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1 | INTRODUCTION

If G is a group with a proper, cellular cocompact action on a CAT(0) cube complex X, we say G is
cubulated by X. (Some authors drop the cocompactness assumption.) Actions on cube complexes
typically arise via a construction of Sageev [37] from collections of codimension-one subgroups.
A cube complex is special if it admits a locally isometric immersion to the Salvetti complex of
some right-angled Artin group (see [22], where this notion was introduced, and called A-special).
The group G is specially cubulated by X if the action can be chosen to be free, with quotient a
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special cube complex. (We may also say that G acts co-specially on X.) Such a group G embeds
into a finitely generated right-angled Artin group, so in particular it is linear over Z and hence
residually finite. It also inherits many useful separability properties from the right-angled Artin
group.

The group G is virtually specially cubulated by X if there is a finite-index subgroup G, of G
which acts freely on X with quotient a special, compact cube complex. The Z-linearity and
nice separability properties of G, are passed on to G, so this is nearly as useful a property as
being specially cubulated. Indeed, the Virtual Haken and Virtual Fibering Theorems of Agol
[1] are proved by showing that any hyperbolic group which is cubulated is virtually specially
cubulated.

We note that not all cubulated groups are virtually specially cubulated. Indeed Wise showed
there are infinite cubulated groups with no finite-index subgroups [41]; Burger and Mozes showed
there are even infinite simple cubulated groups [7, 8]. By taking free products of such groups, one
can produce cubulated relatively hyperbolic groups which are not residually finite and hence not
virtually specially cubulated. This suggests that to extend Agol’s result about cubulated hyper-
bolic groups to relatively hyperbolic groups it is necessary to make some assumptions about the
parabolic subgroups.

1.1 | Main results

The following appear to us to be the minimal possible assumptions on a relatively hyperbolic pair
(G, P) acting geometrically on a CAT(0) cube complex X, which might allow us to conclude that
G acts virtually co-specially on X.

Assumption 1.1. For each hyperplane stabilizer S and each P € P, the intersection S N P is sep-
arable in P.

Assumption 1.2. For each pair of hyperplane stabilizers S, S, and each P € P, the double coset
(S; N P)(S, N P) is separable in P.

The following is our main result, which recovers via different methods a theorem of Oregon-
Reyes [33] (see Section 1.2 for the equivalence of our theorems).

Theorem A [33, Theorem 1.2]. Suppose that (G, P) is relatively hyperbolic and that G acts properly
and cocompactly on a CAT(0) cube complex X so Assumptions 1.1 and 1.2 are satisfied. Then G acts
virtually co-specially on X.

Remark 1.3. Suppose that (G, P) is relatively hyperbolic and that G acts properly and cocompactly
on a CAT(0) cube complex X. It follows from Sageev—-Wise [39, Theorem 1.1] that for each P €
P there exists a convex P-cocompact sub-complex Y in X. It follows from Haglund-Wise [23,
Corollary 4.3] that each P acts virtually co-specially on Y, when (G, P) satisfies Assumptions 1.1
and 1.2. In fact the converse is also true using work from [33, Appendix A]; see Section 1.2 for
details. If G acts virtually co-specially on X, then each P also acts virtually co-specially on Y5p.
This justifies our belief that Assumptions 1.1 and 1.2 are minimal.
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Remark 1.4. In case G is cubulated and the elements of P are virtually abelian, Assumptions 1.1
and 1.2 always hold. This applies in particular to cubulated fundamental groups of finite volume
hyperbolic manifolds and orbifolds.

We use the special case where elements of P are abelian to prove the Relative Cannon Conjec-
ture for groups which are cubulated (Corollary 6.2) and for those which admit a weakly relatively
geometric action on a CAT(0) cube complex (Theorem 6.1). This second result strengthens one of
Einstein-Groves [16]. See Definition 1.9 for the definition of a weakly relatively geometric action.

While both assumptions hold whenever G acts virtually co-specially, it is unclear whether
Assumption 1.2 is really necessary (see [43, Problem 13.38]). In case the parabolics are hyperbolic,
Assumption 1.2 follows from Assumption 1.1, by work of Minasyan [31].

Much of our analysis does not depend on Assumption 1.2, and in particular under only Assump-
tion 1.1 we are able to prove that various relatively quasi-convex subgroups are separable. In par-
ticular Theorem 4.7 and Theorem C have the following consequence. We do not see how to obtain
this result via Oregén-Reyes’ methods.

Theorem B. Suppose (G, P) is relatively hyperbolic and that G acts properly cocompactly on a
CAT(0) cube complex so that Assumption 1.1 is satisfied. Then every hyperplane stabilizer is separable
inG.

More generally Theorem 4.7 states that relatively quasi-convex subgroups are separable when-
ever their intersections with parabolics are separable in those parabolics.

1.2 | Relationship to work of Agol and Oregon-Reyes

Formally, Theorem A generalizes Agol’s main theorem in [1]. However, we use that theorem in
an essential way to prove [18, Theorem D], which is used in an essential way in our proof of The-
orem A. In particular we do not give a new proof here of Agol’s theorem.

We stated above that Oregén-Reyes’ main theorem in [33] is equivalent to ours. At first
glance his hypotheses seem slightly weaker, but they are equivalent by a result proved in [33,
Appendix A], as we explain in this subsection. We do not use this equivalence (Proposition 1.8)
anywhere in our paper, but provide it for the convenience of the reader.

Oregén-Reyes uses the following terminology.

Definition 1.5. Let G be a group, acting properly and cocompactly on a cube complex X. Then
(G,X) is a cubulated group. If H < G acts properly cocompactly on some convex sub-complex
Y C X then H is a convex subgroup.

The cubulated group (G, X) is special if G acts freely and the quotient G\X is special. It is vir-
tually special if there is a finite-index subgroup G’ < G so that (G’, X) is special.

The conclusions of [33, Theorem 1.2] and our Theorem A are the same. However as we have
mentioned, the hypotheses look different. Here is Oregén-Reyes’ hypothesis.

Hypothesis 1.6. (G, X) is a cubulated group, and (G, P) is relatively hyperbolic, where each P € P
is a convex subgroup of G, preserving a convex sub-complex Yp so that (P, Y p) is virtually special.
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Our hypothesis can be stated as follows.

Hypothesis 1.7. (G, X) is a cubulated group, and (G, P) is relatively hyperbolic, satisfying Assump-
tions 1.1 and 1.2.

Proposition 1.8. Hypotheses 1.6 and 1.7 are equivalent.

Proof. Assume that (G, X) satisfies 1.6. If S is a hyperplane stabilizer it is a convex subgroup of G.
By [33, A.15], the subgroup S N P is a convex subgroup of (P, Yp). Thus by [33, A.1], Assumptions 1.1
and 1.2 hold.

Now assume that (G, X) satisfies 1.7. As pointed out in Remark 1.3, each P € P acts properly
and cocompactly on some convex sub-complex Y, C X by a theorem of Sageev and Wise. Under
Assumptions 1.1 and 1.2, Haglund-Wise show that (P, Y}) is virtually special. O

1.3 | Our strategy

Our proof of Theorem A has two steps. The first, which takes up the bulk of this paper, is to replace
the given cubulation of G by a weakly relatively geometric cubulation. In the following definition,
recall that a full subgroup of a relatively hyperbolic group is one whose intersection with any
parabolic subgroup is either finite or finite-index in the parabolic.

Definition 1.9. If (G, P) is relatively hyperbolic, and X is a CAT(0) cube complex, an action
G ~ X is weakly relatively geometric if the following hold:

(1) each P € P fixes some point of X;
(2) G acts cocompactly on X; and
(3) if o is a cell of X with infinite stabilizer, then
(a) Stab(o) is full relatively quasi-convex, and
(b) Stab(o) is the fundamental group of a graph of groups, where each edge group is finite
and each vertex group is either finite or full parabolic.

The notion of a relatively geometric action was defined in [16]; it can be obtained from the above
by strengthening (3) to the requirement that every cell stabilizer is either finite or full parabolic.

Under Assumption 1.1 we put a new wallspace structure on the vertices of X. We first
find appropriate sub-complexes {Xp | P € P} stabilized by the peripheral subgroups and hav-
ing certain ‘superconvexity’ properties. Translating these around we get a G-equivariant fam-
ily of parabolic sub-complexes with uniformly bounded pairwise intersection. For each (G-
orbit of) hyperplane H of X, we amalgamate the hyperplane stabilizer with finite-index sub-
groups of the stabilizers of all the parabolic sub-complexes it meets, obtaining a relatively
quasi-convex subgroup B. Now we associate a wall Wy to H, declaring two vertices v, w to
be on the same ‘side’ of this wall if there is a path joining them which crosses B - H an even
number of times. These finitely many walls are completed to a G-equivariant wallspace struc-
ture W on X(©. This is described in more detail in Section 2. In Section 3 we prove that the
action on the cube complex dual to this wallspace structure is weakly relatively geometric,
establishing:
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Theorem C. Suppose (G, P) is relatively hyperbolic, and that G acts properly cocompactly on a
CAT(0) cube complex X, and that this action satisfies Assumption 1.1.
There exists a weakly relatively geometric action of G on a CAT(0) cube complex X.

The existence of a weakly relatively geometric action is the main input to the second step in
our proof of Theorem A, which is completed in Section 4. The weakly relatively geometric action
allows us to apply the tools in [18] to find a rich family of hyperbolic virtually special quotients of
G (Theorem 4.5). We then use these quotients to prove separability of the hyperplane subgroups
and double cosets in the original cubulation. By a criterion of Haglund-Wise [23, Corollary 4.3],
this separability implies virtual specialness.

1.4 | Owutline and conventions

We assume the reader is familiar with the theory of relatively hyperbolic groups and relatively
quasi-convex subgroups (see Hruska [27]) and also the theory of special cube complexes (see [42]).
We always use the locally CAT(0) metric on a non-positively curved cube complex, and notions
such as distance and convexity refer to this metric.

In Section 2, under the assumption that a relatively hyperbolic G acts properly and cocom-
pactly on a CAT(0) cube complex X, we recall and establish some basic properties of this action.
Under Assumption 1.1, we define augmented walls from the hyperplanes of X which will be used to
define a new wallspace structure on X. In Section 3 the cube complex associated to this wallspace
structure is analyzed and Theorem C is proved. In Section 4 Dehn fillings are used to deduce The-
orem A, as well as Theorem B. In Section 5 we provide an example which Theorem A implies is
virtually special, but whose virtual specialness does not seem to follow from previously known
results. In Section 6 we provide the promised applications towards the Relative Cannon Conjec-
ture. Finally, in the Appendix we prove a technical generalization of a result from [19] which is
required for the proof of Theorem A.

Convention 1.10. In this paper, whenever we speak of a relatively hyperbolic group pair (G, P)
we always assume that each element of P is infinite. We may always ensure this by removing the
finite elements from 7P, which does not affect relative hyperbolicity. The removal of these finite
parabolics also does not affect whether a given action is weakly relatively geometric in the sense
of Definition 1.9.

Note also that we use the notation HY = gHg ™.

2 | ANEW WALLSPACE STRUCTURE

Throughout this section and the next we fix a relatively hyperbolic group pair (G, P) and a proper
cocompact G-action on a CAT(0) cube complex X satisfying Assumption 1.1.

The goal of this section and the next is to prove Theorem C. In the current section we describe a
wallspace structure which gives rise to a new CAT(0) cube complex X; in the next we prove that
the G-action on X is weakly relatively geometric. Our wallspace has underlying set X(¥); the new
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walls come from amalgamations of the original hyperplanes with carefully chosen finite-index
subgroups of parabolic groups. They are similar in spirit to the augmented hyperplanes used in
[3], but we do not work in an augmented cube complex as in that paper.

Definition 2.1. A wall in a set S is a partition of S into two nonempty subsets usually written
W = {W*, W~} The two elements of the partition are called the halfspaces from the wall. A wall
separates a from b in S if a and b lie in different halfspaces from the wall. A space with walls is a pair
(S, W) where W is a collection of nonempty subsets of S which is closed under complementation
and which satisfies the finiteness condition:

Vx,y €S, #{W C W | W separates x from y} < co. (%)

Two walls W = {W*, W~} and V = {V+,V} are said to cross if for every choice of ¢y, ¢y, €
{+, =}, the intersection W N V¢ is nonempty.

This is a special case of a wallspace as studied in [28] (see also the references therein, including
[12,21, 32, 37]). In the current paper we use the term ‘wallspace’ in this paper interchangeably with
‘space with walls’. A wallspace gives rise to a CAT(0) cube complex in a way which we revisitin the
next section. Conversely, the hyperplanes of the CAT(0) cube complex X give a wallspace structure
on X© in an obvious way. In the current section we put a less obvious wallspace structure on
X© which includes information about the peripheral structure. To begin, we need to see that
peripheral structure in the cube complex X.

2.1 | Peripheral complexes

In this subsection we find some sub-complexes of X associated to the peripheral subgroups P
and record some of their properties. In contrast to the peripheral sub-complexes used in [3],
our peripheral complexes are not necessarily disjoint, though they have bounded overlap with
each other.

The following definition is a slight variant of [15, Definition 2.5] (the difference being that we
do not consider actually thin triangles to be relatively thin).

Definition 2.2. Suppose that M is a geodesic metric space, let a,b,c € M and let A(a, b,c) be a
geodesic triangle. Let 7 : A(a, b,c) — Y ;. be the map to the comparison tripod. For v > 0, we
say that A(a, b, ¢) is v-thin if for all p € Y ;. we have diam(z~1(p)) < ».

IfU C M isasubset then A(a, b, c) is v-thin relative to U if it is not v-thin and for every p € Y,

either

(1) diam(z~(p)) < v or
(2) 771(p) SN, (U).

Definition 2.3 (Thin and fat parts of triangles). Let A(a, b, c¢) be a geodesic triangle in a metric
space M, and let v > 0. Let 7 : A(a,b,c) - Y. be the map to the comparison tripod. Let o be
the central point of the tripod. The internal points of A(a, b, c) are the points in 7-'(0). The v-fat
part of A(a, b, c) is the union of those fibers of 7 with diameter > v. Let x € {a, b, c}, and let L, be
the leg of the tripod joining 77(x) to 0. Let ¢, C I, be a maximal connected subset containing 7(x)
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and so that diam 7~1(p) < v for all p € ¢,.. The set 77(¢,)) is a union of two segments starting at
x, called the v-corner segments at x.

We remark that the v-fat part of a triangle is always closed. If the metric on M is convex (for
example, CAT(0)) then any triangle is the union of its v-fat part and v-corner segments.

Lemma 2.4. If A is a triangle in a convex metric space which is v-thin relative to a set Z, and the fat
part of some side has length at most L, then A is 2(L + v)-thin.

Proof. In the terminology of Definition 2.3, insize(A) = diam(7~!(0)). In a convex metric space,
insize(A) < K implies that A is K-thin, for any K > 0. It therefore suffices to bound insize(A).

If the v-fat part of A is nonempty, then, using convexity of the metric, 7~ (o) is in the fat part. Let
s be the side of A whose fat part has length at most L, and let x be the point of 771(0) contained
in 5. Let y; and y, be the other two points. We have d(x,y;) < 2L; + v, and d(x,y,) < 2L, + v,
where L; + L, = L. Thus d(y;,,) < 2L + 2v, and insize(A) < 2L + 2v. O

Definition 2.5. Let M be a geodesic metric space and U a collection of subspaces. We say that the
pair (M, V") has v-relatively thin triangles if for every geodesic triangle A(a, b, ¢), either A(a, b, ¢)

is v-thin or else there exists U € U so that A(a, b, ¢) is v-thin relative to U.

The following is an immediate consequence of [15, Proposition 2.7] (see also the proofs of [39,
Theorem 4.1, Proposition 4.2] and [14, §8]).

Proposition 2.6. Fixx € X andlet U = {¢P - x | P € P, gP € G/P}. There exists v so that (X, U")
has v-relatively thin triangles.

The following lemma is obvious.

Lemma 2.7. Suppose (M, U") has v-relatively thin triangles, and that V is a collection of subspaces
so that every U € U is contained in some V € V. Then (M, V) has v-relatively thin triangles.

The next theorem is an immediate consequence of Sageev-Wise [39, Theorem 1.1].

Theorem 2.8. Let x € X be as in Proposition 2.6. For each P € P there exists a convex P-invariant
sub-complex Zp C X with x € Zp so that P\Z is compact.

For each P € P fix some Z, as in Theorem 2.8, and let Z = {g - Z, | P € P, g}, where g ranges
over a set of coset representatives of G/P. Combining Proposition 2.6 with Lemma 2.7 and Theo-

rem 2.8 yields the following.

Corollary 2.9. There exists § > 0 so that (X, Z) has &-relatively thin triangles.

The constant § from Corollary 2.9 will remain fixed for the remainder of this section and the next.

The following definition is a slight variant of [15, Definition 5.1].



SPECIALIZING CUBULATED RELATIVELY HYPERBOLIC GROUPS | 405

Definition 2.10. Letv >0andlet¢: R, — R, be a function. Suppose that M is a geodesic
metric space, and that V" is a collection of subspaces of M. The pair (M, V") is a (v, ¢)-relatively
hyperbolic pair if

(1) (M, U’) has v-relatively thin triangles; and
(2) Forallr > 0and all F;,F, € U with F; # F,, we have

diam (N,(F,) N N,(F2)) < $(r).
The subspaces U are called peripheral subspaces.

The following is an immediate consequence of [14, Theorems 4.1, 5.1 and A.1] and Proposi-
tion 2.6.

Lemma 2.11. Let x € X and U be as in Proposition 2.6 and let § be as in Corollary 2.9. There is a
function fy: R,y — Ry s0 that (X, V") is a (8, f)-relatively hyperbolic pair.

The following easy fact is left to the reader.

Lemma 2.12. Let M be a geodesic metric space and suppose that U’ is a set of subspaces so that
M, U) is a (v, p)-relatively hyperbolic pair (for some v > 0 and function ¢). Suppose further that
V is a collection of subspaces of M and that there is r > 0 and a bijection p : U — V so that for all
U € U wehaveU C p(U) C N,(U). Then (M, V) is (v, ¢")-relatively hyperbolic pair where ¢'(x) =
P(x +r).

The following is an immediate consequence of Lemmas 2.11 and 2.12.

Corollary 2.13. Let Z be asin Corollary 2.9, let r, be the maximum diameter of P\Z for P € P, let
fo be the function from Lemma 2.11, let f, be the function defined by f,(x) = fo(x + ry), and let §
be the constant from Corollary 2.9. Then (X, Z) is a (8, f,)-relatively hyperbolic pair.

The subspaces Z from Corollary 2.13 are not the ones that we want. Instead, we want them to
satisfy the following condition, which is a slightly stronger condition than that of ‘attractive’ in
[15, Definition 5.2] in that we insist that most of the geodesic [a, b] is contained in Z, not just some
of it.

Definition 2.14. Let M be a complete CAT(0) space and 7 > 0. A convex subspace Z C M is 7-
super-attractive if for any K > 0 and any pair of points a, b € N (2), all but the initial and terminal
segments of [a, b] of length (7 + K) are contained in Z.

Remark 2.15. Let K: R, — R, be a function. Einstein [15, Definition 5.2] defines a subspace
Z of a geodesic space to be K-attractive if, for every m > 0, every geodesic with endpoints in the
m-neighborhood of Z either meets Z or has length at most K(m). If Z is n-super-attractive, it is
not hard to see that Z is K-attractive, for K(m) = 2(n + m).

We now fix notation for closest point projections.
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mz(a) 7z(b)

FIGURE 1 Two points and their projections to Z form the vertices of a slim quadrilateral

Notation 2.16. Suppose that M is complete and CAT(0), and that A is a closed convex subset of
M. We write 7, : M — A for the closest point projection map.

Lemma 2.17. Suppose that M is complete CAT(0), C is a collection of closed convex subspaces, and
(M, C) is (v, ¢p)-relatively hyperbolic. Let Z € C, let m, : M — Z be closest point projection, and let
a,b € X. Let Q be the geodesic quadrilateral with vertices n,(a), a, b, w,(b). Suppose

vV =4 +20(), V' =4y +2¢0(v) and A(v,¢) =V +".
Then either d(m;(a), ;(b)) < $(v') + 2v + 3V’ or the quadrilateral Q is A(v, ¢)-slim.”
Proof. We assume that
d(m,(a), m,(b)) > ¢(v') +v + 3V, )

We divide Q by a diagonal into an ‘upper’ triangle with vertices a, b, 7,(b) and a ‘lower’ triangle
with vertices a, 7,(a), 7,(b). See Figure 1.

We show that Q is A(v, ¢)-slim by showing that the lower triangle is v’-thin and the upper
triangle is v"’-thin.

We examine the lower triangle first. We may suppose it is not v-thin. There is therefore some
W € C so that it is v-thin relative to W'.

If W = Z, we argue as follows. Let a; be the point of the fat part of [a, 7,(a)] closest to a. Since
d(ay,Z) < v, the segment [a,, 7,(a)] can have length at most v. The segment [a,, 7,(a)] contains
the v-fat part of [a, 7,(a)], and so the lower triangle is 4v-thin by Lemma 2.4.

In case W # Z, we argue that the v-fat part of [7,(a), 7,(b)] is bounded. Indeed, the entire seg-
ment is contained in Z, so the part which is also in a v-neighborhood of W has diameter bounded
by ¢(v). Since the v-fat part of one side of the lower triangle has length at most ¢(v), Lemma 2.4
shows that the lower triangle is 2(¢(v) + v)-thin. In either case, we conclude that the lower trian-
gle is 4v + 2¢(v)-thin.

We now show the upper triangle is v”'-thin. Again, we may assume that the upper triangle is
not v-thin, so it is v-thin relative to some V € C.

If V = Z, then we argue as for the lower triangle, concluding that the v-fat part of the side
[b, 7,(b)] must have length at most v, so the upper triangle is 4v-thin by Lemma 2.4.

If V #Z, we argue as follows. We first note something about the lower triangle: Since
[7,(a), ,(b)] lies entirely in Z, and 7,(a) is the closest point of Z to a, the Gromov product

Recall a polygon is u-slim if each side is contained in the u-neighborhood of the union of the other sides.
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(a] nZ(b))ﬂZ(a) is at most v'. Let x be the point on the diagonal [a, 7,(b)] which is in the preim-
age of the central point of the comparison tripod for the lower triangle. The segment [x, 7,(b)]
lies in N,,(Z) and has length in the interval [d(7,(a), 7,(b)) — V', d(7,(a), 7, (b))].

Now consider the location of x in the upper triangle. There are three cases, depending on
whether x is in the v-corner segment at a, the v-fat part, or the v-corner segment at 7,(b).

Suppose x lies in the v-corner segment at a. Then the v-fat part of the upper triangle meets
the diagonal in a subsegment of [x, 7,(b)] C N,/(Z). Since V # Z, this subsegment has length at
most ¢(v'). By Lemma 2.4, the upper triangle is v"' = 2v + 2¢(v"))-thin.

Suppose next that x lies in the v-fat part of the upper triangle. This v-fat part can only extend
#(v") past x. Consider the point w on the v-fat part of [b,7,(b)] closest to 7,(b). The corre-
sponding point on [a, 7,(b)] is within v’ of [7,(a), 7,(b)] C Z (and exactly v away from w), so
d(w, (b)) = d(w, Z) < v +v'. This is also the distance from the v-fat part of [a, 7, (b)] to 7, (b),
so we have d(x,7,(b)) < ¢(v')+v+v'. Since d(x,7,(a)) < 2v', we have d(r,(a), 7,(b)) <
¢(v") + v + 3v/, a contradiction to (1).

Finally suppose x lies in the corner segment of the upper triangle adjacent to 7,(b). Let x’
be the point on [7,(a), m,(b)] which is in the preimage of the central point of the comparison
tripod for the lower triangle. The lower triangle is v’-thin, so d(x, x") < v'. Thus the point x’ is at
most v + v’ from the corner segment of [b, ,(b)] adjacent to 7, (b). Since d(x’, b) > d(7,(b), b),
this corner segment must have length at most v + v'. Since d(x’, @) > d(7,(a), a) and the lower
triangle is v’-thin, the distance from 7,(a) to x’ is at most v’. We conclude that d(z,(a), (b)) <
d(7,(a),x") + d(x', 7,(b)) < v + 2/, again contradicting (1). O

Corollary 2.18. Suppose that M is complete and CAT(0), C is a collection of convex subspaces, and
(M, C) is (v, p)-relatively hyperbolic. There exists a constant C(v, ), depending only on v and ¢ so
that for any distinct Z, 7' € C we have

diam(7,(2))) < C(, $).

Proof. Let v',v"” and A(v,¢$) be as in Lemma 2.17. We set C(v,¢) = max{p(v') +2v +
30", 2A(v, ¢) + $(A(v, $))}-

Fix a,b € Z'. We have to prove that d(,(a), 7,(b)) < C(v, $). Let Q be the geodesic quadrilat-
eral with vertices 7,(a), a, b, 7,(b). By Lemma 2.17 either d(7,(a), 7 (b)) < $(+') + 2v + 3v' or
Qis A(v, ¢)-slim.

In the first case, we are done. Thus, suppose that Q is A(v, ¢)-slim. Therefore, the geodesic
n,(a), ,(b) is contained in the A(v, ¢)-neighborhood of the other three sides. Using CAT(0)
geometry, we see that the only points on [7,(a), 7,(b)] which lie within A(v, ¢) of [a, 7,(a)]
lie within A(v, ¢) of 7,(a). Similarly, the only points on [7,(a), 7,(b)] lying within A(v, ¢) of
[b, 7, (b)] lie within A(v,¢) of m,(b). Since [a,b] C Z’, the diameter of the set of points on
[7,(a), 7,(b)] lying within A(v, ¢) of [a, b] is at most $(A(v, ¢)). Thus, in case Q is A(v, ¢)-slim,
we have

d(mz(a), m7(b)) < 2A(v, $) + $(A(v, ¢)),
as required. Ll

The following is a strengthened version of the last assertion in [15, Proposition 5.3, p. 23].
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Proposition 2.19. There exists 1) so that for each P € P there exists a convex n-super-attractive P-
invariant sub-complex Y, C X so that Zp, C Y and P\Y is compact.

Proof. Let Z, 8, and f, be as in the conclusions to Theorem 2.8 and Corollary 2.13. That is, for each
P € P, there is a convex P-invariant P-cocompact sub-complex Z, of X, and the family Z is the
family of distinct translates of these Z, under the action of G. Corollary 2.13 says the pair (X, Z)
is a (4, f,)-relatively hyperbolic pair. Let A, = A(J, f;) be the constant from Lemma 2.17.

If E is a subset of a CAT(0) cube complex the combinatorial hull Hull(E) is defined to be the
intersection of the convex sub-complexes containing E.

The argument at the beginning of Section 5 of [39] can be adapted to show that there is an S
(depending only on dim(X), 6, f, and A, = A(S, f)) so that

Hull(N,,(2)) € N5(2) ®)

for every Z € Z. For P € P, we take Y, = Hull(N AO(ZP)). We set
n=2(25+f1(6)+28+38).

From nowon we fix P,and set Z = Zp, Y = Yp.

LetK > 0,and let a,b € Ng(Y). By (2), a,b € Ng,(Z). Let 7w, be the closest point projection
to Z, and consider the geodesic quadrilateral Q with vertices 7,(a), a, b, w,(b).

Given Lemma 2.17, we argue as follows. In case

d(77(@), 7,(b)) < f1(8) +28 + 38,
we have
d(a,b) < d(a,m,(a)) + d(rz(a), 74(b)) + d(74(b), b)
<2K+S)+ f1(8") +25 + 38

<2(K +1),

and there is nothing to show.
Otherwise, every point on [a, b] is within A, of some point on

la, z(@)] U [7(a), w7 ()] U [b, (D).

Let [a/,b’] C [a, b] be the subsegment beginning and ending on

Ny (la,mz()] U [b, 7 (B)]).

The lengths of the remaining subsegments [a,a’] and [b,b’] are at most K + S + A,. Since
[72(a), 7z (b)] C Z, the subsegment [a’, b"] lies in Ny (Z) C Y, as desired. O

Definition 2.20. For each P € P, fixa P-invariant sub-complex Y, of X satisfying the conclusions
of Proposition 2.19. Any sub-complex of X of the form ¢gY, for ¢ € G, P € P is called a peripheral
complex. We let B be the collection of all peripheral complexes in X.
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The following is an immediate consequence of Corollary 2.13 and Lemma 2.12.

Lemma 2.21 (cf. [15, Proposition 5.3]). Let & be as in Corollary 2.9 and define the function
[ Ryg = Ry by f(x) = f1(x +ry), where f is the function from Corollary 2.13 and r is the
maximum diameter of the spaces P\Yp from Proposition 2.19. Then the pair (X, B) is (3, f)-
relatively hyperbolic.

For the remainder of this section and the next we fix the collection /3 of convex n-super-attractive
peripheral complexes from Definition 2.20 so that (X, B) is a (8, f)-relatively hyperbolic pair, for
7 as in Proposition 2.19 and 4, f as in Lemma 2.21.

2.2 | Augmented walls

Up to the G-action, there are finitely many hyperplanes in X. In this subsection we fix some such
hyperplane H, and describe a partition Wy = {W}, Watof X (©) associated to that hyperplane
together with some extra data we now specify.

Definition 2.22. Suppose that H is a hyperplane in X. Let Stab(H) be the stabilizer of H, and let
Y, ..., Y, be representatives of the Stab(H)-orbits of peripheral complexes that intersect H.
A broadcaster for H is a subgroup of G of the form

B = (Stab(H), Bla ’Bk>’

where for each i the subgroup B, is a finite-index subgroup of Stab(Y;). Given a broadcaster B, the
associated collection B - H of hyperplanes of X is called the scattering of H by B. Given R > 0, we
say that B - H is an R-separated scattering if any two carriers of distinct hyperplanes in B - H are
distance at least R from each other.

We make use of the following result of Martinez-Pedroza, which we have slightly rephrased.

Theorem 2.23 [30, Theorem 1.1]. Let A < G be relatively quasi-convex, and let P € P. There is a
finite set F C P\ A sothatif P < P satisfies ANP C P C P\ F, then:

« A= (A, P) is relatively quasi-convex;
« A=Asx,.p P;and
* every parabolic subgroup of A is A-conjugate either to a subgroup of P or a subgroup of A.

We will apply Theorem 2.23 to hyperplane stabilizers. This requires the (well-known) fact that
they are relatively quasi-convex.

Lemma 2.24. Let H be a hyperplane of X. Then Stab(H) is relatively quasi-convex in (G, P).
Proof. Since the hyperplane H is convex in X, there is a quasi-isometry of pairs (X,H) —

(G, Stab(H)). This implies Stab(H) is undistorted in G. Therefore by [27, Theorem 1.5] Stab(H)
is relatively quasi-convex in (G, P). O
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Proposition 2.25. Let H be a hyperplane in X, let{Y, ..., Y, } be as above, and let R > 0.
There exists a broadcaster B for H so that B is full relatively quasi-convex in G and the associated
scattering B - H is R-separated.

Proof. We use Theorem 2.23 to construct a sequence of relatively quasi-convex subgroups
Stab(H) = Ay < A, < -+ < A, = Bsothat A4, is an amalgam of A;_; with a finite-index subgroup
of Stab(Y;).

By Lemma 2.24, A, is relatively quasi-convex in (G, P). We inductively assume that A;_; is
relatively quasi-convex and that

A;_y NStab(Y;) = Ay N Stab(Y ), Vj > i. )

Applying Theorem 2.23 with A = A;_; and P = Stab(Y;), we obtain F; = F C Stab(Y;) \ 4;_; as
in the theorem. Assumption 1.1 guarantees the existence of a finite-index B; < Stab(Y;) which
contains A, N Stab(Y;) but misses F;. We can thus apply Theorem 2.23 with P = B; to obtain a
relatively quasi-convex A; = A;_ *4 nstap(y;) Bi-

In order to continue the induction we must establish Condition (¥;); this follows easily from
[30, Lemma 5.4]. It also follows from that result that the final amalgam B = A, is full.

It remains to show that by expanding the finite sets F; if necessary we can ensure that the
scattering B - H is R-separated. Since B - H consists of the B-orbit of a single hyperplane, it suffices
to ensure that the distance from H to B - H \ H is atleast R + 1. For fixed R, there exists a finite set
{915 > g1} C G \ Stab(H) so that any hyperplane within R + 1 of H is of the form a - ¢; - H for some
a € Stab(H). Since Stab(H) < B,ifa - ¢g;- H € B- H then g, - H € B - H also. Therefore, we need
to exclude the finite set{g, - H, ..., g; - H}from B - H.Itis easy to see (again using Stab(H) < B) that
this is the same as excluding the finite set {g;, ..., g;} from B. That this can be done (by choosing F;
appropriately, depending on R) is an easy consequence of [30, Lemma 3.6 and Lemma 5.2] — we
find a short geodesic between 1 and g; which has no large P-components, but on the other hand if
g; € B then there is some path in B which is not contained in Stab(H) and necessarily contains a
large P-component. This contradicts [30, Lemma 3.6]. This argument completes the proof of the
proposition. O

‘We are now ready to describe the augmented walls W;. There is some freedom in this descrip-
tion; further constraints are imposed in Assumption 2.40 and Definition 2.41 where we pick the
particular augmented walls for our wallspace.

Definition 2.26. Given a hyperplane H, and R > 0, fix a broadcaster B whose associated scatter-
ing B - H is R-separated as in Proposition 2.25. Define an equivalence relation on X(© by declaring
v ~ w if there is a path in the 1-skeleton of X which crosses B - H an even number of times. Let
W, p be the pair of equivalence classes.

We observe:
Lemma 2.27. Let Band Wy g = {W;“IB, W;B} be as above. Both W;B and W, , are nonempty,
Stab(Wy ) = B, and Stab(W;'I ) = Stab(W; ) is a subgroup of B of index at most two.

In particular, Stab(Wy, p) is full relatively quasi-convex in (G, P).

Remark 2.28. The hyperplane H descends to an embedded hyperplane of B\X. The index of
Stab(WITI ) in B is one if this hyperplane is separating; otherwise the index is two.
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2.3 | Connected quasi-convex sub-complexes associated to walls

Later we fix an R-separated scattering B - H of H with R very large. Therefore, though B - H is
quasi-convex, the quasi-convexity constant is very large. In order to associate a connected uni-
Jormly quasi-convex subspace of X to the wall W, 5, we adjoin peripheral complexes to the hyper-
plane carriers.

There are three results in this subsection used extensively in the sequel. In Proposition 2.37
we establish the uniform quasi-convexity of the thick carriers defined below in Definition 2.29.
In Lemma 2.36 we quantify the statement that peripheral complexes which come near to a thick
carrier for a long time must be contained in the thick carrier. In Lemma 2.32, we quantify the fact
that two peripheral complexes in a thick carrier can only come near to each other if they are both
near to a hyperplane of the scattering. It is crucial for our applications that all these results are
uniform for R-scatterings, so long as R is sufficiently large.

Definition 2.29 (Thick carrier). Let H be a hyperplane in X, R > 0, and B - H an R-separated
scattering of H.

Let A be the collection of carriers of translates bH where b € B. As before /3 is the set of periph-
eral complexes. Form an abstract cube complex

Yip=uUA| |uB/ ~.

The equivalence relation ~ is generated by the following identifications: For each bH with b € B
and carrier A € A, and each Z € B meeting bH, glue A to Z along their intersection in X. Now
let Sy; 5 be the component of Yy, 5 containing H. (The other components are just elements of 3.)
There is a canonical map ¢y 5 : Sy g — X which restricts to the inclusion on any hyperplane
carrier or peripheral complex. We define the thick carrier of Wy g to be T(Wy ) = ¢y 5(Sr p)-
The thick carrier T(Wp; ) is a union of convex sub-complexes.

We observe:
Lemma 2.30. T(Wy ) is a connected sub-complex of X on which B acts properly cocompactly.

The next result uses work of Einstein [15] to show that T(W; p) is quasi-isometrically embedded
and quasi-convex.

Proposition 2.31. There exist constants Ry > 0, 1 > 1, and € > 0 depending only on (X, B) so that
the following holds. Let R > R, let H be a hyperplane, and let B - H be an R-separated scattering of
H. Let S = Sy g and ¢y p be as in Definition 2.29. Then for any p,q € S we have

dx(¢p (D), $r.5(q) < ds(p, ) < Adx (¢ 5(P), ¢ 5(Q)) + €. *)

Proof. We would like to apply Einstein’s [15, Proposition 5.16], with A equal to the carriers of
hyperplanes in the R-scattering B - H, and /3, equal to the collection of peripheral complexes meet-
ing some A € .A. We have fixed a (J, f) so that our pair (X, B) is (8, f)-relatively hyperbolic, but
we have to temporarily modify f in order to apply Einstein’s results. This is allowable because
(X, B) is also (8, f')-relatively hyperbolic for any function f/ which dominates f (in the sense
that f'(r) > f(r) for all r).
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Hypothesis 5.5 of [15] requires that the pair (X, B) is (8, f/)-relatively hyperbolic, and every
B € Bis K-attractive, where K(m) = 3f'(56) + 218 + 6m. Each B € B is -super-attractive. Thus
by Remark 2.15, each B € B is K-attractive, where K,(m) = 27 + 2m. As long as K dominates K|,
each B will also be K-attractive. In order to ensure K dominates K,,, we set

f'(r) = max{y, f(r)}.

Since f’ dominates f, the pair (X, B) is still (8§, f’)-relatively hyperbolic.
Now [15, Hypotheses 5.15] amounts to the assertion that .4 is an R-scattering for R >
500f'(58) + 100008. We therefore take

R, = 500f'(58) + 100005.
Then [15, Proposition 5.16] implies that ¢; p is a (4, €)-quasi-isometry, for (4, €) = (2,110f"(56) +

15926). These constants only depend on (X, B). Since ¢y, 5 is obviously distance non-increasing,
we have the inequalities (*). N

We fix the constants R, 4, € from Proposition 2.31 for the remainder of this section and the next.

The next lemma says that peripheral complexes in a thick carrier can only be close to each other
if they are close to a hyperplane associated to the carrier.

Lemma 2.32. There exists a function F,3, . Ry, — Ry, depending only on (X, B), so that the
following holds whenever R > R,

Let H be a hyperplane, let B be a broadcaster for H so that the associated scattering B - H is
R-separated, and let T(Wy; g) be the corresponding thick carrier. For any m > 0 and any distinct
peripheral complexes Z,,Z, in T(Wy p), there is some g € B so that

Proof. Fix p € N,,(Z,) "N N,,(Z,). Fori = 1,2, let p; be a point of Z; with dy(p;, p) < m, and let
p; be the corresponding point of the complex Sy . Using the second inequality of (*) in Propo-
sition 2.31, we have dg(p;, p,) < Adx(p1, p2) + € < 2Am + €. Choose gH so that the hyperplane
carrier for gH separates Z, from Z, in the complex Sy 3. Any path from p, to p, in Sy p must
pass through the carrier of gH, so in particular d¢(p;, gH) < 2Am +¢ + % Thus (using the first
inequality of (*)) the distance between p and gH is at most 2Am + ¢ + m + % Since the diameter

of N,,(Z,) N N,,(Z,) is at most f(m), we can set F, 5,(m) = 2Am + € + m + % + f(m). O

For the next two results we prove, we need another result from Einstein [15]. Note that the
result there uses peripheral cosets, whereas we will use the peripheral complexes Z. Since their
Hausdorff distance is finite, Proposition 2.34 follows from [15, Theorem 4.2].

Definition 2.33 (Relative fellow traveling). Let [ > 0. Let o; and o, be two paths in X with the
same endpoints, and suppose that these paths can be subdivided into an equal number of sub-
paths, occurring in the same order. Suppose further that if J; € o, andJ,, € o, are correspond-
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ing subpaths (called paired subpaths), then they begin and end within [ of one another and that
either

(1) the Hausdorff distance between J, andJ, isat most [ or
(2) there exists some Z € B so N;(Z) contains both J, o andJg .

Then o, and o, are said to [-relatively fellow travel, relative to 5.
Quasi-geodesics in spaces with relatively thin triangles relatively fellow travel one another:

Proposition 2.34 (cf. [15, Theorem 4.2], [25, Proposition 4.1.6]). Let u > 1 and x > 0. There exists
I, depending only on u, x, and the pair (X, B), so that (u, x)-quasi-geodesics with the same endpoints
in X must l-relatively fellow travel, relative to B.

The following lemma says that if a geodesic spends any time in a peripheral complex, then
a quasi-geodesic with the same endpoints must spend a similar amount of time close to that
peripheral complex. (Recall that 1, ¢ are fixed constants coming from Proposition 2.31. If they
were allowed to vary the lemma would still be true, but I’ would have to be allowed to depend on
them.)

Lemma 2.35. Thereis anl’ depending only on (X, B) so that the following holds. Let y be a geodesic
in X, and let o be a (4, €)-quasi-geodesic with the same endpoints as y. Let Z be some peripheral
complex so thaty’ =y N Z is nonempty. Then there is a subpath ¢’ of ¢ whose endpoints are within
I' of the endpoints of y', and which is contained in an I'-neighborhood of Z.

Proof. Let I be the constant of relative fellow traveling from Proposition 2.34 applied to (4, €)-
quasi-geodesics.
We claim first that there are points on o within

L =max{2l+n, f()+ 1}

of the endpoints of y’. Indeed, let a be an endpoint of y’, and let J,,J; be paired subpaths of y and
o so that J,, contains a. There are three possibilities:

(1) J, and J, are Hausdorff distance at most ! from each other,
(2) J, and J; are both contained in the I-neighborhood of Z, or
(3) J, and J; are both contained in the I-neighborhood of some peripheral complex W # Z.

In case (1) we find a point of o at most | away from a. In case (2), we note that any component of
J, \ Z has diameter at most ! + 7, by n-super-attractiveness. Thus an endpoint of J,, isat most [ + 7
from a. The corresponding endpoint of J,, is at most 2 + 7 from a. In case (3), we note thatJ, N Z
has diameter at most f(I), so there is an endpoint of J, at most f(I) from a. The corresponding
endpoint of J is at most f(I) + [ from a. In any case we have found a point of ¢ at most I, away
from a.

We let ¢’ be a subsegment of ¢ whose endpoints are at most /; from the endpoints of y’. Let
B be the path obtained from ¢’ by adjoining geodesics between the endpoints of y’ and those of
o’. Then B is a (4, ¢ + 4l,)-quasi-geodesic with the same endpoints as y. Let I, be the constant
of relative fellow traveling from Proposition 2.34 applied to (41, € + 41,)-quasi-geodesics. We claim



414 | GROVES AND MANNING

that 8 (and hence ¢”) lies in an [;-neighborhood of Z, where
/12
Iy = ?(f(lz) +2L,+e+4l)+e+4lL + 1,

Indeed, let b be a point of 8, and let J,, and J be paired subpaths of y' and B so thatb € J g As
before there are three possibilities:

(€)) Jy and J p are Hausdorff distance at most [, from each other,
2) Jy and J p are both contained in the l,-neighborhood of Z, or
(3) J,» and J are both contained in the [,-neighborhood of some peripheral complex W # Z.

In cases (1) and (2) there is clearly a point of Z within [, of b. In case (3), the diameter of N, ZZ(W) N
Ny, (Z)isatmost f(l,). Thus the segment Jy haslength at most f(l,). The endpoints of J g are thus
at most f(l,) + 21, apart from one another. A computation shows that b is at most

2
%(f(lz)+2l2 +e+4l)+e+4l

from one of these endpoints, and thus at most I; from some point ony’ C Z.
Setting I’ = L, we have established the lemma. O

The next lemma shows that a thick carrier which has large coarse intersection with a peripheral
complex must contain that peripheral complex.

Lemma 2.36. There exists a function F 35 . Ryq — Ry, and a constant R, > R, depending only

on (X, B) so that the following holds. Let B - H be an R-separated scattering of some hyperplane H,

where R > R;. Let T = T(Wy, ) be the associated thick carrier, and let Z be a peripheral complex.
Foranyd > 0, if

diam(Z N Ny(T)) = F, 35(d),
thenZ CT.

Proof. We take R, = max{R,, f(I')}, where I’ is the constant from Lemma 2.35, and suppose R >
R;. Our proof is based on the following claim.

Claim. There is an L, depending only on (X, B) so thatif a,b € T and [a, b] has a subsegment of
length > L, in some peripheral complex Z, then Z C T. O

Given the claim, we argue as follows. Fix d > 0. We define F, ;,(d) = L, + 4d + 27. Suppose
that x and y satisfy the following three properties:

M x,yez,
(2) d(x,y) > F514(d), and
(3) d(x,T)and d(y, T) are at most d.

Let x’, ¥’ be closest points on T to x, y respectively. We have d(x’, y") > L, + 2d + 21. By n-super-
attractiveness, a subsegment of [x', '] of length greater than L, lies in Z. Applying the Claim with
a=x',b=y',weconclude Z C T.
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It remains to prove the claim.

Proof of Claim. We prove the claim with Ly, = 2f(1") + 4l’ + 27. Let T be the thick carrier
as in the statement of the lemma and S = S(Wy, ) the associated abstract complex. Let o be
the (4, €)-quasi-geodesic joining a to b which is the image of a geodesic in S. Suppose that
y = [a, b] is the X-geodesic with the same endpoints and that y intersects the peripheral com-
plex Z in a segment ¥’ of length greater than L,. Lemma 2.35 gives a subpath ¢’ of o start-
ing and ending within I’ of the endpoints of L,, so that ¢’ is contained in the I’-neighborhood
of Z.

This subpath ¢’ must have length bigger than L, — 2" = 2f(I') + 2I' + 27; it is a broken
geodesic made alternately of segments inside peripheral complexes and carriers of hyperplanes.

If there are four or more such subsegments, one is a peripheral segment between two different
hyperplane carriers in the R-scattering; in particular it has length at least R > f(I’). But since the
endpoints of this peripheral segment are within I’ of Z, the peripheral segment must actually be a
Z-segment, and so Z was in T to begin with. A similar argument shows Z C T if ¢’ begins or ends
with a peripheral segment of length bigger than f(I’).

If there is a hyperplane segment of length greater than 21’ + 27, then the n-super-attractiveness
of Z implies that this hyperplane segment meets Z. In particular a hyperplane of the scattering
meets Z, and again we conclude that Z C T.

The only remaining possibility is that ¢’ consists of three or fewer segments, at most one of
which is a (short) hyperplane segment. The total length of ¢’ is thus at most 2f(l") + 2I’ + 27,
contrary to our choice of L,. This completes the proof of the claim.

Once the claim is proved, the lemma is proved. O

Proposition 2.37. There is a Q depending only on (X, B) so that the following holds. Let R > R,
where R, is the constant from Lemma 2.36. Let B - H be an R-separated scattering of some hyperplane
H of X. The thick carrier T(Wy, ) is Q-quasi-convex in X.

Proof. We prove the Proposition with Q =21 + 7 + %F2.36(21 + 7)), where [ is the constant of rel-
ative fellow-traveling of (4, €)-quasi-geodesics in (X, ), » is the super-attractiveness constant of
elements of /3, and F, 5, is the function from Lemma 2.36.

Let T = T(Wy ), and let S = S(Wy p). Recall that T is the image of S under a (4, €)-quasi-
isometric embedding (Proposition 2.31). Let ¥ be a geodesic with endpoints in T, and let o
be the image of an S-geodesic with the same endpoints. Since S is (4, €)-quasi-isometrically
embedded, o is a (4, €)-quasi-geodesic in X. In particular it [-relatively fellow travels y relative
to B.

Let J, and J;; be paired subpaths of y and o, respectively. In case they are Hausdorff distance
| from each other, we clearly have J, C N(T). Otherwise, they are both in the l-neighborhood
of some peripheral complex Z. If the length of J,, is at most 2(l + 1) + F, 35(2] + 1), it is also con-
tained in the Q-neighborhood of T, since its endpoints are distance at most ! from the endpoints
of J; C T. Otherwise, the n-super-attractiveness of Z implies that there is a subsegment of J, of
length at least F, 35(21 4+ 1), whose endpoints are distance at most [ + 7 from the endpoints of J,,
hence at most 2 + 7 from the endpoints of J,. Lemma 2.36 then shows that Z C T, soJ,, C N(T)
in this case as well. Ll
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2.4 | The wallspace

We now construct the wallspace which we use to build the cubulation for Theorem C. In order to
do this, we first fix some constants, and our assumptions on the constant of separatedness of the
scatterings we use.

Notation 2.38. Let 7 be as in Proposition 2.19 and suppose that B is a collection of convex 7-
super-attractive complexes as in Definition 2.20. Let § and f be so that (X, B) is (8, f)-relatively
hyperbolic, as in the conclusion of Lemma 2.21. Let n = dim(X).

We now recall and fix some more constants, and note that like », §, f, and n, all of them depend
only on the pair (X, B).

The constant R, previously appeared in Lemma 2.36 and Proposition 2.37. We will assume that
all scatterings are R-scatterings for some R > R;.

* C = C(8, f)is the bound on the diameter of projections of peripheral complexes to one another
(see Corollary 2.18).

* Q is the constant of quasi-convexity of thick carriers of scatterings (see Proposition 2.37).

* 0, = arcsin(ﬁ) (a geodesic in X which is not too short must meet some hyperplane at this

angle or greater, see Lemma 3.15 below).

Notation 2.39. The following constants also depend only on the pair (X, B). They may seem
somewhat mysterious but we need to choose them carefully now in order to fix R, below.

(1) (first used in Lemma 3.21);

\/_

n
x=F2,32(Q+1)+2Q+C+7+2;

(2) (first used in Lemma 3.17)

@ = 2F, 34(0) + 8 + —=— |Q + 207 + 8(6) + 165 + 24/n;

sin(;")

(3) (first used in Lemma 3.17)

T=F,5(Q)+]3+ 19 Q+477+f(6)+25+\/7%;

sin(;")

(4) (first used in Definition 3.22)

D= max{z\/ﬁx+ V1, Fy34(0) + 61 + 2£(8) + 66, 2C+1} +1.

Assumption 2.40. Fix once and for all some number R, so that R, is strictly bigger than all of
the following:

(1) (required so Propositions 2.31 and 2.37 may be applied)

R;,
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(2) (required in Proposition 3.19)
Fy36(0) +4(n +6) +2f(8) + 7,
(3) (required in Proposition 3.23)
8(Q+ Fy Q)+ 20+ 8+ 21(9),
(4) (required in Proposition 3.23)
(D +27+25+ (&),

(5) (required in Lemma 3.24)

(6) (required in Lemma 3.27)

2(26 . max {f(ss),n, % max {e, 2(D + T)}} + zsoa).

The constant R, is the same for the remainder of this section and the next; we only consider
R, -scatterings from now on.

Definition 2.41 (The wallspace (X(*’, W)). Choose representatives H; of the finitely many G-
orbits of hyperplanes of X, and for each i choose a broadcaster B; so that B; - H; is an R, -separated
scattering. Such a broadcaster exists by Proposition 2.25. Let W; = Wy p be the wall from Defini-
tion 2.26 and let ¢; = ¢y, p be the map defined in Definition 2.29. It follows that T(W;), ¢; satisfy
the conclusion of Propositions 2.31 and 2.37. Let

W ={gA| g €G,A € W, for some i}.

Since W is defined G-equivariantly, there is an action of G on the wallspace (X, W).
The following is immediate from the fact that walls are unions of hyperplanes in X and from
the equivalence relation defined in Definition 2.26.

Lemma 2.42. Let v, w be adjacent vertices of X. Then there is exactly one wall of W separating v
from w.

Definition 2.43. Lemma 2.42 says in particular that each hyperplane of X is associated to a single
wall W of W. Such a hyperplane is called a W-hyperplane. Let W = gWy p for some g € G and
one of the hyperplanes H; discussed in Definition 2.41. We write T(W) for the complex gT(WHi ’Bi)
and note that it is Q-quasi-convex and a (4, €)-quasi-isometric image of Sw, (see Proposition 2.31).
We refer to T(W) as the thick carrier for W. If Z is one of the peripheral complexes used to build
SH,» then ¢Z is called a W-peripheral complex.
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Lemma 2.44. Let Z be a peripheral complex and let W be a wall. Then Z is a W -peripheral complex
if and only if W separates two vertices of Z.

Lemma 2.45. The collection W defined in Definition 2.41 makes X©) into a space with walls.

Proof. We must show the finiteness condition (x) from Definition 2.1. But Lemma 2.42 implies
that the number of walls in W separating two vertices is at most their distance in X, O

3 | ULTRAFILTERS AND STABILIZERS FOR THE ACTION

The goal of this section is to prove Theorem C. To that end, we fix a wallspace structure (X©, W) as
described in Definition 2.41. By Sageev’s construction this gives rise to a new CAT(0) cube complex
X = C(W) with a G-action. Many properties of this cube complex (for instance, dimension and
the precise vertex stabilizers) depend strongly on the choices made in the last section. However,
as long our cube complex is built from R -scatterings where R, satisfies Assumption 2.40, this
cube complex will satisfy the conclusions of Theorem C.

We briefly recall the Sageev construction (see [28, 37, 38] for more details). Given a wallspace
(S, V), an ultrafilter on (S, V) is a subset U of V satisfying the following two properties:

(1) (Consistency) If A C B are two halfspaces and A € U, then B € U; and
(2) (Completeness) if A is a halfspace, then either A or A€ isin .

A descending chain condition (DCC) ultrafilter is one which contains no infinite descending chain

Convention 3.1. All ultrafilters considered below are assumed to be DCC.
An ultrafilter is principal if, for some x € S, it is of the form:
Ulx] :={AeV]|xe Al

Notation 3.2. Completeness means we can also think of an ultrafilter 2l as a function from the
set of walls to the set of halfspaces. Abusing notation slightly, if W = {4, A} is a wall and Ul is an
ultrafilter so A € U, we write U(W) = A.

We build a cube complex C’(V) as follows. The 0-cells are the DCC ultrafilters on V. Two ultra-
filters are connected by an edge if they differ on a single wall. (In other words U, = (2, \ {4}) U
{A}.) Higher dimensional cubes are added wherever their 1-skeleta appear. The principal ultra-
filters all lie in the same component of C’(V), and it is this component which we name C(V). We
say C(V) is the cube complex obtained by applying the Sageev construction to V.

The following result is essentially due to Sageev, though he did not phrase things in terms of
wallspaces. See [28, Section 3], and the references therein. See also [36, 38] for a slightly more
general discussion of the cube complex dual to a ‘pocset’ (poset with complementation).

Theorem 3.3 [37]. For any wallspace (S, V), the cube complex C(V) is CAT(0).
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3.1 | Parabolic sub-complexes of X are finite

In [28, Section 3.4], Hruska and Wise introduce the notion of a hemiwallspace, a subcollection of
the halfspaces of a wallspace containing at least one from every wall. When (S, V) is a wallspace
and T C S, one obtains the hemiwallspace induced by T (see [28, Example 3.20]):

V. ={UeV|UNT +6}.

This hemiwallspace also gives rise to a cube complex C(Vy) defined to be the cube complex
obtained by applying the Sageev construction to the collection of halfspaces in V; whose com-
plements are also in V. We have the following result of Hruska-Wise.

Lemma 3.4 [28, Lemmas 3.23, 3.24]. The cube complex C(V;) embeds naturally into C(V) as a
convex sub-complex.

We apply this result with S = X©, ¥ = W, and T = Y© for Y equal to some peripheral com-
plex. In this case we have:

Proposition 3.5. C(Wy.) is a finite cube complex.

Proof. We show that there are only finitely many walls W C W so that W C Wy,(). The Sageev
construction applied to a wallspace with finitely many walls yields a finite cube complex, so this
establishes the proposition.

Suppose that W ={W*, W~} C Wy(. This means both W*nY©® and W= nY©® are
nonempty. We first show that W is determined by the partition

WrnyQO w-ny©Oy

Indeed, since Y is connected, there is a pair of adjacent vertices v, w € Y lying in different
halfspaces. But Lemma 2.42 shows that W is the only wall in W separating v from w.

We next claim that there is a fixed finite-index subgroup of Stab(Y)) which preserves the parti-
tion {W* N Y®, W~ nY©O}forevery W C Wy Each such partition is preserved by some finite-
index subgroup of Stab(Y’) conjugate in G to one of the subgroups of the Stab(Y';) in the definition
of the broadcasters for the H;. There are only finitely many such subgroups of Stab(Y), so some
finite-index subgroup Ny of Stab(Y) is contained in all of them. In particular, W descends to a
partition of N- Y\Y(O), and is determined by that partition.

Since there are only finitely many partitions of a finite set, the set of walls in Wy,(y) is finite. []

Work of Hruska-Wise [28] gives the following.

Corollary 3.6. The action of G on C(W) is cocompact. In particular C(W) is finite dimensional.
Moreover each P € P fixes a point of C(W).

Proof. By Lemma 2.27, the wall stabilizers for G ~ W are full relatively quasi-convex.
Theorem 7.12 of [28] (with © = %) shows that for (G, P) relatively hyperbolic acting on a
wallspace with relatively quasi-convex wall stabilizers, the G-action on the associated cube com-
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plex is ‘relatively cocompact’. Since the sub-complexes associated to the peripheral subgroups
are compact (cocompact under the action of the peripheral subgroups is enough), the G-action
is cocompact.

Let P € P. Then P preserves a peripheral complex Y C X, so it preserves the convex sub-
complex C(Wy(y)) € X. As thisis a complete bounded diameter CAT(0) space (Proposition 3.5),
there is a fixed point for the action of P (see [6, I1.2.8]). O

3.2 | Associating a characteristic subspace of X to an ultrafilter

In general not every ultrafilter 2l on W is principal. In other words the intersection of all the
halfspaces in U may be empty. We show in this subsection that by appropriately augmenting and
thickening the halfspaces of 2l we do obtain a nonempty intersection (see Proposition 3.12).

Definition 3.7 (Halfspace carriers). In DSfinition 2.43 we defined thick carriers for walls. f W =
{A, A%}, then define the halfspace carrier A to be the full sub-complex of X on A U (T(W) n X©),

The full sub-complex on a halfspace A is not connected, but the halfspace carrier is connected,
as the following lemma shows. We will use the observations in this lemma repeatedly in the rest
of the section.

Lemma 3.8. Let A € W be a halfspace. Then A is a connected sub-complex of X. Moreover, A N
A¢c=T(W)and AU A¢ = X.

Proof. Every component of the full sub-complex on A meets T(W), which is connected. Thus A
is connected.

The intersection of full sub-complexes is a full sub-complex, so AN AC is the full sub-complex
on the zero-skeleton of T(W). This is T(W).

Any cube of X with all its vertices in A is in the full sub-complex on A, so it is contained in A.
Similarly any cube of X with all its vertices in A® is contained in A¢. A cube with vertices in both
A and A€ must be in the carrier of some hyperplane of the scattering associated to W, hence in
T(W).S0 AU A = X. O

Next we show that halfspace carriers have the same ‘attractiveness’ property as we showed for
thick carriers in Lemma 2.36.

Lemma 3.9. Let m > 0 and let F, 54(m) be as in Lemma 2.36. Let A be a halfspace carrier and let
Z be a peripheral complex. If

diam(Z N N,,(A)) > F, 35(m),
then Z C A.
Proof. Let W = {A, A°} be the associated wall and let T = T(W). If Z contains vertices of both A

and A°, it must meet some W-hyperplane, so Z C T C A. If Z contains only vertices of A then
Z CA.
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We are left with the case that every vertex of Z is in A¢. Let x,y € ZNN m(Z). Since x,y are
not in A, a shortest path to A must pass through T, so they are in N,,,(T). Using the case of wall
carriers, if d(x,y) > F, 3c(m), then Z C T C A, and we are done. O

Lemma 3.10. Suppose W,V are walls of W so that V* C W+. Then T(V) C W+.

Proof. Ttis enough to show thatifv € T(V)®, thenv € W+.Ifvisin the carrier of a V-hyperplane,
itisdistance < 1 from a vertexin V. Since the W-hyperplanes and the V-hyperplanes are disjoint,
this means v must actually be in W+,

Suppose then that v is contained in a V-peripheral complex Z, and that v € W~. Since Z is a
V-peripheral complex, by Lemma 2.44 it must contain vertices in both V*+ and V. In particular
it contains some w € V* C W. Since Z contains vertices of both W+ and W, it must also be a
W -peripheral complex, and so Z C W+, O

We next prove a lemma about coarse intersections of thick carriers of crossing walls.

Lemma 3.11. For each positive integer m there exists a ©,, > 0 so that for any collection of pairwise
crossing walls {W,, ..., W} of W,

[ Ne,, (T(W)) # .
i=0

Proof. The proof is by induction, so we start by establishing the base case m = 1. We prove the
contrapositive with @, = 0. Suppose that there are walls W, W, so that T(W,) n T(W,) = @.

Since X = W UW_I_’ we have T(W,) C W UW_l‘. On the other hand T(W,) does not meet
T(W)) = W;r N W_l‘ It is therefore contained in a connected component of X \ T(W;). Each such
connected component is contained either in the full sub-complex on Wf or the full sub-complex
on W . In particular we have T(Wy)© ¢ Wi or T(Wy)© c Wi

Arguing similarly for T(W), there are €, €; € {+} so that

TW® cwi, Tw )@ cw,

but this implies W, ' n W = . In other words W, and W, do not cross.
For the inductive step suppose that W, ..., W,, pairwise cross, and let T; = T(W;) for each i.
The base case implies that T, N T, # @, whereas the inductive hypothesis implies that

Il .= Nem—l(TO) N--N NGm—l(Tm_l) and
12 = NOm,l(Tl) n--- nNGm,l(Tm)

are nonempty. Take a € I}, b € I,, and c € T, n T,,,, and consider the geodesic triangle A with
corners a, b,c. Let L, = F, 34,(Q + ©,,_;). We may assume without loss of generality that L,, > &,
where 9§ is the relatively thin triangles constant for (X, /3). We argue that we can take ©,, = Q +
©,,_, +2L,, + 26.

Suppose first that the §-fat part of A contains a segment of length at least L,, in each side. Then
in particular there is some peripheral complex Z so that A is -thin relative to Z. Lemma 2.36
applied to the side [a, c] implies that Z is contained in T,; the same lemma applied to [b, c] implies
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that Z is contained in T,,;; and the same lemma applied to [a, b] implies Z is contained in each of
T1,...,Tp_y. In particular Z € ", T;.

If on the other hand some J-fat part of a side of A has length bounded above by L,,, then
Lemma 2.4 shows that A is (2L, + 26)-thin. In particular if x is the point on [a, b] which is in
the preimage of the central point of the comparison tripod for A, then x is contained in the inter-
section of the ©,,-neighborhoods of the thick carriers T, ..., T,,,. O

The main result of this subsection is the following.

Proposition 3.12. Let U be a DCC ultrafilter. There is some K > 0so that (| N, K(Z) # 0.
Ael

Proof. We inductively define a certain collection of pairwise crossing walls W, ..., W, and show
that the coarse intersection of their carriers is coarsely contained in every halfspace of 1.

To begin, choose A, minimal in 2l (with respect to inclusion) and let W, = {A,, A,}. Note that
such an A, exists because U is DCC. Suppose now we have chosen Wy, ..., W,_;, and let I be the
set of walls which cross W, for all i < s. If I is nonempty, let A, be a minimal element of {U(W) |
W e L}, and let W, = {A,, A;°}. By Corollary 3.6, the dimension of C(W) is finite. For s bigger
than this dimension, the set I is empty, so the process of choosing the W; eventually terminates.

Let W, ..., W, be the resulting collection, and let T; = T(W;). Now we decompose 2l as [, LI
-« L U, where

U, ={A € U | {A, A} does not cross W},

and fori > 1,
U; ={A € U | {A, A} crosses W, ..., W;_; but does not cross W,}.

The minimality assumptions on the W; imply that if A € 2;, then U(W;) C A. By Lemma 3.10,
this implies that T; C A. In particular, we have

k
(Ne, (T) € [ No, (4.
i=1

Ael

Lemma 3.11 shows that the left-hand side is nonempty, and the proposition follows, with K =

oL O

3.3 | Classification of stabilizers

Given a DCC ultrafilter U, fix K so that

N 1= (7] Ng(4)

Ael

is nonempty. The existence of such a K is guaranteed by Proposition 3.12. We observe:
Lemma 3.13. The stabilizer of N (U) contains the stabilizer of UL.

Since the action of G on X is proper, we immediately obtain:
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Corollary 3.14. If N () is bounded, then Stab(ll) is finite.

We thus focus on the case that N () is unbounded. In this case, we will see in Proposition 3.19
below that there is always at least one peripheral complex contained in Ng(2l), in fact in the
intersection N, () of the carriers themselves. Although the constant K depends on dim(C(W)),
and hence is not independent of the choice of R, made in Assumption 2.40, this constant will
disappear from the discussion once we have found this peripheral complex in N,(2[).

We need a lemma about the geometry of CAT(0) cube complexes, which is very similar to
Remark 3.2 of Sageev-Wise [39].

Lemma 3.15. Let E be a k-dimensional CAT(0) cube complex, and let 6, = arcsin(i). Let dg

NG
be the CAT(0) metric on E. Suppose that dg(x,y) > 2\/%, and let m be the midpoint of [x, y]. Then
vk

there is a hyperplane H meeting [x, y]| within Tk of m, and making an angle of at least 6, with [x, y].

dg(x,y)—\/%_

This h l tisfies d=(H, {x,
is hyperplane satisfies d=(H,{x, y}) > e

Proof. The idea here is from Section 3 of [39]. In [39, Lemma 3.1] it is shown that if v is a nonzero
vector in R¥, and € is the standard basis of R¥, then there is a subset &' C € of cardinality k —
1 so that every vector in the hyperplane spanned by £ makes an angle of at least 6, with v.
It is observed in [39, Remark 3.2] that if y is a ray starting at a corner of a cube ¢ and with a
nondegenerate initial segment in o, then y meets some midcube of ¢ at an angle of at least 6.

The difference in our situation is that m need not be a vertex. There is however some nondegen-
erate segment o = [m, m'] contained in a cube o of E, which we suppose is of minimal dimension
to contain such a segment. Let o’ be a maximal length parallel segment beginning at a vertex of
o. By [39, Remark 3.2], there is a midcube of o meeting ¢’ at an angle of at least 6,. Let H be
the hyperplane determined by this midcube. We show that [x, y] meets H as in the conclusion of
the lemma.

The carrier C of H can be identified with H x [0, 1], where H is identified with H x {%}. Let
A: [0,T] — H x[0,1] be a unit speed geodesic with image the intersection of [x, y] with C. The
geodesic A projects to constant speed geodesics A : [0,T] - H and 4;: [0,T] — [0,1]. Any
geodesic in C makes a well-defined constant angle arctan(4, /4;) with H, and this angle is invari-
ant under translation inside a cube. Since the angle is at least 8, = arcsin(—==), the length T of

Vi
A is at most \/E In particular neither x nor y lies in C, and 4; is surjective. Let t € [0, T] satisfy
At) = %, so A(¢) lies on the hyperplane H. The distance from A(t) to m is at most % < \/TE
The last assertion is an easy calculation. O

In the next lemma we return to the setting of our (8, f)-relatively hyperbolic pair (X, B).

Lemma 3.16. (Pushing across triangles) Suppose that a,b,c € X, Z € B, and that there is a sub-
segment [x,y] C [a, b] N Z satisfying:

(1) thelength of [x,y] is at least 28 + 2n + f(8) and
(2) [x,y] does not cross the internal point of [a, b], in other words d(a, x) < d(a,y) < (b,c),.

Then there is a subsegment [x',y'] C [a,c] N Z with |d(a,x") —d(a,x)| <8 + 7 and |d(a,y") —
d(a,y)| <6 +n+ f(5)
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FIGURE 2 Lemma 3.16. The unlabeled points are the points in the preimage of the central point of the
comparison tripod

Proof. Let A be the triangle with cornersa, b,c.Let 7 : A — T, be the canonical map to a compar-
ison tripod T,. Let I = [x,y]. The assumptions on d(a, x) and d(a, y) imply that 7z(I) lies entirely
inonelegof T,. Let I’ be the subsegment of [a, c] with the same image in T, . There are three cases.

In case A is 6-thin, the segment I’ has endpoints §-close to those of I. In particular it begins
and ends within 6 of Z, so it intersects Z in a subsegment whose endpoints are at most 7 + & from
those of I’, and we are finished.

In case A is &-thin relative to Z, then every point of I’ is within & of some point of I or some
point of Z. Since I C Z, the segment I’ begins and ends within § of Z as before.

In case A is §-thin relative to some W # Z, we note that the §-fat part of [a, b] can intersect
I in a segment of length at most f(§). Removing the §-fat part thus leaves a subsegment I,. The
corresponding subsegment I (’) C I’ begins and ends within & of Z, and so we can find a subsegment
of I (’) with the desired properties. O

The main use of the next two lemmas is in the proof of Proposition 3.19, which says that when-
ever N (U) is unbounded N (2) contains a peripheral complex. Both will be used again later in
slightly simpler circumstances.

In the following statement w and 7 are the constants which were fixed in Notation 2.39; their
definitions are recalled in the proof.

Lemma 3.17. ForanyJ > 0, ifx,y € N;(U) satisfy d(x,y) > (2—” + 2)J + w, then there is a periph-
eral complex Z which intersects [x, y] in a subsegment I so that

(1) thelength of I is at least min{R, — T, %d(x, y)—t—J}and
(2) the distance from I to the midpoint of [x, y] is at most t.

Proof. We first remark that it is easy to check that ((29—” + 2) > 24/n + 2. Recall from Notation 2.39

the definition of the following two constants:

w = 2F,,5(0) + |8 + Q + 205 + 8f(8) + 165 + 2¢/n

sin(%")

and

S

T=F,3Q)+|3+ Q+4n+ f(&)+26+

sin(;”)
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TA a Yya

FIGURE 3 The points x, and y, are within J of x, y, respectively, so they are separated by the hyperplane
H. The unlabeled point is the midpoint of [x, y], which is distance at most \/ﬁ /2 from z

Since d(x,y) > w > 2\/5, we can apply Lemma 3.15 to find a hyperplane H meeting [x, y] at an
angle of at least 8,,, at a point z € [x, y] satisfying

(X,Y)— \,/z

d
d(z,{x,y}) > > (3)
Since (2—” +2)> 2\/5 and w > \/E, the last assertion of Lemma 3.15 implies that H misses the
J-balls around x and y:

d(H,{x,y})><;_:+2)]+w_ﬁ=<;_7”T+2) 2Ly

24/n 2\/512\/;2 2

Let W be the wall corresponding to H, and let A = U(W). There are points x4,y in A within
J of x, y, respectively.

Since H misses the J-balls around x and y, it must separate x4 from y,. Observe that z lies in
the thick wall carrier T = T(W).

Claim 1. Either one of x4,y lies in T, or there is a point z’ € T N ([x4,z] U [z,y4]) lying in a
W-hyperplane other than H (Figure 3).

Proof. If neither x, nor y, is in T, they both lie in the full sub-complex on A. It follows that W
does not separate x, from y,, and hence there is a second W-hyperplane H’ separating x , from
¥ 4- The hyperplane H' meets either [x, x 4] or [y, y4] at a some point z’. O

In case one of x4,y 4 lies in T, we relabel so that y 4 lies in T'. If not, we similarly relabel so that
the point z’ found in Claim 1 lies in the segment [z,y,].

Claim 2. There is a W-peripheral complex Z intersecting [z, y 4] in a segment I, of length at least

d(x’y)_\/;l_ Q

2 i n
s1n(7)

min{ R, — (F,3,(Q) +4Q + 27), +2Q+42n|—J%,

and so that d(I,, z) < L@ +Q+n.
sin(T")
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Proof. Note that the angle ¢ between [z, y] and [z,y,] is less than 97". Indeed, the hypothesis on
d(x,y),and the inequalities (3), w > \/ﬁ andd(y,y,) < J together imply (since atanyrate ¢ < %):

T 7 d(y,y4) nf J _ 6
<SS 5<min{d(z,y>,d<z,yA>}> < 5<m/en> =2 @

(Here we are using the fact that angles in a CAT(0) triangle are dominated by the angles in the
comparison triangle.) Since the angle [z, y] makes with H is at least 6,, the angle [z,y,] makes
with H is at least 6, — i > 67". It follows that the subsegment [z, p] of [z, y4] lying in N(H) has
Q

sin(%") )

The point p just defined must lie in the Q-neighborhood of some W-peripheral complex Z. This
is the peripheral complex in which we will find the segment I,.

In case all of [p,y,] lies in N(Z), we use n-super-attractiveness to obtain a segment I, C
[p,y4] N Z so that

length at most

d(x,y) —
ol = d(p,y4) — (2Q +2n) > (xy)2 v _ Q@ +2Q+2m |-,
sin(;")

as desired.

Next we suppose that not all of [p, y 4] lies in N,(Z). It follows that y, does not lie in Z, since
the Q-neighborhood of Z is convex. Claim 1 implies that either y, or some point z’ € [p,y,] lies
on a W-hyperplane or W-peripheral complex not equal to Z, so either [z, y 4] or [z, '] is contained
in No(T) but not entirely contained in N(Z). Let g be the first point on [p, y 4] within Q of some
W-hyperplane H”” # H or some W-peripheral complex Z’ # Z. Note the point ¢ must also lie in
No(2). In the case q is within Q of a W-peripheral complex Z’ # Z, there exists a hyperplane
H"" so that d(q, H") < F, 3,(Q). In either case there is a hyperplane H” # H so that d(q,H") <
max{Q, F, 3,(Q)}, and so we have

d(p’ q) = R* - (Q + maX{Q’F2.32(Q)}) = R* - (FZ.SZ(Q) + 2Q)

The n-super-attractiveness gives us a subsegment I, of [p, g] N Z of length at least

d(p,q) —(2Q +27) > R, — (F,3,(Q) +4Q + 27).

In either case d(Iy,z) < d(p,z) + Q+n < — ?@ : + Q + 7, as desired. O
sin( 2
2
We now wish to apply Lemma 3.16 (Pushing across triangles) to the segment I, from the
last claim, but it may extend past the internal point of the side [z,y,] of the triangle with cor-

ners {z,y,y4}. We note however that (y |y,), > w —J and d(z, 1) < % +Q+7nby
sin( 2
2

Claim 2, so I, contains a subsegment I, as in the hypothesis of that lemma with

d(x,y)—+/n
11 > mind ), 20 LA D RPN I |

2 /6,
sin <7>
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This is a better lower bound than that already given for I, in the statement of Claim 2, so we
may assume that I, already satisfies the hypotheses of Lemma 3.16. Pushing across the triangle
we obtain a subsegment I in [z, y] C [x, y] which is contained in Z and has length at least |I;| —
(28 + 2n + f(8)). Moreover the distance from I to z is no more than d(I,,z) + 7 + J.

Adding up the constants we obtain the inequalities asserted in the lemma. O

Lemma3.18. LetJ > 0,and x,y € N;(U). Suppose that Z is a peripheral complex so that Z N [x, y]
contains a segment o so that length(c) > F, 35(0) + 4(n + &) + 2f(8), and d(o,{x,¥}) > J + 5 + 1.
Then Z C N,(20D).

Proof. Let B € M. There are points X, yp of B within J of x, y, respectively. We claim that there
is a subsegment o’ of [x,y5] N Z of length at least F, 34(0). Lemma 3.9 then implies that Z C B.
Since B € U was arbitrary, we obtain Z C () 5y A = Ny(U).

Finding the subsegment ¢’ is a matter of applying Lemma 3.16 (Pushing across triangles) twice;
first the lemma is applied to a triangle whose corners are x, y, yg, and then to a triangle whose
corners are x, Xz, yg. The lower bound on d(o, {x, y}) implies the hypothesis about Gromov prod-
ucts in Lemma 3.16. Each time we push across a triangle, we can lose only up to 2(n + &) + f(5)
in length, so we are left with at least F, 54(0) in the end. O

Proposition 3.19. If N (U) is unbounded then there is a peripheral complex contained in

NoD) := [ A,

Ael

Proof. Assuming N () is unbounded, we may choose two vertices x,y € N () so d(x,y) is as
large as we like. In particular we make the following assumption:

d(x,y)>max{(Z—H+Z)K+w,2R*+2K+25+2n}. (5)

n

In particular, we have %d(x, ¥) > R, + K,soLemma 3.17with J = K gives us a peripheral complex
Z and a segment I C [x,y] so that

(1) thelength of I is atleast R, — 7 and
(2) the distance from I to the midpoint of [x, y] is at most .

Note also that we have the following inequalities. (The first line follows from Assumption 2.40.(2);
the second from (5).)

[I| > Ry, — 7>F,34(0) +4(n + 6) + 2f(5),
%d(x, V>R, + (K + 68 +7).

Since d(x,y) > 2(R, + K + & + n) we can choose such an I to satisfy d(I,{x,y}) > K + 8 + 1.
Applying Lemma 3.18, we see Z C N(20). O

Proposition 3.20. Let Z be a peripheral complex. The following are equivalent:
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(1) Z S N,Q).
(2) Stab() contains a finite-index subgroup of Stab(Z).
(3) Stab(U) contains an infinite subgroup of Stab(Z).

Proof. We first prove (1)=(2). The hypothesis that Z C N,(U) implies that for every wall W, either
Z© C U(W) or Z is a W-peripheral complex. Let 2’ C U consist of those halfspaces A € U so
that Z© C A. Note that every element of Stab(Z) preserves U’. If U(W) ¢ W, then Z is a W-
peripheral complex. There are only finitely many such W, so U \ U is finite. Let S = (U \ U") U
{A¢| A € U\ U'}. The finite set S is preserved by Stab(Z) and the kernel of Stab(Z) — Sym(S)
lies in Stab(20).

The implication (2)=>(3) is obvious, since the peripheral subgroups of (G, ) are assumed to be
infinite (recall Convention 1.10).

Finally we show (3)=(1). Let Z be a peripheral complex so that Stab(Z) n Stab(2l) is infinite.
Let x be any point of N,(2l). Choose g € Stab(Z) n Stab(2l) so that d(x, gx) = E > F,3,(Q) +
2(d(x,Z) +n).

Let A = U(W) where W is a wall. Both x and ¢x lie in A, which is Q-quasi-convex, so [x, gx]
liesin N Q(Z). The super-attractiveness of Z ensures that a subsegment of [x, gx] of length at least
E —2(d(x,Z) + 1) 2 F, 3,(Q) liesin Z. The endpoints are distance at most Q from A,soLemma3.9
implies that Z C A. Since A € U was arbitrary, Z C N,(U). O

3.4 | AStab(U)-tree

For the rest of this section we focus on the case that Stab(2l) is infinite and not parabolic. By
Corollary 3.14 and Proposition 3.19, there must be at least one peripheral complex contained in
Ny(U). If there is only one, then its stabilizer obviously contains Stab(2[), so we can assume there
is more than one peripheral complex in N(2[). We consider projections of these peripheral com-
plexes to each other. These have diameter bounded by C (see Notation 2.38 and Corollary 2.18).
For any pair Z, Z' of peripheral complexes in N, (2l), the next lemma shows that the ultrafilter 2
is ‘weakly principal’ for any point in 7,(Z").

Lemma 3.21. For x as in Notation 2.39, the following holds: If Z, Z' are peripheral complexes con-
tained in Ny(U), then

77(Z") € (1] N(A.
AelU

Proof. Recallkx = F,3,(Q+1)+2Q+C + % + 2, where F, 3, is the function from Lemma 2.32,
and C is the constant from Corollary 2.18. Fix A € U and suppose that A = U(W). Or goal is to
show that 7,(Z") C N, (A).

First suppose that Z is not a W-peripheral complex. In this case, since Z C N, (U) C NO(Z) we
see that Z® C A, 50 Z C N, (A). Since 7,(Z") C Z we are done in this case.

Therefore, we suppose henceforth that Z is a W-peripheral complex, so in particular Z C T(W).
Let b € Z’ be arbitrary, and consider the geodesic [b, 7,(b)].

We remark that peripheral complexes intersect, so it is possible that b = 7,(b).

Casel. b = m,(b).
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If Z' is also a W-peripheral complex, Lemma 2.32 implies that 7,(b) is within F,;,(0) <
F,,(Q+1)<x of some T(W)-hyperplane. It follows that in this case 7,(Z’) C N, (A),
as required.

If Z' is not a W-peripheral complex, then we have (Z’)) C A4, and hence b € N 1(A).

We suppose for the remainder of the proof that b # 7,(b), and so [b, 7,(b)] is a nondegenerate
geodesic which only intersects Z at 7,(b).

Case2. b # m,(b)and [b, m,(b)] N T(W) # {7 ,(b)}.

In this case, let x € [b,m4(b)] N (T(W)\ Z). Since Z C T(W) and T(W) is Q-quasi-convex
(Notation 2.38), the geodesic [x, 7,(b)] lies in the Q-neighborhood of T(W). There are two sub-
cases:

Subcase 2.1. d(x,7m,(b)) > Q + 1.

In this subcase let y be the point on [x, 7,(b)] at distance Q + 1 from 7 ,(b). Since 7,(b) is the
closest point on Z to b, the point y is not within Q of Z, so it is within Q of some W-hyperplane or
some other W-peripheral complex Z; . If it is within Q of a W-hyperplane, we are done, since Q <
x. Otherwise it is within distance Q + 1 of both Z and Z,, and so it is distance at most F, 3,(Q + 1)
from some W-hyperplane (Lemma 2.32). Since F, 3,(Q + 1) < x we are finished in this case as
well.

Subcase 2.2. d(x,7,(b)) <Q+1

In this case the point x itself is either on a hyperplane or on a W-peripheral complex Z; # Z,
and can argue as in the previous subcase, substituting x for y.

Case3. b # m,(b) and [b, m,(b)] N T(W) = 7,(b).

In this case, since (Z/)?) C A, it must be that the geodesic [b, 77,(b)] lies entirely in the full
sub-complex on A, meaning that 77,(Z’) lies in N,.(A), as required. O

We want to build a bipartite Stab(2[)-tree in order to analyze the structure of Stab(2) and prove
Property (b) of Definition 1.9. The equivalence classes under the relation defined in Definition 3.22
will form one color of vertex of this tree. The other color will be the set of peripheral complexes
in N, (20).

Recall from Notation 2.39 that

D = max {2\/ﬁx + /1, Fy15(0) + 67+ 2f(8) + 65, 2C + 1} +1.

Definition 3.22. Define a relation on pairs (Z, Z") where Z # Z’ are contained in N,,(2[) by saying
(2,,Z]) ~ (Z,,Z}) if for every geodesic y joining Tz, (Z})to Tz, (Z}), and every peripheral complex
Z,we have diam(Z Nny) < D.

Proposition 3.23. The relation defined in Definition 3.22 is an equivalence relation.

Proof. Symmetry is obvious, and reflexivity follows from Corollary 2.18 because D > C (the upper
bound on the diameter of 7,(Z")).
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To show transitivity, we argue by contradiction. Suppose (Zl,Z{) ~ (Z2,Z£) ~ (Z3,Zg), but
(Z,,Z}) » (Z5,Z}). Foreach i, let S; = ﬂZi(Zl(). Since (Z;,Z)) » (Z3,Z?), there is a geodesic y join-
ing S, to S; and a peripheral complex Z;, so that diam(y N Z;) > D. Denote the endpoints of y by
X1, X3,50 X; € S;. We first show that for either this or some other peripheral complex, the diameter
must be much larger.

Claim. There exists a peripheral complex Z so that diam(y n Z) > %R*. [l

Proof of Claim. Let m be the midpoint of y N Z,, and let x{, x; be the endpoints of y N Z,. By
Lemma 3.15 there exists a hyperplane H cutting y at a point m,, within \/ﬁ of m so that

a3 Vi
2

(The last inequality holds because d(x{, xg) =>D> 2\/E1< + \/ﬁ.) Let W be the wall determined
by H. Since m, € y N Z,, it is clear that Z,, is a W-peripheral complex.

We claim some W-hyperplane H' # H comes within x of y. Indeed, if no such hyperplane
crosses ¥, then one endpoint of  is not in the full sub-complex on U(W). From Lemma 3.21 we see
that the endpoint must nonetheless lie in N, (U(W)), so it must lie within x of some W-hyperplane
H'.

Lety € H' and y, € y satisfy d(y,y,) < k. Consider the geodesic y’ = [y, m,]. Since y and m,
lie in distinct W-hyperplanes and T(W) is Q-quasi-convex, [y, my] € No(T(W)). Moreover, dis-
tinct hyperplanes are distance at least R, apart, so there must be a segment of [a, b] of length
at least R, — 2F, 5,(Q) which lies outside the F, 5,(Q)-neighborhood of all the W-hyperplanes.
By Lemma 2.32, this subsegment must lie in the Q-neighborhood of a single W-peripheral com-
plex Z. By n-super-attractiveness of peripheral complexes, there is a subsegment I of [y, m]
of length at least R, — 2F, 5,(Q) — 2(Q + 1) contained in Z. Now consider the geodesic trian-
gle with vertices y, y,, m,. Since d(y,y,) < ¥ we have (y,yo)mo > |y| — x. By adjusting an end-
point of I by at most x and labeling the endpoints of I appropriately by u,v, we can ensure
the inequalities d(mg, u) < d(m,,v) < (¥, yo)mO. We still have a lower bound on the length |I]| >
R, —2F,3,(Q) — 2(Q + 1) — x. Applying Lemma 3.16 (Pushing across triangles) to the adjusted
I, there is a subsegment J of [y,, m,] contained in Z of length at least |I| — (26 + 25 + f(5)) >
R, —2F,3,(Q) —2Q — 4n — 26 — f(J). Because of Assumption 2.40.(3), this implies [J| > %R*,
as required.

d(H,{xy,x3}) > d(H, {x], x}}) > > k.

Now consider a point x, € S, and consider the geodesic triangle with vertices [x;, X,, X3]. Since
the side [x;, x;] has a segment contained in Z of length at least ER* there is a subsegment of

length at least %R* not crossing the internal point. Lemma 3.16 can be applied to this segment to

obtain a subsegment of either [x;, x,] or [x,, x;] which lies in Z and has length at least %R* —
(2n + 28 + f(8)). By Assumption 2.40.(4) the segment has length greater than D. This contradicts
(2,,2)) ~ (Z,,2)) ~ (Z5,Z7), completing the proof of Proposition 3.23. O

Lemma 3.24. I[fZ,Z' C N,(U), then

diam (| {72,(ZD| @1, 2)) ~ (2,2) } ) < max{w,2(D + )}
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Proof. Recall w and 7 are the constants defined in Notation 2.39 and used in Lemma 3.17.

Suppose that Z,Z’,Z;, and Z{ are peripheral complexes in Ny(U), and that x € 7,(Z") and
yEmy (Z{) satisfy d(x, y) > max{w, 2(D + 7)}. Our goal is to show (Z, Z') » (Zl,Z{).

By Lemma 3.17 (with J = 0), since d(x,y) > w and x,y € N,(), there is a peripheral complex
Z, which intersects [x, y] in a segment I of length at least min{R, — 7, %d(x, y) —t}. Since R, >
D + 7 because of Assumption 2.40.(5), we see that |I| > D. It follows from the definition of the
relation that (Z,Z") » (Z;, Z;), as required. O

Definition 3.25 (The graph A). Let V|, be the set of peripheral complexes contained in N(2[),
and let V; be the set of equivalence classes [Z, Z’] where both Z,Z’ are contained in N,(2I). To
form the graph A, connect a vertex Z of V, to every vertex of the form [Z, Z] by an edge.

Lemma 3.26. The graph A is connected.

Proof. We argue by contradiction. If A is disconnected, then there are vertices corresponding
to peripheral complexes Z;,Z, which are in separate components. Choose such a pair so that
d(Z,,Z,) is minimal among such pairs.

Since Z; and Z, are in different components we must have (Z;,Z,) » (Z,,Z;). Let y be a
geodesic joining 77, (Z,) to Ty, (Z,) and containing a subsegment o, of length at least D in some
peripheral complex Z. We claim that Z cannot be equal to either Z; or Z,. Indeed, let p be a
shortest geodesic from Z; to Z,, so the endpoints of p lie in 7, (Z,) and 7, (Z,), respectively,
and note that p intersects Z; only at its initial point, and Z, only at its terminal point. Since
diam(7y, (Z,)), diam(7,(Z,)) < C (see Notation 2.38), it follows that

lol < Iyl < lpl +2C,

and that y spends no more than C in either Z; or Z,. Since D > C (see Notation 2.38), Z cannot be
equal to either Z; or Z,. Since D > F, 3,(0) + 4(n + &) + 2f(5) + 2(n + ), there is a subsegment
o of g, of length at least F, 5,(0) + 4(n + &) + 2f(5) at distance at least 7 + § from {x, y}. We can
therefore apply Lemma 3.18 with K = 0 to conclude that Z C N,,(2[).

We claim that d(Z, Z,) is smaller than d(Z;, Z,). Indeed, if £ is a geodesic between Z; and Z,
realizing d(Z,,Z,) then £ starts in Tz, (Z,) and ends in nZZ(Zl). It follows from Corollary 2.18
that |y| < |§] + 2C. On the other hand, the distance from Z; to Z is at most |y| — D < |§]| + 2C —
D < |§| = d(Z,Z,) (recall from Notation 2.39 that D < 2C + 1). Therefore, by the minimality of
d(Z,,Z,), Z and Z, lie in the same component of A. Similarly, d(Z, Z,) < d(Z;, Z,), and so Z and
Z, lie in the same component of A, a contradiction. O

Lemma 3.27. The graph A is a bipartite tree.
Proof. That A is bipartite follows immediately from the definition. We now prove that A is a tree.
In order to obtain a contradiction, suppose that o is an oriented cycle of length 2n in A. The

vertices of o are labeled (with subscripts to be understood modulo n:

Zo, [Z()’Z(/)/] = [Zl,Z{], le [ZlaZ{/] = [Zz,Zé],..., [Znyz;l,] = [Z()iz(,)]
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For each i let b; be a geodesic segment in Z; from p; € 7, (Z) to q; € 75 (Z]"), and let a; be the
geodesic from g; to p;,;. Let y be the broken geodesic loop byay -+ a,_;. By Lemma 3.24 we have
la;| < max{w,2(D + 7)}.

We claim that the path y satisfies the hypothesis of [15, Theorem 5.6], and is therefore a good-
quality quasi-geodesic (and hence not a loop). In order to make our situation line up with the
constants in [15], we apply a similar trick as in the proof of Proposition 2.31. Namely we temporar-
ily modify the function f. To that end, define the function f’(m) = max{f(m),n, % max{w, 2(D +
7)}}, and note that (X, B) is (8, f’)-relatively hyperbolic. Let M = f'(58) as in [15]. Also note that
since the peripheral complexes are 7-super-attractive, they are 2(z + m)-attractive in the sense of
Einstein (see Remark 2.15), and thus satisfy the attractiveness hypothesis of [15, Hypotheses 5.5].
We now check that the six conditions from [15, Theorem 5.6] hold.

Certainly the first is satisfied, and the second is satisfied because o is embedded. The third
is satisfied because (X, B) is (8, f)-relatively hyperbolic and M = f’(58). The fourth is satis-
fied because by the proof of Proposition 3.23 between inequivalent projections there is a periph-
eral path of length at least %R*, and Assumption 2.40.(6) forces %R* > 26M + 2506. Since |qg;| <
max{ew, 2(D + 1)}, and by the choice of f’, we have |q;| < 3M + 636, which trivially imply that the
fifth and sixth conditions from [15, Theorem 5.6] hold.

It follows from the conclusion of [15, Theorem 5.6] that a geodesic joining the endpoints of y
must be long, and in particular y is not a loop, contrary to hypothesis. It follows that Aisatree. []

3.5 | Infinite non-parabolic cell stabilizers
The goal of this subsection is the following:

Theorem 3.28. Suppose that Stab(Q) is infinite and non-parabolic. Then Stab() is a finite graph
of groups where the vertex groups are either full parabolic or finite, and the edge groups are finite.

For the proofs of Theorems 3.28 and C we need some facts about various kinds of quasi-
convexity in relatively hyperbolic groups.

Definition 3.29 [40]. Let G be finitely generated, and let I" be a Cayley graph for G. The subgroup
G, is strongly quasi-convex if for every 4 > 1, € > 0 there is an r so that any (4, €)-quasi-geodesic in
I' with endpoints in G, lies in an r-neighborhood of G,,.

Notice that strongly quasi-convex subgroups are always finitely generated and undistorted (see
for example [6, IT1.T".3.5]).
We deduce the next lemma from theorems of Tran and Hruska.

Lemma 3.30. Let (G, P) be relatively hyperbolic, and let Gy < G be full. The following are equiva-
lent:

(1) G, is finitely generated and undistorted in G.
(2) G, is relatively quasi-convex in (G, P).
(3) G, is strongly quasi-convex in G.

Proof. Theorem 1.5 of [27] gives (1)=(2) (even without the assumption that G, is full). Theorem
1.4 of [27] gives (2)=(1) when G, is full.
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Theorem 1.9 of [40] gives (1)=(3) when G, is full, since finite-index and finite subgroups are
strongly quasi-convex. We have already noted that strongly quasi-convex subgroups are finitely
generated and undistorted, so (3)=(1). O

Corollary 3.31. The subgroup Stab(Ql) is full relatively quasi-convex in (G, P). In particular it is
finitely generated.

Proof. The hyperplane stabilizers for G ~ X are full relatively quasi-convex (Lemma 2.27) so by
Lemma 3.30, they are strongly quasi-convex. By [18, Theorem 3.26] the cube stabilizers of G ~ X
are also strongly quasi-convex. In particular Stab(l) is strongly quasi-convex in G. It is full by
Proposition 3.20. Now apply Lemma 3.30 to deduce that Stab(2[) is relatively quasi-convex.  []

Proof of Theorem 3.28. The subgroup Stab(2l) acts on the tree A described in the last subsection.
A vertex corresponding to a peripheral complex in N, () has full parabolic stabilizer by Propo-
sition 3.20. The stabilizer of a vertex corresponding to an equivalence class [(Z,Z’)] must also
stabilize the bounded set from Lemma 3.24, so it must be finite. Since every edge is connected to
some vertex of this type, edge stabilizers are also finite.

Since Stab(2[) is finitely generated there exists a Stab(2l)-invariant sub-tree A, of A so that
Stab(U)\ A, is finite. O

3.6 | Proof of Theorem C
See Definition 1.9 for the definition of a weakly relatively geometric action.

Theorem C. Suppose (G, P) is relatively hyperbolic, and that G acts properly cocompactly on a
CAT(0) cube complex X, and that this action satisfies Assumption 1.1.
There exists a weakly relatively geometric action of G on a CAT(0) cube complex X.

Proof. We take the cube complex X to be the one dual to the wallspace fixed in Definition 2.41.

The cocompactness of G ~» X and ellipticity of peripheral subgroups is Corollary 3.6.

It suffices to prove the statement about cube stabilizers for vertex stabilizers, since each cube
stabilizer is an intersection of vertex stabilizers, and the description passes to intersections.

So, let U be an ultrafilter so that Stab(2l) is infinite. Corollary 3.31 implies that Stab(2[) is full
relatively quasi-convex.

Theorem 3.28 implies that Stab(2l) is a graph of finite and full parabolic subgroups as in the
conclusion. O

4 | PROOF OF THEOREM A

In this section we prove Theorem A. The strategy is to use the recubulation given by Theorem C
and relatively hyperbolic Dehn filling results. See [1, 2, 17-19, 34] for more information on rela-
tively hyperbolic Dehn filling. We first recall the definition.

Definition 4.1 (Dehn filling). Suppose that (G, P) is a group pair, and that N' = {N, <P | P € P}
is a collection of normal subgroups of the elements of P. The Dehn filling induced by N is

GN) :=G /4| Npbe-
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Definition 4.2 (Wide subgroups and fillings). If P is a group, B < P, and F C P a finite set, then
N < Pis(B,F)-wideif, forallb € Band f € F \ B, the product bf does not lie in N.

Let H be a relatively quasi-convex subgroup of (G, P), so there is a collection of infinite maximal
parabolic subgroups D of H so that (H, D) is relatively hyperbolic. For each D € D there is some
¢p € G and some Py, € P so that DD < Pp,.

Let F C G\ {1} be finite. Let G(N') be a Dehn filling, with K = ¢{J N ). We say the filling
G(N) is (H, F)-wide if for every D € D, the intersection K N Py, is (DCBl,F N Pp)-wide.

Definition 4.3 (Sufficiently long and wide Dehn fillings). We say that a statement S holds for all
sufficiently long Dehn fillings if there is a finite set F C G \ {1} so that S holds for all G(N) so that
(J N contains no element of F.

Let H < G be a quasi-convex subgroup. The statement S holds for all sufficiently H-wide Dehn
fillings if there is a finite set F C G \ {1} so that S holds for all G(N') which are (H, F)-wide.

For the Dehn filling results, we make the following assumption (weakly relatively geometric was
defined in Definition 1.9).

Assumption 4.4. The pair (G, P) is relatively hyperbolic, and admits a weakly relatively geomet-
ric action on a CAT(0) cube complex X. Further, each element of P is residually finite.

A key reason for our interest in weakly relatively geometric actions is the following result.

Theorem 4.5. Under Assumption 4.4, there exist finite-index subgroups {Lp < P | P € P} so that
the following holds:
Let N' = {Np < P | P € P} be chosen so that for each P € P,

(1) Np <Lpand
(2) P/Np is hyperbolic and virtually special.

Then the Dehn filling G(N') is hyperbolic and virtually special.

Proof. Since the G-action on Xis cocompact, there are cells o4, ..., o) in X forming a collection of
representatives of the G-orbits of cells. For 1 < i < k let Q; be the finite-index subgroup of Stab(c;)
consisting of elements which fix o; pointwise, and let O = {Q;, ..., Q;}. Note that each infinite Q;
is a full relatively quasi-convex subgroup which admits a graph of groups decomposition with
finite edge groups and finite or full parabolic vertex groups. By combining [34, Theorem 1.1], [2,
Propositions 4.3, 4.4], and [18, Corollary 6.5], and the assumption that elements of P are residually
finite, we see that there are finite-index subgroups {L, < P | P € P} so that for any Np < Lp so
P/Np is hyperbolic and virtually special in P, the Dehn filling

G=G/K :=G({Np | P € P})

satisfies

(1) G is hyperbolic;

(2) the image of each Q; is quasi-convex in G, and splits as a graph of virtually special hyper-
bolic groups with finite edge groups (and in particular the image of each Q; is hyperbolic and
virtually special); and
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(3) thespace X := K\)/(\ is a CAT(0) cube complex.

Let G be any such Dehn filling. Then G acts cocompactly on the CAT(O) cube complex X. By (1),
G is hyperbolic. By (2), the cell stabilizers for the G-action on X are quasi-convex and virtually
special. It now follows from [18, Theorem D] that Gis virtually special, as required. O

The following is an immediate consequence of results of Haglund-Wise [22, Corollary 7.4] and
Minasyan [31, Theorem 1.1].

Theorem 4.6. Suppose that T is a hyperbolic virtually special group. Then every quasi-convex sub-
group of T is separable, and every finite product of quasi-convex subgroups of T is separable.

Given Theorem C, the next two results are the technical core of the proof of Theorem A.

Theorem 4.7. Under Assumption 4.4, suppose further that S is a relatively quasi-convex subgroup
of (G, P) so that forall P € P and g € G the subgroup P N SY is separable in P.
Then S is separable in G.

Proof. Let g, € G\ S, and let {L, | P € P} be as in Theorem 4.5. By [19, Proposition 4.5, 4.7], for
sufficiently long and S-wide fillings of (G, P), the image of S is quasi-convex and does not contain
go- However, by [19, Lemma 5.2], and the assumption on separability of the subgroups S? N P in
P, there are such long and S-wide fillings.

Taking these fillings to also have filling kernels contained in the L as above, and we obtain a vir-
tually special hyperbolic quotient 7 : G — G so that the i image SofSis quasi-convex and 7(g,) &
S. By applying Theorem 4.6, there is a finite quotient 1 : G — Q so that A(n(g,)) & A(7(S)). Since
go € G \ S was arbitrary, this shows that S is separable in G, as required. [l

The following result relies on Proposition A.4 which is proved in the Appendix, using tech-
niques from [19].

Theorem 4.8. Under Assumption 4.4, suppose further that S,, S, are relatively quasi-convex sub-
groups of (G, P) so that forall P € P and g,, g, € G the double coset (P N Sfl)(P N ng) is separable
inP.

Then the product S,S, is separable in G.

Proof. Let g € G \ S,S,. Applying Proposition A.4 and proceeding similarly to the proof of Theo-
rem 4.7, there exists a Dehn filing 7 : G — G so that

(1) G is a virtually special hyperbolic group;
(2) 7(S;) and 7(S,) are quasi-convex in G; and

() n(g) & n(S)n(S,).

Since double cosets of quasi-convex subgroups are separable in virtually special hyperbolic groups,
as noted in Theorem 4.6, there is a further finite quotient of G which can be used to separate g
from S,S, in G. O

Finally, we restate and prove Theorem A.
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Theorem A ([33, Theorem 1.2]). Suppose that (G, P) is relatively hyperbolic and that G acts properly
and cocompactly on a CAT(0) cube complex X so Assumptions 1.1 and 1.2 are satisfied. Then G acts
virtually co-specially on X. O

Proof of Theorem A. That each element of P is residually finite is part of the hypothesis of Theo-
rem A, and the rest of Assumption 4.4 follows from Theorem C.

Let S;, S, be hyperplane stabilizers for the G-action on X. By Lemma 2.24 these are relatively
quasi-convex. The separability and double coset separability assumptions in Theorems 4.7 and 4.8
are part of the hypotheses of Theorem A. Therefore, it follows from Theorem 4.7 that S, is sepa-
rable in G, and from Theorem 4.8 that S, S, is separable in G. It now follows from [23, Corollary
4.3] that the G-action on X is virtually special, as required. O

5 | AN EXAMPLE

In this section we give an example of a group to which Theorem A applies, and for which it is
at least not obvious how to apply previous results to deduce virtual specialness. Note that this
example is merely indicative of many examples that could be built using this technique, or others.
That the example is virtually special follows from the following application of our main result. (By
a standard cubical torus we mean a unit cube of some dimension with opposite faces identified
via translation.)

Proposition 5.1. Let Y be a I-vertex non-positively curved cell complex built from a finite wedge of
standard cubical tori by attaching finitely many regular right-angled hyperbolic polygons rescaled
to have side-length 1. Then Y is homeomorphic to a cube complex C, and this cube complex is virtu-
ally special.

Proof. We first note that the complex Y is negatively curved away from the tori, any two of
which meet only in a point. It follows that the universal cover of Y is CAT(0) with isolated flats,
and that 7, Y is hyperbolic relative to the free abelian subgroups represented by the cubical tori
(see [26]).

Now we describe a cube complex homeomorphic to Y, obtained by subdividing the cells
of Y. The complex Y has a single vertex (the wedge point), so all corners of all the poly-
gons are glued at the wedge point. The only based loops in a cubical torus of length 1 are the
edges of the standard cellulation of that torus. To obtain C, we subdivide each n-torus into 2"
cubes of dimension n, and each p-sided polygon into p squares. The link at the wedge point
is unchanged, but now there are additional vertices. The link of one of the new vertices in an
n-torus is a standard (n — 1)-sphere, together possibly with some arcs of length 7 joining its
north and south poles. (This is if the new vertex lies in the middle of an edge of the standard
cellulation which is traversed by some of the polygons.) The new vertex at the center of a p-
gon has link which is a circle of length %. Since p > 5, the link condition is satisfied here
as well.

The universal cover of C is therefore a CAT(0) cube complex on which 7; Y acts geometrically.
Since the parabolic subgroups are abelian, the Assumptions 1.1 and 1.2 both hold, and we may
apply our main theorem to conclude that G acts virtually co-specially. O
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Example 5.2. Let G be given by the following presentation:

[ay, by], ..., [as, bel,
a ..., a4, by, ..., b¢ | aya5050a4a50a¢, by b,b3bybshg, ).

a,b,bsaza,,azasbb,aq

A presentation complex for G can be built from the wedge of six two-dimensional tori by attaching
two right-angled hexagons and two right-angled pentagons. One can check (by hand or with a
computer) that the link of the vertex is a graph of girth 4. This link is highly non-planar, suggesting
that the boundary at infinity is most likely non-planar (but see [5, 13] for some cautionary tales). If
the boundary at infinity is non-planar, this gives a proof that G is not virtually a 3-manifold group,
and therefore not covered by previous theorems about 3-manifolds [1, 35 44].

6 | APPLICATION TO THE RELATIVE CANNON CONJECTURE

To any relatively hyperbolic pair (G, P) is associated its Bowditch boundary 6(G, P) [4]. The Rel-
ative Cannon Conjecture asserts that if P is a nonempty collection of free abelian groups and
9(G, P) is homeomorphic to a 2-sphere, then G is Kleinian (see [20, Conjecture 1.3] and the dis-
cussion in that paper). The usual Cannon Conjecture makes the same assertion when P is empty
and G has no nontrivial finite normal subgroup (see [9, Conjecture 11.34] and [11, Conjecture 5.1]).

The following result is a generalization of [16, Theorem 1.1]. Given the work we have already
done, the proof is very similar.

Theorem 6.1. Suppose that (G, P) is relatively hyperbolic and P is a nonempty collection of free
abelian groups. Suppose further that 3(G, P) = S?, and that (G, P) acts weakly relatively geometri-
cally on a CAT(0) cube complex. Then G is Kleinian.

Proof. Note that each element P € P fixes a point &, in 8(G, P) & S? and acts properly cocom-
pactly on the complement [4]. Since this complement is homeomorphic to R?, each P € P must
have rank 2.

Since (G, P) acts weakly relatively geometrically on a CAT(0) cube complex, we may apply
Theorem 4.5. Let {Lp | P € P} be the subgroups from the conclusion of that theorem. For any
family of infinite cyclic subgroups N' = {N, | P € P} witheach N, < L; the quotient group G(N')
is a hyperbolic virtually special group (each P/Ny is virtually cyclic, and hence hyperbolic and
virtually special). By [20, Theorem 1.2], the boundary of G(N') is a 2-sphere so long as the filling
is sufficiently long. Since the elements of P are free abelian, the parent group G has no nontrivial
finite normal subgroup. By [17, Theorem 7.2], G(N') also has no finite normal subgroup (at least
for sufficiently long fillings of this form), so G(N') acts faithfully on its boundary. Haissinsky [24,
Theorem 1.10] states that a cubulated hyperbolic group with planar boundary is virtually Kleinian.

We claim that in fact the quotient G(NV') is Kleinian for sufficiently long such fillings. We argue
as in the last paragraph of Section 1.3 of Markovic [29]. Haissinsky’s theorem gives us a finite-
index T' < G(N) so that T is cocompact Kleinian and hence quasi-isometric to H3. This implies
G(WN) is quasi-isometric to H3. By a result of Cannon-Cooper [10] the group G(N') acts geomet-
rically on H3. Since G(N') has no finite normal subgroup, it acts faithfully. In other words it is
cocompact Kleinian.
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We now take a sequence of longer and longer fillings of this form, obtaining a collection
{G » G;} of quotients so that each G; is Kleinian. By the fundamental theorem of relatively hyper-
bolic Dehn filling [34, Theorem 1.1] we may assume that this sequence is stably faithful in the sense
of [20, Definition 10.1]. Each G - G; gives a representation p; : G — Isom(H?*). We now argue as
in the proof of [20, Corollary 1.4] that these representations can be conjugated to a sequence of
representations that subconverge to a discrete faithful representation of G into Isom(H3). O

The following is an immediate consequence of Theorems C and 6.1.

Corollary 6.2. Suppose that (G, P) is relatively hyperbolic, that elements of P are free abelian,
that 8(G, P) = S?, and that G acts properly and cocompactly on a CAT(0) cube complex. Then G
is Kleinian.

APPENDIX: ABOUT DOUBLE COSET SEPARABILITY

In this appendix we generalize [19, Proposition 6.2], a technical result which helps to prove double
coset separability. Most of the proof is the same as in [19], and we largely keep the same notation
from there.

Definition A.1 (cf. [19, Definition 3.1]). Let P be a group, B,, B, C P are subgroups, and S a finite
subset. A normal subgroup N < P is (B;, B,, S)-wide if whenever there are b, € B, b, € B,, and
s € S so that b;sb, € N we have s € B,B,.

Remark A.2. This is a generalization of wideness as in Definition 4.2. Namely, if N is (B, B, S)-
wide, then N is (B, S)-wide.

Lemma A.3 (cf. [19, Lemma 5.1]). Suppose that P is a group and that B, B, are subgroups so that
B, B, is a separable subset of P. For any finite set S there exists a finite-index normal subgroup K¢ < P
so that for any N < P with N < K, the subgroup N is (B, B,, S)-wide in P.

Proof. For each s € S\ B,B,, choose some P < P finite-index so that B;B, C P, and s ¢ P,. Let
Pg = {Ps | s € S\ BB,} and let K be the normal core of Pg. The subgroups K¢ < Pg are both
finite-index in P. The double coset B, B, is contained in Py.

Choose N < P finite-index and contained in K. It follows that N is contained in Pg, which is
all we will use to show N is (B, B,, S)-wide. Let b; € B, b, € B, and s € S and suppose b;sh, €
N. If s € BB, then there is nothing to prove so suppose that s ¢ B,B,. Then s ¢ P5. However,
bysb, € N C Pg, and also b;' € B, C B, B, C Pg and similarly b;' € Py. Since Py is a subgroup,
we have s = by (b,sb,)b; ! € Py, which contradicts s ¢ Pg. O

The following theorem is a generalization of [19, Proposition 6.2] and is the same as [33, Theo-
rem 3.21]. Our proof is similar to the one there.

Proposition A.4 (cf. [19, Proposition 6.2]). Suppose (G, P) is relatively hyperbolic. Let H be a finite
collection of relatively quasi-convex subgroups of (G, P), so that forany H,,H, € H, any ¢;, g, € G,
and any P € P the double coset (H,' N P)(HS* N P) is separable in P.”

T In particular (taking H; = H, and g, = g,) the subgroups H f ! N P are separable in P.
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Let F C G be a finite subset. There exist finite-index subgroups {Kp <P | P € P} so that if N' =
{Np, QP | P € P}isacollection with Np < Kp foreach P, and K = {|J N ), then forall f € F and
W,0 € H forwhich1 & ¥Of we have K N YO f = @.

Proof. We will follow the proof from [19, Proposition 6.2], keeping most of the notation and indi-
cating only the changes which must be made.

We have the following setup from [19]. It suffices to deal with a single pair (¥, ©) from H, for
we can then take intersections of the K, over each of the finitely many pairs to get the required
result. We therefore fix such a pair.

The cusped space for (G, P) is denoted X, and is §-hyperbolic. Let 4 be a quasi-convexity con-
stant for each H € H, let M = max{dx(1, f) | f € F}, and let « = 106 + 2M + 4. Associated to
¥ is a finite collection D of ¥-conjugacy classes of maximal uniquely parabolic subgroups of ¥,
and for each D € D thereare P, € Pandcp € GsoD < PICDD. Similarly for ® we have a finite col-

lection € and for E € £ thereare P € Panddp € GSoE < PgE. For P € P choose theset S, C P
exactly as in [19]. Namely, we define

Sp2{p €P|dx(1,p) <445 +8M + 161 + 2L, + 3}

to be a finite set so that any filling which is (H, Sp)-wide for every H € H will satisfy the conclusion
of [19, Lemma 4.2] with L,, L, as specified in the proof of [19, Proposition 6.2].

We make a change from [19] to the requirements on the filling kernels, as we now explain. In
[19] the additional requirements were indexed over certain pairs (B,, B,) of parabolic subgroups
of ¥ and ©. We instead index our requirements over the finite set of triples (cp, dg, p), where
Py = P and p € P, satisfies dyx(1, p) < 2a + 45. For such a triple q = (cp, d, p) choose a finite-
index normal subgroup K, < Pp so thatany N 9 P, with N < K, is (DCEI, (EdEl)P, Sp)-wide. This
is possible by Lemma A.3. For each P € P for which P = P}, in one of these triples, let K, be the
intersection of all such K.

Choose N, < Kp and consider the filling

G — G(N, | P € P}) = G/K.

We remark that this filling must be (H, Sp)-wide for every H € H, by Remark A.2.

There is no issue with the setup for proving K N ¥® f = @J. Moreover, Case 1 just uses (¥, Sp)-
wideness, and works verbatim in this setting.

For Case 2, the beginning of the proof works as written. The first issue with the proof from [19]
in this setting comes with the calculation about u~'ku, which in [19] uses the assumption that
parabolics are abelian.

We pick up the argument at the reference to Figure 2 in that proof, and adjust it as follows
(keeping the notation from [19]):

Note that k € K n Stab(A), where A is the horoball based on scP and w € scP, so w™'kw €
Np < P. Also

wkw = (ww)w ko) 2)(z7 w)

= (™ 'w) [ ko) w)] (T w) (e 2)(z T w)).



440 | GROVES AND MANNING

Let B,=D¢", B, =(E4 )& W and s = (u"'kv)(z 'w). Note also that z~lw € P, so
By, B, < P.Moreover, dy (1, (z7'w)™1) < 2a + 46 (see [19] for details of this claim). Thus, the triple
(¢,d,(z'w)~1) is one of the finitely many triples described above, so Np is (B;, B,, Sp)-wide.

Asin [19], the X-length of (u~'kv) is at most 2a + 2L, + 3 and the X-length of (z"'w) is at most
2a + 46, so [(u~tkv)(z"'w)] € Sp. Let by = w™'u € B, and b, = (z7'w) "} (v™1z)(z" w). The
above expression shows b, [(u~1kv)(z"'w)]b, € Np. Because N, is (B, B, Sp)-wide, we know
that [(u~'kv)(z~'w)] € B,B,, so w™'kw € B;B,. Choose 3; € B; and 3, € B, so w™lkw = 3, ;.
From the definition of B, there is e € E so that 8, = w™lzdledz lw.

Recall the following equations from [19]:

w=1v,c z=96,d, v=1906,d,

where ), € ¥, 6,,0, € 0.
Now, similar to [19], but with a slightly different calculation:

kp6 = ww ™ kw)(w™'2)(z" v)(v ™! Po)
= w(Bw ' zd  edz W)W 2)(z V)L P6)
= wp(w'z)d "ed(z v)(v ™' Y6)
= Py (cfic” Dew ™ PP~ 2)d  ed(z ™ v) (v PO)
= [$u(chic™ Y, ] - 6,6 6]

giving an expression for k30 as an element of ¥0. Thus, k - ¢ = k6 f € PO, the same contra-
diction as in [19]. O
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