY = X* = [[S; Uy, Up,
U3l is Tucker rank-(ry,r2,13), Up € Qp, 1, and ||Ug||2,00 < ¢ for some constant ¢ > 0. Sup-

pose all entries of Y — X* are independent mean-zero sub-Gaussian random variables such
that

| Vijk — l]k||1//2—supE(|ZUk|Q) 14,012 < o

q>
Assume Ao > C1p/*FV/*. Then with probability at least 1 — exp(cp), Algorithms 1 and 2
vield
(4.1) ||X—X*||FSCzﬁz(mrzrz-i-ZPkrk),
k=1

where Cy, Cy are constants that do not depend on py and r.

REMARK 4.1. The proposed method turns out to achieve the minimax optimal rate of es-
timation error in a general class of sub-Gaussian tensor PCA settings since the order of upper
bound (4.1) matches the lower bound in literature (Zhang and Xia (2018), Theorem 3). More-
over, the condition A/o > C;p>/47'/4 is optimal w.r.t. j in the sense that all the polynomial-
time feasible algorithms cannot achieve consistent estimation when A/o < p>/4~¢ for any
& > 0 (Zhang and Xia (2018), Theorem 4).
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Algorithm 3 Initialization of Low-rank Tensor Regression

Require: {A;,vi},i=1,...,n,rank (r1, r2, r3), scaling parameter b.
X=1YyA
(8, U1, Us, U3) = HOSVD(X) or (S, Uy, Uy, Us) = HOOI(X)
UY = b0y, fork=1,2,3
SO =8/p3
return (S©, UEO), Ug)) , Ugo))

4.2. Low-rank tensor regression. Motivated by applications of neuroimaging analysis
(Guhaniyogi, Qamar and Dunson (2017), Li and Zhang (2017), Zhou, Li and Zhu (2013)),
spatio-temporal forecasting (Bahadori, Yu and Liu (2014)), high-order interaction pursuit
(Hao, Zhang and Cheng (2020)), longitudinal relational data analysis (Hoff (2015)), 3D
imaging processing (Guo, Kotsia and Patras (2012)), among many others, we consider the
low-rank tensor regression next. Suppose we observe a collection of data D = {y;, A;}7_;
that are associated through the following equation:

(4.2) vi= (A X e e N0, =1,

By exploiting the negative log-likelihood, it is natural to set L to be the squared loss function

L(X; D) =Y ((Ai, X) — y)”.

i=1

To estimate X'*, we first perform spectral method (Algorithm 3) to obtain initializer X © =
SO, U(IO), Ugo), U§0) ]I, then perform the gradient descent (Algorithm 1) without the projec-
tion steps to obtain the final estimator X. A key step of Algorithm 3 is HOSVD or HOOI,
which are described in detail in Appendix A.

For technical convenience, we assume the covariates {A;}"_, are randomly designed that
all entries of A; are i.i.d. drawn from sub-Gaussian distribution with mean O and variance 1.
The following theorem gives an estimation error upper bound for Algorithms 1 and 3.

n
1

THEOREM 4.2. Consider the low-rank tensor regression model (4.2). Suppose o* <
C1||X*||12:, A > Co, and the sample size n > C3max{ﬁ3/27,ﬁ . 72,?4} for constants
C1, Ca, C3 > 0. Then with probability at least 1 — exp{—c(rirar3 + 22:1 Prri)}, the out-
put of Algorithms 1 and 3 satisfies

3
| & — %2 < C02<r1r273 +3 Pkrk>/n,
k=1

where C1, Ca, C3, C are constants depending only on k and ¢ > 0 is a universal constant.

Theorem 4.2 together with the lower bound in Zhang et al. (2020), Theorem 5, shows that
the proposed procedure achieves the minimax optimal rate of estimation error in the class of
all p1-by-p>-by-p3 tensors with rank-(r1, r2, r3) for tensor regression.

REMARK 4.2. The assumption on the covariates {A;}"_, in Theorem 4.2 ensures that

X in Algorithm 3 is an unbiased estimator of X*. Such a setting has been considered as a
benchmark setting in the high-dimensional statistical inference literature (see, e.g., Candes
and Plan (2011), Chen, Raskutti and Yuan (2019), Javanmard and Montanari (2018)). When
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{Ai}?zl are heteroskedastic, the spectral initialization may fail and an alternative idea is the
following unfolded nuclear norm minimization:

3
(4.3) X'= argmin Y [Mi(X)

XeRP1IXP2XP3 |

s.t. AX) =y.

*°

(4.3) is equivalent to a semidefinite programming and can be solved by the interior-point
method (Gandy, Recht and Yamada (2011)).

REMARK 4.3. There is a significant gap between the required sample size in Theo-
rem 4.2 (O( p3/ 2r)) and the possible sample size lower bound, that is, the degree of freedom
of all rank-r dimension- p tensor (O (r3 + pr)). The existing algorithms achieving the sample
size lower bound are often NP-hard to compute and thus intractable in practice. We also note
that the existence of a tractable algorithm for tensor completion that provably works with
less than p3/>~¢ measurements would disapprove an open conjecture in theoretical computer
science on strongly random 3-SAT (Barak and Moitra (2016), Corollary 16). Since tensor
completion can be seen as a special case of tensor recovery, this suggests that it may be
impossible to substantially improve the sample complexity required in Theorem 4.2 using a
polynomial-time algorithm. Therefore, our procedure can be taken as the first computation-
ally efficient algorithm to achieve minimax optimal rate of convergence and exact recovery
in the noiseless setting as illustrated in Table 1.

4.3. Poisson tensor PCA. Tensor data with count values commonly arise from var-
ious scientific applications, such as the photon-limited imaging (Salmon et al. (2014),
Timmermann and Nowak (1999), Willett and Nowak (2007), Yankovich et al. (2016)), on-
line click-through data analysis (Shan et al. (2016), Sun and Li (2017)), and metagenomic
sequencing (Flores et al. (2014)). In this section, we consider the Poisson tensor PCA model:
assume we observe Y € NP1XP2XP3 that satisfies

(4.4) Yijk ~ Poisson( exp(&;j;)) independently,

where X'* is the low-rank tensor parameter and / > 0 is the intensity parameter. When X* is
entry-wise bounded (Assumption 4.1), one can set I as the average intensity of all entries of
Y so that I essentially quantifies the signal-to-noise ratio. Rather than estimating I exp(X™),
we focus on estimating X', the key tensor that captures the salient geometry or structure of
the data.

Then, the following negative log-likelihood is a natural choice of the loss function for
estimating X'™*:

pP1 p2 p3

(4.5) LX) =33 (=VijrXijk + I exp(Xiji)).

i=1j=1k=1

Unfortunately, L(X) defined in (4.5) satisfies RCG(«, 8, C) only for a bounded set C since
the Poisson likelihood function is not strongly convex and smooth in the unbounded domain.
We thus introduce the following assumption on X'* to ensure that X'* is in a bounded set C.

ASSUMPTION 4.1. Suppose X* = [[S*; U7, U3, U3]], where U € O, ,, is a pi-by-
rr orthogonal matrix for k = 1,2,3. There exist some constants {Mk}lle, B such that

_ 3E —
105113 o0 < ML for k=1,2,3 and 1 < B /ﬁ where A := max; | M (S*)||. Here,
=1MK
U5 112,00 = max; [|(Uy);. |2 is the largest row-wise £2 norm of U}.
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Algorithm 4 Initialization for Poisson Tensor PCA

Require: Initialization observation tensor ) € NP1*P2*P3 Tucker rank (r1, r, r3), scaling
parameter b, intensity parameter /.
X =log(Vju +3)/1)
(8, U1, U,,U3) = HOSVD(X) or (S, Uy, Uy, Us) = HOOI(X)
UL = b0y, fork=1,2,3
SO =§/p3
return (S©, U, UL U)

Assumption 4.1 requires that the loading Uy, satisfies the incoherence condition, that is, the
amplitude of the tensor is “balanced” in all parts. Previously, the incoherence condition and its
variations were commonly used in the matrix estimation literature (Candes and Recht (2009),
Ma and Ma (2017)) and Poisson-type inverse problems (e.g., Poisson sparse regression Jiang,
Raskutti and Willett (2015), Assumption 2.1, Poisson matrix completion Cao and Xie (2016),
Equation (10), compositional matrix estimation Cao, Zhang and Li (2020), Equation (7),
Poisson auto-regressive models (Hall, Raskutti and Willett (2016))). Assumption 4.1 also
requires an upper bound on the spectral norm of each matricization of the core tensor S*.
Together with the incoherence condition on UZ, this condition guarantees that X'* is entry-
wise upper bounded by B. In fact, the entry-wise bounded assumption is also widely used in
high-dimensional matrix/tensor generalized linear models since it guarantees the local strong
convexity and smoothness of the negative log-likelihood function (Ma and Ma (2017), Wang
and Li (2020), Xu, Hu and Wang (2019)).

Next, we set ({Ck}/3<=1, Cs) as follows:

C = {Uk € R [Up .o < b /M},
Pk

1—[3
Cs = {5 € R'X"2X73  max | My (S)| <b™>B j;lp"}
k Iy ik

(4.6)

Specifically for the Poisson tensor PCA, we can prove that if Assumption 4.1 holds, the loss
function (4.5) satisfies RCG(«, 8, {Ck},%:1 , Cs) for constants «, 8 that only depend on / and
B (see the proof of Theorem 4.3 for details). We can also show that the following Algorithm 4
provides a sufficiently good initialization with high probability.

Now we establish the estimation error upper bound for Algorithms 1 and 4.

THEOREM 4.3. Suppose Assumption 4.1 holds and I > C; max{p, A~2 213{:1 (p—irx +
DPirk)}, where p_i := p1p2p3/ pk. Then with probability at least 1 — c¢/(p1 pap3), the output
of Algorithms 1 and 4 yields

3
| X — X*||% <CyI ! <r1r2r3 + Zpkrk).
k=1

Here Cy, C, are constants that do not depend on py or ry.

We further consider the following class of low-rank tensors ), ,, where the restrictions in
Fp,r correspond to the conditions in Theorem 4.3:

Ui € Opp s 1013 o < B2, ]

— Pk

4.7 Fpr=3X=[S5;U;,U,, Us| : e
4.7 p.r [[ 1, Y2 3]] max; ”Mk(s) ” <B Hl;[kzlpk
k=1MkTk
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With some technical conditions on tensor rank and the intensity parameter, we can develop
the following lower bound in estimation error for Poisson PCA.

THEOREM 4.4 (Lower Bound for Poisson tensor PCA). Assume r < Cy pl/ 2 r>Cyand
ming ug > C3 for constants C1, Cp, C3 > 1. Suppose one observes ) € RP1>*P2XP3 yhere
Yk ~ Poisson(I exp(Xjy;)) independently, X € F ,, and 1 > cq. There exists a uniform
constant c that does not depend on py or ry, such that

3
inf sup Ellé\? — X||12: > cl™! rirr; + Z Pkrk |-
X XeFp, k=1

Theorems 4.3 and 4.4 together yield the optimal rate of estimation error for Poisson tensor
PCA problem over the class of F) :

3
inf sup E[X — X||12: =71 <r1r2r3 + Z pkrk>.
X XeFp, k=1

4.4. Binomial tensor PCA. The binomial tensor data commonly arise in the analysis of
proportion when raw counts are available. For example, in the Human Mortality Database
(Wilmoth and Shkolnikov (2006)), the number of deaths and the total number of population
are summarized into a three-way tensor, where the x-, y-, z-coordinates are counties, ages,
and years, respectively. Given the sufficiently large number of population in each country,
one can generally assume that each entry of this data tensor satisfies the binomial distribution
independently.

Suppose we observe a count tensor ) € NP1*P2XP3 and a total population tensor N €
NP1*P2%P3 guch that ) g ~ Binomial(N, P;‘kl) independently. Here, P* € [0, 1]P1*P2XP3
is a probability tensor linked to an underlying latent parameter X™* € RP1*P2*P3 through
P;-‘kl =s(X ]’.“kl), where s(x) = 1/(1 + e™¥) is the sigmoid function. Our goal is to estimate
X*. To this end, we consider to minimize the following loss function:

LX) ==Y (PjuXju +log(l — o (X)),
Jkl

where Pk := Vi1 /Njxi-

We assume X* satisfies Assumption 4.1 for the same reasons as in Poisson tensor PCA. We
propose to estimate P* by applying Algorithm 5 (initialization) and Algorithm 1 (projected
gradient descent) with the following constraint sets:

Cp = {Uk € R [Uglla.oo < b | KK }
Pk

I—[3
Co = {s e R max | Mi(S)| < b3 B f;ﬂ”‘}
k Iy krk

We have the following theoretical guarantee for the estimator obtained by Algorithms 1
and 5 in binomial tensor PCA.

THEOREM 4.5 (Upper Bound for Binomial Tensor PCA). Suppose Assumption 4.1 is
satisfied and N = min -N’jkl satisfies N > C1 max{p, A‘Z Yk (p—krk + pkri)}. Then with
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Algorithm 5 Initialization for Binomial Tensor PCA

Require: YV, N € NP1*P2XP3 Tucker rank (rq, r7, r3), scaling parameter b

=, Vin+1/2 .
Xjk = log(,\m), Vi k1l

(8, U1, Uy, U3) =HOSVD(X) or (8, Uy, Uy, Us) = HOOI(X)
U = b0y, fork=1,2,3

SO =8/p3

return (S©, U, U, UY)

probability at least 1 — c/(p1p2p3), we have the following estimation upper bound for the
output of Algorithms 1 and 5:

3
| & — 2% < N <r1r273 + ZPk”k)-
k=1

Here, C1, Cy are some absolute constants that do not depend on py or ry.

REMARK 4.4. We assume N > C| max{p, A2 >« (p—krk + prrr)} in Theorem 4.5 as

a technical condition to prove the estimation error upper bound of X. N here essentially
characterizes the signal-noise ratio of the binomial tensor PCA problem.

Let ), be the class of low-rank tensors defined in (4.7). We can prove the following lower
bound result, which establishes the minimax optimality of the proposed procedure over the
class of ) ; in binomial tensor PCA.

THEOREM 4.6 (Lower Bound for Binomial Tensor PCA). Denote N = min jj j\/'jkl. As-
sumer < C1pl/2, r > Cp and ming puy > C3 for some constants C1, Ca, C3 > 1. Suppose one
observes ) € NP1*P2XP3 'where )i ~ Binomial(Njx;, 0 (Xjk1)) independently, X* € F r,
and max jkl/\/‘jkl < Cminjy /\/jkl- There exists constant c that does not depend on py, or ry,
such that

3
inf sup |X = X|E=cNTHrirars+ Y paric ).
X XeFpr k=1

5. Rank selection. The tensor rank (r1, 72, r3) is required as an input to Algorithm 1
and plays a crucial role in the proposed nonconvex optimization framework. While various
empirical methods have been proposed for rank selection in specific applications of low-rank
tensor estimation (e.g., Yokota, Lee and Cichocki (2017)), there is a paucity of theoretical
guarantees in the literature. In this section, we provide a rank estimation procedure with
provable guarantees. Recall that in each application in Section 4, we first specify the initial-
ization X© = [S©; UgO), Uéo), Ugo)]] based on a spectral algorithm on some preliminary
tensor X (see their definitions in Algorithms 2—5). Since X reflects the target tensor X'*
and o3 (M (X™*)) =0 for s > ry + 1, we consider the following rank selection method by
exploiting the singular values of X’:

(5.1) fr=max{r : o, (Mp(X)) = 1}, k=1,2,3.

Here, t; > 0 is the thresholding level whose value depends on specific problem settings. Next,
we specifically consider the sub-Gaussian tensor PCA and tensor regression.
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PROPOSITION 5.1.  Suppose rank(X™*) = (r1,r2,13), ri = o(pr), px = o(p—x). Define
rr as (5.1) and

(5.2) 8 :=Median|o; (M (X)), ..., 0 (M (X))}

(a) In sub-Gaussian tensor PCA (Section 4.1), we set X = Y, tx = 1.58. Suppose ) >
Cpo. Then, we have ri = ri, Yk € [d] with probability at least 1 — Ce “P,
(b) In low-rank tensor regression (Section 4.2), we set X = % "1 viAi, te = 1.58;. Sup-

pose n > Ck p>r3/?logr and A > C%. Then, 7y = ry, Vk € [d] with probability at least
1—Ce™cP,

In practice, we can also apply a simple criterion of the cumulative percentage of total
variation (Jolliffe (1986), Chapter 6.1.1) originating from principle component analysis:

r Pk
(5.3) Fr =argminir: Y o (Mp(X))/ D 0 (M (X)) = ,o}

i=1 i=1
Here, p € (0, 1) is some empirical thresholding level. We will illustrate this principle on real

data analysis in Section 7.2. Under the general deterministic setting, the accurate (or optimal)
estimation of tensor rank may be much more challenging and we leave it as future work.

6. Extensions to general order-d tensors. While our previous sections mainly focus
on order-3 tensor estimation, our results can be generalized to the order-d low-rank tensor
estimation with the key ideas outline in this section. First, the constraint set C, RCG condition
and noise quantity & can be defined similarly by replacing the order-3 tensor with the general
low-rank order-d tensors; second, the local convergence analysis can be similarly conducted
as Theorem 3.1. Define

E®:= min Z||U<’>_Usz||%+||s<’>—[[s*;RT,...,R}]]II%}-

We can build the equivalence between E) and
%0 - 22+ 2 U0 U~ 571,

by setting b < 24D anda = 7. Then, we can establish the following theoretical guarantee

under a good initialization.

THEOREM 6.1 (Informal). Suppose L satisfies RCG(a, 8,C) and assume k,«, B are
constants. Assume X* = [[S*; U7, ..., U}l and the initialization X0 = 8O, U%O), e
Ua(,o)]] satisfy
©.) U =u"u? =p?1,,  ULUD e, k=1,....d; 5% 8% eCs.

Suppose the initialization error satisfies | X© — X*|| < cyA* and the signal-noise-ratio sat-
isfies 12 > Cq&2. Then, by taking step size n < cqab™%¢, the output of Algorithm 3.1 satisfies

| O — 2% |f < CHE* + (1 — i)' | @ — 27 ).

Here, Cy,cq4,C 21, c/d are constants only depending on d.
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TABLE 2
Minimax optimal estimation error bounds for order-d low-rank tensor estimation in specific applications
(d = 2). Here, for simplicity,r1 =rp=ry=r,py=py=p3=pandr < p1/2

Application SNR condition Estimation error Lower bound
sub-Gaussian tensor-PCA Lo > pd/Ap1/d+D) oZ(pr +r9) o2(pr +rd)
Tensor regression n>pd/2y n~lo2(pr +rd) n~Lo2(pr +rd)
Poisson tensor-PCA VIL> p(d /2,172 I~ (pr +r9) I=Y(pr +r?)
Binomial tensor-PCA VN> pld=D/2,1/2 N=L(pr+rd) N=L(pr +rd)

It is worth mentioning that Theorem 6.1 applies to low-rank matrix estimation (i.e., d = 2):
suppose X* = UrS*U3 T and X© = UVSOUPT for Uy, U e R7e*, §%, SO e R™", we
have

X = X*[f < C(e2+ (1 — e [XO = X*[}).

While this framework is more complicated than necessary since one can always decompose
a low-rank matrix as the product of two factor matrices X = U 1U2T without explicitly intro-
ducing the “core matrix” S € R"*" (see our previous discussions in Section 3.3).

Based on Theorem 6.1, we can further extend the minimax optimal bounds for the pro-
posed procedure in each application of Section 4, that is, Theorems 4.1-4.6 to high-order
scenarios. We summarize the results to Table 2.

7. Numerical studies.

7.1. Synthetic data analysis. In this section, we investigate the numerical performance of
the proposed methods on the problems discussed in Section 4 with simulated data. We assume
the true rank (r1, r, r3) is known to us and the algorithm only involves two tuning parameters:
a and b. According to Theorem 3.1, a proper choice of a and b primarily depends on the
unknown value A. In practice, we propose to use the initial estimate X'©) as an approximation

of X*, use A9 = maxy [ Mx(X@)| as a plug-in estimate of A, then choose a = 20 b=
(X(O)) 174 We consider the following root mean squared error (RMSE) to assess the estimation
accuracy in all settings:

7.1) Loss(X, X*) = (p1pap3) 2| & — X .

Average loss over 100 repetitions are reported in following different scenarios.

Tensor Regression. We investigate the numerical performance of the proposed procedure
in low-rank tensor regression discussed in Section 4.2. For all simulation settings, we first
generate an ri-by- rz -by-r3 core tensor S with i.i.d. standard Gaussian entries and rescale it
asS=8-1/ mmk 10r (M (S)). Here, A quantifies the signal level and will be specified
later. Then we generate Uy uniformly at random from the Stiefel manifold O, ,, and cal-
culate the true parameter as X'™* = [[S; Uy, Uy, U3]l. The rescaling procedure here ensures
that min oy, (M (X*)) > L. Now, we draw a random sample based on the regression model
(4.2).

We aim to compare the proposed method (Algorithms 1 and 3) with the initialization es-
timator (Algorithm 3 solely), Tucker regression method,! and MLE. Since the MLE corre-
sponds to the global minimum of the rank-constrained optimization (2.2) and is often com-
putationally intractable, we instead consider a warm-start gradient descent estimator, that is,

IThe implementation is based on (Zhou (2017), Zhou, Li and Zhu (2013)).



GENERALIZED TENSOR ESTIMATION

21

0.1
- »-GD (this paper) ; - »-GD (this paper)
0.08F~. R - © ~MLE (oracle) 0.1, - © -MLE (oracle)
LI - 8 -Tucker-Reg & - & -Tucker-Reg
0.06 & “ =, |- *-Moment Initialization| | 0.08 S - » -Moment Initialization| |
o o - N @ LN
3 e \s\ 80.06 % =
0.045 _ RO Pe. . %m %
“D\\ “"-N_‘N 0.04 R \‘\ RN
. ; “SmecEp b~ BTl
> » - ~. a
0.02 e v 0.02 ~ 5 s
. R=Sup sl h S b
0 ~°'_‘0‘“‘?'--0:—‘-?—:3—'0“*1? 0 >""9‘“—-9-——-32::§:::— ===
400 600 800 1000 20 30 40 50
Sample Size Tensor Dimension
FIG. 1. Average estimation errors in low-rank tensor regression. The MLE (oracle) is approximated by running

gradient descent with the initialization chosen at X*, which would not be useable in practice. Here,r =3, A =2,
o = 1. Left panel: p =30, n € [300, 1000]. Right panel: p € [25,50], n = 1.2p3/2r.

performing Algorithm 1 starting from the true parameter X'*. We expect that the output of
this procedure can well approximate MLE. We implement all four procedures under two set-
tings: () pr=p2=p3=p=30,r1=r=r3=r=5,A=2,0 =1, n varies from 300
to 1000; and (b) p varies from 20 to 50, r =3,A = 2,0 = 1, n = 1.2p3/?r. The results
are collected in Figure 1. We see from the left panel that for small sample size (n < 600),
the proposed gradient descent method significantly outperforms the Tucker regression and
initialization estimator while has larger estimation errors than MLE. When the sample size
increases (n > 700), the performance of the proposed gradient descent and Tucker regres-
sion algorithms tend to be as good as MLE. Compared to the initialization, gradient descent
achieves a great improvement on the estimation accuracy. The right panel of Figure 1 shows
that the gradient descent performs as good as the warm-start gradient descent asymptotically
and is significantly better than the initialization and Tucker regression estimators.

Poisson Tensor PCA. Next, we study the numerical performance of the proposed procedure
on Poisson tensor PCA. As mentioned earlier in Section 4.3, we found that the projection
steps in Algorithm 1 are not essential to the numerical performance, thus we apply Algo-
rithm 1 without the projection steps there in all numerical experiments for Poisson tensor
PCA.

For each experiment, we first generate a random core tensor S € R"*"2*"3 with i.i.d.
standard normal entries and random orthogonal matrices Uy uniformly on Stiefel manifold
QPk*"k Then we calculate X = S x| U; x2 Uy x3 Uz and rescale it as X* = X - B/||/"E||OO
to ensure that each entry of X* is bounded by B. Now, we generate a count tensor ) €
NP1XP2xP3: 351 ~ Poisson(/ exp(é\,’j’-‘k,)) independently, and aim to estimate the low-rank
tensor X'* based on ). In addition to the proposed method, we also consider the base-
line methods of Poisson-HOSVD and Poisson-HOOI that perform HOSVD and HOOI on
log((Y +1/2)/1) (i.e., Algorithm 4).

First, we fix p = 50,r =5, vary the intensity value /, and study the effect of / to the
numerical performance. As we can see from Figure 2, for low intensity, the gradient method
is significantly better than two baselines (left panel); for high intensity, three methods are
comparable while the Poisson gradient descent is the best (right panel). Next, we study their
performance for different tensor dimensions and ranks. In the left panel of Figure 3, we set
r =5 and vary p from 30 to 100; in the right panel of Figure 3, we fix p = 50 and vary r from
5 to 15. As one can see, our method significantly outperforms the baselines in all settings.
All these simulation results illustrate the benefits of applying gradient descent on the Poisson
likelihood function.
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FIG. 2. Average estimation error of Poisson tensor PCA. Here p =50, r =5, B = 2. Left panel: intensity
parameter I € [0.5,2]. Right panel: I € [2,20].

Binomial Tensor PCA. We generate X'™* in the same way as the Poisson tensor PCA set-
tings. Suppose we observe ) € NP1*P2XP3 geperated from

Yjki ~ Binomial(Njks, s(X7y;)),  independently.

We take all entries with the same population size (i.e., N ik = N) for simplification. We can
see from the simulation results in Figure 4 that a larger population size N yields smaller
estimation error. In addition, according to Theorem 3.1, the estimation error in theory is of
order O( p‘l/ 2r1/2), which matches the trend of estimation error curves in Figure 4.

7.2. Real data analysis. In this section, we apply the proposed framework to real data
applications in 4D-STEM image denoising. An additional real data example on click-through
prediction is postponed to Appendix B in the Supplementary Material.

The 4D-scanning transmission electron microscopy (4D-STEM) is an important tech-
nique in modern material science that has been used to detect local material composition of
structures such as films, defects and nanostructures (Krivanek, Dellby and Lupini (1999),
Yankovich et al. (2016)). In 4D-STEM imaging technology, a focused probe is usually
rastered across part of the specimen and an X-ray and/or electron energy loss spectrum is
recorded at each probe position, generating a series of photon-limited images. The data gen-
erated from 4D-STEM technique are typically order-4 tensors with approximate periodic

0.4 0.5
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FI1G. 3. Average estimation error of Poisson tensor PCA with different dimensions and ranks. Here, B = 2,
I = 1. Left panel: r =5, p €[30,300]. Right panel: p =50, r €[5, 15].
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FI1G. 4. Average estimation error of binomial tensor PCA. Here, B = 2. Left panel: r =5, p € [30, 100]. Right
panel: p=50,r € [5:15].

structures, as a focused probe is located on a 2-D grid and one 2-D image is generated for
each probe position (see Yankovich et al. (2016) for more details). Due to the physical condi-
tions, the observable images are often photon-limited, highly noisy, and in the form of count
matrices (see the second row of Figure 5 for an example). A sufficient imaging denoising is
often a crucial first step before the subsequent procedures.

We aim to illustrate the merit of the proposed method through denoising of data in 4D-
STEM experiments. Specifically, we collect 160 images generated from a row of electron
probe positions.? Since the resolution of each image is 183 x 183, the data images can be
stacked into a nonnegative tensor of size 160 x 183 x 183. We assume the observational

images ) are generated from Poisson distribution ); jx Lk Poisson(exp(X[‘j‘. ). Our goal is
to recover the original images based on the photon-limited observation ). Since ) is sparse
(~ 88% pixels are zero), we take the pre-initializer X = log()+ 1/30) and take the input rank
according to the (5.3) with p = 0.98. We apply the proposed gradient descent (Algorithms
1 and 4) with the rank estimation (71, 72, #3) = (44, 36, 34) to obtain the estimator X, then
calculate exp()% ) as the collection of denoised images. We also denoise these images one
by one via the matrix Procrustes flow (Park et al. (2018)), a variant of the matrix-version
gradient descent method.? The original, observational, and recovered images are provided
in Figure 5. In addition, we calculate the recovery loss for each of the 160 images, that is,
| exp(X7) — exp(zﬁg;) e/ |l exp(X}:.)|IF, and the averaged recovery loss (and standard error)
of matrix and tensor methods are 0.861 (0.183) and 0.303 (0.054), respectively. One can
clearly see the advantage of the proposed tensor method that utilizes the tensor structure of
the whole set of images.

8. Discussions. In this paper, we introduce a nonconvex optimization framework for
the generalized tensor estimation. Compared to the convex relaxation methods in the litera-
ture, the proposed scheme is computationally efficient and achieves desirable statistical error
rate under suitable initialization and signal-to-noise ratio conditions. We apply the proposed

2Simultaneously denoising the order-4 image data requires extremely large memory and computation source.
Thus we focus on one row of images. It is also common to perform row-wise image denoising in 4D-STEM
imaging analysis (Yankovich et al. (2016)).

3This algorithm also requires the specification of matrix rank. We empirically choose 7 = argmin{r :

I 02(X)/ X% 02 (X) > 0.98} for each slice of the pre-initializer X = ;...
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FIG. 5. Recovery results for the first five images of 4D-STEM data. First row: original images; second row:
photon-limited observations; third row: denoised images by matrix method; forth row: denoised images by the
proposed tensor method.

framework on several problems, including sub-Gaussian denoising, tensor regression, Pois-
son and binomial tensor PCA. We can show that the proposed gradient descent procedure
achieves the minimax optimal rate of estimation error under these statistical models.

In addition to the above-mentioned problems, the proposed framework can incorporate a
broader range of settings. For example, the developed result is applicable to solve the noisy
tensor completion problem (Cai et al. (2019), Montanari and Sun (2018), Shah (2018), Xia,
Yuan and Zhang (2021)), which aims to recover the low-rank tensor X* based on a number
of noisy observable entries, say {);jx = Xl’; « T Zijk}i, jkee, where 2 is a subset of indices.

Another example is binary tensor PCA (Wang and Li (2020)), where the central goal
is to factorize the tensor from 0-1 valued observations. Suppose one observes Yjjx ~
Bernoulli(P; ) independently, where P; i = s(Xi"J‘. )» X* is low-rank, and s(-) is some link
function. Then the proposed projected gradient descent method can be applied to estimate
X* with provable guarantees.

Community detection in social network has attracted enormous recent attention. Although
most of the existing results focused on a single-layer of network, the multilayer network, that
is, the connections between different nodes are reflected in multiple modalities, also com-
monly appear in practice (Han, Xu and Airoldi (2015), Lei, Chen and Lynch (2020), Pensky
and Zhang (2019)). Consider a stack of multilayer network data with shared community struc-
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ture. It is reasonable to assume that the adjacency tensor A has a low-rank tensor structure:
A ~ Bernoulli(X*) independently, where X* = [S*, Z*, Z*, T*]|, Z* is the latent space of
nodes features (or the indicator matrix for the community that each node belongs to), and
T* models the trend along the time. Then the community detection for multilayer networks
essentially becomes the generalized tensor estimation problem.

In addition to the standard linear regression model discussed in Section 4.2, the proposed
framework can be applied to a range of generalized tensor regression problems. Recall that
the classical generalized linear model focuses on an exponential family, where the response
y; satisfies the following density or probability mass function (Wedderburn (1974)),

y6; — b(6;)
a(¢)

Here, a, b, c are prespecified functions determined by the problem; 6; and ¢ > 0 are natural
and dispersion parameters, respectively. For the generalized tensor regression, it is natural to
relate the tensor covariate and response (Zhou, Li and Zhu (2013)) via

(8.2) wi =E(y;i|X*), g(ui) = (A, X¥),

where g(-) is a link function. To estimate X™*, we can apply the proposed Algorithm 3 on the
negative log-likelihood function

8.1) p(y,-|9,-,¢)=exp{ +c(y,¢)}.

= ib — b)) | ¢
Jir T c(v:
; @) +; (is #),
where 6; is determined by (8.1) and (8.2).

Some other possible applications of the proposed framework include the high-order in-
teraction pursuit (Hao, Zhang and Cheng (2020)), generalized regression among multiple
modes (Xu, Hu and Wang (2019)), mixed-data-type tensor data analysis (Baker, Tang and
Allen (2020)), etc. In all these problems, by exploring the log-likelihood of data and the do-
main C that satisfies RCG condition, the proposed projected gradient descent can be applied
and the theoretical guarantees can be developed based on the proposed framework.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“An optimal statistical and computational framework for generalized
tensor estimation” (DOI: 10.1214/21-A0S2061SUPP; .pdf). This supplement file includes
the pseudo-codes of higher-order SVD (HOSVD), higher-order orthogonal iteration (HOOI),
HeteroPCA, all proofs of main results, and technical lemmas.
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