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This paper studies the statistical and computational limits of high-
order clustering with planted structures. We focus on two clustering models,
constant high-order clustering (CHC) and rank-one higher-order clustering
(ROHC), and study the methods and theory for testing whether a cluster ex-
ists (detection) and identifying the support of cluster (recovery).

Specifically, we identify the sharp boundaries of signal-to-noise ratio for
which CHC and ROHC detection/recovery are statistically possible. We also
develop the tight computational thresholds: when the signal-to-noise ratio
is below these thresholds, we prove that polynomial-time algorithms cannot
solve these problems under the computational hardness conjectures of hyper-
graphic planted clique (HPC) detection and hypergraphic planted dense sub-
graph (HPDS) recovery. We also propose polynomial-time tensor algorithms
that achieve reliable detection and recovery when the signal-to-noise ratio is
above these thresholds. Both sparsity and tensor structures yield the compu-
tational barriers in high-order tensor clustering. The interplay between them
results in significant differences between high-order tensor clustering and ma-
trix clustering in literature in aspects of statistical and computational phase
transition diagrams, algorithmic approaches, hardness conjecture, and proof
techniques. To our best knowledge, we are the first to give a thorough char-
acterization of the statistical and computational trade-off for such a double
computational-barrier problem. Finally, we provide evidence for the compu-
tational hardness conjectures of HPC detection (via low-degree polynomial
and Metropolis methods) and HPDS recovery (via low-degree polynomial
method).

1. Introduction. The high-dimensional tensor data have been increasingly prevalent in
many domains, such as genetics, social sciences, engineering. In a wide range of applications,
unsupervised analysis, in particular the high-order clustering, can be applied to discover the
hidden modules in these high-dimensional tensor data. For example, in microbiome studies,
microbiome samples are often measured across multiple body sites from multiple subjects
(Faust et al. (2012), Flores et al. (2014)), resulting in the three-way tensors with subjects,
body sites, and bacteria taxa as three modes. It has been reported that multiple microbial taxa
can coexist within or across multiple body sites and subjects can form different subpopula-
tions (Faust et al. (2012)). Similar data structures can also be found in multi-tissue multi-
individual gene expression data (Wang, Fischer and Song (2019)). Mathematically, these pat-
terns correspond to high-order clusters, that is, the underlying multi-way block structures in
the data tensor. We also refer readers to the recent survey (Henriques and Madeira (2019)) on
high-order clustering in applications.

In the literature, a number of methods have been proposed for triclustering or high-order
clustering of tensor data, such as divide and conquer (Li and Tuck (2009)), seed growth
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(Sim, Aung and Gopalkrishnan (2010)), stochastic approach (Amar et al. (2015)), exhaustive
approaches (Jiang et al. (2004)), pattern-based approach (Ji, Tan and Tung (2006)), etc. How-
ever, the theoretical guarantees for those existing procedures are not well established to our
best knowledge.

This paper aims to fill the void of theory in high-order clustering. Suppose we observe an
n1 × · · · × nd -dimensional order-d tensor Y that satisfies

(1) Y =X +Z,

where X ∈R
n1×···×nd is the underlying signal with planted structure and Z is the noise that

has i.i.d. standard normal distributed entries. Our goal is to detect or recover the “planted
structure” of the signal X . The specific problems in this paper are listed below.

1.1. Problem formulations. First, we consider the signal tensor X that contains a con-
stant planted structure:

X ∈ XCHC(k,n, λ),

XCHC(k,n, λ) = {λ′1I1 ◦ · · · ◦ 1Id
: Ii ⊆ [ni], |Ii | = ki, λ

′ ≥ λ
}
.

(2)

Here, “◦” denotes the vector outer product, 1Ii
is the ni-dimensional indicator vector such

that (1Ii
)j = 1 if j ∈ Ii and (1Ii

)j = 0 if j /∈ Ii ; λ represents the signal strength. We col-
lectively denote k = (k1, . . . , kd) and n = (n1, . . . , nd) for convenience. The support of the
planted structure of X is denoted as S(X ) := (I1, . . . , Id). We refer to this model (1)(2) as
the constant high-order clustering (CHC). The constant planted clustering model in tensor or
matrix biclustering (BC) data has been considered in a number of recent literature (see, e.g.,
Brennan, Bresler and Huleihel (2018), Brennan, Bresler and Huleihel (2019), Butucea and
Ingster (2013), Butucea, Ingster and Suslina (2015), Cai, Liang and Rakhlin (2017), Chen
and Xu (2016), Chi, Allen and Baraniuk (2017), Kolar et al. (2011), Sun and Nobel (2013),
Xia and Zhou (2019)).

We also consider a more general setting that X contains a rank-one planted structure:

(3) X ∈ XROHC(k,n,μ), XROHC(k,n,μ) = {μ′v1 ◦ · · · ◦ vd : vi ∈ Vni ,ki
,μ′ ≥ μ

}
,

where

Vn,k := {v ∈ S
n−1 : ‖v‖0 ≤ k and k−1/2 ≤ |vi | ≤ Ck−1/2 for i ∈ S(v)

}
, C > 1

is the set of all k-sparse unit vectors with near-uniform magnitude. Here S(v) denotes the
support of the vector v and its formal definition is given in Section 2. Throughout the paper,
we refer to the model in (1)(3) as the rank-one high-order clustering (ROHC). Especially if
d = 2, that is, in the matrix case, this model (rank-one submatrix (ROS)) was considered in
Brennan, Bresler and Huleihel (2018), Busygin, Prokopyev and Pardalos (2008), Madeira and
Oliveira (2004), Sun and Nobel (2013). For both models, we hope to answer the following
questions on detection (PD) and recovery (PR):

PD When we can detect if any high-order cluster exists and when such conclusion cannot be
made. To be specific, consider the following hypothesis tests:

CHCD(n,k, λ) : H0 :X = 0 v.s. H1 :X ∈ XCHC(k,n, λ),

ROHCD(n,k,μ) : H0 :X = 0 v.s. H1 :X ∈ XROHC(k,n,μ),
(4)

we ask when there is a sequence of algorithms that can achieve reliable detection, that
is, both type-I and II errors tend to zero.
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PR How to recover the support of the cluster when it exists. Specifically, we assume H1
holds and aim to develop an algorithm that recovers the support S(X ) based on the ob-
servation of Y . Denote the CHC and ROHC recovery problems considered in this paper
as CHCR(n,k, λ) and ROHCR(n,k,μ), respectively. We would like to know when there
exists a sequence of algorithms that can achieve reliable recovery, that is, the probability
of correctly recovering S(X ) tends to one.

We study the performance of both unconstrained-time algorithms and polynomial-time
algorithms for both detection PD and recovery PR . The class of unconstrained algorithms
includes all procedures with unlimited computational resources, while an algorithm that runs
in polynomial-time has access to poly(n) independent random bits and must finish in poly(n)

time, where n is the size of input. For convenience of exposition, we assume the explicit
expressions can be exactly computed and N(0,1) random variable can be sampled in O(1)

time.

1.2. Main results. In this paper, we give a comprehensive characterization of the statisti-
cal and computational limits of the detection and recovery for both CHC and ROHC models.
Denote n := maxi ni , k := maxi ki , and assume d is fixed. For technical convenience, our
discussions are based on two asymptotic regimes:

∀i ∈ [d], ni →∞, ki →∞ and ki/ni → 0;(A1)

or for fixed 0 ≤ α ≤ 1, β ∈R , n →∞, n1 = · · · = nd = �̃(n),

k = k1 = · · · = kd = �̃
(
nα), λ = �̃

(
n−β), μ/

√
kd = �̃

(
n−β).(A2)

In (A2), α and β represent the sparsity level and the signal strength of the cluster, respectively.
The cluster becomes sparser as α decreases and the signal becomes stronger as β decreases.
A rescaling of μ in (A2) is to make the magnitude of normalized entries in cluster of ROHC to
be approximately one, which enables a valid comparison between the computational hardness
of CHC and ROHC.

The following informal statements summarize the main results of this paper.

THEOREM 1 (Informal: Phase transitions in CHC). Define

βs
CHCD

:= (dα − d/2) ∨ (d − 1)α/2, βs
CHCR

:= (d − 1)α/2,

βc
CHCD

:= (dα − d/2) ∨ 0, βc
CHCR

:= ((d − 1)α − (d − 1)/2
)∨ 0.

(5)

Under the asymptotic regime (A2), the statistical and computational limits of CHCD(k,n, λ)

and CHCR(k,n, λ) exhibit the following phase transitions:

• CHC Detection:

(i) β > βs
CHCD

: reliable detection is information-theoretically impossible.
(ii) βc

CHCD
< β < βs

CHCD
: the computational inefficient test ψs

CHCD
in Section 4.1 suc-

ceeds, but polynomial-time reliable detection is impossible based on the hypergraphic
planted clique (HPC) conjecture (Conjecture 1).

(iii) β < βc
CHCD

: the polynomial-time test ψc
CHCD

in Section 4.2 based on combination of
sum and max statistics succeeds.

• CHC Recovery:

(i) β > βs
CHCR

: reliable recovery is information-theoretically impossible.
(ii) βc

CHCD
< β < βs

CHCR
: the exhaustive search (Algorithm 1) succeeds, but polynomial-

time reliable recovery is impossible based on HPC conjecture (Conjecture 1) and
hypergraphic planted dense subgraph (HPDS) recovery conjecture (Conjecture 2).
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TABLE 1
Phase transition and algorithms for detection and recovery in CHC and ROHC under the asymptotic regime

(A2). Here, easy, hard, and impossible mean polynomial-time solvable, unconstrained-time solvable but
polynomial-time unsolvable, and unconstrained-time unsolvable, respectively

CHCD CHCR ROHCD & ROHCR

Impossible λ2 
 nd

k2d ∧ 1
kd−1 λ2 
 1

kd−1
μ2

kd 
 1
kd−1

Hard nd

k2d ∧ 1
kd−1 � λ2 
 nd

k2d ∧ 1 1
kd−1 � λ2 
 nd−1

k2(d−1) ∧ 1 1
kd−1 � μ2

kd 
 nd/2

kd ∧ 1

Algorithms ψs
CHCD

Alg 1 ψs
ROHCD

& Alg 2

Easy λ2 � nd

k2d ∧ 1 λ2 � nd−1

k2(d−1) ∧ 1 μ2

kd � nd/2

kd ∧ 1

Algorithms ψc
CHCD

Algs 3 and 5 ψc
ROHCD

& Algs 3 and 4

(iii) β < βc
CHCD

: the combination of polynomial-time Algorithms 3 and 5 succeeds.

THEOREM 2 (Informal: Phase transitions in ROHC). Define

βs
ROHC = βs

ROHCD
= βs

ROHCR
:= (d − 1)α/2,

βc
ROHC = βc

ROHCD
= βc

ROHCR
:= (αd/2 − d/4) ∨ 0.

(6)

Under the asymptotic regime (A2), the statistical and computational limits of ROHCD(k,n,

μ) and ROHCR(k,n,μ) exhibit the following phase transitions:

(i) β > βs
ROHC: reliable detection and recovery are information-theoretically impossible.

(ii) βc
ROHC < β < βs

ROHC: the computational inefficient test ψs
ROHCD

in Section 4.1 succeeds
in detection and the search Algorithm 2 succeeds in recovery, but polynomial-time re-
liable detection and recovery are impossible based on the HPC conjecture (Conjecture
1).

(iii) β < βc
ROHC: the polynomial-time test ψc

ROHCD
in Section 4.2 succeeds in detection and

the combination of polynomial-time Algorithms 3 and 4 succeeds in recovery.

In Table 1, we summarize the statistical and computational limits in Theorems 1 and 2
in terms of the original parameters k, n, λ, μ and provide the corresponding algorithms that
achieve these limits.

We also illustrate the phase transition diagrams for both CHC, ROHC (d ≥ 3) in Figure 1,
Panels (a) and (c). When d = 2, the phase transition diagrams in Panels (a) and (c) of Figure 1
reduce to constant biclustering (BC) diagram (Brennan, Bresler and Huleihel (2018), Cai,
Liang and Rakhlin (2017), Chen and Xu (2016), Ma and Wu (2015)) and rank-one submatrix
(ROS) diagram (Brennan, Bresler and Huleihel (2018)) in Panels (b) and (d) of Figure 1.

1.3. Comparison with matrix clustering and our contributions. The high-order (d ≥ 3)
clustering problems show many distinct aspects from their matrix counterparts (d = 2). We
summarize the differences and highlight our contributions in the aspects of phase transition
diagrams, algorithms, hardness conjecture, and proof techniques below.

(Phase transition diagrams) We can see the order-d (d ≥ 3) tensor clustering has an ad-
ditional regime: (2-2) in Figure 1 Panel (c). Specifically if d = 2, CHCR , ROHCR become
BCR , ROSR that share the same computational limit and there is no gap between the statisti-
cal limit and computational efficiency for α = 1 in ROSR (see Panels (b) and (d), Figure 1). If
d ≥ 3, we need a strictly stronger signal-to-noise ratio to solve ROHCR than CHCR and there
is always a gap between the statistical optimality and computational efficiency for ROHCR .
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FIG. 1. Statistical and computational phase transition diagrams for constant high-order and rank-one high-
-order (d ≥ 3) clustering models (CHC and ROHC) (left two panels) and constant biclustering and rank-one
submatrix (d = 2) clustering models (BC and ROS) (right two panels) under asymptotic regime (A2). Meaning
of each region: (1) all problems detection and recovery both easy; (2),(2-1),(2-2) all problems detection hard and
recovery hard; (3) CHC and BC detection easy and recovery hard; (4) CHC and BC detection easy and recovery
impossible; (5) all problems detection and recovery impossible.

This difference roots in two level computation barriers, sparsity and tensor structure, in high-
order (d ≥ 3) clustering. To our best knowledge, we are the first to characterize such double
computational barriers.

(Algorithms) In addition, we develop new algorithms for high-order clustering. For CHCR

and ROHCR , we introduce polynomial-time algorithms Power-iteration (Algorithm 4),
Aggregated-SVD (Algorithm 5), both of which can be viewed as high-order analogues of
the matrix spectral clustering. Also, see Section 1.4 for a comparison with the methods in the
literature. We compare these algorithms and the exhaustive search (Algorithms 1 and 2) un-
der the asymptotic regime (A2) in Figure 2. Compared to matrix clustering recovery diagram,
that is, Figure 1(d), a new Regime (2) appears in the high-order (d ≥ 3) clustering diagram.
Different from the matrix clustering, where the polynomial-time spectral method reaches the
computational limits for both BCR and ROSR when 1

2 ≤ α ≤ 1, the optimal polynomial-time
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FIG. 2. CHCR and ROHCR diagrams for Exhaustive search, Aggregated-SVD and Power-iteration algorithms
under asymptotic regime (A2). In the right bottom corner, we provide the feasible signal-to-noise ratio regimes
for each algorithm.

algorithms for CHCR and ROHCR are distinct: Power-iteration is optimal for ROHCR but
is suboptimal for CHCR ; the Aggregated-SVD is optimal for CHCR but does not apply for
ROHCR . This difference stems from the unique tensor algebraic structure in CHC.

(Hardness conjecture) We adopt the average-case reduction approach to establish the com-
putational lower bounds. It would be ideal to do average-case reduction from the commonly
raised conjectures, such as the planted clique (PC) detection or Boolean satisfiability (SAT),
so that all of the hardness results of these well-studied conjectures can be inherited to the
target problem. However, this route is complicated by the multiway structure in the high-
order clustering. Instead, we apply a new average-case reduction scheme from hypergraphic
planted clique (HPC) and the hypergraphic planted dense subgraph (HPDS) since HPC and
HPDS have a more natural tensor structure that enables a more straightforward average-
case reduction. Despite the widely studied planted clique (PC) and planted dense subgraph
(PDS) in literature, the HPC and HPDS are far less understood and so are their computa-
tional hardness conjectures. The relationship between the computational hardness of PC and
HPC remains an open problem (Luo and Zhang (2020a)). This paper is among the first to
explore the average computational complexities of HPC and HPDS. To provide evidence for
the computation hardness conjecture, we show a class of powerful algorithms, including the
polynomial-time low-degree polynomials and Metropolis algorithms, are not able to solve
HPC detection unless the clique size is sufficiently large. Also, we show low-degree polyno-
mial method only succeeds in HPDS recovery in a restricted parameter regime. These results
on HPC and HPDS may be of independent interests in analyzing average-case computational
complexity, given the steadily increasing popularity on tensor data analysis recently and the
commonly observed statistical-computational gaps therein (Barak and Moitra (2016), Dudeja
and Hsu (2021), Hopkins, Shi and Steurer (2015), Lesieur et al. (2017), Perry, Wein and Ban-
deira (2020), Richard and Montanari (2014), Wein, El Alaoui and Moore ([2019] ©2019),
Zhang and Xia (2018)).

(Proof techniques) The theoretical analysis in high-order clustering incorporates sparsity,
low-rankness, and tensor algebra simultaneously, which is significantly more challenging
than its counterpart in matrix clustering. Specifically, to prove the statistical lower bound
of ROHCD , we introduce the new Lemma 6, which gives an upper bound for the moment
generating function of any power of a symmetric random walk on Z stopped after a hyperge-
ometric distributed number of steps. This lemma is proved by utilizing Hoeffding’s inequality
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and the tail bound integration, which is different from the literature and can be of indepen-
dent interest. To prove the statistical lower bound of CHCD , we introduce a new technique
that “sequentially decompose event” to bound the second moment of the truncated likelihood
ratio (see Lemma 3). To prove the computational lower bounds, we introduce new average-
case reduction schemes from HPC and HPDS, including a new reduction technique of tensor
reflection cloning (Algorithm 7). This technique spreads the signal in the planted high-order
cluster along each mode evenly, maintains the independence of entries in the tensor, and only
mildly reduces the signal magnitude.

1.4. Related literature. This work is related to a wide range of literature on biclustering,
tensor decomposition, tensor SVD, and theory of computation. When the order of the ob-
servation d = 2, the problem (1) reduces to the matrix clustering (Ames and Vavasis (2011),
Busygin, Prokopyev and Pardalos (2008), Butucea, Ingster and Suslina (2015), Chi, Allen
and Baraniuk (2017), Mankad and Michailidis (2014), Tanay, Sharan and Shamir (2002)).
The statistical and computational limits of matrix clustering have been extensively studied
in the literature (Balakrishnan et al. (2011), Brennan, Bresler and Huleihel (2018), Brennan,
Bresler and Huleihel (2019), Butucea and Ingster (2013), Cai, Liang and Rakhlin (2017),
Chen and Xu (2016), Kolar et al. (2011), Ma and Wu (2015), Schramm and Wein (2020)).
As discussed in Section 1.3, the high-order (d ≥ 3) tensor clustering exhibits significant dif-
ferences from the matrix problems in various aspects.

Another related topic is on tensor decomposition and best low-rank tensor approximation.
Although the best low-rank matrix approximation can be efficiently solved by the matrix
singular value decomposition (Eckart–Young–Mirsky theorem), the best low-rank tensor ap-
proximation is NP-hard to calculate in general (Hillar and Lim (2013)). Various polynomial-
time algorithms, which can be seen as the polynomial-time relaxations of the best low-rank
tensor approximation, have been proposed in the literature, including the Newton method
(Zhang and Golub (2001)), alternating minimization (Richard and Montanari (2014), Zhang
and Golub (2001)), high-order singular value decomposition (De Lathauwer, De Moor and
Vandewalle (2000a)), high-order orthogonal iteration (De Lathauwer, De Moor and Vande-
walle (2000b)), k-means power iteration (Anandkumar, Ge and Janzamin (2014), Sun et al.
(2017)), sparse high-order singular value decomposition (Zhang and Han (2019)), regularized
gradient descent (Han, Willett and Zhang (2020)), etc. The readers are referred to surveys
Cichocki et al. (2015), Kolda and Bader (2009). Departing from most of these previous re-
sults, the high-order clustering considered this paper involves both sparsity and low-rankness
structures, which requires new methods and theoretical analysis as discussed in Section 1.3.

Our work is also related to a line of literature on average-case computational hardness
and the statistical and computational trade-offs. The average-case reduction approach has
been commonly used to show computational lower bounds for many recent high-dimensional
problems, such as testing k-wise independence (Alon et al. (2007)), biclustering (Cai, Liang
and Rakhlin (2017), Ma and Wu (2015), Cai and Wu (2020)), community detection (Hajek,
Wu and Xu (2015)), RIP certification (Wang, Berthet and Plan (2016), Koiran and Zouzias
(2014)), matrix completion (Chen (2015)), sparse PCA (Berthet and Rigollet (2013a), Berthet
and Rigollet (2013b), Brennan and Bresler (2019a), Brennan, Bresler and Huleihel (2018),
Gao, Ma and Zhou (2017), Wang, Berthet and Samworth (2016)), universal submatrix detec-
tion (Brennan, Bresler and Huleihel (2019)), sparse mixture and robust estimation (Brennan
and Bresler (2019b)), a financial model with asymmetry information (Arora et al. (2011)),
finding dense common subgraphs (Charikar, Naamad and Wu (2018)), graph logistic regres-
sion (Berthet and Baldin (2020)), online local learning (Awasthi et al. (2015)). See also a web
of average-case reduction to a number of problems in Brennan and Bresler (2020), Brennan,
Bresler and Huleihel (2018) and a recent survey (Wu and Xu (2021)). The average-case re-
duction is delicate, requiring that a distribution over instances in a conjecturally hard problem
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be mapped precisely to the target distribution. For this reason, many recent literature turn to
show computational hardness results under the restricted models of computation, such as sum
of squares (Barak et al. (2019), Hopkins et al. (2017), Ma and Wigderson (2015)), statisti-
cal query (Diakonikolas, Kane and Stewart (2017), Diakonikolas, Kong and Stewart (2019),
Fan et al. (2018), Feldman, Perkins and Vempala (2018), Feldman et al. (2017), Kannan
and Vempala (2017), Wang, Gu and Liu (2015)), class of circuit (Rossman (2008), Rossman
(2014)), convex relaxation (Chandrasekaran and Jordan (2013)), local algorithms (Gamarnik
and Sudan (2014)), meta-algorithms based on low-degree polynomials (Hopkins and Steurer
(2017), Kunisky, Wein and Bandeira (2019)) and others. As discussed in Section 1.3, this pa-
per is among the first to investigate the hypergraphic planted clique (HPC) and hypergraphic
planted dense subgraph (HPDS) problems and their computational hardness. We perform new
average-case reduction scheme from these conjectures and develop the computational lower
bounds for CHC and ROHC.

1.5. Organization. The rest of this article is organized as follows. After a brief intro-
duction of notation and preliminaries in Section 2, the statistical limits of high-order cluster
recovery and detection are given in Sections 3 and 4, respectively. In Section 5, we establish
the computational limits of high-order clustering, along with the hypergraphic planted clique
(HPC) and hypergraphic planted dense subgraph (HPDS) models, computational hardness
conjectures, and evidence. Discussion and future work are given in Section 6. The technical
proofs are collected in Supplementary Material Luo and Zhang (2022).

2. Notation and definitions. The following notation will be used throughout this arti-
cle. For any nonnegative integer n, let [n] = {1, . . . , n}. The lowercase letters (e.g., a, b),
lowercase boldface letters (e.g., u, v), uppercase boldface letters (e.g., A, U), and boldface
calligraphic letters (e.g., A, X ) are used to denote scalars, vectors, matrices, and order-3-or-
higher tensors respectively. For any two series of numbers, say {an} and {bn}, denote a � b if
there exist uniform constants c,C > 0 such that can ≤ bn ≤ Can,∀n; and a = �(b) if there
exists uniform constant c > 0 such that an ≥ cbn,∀n. The notation a = �̃(b) and a � b mean
limn→∞ an/n = limn→∞ bn/n and limn→∞ log(an/n) > limn→∞ log(bn/n), respectively.
a � b means a ≤ b up to polylogarithmic factors in n. We use bracket subscripts to denote
subvectors, submatrices, and subtensors. For example, v[2:r] is the vector with the 2nd to r th
entries of v; D[(r+1):n1,:] contains the (r + 1)th to the n1th rows of D; A[1:s1,1:s2,1:s3] is the s1-
by-s2-by-s3 subtensor of A with index set {(i1, i2, i3) : 1 ≤ i1 ≤ s1,1 ≤ i2 ≤ s2,1 ≤ i3 ≤ s3}.
For any vector v ∈ R

n1 , define its �2 norm as ‖v‖2 = (
∑

i |vi |2)1/2 and ‖v‖0 is defined
to be the number of nonzero entries in v. Given vectors {vi}di=1 ∈ R

ni , the outer product
A ∈R

n1×···×nd = v1 ◦ · · · ◦vd is defined such that A[i1,...,id ] = (v1)i1 · · · (vd)id . For any event
A, let P(A) be the probability that A occurs.

For any order-d tensor A ∈ R
n1×···×nd . The matricization M(·) is the operation that un-

folds or flattens the order-d tensor A ∈R
n1×···×nd into the matrix Mz(A) ∈R

nz×∏j �=z nj for
z = 1, . . . , d . Specifically, the mode-z matricization of A is formally defined as

A[i1,...,id ] =
(
Mz(A)

)
[iz,j ], j = 1 +

d∑
l=1
l �=z

{
(il − 1)

l−1∏
m=1
m�=z

nm

}

for any 1 ≤ il ≤ nl , l = 1, . . . , d . Also see Kolda and Bader ((2009), Section 2.4) for more
discussions on tensor matricizations. The mode-z product of A ∈ R

n1×···×nd with a matrix
U ∈R

kz×nz is denoted by A×z U and is of size n1 ×· · ·×nz−1 × kz ×nz+1 ×· · ·×nd , such
that

(A×z U)[i1,...,iz−1,j,iz+1,...,id ] =
nz∑

iz=1

A[i1,i2,...,id ]U[j,iz].
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For any two distinct k1, k2 ∈ [d](k1 < k2) and j1 ∈ [nk1] and j2 ∈ [nk2], we denote

A(k1,k2)
j1,j2

=A[:,...,:, j1︸︷︷︸
k1th index

,:,...,:, j2︸︷︷︸
k2th index

,:...,:] ∈R
n1×···×nk1−1×nk1+1×···×nk2−1×nk2+1×···×nd

as a subtensor of A. The support of an order-d tensor X ∈R
n1×···×nd is denoted by S(X ) :=

(I1, . . . , Id) where Ij ∈ R
nj and (Ij )i equals to zero when Mj (X )[i,:] is a zero vector and

equals to one otherwise. In particular, when the tensor order is 1, we simply have the support
of a vector v is S(v) = {j : vj �= 0}.

Given a distribution Q, let Q⊗n be the distribution of (X1, . . . ,Xn) if {Xi}ni=1 are i.i.d.

copies of Q. Similarly, let Q⊗m×n and Q⊗(n⊗d ) denote the distribution on R
m×n and R

n⊗d

with i.i.d. entries distributed as Q. Here n⊗d := n×n×· · ·×n denotes the order-d Cartesian
product. In addition, we use C, C1, C2, c and other variations to represent the large and small
constants, whose actual values may vary from line to line.

Next, we formally define the statistical and computational risks to quantify the fundamen-
tal limits of high-order clustering. First, we define the risk of testing procedure φD(Y) ∈
{0,1} as the sum of Type-I and Type-II errors for detection problems CHCD and ROHCD :

EPD
(φD) = P0

(
φD(Y) = 1

)+ sup
X∈XCHC(k,n,λ)

(or X∈XROHC(k,n,μ))

PX
(
φD(Y) = 0

)
,

where P0 is the probability under H0 and PX is the probability under H1 with the signal
tensor X . We say {φD}n reliably detect in PD if limn→∞ EPD

(φD) = 0. Second, for recovery
problem CHCR and ROHCR , define the recovery error for any recovery algorithm φR(Y) ∈
{(I1, . . . , Id) : Ii ⊆ {1, . . . , ni}} as

EPR
(φR) = sup

X∈XCHC(k,n,λ)

PX
(
φR(Y) �= S(X )

)
or sup

X∈XROHC(k,n,μ)

PX
(
φR(Y) �= S(X )

)
.

We say {φR}n reliably recover in PR if limn→∞ EPR
(φR) = 0. Third, denote AllAlgD ,

AllAlgR , PolyAlgD , PolyAlgR as the collections of unconstrained-time algorithms and
polynomial-time algorithms for detection and recover problems, respectively. Then we can
define four different statistical and computational risks as follows:

E s
PD

:= inf
φD∈AllAlgD

EPD
(φD), Ec

PD
:= inf

φD∈PolyAlgD
EPD

(φD),

E s
PR

:= inf
φR∈AllAlgR

EPR
(φR), Ec

PR
:= inf

φR∈PolyAlgR
EPR

(φR).

3. High-order cluster recovery: Statistical limits and polynomial-time algorithms.
This section studies the statistical limits of high-order cluster recovery. We first present
the statistical lower bounds of λ and μ that guarantee reliable recovery, then we give
unconstrained-time algorithms that achieves these lower bounds. We also propose compu-
tationally efficient algorithms, Thresholding Algorithm, Power-iteration, and Aggregated-
SVD, with theoretical guarantees.

3.1. CHCR and ROHCR : Statistical limits. Recall (5) and (6), we first present the statis-
tical lower bounds for reliable recovery of CHCR and ROHCR .

THEOREM 3 (Statistical lower bounds for CHCR and ROHCR). Consider CHCR(k,n,

λ) and ROHCR(k,n,μ). Let 0 < η < 1
8 be fixed. Under the asymptotic regime (A1), if

λ ≤ max
({√√√√η log(ni − ki)∏d

z=1,z �=i kz

}d

i=1

) (
or

μ√∏d
i=1 ki

≤ max
({√√√√η log(ni − ki)∏d

z=1,z �=i kz

}d

i=1

))
,
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Algorithm 1 CHCR Search

1: Input: Y ∈R
n1×···×nd , sparsity level k = (k1, . . . , kd).

2: Output:

(Î1, . . . , Îd) = arg max
Ii⊆[ni ],|Ii |=ki

i=1,...,d

∑
i1∈I1

. . .
∑

id∈Id

Y[i1,...,id ].

we have

E s
CHCR

(
or E s

ROHCR

)≥ √
M

1 +√
M

(
1 − 2η − 2η

logM

)
→ 1 − 2η,

where M = max({ni − ki}di=1). Moreover, under the asymptotic regime (A2), if β > βs
CHCR

(or βs
ROHCR

), we have E s
CHCR

( or E s
ROHCR

) → 1 − 2η.

We further propose the CHCR Search (Algorithm 1) and ROHCR Search (Algorithm 2)
with the following theoretical guarantees. These algorithms exhaustively search all possible
cluster positions and find one that best matches the data. In particular, Algorithm 1 is exactly
the maximum likelihood estimator. It is note worthy in Algorithm 2, we generate Z1 with
i.i.d. standard Gaussian entries and construct A= Y+Z1√

2
and B= Y−Z1√

2
. In that case, A and

B becomes two independent sample tensors, which facilitate the theoretical analysis. Such a
scheme is mainly for technical convenience and not necessary in practice.

THEOREM 4 (Guarantee of CHCR search). Consider CHCR(k,n, λ) under the asymp-

totic regime (A1). There exists C0 > 0 such that when λ ≥ C0

√ ∑d
i=1 log(ni−ki)

min
1≤i≤d

{∏d
z=1,z �=i kz} , Algorithm 1

identifies the true support of X with probability at least 1 − C
∑d

i=1(ni − ki)
−c for some

c,C > 0. Moreover, under the asymptotic regime (A2), Algorithm 1 achieves the reliable
recovery of CHCR when β < βs

CHCR
.

Algorithm 2 ROHCR Search

1: Input: Y ∈R
n1×···×nd , sparsity upper bound k.

2: Sample Z1 ∼ N(0,1)⊗n1×···×nd and construct A= Y+Z1√
2

and B= Y−Z1√
2

.

3: For each {k̄i}di=1 satisfying k̄i ∈ [1, ki] (1 ≤ i ≤ d) do:

(a) Compute

(û1, . . . , ûd) = arg max
(u1,...,ud )∈S

n1
k̄1

×···×S
nd
k̄d

A×1 u�
1 × · · · ×d u�

d .

Here, Sn
t is the set of vectors u ∈ {−1,1,0}n with exactly t nonzero entries.

(b) For each tuple (û1, . . . , ûd) computed from Step (a), mark it if it satisfies{
j : (B×1 û�

1 ×· · ·×i−1 û�
i−1 ×i+1 û�

i+1 ×· · ·×d û�
d

)
j (ûi)j ≥ 1

2
√

2

μ√∏d
i=1 ki

∏
z �=i

k̄z

}

is exactly the support of ûi , S(ûi ) for all 1 ≤ i ≤ d .

4: Among all marked tuples (û1, . . . , ûd), we find the one, say (ũ1, . . . , ũd), that maximizes∑d
i=1 |S(ûi )|.

5: Output: Îi = S(ũi )(1 ≤ i ≤ d).
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Algorithm 3 CHCR and ROHCR Thresholding Algorithm

1: Input: Y ∈R
n1×···×nd .

2: Output:

(Î1, . . . , Îd) = {(i1, . . . , id) : |Y[i1,...,id ]| ≥
√

2(d + 1) logn
}
.

THEOREM 5 (Guarantee of ROHCR search). Consider ROHCR(k,n,μ) under the
asymptotic regime (A1). There is an absolute constant C0 > 0 such that if μ ≥ C0

√
k logn,

then Algorithm 2 identifies the true support of X with probability at least 1 − C
∑d

i=1(ni −
ki)

−1 for some constant C > 0. Moreover, under the asymptotic regime (A2), Algorithm 2
achieves the reliable recovery of ROHCR when β < βs

ROHCR
.

Combining Theorems 3, 4, and 5, we can see if k1 � k2 � · · · � kd , Algorithms 1, 2 achieve
the minimax statistical lower bounds for CHCR , ROHCR . On the other hand, Algorithms 1
and 2 are based on computationally inefficient exhaustive search. Next, we introduce the
polynomial-time algorithms.

3.2. CHCR and ROHCR : Polynomial-time algorithms. The polynomial-time algorithms
for solving CHCR and ROHCR rely on the sparsity level ki (1 ≤ i ≤ d). First, when k � √

n

(sparse regime), we propose Thresholding Algorithm (Algorithm 3) that selects the high-
order cluster based on the largest entry in absolute value from each tensor slice. The theoret-
ical guarantee of this algorithm is given in Theorem 6.

THEOREM 6 (Guarantee of thresholding algorithm for CHCR and ROHCR). Con-

sider CHCR(k,n, λ) and ROHCR(k,n,μ). If λ ≥ 2
√

2(d + 1) logn (or μ/

√∏d
i=1 ki ≥

2
√

2(d + 1) logn), Algorithm 3 exactly recovers the true support of X with probability at
least 1 − O(n−1). Moreover, under the asymptotic regime (A2), Algorithm 3 achieves the
reliable recovery of CHCR and ROHCR when β < 0.

Second, when k � √
n (dense regime), we consider the Power-iteration given in Algo-

rithm 4, which is a modification of the tensor PCA methods in the literature (Anandkumar,
Ge and Janzamin (2014), Richard and Montanari (2014), Zhang and Xia (2018)) and can be
seen as an tensor analogue of the matrix spectral clustering method.

We also propose another polynomial-time algorithm, Aggregated SVD, in Algorithm 5 for
the dense regime of CHCR . As its name suggests, the central idea is to first transform the
tensor Y into a matrix by taking average, then apply matrix SVD. Aggregated-SVD is in
a similar vein of the hypergraph adjacency matrix construction in the hypergraph commu-
nity recovery literature (Ghoshdastidar and Dukkipati (2017), Kim, Bandeira and Goemans
(2017)).

We give guarantees of Power-iteration and Aggregated-SVD for high-order cluster recov-
ery. In particular, Aggregated SVD achieves strictly better performance than Power-iteration
in CHCR , but does not apply for ROHCR .

THEOREM 7 (Guarantee of power-iteration for CHCR and ROHCR). Consider CHCR(k,

n, λ) and ROHCR(k,n,μ). Assume ni ≥ c0n (1 ≤ i ≤ d) for constant c0 > 0 where n :=
maxi ni . Under the asymptotic regime (A1), there exists a uniform constant C0 > 0 such that

if λ

√∏d
i=1 ki ≥ C0n

d
4 (or μ ≥ C0n

d
4 )

and tmax ≥ C log
(

n

λ

√∏d
i=1 ki

)
∨C

(
or tmax ≥ C

(
log(n/μ)∨ 1

))
,
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Algorithm 4 Power-iteration for CHCR and ROHCR

1: Input: Y ∈R
n1×···×nd , maximum number of iterations tmax.

2: Sample Z1 ∼ N(0,1)⊗n1×···×nd and construct A = (Y + Z1)/
√

2 and B = (Y −
Z1)/

√
2.

3: (Initiation) Set t = 0. For i = 1 : d , compute the top left singular vector of Mi (A) and
denote it as û(0)

i .
4: For t = 1, . . . , tmax, do

(a) For i = 1 to d , update

û(t)
i = NORM

(
A×1

(
û(t)

1

)� × · · · ×i−1
(
û(t)

i−1

)� ×i+1
(
û(t−1)

i+1

)� × · · · ×d

(
û(t−1)

d

)�)
.

Here, NORM(v) = v/‖v‖2 is the normalization of vector v.

5: Let (û1, . . . , ûd) := (û(tmax)
1 , . . . , û(tmax)

d ). For i = 1, . . . , d , calculate

(7) vi :=B×1 û�
1 × · · · ×i−1 û�

i−1 ×i+1 û�
i+1 × · · · ×d û�

d ∈R
ni .

• If the problem is CHCR , the component values of vi form two clusters. Sort {(vi )j }ni

j=1
and cut the sequence at the largest gap between the consecutive values. Let the index
subsets of two parts be Îi and [ni] \ Îi . Output: Îi

• If the problem is ROHCR , the component values of vi form three clusters. Sort the
sequence {(vi )j }ni

j=1, cut at the two largest gaps between the consecutive values, and
form three parts. Among the three parts, pick the two smaller-sized ones, and let the
index subsets of these two parts be Î 1

i , Î 2
i . Output: Îi = Î 1

i ∪ Î 2
i

6: Output: {Îi}di=1.

Algorithm 4 identifies the true support of X with probability at least 1 − ∑d
i=1 n−c

i −
Cexp(−cn) for constants c,C > 0. Moreover, under the asymptotic regime (A2), Algorithm 4
achieves the reliable recovery of CHCR and ROHCR when β < (α − 1/2)d/2.

Algorithm 5 Aggregated-SVD for CHCR

1: Input: Y ∈R
n1×···×nd .

2: For i = 1,2, . . . , d , do:

(a) Find i∗ = arg minj �=i nj and calculate Y(i,i∗) ∈ R
ni×ni∗ where Y(i,i∗)

[k1,k2] :=
SUM(Y(i,i∗)

k1,k2
)/
√∏d

j=1,j �=i,i∗ nj for 1 ≤ k1 ≤ ni,1 ≤ k2 ≤ ni∗ . Here SUM(A) :=∑
i1
· · ·∑id

A[i1,...,id ] and Y(i,i∗)
k1,k2

is the subtensor of Y defined in Section 2.

(b) Sample Z1 ∼ N(0,1)⊗ni×ni∗ and form A(i,i∗) = (Y(i,i∗) + Z1)/
√

2 and B(i,i∗) =
(Y(i,i∗) − Z1)/

√
2. Compute the top right singular vector of A(i,i∗), denote it as v.

(c) To compute Îi , calculate (B(i,i∗)
[j,:] · v) for 1 ≤ j ≤ nj . These values form two data

driven clusters and a cut at the largest gap at the ordered value of {B(i,i∗)
[j,:] · v}ni

j=1

returns the set Îi and [ni] \ Îi .

3: Output: {Îi}di=1.
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THEOREM 8 (Guarantee of aggregated-SVD for CHCR). Consider CHCR(k,n, λ) and
Algorithm 5. There exists a uniform constant C0 > 0 such that if

(8) λ ≥ C0
k

√∏d
i=1 ni√

nmin
∏d

i=1 ki

(
1 +

√
k logn

nmin

)
,

the support recovery algorithm based on Aggregated-SVD identifies the true support of X
with probability at least 1 − ∑d

i=1 n−c
i − Cexp(−cnmin). Here, nmin = min(n1, . . . , nd).

Moreover, under the asymptotic regime (A2), Aggregated-SVD achieves reliable recovery of
CHCR when β < (α − 1/2)(d − 1).

Combining Theorems 6–8, we can see the reliable recovery of CHCR and ROHCR

is polynomial-time possible if β < βc
CHCR

:= (α − 1/2)(d − 1) ∨ 0 and β < βc
ROHCR

:=
(α − 1/2)d/2 ∨ 0. Since βc

CHCR
< βs

CHCR
and βc

ROHCR
< βs

ROHCR
, the proposed polynomial-

time algorithms (Algorithms 3, 4 and 5) require a strictly stronger signal-to-noise ratio than
the proposed unconstrained-time ones (Algorithms 1 and 2) which leaves a significant gap
between statistical optimality and computational efficiency to be discussed in Section 5.

4. High-order cluster detection: Statistical limits and polynomial-time algorithms.
In this section, we investigate the statistical limits of both CHCD and ROHCD . For each
model, we first present the statistical lower bounds of signal strength that guarantees reliable
detection, then we propose the algorithms, though being computationally intense, that prov-
ably achieve the statistical lower bounds. Finally, we introduce the computationally efficient
algorithms and provide the theoretical guarantees under the stronger signal-to-noise ratio.

4.1. CHCD and ROHCD : Statistical limits. Recall (5) and (6), Theorems 9 and 10 below
give the statistical lower bounds that guarantee reliable detection for CHCD and ROHCD ,
respectively.

THEOREM 9 (Statistical lower bound of CHCD). Consider CHCD(k,n, λ) under the
asymptotic regime (A1) and assume

(9)
log(nj/kj )

ki

→ 0,
log log(ni/ki)

log(nj/kj )
→ 0, and ki log

ni

ki

� kj log
nj

kj

for all i, j ∈ [d], i �= j . Then if

(10)
λ
∏d

i=1 ki√∏d
i=1 ni

→ 0 and lim sup
n→∞

λ(
∏d

i=1 ki)
1
2√

2(
∑d

i=1 ki log(ni/ki))
< 1,

we have E s
CHCD

→ 1. Moreover, under (A2), if β > βs
CHCD

, E s
CHCD

→ 1.

THEOREM 10 (Statistical lower bound of ROHCD). Consider ROHCD(k,n,μ). Under
the asymptotic regime (A1), if μ√

k log(en/k)
→ 0, then E s

ROHCD
→ 1. Under the asymptotic

regime (A2), if β > βs
ROHCD

, E s
ROHCD

→ 1.

Next, we present the hypothesis tests ψs
CHCD

and ψs
ROHCD

that achieve reliable detection
on the statistical limits in Theorems 9 and 10. For CHCD , define ψs

CHCD
:= ψsum ∨ ψscan.

Here, ψsum and ψscan are respectively the sum and scan tests:

(11) ψsum = 1

(
n1∑

i1=1

· · ·
nd∑

id=1

Y[i1,...,id ]/
√

n1 · · ·nd > W

)
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for some to-be-specified W > 0 and

(12) ψscan = 1
(
Tscan >

√
2 log

(
Gn

k
))

, Tscan = max
C∈Sk,n

∑
(i1,...,id )∈C Y[i1,...,id ]√

k1 · · ·kd

,

where Gn
k = ( n1

k1

)( n2
k2

) · · · ( nd

kd

)
and Sk,n represents the set of all possible supports of planted

signal:

Sk,n = {(I1 × I2 × · · · × Id) : I1 ⊆ [n1],
I2 ⊆ [n2], . . . , Id ⊆ [nd ] and |Ii | = ki,1 ≤ i ≤ d

}
.

(13)

The following Theorem 11 provides the statistical guarantee for ψs
CHCD

.

THEOREM 11 (Guarantee for ψs
CHCD

). Consider CHCD(k,n, λ). Under the asymptotic
regime (A1), when

(14)
λ
∏d

i=1 ki√∏d
i=1 ni

→∞, W →∞, W ≤ cλ

∏d
i=1 ki√∏d
i=1 ni

(0 < c < 1),

or when

(15) lim inf
n→∞

λ(
∏d

i=1 ki)
1
2√

2(
∑d

i=1 ki log(ni

ki
))

> 1,

we have ECHCD
(ψs

CHCD
) → 0. Under the asymptotic regime (A2), ψs

CHCD
succeeds in reliable

detection when β < βs
CHCD

.

The test for ROHCD is built upon the ROHC Search (Algorithm 2 in Section 3) designed
for ROHCR . To be specific, generate Z1 with i.i.d. standard Gaussian entries and calculate
A = Y+Z1√

2
and B = Y−Z1√

2
. Then A and B becomes two independent samples. Apply Al-

gorithm 2 on A and let (u1, . . . ,ud) be the output of Step 4 of Algorithm 2. Define the test
statistic as

ψs
ROHCD

= 1
(
B×1 u�

1 /
√

k1 × · · · ×d u�
d /
√

kd ≥ C
√

k
)
,

where C > 0 is a fixed constant. We have the following theoretical guarantee for ψs
ROHCD

.

THEOREM 12 (Guarantee for ψs
ROHCD

). Consider ROHCD(k,n,μ) under the asymp-
totic regime (A1). There exists some constant C > 0 such that when μ ≥ C

√
k logn,

EROHCD
(ψs

ROHCD
) → 0. Moreover, under the asymptotic regime (A2), ψs

ROHCD
succeeds in

reliable detection when β < βs
ROHCD

.

Combining Theorems 9 and 11, we have shown ψs
CHCD

achieves sharply minimax lower
bound of λ for reliable detection of CHCD . From Theorems 10 and 12, we see ψs

ROHC
achieves the minimax optimal rate of μ for reliable detection of ROHCD . However, both
ψs

CHCD
and ψs

ROHCD
are computationally inefficient.

REMARK 1. The proposed ψs
CHCD

and ψs
ROHCD

share similar spirits with the matrix
clustering algorithms in the literature (Brennan, Bresler and Huleihel (2018), Butucea and
Ingster (2013)), though the tensor structure here causes extra layer of difficulty. Particularly
when d = 2, the lower and upper bounds results in Theorem 9–12 match the ones in Brennan,
Bresler and Huleihel (2018), Butucea and Ingster (2013), although the proof for high-order
clustering is much more complicated.
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4.2. CHCD and ROHCD : Polynomial-time algorithms. Next, we introduce polynomial-
time algorithms for high-order cluster detection. For CHCD , define ψc

CHCD
:= ψsum ∨ ψmax,

where ψsum is defined in (11) and ψmax is defined below based on max statistic,

(16) ψmax = 1

(
max

1≤ij≤nj

j=1,...,d

Y[i1,...,id ] >

√√√√2
d∑

i=1

logni

)
.

THEOREM 13 (Theoretical guarantee for ψc
CHCD

). Consider CHCD(k,n, λ). Under the
asymptotic regime (A1), if condition (14) holds or

(17) lim inf
n→∞

λ√
2
∑d

i=1 logni

> 1,

holds, then ECHCD
(ψc

CHCD
) → 0. Moreover, under the asymptotic regime (A2), ψc

CHCD
suc-

ceeds in reliable detection when β < βc
CHCD

.

We also propose a polynomial-time algorithm for ROHCD based on a high-order analogue
of the largest matrix singular value in tensor. Following the procedure of ψs

ROHCD
, we con-

struct A and B as two independent copies. Apply Algorithm 4 in Section 3 on A and let
(u1, . . . ,ud) to be the output of Step 4 of Algorithm 4. We define

(18) ψc
ROHCD

= ψsing ∨ ψmax, ψsing = 1
(
B×1 u�

1 × · · · ×d u�
d ≥ C

√
k
)
,

where ψmax is defined in (16) and C > 0 is a fixed constant.

THEOREM 14 (Theoretical guarantee for ψc
ROHCD

). Consider ROHCD(k,n,μ) under
the asymptotic regime (A1). There exists a constant C > 0 such that when

(19) μ ≥ Cn
d
4 or lim inf

n→∞
μ√

2(
∏d

i=1 ki)(
∑d

i=1 logni)
> 1,

we have EROHCD
(ψc

ROHCD
) → 0. Moreover, under the asymptotic regime (A2), ψc

ROHCD
suc-

ceeds in reliable detection when β < βc
ROHCD

.

Since βc
CHCD

< βs
CHCD

and βc
ROHCD

< βs
ROHCD

, the proposed polynomial-time algorithms
ψc

CHCD
and ψc

ROHCD
require a strictly stronger signal-noise-ratio than the unrestricted-time

algorithms.

5. Computational lower bounds. To provide the computational lower bounds for high-
order clustering, it suffices to focus on the asymptotic regime (A2) as it also implies the
computational lower bounds in the general parameterization regime (A1). We first consider
the detection of CHC. Theorem 15 below and Theorem 13 in Section 4.2 together yield a
tight computational lower bound for CHCD .

THEOREM 15 (Computational lower bound of CHCD). Consider CHCD(k,n, λ) under
the asymptotic regime (A2). If β > βc

CHCD
, then lim infn→∞ Ec

CHCD
≥ 1/2 under the HPC

detection Conjecture 1.

Next, Theorems 6, 8, and Theorem 16 below together give a tight computational lower
bound for CHCR .
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THEOREM 16 (Computational lower bound of CHCR). Consider CHCR(k,n, λ) under
the asymptotic regime (A2). If α ≥ 1/2 and β > (d − 1)α − (d − 1)/2, then
lim infn→∞ Ec

CHCR
≥ 1/2 under the HPDS recovery conjecture (Conjecture 2). If 0 < α <

1/2, β > 0, then lim infn→∞ Ec
CHCR

≥ 1/2 under the HPC detection conjecture (Conjec-
ture 1). Combined together, we have if β > βc

CHCR
, then lim infn→∞ Ec

CHCR
≥ 1/2 under

Conjectures 1 and 2.

Then, we consider rank-one high-order cluster detection and recovery. By Lemma 10
in Luo and Zhang (2022) Section B, we can show that the computational lower bound of
ROHCR is implied by ROHCD . We specifically have the following theorem.

THEOREM 17 (Computational lower bounds of ROHCD and ROHCR). Consider
ROHCD(k,n,μ) and ROHCR(k,n,μ) under the asymptotic regime (A2) and the HPC de-
tection Conjecture 1. If β > βc

ROHCD
, then lim infn→∞ Ec

ROHCD
≥ 1/2, lim infn→∞ Ec

ROHCR
≥

1/2.

Combining Theorems 6, 7, 17, and 14 (provided in Section 4.2), we have obtained the
tight computational lower bounds for ROHCD and ROHCR . Furthermore, since ROHC is a
special case of sparse tensor PCA/SVD studied in literature (Sun et al. (2017), Zhang and
Han (2019)), Theorem 17 also provides a computational lower bound for the signal-to-noise
ratio requirement for sparse tensor PCA/SVD.

REMARK 2. The computational lower bounds in Theorems 15, 16 and 17 are for asym-
metric tensor clustering under the CHC and ROHC models. To establish the computational
lower bounds for a symmetric version of the CHC or ROHC models that both the planted
signal and the noise tensors are symmetric, a new proof scheme is required as the same spar-
sity across all modes must be ensured while constructing instance tensors in performing the
average-case reduction.

Theorems 15–17 above are based on the HPC and HPDS conjectures. Next, we will elabo-
rate the HPC, HPDS conjectures in Sections 5.1, 5.2, and discuss the evidence in Section 5.3.
Then in Section 5.4, we provide the high level ideas on the average-case reduction from HPC
and HPDS to high-order clustering, and prove these computational lower bounds.

5.1. Hypergraphic planted clique detection. A d-hypergraph can be seen as an order-d
extension of regular graph. In a d-hypergraph G = (V (G),E(G)), each hyper-edge e ∈ E

includes an unordered group of d vertices in V . Define Gd(N,1/2) as Erdős–Rényi random
d-hypergraph with N vertices, where each hyper-edge (i1, . . . , id) is independently included
in E with probability 1

2 . Given a d-hypergraph G = (V (G),E(G)), define its adjacency
tensor A :=A(G) ∈ ({0,1}N)⊗d as

A[i1,...,id ] =
{

1, if (i1, . . . , id) ∈ E;
0, otherwise.

We define Gd(N, 1
2 , κ) as the hypergraphic planted clique (HPC) model with clique size κ .

To generate G ∼ Gd(N, 1
2 , κ), we sample a random hypergraph from Gd(N, 1

2), pick κ ver-
tices uniformly at random from [N ], denote them as K , and connect all hyper-edges e if
all vertices of e are in K . The focus of this section is on the hypergraphic planted clique
detection (HPC) problem:

(20) HG
0 : G ∼ Gd(N,1/2) v.s. HG

1 : G ∼ Gd(N,1/2, κ).
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Given the hypergraph G and its adjacency tensor A, the risk of test φ for (20) is defined as
the sum of Type-I and II errors EHPCD

(φ) = PHG
0

(φ(A) = 1) + PHG
1

(φ(A) = 0). Our aim is
to find out the consistent test φ = {φN } such that limN→∞ EHPCD

(φN) = 0.
When d = 2, HPC detection (20) reduces to the planted clique (PC) detection studied in

literature. It is helpful to have a quick review of existing results for PC before addressing
HPC. Since the size of the largest clique in Erdős–Rényi graph G ∼ G2(N, 1

2) converges to
2 log2 N asymptotically, reliable PC detection can be achieved by exhaustive search when-
ever κ ≥ (2 + ε) log2 N for any ε > 0 (Bollobás and Erdős (1976)). When κ = �(

√
N),

many computational-efficient algorithms, including the spectral method, approximate mes-
sage passing, semidefinite programming, nuclear norm minimization, and combinatorial ap-
proaches (Alon, Krivelevich and Sudakov (1998), Ames and Vavasis (2011), Dekel, Gurel-
Gurevich and Peres (2014), Deshpande and Montanari (2015a), Feige and Krauthgamer
(2000), McSherry (2001), Ron and Feige (2010), Chen and Xu (2016)), have been devel-
oped for PC detection. Despite enormous previous efforts, no polynomial-time algorithm has
been found for reliable detection of PC when κ = o(N1/2) and it has been widely conjectured
that no polynomial-time algorithm can achieve so. The hardness conjecture of PC detection
was strengthened by several pieces of evidence, including the failure of Metropolis process
methods (Jerrum (1992)), low-degree polynomial methods (Hopkins (2018), Brennan and
Bresler (2019b)), statistical query model (Feldman et al. (2017)), Sum-of-Squares (Barak
et al. (2019), Deshpande and Montanari (2015b), Meka, Potechin and Wigderson (2015)),
landscape of optimization (Gamarnik and Zadik (2019)), etc.

When moving to HPC detection (20) with d ≥ 3, the computational hardness remains little

studied. Bollobás and Erdős (1976) proved that
Kd

N

(d! log2(N))1/(d−1)

a.s.→ 1 if Kd
N is the largest

clique in G ∼ Gd(N, 1
2). So HPC detection problem (20) is statistical possible by exhaustive

search when κ ≥ ((d! + ε) log2(N))1/(d−1) for any ε > 0. However, Zhang and Xia (2018)
observed that the spectral algorithm solves HPC detection if κ = �(

√
N) but fails when

κ = N
1
2−ε for any ε > 0. We present the following hardness conjecture for HPC detection.

CONJECTURE 1 (HPC detection conjecture). Consider the HPC detection problem (20)
and suppose d ≥ 2 is a fixed integer. If

(21) lim sup
N→∞

logκ/ log
√

N ≤ 1 − τ for any τ > 0,

for any polynomial-time test sequence {φ}N :A→{0,1}, lim infN→∞ EHPCD
(φ(A)) ≥ 1

2 .

REMARK 3 (Choice of type-I, II error lower bound). We set the lower bound for the
sum of Type-I, II errors to be 1/2 in the HPC Detection Conjecture above (i.e., {φ}N :A→
{0,1}, lim infN→∞ EHPCD

(φ(A)) ≥ 1/2). In the literature, there is no universal choice of this
constant. For example, Berthet and Rigollet (2013a) considers PC detection conjecture with
the sum of type I and type II errors to be some constant close to 1; Ma and Wu (2015) uses the
PC detection conjecture with the error constant 2/3; Brennan and Bresler (2019a), Brennan
and Bresler (2020), Brennan, Bresler and Huleihel (2018), Hajek, Wu and Xu (2015) choose
this constant to be 1.

In Section 5.3, we provide two pieces of evidence for HPC detection conjecture: a general
class of Monte Carlo Markov chain process methods (Jerrum (1992)) and a general class of
low-degree polynomial tests (Hopkins (2018), Hopkins and Steurer (2017), Kunisky, Wein
and Bandeira (2019), Brennan and Bresler (2019b)) fail to solve HPC detection under the
asymptotic condition (21). Also, see a recent note Luo and Zhang (2020a) for several open
questions on HPC detection conjecture, in particular, whether HPC detection is equivalently
hard as PC detection.
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5.2. Hypergraphic planted dense subgraph. We consider the hypergraphic planted dense
subgraph (HPDS), a hypergraph model with denser connections within a community and
sparser connections outside, in this section. Let Gd be a d-hypergraph. To generate a HPDS
G = (V (G),E(G)) ∼ Gd(N,κ, q1, q2) with q1 > q2, we first select a size-κ subset K from
[N ] uniformly at random, then for each hyper-edge e = (i1, . . . , id),

P
(
e ∈ E(G)

)= {q1, i1, . . . , id ∈ K,

q2, otherwise.

The aim of HPDS detection is to test

(22) H0 : G ∼ Gd(N,q2)versusH1 : G ∼ Gd(N,κ, q1, q2);
the aim of HPDS recovery is to locate the planted support K given G ∼ Gd(N,κ, q1, q2).

When d = 2, HPDS reduces to the planted dense subgraph (PDS) considered in litera-
ture. Various statistical limits of PDS have been studied (Arias-Castro and Verzelen (2014),
Brennan, Bresler and Huleihel (2018), Chen and Xu (2016), Feldman et al. (2017), Hajek, Wu
and Xu (2015), Verzelen and Arias-Castro (2015)) and generalizations of PDS recovery has
also been considered in Candogan and Chandrasekaran (2018), Hajek, Wu and Xu (2016),
Montanari (2015). In Brennan, Bresler and Huleihel (2018), Hajek, Wu and Xu (2015), a
reduction from PC has shown the statistical and computational phase transition for PDS de-
tection problem for all q1 > q2 with q1 − q2 = O(q2) where q2 = �̃(N−β). For PDS recov-
ery problem, Brennan, Bresler and Huleihel (2018), Chen and Xu (2016), Hajek, Wu and
Xu (2015) observed that PDS appears to have a detection-recovery gap in the regime when
κ �√

N .
When moving to HPDS detection, if q1 = ω(q2), the computational barrier for this

problem is conjectured to be the log-density threshold κ = �̃(N
logq2

q1) when κ 
 √
N

(Chlamtáč, Dinitz and Krauthgamer (2012), Chlamtáč, Dinitz and Makarychev (2017)). Re-
cently, Chlamtác and Manurangsi (2018) showed that �̃(logN) rounds of the Sherali-Adams
hierarchy cannot solve the HPDS detection problem below the log-density threshold in the
regime q1 = ω(q2). The HPDS recovery, to the best of our knowledge, remains unstudied in
the literature.

In the following Proposition 1, we show that a variant of Aggregated-SVD (presented in
Algorithm 6) requires a restricted condition on κ , q1, q2, N for reliable recovery in HPDS in
the regime κ �√

N .

PROPOSITION 1. Suppose G ∼ Gd(N,κ, q1, q2) with q1 > q2. Let A be the adjacency
tensor of G. When lim infN→∞ logN κ ≥ 1/2, and

(23) lim sup
N→∞

logN

(
κd−1(q1 − q2)√

q2(1 − q2)

)
≥ d

2
− 1

2
,

Algorithm 6 Support Recovery of HPDS via Aggregated-SVD
1: Input: A.
2: Let A=A[1:�N

d
�,�N

d
�+1:2�N

d
�,...,(d−1)�N

d
�+1:N�].

3: Let Ã[i1,...,id ] =
qA[i1,...,id ]−q2√

q2(1−q2)
for all 1 ≤ i1 ≤ �N

d
�, . . . , (d − 1)�N

d
� + 1 ≤ id ≤ N . Then

apply Algorithm 5 with input Ã and denote the estimated support for each mode of Ã
as K̂i .

4: Compute K̂ =⋃d
i=1 K̂i .

5: Output: K̂ .
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Algorithm 6 recovers the support of the planted dense subgraph with probability at least
1 − d(N/d)−c − Cexp(−cN/d) for some c,C > 0.

On the other hand, the theoretical analysis in Proposition 1 breaks down when condition
(23) does not hold. We conjecture that the signal-to-noise ratio requirement in (23) is essential
for HPDS recovery and propose the following computational hardness conjecture.

CONJECTURE 2 (HPDS recovery conjecture). Suppose G ∼ Gd(N,κ, q1, q2) with 1 −
�(1) > q1 > q2. Denote its adjacency tensor as A. If

(24) lim inf
N→∞ logN κ ≥ 1

2
and lim sup

N→∞
logN

(
κd−1(q1 − q2)√

q2(1 − q2)

)
<

d

2
− 1

2
,

then for any randomized polynomial-time algorithm {φ}N , lim infN→∞ EHPDSR
(φ(A)) ≥ 1

2 .

In the proof of Proposition 1, we provide evidence for Conjecture 2 by showing a vari-
ant of Aggregated-SVD fails to solve HPDS recovery under the PC detection conjecture.
A stronger piece of evidence for Conjecture 2 via low-degree polynomial method is given in
Section 5.3.3.

5.3. Evidence for HPC detection conjecture. In this section, we provide two pieces of
evidence for HPC Conjecture 1 via Monte Carlo Markov chain process and low-degree poly-
nomial test and one piece of evidence for HPDS recovery Conjecture 2 via low-degree poly-
nomial method.

5.3.1. Evidence of HPC conjecture 1 via Metropolis process. We first show a general
class of Metropolis processes are not able to detect or recover the large planted clique in
hypergraph. Motivated by Alon et al. (2007), in Lemma 1 we first prove that if it is computa-
tionally hard to recover a planted clique in HPC, it is also computationally hard to detect.

LEMMA 1. Assume κ > �(logN). Consider the HPCD(N,1/2, κ) problem: test

H0 : G ∼ Gd(N,1/2) versus H1 : G ∼ Gd(N,1/2, κ)

and HPCR(N,1/2, κ) problem: recover the exact support of the planted clique if H1

holds. If there is no polynomial time recovery algorithm can output the right clique of
HPCR(N,1/2, κ) with success probability at least 1− 1/N , then there is no polynomial time
detection algorithm can output the right hypothesis for HPCD(N,1/2, κ/3) with probability
1 − 1/(4Nd).

By Lemma 1, to show the computational hardness of HPC detection, we only need to show
the HPC recovery.

Motivated by the seminal work of Jerrum (1992), we consider the following simulated an-
nealing method for planted clique recovery in hypergraph. Given a hypergraph G = (V ,E) ∼
Gd(N,1/2, κ) on the vertex set V = {0, . . . ,N − 1} and a real number θ ≥ 1, we consider a
Metropolis process on the state space of the collection � ⊆ 2V of all cliques in G, that is, all
subsets of V which induces the complete subgraph in G. A transition from state K to state
K ′ is allowed if |K ⊕K ′| ≤ 1. (Here, K ⊕K ′ = {i : i ∈ K, i /∈ K ′} ∪ {i : i ∈ K ′, i /∈ K} is the
set symmetric difference.)
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For all distinct states K,K ′ ∈ �, the transition probability from K to K ′ is

(25) P
(
K,K ′)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Nθ
, if K ⊕ K ′ = 1,K ⊃ K ′;

1

N
, if K ⊕ K ′ = 1,K ⊂ K ′;

0, if
∣∣K ⊕ K ′∣∣≥ 2.

The loop probability P(K,K) = 1 −∑
K ′ �=K P (K,K ′) are defined by complementation.

The transition probability can be interpreted by the following random process. Suppose the
current state is K . Pick a vertex v uniformly at random from V .

1. If v /∈ K and K ∪ {v} is a clique, then let K ′ = K ∪ {v};
2. If v /∈ K and K ∪ {v} is not a clique, then let K ′ = K ;
3. If v ∈ K , with probability 1

θ
, set K ′ = K \ {v}, else set K ′ = K .

When θ > 1, the Metropolis process defined above is aperiodic and then has a unique
statitionary distribution. Let π : � →[0,1] be defined as

π(K) = θ |K|∑
K∈� θ |K| .

We can check that π satisfies the following detailed balance property:

(26) θ |K|P
(
K,K ′)= θ |K ′|P

(
K ′,K

)
, for all K,K ′ ∈ �.

This means π is indeed the stationary distribution of this Markov chain. The follow-
ing theorem shows that it takes superpolynomial time to locate a clique in G of size
�((log2 N)1/(d−1)) by described Metropolis process.

THEOREM 18 (Hardness of finding large clique in Gd(N,1/2,Nβ),0 < β < 1
2 ). Suppose

ε > 0 and 0 < β < 1
2 . For almost every G ∈ Gd(N,1/2,Nβ) and every θ > 1, there exists an

initial state from which the expected time for the Metropolis process to reach a clique of size
at least m exceeds N�((log2 N)1/(d−1)). Here,

m = 2
⌈((

1 + 2

3
ε

)
d!
2

log2 N

) 1
d−1
⌉
−
⌈((

1 + 2

3
ε

)
(d − 1)! log2 N

) 1
d−1
⌉
�d (log2 N)

1
d−1 .

5.3.2. Evidence of HPC conjecture 1 via low-degree polynomial test. We also consider
the low-degree polynomial tests to establish the computational hardness for hypergraphic
planted clique detection. The idea of using low-degree polynomial to predict the statistical
and computational gap is recently developed in a line of papers (Barak et al. (2019), Hopkins
(2018), Hopkins and Steurer (2017), Hopkins et al. (2017)). Many state-of-the-art algorithms,
such as spectral algorithm, approximate message passing (Donoho, Maleki and Montanari
(2009)) can be represented as low-degree polynomial functions as the input, where “low”
means logarithmic in the dimension. In comparison to sum-of-squares (SOS) computational
lower bounds, the low-degree method is simpler to carry out and appears to always yields the
same results for natural average-case problems, such as the planted clique detection (Hopkins
(2018), Barak et al. (2019)), community detection in stochastic block model (Hopkins and
Steurer (2017), Hopkins (2018)), the spiked tensor model (Hopkins (2018), Hopkins et al.
(2017), Kunisky, Wein and Bandeira (2019)), the spiked Wishart model (Bandeira, Kunisky
and Wein (2020)), sparse PCA (Ding et al. (2019)), spiked Wigner model (Kunisky, Wein
and Bandeira (2019)), sparse clustering (Löffler, Wein and Bandeira (2020)), certifying RIP
(Ding et al. (2020)) and a variant of planted clique and planted dense subgraph models
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(Brennan and Bresler (2019b)). It is gradually believed that the low-degree polynomial
method is able to capture the essence of what makes SOS succeed or fail (Hopkins (2018),
Hopkins and Steurer (2017), Hopkins et al. (2017), Kunisky, Wein and Bandeira (2019),
Raghavendra, Schramm and Steurer (2018)). Therefore, we apply this method to give the
evidence for the computational hardness of HPC detection (20). Specifically, we have the
following Theorem 19 for low degree polynomial tests in HPC.

THEOREM 19 (Failure of low-degree polynomial tests for HPC). Consider the HPC de-
tection problem (20) for κ = Nβ(0 < β < 1

2). Suppose A is the adjacency tensor of G and
f (A) is a polynomial test such that EHG

0
f (A) = 0, EHG

0
(f 2(A)) = 1, and the degree of f

is at most D with D ≤ C logN for constant C > 0. Then we have EHG
1

f (A) = O(1).

It has been widely conjectured in the literature that for a broad class of hypothesis testing
problems: H0 versus H1, there is a test with runtime nÕ(D) and Type I + II error tending to
zero if and only if there is a successful D-simple statistic, that is, a polynomial f of degree
at most D, such that EH0f (X) = 0, EH0(f

2(X)) = 1, and EH1f (X) → ∞ (Brennan and
Bresler (2019b), Ding et al. (2019), Hopkins (2018), Kunisky, Wein and Bandeira (2019)).
Thus, Theorem 19 provides the firm evidence that there is no polynomial-time test algorithm
that can reliably distinguish between Gd(N,1/2) and Gd(N,1/2,Nβ) for 0 < β < 1/2.

5.3.3. Evidence of HPDS recovery Conjecture 2 via low-degree polynomial method.
Compared to the hardness evidence for the hypothesis testing problems, it is much less ex-
plored in the literature to establish hardness evidence for the estimation or recovery problems.
Recently, Schramm and Wein (2020) provides the first sharp computational lower bounds for
recovery in biclustering and planted dense subgraph via the low-degree polynomial method
and resolve the “detection-recovery gap” open problem mentioned in Brennan, Bresler and
Huleihel (2018), Chen and Xu (2016), Hajek, Wu and Xu (2015), Ma and Wu (2015). In this
work, we leverage the results in Schramm and Wein (2020) and provide the firm evidence for
HPDS recovery Conjecture 2 via the low-degree polynomial method.

Recall the HPDS recovery problem in Section 5.2. Let G ∼ Gd(N,κ, q1, q2) with q1 > q2
and planted subset K . Denote v1 ∈ {0,1} as the membership of vertex 1 such that v1 = 1 if the
first vertex is in K and v1 = 0 otherwise. The following theorem shows that it is impossible to
estimate v1 well in the conjectured hard regime via low-degree polynomials, which implies
the computational difficulty of recovering K in general.

THEOREM 20 (Failure of low-degree polynomials for HPDS recovery). Suppose G ∼
Gd(N,κ, q1, q2) with q1 > q2 and A is the adjacency tensor of G. For any 0 < r < 1 and
D ≥ 1, if

(27)
q1 − q2√
q2(1 − q1)

≤
√

r

D + 1
min

((
D(d − 1) + 1

)−d/2
,

N(d−1)/2
√

Dd(d − 1)κd−1

)
,

then for any f :A→ R with degree at most D, we have E(f (A) − v1)
2 ≥ κ

N
− ( κ

N
)2(1 +

r
(1−r)2 ).

In particular, suppose q2 < q1 < 1−�(1). Consider the asymptotic regime of Conjecture 2
that

lim inf
N→∞ logN κ ≥ 1

2
and lim sup

N→∞
logN

(
κd−1(q1 − q2)√

q2(1 − q2)

)
<

d

2
− 1

2
.
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Let f0 be the trivial constant estimator of v1: f0(A) = κ/N . Then for any polynomial f :
A→R with degree at most D with D ≤ polylog(N), we have

lim inf
N→∞

E(f (A)− v1)
2

E(f0(A)− v1)2 ≥ 1.

Theorem 20 shows that under the conjectured hard regime of HPDS (24) and q2 < q1 <

1 − �(1), the mean square error of any f with degree equal or less than polylog(N) is
no better than the trivial estimator f0. This gives strong evidence for the HPDS recovery
Conjecture 2.

5.4. Proofs of computational lower bounds. Now, we are in position to prove the com-
putational lower bounds. Before the detailed analysis, we first outline the high-level idea.

Consider a hypothesis testing problem B: H0 versus H1. To establish a computational
lower bound for B , we can construct a randomized polynomial-time reduction ϕ from the
conjecturally hard problem A to B such that the total variation distance between ϕ(A) and B

converges to zero under both H0 and H1. If such a ϕ can be found, whenever there exists a
polynomial-time algorithm φ for solving B , we can also solve A using φ ◦ ϕ in polynomial-
time. Since A is conjecturally hard, we can conclude that B must also be polynomial-time
hard by the contradiction argument. To establish the computational lower bound for a recov-
ery problem, we can either follow the same idea above or establish a reduction from recovery
to an established detection lower bound. A key challenge of average-case reduction is often
how to construct an appropriate randomized polynomial-time map ϕ.

We summarize the procedure of constructing randomized polynomial-time maps for the
high-order clustering computational lower bounds as follows.

• Input: Hypergraph G and its adjacency tensor A
• Step 1: Apply the rejection kernel technique, which was proposed by Ma and Wu (2015)

and formalized by Brennan, Bresler and Huleihel (2018), to simultaneously map Bern(p)

distribution to N(ξ,1) and Bern(q) distribution to N(0,1) approximately.
• Step 2: Simultaneously change the magnitude and sparsity of the planted signal guided

by the target problem. In this step, we develop several new techniques and apply several
ones in the literature. In CHCD (Algorithm 2), we use the average-trick idea in Ma and
Wu (2015); in CHCR (Algorithm 3), we use the invariant property of Gaussian to handle
the multiway-symmetricity of hypergraph; to achieve a sharper scaling of signal strength
and sparsity in ROHCD , ROHCR (Algorithm 8), the tensor reflection cloning, a gener-
alization of reflection cloning (Brennan, Bresler and Huleihel (2018)), is introduced that
spreads the signal in the planted high-order cluster along each mode evenly, maintains the
independence of entries in the tensor, and only mildly reduces the signal magnitude.

• Step 3: Randomly permute indices of different modes to transform the symmetric planted
signal tensor to an asymmetric one (Lemmas 14 and 16 in Luo and Zhang (2022)) that
maps to the high-order clustering problem.

Then, we give a detailed proof of Theorem 17, that is, computational lower bounds for
ROHCD and ROHCR . The proofs for the computational limits of CHCD and CHCR are
similar and postponed to the Supplementary Material (Luo and Zhang (2022)).

We first introduce the rejection kernel scheme given in Algorithm 9 in Luo and Zhang
(2022) Section C, which simultaneously maps Bern(p) to distribution fX and Bern(q) to
distribution gX approximately. In our high-order clustering problem, fX and gX are N(ξ,1)

and N(0,1), that is, the distribution of the entries inside and outside the planted cluster,
respectively. Here, ξ is to be specified later. Denote RK(p → fX,q → gX,T ) as the rejection
kernel map, where T is the number of iterations in the rejection kernel algorithm.
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Algorithm 7 Tensor Reflecting Cloning

1: Input: Tensor W0 ∈R
n⊗d

(n is an even number), number of iterations �.
2: Initialize W =W0.
3: For i = 1, . . . , �, do:

1. Generate a permutation σ of [n] uniformly at random.
2. Calculate

W ′ =Wσ⊗d ×1
A + B√

2
× · · · ×d

A + B√
2

,

where Wσ⊗d
means permuting each mode indices of W by σ and B is a n×n matrix

with ones on its anti-diagonal and zeros elsewhere and A is given by

(28) A =
[

I n
2

0
0 −I n

2

]
,

where In/2 is a n/2 × n/2 identity matrix.
3. Set W =W ′.

4: Output: W .

We then propose a new tensor reflection cloning technique in Algorithm 7. Note that the
input tensor W0 to Algorithm 7 often has independent entries and a sparse planted cluster,
we multiply Wσ⊗d

, a random permutation of W0, by A+B√
2

in each mode to “spread” the
signal of the planted cluster along all modes while keep the entries independent. We prove
some properties related to tensor reflection cloning in Lemma 16 of Luo and Zhang (2022)
Section C.

We construct the randomized polynomial-time reduction from HPC to ROHC in Algo-
rithm 8. The next lemma shows that the randomized polynomial-time mapping we construct
in Algorithm 8 maps HPC to ROHC asymptotically.

LEMMA 2. Suppose that n is even and sufficiently large. Let ξ = log 2
2
√

2(d+1) logn+2 log 2
.

Then the randomized polynomial-time map ϕ : Gd(n) →R
n⊗d

in Algorithm 8 satisfies if G ∼
Gd(n, 1

2), it holds that

TV
(
L
(
ϕ(G)

)
,N(0,1)⊗(n⊗d ))= O(1/n),

and if G ∼ Gd(n, 1
2 , κ), there is a prior π on unit vectors in Vn,2�κ such that

TV
(
L
(
ϕ(G)

)
,

∫
L
(

ξκ
d
2√

d!u1 ◦ · · · ◦ ud +N(0,1)⊗(n⊗d )

)
dπ(u1, . . . ,ud)

)
= O(1/

√
logn).

Here TV denotes the total variation distance and L(X) denotes the distribution of random
variable X.

Lemma 2 specifically implies that if k = 2�κ , μ = ξκ
d
2√
d! with ξ = log 2

2
√

2(d+1) logn+2 log 2
,

the reduction map ϕ(G) we constructed from Algorithm 8 satisfies TV(ϕ(HPCD(n, 1
2 , κ)),

ROHCD(n,k,μ)) → 0 under both H0 and H1.
Next, we prove the computational lower bound of ROHCD under the asymptotic regime

(A2) by a contradiction argument.
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Algorithm 8 Randomized Polynomial-time Reduction from HPC to ROHC
1: Input: Hypergraph G ∼ Gd(n), number of iterations �.
2: Let RKG = RK(1 → N(ξ,1), 1

2 → N(0,1), T ) where T = �2(d + 1) log2 n and ξ =
log 2

2
√

2(d+1) logn+2 log 2
and compute the symmetric tensor W ∈ R

n⊗d
with W[i1,...,id ] =

RKG(1((i1, . . . , id) ∈ E(G))). Let the diagonal entries of W[i,...,i] to be i.i.d. N(0,1).
3: Generate (d!−1) i.i.d. symmetric random tensor B(1), . . . ,B(d!−1) in the following way:

their diagonal values are 0 and nondiagonal values are i.i.d. N(0,1). Given any non-
diagonal index i = (i1, . . . , id) (i1 ≤ i2 ≤ · · · ≤ id ), suppose it has D(D ≤ d!) unique
permutations and denote them as i(0) := i, i(1), . . . , i(D−1), then we transform W in the
following way: ⎛⎜⎜⎜⎜⎝

Wi(0)

Wi(1)

...

Wi(D−1)

⎞⎟⎟⎟⎟⎠=
(

1√
d! ,

(
1√
d!
)
⊥

)
[1:D,:]

×

⎛⎜⎜⎜⎜⎝
W[i1,...,id ]
B(1)

[i1,...,id ]
...

B(d!−1)
[i1,...,id ]

⎞⎟⎟⎟⎟⎠ .

Here 1√
d! is a R

d! vector with all entries to be 1√
d! and ( 1√

d!)⊥ ∈R
d!×(d!−1) is an orthog-

onal complement of 1√
d! .

4: Generate independent permutations σ1, . . . , σd−1 of [n] uniformly at random and let
W =W id,σ1,...,σd−1 .

5: Apply Tensor Reflecting Cloning to W with � iterations.
6: Output: W .

• If α ≥ 1
2 (α is defined in (A2)), that is, in the dense cluster case, let � = � 2

d
β log2 n and

ϕ be this mapping from Algorithm 8. Suppose κ = �nγ  in HPCD(n, 1
2 , κ), then after

mapping, the sparsity and signal strength in (A2) of ROHC(n,k,μ) model satisfies

lim
n→∞

log(μ/k
d
2 )−1

logn
=

d
2 ( 2

d
β + γ ) logn− d

2 γ logn

logn
= β,

lim
n→∞

logk

logn
= 2

d
β + γ =: α.

If β > (α − 1
2)d

2 , there exists a sequence of polynomial-time tests {φn} such that
lim infn→∞ EROHCD

(φn) < 1
2 . Then by Lemmas 2 and 11 in Luo and Zhang (2022) Sec-

tion C, we have lim infn→∞ EHPCD
(φn ◦ϕ) < 1

2 , that is, φn ◦ϕ has asymptotic risk less than
to 1

2 in HPC detection. On the other hand, the size of the planted clique in HPC satisfies

limn→∞ logκ
logn

= γ = α − 2
d
β < α − (α − 1

2) = 1
2 . The combination of these two facts con-

tradicts HPC detection Conjecture 1, so we conclude there are no polynomial-time tests
{φn} that make lim infn→∞ EROHCD

(φn) < 1
2 if β > (α − 1

2)d
2 .

• If 0 < α < 1
2 , that is, in the sparse cluster case, since CHCD(k,n, λ) is a special case of

ROHCD(k,n,μ) with μ = λkd/2, the computational lower bound in CHCD in Theorem 15
implies that if β > 0, then lim infn→∞ EROHCD

(φn) ≥ 1
2 based on HPC Conjecture 1.

In summary, we conclude if β > (α − 1
2)d

2 ∨ 0 := βc
ROHCD

, any sequence of polynomial-time
tests has asymptotic risk at least 1/2 for ROHCD(n,k,μ). This has finished the proof of
computational lower bound for ROHCD .

Next, we show the computational lower bound for ROHCR . Suppose there is a sequence of
polynomial-time recovery algorithm {φR}n such that lim infn→∞ EROHCR

(φR) < 1
2 when β >
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(α− 1
2)d

2 ∨0. In this regime, it is easy to verify μ ≥ Ck
d
4 for some C > 0 in ROHCD(n,k,μ).

By Lemma 10 in Luo and Zhang (2022) Section B, we know there is a sequence polynomial-
time detection algorithms {φD}n such that lim infn→∞ EROHCD

(φD) < 1
2 , which contradicts

the computational lower bound established in the first part. This has finished the proof of the
computational lower bound for ROHCR .

6. Discussion and future work. In this paper, we study the statistical and computational
limits of tensor clustering with planted structures, including the constant high-order structure
(CHC) and rank-one high-order structure (ROHC). We derive tight statistical lower bounds
and tight computational lower bounds under the HPC/HPDS conjectures for both high-order
cluster detection and recovery problems. For each problem, we also provide unconstrained-
time algorithms and polynomial-time algorithms that respectively achieve these statistical and
computational limits. The main results of this paper are summarized in the phase transition
diagrams in Figure 1 and Table 1.

There are a few directions worth exploring in the future. First, this paper mainly focuses
on the full high-order clustering in the sense that the signal tensor is sparse along all modes.
In practice, the partial cluster also commonly appears (e.g., tensor biclustering (Feizi, Javadi
and Tse (2017))), where the signal is sparse only in part of the modes. It is interesting to
investigate the statistical and computational limits for high-order partial clustering. Second,
in addition to the exact recovery discussed in this paper, we think our results can be extended
to other variants of recovery, such as partial recovery and weak recovery. Third, in the ROHC
model, the nonzero components of the signal are required to have the similar magnitudes
as this assumption is essential for support recovery. Another interesting problem is to esti-
mate (v1, . . . ,vd) without the constraint on the component magnitudes of the signal, which
can be seen a rank-one case of the sparse tensor SVD/PCA problem (Niles-Weed and Zadik
(2020), Sun et al. (2017), Zhang and Han (2019)). For this problem, the signal-to-noise ratio
lower bounds we established in Theorems 10 and 17 still hold by virtue of the estimation-to-
detection reduction. However, the ROHCR Search and Power-iteration algorithms studied in
this paper may no longer be suitable for estimating (v1, . . . ,vd). A natural unconstrained-time
estimator is the maximum likelihood estimator, while to our best knowledge its guarantee is
unexplored. Zhang and Han (2019) developed efficient algorithms which can achieve the
minimax optimal error rate in sparse tensor estimation. However, it is unclear if the required
signal-to-noise in Zhang and Han (2019) is tight. It is interesting to develop algorithms with
optimal guarantees for sparse tensor SVD/PCA under the tight signal-to-noise ratio require-
ment. Finally, since our computational lower bounds of CHC and ROHC are based on HPC
conjecture (Conjecture 1) and HPDS conjecture (Conjecture 2), it is interesting to provide
more evidence for these conjectures.
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