
Learning Good State and Action Representations
via Tensor Decomposition

Chengzhuo Ni
Princeton University

Princeton, NJ 08544, USA
chengzhuo.ni@princeton.edu

Anru R. Zhang
University of Wisconsin-Madison

Madison, WI 53706, USA
anruzhang@stat.wisc.edu

Yaqi Duan and Mengdi Wang
Princeton University

Princeton, NJ 08544, USA
yaqid@princeton.edu; mengdiw@princeton.edu

Abstract—The transition kernel of a continuous-state-action
Markov decision process (MDP) admits a natural tensor struc-
ture. This paper proposes a tensor-inspired unsupervised learning
method to identify meaningful low-dimensional state and action
representations from empirical trajectories. The method exploits
the MDP’s tensor structure by kernelization, importance sam-
pling and low-Tucker-rank approximation. This method can be
further used to cluster states and actions respectively and find
the best discrete MDP abstraction. We provide sharp statistical
error bounds for tensor concentration and the preservation of
diffusion distance after embedding.

I. INTRODUCTION

State abstraction is a core problem at the heart of control and
reinforcement learning (RL). In high-dimension RL, a naive
grid discretization of the continuous state space often leads to
exponentially many discrete states - an open challenge known as
the curse of dimensionality. Having good state representations
will significantly improve the efficiency of RL, by enabling the
use of function approximation to better generalize knowledge
from seen states to unseen states.

We say a state/action representation is “good", if it enables
the use of function approximation to extrapolate and predict
future value of unseen states. Suppose there is a representation
allowing exact linear parametrization of the transition and value
functions, then the sample complexity of RL reduces to depend
linearly on d - the representation’s dimension [1]–[4]. Even
if exact parametrization is not possible, a good representation
can be still useful for solving RL with approximation error
guarantee (see discussions in [5], [6]). An important related
problem is to strategically explore in online RL while learning
state abstractions [7], [8]. Motivated by these advances, we
desire methods that can learn good representations, for RL
with high-dimensional state and action spaces, automatically
from empirical data.

What further complicates the problem is the large action
space. An action can be either a one-step decision or a sequence
of multi-step decisions (known as option). States under different
actions lead to very different dynamics. Although states and
actions may admit separate low-dimensional structures, they
are entangled with each other in sample trajectories. This
necessitates the tensor approach to decouple actions from states,
so that we can learn their abstractions respectively.

A. Our Approach

In this paper, we study the state and action abstraction of
Markov decision processes (MDP) from a tensor decompo-
sition view. We focus on the batch data setting. The Tucker
decomposition structure of a transition kernel p provides natural
abstractions of the state and action spaces. We illustrate the
low-Tucker-rank property in a number of reduced-order MDP
models, including the block MDP (aka hard aggregation), latent-
state model (aka soft aggregation).

Suppose we are given state-action-state transition samples
D = {(s, a, s′)} from a long sample path generated by a behav-
ior policy. Our objective is to identify a state embedding map
and an action embedding map, which map the original state and
action spaces (maybe continuous and high-dimensional) into
low-dimensional representations, respectively. The embedding
maps are desired to be maximally “predicative", by preserving a
notion of kernelized diffusion distance that measures similarity
between states in terms of their future dynamics.

To handle continuous state and action spaces, we use
nonparametric function approximation with known kernel
functions over the state and action spaces. By approximately
decomposing the kernel into finitely many features, we are able
to handle the continuous problem by estimating a transition
tensor of finite dimensions. Next, we leverage importance
sampling and low-rank tensor approximation to identify the
desired state and action embedding maps. They yield “good"
representations of states and actions that are useful for linear
function approximation in RL. Further, these representations
can be used to find the best discrete approximation to the
MDP, and in particular, recover the latent structures of block
MDP with high accuracy. To the best of knowledge, this paper
makes the first attempt to learn low-rank representations for
high-dimensional continuous Markov decision, with statistical
guarantee. Figure 1 illustrates the main idea of our approach.

Contributions of this paper include:
• A tensor-inspired kernelized embedding method to learn low-

dimensional state and action representations from empirical
trajectories. The method exploits the MDP’s tensor structure
by importance sampling, mean embedding and low-rank
approximation.

• Theoretical guarantee that the embedding maps largely
preserve the “predictability" of states and actions in terms

1682978-1-5386-8209-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
In

fo
rm

at
io

n
Th

eo
ry

 (I
SI

T)
 |

 9
78

-1
-5

38
6-

82
09

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

IT
45

17
4.

20
21

.9
51

81
58

Authorized licensed use limited to: Duke University. Downloaded on June 01,2022 at 11:12:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An illustration of our tensor-inspired state and action embedding method.

of a kernelized diffusion distance, which is proved using a
novel tensor concentration analysis.

• The numerical studies to corroborate our theoretical findings.
The simulation results show the advantage of the proposed
method over the baselines of vanilla and top r kernel PCA
methods.

B. Related Literatures

Spectral and low-rank methods for dimension reduction
have a long history. Our approach traces back to the diffusion
map approach for manifold learning and graph analysis [9],
which comes with a notion of diffusion distance that quantifies
similarity between two nodes in a random walk. [10] extended
the idea to systems driven by stochastic differential equations.
[11] and [12], [13] studied how to infer dynamics of a system
from leading spectrum of transition operator and find coresets
of the state space.

The statistical theory of low-rank Markov model estimation
received attention in recent years. [14] studied low-rank
estimation of finite-state Markov chains. [15] studied the
nonparametric estimation of transition kernel for continuous-
state reversible Markov processes with exponentially decaying
eigenvalues. [16] studied kernelized state embedding and
statistical estimation of metastable clusters. These results only
apply to Markov processes.

In control theory and RL, state aggregation is a long known
approach for reducing the complexity of the state space; see e.g.,
[17]–[21]. Representation learning methods were proposed that
uses diagonalization or dilation of some Laplacian operator as a
surrogate of the transition operator; see e.g. [22]–[25]. See [26]
for a review. These methods typically require prior knowledge
about structures of the problem such as the transition function.

General methods for tensor decomposition and low-rank
approximation have been studied in the applied math, statistics,
and computer science literature, including the high-order singu-
lar value decomposition (HOSVD) [27], high-order orthogonal
iteration (HOOI) [28], best low-rank approximation [29], [30],
sketched-based algorithms [31], power iteration, k-means power
iteration [32], etc. The readers are also referred to surveys [33],
[34].

C. Markov Decision Process

An instance of a Markov decision process can be specified by
a tuple M = (S,A, p, r), where S and A are state and action
spaces, p is the transition probability kernel, r : S ×A → R is
the one-step reward function. At each step t, suppose the current

state is st. If the agents choose an action at, they will receive an
instant reward r(st, at) ∈ [0, 1] and system’s state will transit
to st+1 according to the probability distribution p(·|st, at). A
policy π is a rule for choosing actions based on states, where
π(·|s) is a probability distribution over A conditioned on s ∈ S .
Under a given policy, the transition of the MDP will reduce to a
Markov chain, whose transition kernel is denoted by pπ where
pπ(s′|s) = p1,π(s′|s) =

∫
A π(a|s)p(s′|s, a)da. Based on that,

we define the t-step transition kernel pt,π(·|s) inductively by
pt,π(·|s) =

∫
pt−1,π(s′|s)pπ(·|s′)ds′. And we further use νπ

to denote the invariant distribution of that Markov chain. Define
the worst-case mixing time [35, Page 55] as

tmix = max
π

min
{
t
∣∣‖pt′,π(·|s0)− νπ‖TV ≤ 1/4,

∀s0 ∈S, t′ ≥ t
}
,

where ‖ · ‖TV denotes the total variation distance.

D. Tensor and Tucker Decomposition

For a general tensor X ∈ Rp1×p2×···pN , we denote X×nU
as the product between X and a matrix U ∈ Rpn×q on
the nth dimension, which is of size p1 × . . . × pn−1 × q ×
pn+1 × . . . × pN . Each element of X ×n U is defined as
(X ×n U)i1...in−1jin+1...iN =

∑pn
i=1 Xi1...in−1iin+1...iNUij .

We denote by Mk(X) ∈ Rpk×
∏
i6=k pi the factor-k ma-

tricization (or flattening) of X . The Tucker decomposi-
tion of X is of the form X = G ×1 U1 ×2 . . . ×N
UN , where G ∈ Rq1×...×qN is a smaller core tensor.
In particular, we call the smallest size of G the Tucker-
rank of X . Rigorously, we define Tucker-Rank(X) =
(R1, R2, . . . , RN), where Rk = Rank(Mk(X)). The inner
product between two tensors X,Y ∈ Rp1×p2×···pN is defined
as 〈X,Y 〉 =

∑p1

i1=1

∑p2

i2=1 · · ·
∑pN
iN=1 Xi1i2···iNYi1i2···iN .

The spectral norm and Frobenius norm of a ten-
sor X ∈ Rp1×p2×...×pN are defined as ‖X‖σ =
sup‖ui‖=1,1≤i≤N 〈X, u1 ◦ u2 ◦ . . . ◦ uN 〉, ‖X‖F =

√
〈X,X〉.

II. A TENSOR VIEW OF MARKOV DECISION PROCESS

Consider a continuous-state MDP with the transition kernel p,
where each p(·|s, a) is a conditional transition density function.
We adopt a tensor view to exploit structures of p for abstractions
of state and action spaces. We handle the continuous state and
action spaces using kernel function approximation. Suppose
we have a Reproducing Kernel Hilbert Space (RKHS) HS for
functions over states and an RKHS HA for functions over

1683
Authorized licensed use limited to: Duke University. Downloaded on June 01,2022 at 11:12:33 UTC from IEEE Xplore. Restrictions apply.

actions. We make the assumption that the MDP’s transition
kernel p can be represented in these function spaces.

Assumption 1. Let P be the transition operator of
p, i.e., (Pf)(s, a) =

∫
p(s′|s, a)f(s′)ds′. Assume that

Tucker-Rank(P) ≤ (r, l,m) 1, and Pf ∈ HS ×HA,∀f ∈ HS .
Here, the low-Tucker rankness assumption captures the

structure that state/action space can be compressed into a
lower-dimensional space while preserving the dynamics. This
assumption naturally holds in many well-known reinforcement
learning models, such as soft state aggregation [19], [36], [37],
block MDP [38], rich-observation MDP [7], contextual MDP
[39], linear/factor MDP [4], kernel MDP [40], [41]. We remark
that the tensor rank is determined solely by the transition model
p (i.e., the environment), regardless of the reward r.

We give two basic examples of low rank MDPs below.

action space

S

A

s

a

⇡

es

ea

1

meta-actions

transition probability

state space S

A

s

a

⇡

es

ea

1

S

A

s

s0

a

⇡

es

ea

es0

1

meta-states

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

meta-states

S

A

s

a

⇡

es

ea

1

S

A

s

a

⇡

es

ea

1

policy

S

A

s

a

⇡

es

ea

1

state space

action space

meta-actions

S

A

s

a

⇡

es

ea

1

S

A

s

a

⇡

es

ea

1

S

A

s

s0

a

⇡

es

ea

es0

1

aggregation
probability .

aggregation
probability .

disaggregation
probability .

transition probability

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

S

A

S̃

Ã

s

s0

a

⇡

s̃

ã

s̃0

P(s̃ | s)

P(s0 | s̃0)

P(ã | a)

P(s̃0 | s̃, ã)

P(s0 | s̃, ã)

1

Fig. 2. Left: Block MDP (aka hard aggregation); Right: Latent-state-action
MDP (aka soft aggregation).

Example 1 (Block MDP (Hard Aggregation, , Fig. 2 Left)).
Let S̃ and Ã be finite sets. Suppose there exists state and
action abstractions f : S 7→ S̃ and g : S 7→ Ã such that

p(·|s, a) = p(·|s′, a′) if f(s) = f(s′), g(a) = g(a′)

Then p has Tucker rank at most (|S̃|, |Ã|, |S|).

Example 2 (Latent-State-Action MDP (Soft Aggregation, Fig.
2 Right)). Given an MDP M = (S,A, p, r), we say M has
an (r, l,m)-latent variable model if there exist a latent state-
action-state stochastic process {s̃t, ãt, s̃′t} ⊆ S̃ × Ã × S̃ ′, with
|S̃| = r, |Ã| = l, |S̃ ′| = m, such that

P(s̃t, ãt|s1, a1, . . . , st, at) = P(s̃t|st)P(ãt|at),
P(s̃′t|s1, a1, . . . , st, at, s̃t, ãt) = P(s̃′t|s̃t, ãt),
P(st+1|s1, a1, . . . , st, at, s̃t, ãt, s̃

′
t) = P(st+1|s̃′t).

In this case, one can verify that p has Tucker rank (r, l,m).

In the remainder of the paper, we assume without loss
of generality that the state and action kernel spaces admit
finitely many known basis functions, which we refer to as
state features φ(s) ∈ RdS and action features ψ(a) ∈ RdA .
This is a rather mild assumption: Even if we do not know the
basis function but are only given kernel functions K1 and K2

for HS and HA. According to [42], we can always generate
finitely many random features to approximately span these

1We define the Tucker-rank of an operator as follows: there exists cijk ∈ R
and functions ui, wk ∈ HS , vj ∈ HA, i ∈ [r], j ∈ [l], k ∈ [m], such that
(Pf)(s, a) =

∑r
i=1

∑l
j=1

∑m
k=1 cijkui(s)vj(a)〈f, wk〉HS

kernel spaces such that K1(s, s′) ≈ ∑dS
i=1 φi(s)

>φi(s
′) and

K2(a, a′) ≈∑dA
i=1 ψi(a)>ψi(a

′). Also note that our approach
applies to arbitrary state and action spaces, as long as they
come with appropriate kernel functions. Although p is infinitely
dimensional, we use the given kernel spaces and represent p
with a finite-dimensional tensor. In particular, Assumption 1
implies the following tensor linear model:

Lemma 1 (Conditional transition tensor and linear model).
Suppose Assumption 1 holds. There exists a tensor P ∈
RdS×dA×dS such that Tucker-Rank(P) ≤ (r, l,m) and

P×1 φ(s)×2 ψ(a) = E[φ(s′)|s, a], ∀s, a.

Before closing this section, we give an illustrative example
to show the advantage of utilizing tensor MDP formulation as
opposed to the matrix ones.

Example 3. Consider A = {1, 2}, S = {1, 2, 3, 4}. Construct
the MDP transition tensor P as

P·1· =




1/6 1/6 1/3 1/3
1/6 1/6 1/3 1/3
1/3 1/3 1/6 1/6
1/3 1/3 1/6 1/6


 ,P·2· =




1/3 1/3 1/6 1/6
1/3 1/3 1/6 1/6
1/6 1/6 1/3 1/3
1/6 1/6 1/3 1/3


 .

Then, P = C ×1 U
> ×3 U

> for

U =




1 0
1 0
0 1
0 1


 ,C·1· =

[
1/6 1/3
1/3 1/6

]
,C·2· =

[
1/3 1/6
1/6 1/3

]

and the state-space is aggregatable into two latent states: {1, 2}
and {3, 4}. Consider a random policy: π(a|s) = 1/2 for a =
1, 2. Without taking into account the tensor structure induced by
the policy, one can check that the state transitions {s0, s1, . . .}
form a Markov process with the following transition matrix

P̃ = (1/2)P·1· + (1/2)P·2· = (1/4) · 14×4.

Since the latent state partition is “averaged out" by any matrix
methods, it is not feasible to extract the latent state information
merely from the state transitions {s0, s1, . . .}. In contrast, the
proposed tensor formulation, which preserves the original state-
action-state information, allows a reliable latent state recovery.

III. TENSOR-INSPIRED STATE AND ACTION EMBEDDING
LEARNING

In this section, we develop a tensor-inspired representation
learning method, that embeds states and actions into decoupled
low-dimensional spaces. Next, we will develop the method
step by step, and provide theoretical guarantees.

A. Tensor MDP Mean Embedding by Importance Sampling

Suppose we have a batch dataset of state-action samples.

Assumption 2. The data D = {(s, a, s′)} consists of state-
action-state transitions from a single sample path generated
by a known behavior policy π̄.

1684
Authorized licensed use limited to: Duke University. Downloaded on June 01,2022 at 11:12:33 UTC from IEEE Xplore. Restrictions apply.

Let ξ be the stationary state distribution of the sample path
under policy π̄. Let η be a positive probability measure over
the action space. Consider the tensor mean embedding

F =

∫
φ(s) ◦ ψ(a) ◦ φ(s′)p(s, a, s′)dsdads′ ∈ RdS×dA×dS ,

where p(s, a, s′) = p(s′|s, a)ξ(s)η(a).

Lemma 2. Assumption 1 implies Tucker-Rank(F) ≤ (r, l,m).

We estimate the mean embedding tensor F by importance
sampling:

F̄ = n−1∑n
i=1 η(ai)/π̄(ai|si) · φ(si) ◦ ψ(ai) ◦ φ(s′i). (1)

The mean embedding tensor F is related to the transition
tensor P through a simple relation.

Lemma 3 (Relation between P and F). When {ψi(·)}dAi=1

forms a set of orthogonal basis with respect to L2(η), we have
P = F ×1 Σ−1, where Σ =

∫
ξ(s)φ(s)φ(s)>ds.

B. Low-Rank Estimation of Transition Tensor

We estimate a low-rank approximation to F by solving:

F̂ = argmin ‖Q− F̄ ‖σ,
subject to Tucker-Rank(Q) ≤ (r, l,m).

(2)

and estimate the transition operator P by P̂ = F̂ ×1 Σ̂−1,
where Σ̂ = 1

n

∑n
i=1 φ(si)φ

>(si). Define

Kmax = max{sup
s
K1(s, s), sup

a
K2(a, a)},

µ̄ = ‖E[K1(S, S)φ(S)φ(S)>]‖σ, κ = sup
s∈S,a∈A

η(a)/π(a|s),

λ̄ = sup
u,v,w

Eξ◦η◦p(·|·)[[(u>φ(S))(v>ψ(A))(w>φ(S′))]2],

where u,w ∈ SdS−1,v ∈ SdA−1.

Theorem 1 (Low-rank estimation of the transition tensor P).
Suppose Assumptions 1-2 hold. Suppose ψ is orthonormal with
respect to L2(η), and

n/tmix
(log(n/tmix))2

≥ 1024

(
‖Σ−1‖2σµ̄+

K2
max

µ̄
+
κK3

max

λ̄

)
·
(

log
2tmix
δ

+ 8(dS + dA)

)
,

then with probability 1− δ, we have

‖P − P̂ ‖σ

≤256‖Σ−1‖σ

√
λ̄(log 2tmix

δ
+ dS + dA)(κ+ µ̄‖Σ−1‖2σ)

(n/tmix) log−2(n/tmix)
.

The derivation of P̂ also provides a tractable way to estimate
E[φ(s′)|s, a] by Ê[φ(s′)|s, a] := P̂ ×1 φ(s)×2 ψ(a). We have
the following guarantee on the estimation error: ‖Ê[φ(s′)|s, a]−
E[φ(s′)|s, a]‖ ≤ Kmax‖P̂ − P ‖σ.

a) Rank selection: Our theory assumes prior knowledges
of the tensor rank. In practice, it is common to tune the rank
parameters by checking the elbow in the scree plot and using
cross validation (see discussions in the classical literature on
PCA, e.g., [43]). In theory, rank estimation is hard unless one
makes additional strong assumptions, like that the eigengap is
bounded from below.

b) Computation: Finding the exact optimum of (2) can
be computationally intense in general [44]. In practice, we
can apply classic tensor decomposition algorithms, such as
higher-order orthogonal iteration (HOOI) [28], high-order SVD
[27], sequential-HOSVD [45], gradient descent [46], to find
an approximate solution to (2). In particular, the statistical
optimality of tensor power iterations, e.g. HOOI and HOSVD
(Appendix A), have been justified in some special cases [30].
We expect these approximations also work for our problems,
which is later validated in our experiment.

C. Learning State and Action Embeddings

Next, we show how to embed states and actions to low-
dimensional representations to be maximally “predictive."
Consider a kernelized diffusion distance of the MDP, which
measures similarity in terms of future dynamics restricted to a
function class:

dist[(s1, a1), (s2, a2)] = sup
‖f‖HS≤1

|E[f(s′)|s1, a1]− E[f(s′)|s2, a2]|.

This distance quantifies how well one can generalize the
predicted value at a seen state-action pair (s, a) to a new
(s′, a′). Under the low-tensor-rank assumption, we have P =
C×1U

>
1 ×2U

>
2 ×3U

>
3 , where U1,U2,U3 are columnwisely

orthonormal matrices. Then we can define the kernelized state
diffusion map, kernelized action diffusion map and their joint
map as

f(·) := U>1 φ(·), g(·) := U>2 ψ(·), Φ(s, a) := C ×1 f(s)×2 g(a).

It follows that dist[(s, a), (s′, a′)] = ‖Φ(s, a)−Φ(s′, a′)‖, if φ
is a collection of orthonormal basis functions of HS . Motivated
by the preceding analysis, we propose to estimate state and
action embedding maps based on the tensor estimator. After we
obtain P̂ , we can simply find the corresponding state and action
embedding maps from factors of its Tucker decomposition

P̂ = Ĉ ×1 Û
>
1 ×2 Û

>
2 ×3 Û

>
3 .

Now we have obtained the state embedding map f̂ and the

Algorithm 1 Learning State and Action Embedding Maps
1: Input: {(si, ai, s′i)}ni=1, (r, l,m)
2: Calculate F̄ = 1

n

∑n
i=1

η(ai)
π(ai|si)

φ(si) ◦ ψ(ai) ◦ φ(s′i), get F̂ as
the low-rank approximation of F̄ using (2)

3: Calculate Σ̂ = 1
n

∑n
i=1 φ(si)φ

>(si), P̂ = F̂ ×1 Σ̂
−1

4: Let P1 = P̂ . For k = 1, 2, 3, derive Ûk from the SVD
Mk(Pk) = ÛkΛkV

>
k , and let Pk+1 = Pk ×k Ûk.

5: Output:
State and action embedding maps f̂ : s 7→ Û>1 φ(s), ĝ : a 7→
Û>2 ψ(a); Core transition tensor Ĉ = P4.

action embedding map ĝ. Accordingly, we define the joint
state-action embedding and the empirical embedding distance
as

Φ̂(s, a) = Ĉ ×1 f̂(s)×2 ĝ(a), d̂ist[(s, a), (s′, a′)]

=‖Φ̂(s, a)− Φ̂(s′, a′)‖.
Theorem 2 (Embedding error bound). Let Assumptions 1-
2 hold. Suppose φ is an orthogonal basis of HS , and ψ is

1685
Authorized licensed use limited to: Duke University. Downloaded on June 01,2022 at 11:12:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Left: Potential function V (·); Right: Block-wise control function F (·). The action space has 16 blocks, and in each block F (·) is a constant drift
vector (see the arrows).

1000 2000 3000 4000 5000 6000 7000 8000

n

4

5

6

7

8

9

10

||
\h

a
t{

P
}

-
P

||
_

F

(r, l, m) = (20, 10, 20)

HOOI

Top r

Vanilla

1000 2000 3000 4000 5000 6000 7000 8000

n

4

5

6

7

8

9

10
||
\h

a
t{

P
}

-
P

||
_

F
(r, l, m) = (30, 15, 30)

HOOI

Top r

Vanilla

1000 2000 3000 4000 5000 6000 7000 8000

n

4

5

6

7

8

9

10

||
\h

a
t{

P
}

-
P

||
_

F

(r, l, m) = (40, 20, 40)

HOOI

Top r

Vanilla

Fig. 4. Low-tensor-rank estimation of P , compared with baseline methods.

orthogonal w.r.t L2(η), then we can find an orthogonal matrix
O, such that

‖Φ̂(s, a)−OΦ(s, a)‖ ≤ ε,
|d̂ist[(s, a), (s′, a′)]− dist[(s, a), (s′, a′)]| ≤ 2ε,∀s, a, s′, a′

where ε is controlled by the low-rank estimation error,
ε := Kmax

(
1 +
√

2‖P ‖σ/σ
)
‖P̂ − P ‖σ, and σ :=

sup‖w‖≤1 σm(P ×1 w), where σm denotes the m-th singular
value of a matrix.

a) Advantage of tensor method: As an alternative, one
could ignore the tensor structure and treat the state and action
jointly, yielding a low-dimensional representation for the pair
(s, a) directly. This approach may be favorable if the (s, a) has
a very simple joint structure. However, the tensor approach
may be significantly more sample efficient if s and a admit
separate low-dimensional structures. To see this, suppose the
state and action features have dimensions dS and dA before
embedding. Also assume the Tucker rank (r, l,m) are constants
for simplicity. By treating (s, a) jointly and ignoring the tensor
structure, one would need Ω̃(dAdS) (i.e., the matrix dimension)
samples to reliably recover the low-dimensional structure. In
comparison, our tensor-based approach requires only Ω̃(dX +
dA) samples as indicated by Theorem 1.

IV. NUMERICAL EXPERIMENT

We test our approach on a particular MDP derived from a
controlled stochastic process. Let the state and action spaces
be both R2. Suppose the state-action pair at step k is (sk, ak).

Then the next state sk+1 is set to be Xτ(k+1) for some τ > 0,
where Xt is the solution of the SDE:

dXt = −[∇V (Xt) + F (ak)]dt+
√

2dBt, kτ ≤ t ≤ (k + 1)τ,

where V (·) is a wavy potential function, F (·) is a block-
wise constant function (Figure 3), Bt is the standard Brow-
nian motion. Let the behavior policy be always choosing
a from a standard normal distribution. In the experiment,
we use the Gaussian kernels K1(x, y) = K2(x, y) =

1
2πσ2 exp{−‖x−y‖

2

2σ2 }. The features are obtained by generating
Ns (or Na) random Fourier features h = [h1, h2, · · · , hNs]
such that K(x, y) ≈∑Ns(Na)

i=1 hi(x)hi(y). The action features
are then orthogonalized with respect to L2(η). We also choose
τ = 0.1, σ = 0.5, Ns = 100, Na = 50.

We investigate the efficiency of estimating P via the
proposed method and compare with two baseline methods:
(1) The vanilla method, which directly estimates the transition
tensor by P̂ = F̄ ×1 Σ̄−1 without any low-rank approximation;
(2) The “top r” method, whose the procedure is: i) calculate the
top r (or l,m) principle components of the sample covariance
per mode; ii) project features onto the subspace spanned by the
top principle components; iii) estimate the transition tensor via
the vanilla method (discussed above) in the space of projected
features. Fig. 4 visualizes the estimation errors of these methods
with different choices of (r, l,m), where errors are averaged
over five independent runs. We observe that, for most of the
time, our method consistently outperforms the baselines. Note
that the top r method performs slightly better when n is very
small, because in this case data is too small to get meaningful
estimate of P .

1686
Authorized licensed use limited to: Duke University. Downloaded on June 01,2022 at 11:12:33 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of machine learning research, vol. 4, no. Dec, pp. 1107–1149, 2003.

[2] A. Zanette, A. Lazaric, M. J. Kochenderfer, and E. Brunskill, “Limiting
extrapolation in linear approximate value iteration,” in Advances in Neural
Information Processing Systems, 2019, pp. 5616–5625.

[3] L. Yang and M. Wang, “Sample-optimal parametric q-learning using
linearly additive features,” in International Conference on Machine
Learning, 2019, pp. 6995–7004.

[4] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan, “Provably efficient rein-
forcement learning with linear function approximation,” arXiv preprint
arXiv:1907.05388, 2019.

[5] S. S. Du, S. M. Kakade, R. Wang, and L. F. Yang, “Is a good
representation sufficient for sample efficient reinforcement learning?”
arXiv preprint arXiv:1910.03016, 2019.

[6] T. Lattimore and C. Szepesvari, “Learning with good feature represen-
tations in bandits and in rl with a generative model,” arXiv preprint
arXiv:1911.07676, 2019.

[7] S. S. Du, A. Krishnamurthy, N. Jiang, A. Agarwal, M. Dudík, and
J. Langford, “Provably efficient rl with rich observations via latent state
decoding,” arXiv preprint arXiv:1901.09018, 2019.

[8] D. Misra, M. Henaff, A. Krishnamurthy, and J. Langford, “Kinematic
state abstraction and provably efficient rich-observation reinforcement
learning,” arXiv preprint arXiv:1911.05815, 2019.

[9] S. Lafon and A. Lee, “Diffusion maps and coarse-graining: A uni
ed framework for dimensionality reduction, graph partitioning, and data
set parameterization,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 29, no. 9, pp. 1393–1403, 2006.

[10] R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler,
“Diffusion maps, reduction coordinates, and low dimensional representa-
tion of stochastic systems,” SIAM Journal on Multiscale Modeling and
Simulation, vol. 7, no. 2, pp. 852–864, 2008.

[11] C. Schütte, F. Noe, J. Lu, M. Sarich, and E. Vanden-Eijnden, “Markov
state models based on milestoning,” The Journal of Chemical Physics,
vol. 134, no. 20, p. 204105, 2011.

[12] S. Klus, P. Koltai, and C. Schütte, “On the numerical approximation of
the perron–frobenius and koopman operator,” Journal of Computational
Dynamics, vol. 3, no. 1, pp. 51–79, 2016.

[13] S. Klus, I. Schuster, and K. Muandet, “Eigendecompositions of trans-
fer operators in reproducing kernel hilbert spaces,” arXiv preprint
arXiv:1712.01572, 2018.

[14] A. Zhang and M. Wang, “Spectral state compression of markov processes,”
IEEE Transactions on Information Theory, vol. to appear, 2019.

[15] M. Löffler and A. Picard, “Spectral thresholding for the estimation of
markov chain transition operators,” arXiv preprint arXiv:1808.08153,
2018.

[16] Y. Sun, Y. Duan, H. Gong, and M. Wang, “Learning low-dimensional state
embeddings and metastable clusters from time series data,” in Advances
in Neural Information Processing Systems, 2019, pp. 4563–4572.

[17] A. W. Moore, “Variable resolution dynamic programming: Efficiently
learning action maps in multivariate real-valued state-spaces,” in Machine
Learning Proceedings 1991. Elsevier, 1991, pp. 333–337.

[18] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Athena
Scientific, Belmont, MA, 1996.

[19] S. P. Singh, T. Jaakkola, and M. I. Jordan, “Reinforcement learning with
soft state aggregation,” in Advances in neural information processing
systems, 1995, pp. 361–368.

[20] J. N. Tsitsiklis and B. Van Roy, “Feature-based methods for large scale
dynamic programming,” Machine Learning, vol. 22, no. 1-3, pp. 59–94,
1996.

[21] Z. Ren and B. H. Krogh, “State aggregation in markov decision processes,”
in Decision and Control, 2002, Proceedings of the 41st IEEE Conference
on, vol. 4. IEEE, 2002, pp. 3819–3824.

[22] J. Johns and S. Mahadevan, “Constructing basis functions from directed
graphs for value function approximation,” in Proceedings of the 24th
international conference on Machine learning. ACM, 2007, pp. 385–392.

[23] S. Mahadevan, “Proto-value functions: Developmental reinforcement
learning,” in Proceedings of the 22nd international conference on Machine
learning. ACM, 2005, pp. 553–560.

[24] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman, “Analyzing feature
generation for value-function approximation,” in Proceedings of the
24th international conference on Machine learning. ACM, 2007, pp.
737–744.

[25] M. Petrik, “An analysis of laplacian methods for value function
approximation in mdps.” in IJCAI, 2007, pp. 2574–2579.

[26] S. Mahadevan et al., “Learning representation and control in markov
decision processes: New frontiers,” Foundations and Trends R© in Machine
Learning, vol. 1, no. 4, pp. 403–565, 2009.

[27] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular
value decomposition,” SIAM journal on Matrix Analysis and Applications,
vol. 21, no. 4, pp. 1253–1278, 2000.

[28] ——, “On the best rank-1 and rank-(r 1, r 2,..., rn) approximation of
higher-order tensors,” SIAM journal on Matrix Analysis and Applications,
vol. 21, no. 4, pp. 1324–1342, 2000.

[29] E. Richard and A. Montanari, “A statistical model for tensor pca,” in
Advances in Neural Information Processing Systems, 2014, pp. 2897–
2905.

[30] A. Zhang and D. Xia, “Tensor svd: Statistical and computational limits,”
IEEE Transactions on Information Theory, vol. 64, no. 11, pp. 7311–7338,
2018.

[31] Z. Song, D. Woodruff, and H. Zhang, “Sublinear time orthogonal tensor
decomposition,” in Advances in Neural Information Processing Systems,
2016, pp. 793–801.

[32] A. Anandkumar, R. Ge, and M. Janzamin, “Guaranteed non-orthogonal
tensor decomposition via alternating rank-1 updates,” arXiv preprint
arXiv:1402.5180, 2014.

[33] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[34] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. Phan, “Tensor decompositions for signal processing appli-
cations: From two-way to multiway component analysis,” IEEE Signal
Processing Magazine, vol. 32, no. 2, pp. 145–163, 2015.

[35] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing
times. American Mathematical Soc., 2009.

[36] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 2007.

[37] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[38] K. Azizzadenesheli, A. Lazaric, and A. Anandkumar, “Reinforcement
learning in rich-observation mdps using spectral methods,” arXiv preprint
arXiv:1611.03907, 2016.

[39] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire,
“Contextual decision processes with low bellman rank are pac-learnable,”
in Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 1704–1713.

[40] D. Ormoneit and P. Glynn, “Kernel-based reinforcement learning in
average-cost problems,” IEEE Transactions on Automatic Control, vol. 47,
no. 10, pp. 1624–1636, 2002.

[41] S. R. Chowdhury and A. Gopalan, “Online learning in kernelized markov
decision processes,” arXiv preprint arXiv:1805.08052, 2018.

[42] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in neural information processing systems, 2008,
pp. 1177–1184.

[43] I. T. Jolliffe, “Principal components in regression analysis,” in Principal
component analysis. Springer, 1986, pp. 129–155.

[44] V. De Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the
best low-rank approximation problem,” SIAM Journal on Matrix Analysis
and Applications, vol. 30, no. 3, pp. 1084–1127, 2008.

[45] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, “A new
truncation strategy for the higher-order singular value decomposition,”
SIAM Journal on Scientific Computing, vol. 34, no. 2, pp. A1027–A1052,
2012.

[46] R. Han, R. Willett, and A. Zhang, “An optimal statistical and compu-
tational framework for generalized tensor estimation,” arXiv preprint
arXiv:2002.11255, 2020.

[47] R. Vershynin, High-Dimensional Probability. Cambridge University
Press (to appear), 2017.

[48] J. A. Tropp, “Freedman’s inequality for matrix martingales,” Electron.
Commun. Probab, vol. 16, pp. 262–270, 2011.

[49] P.-Å. Wedin, “Perturbation bounds in connection with singular value
decomposition,” BIT Numerical Mathematics, vol. 12, no. 1, pp. 99–111,
1972.

[50] T. T. Cai and A. Zhang, “Rate-optimal perturbation bounds for singular
subspaces with applications to high-dimensional statistics,” The Annals
of Statistics, vol. 46, no. 1, pp. 60–89, 2018.

1687
Authorized licensed use limited to: Duke University. Downloaded on June 01,2022 at 11:12:33 UTC from IEEE Xplore. Restrictions apply.

