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Summary

In microbiome and genomic studies, the regression of compositional data has been a crucial tool
for identifying microbial taxa or genes that are associated with clinical phenotypes. To account for
the variation in sequencing depth, the classic log-contrast model is often used where read counts
are normalized into compositions. However, zero read counts and the randomness in covariates
remain critical issues. We introduce a surprisingly simple, interpretable and efficient method
for the estimation of compositional data regression through the lens of a novel high-dimensional
log-error-in-variable regression model. The proposed method provides corrections on sequencing
data with possible overdispersion and simultaneously avoids any subjective imputation of zero
read counts. We provide theoretical justifications with matching upper and lower bounds for the
estimation error. The merit of the procedure is illustrated through real data analysis and simulation
studies.

Some key words: Compositional data; Error-in-variable; High-dimensional regression; Microbiome study.

1. Introduction

High-dimensional regression has attracted enormous attention in contemporary statistical
research. The canonical model of high-dimensional regression can be written as y = X β∗ + ε,
where y = (y1, . . . , yn)

T is the response vector, X ∈ R
n×p is the covariate matrix and β∗ ∈ R

p

is the unknown coefficient vector of interest. Most prior work has focused on the clean data case
where the covariates are accurately observed. However, in applications of econometrics, genomics
and engineering, we also frequently see covariates corrupted with noise. Previous literature
referred to such scenarios as error-in-variable, and showed that performing standard regression
methods directly on the corrupted covariates may yield inaccurate inference results (Hausman,
2001). When the observable covariates are corrupted by additive Gaussian or sub-Gaussian noise,
the methods and theories for error-in-variable regression have been widely considered in both
the classic low-dimensional setting (Deming, 1943), and more recently in the high-dimensional
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setting (Rosenbaum & Tsybakov, 2010; Loh & Wainwright, 2012; Belloni et al., 2017; Datta &
Zou, 2017).

The focus of high-dimensional error-in-variable regression has so far mainly been on
homoscedastic Gaussian, sub-Gaussian or bounded corruption settings. Motivated by applica-
tions in high-throughput sequencing in microbiome studies, we consider here a new framework
of high-dimensional error-in-variable regression that adapts to compositional covariates.

The human microbiome is the aggregate of all microbes that reside on human bodies. It has
attracted enormous recent attention due to its strong tie with human health (The Human Micro-
biome Project Consortium, 2012). For example, recent studies found that the human microbiome
may be closely related with various diseases, such as cancer (Schwabe & Jobin, 2013) and obesity
(Turnbaugh et al., 2006). Modern next-generation sequencing technologies, such as 16S ribosomal
RNA and shotgun metagenomics sequencing, provide quantification of the human microbiome
by performing direct sequencing on either whole metagenomes or individual marker genes. By
aligning sequencing reads to referential microbial genomes, we can organize the sequencing data
into a count matrix with rows representing samples and columns representing microbial taxa or
genes. Such data can be seen as the random realization of the relative abundance of bacteria in
each sample.

To account for the difference in sequencing depth across samples, the read counts are often
normalized into compositions; see (Li, 2015) for a survey, and the references herein. The result-
ing data, also called compositional data, pose statistical challenges due to the collinearity and
nonnormality that come from their compositional nature. To address these issues, Aitchison &
Bacon-Shone (1984) introduced the log-contrast model:

yi = ∑p−1
j=1 log(Zij/Zip)β

∗
j + εi (i = 1, . . . , n). (1)

Here, Wij and Zij = Wij/(
∑p

j′=1 Wij′) are respectively the absolute count and the relative abun-
dance of the jth component, e.g., bacterial gene or taxon, in the ith sample. The analysis of
the log-contrast model (1) is often dependent on the choice of reference component Zip, espe-
cially in high-dimensional settings. Thus, Lin et al. (2014) reformulated (1) by introducing
β∗

p = − ∑p−1
j=1 β∗

j ,

yi = ∑p
j=1 log(Zij)β

∗
j + εi (i = 1, . . . , n) subject to

∑p
j=1 β∗

j = 0, (2)

and proposed estimating β∗ through the constrained l1 regularized estimator. More recently, Shi
et al. (2016) studied the statistical inference and confidence intervals for β∗, and Wang & Zhao
(2017) considered the subcomposition selection in compositional data regression via a tree-guided
regularization method.

The direct application of (1) and (2) by normalizing sequencing read counts, i.e., using
Zij = Wij/(

∑p
j=1 Wij) as covariates, has several drawbacks. First, it ignores the fact that the

Zij are random realizations rather than true compositions of the components. In next-generation
sequencing data, Zij is the proportion of the read count of component j among all components
in sample i, and is thus a transformation of discrete random variables that reflect the underlying
true compositions with measurement errors. As mentioned earlier, overlooking the measurement
error in regressors may lead to inaccurate results. By treating Zij as the true compositions, it
is also overlooking the heteroskedasticity or overdispersion of Zij caused by enormous uncon-
trollable factors of variation in sequencing, e.g., time, sampling location or technical variability
(Chen & Li, 2013). Second, the procedure requires Zij > 0, while in reality compositional data
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from next-generation sequencing often contain a lot of zeros due to the rarity of certain compo-
nents. Strategies to deal with the zeros include replacing zero counts by a subjectively chosen
small number, such as 0.5, before normalizing counts into compositions (Martin-Fernandez et al.,
2000), or imputing the entire composition matrix (Cao et al., 2020) based on a low-rank assump-
tion. However, to the best of our knowledge, there is still no consensus on the best approach to
deal with zero read counts in compositional data regression.

To address the aforementioned challenges in compositional data regression, we introduce a
high-dimensional log-error-in-variable regression model that directly handles count covariates
without normalization into compositions or imputation of zeros. Recall that Wij is the count of
the jth component in the ith sample. We assume Wi = (Wi1, . . . , Wip)

T follows the Dirichlet-
multinomial distribution (Mosimann, 1962) given the total count Ni = ∑p

j=1 Wij in the ith sample,
and Ni ∼ Po(νi) to account for the randomness of sequencing depth. That is,

pr
{
(Wi1, . . . , Wip) = (ki1, . . . , kip) | (Ni, qi1, . . . , qip)

} = Ni!(ki1! · · · kip!)−1 ∏p
j=1 q

kij
ij ,

f (qi1, . . . , qip | Ni) = B(αiXi1, . . . , αiXip)
−1 ∏p

j=1 q
αiXij−1
ij ,

(3)

where
∑p

j=1 kij = Ni, ki1, . . . , kip ∈ {0, 1, 2, . . .}, and
∑p

j=1 qij = 1, qi1, . . . , qip � 0. Here, Xi =
(Xi1, . . . , Xip)

T is the underlying true composition of the p components, B(αiXi1, . . . , αiXip) =
{∏p

j=1 �(αiXij)}/�(αi) is the Beta function and αi is the overdispersion parameter of the sub-
ject from which the ith sample is measured. The Dirichlet-multinomial distribution is a standard
assumption and has been commonly used to model the multivariate count datasets with overdis-
persion. See, for example, Holmes et al. (2012), La Rosa et al. (2012), Chen & Li (2013), Mandal
et al. (2015), Wadsworth et al. (2017) and Dai et al. (2019). The Dirichlet-multinomial model has
also been used in applications of econometrics (Guimaraes & Lindrooth, 2007), single-cell mRNA
studies (Qiu et al., 2017) and text mining (Yin & Wang, 2014), amongst others. When αi → +∞,
the Dirichlet-multinomial distribution degenerates to the regular multinomial distribution.

Since the observable count, Wi, is merely a realization of the underlying composition, Xi, it
is more reasonable to assume association between yi and Xi rather than between yi and Wi. We
thus assume the regression response yi to be dependent on Xi through the following log-contrast
model:

yi = ∑p
j=1 log(Xij)β

∗
j + εi (i = 1, . . . , n) subject to

∑p
j=1 β∗

j = 0. (4)

We refer to (3) together with (4) as the log-error-in-variable regression model. Our aim is to
estimate β∗ based on responses y ∈ R

n and error-in-covariates W ∈ R
n×p. Most of the results

on error-in-variables regression deal with homoscedastic continuous variables, and may not be
directly applied here since the Wi are discrete random variables with heteroscedasticity depending
on Xi and αi. Therefore, new methods are required.

In this paper we propose a surprisingly simple and straightforward estimation scheme, named
variable correction regularized estimator, for high-dimensional log-error-in-variable regression.
In particular, when the count observations are without overdispersion, we propose to add 0.5 to all
counts Wij, then estimate the regression parameters using constrained lasso with log(Wij + 0.5)

as predictors; for overdispersed data, we propose to add an amount related to the overdispersion
level to Wij to alleviate the effect of any overly large or small counts due to overdispersion. In
practice, we recommend adding 0.5 to all counts if quantification of the overdispersion level
is difficult, for example when there is no repeated measurement or the Dirichlet-multinomial
distribution is largely violated.
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In addition, we further generalize the proposed variable correction scheme in a more general
log-error-in-variable regression model in § 4:

yi =
p∑

j=1

log(νij)β
∗
j + εi (i = 1, . . . , n) subject to

p∑
j=1

β∗
j = 0. (5)

Here, the observed yi and independent random covariates Wij � 0 are linked through log(νij),
where νij = EWij does not need to form compositions, β∗ is the parameter of interest and εi
is independent and identically distributed sub-Gaussian noise with mean zero and variance σ 2.
We prove that the +0.5 variable correction regularized estimator for β∗ in (5) achieves good
performance.

2. Methods for log-error-in-variable regression

To estimate β∗ in (3) and (4), one classic method is simple normalization, i.e., using Wij/Ni
as a surrogate for Xij and implementing the classic high-dimensional regularized estimators with
log(Wij/Ni) as covariates. As discussed earlier, this idea has two critical issues. First, the zero-
valued Wij need to be replaced by a small value to make them positive in the log transformation.
The choice of this value is often difficult, but critical to the performance of the final estimates.
Second, even though E(Wij/Ni | Ni) = Xij, log(Wij/Ni) may be a biased estimator for log(Xij),
which can cause additional inaccuracy in the regression analysis. To further illustrate the biased
nature of log(Wij/Ni) and to introduce our fixing plan, we first focus on the non-overdispersion
case, i.e., αi = +∞ in (3), or equivalently (Wi1, . . . , Wip) | Ni ∼ Mu(Ni, Xi1, . . . , Xip). In this
case, Wij follows Po(νiXij) and E(Wij) = var(Wij) = νiXij. For any zi � 0, the Taylor expansion
of log(Wij + zi) at νiXij yields the following approximation:

E{log(Wij + zi)} ≈ log(νiXij) + E(Wij − νiXij + zi)

νiXij

− var(Wij) + 2ziE(Wij − νiXij) + z2
i

2ν2
i X 2

ij

= log(νiXij) + zi − 1/2

νiXij
− z2

i

2ν2
i X 2

ij

.

Since Ni is the total number of reads in sample i and is generally large in practice, e.g., around
104 to 105 in our real data example, we can assume νi = ENi to be large. Then,

E

{
log

(
Wij + zi

Ni

)}
− log(Xij) ≈ zi − 1/2

νiXij
− z2

i

2ν2
i X 2

ij

+ log(νi) − E log(Ni)

≈ zi − 1/2

νiXij
− z2

i

2ν2
i X 2

ij

.

We can see that the bias of log{(Wij +zi)/Ni} for estimating log(Xij) is approximately −(1/2)νiXij

and −(1/8)ν2
i X 2

ij when zi = 0 and zi = 1/2, respectively. For large νi, one has (1/8)ν2
i X 2

ij 	
(1/2)νiXij. Therefore, heuristically log{(Wij + 1/2)/Ni} is a significantly less biased estimator
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Fig. 1. log(ν) versus E log(W ∨ 0.5) (zero-replace, blue dashed) and E log(W + c) for c = 1/4 (red dotted),
1/2 (red solid), 3/4 (purple dotted), 1 (green dashed). Here, W ∼ Po(ν).

for log(Xij) compared to log(Wij/Ni), or log{(Wij + c)/Ni} for any c =| 1/2. Figure 1 illustrates
the bias of log(W ∨ 0.5), i.e., replacing zeros by 1/2, and log(W + c), c = 1/4, 1/2, 3/4, 1
for estimating log(ν) when W follows Po(ν). The plot suggests that log(W + 1/2) achieves the
minimum bias among these choices. In addition, by adding the positive value 1/2 to all Wij, the
previously mentioned zero-replacement issue is simultaneously solved!

To account for higher variability in the count data, we also consider the overdispersed case
where αi < ∞ in (3). In this case, we have

E(Wij) = νiXij, var(Wij) = νiXij(1 − Xij)(νi + αi + 1)/(αi + 1) + νiX
2
ij .

Similarly, by investigating the Taylor expansion of E[log{(Wij + zi)/Ni}], it can be shown that
taking zi = (Ni +αi +1)/{2(αi +1)} will make log{(Wij + zi)/Ni} a better estimator for log(Xij);
a more rigorous argument is postponed to the Supplementary Material. It is noteworthy that zi
is an estimate for half of (νi + αi + 1)/(αi + 1), which quantifies the overdispersion rate of Wij
compared with the multinomial distribution.

These heuristic arguments inspire us to the following variable correction regularized estimator
for the log-error-in-variable regression in (3) and (4):

β̂ = arg min
β

{‖y − BW β‖2
2/(2n) + λ‖β‖1

}
subject to

∑p
j=1 βj = 0, (6)

where BW ∈ R
n×p and (BW )ij = log

{
Wij + (Ni + αi + 1)/(2αi + 2)

}
. Particularly if αi = ∞,

i.e., Wi· | Ni satisfies the regular multinomial, (BW )ij = log(Wij + 1/2).

Remark 1. Different from the classic zero-replacement scheme that replaces only the zero
covariates by a fixed value, we propose to add 1/2 to all covariates in the non-overdispersion
case. For an overdispersed sample, we propose to correct Wij with a larger value: zi = (Ni +
αi + 1)/{2(αi + 1)}. In particular, with larger total count Ni or larger degree of overdispersion,
i.e., smaller αi, the observable count covariate Wi contains noisier information about the true
underlying composition Xi. The larger added values can alleviate the effect of overly large or
small counts due to overdispersion.

When there is evidence of overdispersion and there are multiple samples Wi that share the
same Xi and αi in practice, αi can be estimated by the method of moments (La Rosa et al., 2012)

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/109/2/405/6203806 by guest on 25 M
ay 2022

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab020#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab020#supplementary-data


410 P. Shi, Y. Zhou and A. R. Zhang

or the maximum likelihood estimator (Tvedebrink, 2010). Otherwise, αi = +∞ and zi = 1/2
are suggested. More detailed discussions on the method of moment estimator of αi are given in
the Supplementary Material.

Remark 2. In the existing methods for high-dimensional error-in-variable regression, it is
often a key step to construct good estimators for both the covariate V and the Gram matrix V TV ,
e.g., Loh & Wainwright (2012), Rosenbaum & Tsybakov (2013), Belloni et al. (2017), Datta &
Zou (2017) and Rudelson & Zhou (2017). Even though our construction targets (BW )ij, a nearly
unbiased estimator for Vij = log(νij), we can further show that BT

W BW is also a good estimator
of V TV based on some key properties of the log-error-in-variable model.

Remark 3. The proposed variable correction scheme requires knowledge of Ni, i.e., the total
count from each subject. Due to the mechanism of sequencing techniques in microbiome studies,
the raw data are usually counts as opposed to the normalized compositions, and the total number
of sequencing reads Ni is usually available; Ni is also available in a wide range of applications,
e.g., single-cell sequencing data analysis (Navin et al., 2011) and text mining. In addition, if
the observation comes as a composition, but the total count Ni is not available, as long as the
distribution of error-in-variable, i.e., Wij | Xij, can be parameterized as PXij and PXij is known
for given Xij, the compositional regression problem may be addressed by the general high-
dimensional log-error-in-variable regression model discussed in § 5.

3. Theoretical analysis

We now investigate the theoretical performance of the proposed variable correction regu-
larized estimator for the log-error-in-variable regression model. Denote ν̄ = ∑n

i=1 νi/n and
ν = (ν1, . . . , νn)

T. We say a matrix M satisfies the restricted isometry property (Candès & Tao,
2007) with constant δs(M ) ∈ (0, 1) if

n{1 − δs(M )}‖β‖2
2 � ‖Mβ‖2

2 � n{1 + δs(M )}‖β‖2
2 ∀ s-sparse vectors β. (7)

The restricted isometry property (7) is commonly used in the high-dimensional regres-
sion literature. Recall the corrected design matrix BW ∈ R

n×p and (BW )ij = log
{
Wij+

(Ni + αi + 1)/(2αi + 2)}. We assume the centralized B̄W = BW {Ip − (1/p)1p1T
p} satisfies the

following condition.

Condition 1. The centralized design matrix B̄W satisfies the restricted isometry property with
constant δ2s(B̄W ) < 1/10 with probability 1 − ε′ for some small quantity ε′ > 0.

We first consider the case where the observable counts have no overdispersion, i.e., α = ∞.
We show that the proposed variable correction regularized estimator (6) satisfies the following
upper bound.

Theorem 1 (No overdispersion, upper bound). Consider (3) and (4) with αi = ∞, i.e.,
W has no overdispersion. Suppose Condition 1 holds, n � Cs log(p), and aν̄ � νi � bν̄,
a/p � Xij � b/p for constants 0 < a < 1 < b. If, for some large constant C > 0, some ε > 0
and a constant Cε that only depends on ε, we have (ν̄/p) � C(s + log(np) + Cε), then, by
choosing λ = C[{log(p)/n} {σ 2 + (p/ν̄)‖β∗‖2

2}+ s (p/ν̄)3−2ε ‖β∗‖2
2]1/2 for some large constant
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C > 0, the variable correction regularized estimator (6) satisfies

‖β̂ − β∗‖2
2 � C

[
(s log p/n)

{
σ 2 + (p/ν̄)‖β∗‖2

2

} + s2 (p/ν̄)3−2ε ‖β∗‖2
2

]
(8)

with probability at least 1 − 4p−C ′ − ε′. Moreover, if ν̄ � p(sn/ log p)1/(2−2ε), then, by choos-
ing λ = C

[{log(p)/n} {
σ 2 + (p/ν̄)‖β∗‖2

2

}]1/2
for constant C > 0, with probability at least

1 − 4p−C ′ − ε′,

‖β̂ − β∗‖2
2 � C(s log p/n)

{
σ 2 + (p/ν̄)‖β∗‖2

2

}
. (9)

Proofs of all the theorems are provided in the Supplementary Material.

Remark 4. Theorem 1 shows that the estimation error gets smaller with larger sample size
n, smaller dimension p, smaller noise variance σ 2, higher ν̄, smaller signal amplitude ‖β∗‖2

2 or
smaller sparsity level s. If ν̄ is large, a sufficient sample size to ensure consistency of β is n �
C max{σ 2, 1}s log p, which matches the classic result in high-dimensional sparse linear regression
(Bickel et al., 2009). In addition, the error bound (8) includes two components: C(s log p/n)σ 2

corresponds to the error of εi and C{(s log p/n)(p/ν̄)‖β∗‖2
2 + s2 (p/ν̄)3−2ε ‖β∗‖2

2} is incurred by
the error in covariates.

An important factor in both the condition and upper bound in Theorem 1 is ν̄, as ν̄ = ∑n
i=1 νi/n,

νi = E
∑p

j=1 Wij, (ν̄/p) quantifies the average count of all components among all subjects.
In practice, such as in microbiome studies, it is reasonable to assume (ν̄/p) is a constant or
logarithmic in scale as p increases, because when we investigate bacteria with higher resolution
at lower taxanomic levels, the average sequencing depth quantified by ν̄ should also be increased
accordingly to maintain the accuracy of the analysis.

Let V̄ = {
log(νiXij) − p−1 ∑p

l=1 log(νiXil)
}

1�i�n;1�j�p be the centralized population design
matrix. We further consider the following class of covariate matrices and parameter vectors,

Fp,n,s(R, Q) = {
(ν, X , β) : aν̄ � νi � bν̄, a/p � Xij � b/p for constants 0 < a < 1 < b;

δ2s(V̄ ) < 1/20, ||β||2 � R, 1T
pβ = 0, e−3/2Q � ν̄ � e3/2Q

}
. (10)

The constraints in Fp,n,s(R, Q) correspond to the regularization assumptions in Theorem 1. The
upper bound in Theorem 1 turns out to match the minimax lower bound in Fp,n,s(R, Q).

Theorem 2 (Lower bound). Suppose εi
iid∼ N (0, σ 2). If we have n � Cs log p for some large

constant C > 0, R � c̄
√{s log (p/s) σ 2/n} for some constant c̄ > 0, Q � p and s � 4, then

inf
β̂

sup
(ν,X ,β)∈Fp,n,s(R,Q)

E(‖β̂ − β‖2
2) � c{s log(p/s)/n} {

σ 2 + (p/Q)R2} . (11)

Next, we consider the overdispersed case where αi < ∞ in (3) and (4). We have the fol-
lowing upper bound for the estimation accuracy of the proposed variable correction regularized
estimator (6).

Theorem 3 (With overdispersion, upper bound). Suppose Condition 1 holds and aν̄ �
νi � bν̄, a/p � Xij � b/p for constants 0 < a < 1 < b. Set ζmax = maxi ζi, where ζi =
(νi + αi + 1)/{2(αi + 1)} represents the level of overdispersion for the ith sample. If, for some
δ > 0, some large constant C and a large constant C(δ) that only depends on δ, we have
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νij � ζ 1+δ
i , n � Cs log p and ν̄/(pζmax) � max [C log(np), C(δ)], then, by choosing λ =

C
(
{log(p)/n}1/2[σ + {(p/ν̄)ζmax} 1

2 ‖β∗‖1] + log(ν̄/p)(p/ν̄)ζmax‖β∗‖1

)
, we have

‖β̂ − β‖2
2 � C

[
(s log p/n)

{
σ 2 + (p/ν̄)ζmax‖β∗‖2

1

} + s log2(ν̄/p)(p/ν̄)2ζ 2
max‖β∗‖2

1

]
(12)

with probability at least 1 − 6p−C ′ − ε′, where C ′ is a constant.

4. General high-dimensional log-error-in-variable regression

We extend the discussion to general high-dimensional log-error-in-variable regression that
accommodates broader scenarios. This will also justify the +0.5 variable correction rule under a
broader range of misspecified models. Specifically, let

y = Vβ∗ + ε, or equivalently yi =
p∑

j=1

log(νij)β
∗
j + εi, subject to

p∑
j=1

β∗
j = 0,

where W = (Wij), EWij = νij, Wij are independent (i = 1, . . . , n, j = 1, . . . , p). (13)

Here, V = {log(νij)}1�i�n,1�j�p are unknown underlying covariates, the εi are independent and
identically distributed sub-Gaussian noise with mean zero and variance σ 2, β∗ is the sparse
parameter of interest and Wij satisfies the following sub-exponential tail condition:

P(|Wij − νij| � t) � C exp
{−c(t2/νij) ∧ t

}
, ∀t > 0. (14)

In particular, the Poisson distribution satisfies (14), and hence our log error-in-variable regression
model without overdispersion can be viewed as a special case of (13).

We consider the following +0.5 variable correction regularized estimator for β∗ in the general
high-dimensional log-error-in-variable regression model (13):

β̂ = arg min
β

(
1

2n
‖y − BW β‖2

2 + λ‖β‖1

)
subject to

p∑
j=1

βj = 0. (15)

Here, BW ∈ R
n×p with (BW )ij = log(Wij + 0.5), and λ is some tuning parameter.

The following theorem provides an upper bound for the variable correction regularized
estimator (15) in the general high-dimensional log-error-in-variable regression model (13).

Theorem 4 (General upper bound). Suppose Condition 1 holds, n � Cs log(p) and
|log(νij) − log(νkl)| � a for some constant a > 0 and for all 1 � i, k � n, 1 � j, l � p. Denote
ν̄ = 1

n

∑n
i=1

∑p
j=1 νij and F = maxij |var(Wij)/νij−1|. If, for some uniform constant C > 0, some

ε > 0 and a constant Cε that only relies on ε, we have ν̄ � Cp{S+Fs log(s)+log(np)+Cε}, then,
by choosing λ = C[{log(p)/n}{σ 2 + (p/ν̄)‖β∗‖2

2}+ s{min{F2, C}(p/ν̄)2 + (p/ν̄)3−2ε}‖β∗‖2
2]1/2

for some large constant C > 0, we have

‖β̂ − β∗‖2
2 � Cs log p

n

{
σ 2 + (p/ν̄)‖β∗‖2

2

}
+ Cs2 {

(p/ν̄)3−2ε + min{F2, C} (p/ν̄)2} ‖β∗‖2
2 (16)

with probability 1 − 3p−C ′ − ε′.
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Remark 5. Theorem 4 shows that for the log-error-in-variable model, when the observed
variables Wij with exponential tail probability are linked with the response y in the form of (13)
through its first moment and var(Wij) is close to νij, like the Poisson case, the +0.5 correction
rule can achieve a reasonable estimation error under proper conditions. If this is violated, such as
var(Wij) being much larger than νij, the error upper bound for this correction can be large, which
can be a potential limit of the method.

Moreover, the estimation error upper bound of (16) includes two parts: (a) C(s log p/n)σ 2,
which corresponds to the error of εi and also appears inTheorem 1; (b) C

[
(s log p/n)(p/ν̄)‖β∗‖2

2+
Cs2

{
(p/ν̄)3−2ε + min{F2, C} (p/ν̄)2} ‖β∗‖2

2

]
, which originates from the error-in-variable and is

no smaller than the one in Theorem 1. When Wij is Poisson distributed, we have var(Wij) = EWij,
F = 0, and the upper bound (16) reduces to (8) in Theorem 1.

5. Simulation studies

Now we evaluate the performance of our method using three simulation schemes for different
purposes. In the first simulation scheme, we compare the prediction and estimation perfor-
mance of the proposed variable correction regularized estimator with the classic method of
zero-replacement under our model assumption with different parameter settings. To simulate
the count matrix W with n = 50, 100 samples and p = 100, 200, 400 covariates, we first
generate Ni from a negative binomial distribution with mean 3 × 104 and variance 3 × 106.
Here, the main purpose of choosing negative binomial instead of Poisson as in the theoretical
analysis is to show that the Poisson assumption on Ni is not crucial in practice. Then we set
Xij = Xi+n/2,j = exp(�ij)/{∑p

k=1 exp(�ij)} for j = 1, . . . , p, i = 1, . . . , n/2, with {�ij} gener-
ated independently from N (μj, 1.52), where μ1, μ2, μ3 are drawn from Un[1,3], μ4, . . . , μ7 are
drawn from Un[2,4] and μj for j = 8, . . . , p are drawn from Un[0,2]. With this setting, the average
count of covariates will have a reasonable variation, with causal covariates slightly more abun-
dant than noncausal ones. Then we generate (Wi1, . . . , Wip) from Dir-Mu(Ni, αXi1, . . . , αXip),
where the overdispersion parameter α = 200, 1000, 5000. The ith and (i + n/2)th samples are
designed to be from the same subject so they share the same Xij and can be used to estimate their
shared overdispersion parameter. The response y is generated as yi = ∑p

j=1 log(Xij)βj +εi, where
β = (1, −0.8, −1.5, 0.6, −0.9, 1.2, 0.4, 0, . . . , 0) is the deterministic coefficient vector, and the εi
are independent and identically distributed noise generated from N (0, 0.52). The results are aggre-
gated in Fig. 2. We can see that variable correction significantly outperforms zero-replacement
by 0.5 in all parameter configurations.

To evaluate the performance of the proposed method when the response variable y is shared
by samples from the same subject, like we have in real data analysis, we repeat the aforemen-
tioned simulation with one change: y is generated with εi = εi+n/2 and εi, i = 1, . . . , n/2, are
independent and identically distributed from N (0, 0.52). The results are summarized in Fig. 3.
We can see that the pattern of performance is similar to Fig. 2 and the variable correction method
still significantly achieves smaller estimation and prediction errors.

In the second simulation scheme, we compare different methods under misspecified models,
i.e., when the data-generation mechanism deviates from our model assumption. We generate Ni
and Xij in the same way as the first simulation scheme, and yi is drawn in the same way as the
first simulation scheme with independent error εi. To simulate Wij, we first set α = 1000 and

generate (Q̃(1)
i1 , . . . , Q̃(1)

ip ) from a log-normal distribution such that

log(Q̃(1)
i1 , . . . , Q(1)

ip ) ∼ N
{
log(αXi1, . . . , αXip) − 1/8, 


}
, 
ij = 0.5|i−j|/4, 1 � i, j � p.
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Fig. 2. Comparison between variable correction estimator (pink) and zero-replacement estimator by 0.5 (blue) in
simulation analysis. (a) Estimation error (b) Prediction error. The noise terms εi are all independent.
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Fig. 3. Comparison between the variable correction estimator (pink) and the zero-replacement estimator by 0.5 (blue)
in simulation analysis. (a) Estimation error (b) Prediction error. Here, y is shared by samples from the same subject.

Then (Q̃(1)
i1 , . . . , Q̃(1)

ip ) are normalized into proportions:

(Q(1)
i1 , . . . , Q(1)

ip ) = (Q̃(1)
i1 , . . . , Q̃(1)

ip )/
∑p

j=1 Q̃(1)
ij .

Next, we generate (Q(2)
i1 , . . . , Q(2)

ip ) from Dir(αXi1, . . . , αXip) and take Qij = wQ(1)
ij + (1 −

w)Q(2)
ij , where w takes a series of values between 0 and 0.5. Finally, (Wi1, . . . , Wip) is drawn from

Mu(Ni, Qi1, . . . , Qip). When w = 0, this simulation scheme is exactly Dirichlet-multinomial. The
larger w is, the more misspecified the model is.

We compare the performance of (a) VC_MOM, the variable correction estimator with the
overdispersion parameters estimated via the method of moment described in the Supplementary
Material; (b) VC_AH, the variable correction estimator with the overdispersion parameters set to
∞, which means adding all counts Wij by half; (c) ZR0.5, zero-replacement by 0.5. We use ZR0.5

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/109/2/405/6203806 by guest on 25 M
ay 2022

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab020#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab020#supplementary-data


Log-error-in-variable regression 415

● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

●
●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ●
●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ●

● ● ●

● ●

●

n = 400 n = 200 n = 100

p =
 50

p =
 100

−0.4

−0.2

0.0

0.2

−0.4

−0.2

0.0

0.2

Misspecification Level

E
st

im
at

io
n 

E
rr

or
: V

C
 −

 Z
R

0.
5

● ●VC_AH VC_MOM

● ● ● ● ● ● ● ● ● ● ●

●
●

●
● ● ●

● ●
●

●
●

● ● ● ● ● ● ● ● ● ● ●

●
●

●
● ● ● ●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ●

●
●

●
● ● ●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

●

●
●

●
●

●
●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

● ●
●

● ●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ●

● ●

● ●
●

●
●

●

● ●

●

n = 400 n = 200 n = 100

p =
 50

p =
 100

0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4

0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4

−1.0
−0.5

0.0
0.5
1.0

−1.0
−0.5

0.0
0.5
1.0

Misspecification Level

Pr
ed

ic
tio

n 
E

rr
or

: V
C

 −
 Z

R
0.

5

● ●VC_AH VC_MOM

Fig. 4. Estimation (upper panel) and prediction (lower panel) performance of VC_AH (orange) and VC_MOM (blue)
in reference to ZR0.5 under the misspecified settings. The dots represent mean difference in performance, and the

error bars represent mean ± standard deviation.

as the baseline and summarize the difference in performance between each method and ZR0.5
for each round of simulation in Fig. 4. We can see that the proposed VC_MOM has significantly
better performance than the classic ZR0.5 when the misspecification is moderate; VR_AH is
always slightly better than the classic ZR0.5.

Finally, in the third simulation scheme we consider a setting where only one measurement is
available for each subject. We generate Ni, yi and Wij in the same way as the second simulation
scheme, but we no longer require Xij = Xi+n/2,j so that all the samples are from different
subjects. We can see from Fig. 5 that the proposed procedure VC_AH performs better than the
classic zero-replacement ZR0.5 scheme in all settings.

6. Regression analysis for longitudinal microbiome studies

We apply the proposed procedure to a longitudinal microbiome study reported by Flores
et al. (2014). We focus on the association between body mass index, BMI, and gut microbiome
composition at the genus level for healthy adults by excluding subjects with missing BMI, anti-
biotic disturbance, or other medication use. For the remaining 40 subjects, each having 4 samples,
92 bacteria genera appear in more than 10% of the samples and will be used for the analysis here.
We also adjust for gender, age, race/ethnicity (caucasian, asian/pacific islander, hispanic/half-
white hispanic, or other), dietary preference (vegan, omnivore, but no red meat, or omnivore),
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Fig. 5. Estimation (upper panel) and prediction (lower panel) performance of VC_AH in reference to ZR0.5 under the
misspecified settings when no repeated measurement is available. The dots represent mean difference in performance,

and the error bars represent mean ± standard deviation.

vitamin intake (yes or no) and exercise frequency (daily/regularly or occasionally/rarely) of the
subjects in the regression analysis.

We implement the proposed variable correction estimator. Specifically, we assume the samples
of the same subject share the same unobserved composition Xij and overdispersion parameter
αi, and estimate αi for each subject respectively using the method of moments estimator αi,MOM
described in the Supplementary Material. Then we apply the regression model (6) with y repre-
senting BMI, and Wij representing the read count of the ith sample and jth genus. For comparison,
we also perform the classic zero-replacement method in the literature with zero counts changed
to c = 0.1 and 0.5, respectively:

β̂ZR = arg min
β:1T

p β=0

[∑n
i=1

{
yi − ∑p

j=1 log
(
Wij ∨ c

)
βj

}2
/(2n) + λ‖β‖1

]
.

To obtain stable variable selection, we generate 100 bootstrap samples of size n/2, repeat all
methods with five-fold cross-validation choosing the tuning parameter λ on each subsample,
and record the frequency of each variable being selected among the 100 bootstrap fittings. For
illustration purposes, we consider a variable to be selected if its selection frequency is no less
than 0.7.
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Fig. 6. (a) Selection frequency of 92 genera using different methods. (b) Comparison of selection frequency with
regard to proportion of zero counts. (c) Comparison of prediction performance.

Figure 6(a) illustrates the selection frequency of the nine covariates we adjusted for and
92 genera for each method. The dashed line corresponds to the selection frequency of 0.7. It
can be observed that the variable correction estimator selects variables with either very high
or very low frequency, while the zero-replacement estimator has many more variables selected
with a midrange frequency. This comparison indicates that the regularized estimator has much
better stability in variable selection than zero-replacement. The variables selected by all three
methods are Bacteroides(−), Dialister(+) and Megamonas(+). Variables selected by the variable
correction method only are being male(+), age(+), frequent exercise(+), being hispanic/half-
white hispanic(−), Akkermansia(−), Bifidobacterium(−), Coprobacillus(+), Coprococcus(+),
Porphyromonas(−), Prevotella(+) and Sutterella(+). Variables selected by zero-replacement with
c = 0.1 form a subset of that with c = 0.5, whereArcanobacterium(−) and Slackia(+) are selected
by both, and Dehalobacterium(−), Dorea(−) and Lactococcus(+) are selected by c = 0.5 only.
Here, (+) and (−) are the signs of regression coefficients by plurality vote in the 100 bootstrap
fittings. These selected genera correspond to the bars exceeding the dashed line in the top panel
of Fig. 6. Among the genera selected by variable correction, but missed by zero-replacement
with c = 0.5, Bifidobacterium has been widely studied for its lipid-lowering effect and negative
association with obesity (An et al., 2011; Million et al., 2012). Akkermansia has been reported
to be negatively related to obesity extensively in the literature (Everard et al., 2013; Dao et al.,
2016; Derrien et al., 2017). Coprococcus has also been reported to be positively related to obesity
(Kasai et al., 2015) and negatively related to weight loss induced by diet or gastric bypass surgery,
as indicated by Damms-Machado et al. (2015).

Figure 6(b) offers a closer look at the selection frequency with regard to the proportion of
Wij = 0 for each variable. Compared to the zero-replacement method, the variable correction
method tends to select variables with fewer zeros. This makes the variable correction method
more desirable since the bacteria with large proportions of zeros are often possessed by only a
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few subjects, are far less reliable for prediction and interpretation purposes, and are difficult to
generalize to a larger population. Figure 6(c) compares the prediction performance of variable
correction and zero-replacement with c = 0.5, where the predicted BMI for each sample is
obtained using refitted coefficients of the genera that have selection frequency no less than 0.7.
When calculated using all the individual samples, R2 is 0.50 for variable correction and 0.42
for zero-replacement with c = 0.5. Since each subject has multiple samples, we also provide
the average predicted BMI of each subject in the figure. Using average predicted BMI, R2 is
0.56 for variable correction and 0.51 for zero-replacement. We can see that the proposed method
achieves much better prediction compared to zero-replacement using both the individual and
average predicted BMI.

7. Discussion

The proposed log-error-in-variable regression model method provides a new solution to deal
with zero read counts in high-dimensional regression analysis of microbiome studies. In contrast,
many existing methods, such as EdgeR (Robinson et al., 2010), DESeq2 (Love et al., 2014) and
metagenomeSeq (Paulson et al., 2013), see McMurdie & Holmes (2014) for an overview of
procedures, model the zero read counts through negative binomial distribution or zero-inflated
distributions. These methods can draw conclusions about the marginal effect of each component
one at a time, while our method aims at association between regression response and a component
when other components are adjusted for. In another related line of work, de la Cruz & Kreft (2019)
introduced a method to find a modified version of the geometric mean that is close to the traditional
geometric mean while being able to handle zeros. Their method can be modified to find a good
alternative for a given linear combination of the log read counts, but not for unknown linear
combinations like our regression equation.

One limitation of our regression model is that it does not discriminate between zero counts due
to undersampling and actual zeros due to absence of the component. It assumes the underlying
true composition to be positive, although it can be infinitely close to zero. Another limitation of
our method is its ability to deal with rare components. Our variable correction is less accurate
when the true bacterial abundance Xij is close to zero. This limitation is intrinsic to the log-error-
in-variable model because of the large derivative of the log function around zero. However, as
shown in our real data analysis, the �1 penalized regression we used for variable selection tends
to select the more abundant bacteria, possibly because the small read counts are overshadowed
by the correction added to it.

In addition to the aforementioned microbiome study, the proposed framework can be used
for other applications on regression with count covariates. For example, in single-cell RNA-
seq data analysis, a high-throughput sequencing technique was performed on each of the single
cells, and the gene expressions can be measured as the total number of reads mapped to exonic
regions. This resulting count matrix has rows and columns representing single cells and gene
expressions, respectively. With the proposed method, we can perform regression analysis to
study the association among the gene expressions of single cells and clinical phenotypes. Another
potential application is in text mining, where one central task of topic modelling is to learn the
topics of various documents when they share the same vocabulary of words. By counting the
number of words or n-grams in each document, one can obtain count matrix data. Compared to
the absolute counts of these words and n-grams, the relative abundances may be more predictive
on the topic. Thus, our proposed method can be useful for building classifiers for topics of
documents.
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