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Optimal High-Order Tensor SVD via Tensor-Train
Orthogonal Iteration

Yuchen Zhou , Anru R. Zhang , Lili Zheng , and Yazhen Wang

Abstract— This paper studies a general framework for
high-order tensor SVD. We propose a new computationally
efficient algorithm, tensor-train orthogonal iteration (TTOI), that
aims to estimate the low tensor-train rank structure from the
noisy high-order tensor observation. The proposed TTOI consists
of initialization via TT-SVD [Oseledets (2011)] and new iterative
backward/forward updates. We develop the general upper bound
on estimation error for TTOI with the support of several new
representation lemmas on tensor matricizations. By developing
a matching information-theoretic lower bound, we also prove
that TTOI achieves the minimax optimality under the spiked
tensor model. The merits of the proposed TTOI are illustrated
through applications to estimation and dimension reduction of
high-order Markov processes, numerical studies, and a real data
example on New York City taxi travel records. The software of the
proposed algorithm is available online (https://github.com/Lili-
Zheng-stat/TTOI).

Index Terms— Tensor SVD, tensor-train, high-order tensors,
orthogonal iteration, minimax optimality, high-order Markov
chain.

I. INTRODUCTION

TENSORS, or high-order arrays, have attracted increasing
attention in modern machine learning, computational

mathematics, statistics, and data science. Some specific exam-
ples include recommender systems [1], [2], neuroimaging
analysis [3], [4], latent variable learning [5], multidimensional

Manuscript received October 23, 2020; revised November 7, 2021; accepted
January 14, 2022. Date of publication February 18, 2022; date of current
version May 20, 2022. The work of Yuchen Zhou and Anru R. Zhang was
supported in part by the National Science Foundation (NSF) under Grant
CAREER-1944904 and Grant DMS-1811868, and in part by the National
Institutes of Health (NIH) under Grant R01GM131399. The work of Yazhen
Wang was supported in part by NSF under Grant DMS-1707605 and Grant
DMS-1913149. (Corresponding author: Anru R. Zhang.)

Yuchen Zhou was with the Department of Statistics, University of
Wisconsin–Madison, Madison, WI 53706 USA. He is now with the Depart-
ment of Statistics and Data Science, The Wharton School, University of Penn-
sylvania, Philadelphia, PA 19104 USA (e-mail: yczhou@wharton.upenn.edu).

Anru R. Zhang was with the Department of Statistics, University of
Wisconsin–Madison, Madison, WI 53706 USA. He is now with the
Department of Biostatistics and Bioinformatics, the Department of Com-
puter Science, the Department of Mathematics, and the Department of
Statistical Science, Duke University, Durham, NC 27710 USA (e-mail:
anru.zhang@duke.edu).

Lili Zheng was with the Department of Statistics, University of Wisconsin–
Madison, Madison, WI 53706 USA. She is now with the Department of Elec-
trical and Computer Engineering, Rice University, Houston, TX 77005 USA
(e-mail: lz67@rice.edu).

Yazhen Wang is with the Department of Statistics, University of Wisconsin–
Madison, Madison, WI 53706 USA (e-mail: yzwang@stat.wisc.edu).

Communicated by M. Davenport, Associate Editor for Signal Processing.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2022.3152733.
Digital Object Identifier 10.1109/TIT.2022.3152733

convolution [6], signal processing [7], neural network [8], [9],
computational imaging [10], [11], contingency table [12], [13].
In addition to low-order tensors (e.g., tensor with a relatively
small value of order number), the high-order tensors also com-
monly arise in applications in statistics and machine learning.
For example, in convolutional neural networks, parameters in
fully connected layers can be represented as high-order ten-
sors [14], [15]. In an order-d Markov process, where the future
states depend on jointly the current and (d−1) previous states,
the transition probabilities form an order-(d+1) tensor. For an
order-d Markov decision process, the transition probabilities
can be represented by an order-(2d+1) tensor, with additional
d directions representing past d actions. High-order tensors are
also used to represent the joint probability in Markov random
fields [16].

Compared to the low-order tensors, high-order tensors
encompass much more parameters and sophisticated structure,
while leading to inhibitive cost in storage, processing, and
analysis: an order-d dimension-p tensor contains pd parame-
ters. To address this issue, some low-dimensional parametriza-
tion is usually considered to capture the most informative
subspaces in the tensor. In particular, the tensor-train (TT)
decomposition [17]–[21] introduced a classic low-dimensional
parameterization to model the subspaces and latent cores
in high-order tensor structures. TT decomposition has been
used in a wide range of applications in physics and quan-
tum computation [18], [21]–[24], signal processing [7], and
supervised learning [25] among many others. For example,
the TT decomposition framework is utilized in quantum infor-
mation science for modeling complex quantum states and
handling the quantum mean value problem [18], [21]–[23].
The TT-decomposition of a tensor X ∈ R

p1×···×pd is defined
as below:

X i1,··· ,id

=G1,[i1,:]G2,[:,i2,:] · · ·Gd−1,[:,id−1,:]G
�
d,[id,:]

=
r1�

α1=1

· · ·
rd−1�

αd−1=1

G1,[i1,α1]G2,[α1,i2,α2] · · ·

Gd−1,[αd−2,id−1,αd−1]Gd,[id,αd−1]. (1)

Here, the smallest values of r1, . . . , rd−1 that enable the
decomposition (1) are called the TT-rank of X . Reference [17]
shows that the TT-rank rk = rank([X ]k), i.e., the rank of
the kth sequential unfolding of X (see formal definition of
sequential unfolding in Section II-A). G1 ∈ Rp1×r1 , Gk ∈
R

rk−1×pk×rk , Gd ∈ R
pd×rd−1 are the TT-cores that multiply
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sequentially like a “train”: X i1,··· ,id
equals the product of

i1th vector in G1, i2th matrix in G2, …, id−1th matrix in
Gd−1, and idth vector in Gd. For convenience of presentation,
we simplify (1) to

X = �G1,G2, . . . ,Gd−1, Gd�

and denote r0 = rd = 1 throughout the paper. In particular, the
TT rank and TT decomposition reduce to the regular matrix
rank and decomposition when d = 2. If all dimensions p and
ranks r are the same, the TT-parametrization involves O(2pr+
(d−2)pr2) values, which can be significantly smaller than the
ones for Tucker-decomposition O(rd + dpr) and the regular
parameterization O(pd).

In most of the existing literature, the TT-decomposition was
considered under the deterministic settings, and the central
goal was often to approximate the nonrandom high-order
tensors by low-dimensional structures [17], [26], [27]. How-
ever, in modern applications in data science such as Markov
processes, Markov decision processes, and Markov random
fields, the (transition) probability tensor computed based on
data is often a random realization of the underlying true
tensor. In these cases, the estimation of the underlying
low-dimensional parameters hidden in the noisy observations
can be more important: an accurate estimation of the tran-
sition tensor renders reliable prediction for future states in
high-order Markov chains and better decision-making in high-
order Markov decision processes; an accurate estimation of
probability tensor sheds light on the underlying relationship
among different variables in a random system [16]. To achieve
such a goal, it is crucial to develop dimension reduction
methods that can incorporate TT-decomposition into proba-
bilistic models. Since singular value decomposition (SVD)
is one of the most important dimension reduction methods
involving probabilistic models for matrices, and there is no
counterpart of it for high-order tensors, we aim to fill this void
by developing a statistical framework and a computationally
feasible method for high-order tensor SVD in this paper.

A. Problem Formulation

This paper focuses on the following high-order tensor SVD
model. Suppose we observe an order-d tensor Y that contains
a hidden tensor-train (TT) low-rank structure:

Y = X + Z, Y ,X ,Z ∈ R
⊗d

k=1pk . (2)

Here, X is TT-decomposable as (1) and Z is a noise tensor.
Our goal is to estimate X and the TT cores of X based
on Y . To this end, a straightforward idea is to minimize the
approximation error as follows,�X = argmin

A is decomposable as (1)
�Y − A�2

F . (3)

However, the approximation error minimization (3) is highly
non-convex and finding the global optimal solution, even if the
rank r1 = · · · = rd−1 = 1, is NP-hard in general [28]. Instead,
a variety of computationally feasible methods have been
proposed to approximate the best tensor-train low-rank decom-
position in the literature. TT-SVD, a sequential singular value

thresholding scheme, was introduced by [17] to be discussed
in detail later. Reference [17] also proposed TT-rounding via
sequential QR decompositions, which reduces the TT-rank
while ensuring approximation accuracy. Reference [29] intro-
duced the alternating minimal energy algorithm to recon-
struct a TT-low-rank tensor approximately based on only a
small proportion of revealed entries of the target tensor. [30,
Section L.2] proposed a sketching-based algorithm for fast low
TT rank approximation of arbitrary tensors. Reference [26]
studied the tensor-train decomposition for functional tensors.
Reference [31] proposed the FastTT algorithm for fast sparse
tensor decomposition based on parallel vector rounding and
TT-rounding. Reference [32] studied dynamical approximation
with TT format for time-dependent tensors. Reference [33]
proposed the alternating least squares for tensor completion
in the TT format. Reference [34] studied the completion
of low TT rank tensor and the applications to color image
and video recovery. Reference [35] studied the Riemannian
optimization methods for TT decomposition and completion.
Also see [36] for a TT decomposition library in TensorFlow.
To our best knowledge, the estimation performance of most
procedures here remains unclear. Departing from these existing
work, in this paper, we make a first attempt to minimize the
estimation error of X in addition to achieving the minimal
approximation error under possibly random settings.

B. Our Contributions

Under Model (2), we make the following contributions to
high-order tensor SVD in this paper.

First, we propose a new algorithm, Tensor-Train Orthogonal
Iteration (TTOI), that provides a computationally efficient
estimation of the low-rank TT structure from the noisy obser-
vation. The proposed algorithm includes two major steps.

First, we obtain initial estimates �G(0)
1 , �G(0)

2 , . . . , �G(0)

d−1, �Gd by
performing forward sequential SVD based on matricizations
and projections. This step was known as TT-SVD in the
literature [17]. Next, we utilize the initialization and perform
the newly developed backward updates and forward updates
alternatively and iteratively. The TTOI procedure will be
discussed in detail in Section II.

To see why the TTOI iterations yield better estimation than
the classic TT-SVD method, recall that TT-SVD first performs
singular value thresholding on [Y ]1, i.e., the unfolding of
Y , without any additional updates (see detailed procedure
of TT-SVD and formal definition of [Y ]1 in Section II-A),
which can be inaccurate since [Y ]1, a p1-by-

�d
k=2 pk matrix,

has a great number of columns. In contrast, TTOI iteration
utilizes the intermediate outcome of the previous iteration to
substantially reduce the dimension of [Y ]1 while performing
singular value thresholding. In Figure 1, we provide a simple
simulation example to show that even one TTOI iteration
can significantly improve the estimation of the left singular
subspace of G1 (left panel) and the overall tensor X (right
panel). Therefore, a one-step TTOI, i.e., the initialization
with one TTOI iteration, can be used in practice when the
computational cost is a concern.
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Fig. 1. Average estimation error (dots) and standard deviation (bars) of
‖ sinΘ(�U1, U1)‖ and ‖ �X − X‖F by TT-SVD and one-step TTOI. Both
algorithms are performed based on the observation Y generated from (2),

where Z i.i.d.∼ N(0, σ2), X is a randomly generated order-5 tensor based on

(1) with p = 20, r = 1, G1, G2, . . . , Gd−1, Gd
i.i.d.∼ N(0, 1).

We develop theoretical guarantees for TTOI. In particular,
we introduce a series of representation lemmas for tensor
matricizations with TT format. Based on them, we develop
a deterministic upper bound of estimation error for both
forward and backward updates in TTOI iterations. Under the
benchmark setting of spiked tensor model, we develop match-
ing upper/lower bounds and prove that the proposed TTOI
algorithm achieves the minimax optimal rate of estimation
error. To the best of our knowledge, this is the first statistical
optimality results for high-order tensors with TT format.
We also prove for any high-order tensor, TTOI iteration has
monotone decreasing approximation error with respect to the
iteration index.

Moreover, to break the curse of dimensionality in high-order
Markov processes, we study the state aggregatable high-order
Markov processes and establish a key connection to TT
decomposable tensors. We propose a TTOI estimator for the
transition probability tensor in high-order state-aggregatable
Markov processes and establish the theoretical guarantee.
We conduct simulation experiments to demonstrate the perfor-
mance of TTOI and validate our theoretical findings. We also
apply our method to analyze a New York taxi dataset.
By modeling taxi trips as trajectories realized from a citywide
Markov chain, we found that the Manhattan traffic zone
exhibits high-order Markovian dependence and the proposed
TTOI reveals latent traffic patterns and meaningful partition

of Manhattan traffic zones. Finally, we discuss several appli-
cations that our proposed algorithm is applicable to, including
transition probability tensor estimation in high-order Markov
decision processes and joint probability tensor estimation in
Markov random fields.

C. Related Literature

In addition to the aforementioned literature on TT decom-
position, our work is also related to a substantial body of
work on matrix/tensor decomposition and SVD, spiked tensor
model, etc. These literature are from a range of communities
including applied mathematics, information theory, machine
learning, scientific computing, signal processing, and statistics.
Here we try to review existing literature in these communities
without claiming this literature survey is exhaustive.

First, the matrix singular value thresholding was commonly
used and extensively studied in various problems in data
science, including matrix denoising [37]–[39], matrix com-
pletion [40]–[43], principal component analysis (PCA) [44],
Markov chain state aggregation [45]. Such the task was also
widely considered for tensors of order-3 or higher. In par-
ticular, to perform SVD and decomposition for tensors with
Tucker low-rank structures, [46], [47] introduced the higher-
order SVD (HOSVD) and higher-order orthogonal iteration
(HOOI). Reference [48] established the statistical and compu-
tational limits of tensor SVD, compared the theoretical prop-
erties of HOSVD and HOOI, and proved that HOOI achieves
both statistical and computational optimality. Reference [49]
introduced the sequentially truncated higher-order singular
value decomposition (ST-HOSVD). Reference [50] introduced
a thresholding & projection based algorithm for sparse ten-
sor SVD. A non-exhaustive list of methods for SVD and
decomposition for tensors with CP low-rank structures include
alternating least squares [51], [52], eigendecomposition-based
approach [53], enhanced line search [54], power iteration with
SVD-based initialization [5], simultaneous diagonalization and
higher-order SVD [55].

In addition, the spiked tensor model and tensor princi-
pal component analysis (tensor PCA) are widely discussed
in the literature. References [56]–[61] considered the sta-
tistical and computational limits of rank-1 spiked tensor
model. Reference [62] studied the statistical and computational
phase transitions and theoretical properties of the approxi-
mate message passing algorithm (AMP) under a Bayesian
spiked tensor model. References [63] and [64] developed
the regularization-based methods for tensor PCA. Refer-
ences [65]–[68] studied the robust tensor PCA to handle the
possible outliers from the tensor observation.

Different from Tucker and CP decompositions, which have
been a pinpoint in the enormous existing literature on ten-
sors, we focus on the TT-structure associated with high-order
tensors for the following reasons: (1) Tucker and CP decom-
positions do not involve the sequential structure of different
modes, i.e., the Tucker and CP decompositions still hold if the
d modes are arbitrarily permuted. While in applications such
as high-order Markov process, high-order Markov decision
process, and fully connected layers of deep neural networks,
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the order of different modes can be crucial; (2) the number
of entries involved in the low-Tucker-rank parameterization
grows exponentially with respect to the order d (rd); (3)
methods that explore CP low-rank structure can be numerically
unstable for high-order tensors in computation as pointed
out by [27]. In comparison, the TT-structure incorporates
the order of different modes sequentially and involves much
fewer parameters for high-order tensors, which renders it more
suitable in many scenarios.

In Section V, we will further discuss the application of
TTOI on high-order Markov processes and state aggregation.
This problem is related to a body of literature on dimension
reduction and state aggregation for Markov processes that we
will discuss in Section V.

D. Organization

The rest of the article is organized as follows. In Section II,
after a brief introduction of the notation and preliminaries,
we introduce the procedure of the tensor-train orthogonal
iteration. The theoretical results, including three representation
lemmas, a general estimation error bound, and the minimax
optimal upper and lower bounds under the spiked tensor
model, are provided in Sections III and IV. The application to
high-order Markov chains is discussed in Section V. The sim-
ulation and real data analysis are provided in Sections VI-A
and VI-B, respectively. Discussions and further applications
to Markov random fields and high-order Markov decision
processes are briefly discussed in Section VII. All technical
proofs are provided in Section A.

II. PROCEDURE OF TENSOR-TRAIN ORTHOGONAL

ITERATION

A. Notation and Preliminaries

We first introduce the notation and preliminaries to be used
throughout the paper. We use the lowercase letters, e.g., x, y, z,
to denote scalars or vectors. We use C, c, C0, c0, . . . to denote
generic constants, whose actual values may change from line
to line. A random variable z is σ-sub-Gaussian if Eet(z−Ez) ≤
eσ2t2/2 for any t ∈ R. We say a � b or a = O(b) if a ≤ Cb
for some uniform constant C > 0. We write a = �O(b) if
a = O(b logC�

(b)) for constant C� > 0. The capital letters,
e.g.,X,Y, Z , are used to denote matrices. Specifically, Op,r :=
{U ∈ Rp×r : U�U = Ir} is the set of all p-by-r matrices with
orthogonal columns. For U ∈ Op,r, let U⊥ ∈ Op,p−r be the
orthonormal complement of U , and let PU = UU� denote
the projection matrix onto the column space of U . For any
matrix A ∈ Rp1×p2 , let A =

�p1∧p2
i=1 siuiv

�
i be the singular

value decomposition, where s1(A) ≥ · · · ≥ sp1∧p2(A) ≥
0 are the singular values of A in non-increasing order. Define
smin(A) = sp1∧p2(A), SVDL

r (A) = [u1 . . . ur] ∈ Op1,r, and
SVDR

r (A) = [v1 . . . vr] ∈ Op2,r be the smallest non-trivial
singular value, leading r left singular vectors, and leading
r right singular vectors of A, respectively. We also write
SVDL(A) = SVDL

p1∧p2
(A) and SVDR(A) = SVDL

p1∧p2
(A)

as the collection of all left and right singular vectors of A,
respectively. Define the Frobenius and spectral norms of A as

�A�F =
��p1

i=1

�p2
j=1 A

2
ij =
��p1∧p2

i=1 s2i (A) and �A� =
s1(A) = maxx∈Rp2 �Ax�2/�x�2. For any two matrices U ∈
Rm1×n1 and V ∈ Rm2×n2 , let

U ⊗ V =

⎡⎢⎣ U11 · V . . . U1n1 · V
...

...
Um11 · V . . . Um1n1 · V

⎤⎥⎦ ∈ R
(m1m2)×(n1n2)

be their Kronecker product. To quantify the distance
among subspaces, we define the principle angles between
U, �U ∈ Op,r as an r-by-r diagonal matrix: Θ(U, �U) =
diag(arccos(s1), . . . , arccos(sr)), where s1 ≥ · · · ≥ sr ≥
0 are the singular values of U� �U . Define the sinΘ norm as

� sinΘ(U, �U)�
=�diag (sin(arccos(s1)), . . . , sin(arccos(sr))) �
=
�

1 − s2r.

The boldface calligraphic letters, e.g., X ,Y ,Z , are used to
denote tensors. For an order-d tensor X ∈ R⊗d

i=1pi and 1 ≤
k ≤ d − 1, we define [X ]k ∈ R(p1×···×pk)×(pk+1···pd) as the
sequential unfolding of X with rows enumerating all indices in
Modes 1, . . . , k and columns enumerating all indices in Modes
(k + 1), · · · , d, respectively. That is, for any 1 ≤ k ≤ d and
1 ≤ ik ≤ pk,

([X ]k)ξ1(i1,...,id;k),ξ2(i1,...,id;k) = X i1...id
,

where ξ1(i1, . . . , id; k) = (ik − 1)p1 · · · pk−1 + (ik−1 −
1)p1 · · · pk−2 + · · · + i1 and ξ2(i1, . . . , id; k) = (id −
1)pk+1 · · · pd−1 + (id−1 − 1)pk+1 · · · pd−2 + · · · + ik+1. Fol-
lowing the convention of reshape function in MATLAB,
we define the reshape of any matrix X of dimension p1 · · · pk

× pk+1 · · · pd as an inverse operation of tensor matricization:
X = Reshape(X, p1, p2, . . . , pd) if X = [X ]k. For any
two matrices A ∈ Rq1×q2q3 and �A ∈ Rq1q2×q3 , we denote�A = Reshape(A, q1q2, q3) and A = Reshape( �A, q1, q2q3) if
and only if�A(i2−1)p1+i1,i3 = Ai1,(i3−1)p2+i2 , ∀1 ≤ ij ≤ qj , j = 1, 2, 3.

We also define the tensor Frobenius norm of X as �X�2
F =�p1

i1=1 · · ·
�pd

id=1 X 2
i1,...,id

. For any matrix A ∈ Rp1×p2 and
any tensor B ∈ R

p1×···×pd , let vec(A) and vec(B) be the
vectorization of A and B, respectively. Formally, for any 1 ≤
k ≤ d and 1 ≤ ik ≤ pk,

(vec(B))(id−1)p1···pd−1+(id−1−1)p1···pd−2+···+i1
= Bi1,...,id

.

B. Procedure of Tensor-Train Orthogonal Iteration

We are now in position to introduce the procedure of
Tensor-Train Orthogonal Iteration (TTOI). The pseudocode
of the overall procedure is given in Algorithm 1. TTOI
includes three main parts: we first run initialization, then
perform backward update and forward update alternatively and
iteratively.
• Part 1: Initialization. First, we obtain an initial esti-

mate of TT-cores G1,G2, . . . ,Gd−1, Gd. This step is the
tensor-train-singular value decomposition (TT-SVD) origi-
nally introduced by [17].
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Algorithm 1 Tensor-Train Orthogonal Iteration (TTOI)

Input: Y , {pk}d
k=1, {rk}d−1

k=1, increment tolerance ε > 0,
maximum number of iterations tmax

1: Obtain Initialization �R(0)
1 , . . . , �R(0)

d−1,
�X (0)

by Algo-
rithm 1(a)

2: for t = 1, . . . , tmax do
3: if t is odd then
4: Apply Algorithm 1(b) with input �R(t−1)

1 , . . . , �R(t−1)
d−1

to obtain �V (t)
1 , . . . , �V (t)

d , �X (t)

5: else
6: Apply Algorithm 1(c) with input �V (t−1)

1 , . . . , �V (t−1)
d

to obtain �R(t)
1 , . . . , �R(t)

d−1,
�X (t)

7: end if
8: If � �X (t)�2

F − � �X (t−1)�2
F ≤ ε then break from the

for loop
9: end for

Output: �X = �X (t)

(i) Let R(0)
1 be the unfolding of Y along Mode 1. We com-

pute the top-r1 SVD of R(0)
1 . Let �U (0)

1 ∈ Op1,r1 be
the first r1 left singular vectors of R(0)

1 and calculate�R(0)
1 = (�U (0)

1 )�R(0)
1 ∈ Rr1×(p2...pd). Then, �U (0)

1 is an
initial estimate of the subspace that G1 lies in and �R(0)

1

can be seen as the projection residual.
(ii) Next, we realign the entries of �R(0)

1 ∈ Rr1×(p2...pd) to
R

(0)
2 ∈ R(r1p2)×(p3...pd), where the rows and columns of

R
(0)
2 correspond to indices of Modes-1, 2 and Modes-

3, . . . , d, respectively. Then, we evaluate the top-r2 SVD
of R(0)

2 . Let �U (0)
2 be the first r2 left singular vectors of

R
(0)
2 and evaluate �R(0)

2 = (�U (0)
2 )�R(0)

2 ∈ Rr2×p3...pd .
Again, �U (0)

2 is an estimate of the singular subspace that
G2 lies on and �R(0)

2 is the projection residual for the next
calculation.

(iii) We apply Step (ii) on �R(0)
2 to obtain �U (0)

3 ∈ Or2p3,r3

and �R(0)
3 ∈ Rr3×(p4···pd); . . .; apply Step (ii) on �R(0)

d−2 to

obtain �U (0)
d−1 ∈ Ord−2pd−1,rd−1 and �R(0)

d−1 ∈ Rrd−1×pd .

Then we reshape matrix �U (0)
k ∈ R(pkrk−1)×rk to ten-

sor �U (0)

k ∈ Rrk−1×pk×rk for k = 2, . . . , d − 1.

Now,

��U (0)
1 , �U(0)

2 , . . . , �U (0)

d−1, �R(0)�
d−1

�
yield the initial

estimates of TT-cores of X and we expect that

X ≈ X (0) = ��U (0)
1 , �U (0)

2 , · · · , �U(0)

d−1, �R(0)
d−1�.

The initialization step is summarized to Algorithm 1(a) and
illustrated in Figure 2. In summary, we perform SVD on
some “residual” R

(0)
k sequentially for k = 1, . . . , d − 1.

As will be shown in Lemma 3, R(0)
k satisfies

R
(0)
k = (Ipk

⊗ �U (0)�
k−1 ) · · · (Ip2···pk

⊗ �U (0)�
1 )[Y ]k,

where [Y ]k ∈ R(p1···pk)×(pk+1···pd) is the kth sequential
unfolding of Y (see definition in Section II-A). This quantity
plays a key role in the backward update next.

Algorithm 1(a) Initialization (TT-SVD [17])

Input: Y , {rk}d−1
k=1, {pk}d

k=1

1: Calculate R(0)
1 = [Y ]1

2: for k = 1, . . . , d− 1 do
3: �U (0)

k = SVDL
rk

(R(0)
k )

4: If k = 1 then U
(0)
prod = �U (0)

k else U
(0)
prod = (Ipk

⊗
U

(0)
prod)�U (0)

k

5: �R(0)
k = �U (0)�

k R
(0)
k

6: If k < d − 1 then R
(0)
k+1 =

reshape( �R(0)
k , rkpk+1, pk+2 · · · pd)

7: end for
8: [ �X(0)]d−1 = U

(0)
prod
�R(0)

d−1

9: Reshape [ �X(0)]d−1 ∈ R(p1···pd−1)×pd to �X (0) ∈ Rp1×···×pd

Output: �R(0)
1 , . . . , �R(0)

d−1,
�X (0)

Fig. 2. A pictorial illustration of initialization (Algorithm 1(a), d = 3).

Fig. 3. A pictorial illustration of TT-backward update (Algorithm 1(b),
d = 3).

The initialization step mainly focuses on the left singular
spaces of [X ]k while ignoring the information included in
the right singular spaces. Due to this fact, we develop the
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Algorithm 1(b) TT-Backward Update

Input: Y , {rk}d−1
k=1, {pk}d

k=1,
�R(t−1)

1 , . . . , �R(t−1)
d−1 for odd

iteration number t
1: for k = 1, . . . , d− 1 do
2: if k = 1 then
3: �V (t)

d−k+1 = SVDR
rd−k

� �R(t−1)
d−k

�
, V

(t)
prod = �V (t)

d−k+1

4: else
5: �V (t)

d−k+1 = SVDR
rd−k

� �R(t−1)
d−k (V (t)

prod ⊗ Ipd−k+1)
�

,

V
(t)

prod = (V (t)
prod ⊗ Ipd−k+1)�V (t)

d−k+1

6: end if
7: end for
8: �V (t)

1 = [Y ]1V
(t)

prod, [ �X(t)]1 = �V (t)
1 V

(t)�
prod , reshape

[ �X(t)]1 ∈ Rp1×(p2···pd) to �X (t) ∈ Rp1×···×pd

Output: �V (t)
1 , . . . , �V (t)

d , �X (t)

Algorithm 1(c) TT-Forward Update

Input: Y , {rk}d−1
k=1, {pk}d

k=1,
�V (t−1)
1 , . . . , �V (t−1)

d for even
iteration number t
1: R

(t)
1 = [Y ]1

2: for k = 1, . . . , d− 1 do
3: if k = 1 then
4: �U (t)

1 = SVDL
r1

��V (t)
1

�
, U

(t)
prod = �U (t)

1

5: else
6:

�U (t)
k = SVDR

rk

�
R

(t)
k (�V (t−1)

d ⊗ Ipk+1...pd−1) · · ·

(�V (t−1)
k+2 ⊗ Ipk+1)�V (t−1)

k+1

�
7: U

(t)
prod = (Ipk

⊗ U
(t)
prod)�U (t)

k

8: end if
9: �R(t)

k = �U (t)�
k R

(t)
k

10: If k < d − 1 then R
(t)
k+1 =

reshape
� �R(t)

k , rkpk+1, pk+2 · · · pd

�
11: end for
12: [ �X(t)]d−1 = U

(t)
prod
�R(0)

d−1, reshape [ �X(t)]d−1 ∈
R(p1···pd−1)×pd to �X (t) ∈ Rp1×···×pd

Output: �R(t)
1 , . . . , �R(t)

d−1,
�X (t)

following new backward update that utilizes both the left
and right singular space estimates from the previous step
to refine our estimates. Similarly, we can also perform a
forward update to further improve the outcome of backward
update, and then iteratively alternate between backward and
forward updates. The detailed descriptions of these two
updates are presented as follows, and a further explanation
is given in Remark 1.

• Part 2: Backward update. For iterations t = 1, 3, 5, . . .,
we perform backward update, i.e., to sequentially obtain�V (t)

d , . . . , �V (t)
2 based on the intermediate results from

the (t − 1)st iteration (0th iteration is the initializa-
tion). The pseudocode of backward update is provided

in Algorithm 1(b). The calculation in Algorithm 1(b) is
equivalent to�V (t)

d =SVDR
� �R(t−1)

d−1

�
,�V (t)

k

=SVDR
� �R(t−1)

k−1 (�V (t)
d ⊗ Ipk...pd−1) · · · (�V (t)

k+1 ⊗ Ipk
)
�

for k = d− 1, . . . , 2, and�V (t)
1 =[Y ]1(�V (t)

d ⊗ Ip2...pd−1) · · · (�V (t)
3 ⊗ Ip2)�V (t)

2

∈R
p1×r1 .

Here,�R(t−1)
k

=(�U (t−1)
k )�(Ipk

⊗ �U (t−1)�
k−1 ) · · · (Ip2···pk

⊗ �U (t−1)�
1 )[Y ]k

are the projection residual term in the intermediate outcome
of the (t − 1)st iteration. Then, we reshape �V (t)�

k ∈
Rrk−1×(pkrk) to �V (t)

k ∈ Rrk−1×pk×rk . The backward
updated estimate is

�X (t)
= ��V (t)

1 , �V(t)

2 , . . . , �V (t)

d−1,
�V (t)
d �.

Remark 1 (Interpretation of Backward Update): The back-
ward updates utilize and extract the right singular vectors
of the intermediate products of the (t− 1)st iteration,�R(t−1)

k

=(�U (t−1)
k )�(Ipk

⊗ �U (t−1)�
k−1 ) · · · (Ip2···pk

⊗ �U (t−1)�
1 )[Y ]k,

as opposed to the entire data [Y ]k. Such a dimension
reduction scheme is the key to the backward update: it
can simultaneously reduce the dimension of the matrix of
interest, [Y ]k, and the noise therein, while preserving the
signal strength. Different from the initialization in Step 1,
the backward update utilizes the information from both the
forward and backward singular subspaces of the tensor-train
structure of X . See Section III for more illustration.

• Part 3: Forward Update. For iteration t = 2, 4, 6, . . .,
we perform forward update, i.e., to sequentially obtain�U (t)

1 , . . . , �U (t)
d based on the intermediate results from the

(t − 1)st iteration. Essentially, the forward update can be
seen as a reversion of the backward update by flipping
all modes of tensor Y . The pseudocode of this proce-
dure is collected in Algorithm 1(c). Recall [Y ]1(�V (t−1)

d ⊗
Ip2...pd−1) · · · (�V (t−1)

3 ⊗Ip2)�V (t−1)
2 is the intermediate prod-

uct from the (t− 1)st update. We sequentially compute

�U (t)
1 = SVDL

�
[Y ]1(�V (t−1)

d ⊗ Ip2...pd−1) · · ·

(�V (t−1)
3 ⊗ Ip2)�V (t−1)

2

�
;

�U (t)
k = SVDL

�
(Ipk

⊗ �U (t)�
k−1 ) · · · (Ip2···pk

⊗ �U (t)�
1 )[Y ]k

· (�V (t−1)
d ⊗ Ipk+1...pd−1) · · ·

(�V (t−1)
k+2 ⊗ Ipk+1)�V (t−1)

k+1

�
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for k = 2, . . . , d− 1, and

�U (t)
d =
�
(�U (t)

d−1)
�(Ipd−1 ⊗ (�U (t)

d−2)
�) · · ·

(Ipd−1...p2 ⊗ (�U (t)
1 )�)[Y ]d−1

��
∈ R

pd×rd−1 .

Reshape �U (t)
k ∈ R(pkrk−1)×rk to �U (t)

k ∈ Rrk−1×pk×rk for
k = 2, . . . , d− 1. Then, compute

�X (t)
= ��U (t)

1 , �U (t)

2 , . . . , �U(t)

d−1, �U (t)
d �.

We will explain the algebraic schemes in the TTOI proce-
dure through several representation lemmas in Section III-A.
We will also show in Theorem 2 that the objective function

�Y − �X (t)�2
F is monotone decreasing with respect to the

iteration index t. In the large-scale scenarios that performing
iterations is beyond the capacity of computing, we can reduce
the number of iterations, and even to tmax = 1, i.e., the one-
step iteration, which have often yielded sufficiently accurate
estimation as we will illustrate in both theory and simulation
studies. Such the phenomenon has been recently discovered
for HOOI in the Tucker low-rank tensor decomposition [69].

Remark 2 (Computational and storage costs of TTOI): We
consider the computational and storage costs of TTOI on
the p-dimensional, rank-r, order-d, and dense tensor. Since
computing the first r singular vectors of an m× n matrix via
block power method requires �O(mnr) operations, initializa-
tion costs �O(pdr) operations, each iteration of TTOI, including
forward and backward updates, costs O(pdr). Therefore, the
total number of operations of TTOI with T iterations is�O(pdr) + O(Tpdr), which is not significantly more than the
number of elements of the target tensor. Moreover, TTOI
requires O(pd) storage cost, which is not significantly more
than the storage cost of the original tensor.

III. THEORETICAL ANALYSIS

This section is devoted to the theoretical analysis of the
proposed procedure. For convenience, we introduce the fol-
lowing two abbreviations for matrix sequential products: for
Mi ∈ R

(piri−1)×ri , 1 ≤ i ≤ d−1 and Bj ∈ R
(rjpj)×rj−1 , 2 ≤

j ≤ d, we denote

M
(L)
prod,k = (Ip2···pk

⊗M1) · · · (Ipk
⊗Mk−1)Mk

∈ R
(p1···pk)×rk , ∀1 ≤ k ≤ d− 1,

B
(R)
prod,k = (Bd ⊗ Ipk···pd−1) · · · (Bk+1 ⊗ Ipk

)Bk

∈ R
(pk···pd)×rk−1 , ∀2 ≤ k ≤ d.

Equivalently, M (L)
prod,k and B(R)

prod,k can be defined sequentially
as

M
(L)
prod,1 = M1,

M
(L)
prod,k+1 = (Ipk+1 ⊗M

(L)
prod,k)Mk+1, 1 ≤ k ≤ d− 2,

B
(R)
prod,d = Bd,

B
(R)
prod,k = (B(R)

prod,k+1 ⊗ Ipk
)Bk, 2 ≤ k ≤ d− 1.

A. Representation Lemmas for High-Order Tensors

Since the computation of high-order tensors with tensor-
train structures involves extensive tensor algebra, we introduce
the following three lemmas on the matrix representation of
high-order tensors. These lemmas play a fundamental role in
the later theoretical analysis.

Lemma 1 (Representation for Sequential Matricization
of TT-Decomposable Tensor): Suppose X =
�G1,G2, . . . ,Gd−1, Gd�. Then the sequential matricization of
X can be written as

[X ]k =(Ip2···pk
⊗G1)(Ip3···pk

⊗ [G2]2) · · · (Ipk
⊗ [Gk−1]2)

· [Gk]2 [Gk+1]1
�
[Gk+2]1 ⊗ Ipk+1

� · · ·�
[Gd−1]1 ⊗ Ipk+1···pd−2

� �
G�

d ⊗ Ipk+1···pd−1

�
. (4)

Lemma 2 (Representation of Tensor Reshaping): For any
tensor T ∈ R⊗d

k=1pk and 1 ≤ i < j ≤ d− 1, we have

[T ]j = (Ipi+1···pj ⊗ [T ]i)A(pi+1···pj ,pj+1···pd),

[T ]i = A(pi+1···pj ,p1···pi)�([T ]j ⊗ Ipi+1···pj ).

Here, we define e(ij)k as the kth canonical basis of Rij and

A(i,j) =

⎡⎢⎢⎢⎢⎣
e
(ij)
1 e

(ij)
i+1 · · · e

(ij)
i(j−1)+1

e
(ij)
2 e

(ij)
i+2 · · · e

(ij)
i(j−1)+2

...
...

. . .
...

e
(ij)
i e

(ij)
2i · · · e

(ij)
ij

⎤⎥⎥⎥⎥⎦ ∈ R
(i2j)×j . (5)

Lemmas 1 and 2 can be proved by checking each entry
of the corresponding matricizations. In addition, the follow-
ing lemma provides a representation of sequential reshaping
tensor, in particular for R(t)

k and �R(t)
k , the key intermediate

outcomes in TTOI procedure.
Lemma 3 (Representation of Sequential Reshaping Tensor):

Suppose T ∈ R⊗d
k=1pk ,Mi ∈ R(ri−1pi)×ri for 1 ≤ i ≤ d− 1,

Bi ∈ R(piri)×ri−1 for 2 ≤ i ≤ d, where r0 = rd = 1.
Consider the following sequential multiplication:

1) Forward Sequential Multiplication: Let S1 = [T ]1. For
k = 1, . . . , d− 1, calculate�Sk = M�

k Sk ∈ R
rk×(pk+1···pd),

Sk+1 = Reshape(�Sk, rkpk+1, pk+2 · · · pd) if k < d− 1.

Then for any 1 ≤ k ≤ d− 1,

Sk = (Ipk
⊗M

(L)�
prod,k−1)[T ]k, �Sk = M

(L)�
prod,k[T ]k. (6)

Here, Ipk
⊗M

(L)�
prod,k−1 = Ip1 if k = 1.

2) Backward Sequential Multiplication: Let Wd−1 =
[T ]d−1. For k = d− 1, . . . , 1, calculate�Wk = WkBk+1 ∈ R

(p1···pk)×rk ,

Wk−1 = Reshape(�Wk, p1 · · · pk−1, pkrk) if k > 1.

Then for any 1 ≤ k ≤ d− 1,

Wk = [T ]k(B(R)
prod,k+2 ⊗ Ipk+1), �Wk = [T ]kB

(R)
prod,k+1.

Here, B(R)
prod,k+2 ⊗ Ipk+1 = Ipd

if k = d− 1.
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In particular, R
(0)
k , �R(0)

k in Algorithm 1(a) and
R

(t)
k , �R(t)

k (t ∈ {2, 4, 6, . . .}) in Algorithm 1(c) satisfy

R
(t)
k =
�
Ipk

⊗ (�U (t))(L)�
prod,k−1

�
[Y ]k,�R(t)

k = (�U (t))(L)�
prod,k[Y ]k, ∀1 ≤ k ≤ d− 1. (7)

The proof of Lemma 3 is provided in Section A-H.

B. Deterministic Upper Bounds for Estimation Error of TTOI

Now we are in position to analyze the performance of
TTOI. The following Theorem 1 introduces an upper bound on

estimation error of �X (2t+1)
(backward update) and �X (2t+2)

(forward update).
Theorem 1: Suppose we observe Y = X + Z , where X

admits a TT decomposition as (1).
1) (A Deterministic Estimation Error Bound for Backward

Updates): Let �U (2t)
1 = U1 ∈ Rp1×r1 be the left singular space

of [X ]1. For 2 ≤ k ≤ d−1, define �U (2t)
k ∈ R

pkrk−1×rk as the

left singular subspace of
�
Ipk

⊗ (�U (2t))(L)�
prod,k−1

�
[X ]k. If for

some constant c0 ∈ (0, 1),���sin Θ
��U (2t)

k , �U (2t)
k

���� ≤ c0, ∀1 ≤ k ≤ d− 1, (8)

then there exists a constant Cd > 0 that only depends on d
such that the outcome of Algorithm 1(b) satisfies���� �X (2t+1) − X

����2
F

≤ Cd

�
d−1�
k=1

A
(2t+1)
k +B(2t+1)

�
, (9)

where

A
(2t+1)
k

=
���(�U (2t))(L)�

prod,k[Z]k
�
(�V (2t+1))(R)

prod,k+2 ⊗ Ipk+1

����2
F
,

B(2t+1) =
���[Z ]1(�V (2t+1))(R)

prod,2

���2
F
.

Here, (�V (2t+1))(R)
prod,k+2 ⊗ Ipk+1 = Ipd

if k = d− 1.
2) (A Deterministic Estimation Error Bound for Forward

Updates): For 2 ≤ k ≤ d− 1, let �V (2t+1)
k ∈ R(pkrk)×rk−1 be

the right singular space of [X ]k−1

�
(�V (2t+1))(R)

prod,k+1 ⊗ Ipk

�
and let �V (2t+1)

d = Vd ∈ Rpd×rd−1 be the right singular space
of [X ]d−1. If for some constant c0 ∈ (0, 1),���sin Θ

��V (2t+1)
k , �V (2t+1)

k

���� ≤ c0, ∀2 ≤ k ≤ d,

then there exists a constant Cd > 0 that only depends on d
such that the outcome of Algorithm 1(c) satisfies���� �X (2t+2) − X

����2
F

≤ Cd

�
d−1�
k=1

A
(2t+2)
k +B(2t+2)

�
, (10)

where

A
(2t+2)
k

=
����Ipk

⊗ (�U (2t+2))(L)�
prod,k−1

�
[Z ]k(�V (2t+1))(R)

prod,k+1

���2
F
,

B(2t+2) =
���(�U (2t+2))(L)�

prod,d−1[Z ]d−1

���2
F
.

Here, Ipk
⊗ (�U (2t+2))(L)�

prod,k−1 = Ip1 if k = 1.
The proof of Theorem 1 is provided in Section A-A.

Theorem 1 shows the estimation error � �X (t+1) −X�2
F can be

bounded by the projected noise Z , i.e., A(t+1)
k and B(t+1),

if the estimates in initialization (t = 0) or the previous
iteration (t ≥ 1), {�U (t)

k }d−1
k=1 or {�V (t)

k }d
k=2, are within constant

distance to the true underlying subspaces. The developed
upper bound can be significantly smaller than C �Z�2

F, the
classic upper bound induced from the approximation error
(e.g., Theorem 2.2 in [17]), especially in the high-dimensional
setting (p	 r).

Remark 3 (Interpretation of Error Bounds in Theorem 1):
Here, we provide some explanation for A(2t+1)

k and B(2t+1)

in the error bound (9). By algebraic calculation, the TT-core
estimation via backward update can be written as�V (2t+1)

k+1 = SVDR
�
(�U (2t))(L)�

prod,k([X ]k + [Z ]k)

·
�
(�V (2t+1))(R)

prod,k+2 ⊗ Ipk+1

��
for any 1 ≤ k ≤ d− 1 and�V (2t+1)

1 = ([X ]1 + [Z ]1)(�V (2t+1))(R)
prod,2.

From the definition of A(2t+1)
k , we have see A(2t+1)

k quanti-
fies the error of the singular subspace estimate �V (2t+1)

k+1 and

B(2t+1) quantifies the error of the projected residual �V (2t+1)
1 .

By symmetry, similar interpretation also applies to A
(2t+2)
k

and B(2t+2) for the error bound of forward update (10).
Remark 4 (Proof Sketch of Theorem 1): While the complete

proof of Theorem 1 is provided in Section A-A, we provide
a brief proof sketch here.

Without loss of generality, we focus on (9) for t = 0 while
other cases follows similarly. For convenience, we simply let�Ui, �Vi denote �U (0)

i , �V (1)
i , respectively. First, by Lemma 1,

we can transform [ �X(1)]1, the outcome of backward update, to

[ �X(1)]1 = [Y ]1P(�Vd⊗Ip2...pd−1)···(�V3⊗Ip2)�V2
.

Then we can further bound the estimation error of �X (1)
as

� �X (1) − X�2
F

≤C
���[Z ]1(�Vd ⊗ Ip2...pd−1) · · · (�V3 ⊗ Ip2)�V2

���2
F

+ Cd

d�
k=2

���[X ]1(�Vd ⊗ Ip2...pd−1) · · · (�Vk+1 ⊗ Ip2···pk
)

· (�Vk⊥ ⊗ Ip2···pk−1)
���2

F
.

Next, based on Lemma 2 and (8), we can prove���[X ]1(�Vd ⊗ Ip2...pd−1) · · · (�Vk+1 ⊗ Ip2···pk
)

· (�Vk⊥ ⊗ Ip2···pk−1)
���

F

=
���[X ]k−1(�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk

)�Vk⊥
���

F

≤Cd

����U�
k−1(Ipk−1 ⊗ �U�

k−2) · · · (Ip2···pk−1 ⊗ �U�
1 )[X ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)�Vk⊥
���

F
.
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Finally, we apply the perturbation projection error bound
(Lemma 6) to prove that

Cd

����U�
k−1(Ipk−1 ⊗ �U�

k−2) · · · (Ip2···pk−1 ⊗ �U�
1 )[X ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)�Vk⊥
���

F

≤Cd

����U�
k−1(Ipk−1 ⊗ �U�

k−2) · · · (Ip2···pk−1 ⊗ �U�
1 )[Z ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)
���

F
.

Theorem (1) is proved by combing all inequalities above.
Next, we establish a decomposition formula for the approx-

imation error, i.e., the objective function in (3)
���Y − X (t)

���2
F

,
and show that the approximation error is monotone decreasing
through TTOI iterations.

Theorem 2 (Approximation error decays through iterations):

We implement TTOI on Y . Let �X (t)
be the outcome after the

tth iteration. For any k ≥ 1, we have

(Approximation error decay)

�Y�2
F − � �X (t+1)�2

F ≤ �Y�2
F − � �X (t)�2

F, (11)

(Approximation error decomposition)

�Y − �X (t+1)�2
F = �Y�2

F − � �X (t+1)�2
F. (12)

See Section A-B for the proof of Theorem 2.

IV. TTOI FOR TENSOR-TRAIN SPIKED TENSOR MODEL

In this section, we further focus on a probabilistic setting,
spiked tensor model, where the noise tensor Z has indepen-
dent, mean zero, and σ-sub-Gaussian entries (see definition
in Section II-A). The spiked tensor model has been widely
studied as a benchmark setting for tensor PCA/SVD and
dimension reduction in recent literature in machine learning,
information theory, statistics, and data science [48], [60]–[62],
[70]. The central goal therein is to discover the underlying
low-rank tensor X . Most of the existing works focused on
tensors with Tucker or CP decomposition.

Under the spiked tensor model, we can verify that the initial-
ization step of TTOI gives sufficiently good initial estimations
with high probability that matches the required condition in
Theorem 1.

Theorem 3 (Probabilistic Bound for Initial Estimates and
Projected Noise): Suppose X is TT-decomposable as (1)
and Z have independent zero mean and σ-sub-Gaussian
random variables. Denote p = min{p1, · · · , pd}. If there
exists a constant Cgap such that λk = srk

([X ]k) ≥
Cgap

�
(
�d

i=1 piri−1ri)1/2 + (pk+1 · · · pd)1/2
�
σ for 1 ≤ k ≤

d−1, then there exist some constants C, c > 0 and Cd > 0 that
only depends on d, with probability at least 1 −C exp(−cp),

max
k=1,...,d−1

���sin Θ
��U (0)

k , �U (0)
k

���� ≤ 1
2
, (13)

max
k=1,...,d−1
t=2,4,6,...

���sin Θ
��U (t)

k , �U (t)
k

���� ≤ 1
2
,

max
k=2,...,d

t=1,3,5,...

���sinΘ
��V (t)

k , �V (t)
k

���� ≤ 1
2
, (14)

and for all t ≥ 1,

max{A(t)
k , B(t)} ≤ Cdσ

2
d�

i=1

pirirr−1. (15)

Here, �U (t)
k , �V (t)

k , A(t)
k and B(t) are defined in Theorem 1.

The proof of Theorem 3 is provided in Section A-C. Based
on Theorems 1 and 3, we can further prove:

Corollary 1 (Upper bound for estimation error): Sup-
pose X can be decomposed as (1), Z i1,...,id

are inde-
pendent zero mean and σ-sub-Gaussian random vari-
ables, p = min{p1, · · · , pd}. Suppose there exists
a constant Cgap such that λk = srk

([X ]k) ≥
Cgap

�
(
�d

i=1 piri−1ri)1/2 + (pk+1 · · · pd)1/2
�
σ for 1 ≤ k ≤

d− 1. Then with probability at least 1−Ce−cp, for all t ≥ 1,

� �X (t) − X�2
F ≤ Cdσ

2
d�

i=1

piriri−1. (16)

The proof of Corollary 1 is provided in Section A-D.
Remark 5 (Interpretation of Corollary 1): Note that the TT-

cores G1,Gi, Gd respectively have p1r1, piriri−1, pdrd−1 free
parameters, the upper bound (16) can be seen as the noise level
σ2 times the degrees of freedom of the low TT rank tensors.

Next, we develop a minimax lower bound for the low TT
rank structure estimation. Consider the following general class
of tensors with dimension p = (p1, . . . , pd) and TT rank r =
(r1, . . . , rd−1),

Fp,r(λ) =
�
X ∈ R

p1×···×pd ,X can be decomposed as (1),

srk
([X ]k) ≥ λk, 1 ≤ k ≤ d− 1

�
, (17)

and a class of distributions of σ-sub-Gaussian noise tensors

D = {D : if Z ∼ D, then Zi1,...,id
are indep. zero mean

and σ sub-Gaussian random variables}. (18)

Here, the constraints on the least singular value of [X ]k and
the σ-sub-Gaussian assumption correspond to the conditions
required for upper bound in Theorem 3.

Theorem 4 (Lower Bound): Consider the order-d TT spiked
tensor model (2) and distribution class D in (18). Assume
p = min{p1, . . . , pd} ≥ C0 for some large constant C0, r1 ≤
p1/2, ri ≤ piri−1/2, ri−1 ≤ piri/2 for 2 ≤ i ≤ d−1, rd−1 ≤
pd, and λi > 0. Also assume r1r2 ≤ p1 if d = 3. Then there
exists a constant cd > 0 that only depends on d such that

inf
�X

sup
X∈Fp,r(λ),D∈D

EZ∼D

��� �X − X
���2

F
≥ cdσ

2
d�

i=1

piriri−1.

(19)

See Section A-E for the proof of Theorem 4.

V. TTOI FOR DIMENSION REDUCTION AND STATE

AGGREGATION IN HIGH-ORDER MARKOV CHAIN

Since the introduction at the beginning of the 20th century,
the Markov process has been ubiquitous in a variety of dis-
ciplines. In the literature, the first order Markov process, i.e.,
the future observation at (t + 1) is conditionally independent
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of those at times 1, . . . , (t − 1) given the immediate past
observation at time t, has been commonly used and extensively
studied. Moreover, the high-order Markov process often appear
in many scenarios, where the future observation is affected by
a longer history. For example, in the taxi travel trajectory,
the future stop of a taxi not only depends on the current
location but also the past path that reveals the direction this
taxi is heading to [71]. The high-order Markov processes
have also been applied to inter-personal relationship [72],
financial econometrics [73], traffic flow [74], among many
other applications.

We specifically consider an ergodic, time-invariant, and (d−
1)st order Markov process on a finite state space {1, . . . , p}.
That is, the future state Xt+d depends on the current state
Xt+d−1 and the previous (d − 2) states (Xt+d−2, . . . , Xt+1)
jointly:

P (Xt+d|X1, . . . , Xt+d−1) =P (Xt+d|Xt+1, . . . , Xt+d−1)
=P [Xt+1,...,Xt+d]. (20)

Our goal is to achieve a reliable estimation of the transition
tensor P and to predict the future state Xt+d based on an
observable trajectory. Since the total number of free parame-
ters in a (d− 1)st order Markov transition tensor P is O(pd)
without further assumptions, it may be prohibitively difficult
to infer P in both statistics and computation even if p and
d are only of moderate scale. Instead, a sufficient dimension
reduction for high-order Markov processes is in demand.

To enable the statistical inference and dimension reduction
for high-order Markov processes, a powerful tool, mixed
transition distribution model (MTD), was introduced [72]. The
MTD model assumes that the distribution of future state is
a linear combination of the distributions associated with the
(d − 1) immediate past states. The readers are also referred
to [75] for a survey on mixed transition distribution model.
The linear assumption, however, does not take into account
the potential interactions of past states that commonly appear
in practice. For example in the New York taxi trip data, the
interaction among past locations of a taxi indicates its potential
future direction.

On the other hand, there is a recent surge of development
in dimension reduction and state aggregation for first order
Markov chains. For example, [76] considered the Markov
chain aggregation and the application to biology; [77] con-
sidered the rank-reduced Markov model and mode clus-
tering; [45] considered Markov rank, aggregagability, and
lumpability of Markov processes and proposed the dimen-
sion reduction and state aggregation methods through spec-
tral decomposition with theoretical guarantees; [78] proposed
clustering block model and proposed efficient algorithm to
solve it; [79] introduced a convex and non-convex methods to
estimate the rank-reduced low-rank Markov transition matrix.

Inspired by these work, we propose and study the state
aggregation model for the discrete-time high-order Markov
processes as follows.

Definition 1 ((d − 1)st Order State Aggregatable Markov
Process): Suppose there exist maps G1 : [p] → Rr1 , Gk : [p]×
Rrk−1 → Rrk , Gd : [p] × Rrd−1 → R such that G2, . . . , Gd

are linear: Gk(X,λ1u + λ2v) = λ1Gk(X,u) + λ2Gk(X, v)
for any vectors u, v, scalars λ1, λ2 ∈ R. We say a Markov
process {X1, X2, . . .} is (d − 1)st order state aggregatable if
for all t ≥ 0, the transition can be sequentially generated as
follows,�P1(Xt+1) = G1(Xt+1) ∈ R

r1 ,�Pk(Xt+1, . . . , Xt+k) = Gk(Xt+k, �Pk−1(Xt+1, . . . , Xt+k−1))
∈ R

rk , k = 2, . . . , d− 1,
P (Xt+d|X1, . . . , Xt+d−1)
= P (Xt+d|Xt+1, . . . , Xt+d−1)

= Gd(Xt+d, �Pd−1(Xt+1, . . . , Xt+d−1)).

In a (d− 1)st order state aggregatable Markov process, the
future state Xt+d relies on a sequential aggregation of the
previous d − 1 states Xt+1, . . . , Xt+d−1 as follows: we first
project Xt+1 to a r1-dimensional vector �P1(Xt+1) via G1,
then project �P1(Xt+1) jointly with Xt+2 to a r2-dimensional
vector �P1(Xt+1, Xt+2) via G2. We repeat such the projection
sequentially for Xt+3, . . . , Xt+d and yield the transition prob-
ability P (Xt+d|Xt+1, . . . , Xt+d−1). Also, see Figure 4 for a
pictorial illustration.

Based on the definition of the state aggregatable Markov
chain, we can prove the corresponding probability transition
tensor P will have low TT rank.

Proposition 1: The transition tensor P of the rank reduced
high-order Markov model in Definition 1 has TT-rank no more
than (r1, . . . , rd−1). In other words, P satisfies rank([P ]k) ≤
rk.

The proof of Proposition 1 is provided in Section A-F.
Next, we focus on a synchronous or generative setting,

which can be seen as a high-order generalization of the
classic observation model for the analysis of Markov (deci-
sion/reward) processes (see [80] for an introduction), for the
high-order Markov process. To be specific, for each sample
index k = 1, . . . , n and previous states (i1, . . . , id−1) ∈
[p]d−1, suppose we observe the next state X(i1, . . . , id−1; k)
drawn from the Markov transition tensor P . It is natural to
estimate P via the empirical transition tensor: for i1, . . . , id ∈
{1, . . . , p}d,

�Pemp

i1,...,id
=

n�
k=1

1{X(i1,...,id−1;k)=id}
�
n.

Then, �Pemp
is an unbiased estimator of P . However, if the

entries of P are approximately balanced, the mean squared
error of �Pemp

satisfies

E

����Pemp − P
���2

F
=
�

i1,...,id

Var
� �Pemp

i1,...,id

�
=
�

i1,...,id−1

�
id

P (id|i1, . . . , id−1) (1 − P (id|i1, . . . , id−1))
n

�p
d−1

n
, (21)

To obtain a more accurate estimator, we propose to first

perform TTOI on �Pemp
to obtain �P(1)

, then project each
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Fig. 4. A pictorial illustration of a (d − 1)st order state aggregatable Markov chain.

row of [ �P(1)
]d−1, or equivalently, each mode-d fiber of �P(1)

,
onto the simplex Sp−1 = {x ∈ Rp :

�p
i=1 xi = 1, xi ≥

0 for all 1 ≤ i ≤ p} via probability simplex projection (see
an implementation in [81]) and obtain �P .

We establish an upper bound on estimation error for the
TTOI estimator �P .

Proposition 2: Consider the synchronous or generative
model for a (d−1)st order state aggregatable Markov process
described above. Suppose the initialization condition (8) in
Theorem 1 holds. Then with probability at least 1−Ce−cp, the
output of one-step TTOI followed by the probability simplex
projection satisfies����P − P

���2
F
≤ C

�
max

1≤i≤d−1
ri

� d�
i=1

piriri−1

�
n.

The proof of Proposition 2 is provided in Section A-G.
Compared to the estimation error rate of �Pemp

in (21), Propo-
sition 2 shows TTOI achieves significantly reduced estimation
error by exploiting the low TT rank structure of the high-order
Markov process.

Remark 6: If the observations form one transition trajectory
{X0, . . . , XN}, we can work on the following empirical
transition tensor:

�Pemp

i1,...,id
=
�N−d+1

t=0 1{Xt=i1,...,Xt+d−1=id}�N−d+1
t=0 1{Xt=i1,...,Xt+d−2=id−1}

,

if
N−d+1�

t=1

1{Xt=i1,...,Xt+d−2=id−1} > 0;

�Pemp

i1,...,id
= 1/p,

if
N−d+1�

t=1

1{Xt=i1,...,Xt+d−2=id−1} = 0. (22)

Then �Pemp
can be a nearly unbiased and strongly consistent

estimator for P . When the Markov process is (d− 1)st order
state aggregatable, we can apply TTOI to obtain a better esti-
mate. As will be explored by numerical studies in Section VI-
A, the TTOI estimator achieves favorable performance on the
estimation of P .

VI. NUMERICAL STUDIES

In this section, we investigate the numerical performance of
TTOI.

A. Simulation

In each simulation setting, we present the numerical results
in both average estimation error (denoted by dots) and stan-

Fig. 5. Estimation error of TT-SVD and TTOI for high-order spiked tensor

model. Here, Z i.i.d.∼ N(0, σ2).

dard deviation (denoted by bars) based on 100 repetitions.
We assume the true TT-ranks are known in the first three set-
tings. Afterwards, we introduce a BIC-type data-driven scheme
for TT-rank selection and present its numerical performance.
All experiments are conducted by a quad-core 2.3 GHz Intel
Core i5 processor.

We first consider the tensor-train spiked tensor model (2)
discussed in Section IV. Specifically, we randomly generate
G1,G2, . . . ,Gd−1, Gd with i.i.d. standard normal entries, and
generate Z with i.i.d. N (0, σ2) or Unif(−b, b) entries. Let
p1 = · · · = pd = p, r1 = · · · = rd−1 = r, and
consider four settings: (1) p = 100, d = 3, r = 1; (2)
p = 50, d = 4, r = 1; (3) p = 20, d = 5, r = 1; (4)
p = 20, d = 5, r = 2. For varying values of σ ∈ [1, 19] and

b ∈ [3, 30], we evaluate the estimation error

���� �X (t) − X
����

F
of the TT-SVD and TTOI estimators with 1 or 2 iterations,
i.e., tmax = 0, 1, 2. From the results summarized in Figure 5
(normal noise) and Figure 6 (uniform noise), we can see TTOI,
even with one iteration, performs significantly better than TT-
SVD, and the advantage becomes more significant as the noise
level σ, b grows. This suggests that the proposed TTOI is
effective for high-order tensor SVD compared to the classic
TT-SVD, especially when the observations are corrupted by
substantial noise. Table I summarizes the runtime of TT-SVD
and TTOI, which suggests that the additional computational
cost incurred by the backward and forward updates in TTOI
is negligible compared to the runtime of the original TT-SVD.
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Fig. 6. Estimation error of TT-SVD and TTOI for high-order spiked tensor

model. Here, Z i.i.d.∼ Unif(−b, b).

Fig. 7. Estimation error of TT-SVD and TTOI for high-order spiked tensor
model with varying TT-ranks.

To understand the influence of TT-rank to the performance
of the TT-SVD and TTOI estimators, we conduct numerical
experiments under the spiked tensor model (2) with r1 =
· · · = rd−1 = r for various values of r. In particular,
G1,G2, . . . ,Gd−1, Gd are still generated with i.i.d. standard
normal entries, and Z has i.i.d. N (0, σ2) entries. Letting
p1 = · · · = pd = p, we consider two settings: (1) p = 100, d =
3, σ = 20; (2) p = 500, d = 3, σ = 100. For r = 1, . . . , 10,

we evaluate the average estimation error

���� �X (t) − X
����

F

of

TT-SVD, TTOI with 1 iteration, and TTOI with 2 iterations
(i.e., tmax = 0, 1, 2), and present the results in Figure 7.
Figure 7 suggests that the estimation errors increase as the
rank increases, while TTOI with 1 or 2 iterations both performs
better than TT-SVD. The improvement of TTOI over TT-SVD
is more significant under larger p or smaller r. An intuitive
explanation for this phenomenon is as follows: the key idea
of TTOI is to utilize the previous updates to reduce the
dimension of the sequential unfolding [Y ]k before performing
singular value thresholding; such the dimension reduction is
more significant for large p or small r.

Next, we demonstrate the performance of TTOI on tran-
sition tensor estimation for the high-order state-aggregatable
Markov chains studied in Section V. We consider the (d−1)st
order Markov chain on p states. To generate the transition
tensor P , we first draw �G1 ∈ Rp×r, �G2 ∈ Rr×p×r, . . . , �Gd ∈

TABLE I

RUNTIME (IN SECONDS) OF TT-SVD, TTOI WITH 1 ITERATION, AND
TTOI WITH 2 ITERATIONS UNDER THE HIGH-ORDER SPIKED TENSOR

MODEL WITH Z I.I.D.∼ N(0, 400). THE MEAN RUNTIME OF 50 INDE-
PENDENT REPLICATES ARE PRESENTED AND THE STANDARD

DEVIATIONS ARE LISTED IN PARENTHESES

Fig. 8. Estimation error of the transition tensor versus length of the observ-
able trajectory in high order state-aggregatable Markov chain estimation.

Rr×p with i.i.d. standard normal entries, then normalize the
rows of �G1, �G2, . . . , �Gd in absolute values as

G1,[i,j] =
| �G1,[i,j]|�
j� | �G1,[i,j�]|

, Gk,[i1,i2,j] =
|�Gk,[i1,i2,j]|�
j� |�Gk,[i1,i2,j�]|

,

Gd,[i,j] =
| �Gd,[i,j]|�
j� | �Gd,[i,j�]|

.

By this means, P = �G1,G2, . . . ,Gd−1, Gd� satisfies
Pi1,...,id

≥ 0,
�p

id=1 Pi1,...,id
= 1 for any (i1, . . . , id−1),

so P forms a Markov transition tensor. To generate the
trajectory {X1, . . . , XN}, we generate the initial d −
1 states X1, . . . , Xd−1 i.i.d. uniformly from [p], then generate
Xd, . . . , XN sequentially according to (20). To estimate P ,
we construct the empirical probability tensor �Pemp

by (22),
then apply TT-SVD and TTOI with input �Pemp

as detailed in
Section V to obtain �P . We consider two numerical settings:
(1) p = 100, d = 3, r = 1; (2) p = 50, d = 4, r = 1.

We evaluate the estimation error � �P(i)−P�F for each setting
and summarize the results to Figure 8. Again, TTOI exhibits
clear advantage over the existing methods in all simulation
settings.

1) Selection of TT-Ranks: The proposed TTOI algorithm
requires specifying TT-ranks r1, . . . , rd−1 as inputs and the
appropriate choices of r1, . . . , rd−1 are crucial in practice.
We propose a data-driven scheme to select the TT-ranks: we
choose r1, . . . , rd−1 ≥ 1 such that the following Bayesian
information criterion (BIC) under the spiked tensor model is
minimized:

BIC(r1, . . . , rd−1)

:=
d 

k=1

pk log �Y − �X (r1, . . . , rd−1)�2
F
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Fig. 9. Average estimation error of TT-SVD and TTOI for high-order spiked
tensor model with BIC-tuned ranks.

+

�
p1r1 +

d−1�
k=2

pkrk−1rk + pdrd−1

��
d�

k=1

log pk

�
.

(23)

Here, �X (r1, . . . , rd−1) is the output of TTOI (Algorithm 1)
with the input TT-ranks r1, . . . , rd−1. This BIC-type criterion
was also adopted in prior works on tensor clustering [82].

Then we conduct numerical experiments under the same
setting as the bottom two plots in Figure 5 on the spiked
tensor model with Gaussian noise. Figure 9 summarizes the
estimation errors of TT-SVD and TTOI with 1 and 2 iterations,
respectively, with the ranks selected based on the proposed
BIC criterion (23). Comparing Figure 9 to the bottom two plots
in Figure 5, we can see the proposed criterion can select the
true ranks accurately and the performance of both TT-SVD and
TTOI with tuned ranks is very similar to the one by inputting
the true ranks.

B. Real Data Experiments

We apply the proposed method to investigate the Manhattan
taxi data1. This dataset contains the New York City taxi trip
records from 14,144 drivers in 2013. We treat each travel
record as a transition among different locations at New York
City, then the overall dataset can be organized as a collection
of fragmented sample trajectories of a Markov chain on New
York City traffic. Some recent analysis on such data can be
seen at, e.g., [45], [71], [83].

Due to the high-dimensional spatiotemporal nature of the
dataset, a sufficient dimension reduction or state aggregation
is often a crucial first step to study a metropolitan-wide traffic
pattern. To this end, we apply the high-order Markov model
as described in Section V. Specifically, we discretize the
Manhattan region into a grid of p = 119 states that forms
a state space. Then, we collect all travel records in Manhattan
of each driver from the dataset, sort them by time, and form
into Markovian transition trajectories. In particular, each travel
record is treated as a transition from the pickup to the drop-
off location. If the drop-off location i of the previous trip
is different from the pickup location j of the next trip by
the same driver, we also form a transition from states i to
j. Based on the trajectories, we can construct a high-order
Markov chain with an order d empirical transition probability
tensor �Pemp ∈ R⊗d

k=1p as described in Section V. Assuming

12013 Trip Data, available at https://chriswhong.com/open-
data/foil_nyc_taxi/

Fig. 10. Singular values of sequential unfolding matrices [ �Pemp
]1 (left

panel) and [ �Pemp
]2 (right panel).

the true probability tensor is state aggregatable (Definition 1),
we apply one-step TTOI proposed in Section V and obtain�P . It is noteworthy if d = 2, the described procedure of�P is equivalent to the classic matrix spectral decomposition
in the literature. Figure 10 plots the singular values of the
sequential unfolding matrices of �Pemp

for d = 3, which
clearly demonstrates the low-TT-rankness of the probability
transition tensor P . In the following experiments, we focus
on the order-2 Markov model and analyze all consecutive two
transitions: i→ j → k, corresponding to the d = 3 case.

Inspired by the classic methods of matrix spectral decom-
position, we aggregate all location states in Manhattan into a
few clusters via both �P and �Pemp

. Specifically, we calculate�G�
d , i.e., the last TT-core of �P , and [ �Pemp

]d−1, i.e., the
matricization of �Pemp

whose columns correspond to the last
mode. Then we perform k-means on all columns of �G�

d

and [ �Pemp
]d−1, record the cluster index, associate the index

to each location state, and plot the results in Figure 11
(Panels (a)(b) are for TTOI and Panels (c)(d) are for empirical
estimate). From Figure 11 (a)(b), we can clearly identify
four regions: (i) lower Manhattan (orange), (ii) midtown
(dark blue), (iii) upper west side (green), and (iv) upper
east side (brown or black). In contrast, direct clustering on
Pemp yields less interpretable results as the majority points
go to one cluster. It is also worth noting even the location
information is not provided to this experiment, the resulting
clusters in Figures 11 (a)(b) show good spatial proximity
between locations. This illustrates the effectiveness of TTOI
in dimension reduction and state-aggregation for high-order
Markov processes.

Next, we illustrate the high-order nature of the city-wide
taxi trip through the following experiment. For each initial
state i ∈ [p], we apply k-means to cluster the column span
of �P [i,:,:], where �P is the outcome of TTOI. We present
the results in Figure 12, where the red triangles denote the
given first state i and r = k = 7. If the city-wide taxi
trips do not have significant high-order effects, �P should be
reducible to a first order Markov process and �P [i,:,:] should
have similar values for different i. However, as we can see
from Figure 12 that the clustering results highly depends on the
first state i, the high-order effects exist in the city-wide taxi trip
Markov process. In addition, the states in different directions
of i are often clustered to different regions, which shows that
the taxi drivers may tend to move to the same direction in
consecutive trips, which yields the high-order effects in the
driving trajectories.
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Fig. 11. State aggregation based on TTOI and empirical estimate.

VII. DISCUSSIONS AND ADDITIONAL APPLICATIONS

In this paper, we propose a general framework for high-
order SVD. We introduce a novel procedure, tensor-train
orthogonal iteration (TTOI), that efficiently estimates the low
tensor train rank structure from the high-order tensor obser-
vation. TTOI has significant advantages over the classic ones
in the literature. We establish a general deterministic error
bound for TTOI with the support of several new representation
lemmas for tensor matricizations. Under the commonly studied
spiked tensor model, we establish an upper bound for TTOI
and a matching information-theoretic lower bound. We also
illustrate the merits of TTOI through simulation studies and a
real data example in New York City taxi trips.

In addition to the high-order Markov processes, the pro-
posed TTOI can also be applied to the Markov random
field (MRF) estimation. We give a brief description of MRF
below. Consider an undirected graph G = (V,E), where
V = {1, . . . , d} is a set of vertices and E ⊆ V × V is a

Fig. 12. Based on second order Markov model, state aggregation results are
different with different initial state (the red triangle denotes the initial state i
in each subfigure).

collection of edges. Each vertex i ∈ V is associated with a
random variable Xi, taking values in {s1, . . . , sp}. In an MRF
model, the distribution of {X1, . . . , Xd} can be factorized as

P(X1, . . . , Xd) =
1
Z

 
C∈C

ψC(XC),

where C is a collection of subgraphs of G and XC = (Xv, v ∈
C) denotes the random vector corresponding to vertices in C.
The joint probability function P(·) can be written as a tensor
P ∈ R⊗d

k=1p, where P i1,...,id
= P(X1 = si1 , . . . , Xd = sid

).
The MRFs have a wide range of applications, including image
analysis [84], [85], genomic study [86], and natural language
processing [87]. The readers are referred to, e.g., [88] for an
introduction to MRFs.

A central problem of MRF is how to estimate the pop-
ulation density P based on a limited number of samples
{X(i)

1 , . . . , X
(i)
d }n

i=1. It is straightforward to estimate P via
the empirical probability tensor �Pemp

:

�Pemp

i1,...,id
=

n�
i=1

d 
k=1

1(X(i)
k = sik

)
�
n.
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We can show that �Pemp
is unbiased for P . Recently, [16]

pointed out that P is often approximately low tensor-train
rank in practice. To further exploit such the structure, we can
conduct TTOI on �Pemp

. Under regularity conditions, it can
be shown that the entries of Z are bounded and weakly
independent, then Corollary 1 suggests the following esti-
mation error rate of the TTOI estimator: ��P − P�2

F ≤
C
�d

i=1 riri−1/(np2d−1), which can be significantly smaller
than the estimation error of original empirical estimator �Pemp

.
Moreover, the proposed framework can be also applied

to high-order Markov decision process (high-order MDP).
MDP has been commonly used as a baseline in control
theory and reinforcement learning [89]–[92]. Despite the wide
applications of MDPs, most of the existing work focus on the
first-order Markov processes. However, the high-order effects
often appear, i.e., the transition probability at the current time
depends not only on current, but also the past (d − 1) states
and actions. See Figure 13 for an example. Since the number
of free parameters in such MDPs can be huge, a sufficient
dimension reduction for the state and action space can be
a crucial first step. Similarly to the example of high-order
Markov process in Section V, the TTOI can be applied to
achieve better dimension reduction and state aggregation for
the high-order Markov decision processes.

APPENDIX A
PROOFS

We collect all technical proofs of this paper in this section.

A. Proof of Theorem 1

For convenience, let �Ui, �Vi, Ri and �Ri denote �U (0)
i , �V (1)

i ,
R

(0)
i and �R(0)

i , respectively. By Lemma 1 and

Ip2···pd
− P(�Vd⊗Ip2...pd−1)···(�V3⊗Ip2 )�V2

=P(�Vd⊗Ip2...pd−1)···(�V3⊗Ip2 )�V2⊥

+ P(�Vd⊗Ip2...pd−1)···(�V4⊗Ip2p3 )(�V3⊥⊗Ip2 )

+ · · · + P�Vd⊥⊗Ip2...pd−1
,

we have���� �X (1) − X
����2

F

=
��� ![Y ]1(�Vd ⊗ Ip2...pd−1) · · · (�V3 ⊗ Ip2)�V2

"
· �V �

2 (�V �
3 ⊗ Ip2 ) · · · (�V �

d ⊗ Ip2...pd−1) − [X ]1
���2

F

=
���[Z]1P(�Vd⊗Ip2...pd−1)···(�V3⊗Ip2 )�V2

+ [X ]1P(�Vd⊗Ip2...pd−1)···(�V3⊗Ip2 )�V2
− [X ]1

���2
F

≤C
����[Z ]1P(�Vd⊗Ip2...pd−1)···(�V3⊗Ip2)�V2

���2
F

+
���[X ]1P(�Vd⊗Ip2...pd−1)···(�V3⊗Ip2 )�V2⊥

���2
F

+
���[X ]1P(�Vd⊗Ip2...pd−1)···(�V4⊗Ip2p3)(�V3⊥⊗Ip2)

���2
F

+ · · · +
���[X ]1P�Vd⊥⊗Ip2...pd−1

���2
F

�
≤C
� ���[Z ]1(�Vd ⊗ Ip2...pd−1) · · · (�V3 ⊗ Ip2)�V2

���2
F

+
���[X ]1(�Vd ⊗ Ip2...pd−1) · · · (�V3 ⊗ Ip2)�V2⊥

���2
F

+
���[X ]1(�Vd ⊗ Ip2...pd−1) · · · (�V4 ⊗ Ip2p3)(�V3⊥ ⊗ Ip2)

���2
F

+ · · · +
���[X ]1(�Vd⊥ ⊗ Ip2...pd−1)

���2
F

�
. (24)

To prove (9), we only need to show that for all 2 ≤ k ≤ d,���[X ]1(�Vd ⊗ Ip2...pd−1) · · · (�Vk+1 ⊗ Ip2···pk
)

· (�Vk⊥ ⊗ Ip2···pk−1)
���

F

≤C
����U�

k−1(Ipk−1 ⊗ �U�
k−2) · · · (Ip2···pk−1 ⊗ �U�

1 )[Z ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)
���

F
, (25)

where

[X ]1(�Vd ⊗ Ip2...pd−1) · · · (�Vk+1 ⊗ Ip2···pk
)(�Vk⊥ ⊗ Ip2···pk−1)

= [X ]1(�Vd ⊗ Ip2...pd−1) · · · (�V3 ⊗ Ip2)�V2⊥

if k = 2 and

[X ]1(�Vd ⊗ Ip2...pd−1) · · · (�Vk+1 ⊗ Ip2···pk
)(�Vk⊥ ⊗ Ip2···pk−1)

= [X ]1(�Vd⊥ ⊗ Ip2...pd−1)

if k = d.
By Lemma 2, we have���[X ]1(�Vd ⊗ Ip2...pd−1) · · · (�Vk+1 ⊗ Ip2···pk

)

· (�Vk⊥ ⊗ Ip2···pk−1)
���

F

=
���[A(p2···pk−1,p1)]�([X ]k−1 ⊗ Ip2···pk−1)(�Vd ⊗ Ip2...pd−1) · · ·
(�Vk+1 ⊗ Ip2···pk

)(�Vk⊥ ⊗ Ip2···pk−1)
���

F

=
���[A(p2···pk−1,p1)]� · ��[X ]k−1(�Vd ⊗ Ipk...pd−1) · · ·
(�Vk+1 ⊗ Ipk

)�Vk⊥
�⊗ Ip2···pk−1

����
F

=
���[X ]k−1(�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk

)�Vk⊥
���

F
. (26)

The third equation holds since the realignment doesn’t change
the Frobenious norm.

Moreover, recall that U1 ∈ Rp1×r1 is the left singular space
of [X ]1, and �Uj ∈ R

pjrj−1×rj is the left singular space of
(Ipj ⊗ �U�

j−1)(Ipj−1pj ⊗ �U�
j−2) · · · (Ip2···pj ⊗ �U�

1 )[X ]j for 2 ≤
j ≤ d− 1, by Lemma 2, for any 2 ≤ k ≤ d− 1,

[X ]k =(Ip2···pk
⊗ [X ]1)A(p2···pk,pk+1···pd)

=(Ip2···pk
⊗ PU1 [X ]1)A(p2···pk,pk+1···pd)

=(Ip2···pk
⊗ PU1)(Ip2···pk

⊗ [X ]1)A(p2···pk,pk+1···pd)

=(Ip2···pk
⊗ PU1)[X ]k, (27)

and for any 2 ≤ j < k,

(Ipj ···pk
⊗ �U�

j−1)(Ipj−1···pk
⊗ �U�

j−2) · · ·
(Ip2···pk

⊗ �U�
1 )[X ]k
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Fig. 13. Illustration of a high-order state aggregatable Markov decision process.

=(Ipj ···pk
⊗ �U�

j−1)(Ipj−1 ···pk
⊗ �U�

j−2) · · · (Ip2···pk
⊗ �U�

1 )

· (Ipj+1···pk
⊗ [X ]j)A(pj+1···pk,pk+1···pd)

=
�
Ipj+1···pk

⊗ #(Ipj ⊗ �U�
j−1)(Ipj−1pj ⊗ �U�

j−2) · · ·
(Ip2···pj ⊗ �U�

1 )[X ]j
$�

· A(pj+1···pk,pk+1···pd)

=
�
Ipj+1···pk

⊗ #P�Uj
(Ipj ⊗ �U�

j−1)(Ipj−1pj ⊗ �U�
j−2) · · ·

(Ip2···pj ⊗ �U�
1 )[X ]j

$�
· A(pj+1···pk,pk+1···pd)

=(Ipj+1···pk
⊗ P�Uj

)(Ipj ···pk
⊗ �U�

j−1)(Ipj−1 ···pk
⊗ �U�

j−2) · · ·
(Ip2···pk

⊗ �U�
1 )(Ipj+1···pk

⊗ [X ]j)A(pj+1···pk,pk+1···pd)

=(Ipj+1···pk
⊗ P�Uj

)(Ipj ···pk
⊗ �U�

j−1)(Ipj−1 ···pk
⊗ �U�

j−2) · · ·
(Ip2···pk

⊗ �U�
1 )[X ]k, (28)

where A(i,j) is defined in (5) for any i, j > 0.
Therefore, by (27),���[X ]k−1(�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk

)�Vk⊥
���

F

=
���(Ip2···pk−1 ⊗ PU1)[X ]k−1(�Vd ⊗ Ipk...pd−1) · · ·
(�Vk+1 ⊗ Ipk

)�Vk⊥
���

F

=
���(Ip2···pk−1 ⊗ U�

1 )[X ]k−1(�Vd ⊗ Ipk...pd−1) · · ·
(�Vk+1 ⊗ Ipk

)�Vk⊥
���

F

≤
���(Ip2···pk−1 ⊗ �U�

1 )(Ip2···pk−1 ⊗ U1)(Ip2···pk−1 ⊗ U�
1 )

· [X ]k−1(�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)�Vk⊥
���

F

· s−1
min

�
(Ip2···pk−1 ⊗ �U�

1 )(Ip2···pk−1 ⊗ U1)
�

=
���(Ip2···pk−1 ⊗ �U�

1 )[X ]k−1(�Vd ⊗ Ipk...pd−1) · · ·
(�Vk+1 ⊗ Ipk

)�Vk⊥
���

F
· s−1

min(�U�
1 U1). (29)

The inequality holds since �B�F ≤ �AB�F · s−1
min(A) for any

invertible matrix A ∈ Rm1×m1 and B ∈ Rm1×m2 ; in the
last step, we used (Ip2···pk−1 ⊗U1)(Ip2···pk−1 ⊗U�

1 )[X ]k−1 =
(Ip2···pk−1⊗PU1)[X ]k−1 = [X ]k−1. Similarly to (29), by (28),
for 1 ≤ j ≤ k − 2,���(Ipj+1···pk−1 ⊗ �U�

j ) · · · (Ip2···pk−1 ⊗ �U�
1 )[X ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)�Vk⊥
���

F

=
���(Ipj+2···pk−1 ⊗ P�Uj+1

)(Ipj+1···pk−1 ⊗ �U�
j ) · · ·

(Ip2···pk−1 ⊗ �U�
1 )[X ]k−1(�Vd ⊗ Ipk...pd−1) · · ·

(�Vk+1 ⊗ Ipk
)�Vk⊥
���

F

=
���(Ipj+2···pk−1 ⊗ �U�

j+1)(Ipj+1 ···pk−1 ⊗ �U�
j ) · · ·

(Ip2···pk−1 ⊗ �U�
1 ) · [X ]k−1(�Vd ⊗ Ipk...pd−1) · · ·

(�Vk+1 ⊗ Ipk
)�Vk⊥
���

F

≤
���(Ipj+2···pk−1 ⊗ �U�

j+1)(Ipj+1 ···pk−1 ⊗ �U�
j )

· · · (Ip2···pk−1 ⊗ �U�
1 )[X ]k−1(�Vd ⊗ Ipk...pd−1) · · ·

(�Vk+1 ⊗ Ipk
)�Vk⊥
���

F
· s−1

min(�U�
j+1
�Uj+1). (30)

By (29) and (30),���[X ]k−1(�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)�Vk⊥
���

F

≤
���(Ip2···pk−1 ⊗ �U�

1 )[X ]k−1(�Vd ⊗ Ipk...pd−1) · · ·
(�Vk+1 ⊗ Ipk

)�Vk⊥
���

F
· s−1

min(�U�
1 U1)

≤
���(Ip3···pk−1 ⊗ �U�

2 )(Ip2···pk−1 ⊗ �U�
1 )[X ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)�Vk⊥
���

F
· s−1

min(U�
1
�U1)

· s−1
min(�U�

2
�U2)

≤ . . .

≤
����U�

k−1(Ipk−1 ⊗ �U�
k−2) · · · (Ip2···pk−1 ⊗ �U�

1 )[X ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)�Vk⊥
���

F

· s−1
min(U�

1
�U1)s−1

min(�U�
2
�U2) · · · s−1

min(�U�
k−1
�Uk−1)

≤
����U�

k−1(Ipk−1 ⊗ �U�
k−2) · · · (Ip2···pk−1 ⊗ �U�

1 )[X ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)�Vk⊥
���

F

·
�

1�
1 − c20

�k−1

≤C
����U�

k−1(Ipk−1 ⊗ �U�
k−2) · · · (Ip2···pk−1 ⊗ �U�

1 )[X ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)�Vk⊥
���

F
. (31)

By the definition of �Vk ∈ R(pkrk)×rk−1 and Lemma 3,
we know that �Vk is the right singular space of�U�

k−1(Ipk−1 ⊗ �U�
k−2) · · · (Ip2···pk−1 ⊗ �U�

1 )[Y ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)
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=�U�
k−1(Ipk−1 ⊗ �U�

k−2) · · · (Ip2···pk−1 ⊗ �U�
1 )[X ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)

+ �U�
k−1(Ipk−1 ⊗ �U�

k−2) · · · (Ip2···pk−1 ⊗ �U�
1 )[Z ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
),

Lemma 6 shows that����U�
k−1(Ipk−1 ⊗ �U�

k−2) · · · (Ip2···pk−1 ⊗ �U�
1 )[X ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)�Vk⊥
���

F

≤2
����U�

k−1(Ipk−1 ⊗ �U�
k−2) · · · (Ip2···pk−1 ⊗ �U�

1 )[Z ]k−1

· (�Vd ⊗ Ipk...pd−1) · · · (�Vk+1 ⊗ Ipk
)
���

F
. (32)

Combine (26), (31) and (32) together, we know that (25) holds
for all 2 ≤ k ≤ d, which has finished the proof of Theorem 1.

B. Proof of Theorem 2

For i ≥ 1, by the definition of X (2i) and Lemma 1, we have����Y − �X (2i)
����2

F

=
����Ip1···pd−1 − P

(Ip2···pd−1⊗�U
(2i)
1 )···(Ipd−1⊗�U

(2i)
d−2)

�U(2i)
d−1

�
· [Y ]d−1

���2
F

= �[Y ]d−1�2
F

−
����P(Ip2···pd−1⊗�U

(2i)
1 )···(Ipd−1⊗�U

(2i)
d−2)�U(2i)

d−1
[Y ]d−1

����2
F

= �Y�2
F −
���� �X (2i)

����2
F

.

Similarly, we have����Y − �X (2i−1)
����2

F

= �Y�2
F −
���� �X (2i−1)

����2
F

.

In addition, we have����Y − �X (2i)
����2

F

= �[Y ]d−1�2
F

−
���P(Ip2···pd−1⊗�U

(2i)
1 )···(Ipd−1⊗�U

(2i)
d−2)

�U(2i)
d−1

[Y ]d−1

���2
F

= �[Y ]d−1�2
F

−
����U (2i)�

d−1 (Ipd−1 ⊗ �U (2i)�
d−2 ) · · · (Ip2···pd−1 ⊗ �U (2i)�

1 )

· [Y ]d−1

���2
F

= �[Y ]1�2
F

−
����U (2i)�

d−1 (Ipd−1 ⊗ �U (2i)�
d−2 ) · · · (Ip2···pd−1 ⊗ �U (2i)�

1 )

· [Y ]d−1
�V (2i−1)
d

���2
F

−
����U (2i)�

d−1 (Ipd−1 ⊗ �U (2i)�
d−2 ) · · · (Ip2···pd−1 ⊗ �U (2i)�

1 )

· [Y ]d−1
�V (2i−1)
d⊥

���2
F

≤�[Y ]1�2
F

−
����U (2i)�

d−1 (Ipd−1 ⊗ �U (2i)�
d−2 ) · · · (Ip2···pd−1 ⊗ �U (2i)�

1 )

· [Y ]d−1
�V (2i−1)
d

���2
F

= �[Y ]1�2
F −
���(Ipd−1 ⊗ �U (2i)�

d−2 )(Ipd−2pd−1 ⊗ �U (2i)�
d−3 ) · · ·

(Ip2···pd−1 ⊗ �U (2i)�
1 ) · [Y ]d−1

�V (2i−1)
d

���2
F
.

The last equation holds since �U (2i)
d−1 is the left singular

space of (Ipd−1 ⊗ �U (2i)�
d−2 )(Ipd−2pd−1⊗ �U (2i)�

d−3 ) · · · (Ip2···pd−1⊗�U (2i)�
1 )[Y ]d−1

�V (2i−1)
d .

For any B ∈ Rn×r and 1 ≤ l ≤ r, we can check that the l-th
columns of A(m,n)B and (Im ⊗B ⊗ Im)A(m,r) are equal:

(A(m,n)B)[:,l] =
n�

j=1

Bj,l

m�
k=1

e
(m2n)
(k−1)mn+(j−1)m+k

=((Im ⊗B ⊗ Im)A(m,r))[:,l]

where e(m
2n)

(k−1)mn+(j−1)m+k is the ((k−1)mn+(j−1)m+k)-th
canonical basis of Rm2n and A(i,j) is defined in (5). Therefore,

A(m,n)B = (Im ⊗B ⊗ Im)A(m,r).

By the last equation and Lemma 2, we have

(Ipd−1 ⊗ �U (2i)�
d−2 )(Ipd−2pd−1 ⊗ �U (2i)�

d−3 ) · · ·
(Ip2···pd−1 ⊗ �U (2i)�

1 )[Y ]d−1
�V (2i−1)
d

=(Ipd−1 ⊗ �U (2i)�
d−2 )(Ipd−2pd−1 ⊗ �U (2i)�

d−3 ) · · ·
(Ip2···pd−1 ⊗ �U (2i)�

1 )(Ipd−1 ⊗ [Y ]d−2)A(pd−1,pd) �V (2i−1)
d

=
�
Ipd−1 ⊗

��U (2i)�
d−2 (Ipd−2 ⊗ �U (2i)�

d−3 ) · · ·

(Ip2···pd−2 ⊗ �U (2i)�
1 )[Y ]d−2

��
·
�
Ipd−1 ⊗ (�V (2i−1)

d ⊗ Ipd−1)
�
A(pd−1,rd−1)

=
�
Ipd−1 ⊗

��U (2i)�
d−2 (Ipd−2 ⊗ �U (2i)�

d−3 ) · · ·

(Ip2···pd−2 ⊗ �U (2i)�
1 )[Y ]d−2(�V (2i−1)

d ⊗ Ipd−1)
��

· A(pd−1,rd−1)

=Reshape
��U (2i)�

d−2 (Ipd−2 ⊗ �U (2i)�
d−3 ) · · · (Ip2···pd−2 ⊗ �U (2i)�

1 )

· [Y ]d−2(�V (2i−1)
d ⊗ Ipd−1), rd−2pd−1, rd−1

�
.

Since the realignment does not change the Frobenius norm,
we have����Y − �X (2i)

����2
F

≤�[Y ]1�2
F

−
����U (2i)�

d−2 (Ipd−2 ⊗ �U (2i)�
d−3 ) · · · (Ip2···pd−2 ⊗ �U (2i)�

1 )[Y ]d−2

· (�V (2i−1)
d ⊗ Ipd−1)

���2
F
. (33)
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By similar proof of (33), we have����Y − �X (2i)
����2

F

≤�[Y ]1�2
F

−
����U (2i)�

d−2 (Ipd−2 ⊗ �U (2i)�
d−3 ) · · · (Ip2···pd−2 ⊗ �U (2i)�

1 )

· [Y ]d−2(�V (2i−1)
d ⊗ Ipd−1)

���2
F

= �[Y ]1�2
F

−
����U (2i)�

d−2 (Ipd−2 ⊗ �U (2i)�
d−3 ) · · · (Ip2···pd−2 ⊗ �U (2i)�

1 )

· [Y ]d−2(�V (2i−1)
d ⊗ Ipd−1)�V (2i−1)

d−1

���2
F

−
����U (2i)�

d−2 (Ipd−2 ⊗ �U (2i)�
d−3 ) · · · (Ip2···pd−2 ⊗ �U (2i)�

1 )

· [Y ]d−2(�V (2i−1)
d ⊗ Ipd−1)�V (2i−1)

d−1⊥
���2

F

≤�[Y ]1�2
F

−
����U (2i)�

d−2 (Ipd−2 ⊗ �U (2i)�
d−3 ) · · · (Ip2···pd−2 ⊗ �U (2i)�

1 )

· [Y ]d−2(�V (2i−1)
d ⊗ Ipd−1)�V (2i−1)

d−1

���2
F

= �[Y ]1�2
F

−
���(Ipd−2 ⊗ �U (2i)�

d−3 ) · · · (Ip2···pd−2 ⊗ �U (2i)�
1 )

· [Y ]d−2(�V (2i−1)
d ⊗ Ipd−1)�V (2i−1)

d−1

���2
F

≤ · · ·
≤ �[Y ]1�2

F −
���[Y ]1(�V (2i−1)

d ⊗ Ip2...pd−1) · · ·

(�V (2i−1)
3 ⊗ Ip2)�V (2i−1)

2

���2
F

=
���[Y ]1
�
Ip2···pd

−

P
(�V (2i−1)

d ⊗Ip2...pd−1)···(�V (2i−1)
3 ⊗Ip2 )�V (2i−1)

2

����2
F

=
����Y − �X (2i−1)

����2
F

.

Similarly, we can prove (11) holds for k = 2i, i ≥ 0.

C. Proof of Theorem 3

Without loss of generality, we assume σ2 = 1. We still
let �Ui, �Vi, Ri and �Ri denote �U (0)

i , �V (1)
i , R(0)

i and �R(0)
i ,

respectively.
Lemma 5 Part 4 immediately shows that (15) holds with

probability at least 1 − Ce−cp. Next, we show that with
probability at least 1 − Ce−cp,���sin Θ(�Uk, �Uk)

���
≤C
��k−1

i=1 piri−1ri + √
pkrk−1 + √

pk+1 · · · pd

λk

≤1
2
, ∀1 ≤ k ≤ d− 1. (34)

Recall that�U1 = SVDL
r1

([Y ]1), [Y ]1 = [X ]1 + [Z]1,

where [X ]1 ∈ Rp1×p−1 satisfying rank([X ]1) = r1, [Z ]1 ∈
R

p1×p−1 , by Lemmas 6 and 5, with probability 1 − Ce−cp,
we have

��U�
1⊥[X ]1� ≤ 2�[Z]1� ≤ C(p1/2

1 + (p2 · · · pd)1/2).

Therefore, with probability at least 1 − Ce−cp,

���sinΘ(�U1, U1)
��� ≤
����U�

1⊥U1U
�
1 [X ]1

���
sr1(U�

1 [X ]1)
=

����U�
1⊥[X ]1

���
sr1([X ]1)

≤C
√
p1 +

√
p2 · · · pd

λ1
.

For 2 ≤ i ≤ j ≤ d− 1, by the definition of �Ui and Lemma 2,
we have

[X ]j =(Ip2···pj ⊗ [X ]1)A(p2···pj ,pj+1···pd)

=(Ip2···pj ⊗ (PU1 [X ]1))A(p2···pj ,pj+1···pd)

=(Ip2···pj ⊗ PU1)(Ip2···pj ⊗ [X ]1)A(p2···pj ,pj+1···pd)

=(Ip2···pj ⊗ U1)(Ip2···pj ⊗ U�
1 )[X ]j (35)

and �
Ipi···pj ⊗ �U�

i−1

�
· · ·
�
Ip2···pj ⊗ �U�

1

�
[X ]j

=
�
Ipi+1···pj ⊗ (Ipi ⊗ �U�

i−1)
�
· · ·�

Ipi+1···pj ⊗ (Ip2···pi ⊗ �U�
1 )
�

[4pt] · (Ipi+1···pj ⊗ [X ]i)A(pi+1···pj ,pj+1···pd)

=
�
Ipi+1···pj ⊗

�
(Ipi ⊗ �U�

i−1) · · · (Ip2···pi ⊗ �U�
1 )[X ]i

��
·A(pi+1···pj ,pj+1···pd)

=
�
Ipi+1···pj ⊗

�
P�Ui

(Ipi ⊗ �U�
i−1) · · · (Ip2···pi ⊗ �U�

1 )[X ]i
��

·A(pi+1···pj ,pj+1···pd)

=
�
Ipi+1···pj ⊗ P�Ui

�
·
�
Ipi+1···pj ⊗

�
(Ipi ⊗ �U�

i−1) · · · (Ip2···pi ⊗ �U�
1 )[X ]i

��
·A(pi+1···pj ,pj+1···pd)

=
�
Ipi+1···pj ⊗ �Ui

��
Ipi+1···pj ⊗ �U�

i

��
Ipi···pj ⊗ �U�

i−1

�
· · ·�

Ip2···pj ⊗ �U�
1

�
[X ]j , (36)

where Ipi+1···pj = 1 if i = j. Let

Lk =
���sin Θ

��Uk, �Uk

���� , 2 ≤ k ≤ d− 1.

For k = 2, by (35) and Lemma 4, with probability at least
1 − Ce−cp,

sr2

�
(Ip2 ⊗ �U�

1 )[X ]2
�

≥smin

�
(Ip2 ⊗ �U�

1 )(Ip2 ⊗ U1)
�
sr2([X ]2)
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=smin(�U�
1 U1)λ2

=
�

1 − � sinΘ(�U1, U1)�2λ2

≥
%

3
4
λ2.

Since �U2 = SVDL
r2

((Ip2 ⊗ �U�
1 )[Y ]2), and (Ip2 ⊗ �U�

1 )[Y ]2 =
(Ip2⊗ �U�

1 )[X ]2+(Ip2⊗ �U�
1 )[Z ]2, by Lemma 6 and Lemma 4,

we know that with probability at least 1 − Ce−cpr,

��U�
2⊥(Ip2 ⊗ �U�

1 )[X ]2�
≤2�(Ip2 ⊗ �U�

1 )[Z ]2�
≤C(

√
p2r1 + (p3 · · · pd)1/2 +

√
p1r1).

Combine the two previous inequalities together and recall that�U2 is the left singular space of (Ip2 ⊗ �U�
1 )[X ]2, we have���sin Θ

��U2, �U2

���� ≤��U�
2⊥ �U2
�U�

2 (Ip2 ⊗ �U�
1 )[X ]2�

sr2

��U�
2 (Ip2 ⊗ �U�

1 )[X ]2
�

=
��U�

2⊥(Ip2 ⊗ �U�
1 )[X ]2�

sr2

�
(Ip2 ⊗ �U�

1 )[X ]2
�

≤C
√
p1r1 +

√
p2r1 + (p3 · · · pd)1/2

λ2

with probability at least 1 − Ce−cp.
Assume that (34) holds for k ≤ j − 1 with probability 1 −
Ce−cp. For k = j, by Lemma 4 and (36), with probability at
1 − Ce−cp, we have

srj

�
(Ipj ⊗ �U�

j−1)(Ipj−1pj ⊗ �U�
j−2) · · · (Ip2···pj−1pj ⊗ �U�

1 )

· [X ]j
�

≥smin

�
(Ipj ⊗ �U�

j−1)(Ipj ⊗ �Uj−1)
�

· srj

�
(Ipj−1pj ⊗ �U�

j−2) · · · (Ip2···pj−1pj ⊗ �U�
1 )[X ]j

�
=smin

��U�
j−1
�Uj−1

�
· srj

�
(Ipj−1pj ⊗ �U�

j−2) · · · (Ip2···pj−1pj ⊗ �U�
1 )[X ]j

�
≥smin

��U�
j−1
�Uj−1

�
· smin

�
(Ipj−1pj ⊗ �U�

j−2)(Ipj−1pj ⊗ �Uj−2)
�

· srj

�
(Ipj−2pj−1pj ⊗ �U�

j−3) · · · (Ip2···pj−1pj ⊗ �U�
1 )[X ]j

�
≥ · · ·
≥smin

��U�
j−1
�Uj−1

�
· · · smin

��U�
1
�U1

�
srj([X ]j)

=
�

1 − L2
j−1 · · ·

�
1 − L2

1λj

≥(
�

3/4)j−1λj ≥ cλj . (37)

In the last inequality, we used the fact that d is a fixed number
and (
�

3/4)j−1 ≥ (
�

3/4)d−1 ≥ c.
By the definition of �Uj and Lemma 3, we have�Uj = SVDL

rj

�
(Ipj ⊗ �U�

j−1)(Ipj−1pj ⊗ �U�
j−2) · · ·

(Ip2···pj−1pj ⊗ �U�
1 )[Y ]j

�
.

Note that

(Ipj ⊗ �U�
j−1)(Ipj−1pj ⊗ �U�

j−2) · · · (Ip2···pj ⊗ �U�
1 )[Y ]j

=(Ipj ⊗ �U�
j−1)(Ipj−1pj ⊗ �U�

j−2) · · · (Ip2···pj ⊗ �U�
1 )[X ]j

+ (Ipj ⊗ �U�
j−1)(Ipj−1pj ⊗ �U�

j−2) · · · (Ip2···pj ⊗ �U�
1 )[Z ]j ,

by Lemma 6, with probability at least 1 − e−cpr2
,����U�

j⊥(Ipj ⊗ �U�
j−1)(Ipj−1pj ⊗ �U�

j−2)

· · · (Ip2···pj−1pj ⊗ �U�
1 )[X ]j

���
≤2
���(Ipj ⊗ �U�

j−1)(Ipj−1pj ⊗ �U�
j−2)

· · · (Ip2···pj−1pj ⊗ �U�
1 )[Z ]j

���
≤C
��j−1�

i=1

piri−1ri

�1/2

+ (pjrj−1)1/2 + (pj+1 · · · pd)1/2

�
.

Therefore, with probability at least 1 − Ce−cp,���sin Θ
��Uj, �Uj

����
≤

����U�
j⊥ �Uj
�U�

j (Ipj ⊗ �U�
j−1) · · · (Ip2···pj ⊗ �U�

1 )[X ]j
���

srj

��U�
j (Ipj ⊗ �U�

j−1) · · · (Ip2···pj ⊗ �U�
1 )[X ]j

�
=

����U�
j⊥(Ipj ⊗ �U�

j−1) · · · (Ip2···pj ⊗ �U�
1 )[X ]j

���
srj

�
(Ipj ⊗ �U�

j−1) · · · (Ip2···pj ⊗ �U�
1 )[X ]j

�
≤C
��j−1

i=1 piri−1ri

�1/2

+ (pjrj−1)1/2 + (pj+1 · · · pd)1/2

λj
.

Therefore, (13) holds with probability 1 − Ce−cp.
Finally, we consider (14). Let E0 = {(13) and (15) hold}.

Without loss of generality, we only show that under E0,

���sinΘ
��Vk, �Vk

���� ≤ C

��d
i=1 piri−1ri

λk−1
≤ 1

2
, ∀2 ≤ k ≤ d.

(38)

In fact, (38) can be proved by induction. Let Vd ∈ Rpd×rd−1

be the right singular space of [X ]d−1. Then there exists an
orthogonal matrix �Qd−1 ∈ Ord−1 such that

Vd
�Qd−1

=SVDR
� �U�

d−1(Ipd−1 ⊗ �U�
d−2) · · · (Ipd−1...p2 ⊗ �U�

1 )[X ]d−1

�
.

Similarly to (37), under E0,

srd−1

��U�
d−1(Ipd−1 ⊗ �U�

d−2) · · · (Ipd−1...p2 ⊗ �U�
1 )[X ]d−1

�
≥
��

3/4
�d−1

λd−1 ≥ cλd−1.

Therefore, by Lemma 6, under E0,���sin Θ
��Vd, Vd

����
=
���sin Θ

��Vd, Vd
�Qd−1

����
≤

����U�
d−1(Ipd−1 ⊗ �U�

d−2) · · · (Ipd−1...p2 ⊗ �U�
1 )[X ]d−1

�V �
d⊥
���

srd−1

��U�
d−1(Ipd−1 ⊗ �U�

d−2) · · · (Ipd−1...p2 ⊗ �U�
1 )[X ]d−1

�
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≤
2
����U�

d−1(Ipd−1 ⊗ �U�
d−2) · · · (Ipd−1...p2 ⊗ �U�

1 )[Z ]d−1

���
srd−1

��U�
d−1(Ipd−1 ⊗ �U�

d−2) · · · (Ipd−1...p2 ⊗ �U�
1 )[X ]d−1

�
≤C
��d

i=1 piri−1ri

λd−1
.

Suppose (38) holds for j + 1 ≤ k ≤ d. For k = j, since �Vj is
the right singular space of [X ]j−1(�Vd⊗Ipj ...pd−1) · · · (�Vj+1⊗
Ipj ), there exists �Qj−1 ∈ Orj−1 such that�Vj

�Qj−1

=SVDR
��U�

j−1(Ipj−1 ⊗ �U�
j−2) · · · (Ip2···pj−1 ⊗ �U�

1 )

· [X ]j−1(�Vd ⊗ Ipj ...pd−1) · · · (�Vj+1 ⊗ Ipj )
�
.

By Lemma 4, (35), (36) and (37), under E0,

srj−1

��U�
j−1(Ipj−1 ⊗ �U�

j−2) · · · (Ip2···pj−1 ⊗ �U�
1 )

· [X ]j−1(�Vd ⊗ Ipj ...pd−1) · · · (�Vj+1 ⊗ Ipj )
�

≥srj−1

��U�
j−1(Ipj−1 ⊗ �U�

j−2) · · · (Ip2···pj−1 ⊗ �U�
1 )[X ]j−1

· (�Vd ⊗ Ipj ...pd−1) · · · (�Vj+2 ⊗ Ipjpj+1)

· (�Vj+1 ⊗ Ipj )
�

· smin

�
(�V �

j+1 ⊗ Ipj )(�Vj+1 ⊗ Ipj )
�

=srj−1

��U�
j−1(Ipj−1 ⊗ �U�

j−2) · · · (Ip2···pj−1 ⊗ �U�
1 )[X ]j−1

· (�Vd ⊗ Ipj ...pd−1) · · · (�Vj+2 ⊗ Ipjpj+1)
�

· smin(�V �
j+1
�Vj+1)

≥ · · ·
≥srj−1

��U�
j−1(Ipj−1 ⊗ �U�

j−2) · · · (Ip2···pj−1 ⊗ �U�
1 )[X ]j−1

�
· smin(�V �

d
�Vd) · · · smin(�V �

j+1
�Vj+1)

≥smin(�U�
j−1
�Uj−1)

· srj−1

�
(Ipj−1 ⊗ �U�

j−2) · · · (Ip2···pj−1 ⊗ �U�
1 )[X ]j−1

�
· smin(�V �

d
�Vd) · · · smin(�V �

j+1
�Vj+1)

≥
�%

3
4

�j−1

λj−1 ·
�%

3
4

�d−j

≥ cλj−1.

Note that �Vj ∈ Opjrj,rj−1 is the right singular space
of �U�

j−1(Ipj−1 ⊗ �U�
j−2) · · · (Ip2···pj−1 ⊗ �U�

1 )[Y ]j−1(�Vd ⊗
Ipj ...pd−1) · · · (�Vj+1 ⊗ Ipj ) and�U�

j−1(Ipj−1 ⊗ �U�
j−2) · · · (Ip2···pj−1 ⊗ �U�

1 )[Y ]j−1

· (�Vd ⊗ Ipj ...pd−1) · · · (�Vj+1 ⊗ Ipj )

=�U�
j−1(Ipj−1 ⊗ �U�

j−2) · · · (Ip2···pj−1 ⊗ �U�
1 )[X ]j−1

· (�Vd ⊗ Ipj ...pd−1) · · · (�Vj+1 ⊗ Ipj )

+ �U�
j−1(Ipj−1 ⊗ �U�

j−2) · · · (Ip2···pj−1 ⊗ �U�
1 )[Z ]j−1

· (�Vd ⊗ Ipj ...pd−1) · · · (�Vj+1 ⊗ Ipj ),

By Lemma 6, under E0,���sin Θ
��Vj , �Vj

���� =
���sin Θ

��Vj , �Vj
�Qj−1

����

≤
����U�

j−1(Ipj−1 ⊗ �U�
j−2) · · · (Ip2···pj−1 ⊗ �U�

1 )[X ]j−1

· (�Vd ⊗ Ipj ...pd−1) · · · (�Vj+1 ⊗ Ipj )�Vj⊥
����

srj−1

��U�
j−1(Ipj−1 ⊗ �U�

j−2) · · · (Ip2···pj−1 ⊗ �U�
1 )[X ]j−1

· (�Vd ⊗ Ipj ...pd−1) · · · (�Vj+1 ⊗ Ipj )
�

≤2
����U�

j−1(Ipj−1 ⊗ �U�
j−2) · · · (Ip2···pj−1 ⊗ �U�

1 )[Z ]j−1

· (�Vd ⊗ Ipj ...pd−1) · · · (�Vj+1 ⊗ Ipj )
����

srj−1

��U�
j−1(Ipj−1 ⊗ �U�

j−2) · · · (Ip2···pj−1 ⊗ �U�
1 )[X ]j−1

· (�Vd ⊗ Ipj ...pd−1) · · · (�Vj+1 ⊗ Ipj )
�

≤C
��d

i=1 piriri−1

�1/2

λj−1
.

Therefore, under E0, (38) holds.
Thus, we have finished the proof of Theorem 3.

D. Proof of Corollary 1

Let Q = {(15), (34) hold}, then P(Qc) ≤ C exp(−cp) and

� �X (t) − X�2
F ≤ C

d�
i=1

piriri−1 under Q.

Under Qc, due to the property of projection matrices, we know
that ���� �X (t)

����
F

≤ �Y�F ≤ �X�F + �Z�F.

Moreover,

E

���� �X (t) − X
����4

F

≤ C

�
E

���� �X (t)
����4

F

+ �X�4
F

�
≤C�X�4

F + CE�Z�4
F

≤C exp(4c0p) + CE
�
χ2

p1···pd

�2
≤C exp(4c0p) + C(p1 · · · pd)2

≤C exp(4c0p) + C exp (2c0p) ≤ C exp(4c0p).

Therefore, we have the following upper bound for the Frobe-
nius norm risk of �X :

E

���� �X (t) − X
����2

F

=E

���� �X (t) − X
����2

F

1Q + E

���� �X (t) − X
����2

F

1Qc

≤C
d�

i=1

piriri−1 +

&
E

���� �X (t) − X
����4

F

· P(Qc)

≤C
d�

i=1

piriri−1 + C exp ((4c0 − c)p/2) .

By selecting c0 < c/4, we have

E

���� �X (t) − X
����2

F

≤ C

d�
i=1

piriri−1.

Therefore, we have finished the proof of Corollary 1.
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E. Proof of Theorem 4

Since the i.i.d. Gaussian distribution, Z ∼ N(0, σ2), is a
special case of D and

inf
�X

sup
X∈Fp,r(λ),D∈D

EZ∼D

��� �X − X
���2

F

≥ inf
�X

sup
X∈Fp,r(λ),Z i.i.d.∼ N(0,σ2)

EZ∼D

��� �X − X
���2

F
,

we only need to focus on the setting that Z ∼ N(0, σ2) while
developing the lower bound result.

Without loss of generality, assume σ2 = 1. Since d is a
fixed number, we only need to show that for any 1 ≤ i ≤ d,

inf
�X

sup
X∈Fp,r(λ)

E

��� �X − X
���2

F
≥ cpiriri−1. (39)

Suppose X can be written as (1), Uj ∈ R(pjrj−1)×rj and Vj ∈
R(pjrj)×rj−1 are reshaped from Gj ∈ Rrj−1×pj×rj , G1 = U1,
Gd = Vd. For any 1 ≤ i ≤ d− 1, by Lemma 1, we have

[X ]i = (Ip2···pi ⊗ U1) · · · (Ipi ⊗ Ui−1)UiV
�
i+1

· �V �
i+2 ⊗ Ipi+1

� · · · �V �
d ⊗ Ipi+1···pd−1

�
. (40)

For all j �= i, 1 ≤ j ≤ d−1, let Uj
i.i.d.∼ N(0, 1), Vd

i.i.d.∼ N(0, 1)
and U1, . . . , Ui−1, Ui+1, . . . , Ud−1, Vd are all independent.
By Lemma 4, for any 1 ≤ j ≤ d− 1, we have

srj

��
Ip2···pj ⊗ U1

� · · · (Ipj ⊗ Uj−1)Uj

�
≥smin

�
Ip2···pj ⊗ U1

� · · · smin(Uj) = sr1(U1) · · · srj (Uj).

Similarly,

srj

�
V �

j+1

�
V �

j+2 ⊗ Ipj+1

� · · · �V �
d ⊗ Ipj+1···pd−1

��
≥srj (Vj+1) · · · srd−1(Vd).

Moreover, Lemma 4 Part 1 tells us

srj

� �
Ip2···pj ⊗ U1

� · · · (Ipj ⊗ Uj−1)UjV
�
j+1

· �V �
j+2 ⊗ Ipj+1

� · · · �V �
d ⊗ Ipj+1···pd−1

� �
≥srj

��
Ip2···pj ⊗ U1

� · · · (Ipj ⊗ Uj−1)Uj

�
· srj

�
V �

j+1

�
V �

j+2 ⊗ Ipj+1

� · · · �V �
d ⊗ Ipj+1···pd−1

��
≥sr1(U1) · · · srj (Uj)srj (Vj+1) · · · srd−1(Vd). (41)

Recall that Vj is reshaped from Uj for all 1 ≤ j ≤ d− 1, by
[93][Corollary 5.35], we know that with probability at least
1 − Ce−cp, for all 1 ≤ j ≤ d− 1, j �= i,√

pjrj−1

4
≤√

pjrj−1 −√
rj −

√
pjrj−1

25
≤srj (Uj) ≤ s1(Uj)

≤√
pjrj−1 +

√
rj +

√
pjrj−1

25
≤ 2

√
pjrj−1,

√
pjrj

4
≤srj−1(Vj) ≤ s1(Vj) ≤ 2

√
pjrj ,

and
√
pd

4
≤srd−1(Vd) ≤ sr1(Vd) ≤ 2

√
pd. (42)

For a fixed U0 ∈ Opiri−1,ri , define the following ball with
radius ε > 0,

B(U0, ε) =
�
U � ∈ Opiri−1,ri : � sinΘ(U �, U0)�F ≤ ε

�
.

By Lemma 1 in [94], for 0 < α < 1 and 0 < ε ≤ 1, there
exist �U (1)�

i , . . . , �U (m)�

i ⊆ B(U0, ε) such that

m ≥
�c0
α

�ri(piri−1−ri)

,

min
1≤j 
=k≤m

���sin Θ
��U (j)�

i , �U (k)�

i

����
F
≥ αε.

By Lemma 1 in [37], one can find a rotation matrix Ok ∈ Ori

such that

�U0 − �U (k)�

i Ok�F ≤
√

2
���sin Θ

�
U0, �U (k)�

i

����
F
≤

√
2ε.

Let �U (k)
i = �U (k)�

i Ok, we have����U (k)
i − U0

���
F
≤ √

2ε,���sin Θ
��U (j)

i , �U (k)
i

����
F
≥ αε, 1 ≤ j < k ≤ m.

Let U (k)
i = S + �U (k)

i , where S
i.i.d.∼ N(0, τ2). Set τ ≥

8/
√
pi, [93][Corollary 5.35] shows that with probability at

least 1 − Ce−cp,

τ
√
piri−1

8
≤τ
�√

piri−1 −√
ri −

√
piri−1

25

�
− 1

≤sri (S) − s1

��U (k)
i

�
≤ sri

�
U

(k)
i

�
≤s1
�
U

(k)
i

�
≤ s1 (S) + s1

��U (k)
i

�
≤τ
�√

piri−1 +
√
ri +

√
piri−1

25

�
+ 1

≤2τ
√
piri−1. (43)

If 2 ≤ i ≤ d− 1, since V (k)
i is reshaped from U

(k)
i , we know

that V (k)
i = T + �V (k)

i , where T
i.i.d.∼ N(0, τ2), and �V (k)

i is
realigned from �U (k)

i . Notice that

s1(�V (k)
i ) = ��V (k)

i � ≤ ��V (k)
i �F = ��U (k)

i �F = ri,

Since τ ≥ 8/
√
pi, by [93][Corollary 5.35], with probability at

least 1 − Ce−cpiri ,

τ
√
piri

8
≤τ
�√

piri −√
ri−1 −

√
piri

25

�
−√

ri

≤sri (T ) − s1

��V (k)
i

�
≤ sri

�
V

(k)
i

�
≤s1
�
V

(k)
i

�
≤ s1 (T ) + s1

��V (k)
i

�
≤τ
�√

piri +
√
ri−1 +

√
piri

25

�
+
√
ri

≤2τ
√
piri. (44)

Choose fixed U1, · · · , Ui−1, Vi+1, · · · , Vd, S such that (42),
(43) and (44) hold. Let

[X (k)]i =(Ip2···pi ⊗ U1) · · · (Ipi ⊗ Ui−1)U
(k)
i V �

i+1

· �V �
i+2 ⊗ Ipi+1

� · · · �V �
d ⊗ Ipi+1···pd−1

�
(45)
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and X (k) ∈ Rp1×···×pd is the corresponding tensor. (41), (42),
(43) and (44) together show that

σrj ([X (k)]j) ≥τ
j 

k=1

√
pkrk−1

8

d 
k=j+1

√
pkrk

8

=τ
√
p1 · · · pdr1 · · · rd−1

C
√
rj

. (46)

By setting τ = C max1≤i≤d−1 λi max1≤j≤d−1
√

rj√
p1···pdr1···rd−1

∨
8 max1≤i≤d−1

�
1/pi, we have

σrj

�
[X(k)]j

�
≥ λj , ∀1 ≤ j ≤ d− 1.

For 1 ≤ k < j ≤ m,

�X (k) − X (j)�2
F

=
��� (Ip2···pi ⊗ U1) · · · (Ipi ⊗ Ui−1)

�
U

(k)
i − U

(j)
i

�
· V �

i+1

�
V �

i+2 ⊗ Ipi+1

� · · · �V �
d ⊗ Ipi+1···pd−1

� ���2
F

≥s2min ((Ip2···pi ⊗ U1) · · · (Ipi ⊗ Ui−1))

·
����U (k)

i − U
(j)
i

�
V �

i+1

�
V �

i+2 ⊗ Ipi+1

� · · ·
�
V �

d ⊗ Ipi+1···pd−1

� ���2
F

=s2ri−1

��
Ip2···pi−1 ⊗ U1

� · · ·Ui−1

�
· s2ri

�
V �

i+1

�
V �

i+2 ⊗ Ipi+1

� · · · �V �
d ⊗ Ipi+1···pd−1

��
·
���U (k)

i − U
(j)
i

���2
F

=s2ri−1

��
Ip2···pi−1 ⊗ U1

� · · ·Ui−1

�
· s2ri

�
V �

i+1

�
V �

i+2 ⊗ Ipi+1

� · · · �V �
d ⊗ Ipi+1···pd−1

��
·
����U (k)

i − �U (j)
i

���2
F

≥s2r1
(U1) · · · s2ri−1

(Ui−1)s2ri
(Vi+1) · · · s2rd−1

(Vd)

· min
O∈Ori

����U (k)
i − �U (j)

i O
���2

F

≥
i−1 
h=1

phrh−1

16

d 
l=i+1

plrl
16

min
O∈Ori

����U (k)
i − �U (j)

i O
���2

F

≥
i−1 
h=1

phrh−1

16

d 
l=i+1

plrl
16

���sinΘ
��U (k)

i , �U (j)
i

����2
F

≥c
�

i−1 
h=1

phrh−1

d 
l=i+1

plrl

�
α2ε2.

In addition, let Y(k) = X (k) + Z(k) and Z(k) i.i.d.∼ N(0, 1).
The KL-divergence between distributions Y(k) and Y(j) is

DKL

�
Y(k)||Y(j)

�
=

1
2
�X (k) − X (j)�2

F

=
1
2

��� (Ip2···pi ⊗ U1) · · · (Ipi ⊗ Ui−1)
�
U

(k)
i − U

(j)
i

�

· V �
i+1

�
V �

i+2 ⊗ Ipi+1

� · · · �V �
d ⊗ Ipi+1···pd−1

� ���2
F

≤1
2
�(Ip2···pi ⊗ U1) · · · (Ipi ⊗ Ui−1)�2

· ��V �
i+1

�
V �

i+2 ⊗ Ipi+1

� · · · �V �
d ⊗ Ipi+1···pd−1

���2
·
���U (k)

i − U
(j)
i

���2
F

≤1
2
s21(U1) · · · s21(Ui−1)s21(Vi+1) · · · s21(Vd)

���U (k)
i − U

(j)
i

���2
F

≤1
2

i−1 
h=1

(4phrh−1)
d 

l=i+1

(4plrl)

·
����U (k)

i − U0

���
F

+
���U (k)

i − U0

���
F

�2
≤C
�

i−1 
h=1

(phrh−1)
d 

l=i+1

(plrl)

�
ε2.

By generalized Fano’s Lemma,

inf
�X

sup
X∈{X (k)}m

k=1

E

��� �X − X
���

F

≥c
'(()i−1 

h=1

phrh−1

d 
l=i+1

plrlαε

·
⎛⎝1 −

C
��i−1

h=1(phrh−1)
�d

l=i+1(plrl)
�
ε2 + log 2

ri(piri−1 − ri) log(c0/α)

⎞⎠ .
By setting ε = c�

%
ri(piri−1−ri)

C
�i−1

h=1(phrh−1)
�d

l=i+1(plrl)
≤ 1

2 , α =

(c0 ∧ 1)/8, we know that for any 1 ≤ i ≤ d− 1,

inf
�X

sup
X∈Fp,r(λ)

E

��� �X − X
���2

F

≥
�

inf
�X

sup
X∈{X (k)}m

k=1

E

��� �X − X
���

F

�2

≥c1ripiri−1.

For i = d, similarly to the case i = 1, we have

inf
�X

sup
X∈Fp,r(λ)

E

��� �X − X
���2

F
≥ c1pdrd−1.

Therefore, we have proved Theorem 4.

F. Proof of Proposition 1

Define �G1 ∈ Rp×r1 , �Gk ∈ Rrk−1×p×rk , �Gd ∈ Rp×rd−1

such that�G1,[i,l] = (G1(i))l, ∀i ∈ [p], l ∈ [r1],�Gk,[j,i,l] =
�
Gk(i, e(rk−1)

j )
�

l
, ∀i ∈ [p], j ∈ [rk−1], l ∈ [rk],

2 ≤ k ≤ d− 1,

�Gd,[i,l] = Gd(i, e
(rd−1)
l ), ∀i ∈ [p], l ∈ [rd−1]
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where e(k)
i is the i-th canonical basis of Rk. Then�P1(Xt+1) = �G�

1,[Xt+1,:] ∈ R
r1 ,

�P2(Xt+1, Xt+2) = G2

�
Xt+2, �P1(Xt+1)

�
linear map

=
r1�

j=1

G2(Xt+2, e
(r1)
j )
� �P1(Xt+1)

�
j

=
� �G1,[Xt+1,:]

�G2,[:,Xt+2,:]

��
.

By induction, for any 2 ≤ k ≤ d− 1,�Pk(Xt+1, . . . , Xt+k)

= Gk(Xt+k, �Pk−1(Xt+1, . . . , Xt+k−1))

linear
map=

rk−1�
j=1

Gk(Xt+k, e
(rk−1)
j )

� �Pk−1(Xt+1, . . . , Xt+k−1)
�

j

= �G�
k,[:,Xt+k,:]

�Pk−1(Xt+1, . . . , Xt+k−1)

=
� �G1,[Xt+1,:]

�G2,[:,Xt+2,:] · · · �Gk,[:,Xt+k,:]

��
and

P (Xt+d|Xt+1, . . . , Xt+d−1)

=Gd(Xt+d, �Pd−1(Xt+1, . . . , Xt+d−1))

= �P�
d−1(Xt+1, . . . , Xt+d−1) �G�

d,[Xt+d,:]

= �G1,[Xt+1,:]
�G2,[:,Xt+2,:] · · · �Gd−1,[:,Xt+d−1,:]

�G�
d,[Xt+d,:]

.

Therefore,

P = � �G1, �G2, . . . , �Gd−1, �Gd�

and has TT-rank (r1, . . . , rd−1).

G. Proof of Proposition 2

Let Z = �Pemp − P , then EZ = 0. Let

T (k)
i1,...,id

= 1{X(i1,...,id−1;k)=id}, ∀1 ≤ k ≤ n;

1 ≤ i1, . . . , id ≤ p

and

Z(k)
i1,...,id

= T (k)
i1,...,id

− P (id|i1, . . . , id−1) ,

∀1 ≤ k ≤ n; 1 ≤ i1, . . . , id ≤ p.

Then EZ(k) = 0. Moreover, by definition, for any 1 ≤
j ≤ d − 1, the rows of

!
Z(k)
"

j
∈ Rpj×pd−j

are inde-

pendent, and there exists a partition {Ω(j)
1 , . . . ,Ω(j)

pd−j−1} of

{1, . . . , pd−j} satisfying
...Ω(j)

1

... = · · · =
...Ω(j)

pd−j−1

... = p, such

that

�!
Z(k)
"

j

�
[:,Ω

(j)
1 ]

, . . . ,

�!
Z(k)
"

j

�
[:,Ω

(j)
pd−j−1 ]

are inde-

pendent and�
l∈Ω

(j)
i

�!
T (k)
"

j

�
m,l

= 1, ∀1 ≤ m ≤ pj , 1 ≤ k ≤ n.

Therefore,�
l∈Ω

(j)
i

.....
�!

Z(k)
"

j

�
m,l

.....
≤
�

l∈Ω
(j)
i

�!
T (k)
"

j

�
m,l

+ E

�
l∈Ω

(j)
i

�!
T (k)
"

j

�
m,l

=2, ∀1 ≤ m ≤ pj , 1 ≤ k ≤ n.

For any fixed x1 ∈ Rpj

and x2 ∈ Rpd−j

satisfying �x1�2 =
1 and �x�2 = 1, we have.......

�
l∈Ω

(j)
i

�!
Z(k)
"

j

�
m,l

(x2)l

.......
≤ max

l∈Ω
(j)
i

(x2)l

�
l∈Ω

(j)
i

.....
�!

Z(k)
"

j

�
m,l

.....
≤2 max

l∈Ω
(j)
i

(x2)l ≤ 2
���(x2)Ω(j)

i

���
2
.

By [95, Exercise 2.4],
�

l∈Ω
(j)
i

�!
Z(k)
"

j

�
m,l

(x2)l is

2
���(x2)Ω(j)

i

���
2
-sub-Gaussian. Therefore,

x�1
!
Z(k)
"

j
x2

=
pj�

m=1

(x1)m

pd−j−1�
i=1

⎛⎜⎝ �
l∈Ω

(j)
i

�!
Z(k)
"

j

�
m,l

(x2)l

⎞⎟⎠
is

��pj

m=1(x1)2m
�pd−j−1

i=1 4
���(x2)Ω(j)

i

���2
2

�1/2

=

2�x1�2�x2�2 = 2-sub-Gaussian. Notice that Z =
1
n

�n
k=1 Z(k), the Hoeffding bound [95, Proposition

2.5] shows that

P
�..x�1 [Z]jx2

.. ≥ t
� ≤ 2 exp

�
−nt

2

8

�
, ∀t ≥ 0.

Therefore, for any fixed U ∈ Opj ,rj
, V ∈ Opd−j ,prj+1 , x ∈

R
rj , y ∈ R

prj+1 with �x�2 = 1 and �y�2 = 1,

P
�..x�U�[Z]jV �y

.. ≥ t
� ≤ 2 exp

�
−nt

2

8

�
, ∀t ≥ 0.

Similarly to the proof of (49), with probability at least 1 −
Ce−cp, for all 1 ≤ k ≤ d− 1,����U (0)�

k (Ip ⊗ �U (0)�
k−1 ) · · · (Ipk−1 ⊗ �U (0)�

1 )[Z ]k

· (�V (1)
d ⊗ Ipd−k−1) · · · (�V (1)

k+2 ⊗ Ip)
���

≤C
&�d

i=1 piriri−1

n
.

Similarly, with probability at least 1 − Ce−cp,���[Z ]1(�V (1)
d ⊗ Ipd−2) · · · (�V (1)

3 ⊗ Ip)�V (1)
2

���
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≤C
&�d

i=1 piriri−1

n
.

Notice that �X�F ≤ √
r�X� if rank(X) = r, by the previous

two inequalities and Theorem 1, we know that with probability
at least 1 − Ce−cp,�����P(1) − P

����2
F

≤ C

�
max

1≤i≤d−1
ri

� �d
i=1 piriri−1

n
.

Finally, by the definition of �P , we have����P − P
���

F
≤
���� �P(1) − P

����
F

+
�����P(1) − �P����

F

≤2
�����P(1) − P

����
F

,

which has finished the proof of Theorem 2.

H. Proof of Lemma 3

By symmetry, we only need to prove (6). By definition, (6)
holds for k = 1. Suppose it holds for k = j. For k = j + 1,
since Sj+1 ∈ R(rjpj+1)×(pj+2···pd) is realigned from �Sj =
M�

j Sj ∈ Rrj×(pj+1···pd), Lemma 2 that Sj+1 = (Ipj+1 ⊗�Sj)A(pj+1,pj+2···pd), where the realignment matrix A(i,j) is
defined in (5). Therefore,

Sj+1 =
�
Ipj+1 ⊗ �Sj

�
A(pj+1,pj+2···pd)

=
�
Ipj+1 ⊗M�

j Sj

�
A(pj+1,pj+2···pd)

=
�
Ipj+1 ⊗M�

j

� �
Ipj+1 ⊗ Sj

�
A(pj+1,pj+2···pd)

=
�
Ipj+1 ⊗M�

j

�
· �Ipj+1 ⊗

�
(Ipj ⊗M�

j−1) · · · (Ip2···pj ⊗M�
1 )[T ]j

��
·A(pj+1,pj+2···pd)

=
�
Ipj+1 ⊗M�

j

� �
Ipj+1 ⊗ (Ipj ⊗M�

j−1)
� · · ·�

Ipj+1 ⊗ (Ip2···pj ⊗M�
1 )
� �
Ipj+1 ⊗ [T ]j

�
·A(pj+1,pj+2···pd)

=
�
Ipj+1 ⊗M�

j

� �
Ipjpj+1 ⊗M�

j−1

� · · ·�
Ip2···pj+1 ⊗M�

1

�
[T ]j+1.

The third equation and the fifth equation hold since (A ⊗
B)(C ⊗ D) = (AC) ⊗ (BD); the last equation holds since
Yj+1 =

�
Ipj+1 ⊗ Yj

�
A(pj+1,pj+2···pd) and A ⊗ (B ⊗ C) =

(A⊗B) ⊗ C.
Also notice that �Sk = M�

k Sk, we have finished the proof
of (6).

I. Technical Lemmas

We collect the additional technical lemmas in this section.
Lemma 4:

(1) Suppose A ∈ Rm1×m2 , B ∈ Rm2×m3 , where m1 ≥ m2.
Then

smin{m2,m3}(AB) ≥ sm2(A)smin{m2,m3}(B).

(2) Suppose A ∈ R
m×p1 , B ∈ Rn×p2 , X ∈ Rp1×p2 ,

rank(X) = r, p1 ≥ m, p2 ≥ n. If X = U1MV �
1 , where

U1 ∈ Op1,m and V1 ∈ Op2,n, then

σr(AXB) ≥ smin(AU1)σr(X)smin(V �
1 B).

Proof of Lemma 4: (1) Consider the SVD decomposi-
tion A = UAΣAV

�
A , B = UBΣBV

�
B , where UA ∈

Om1,m2 , VA ∈ Om2 , UB ∈ Om2,min{m2,m3}, VB ∈
Omin{m2,m3},m3 , ΣA = diag(σ1(A), . . . , sm2(A)) and ΣB =
diag(s1(B), . . . , smin{m2,m3}(B)) are diagonal matrices with
nonnegative diagonal entries. Then

smin{m2,m3}(AB) =smin{m2,m3}(UAΣAV
�
A UBΣBV

�
B )

=smin{m2,m3}(ΣAV
�
A UBΣB).

For any x ∈ Rmin{m2,m3} satisfying �x�2 = 1, we have

�ΣAV
�
A UBΣBx�2 ≥sm2(A)�V �

A UBΣBx�2

=sm2(A)�ΣBx�2

≥sm2(A)smin{m2,m3}(B).

Therefore

smin{m2,m3}(AB) =smin{m2,m3}(ΣAV
�
A UBΣB)

≥sm2(A)smin{m2,m3}(B).

(2) Consider the SVD decomposition X = UΣV �, where
U ∈ Op1,r, V ∈ Op2,r and Σ is a diagonal matrix. Then we
know that there exist two matrices L ∈ Rm×r and R ∈ Rn×r

satisfying U = U1L and V = V1R. Moreover,

L�L = L�U�
1 U1L = U�U = Ir ,

R�R = R�V �
1 V1R = V �V = Ir .

Therefore,

σr(AXB) =σr(AU1LΣR�V �
1 B)

≥smin(AU1)σr(LΣR�)smin(V �
1 B)

=smin(AU1)σr(X)smin(V �
1 B).

Lemma 5: Suppose Z is a matrix with independent
zero-mean σ-sub-Gaussian entries, d is a fixed number,
r0 = rd = 1.

(1) Suppose Z ∈ Rp×q , A ∈ Rm×p, B ∈ Rq×n satisfy
�A�, �B� ≤ 1, m ≤ p, n ≤ q. Then

P
��AZB� ≥ 2σ

√
m+ t
� ≤ 2 · 5n exp

�
−cmin

�
t2

m
, t

��
.

(47)

P
��AZB�F ≥ σ

√
mn+ t

� ≤ 2 exp
�
−cmin

�
t2

mn
, t

��
.

(48)

(2) Suppose Z ∈ R(p1···pk)×m, 2 ≤ k ≤ d− 1. Then

max
Ui∈R

(piri−1)×ri

�Ui�≤1

��(Ipk
⊗ U�

k−1) · · · (Ip2···pk
⊗ U�

1 )Z
��

≤Cσ
'(()k−1�

i=1

piri−1ri + pkrk−1 +m. (49)
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with probability at least 1 − C exp(−c(�k−1
i=1 piri−1ri +

pkrk−1 +m)).
(3) Suppose Z ∈ R(p1···pk)×(pk+1···pd), 2 ≤ k ≤ d−2. Then

max
(U1,...,Vd)∈A

��U�
k (Ipk

⊗ U�
k−1) · · · (Ip2···pk

⊗ U�
1 )Z

· (Vd ⊗ Ipk+1...pd−1) · · · (Vk+2 ⊗ Ipk+1 )
��

≤Cσ
'(() d�

i=1

piri−1ri (50)

with probability at least 1−C exp(−c�d
i=1 piri−1ri). Here,

A = {(U1, . . . , Uk, Vk+2, . . . , Vd) : Ui ∈ R
(piri−1)×ri ,

�Ui� ≤ 1, Vj ∈ R
(piri)×ri−1 , �Vj� ≤ 1}. (51)

(4) Suppose Z ∈ R
(p1···pd−1)×pd . Then with probability at

least 1 − C exp(−c�d
i=1 piri−1ri),

max
Ui∈R

(piri−1)×ri ,

�Ui�≤1

���U�
d−1(Ipd−1 ⊗ U�

d−2) · · ·

(Ip2···pd−1 ⊗ U�
1 )Z
���

F

≤Cσ
'(() d�

i=1

piri−1ri. (52)

(5) Suppose Z ∈ R(p1···pk)×(pk+1···pd), 2 ≤ k ≤ d−2. Then

max
(U1,...,Vd)∈A

��U�
k (Ipk

⊗ U�
k−1) · · · (Ip2···pk

⊗ U�
1 )Z

· (Vd ⊗ Ipk+1...pd−1) · · · (Vk+2 ⊗ Ipk+1)
��

F

≤Cσ
'(() d�

i=1

piri−1ri (53)

with probability at least 1−C exp(−c�d
i=1 piri−1ri). Here,

A is defined in (51).
Proof of Lemma 5: W.O.L.G., assume σ = 1.

(1) For fixed x ∈ R
n satisfying �x�2 = 1, we have AZBx =

(x�B� ⊗ A)vec(Z). Since Zij is 1-sub-Gaussian, we know
that Var(Zij) ≤ 1. In addition,

E�(x�B� ⊗A)vec(Z)�2
2

=E
#
tr
�
vec(Z)�(x�B� ⊗A)�(x�B� ⊗A)vec(Z)

�$
=tr
#
E
�
(x�B� ⊗A)�(x�B� ⊗A)vec(Z)vec(Z)�

�$
=tr
#
(x�B� ⊗A)�(x�B� ⊗A)E

�
vec(Z)vec(Z)�

�$
≤tr
�
(x�B� ⊗A)�(x�B� ⊗A)

�
=
��x�B� ⊗A

��2
F

= �Bx�2
2�A�2

F ≤ �x�2
2�A�2

F

≤m. (54)

The first inequality holds since E
�
vec(Z)vec(Z)�

�
is a

diagonal matrix with diagonal entries Var(Zij) ≤ 1; the last
inequality is due to �A�F ≤ min{m, p}�A�2 ≤ m.

By Hanson-Wright inequality, we have

P
��AZBx�2

2−m ≥ t
�

≤2 exp
!
− cmin

� t2

�(Bxx�B�) ⊗ (A�A)�2
F

,

t

�(Bxx�B�) ⊗ (A�A)�
�"
.

Since �x�2 = 1 and �A�, �B� ≤ 1,

�(Bxx�B�) ⊗ (A�A)�2
F

=�Bxx�B��2
F�A�A�2

F = (x�B�Bx)2�A�A�2
F

≤(x�x)2�A�A�2
F =

min{m,p}�
i=1

σ4
i (A) ≤ m,

�(Bxx�B�) ⊗ (A�A)� ≤ �Bxx�B���A�A�
≤�xx���A�A� ≤ 1.

Thus, for fixed x satisfying �x�2 = 1, we have

P
��AZBx�2

2 ≥ m+ t
� ≤ 2 exp

�
−cmin

�
t2

m
, t

��
. (55)

By [93][Lemma 5.2], there exists N1/2, a 1/2-net of {x ∈
R

n : �x�2 = 1}, such that
..N1/2

.. ≤ 5n. The union
bound, [93][Lemma 5.2] and (55) together imply that

P
��AZB� ≥ 2

√
m+ t
�

≤P

�
max

x∈N1/2

�AZBx�2 ≥ √
m+ t

�
≤2 · 5n exp

�
−cmin

�
t2

m
, t

��
.

For �AZB�F, note that AZB = (B�⊗A)vec(Z), Similarly
to (54), we have

E�(B� ⊗A)vec(Z)�2
2

=E
#
vec(Z)�(B� ⊗A)�(B� ⊗A)vec(Z)

$
=E
�

tr
#
vec(Z)�(B� ⊗A)�(B� ⊗A)vec(Z)

$�
=tr
�
E
#
(B� ⊗A)�(B� ⊗A)vec(Z)vec(Z)�

$�
=tr
#
(B� ⊗A)�(B� ⊗A)E

�
vec(Z)vec(Z)�

�$
≤tr
#
(B� ⊗A)�(B� ⊗A)

$
=�B� ⊗A�2

F = �B�2
F�A�2

F

≤mn.
By Hanson-Wright inequality, we have

P
��AZB�2

F−mn ≥ t
�

≤2 exp
!
− cmin

� t2

�(BB�) ⊗ (A�A)�2
F

,

t

�(BB�) ⊗ (A�A)�
�"
.

Since �A�, �B� ≤ 1, we have

�(BB�) ⊗ (A�A)�F =
�
�A�A�2

F�BB��2
F

=

'(()min{m,p}�
i=1

σ4
i (A)

min{q,n}�
i=1

σ4
i (B) ≤ √

mn,

�(BB�) ⊗ (A�A)� ≤ 1.
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Therefore,

P
��AZB�2

F ≥ mn+ t
� ≤ 2 exp

�
−cmin

�
t2

mn
, t

��
.

(2) For fixed x ∈ Rm and A ∈ R(pkrk−1)×(p1···pk) satisfying
�x�2 = 1 and �A� ≤ 1, by (47) with B = Im, we have

P

�
�AZ� ≥ 2

�
pkrk−1 + t

�
≤2 · 5m exp

�
−cmin

�
t2

pkrk−1
, t

��
. (56)

By [48][Lemma 7], for 1 ≤ i ≤ k − 1, there exist ε-nets:
U

(1)
i , . . . , U

(Ni)
i ∈ R(piri−1)×ri (here r0 = 1), Ni ≤ ((2 +

ε)/ε)(piri−1)×ri , such that

∀U ∈ R
(piri−1)×ri satisfying �U� ≤ 1,

∃1 ≤ j ≤ Ni s.t. �U (j)
i − U� ≤ ε.

Therefore,

P

�
max

i1,...,ik−1

���(Ipk
⊗ U

(ik−1)�
k−1 ) · · · (Ip2···pk

⊗ U
(i1)�
1 )Z

���
≥ 2
�
pkrk−1 + t

�
≤2((2 + ε)/ε)

�k−1
i=1 piri−1ri5m exp

�
−cmin

�
t2

pkrk−1
, t

��
.

(57)

Let

U∗
1 , . . . , U

∗
k−1

∈ arg max
Ui∈R

(piri−1)×ri ,

�Ui�≤1, 1≤i≤k−1

��(Ipk
⊗ U�

k−1) · · · (Ip2···pk
⊗ U�

1 )Z
�� ,

M

= max
Ui∈R

(piri−1)×ri ,

�Ui�≤1, 1≤i≤k−1

��(Ipk
⊗ U�

k−1) · · · (Ip2···pk
⊗ U�

1 )Z
�� .

Then for any 1 ≤ i ≤ k − 1, there exists 1 ≤ ji ≤ Ni, such
that �U (ji)

i − U∗
i � ≤ ε. Then

M

=
��(Ipk

⊗ U∗�
k−1) · · · (Ip2···pk

⊗ U∗�
1 )Z
��

≤
���(Ipk

⊗ U
(jk−1)�
k−1 ) · · · (Ip2···pk

⊗ U
(j1)�
1 )Z

���
+
����Ipk

⊗ (U∗
k−1 − U

(jk−1)
k−1 )

��
(Ipk−1pk

⊗ U
(jk−2)�
k−2 ) · · ·

(Ip2···pk
⊗ U

(j1)�
1 )Z

���
+ · · ·

+
���(Ipk

⊗ U∗�
k−1) · · · (Ip3···pk

⊗ U∗�
2 )

·
�
Ip2···pk

⊗ (U∗
1 − U

(j1)
1 )�

�
Z
���

≤
���(Ipk

⊗ U
(jk−1)�
k−1 ) · · · (Ip2···pk

⊗ U
(j1)�
1 )Z

���+ ε(k − 1)M.

(58)

Combine (57) and the previous inequality together, we have

P

�
M ≥ 2

√
pkrk−1 + t

1 − (k − 1)ε

�

≤2((2 + ε)/ε)
�k−1

i=1 piri−1ri5m exp
�
−cmin

�
t2

pkrk−1
, t

��
.

(59)

By setting ε = 1
2(k−1) and t =

C
��k−1

i=1 piri−1ri + pkrk−1 +m, we have proved (49).

(3) For fixed A ∈ R
rk×(p1···pk), B ∈ R

(pk+1···pd)×(pk+1rk+1)

satisfying �A� ≤ 1, �B� ≤ 1, by (47), we have

P
��AZB� ≥ 2

√
rk + t
�

≤2 · 5pk+1rk+1 exp
�
−cmin

�
t2

rk
, t

��
.

Let

M

= max
(U1,...,Vd)∈A

��U�
k (Ipk

⊗ U�
k−1) · · · (Ip2···pk

⊗ U�
1 )Z

· (Vd ⊗ Ipk+1...pd−1) · · · (Vk+2 ⊗ Ipk+1)
��,

By similar arguments as (59), one has

P

�
M ≥ 2

√
rk + t

1 − (d− 1)ε

�
≤2((2 + ε)/ε)

�
1≤i≤d,i�=k+1 piri−1ri5pk+1rk+1

· exp
�
−cmin

�
t2

rk
, t

��
for any 0 < 
 < 1

d . By setting ε = 1
2(d−1) and t =

C
�d

i=1 piri−1ri, we have proved the third part of Lemma 5.
(4) For fixed U1, . . . , Ud−1 satisfying �Ui� ≤ 1, let A =

U�
d−1(Ipd−1 ⊗U�

d−2) · · · (Ip2···pd−1 ⊗U�
1 ) ∈ Rrd−1×(p1···pd−1),

then �A� ≤ 1. By (48) with B = Ipd
, we have

P
��AZ�2

F ≥ pdrd−1 + t
� ≤ 2 exp

�
−cmin

�
t2

pdrd−1
, t

��
.

Let

M = max
Ui∈R

(piri−1)×ri ,

�Ui�≤1

�U�
d−1(Ipd−1 ⊗ U�

d−2) · · ·

(Ip2···pd−1 ⊗ U�
1 )Z�F.

The similar proof of (59) leads us to

P

�
M2 ≥ rd−1pd + t

(1 − ε(d− 1))2

�
≤2 ((2 + ε)/ε)

�d−1
k=1 pkrk−1rk exp

�
−cmin

�
t2

pdrd−1
, t

��
.

(60)

for 0 < ε < 1
d−1 . By setting ε = 1

2(d−1) and t =
C
�d

k=1 pkrk−1rk, we have arrived at (52).
(5) For fixed A ∈ R

rk×(p1···pk), B ∈
R(pk+1···pd)×(pk+1rk+1), �A� ≤ 1, �B� ≤ 1, by (48),
we have

P
��AZB�2

F ≥ pk+1rk+1rk + t
�

≤2 exp
�
−cmin

�
t2

pk+1rk+1rk
, t

��
.
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Let

M

= max
(U1,...,Vd)∈A

��U�
k (Ipk

⊗ U�
k−1) · · · (Ip2···pk

⊗ U�
1 )Z

· (Vd ⊗ Ipk+1...pd−1) · · · (Vk+2 ⊗ Ipk+1 )
��

F
,

Similarly to (59), for any 0 < ε < 1
d−1 , we have

P

�
M ≥

√
pk+1rk+1rk + t

1 − (d− 1)ε

�
≤2((2 + ε)/ε)

�
1≤i≤d,i�=k+1 piri−1ri

· exp
�
−cmin

�
t2

pk+1rk+1rk
, t

��
. (61)

By setting ε = 1
2(d−1) and t = C

�d
i=1 piri−1ri, we have

proved (53).
Lemma 6: Suppose X,Z ∈ Rp1×p2 , rank(X) = r. Let

Y = X + Z , �U = SVDL
r (Y ), �V = SVDR

r (Y ). Then we have

max{��U�
⊥X�, �X �V⊥�} ≤2�Z�,

max{��U�
⊥X�F, �X �V⊥�F} ≤2 min{�Z�F,

√
r�Z�}.

Proof of Lemma 6: See [48, Lemma 6] and
[96, Theorem 1].
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