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Abstract
We develop the foundations of the theory of relatively
geometric actions of relatively hyperbolic groups onCAT(0) cube complexes, a notion introduced in our
previous work (Einstein and Groves [Compos. Math.
(2020), no. 4, 862–867]). In the relatively geometric set-
ting, we prove full relatively quasi-convex subgroups are
convex cocompact, an analog of Agol’s Theorem and a
version of Haglund–Wise’s Canonical Completion and
Retraction.
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1 INTRODUCTION

The interaction between the geometry of CAT(0) cube complexes and that of hyperbolic groups
is at the center of some of the most powerful aspects of Haglund and Wise’s theory of (virtually)
special cube complexes [12], which in turn was at the center of the resolution of the Virtual Haken
Conjecture [1], and the Virtual Fibering Conjecture [1] in the closed case. In the case of finite-
volume hyperbolic 3-manifolds, the Virtual Fibering Conjecture was resolved by Wise [22], also
using virtually special cube complexes, but now using the relatively hyperbolic geometry of the
fundamental group.
In search of more general results, there have been numerous papers dealing with relatively

hyperbolic groups acting on CAT(0) cube complexes. See, for example, [15, 21], or [20]. These
papers typically deal with proper actions, which are either cocompact, or co-sparse.
In [5], we introduced a new kind of action for a relatively hyperbolic group on a CAT(0) cube

complex, a relatively geometric action (see Definition 1.1 below). If a relatively hyperbolic pair($,) acts relatively geometrically on a space %, then % is quasi-isometric to the coned-off Cay-
ley graph for ($,), and hence in particular is &-hyperbolic for some &. We believe that relatively
© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
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geometric actions on CAT(0) cube complexes should have as rich a theory as hyperbolic groups
acting properly and cocompactly on CAT(0) cube complexes. In this paper, we begin a systematic
investigation of such actions. In a relatively geometric action, the parabolic subgroups  act ellip-
tically on the cube complex, so in contrast to either of the kinds of proper actionsmentioned above,
relatively geometric actions may exist even when the parabolic subgroups do not act on CAT(0)
cube complexes in interesting ways. Therefore, we expect that the class of relatively hyperbolic
groups acting relatively geometrically on CAT(0) cube complexes is substantially broader than
the class acting geometrically, thus bringing these powerful techniques to bear in a much wider
setting. A final reason that relatively geometric actions are desirable is that the techniques of Dehn
filling developed by the second author and Manning in [8] are applicable to relatively geometric
actions, as we used already in [5]. This is a theme we further explore in this paper.
We now state our main results. First, recall the definition of relatively geometric (see Section 2

for other definitions).

Definition 1.1. Suppose that ($,) is a group pair. A (cellular) action of $ on a cell complex %̃
is relatively geometric (with respect to ) if
(1) $\%̃ is compact;
(2) each element of  acts elliptically on %̃; and
(3) each stabilizer in $ of a cell in %̃ is either finite or else conjugate to a finite-index subgroup of

an element of  .
In order to state our results, we make the following standing assumption.

Assumption 1.2. Suppose that ($,) is relatively hyperbolic and that %̃ is a CAT(0) cube com-
plex which admits a relatively geometric action of $ with respect to  . Let % = $\%̃ .
In Sageev–Wise [21] and Haglund [11] it is proved that if a hyperbolic group $ acts geometri-

cally on a CAT(0) cube complex and ( is a quasi-convex subgroup of $ then there is a convex(-invariant and (-cocompact sub-complex. Thus, ( also acts properly and cocompactly on aCAT(0) cube complex, and in the virtually special setting this is what allows the canonical com-
pletion and retraction construction of Haglund–Wise [12] to be applied.
Our first result, proved in Section 3, is a relatively geometric analogue of the above-mentioned

results of [21] and [11]. For a relatively hyperbolic analogue in the proper and cocompact or
cosparse settings, see [21].

Theorem 1.3. Under Assumption 1.2, for any full relatively quasi-convex subgroup ( of $ and
any compact ) ⊂ %̃ there exists a convex(-invariant sub-complex +̃ of %̃ so that ) ⊂ +̃ and (\+̃
is compact.

In order to solve the Virtual Haken and Virtual Fibering Conjectures, Agol proved that any
hyperbolic group acting geometrically on a CAT(0) cube complex is virtually special. The next
result is a relatively geometric version of Agol’s Theorem, and is proved in Section 4.

Theorem 1.4. Under Assumption 1.2, if the elements of are residually finite, then there is a finite-
index subgroup $0 of $ so that $0\%̃ is a special cube complex.
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Note that $0\%̃ should be considered as a complex of groups, rather than merely as a space,
so the underlying space being a special cube complex is not obviously as useful as in the case of
Agol’s Theorem. However, there are still favorable separability properties—see Theorem 1.6 and
Corollary 1.7 below.
In Section 4, we consider a full relatively quasi-convex subgroup( of $ and explore the behav-

ior of the hull +̃ found in Theorem 1.3 under long Dehn fillings. In particular, a special case of
what we prove is the following result, proved in Section 4. See Sections 2 and 4 for definitions of
terms, and Proposition 4.1 for a description of the subgroups .
Theorem 1.5. Make Assumption 1.2, and suppose that elements of  are residually finite. Let( ⩽$ be a full relatively quasi-convex subgroup and let +̃ be as in Theorem 1.3. For sufficiently long( ∪ ()-fillings$ → $∕), if)( = ) ∩ (, then% = )\%̃ and+ = )(\+̃ are bothCAT(0) cube
complexes and the natural map + → % is an embedding with convex image.

In Section 5, we develop a relatively geometric version of the Canonical Completion andRetrac-
tion (see Theorem 5.2). An application of this construction is the following, proved in Section 5.

Theorem 1.6. Under Assumption 1.2, if the elements of  are residually finite, then for any full
relatively quasi-convex subgroup( of$ there is a finite-index subgroup(0 ⩽ ( which is a retract of
a finite-index subgroup of $.
Corollary 1.7. Under Assumption 1.2, if every 1 ∈  is residually finite:

(1) $ is residually finite and
(2) every full relatively quasiconvex subgroup of $ is separable.

The first item is an immediate consequence of Theorem 2.11 and Corollary 4.2. The second
item follows from the residual finiteness of $ and Theorem 1.6. The separability properties of
Corollary 1.7 also follow from [9, Theorem 4.7], whichworks in themore general setting of ‘weakly
relatively geometric’ actions.
We expect the tools in this paper to be of foundational interest for the further study of relatively

geometric actions. In a future work, we plan to prove a relatively geometric version of the cubu-
lation result of Hsu–Wise [16]. We expect such a relatively geometric analogue of the Hsu–Wise
results to be the key to proving a relatively geometric version of Wise’s Quasi-convex Hierarchy
Theorem, one of the main results from [22]. Such a result would provide a wealth of examples of
relatively geometric actions on CAT(0) cube complexes.
Convention 1.8. Conjugation of g by ℎ, written gℎ, is ℎgℎ−1.
The authors thank the referee for a very careful and thoughtful report, which improved

this paper.

2 PRELIMINARIES

In this sectionwe collect some basic definitions and results about relatively hyperbolic groups and
relatively hyperbolic Dehn filling needed for this paper.
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2.1 Relatively hyperbolic groups and relatively quasi-convex
subgroups

Definition 2.1 (Combinatorial horoball) [7, Definition 3.1]. Let Γ be a 1-complex. The combina-
torial horoball based on Γ, denoted(Γ), is the 1-complex whose vertices are Γ(0) × ({0} ∪ ℕ), and
whose edge set consists of (i) edges between (8, 0) and (9, 0) whenever there is an edge between8 and 9 in Γ; (ii) for all : > 0 and all 8,9 ∈ Γ(0) so that 0 < ;Γ(8,9) ⩽ 2:, an edge between (8, :)
and (9, :); and (iii) edges between (8, :) and (8, : + 1) for all 8 ∈ Γ(0) and all : ⩾ 0.
In [7], 2 cells are added to combinatorial horoballs, but we do not need them here. According

to [7, Theorem 3.8, Remark 3.9],(Γ) is 20-hyperbolic for any connected 1-complex Γ.
Definition 2.2 (Cusped space) [7, Definition 3.12]. Let $ be a group and  a finite collection of
subgroups of $. Further, let = be a generating set for $ so that ⟨= ∩ 1⟩ = 1 for each 1 ∈  . LetΓ($, =) be the Cayley graph of$ with respect to =. The cusped space for ($,), denoted ($, , =),
is obtained by gluing a copy of the combinatorial horoball over the Cayley graph Γ1(= ∩ 1) of 1
(with respect to = ∩ 1) to each left translate of the natural copy of Γ1(= ∩ 1) in Γ($, =).
Definition 2.3 [7, Theorem 3.25]. Let ($,) be a group pair, with $ finitely generated,  finite,
and each element of  finitely generated. Then ($,) is relatively hyperbolic if for some (any)
finite generating set = for $ so that ⟨= ∩ 1⟩ = 1 for each 1 ∈  , the cusped space ($, , =) is>-hyperbolic, for some >.
There are analogous definitions of relatively hyperbolic pairs ($,)when $ is not finitely gen-

erated, or when  is not finite (see [14, 18], for example) but we do not need them here. The
hyperbolicity of the cusped space for ($,) does not depend on the choice of =, though of course
the value of > does.
Convention 2.4. Whenever ($,) is relatively hyperbolic, we assume elements of  are infinite.
If this is not the case, discard the finite elements. This does not affect the relative hyperbolicity,
or whether or not a given action is relatively geometric.

Definition 2.5. Let ($,) be relatively hyperbolic, and let ( ⩽ $. The induced peripheral struc-
ture on( is a collection of representatives of(-conjugacy classes of maximal infinite parabolic
subgroups of(.
Suppose ($,) is relatively hyperbolic, that ( ⩽ $, and let be the induced peripheral struc-

ture on (. Given ? ∈ , there exists 1? ∈  and @? ∈ $ so that ? ⩽ 1@?? . Associated to the
pairs ($,) and ((,) (along with choices of generating sets) are cusped spaces %$ and %( .
As explained in [2, §3], the inclusion A ∶ ( → $ extends to an (-equivariant Lipschitz proper
map Ǎ ∶ %( → %$ .
Definition 2.6 [10, Definition 2.9] (see also [2, Definiton 3.11]). Suppose ($,) is relatively hyper-
bolic, that( ⩽ $ and that is the induced peripheral structure on(. The subgroup( is relatively
quasi-convex in ($,) if Ǎ(%() is quasi-convex in %$ .
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There aremany equivalent characterizations of quasi-convexity in relatively hyperbolic groups.
See Hruska [14] for five other conditions (which Hruska proves are all equivalent), and see [17]
and [10] for a proof that the above definition is equivalent to Hruska’s.

Definition 2.7. Let ($,) be relatively hyperbolic,( ⩽ $ a subgroup and the induced periph-
eral structure on (. The subgroup ( is full if for every ? ∈ , ? is finite-index in a maxi-
mal parabolic.

Since we assume elements of  are finitely generated, and relatively quasi-convex subgroups
are themselves relatively hyperbolic we have the following immediate consequence.

Lemma 2.8. Any full relatively quasi-convex subgroup of ($,) is finitely generated.
Definition 2.9. Let ($,) be relatively hyperbolic and  be the cusped space as in Definition 2.2.
A geodesic D in  penetrates a horoball E to depth F > 0 if there exists a G ∈ D ∩ E with ;(G, ⧵E) ⩾ F.

Proposition 2.10 [17, Proposition A.6]. Let ($,) be relatively hyperbolic,  a cusped space for($,) and ( ⩽ $ relatively quasi-convex. There exists a constant F depending on $,  and ( so
that whenever a horoball E in  is F-penetrated by( we have | Stab$(E) ∩ (| =∞.

2.2 Relatively hyperbolic Dehn filling

Suppose ($,) is a group pair and that = {J1 ⊴ 1 ∣ 1 ∈ } is a collection of normal subgroups
of the peripheral groups. The Dehn filling of ($,) determined by  is the pair ($,), where$ = $∕), for ) the normal closure in $ of⋃ , and  is the image of  in $. The elements of are called filling kernels. We sometimes also write $ = $(J1 ∣ 1 ∈ ), when we want to make
the dependence on the choice of filling kernels explicit.
The filling is peripherally finite if J1 is finite-index in 1 for all 1 ∈  . If( < $ then the filling

is an(-filling if for every g ∈ $, |( ∩ 1g | =∞ impliesJg1 ⩽ (. If is a family of subgroups, an-filling is a filling which is an(-filling for all( ∈ .
A property M holds for all sufficiently long fillings of ($,) if there is a finite set = ⊂ ⋃ so thatM holds for any filling where (⋃ ) ∩ = = ∅. There is an obvious meaning to phrases such as ‘for

all sufficiently long(-fillings’, and so on.
The following result is the basic result of relatively hyperbolic Dehn filling, and is due to Osin

[19] (see also [7]).

Theorem 2.11 [19, Theorem 1.1]. Suppose ($,) is relatively hyperbolic, and  ⊂ $ is finite. For
sufficiently long Dehn fillings $ → $ = $(J1 ∣ 1 ∈ ) we have:
(1) For each 1 ∈  , the canonical map 1∕J1 → $ is injective, denote the image by 1;
(2) ($, {1 ∣ 1 ∈ }) is relatively hyperbolic;
(3) The map $ → $ is injective on  .
In [1, 2, 10] various results have been proved controlling the image of relatively quasi-convex

subgroups under Dehn filling. We follow [10].
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Definition 2.12. Let ($,) be relatively hyperbolic, and ( ⩽ $ be relatively quasi-convex. Let be the induced peripheral structure on (, and for each ? ∈  let 1? ∈  and @? ∈ $ be so? ⩽ 1@?? . Let $ → $(J1 ∣ 1 ∈ ) be a Dehn filling. For? ∈ , writeJ? = J@?1? ∩ ?. The induced
filling kernels for ((,) are {J?}?∈. The induced filling for( is the filling( → ((J? ∣ ? ∈ )
Given ($,), ( ⩽ $, a Dehn filling $ → $(J1 ∣ 1 ∈ ), and the induced filling ( → ((J? ∣? ∈ ) as in Definition 2.12, it is clear that there is an induced map A ∶ ((J? ∣ ? ∈ )→ $(J1 ∣1 ∈ ).
The following is an immediate consequence of [10, Propositions 4.5 and 4.6] and [10, Lemma

3.7] (which states that a sufficiently long(-filling is sufficiently ‘(-wide’).
Theorem 2.13. Suppose ($,) is relatively hyperbolic and( ⩽ $ is relatively quasi-convex. For suf-
ficiently long(-fillings $ → $, the induced map A ∶ ((J? ∣ ? ∈ )→ $(J1 ∣ 1 ∈ ) is injective,
with relatively quasi-convex image.

3 BASIC PROPERTIES OF RELATIVELY GEOMETRIC ACTIONS

Throughout this section, we make Assumption 1.2. Let O∶ %̃ → $\%̃ be the quotient map.
As noted in [5], the results of Charney–Crisp [4, Theorem 5.1] immediately imply the following

result.

Proposition 3.1. The space %̃ is quasi-isometric to the coned-off Cayley graph of ($,), and in
particular is &-hyperbolic for some &.
Using one of Hruska’s characterizations of relatively quasi-convexity from [14] we obtain the

following result.

Corollary 3.2. Suppose that( is a relatively quasi-convex subgroup of$, and that P ∈ %̃. The orbit( ⋅ P is quasi-convex in %̃.
Proof. According to [14, (QC-5)], any (-orbit in the coned-off Cayley Γ graph is quasi-convex
(in fact, (QC-5) is stronger than this). Since %̃ is &-hyperbolic, quasi-isometries take quasi-convex
subsets to quasi-convex subsets, so a quasi-isometry of pairs (Γ,( ⋅ 1)→ (%̃,( ⋅ P) implies the
result. □

3.1 Stabilizers of cells

Notation 3.3. Suppose $ is a group and that (1,(2 ⩽ $. If (1 and (2 are commensurable in $,
then we write (1 ∼ (2.
Definition 3.4. Let ($,) be relatively hyperbolic and let $ admit a relatively geometric action
on a CAT(0) cube complex %̃. For 1 ∈  define a sub-complex of %̃

R(1) = ⋃
cells σ{T ∣ Stab(T) ∼ 1}.
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Proposition 3.5. For any 1 ∈  the set R(1) is compact and convex.
Proof. Recall that elements of  are almost malnormal (see, for example, Farb [6, Example 1, p.
819]). Suppose T ⊆ R(1) is a cell and g ∈ $ ⧵ 1. The stabilizer of g ⋅ T is Stab(T)g , which intersects1 in a finite group (since Stab(T) ∼ 1), and hence g ⋅ T ⊈ R(1).
It follows that the quotientmap O|R(1) ∶ R(1)→ % is finite-to-one, and since% is compact,R(1)

is compact. It is clear that if P, W ∈ R(1) then Stab(P) ∼ 1 ∼ Stab(W) and that if D is the geodesic
between P and W then Stab(P) ∩ Stab(W) ∼ 1 and fixes D pointwise. It follows that D ⊆ R(1), soR(1) is convex, as required. □

We now recall a definition and result from Haglund [11].

Definition 3.6 [11, Definition 2.14]. Let X̃ be a CAT(0) cube complex and Y be a sub-complex ofX̃. The (combinatorial) convex hull of Y, denoted Hull(Y), is the intersection of all convex sub-
complexes containing Y.
Given a CAT(0) cube complex X̃ and a hyperplane ( in X̃, denote X̃ ⧵⧵( the union of cubes

of X̃ whose intersection with ( is empty. This has two connected components, which are called
(combinatorial) half-spaces. See [11, Definition 2.15] formore details. According to [11, Proposition
2.17], any convex sub-complex + of X̃ is the intersection of the half-spaces containing +. Hence,
for any sub-complex Y of X̃, Hull(Y) is the intersection of the half-spaces containing Y.
3.2 Cocompact cores for relatively geometric groups

We continue to make Assumption 1.2. In this section, we prove Theorem 1.3. This result builds
on [21]. By Proposition 3.1, %̃ is &-hyperbolic, and by Corollary 3.2, ( acts ‘quasi-convexly’ on %̃,
in the terminology of [21]. Thus, the existence of a convex subset of %̃ preserved by ( and finite
distance from any given (-orbit follows immediately from [21, Proposition 3.3]. However, %̃ is
locally infinite, so it still takes work to prove that the action of( on this core is cocompact. Recall
the statement of Theorem 1.3.

Theorem 1.3. Under Assumption 1.2, for any full relatively quasi-convex subgroup ( of $ and
any compact ) ⊂ %̃ there exists a convex(-invariant sub-complex +̃ of %̃ so that ) ⊂ +̃ and (\+̃
is compact.

Proof. The subgroup ( is finitely generated by Lemma 2.8. Let ℎ1, … ,ℎ: generate (. By replac-
ing ) with the union of the cells whose interiors intersect ) we may assume ) is a finite sub-
complex, and we may add finitely many 1-cells so ) is connected. SinceHull()) = Hull()(1)) we
may replace ) by its 1-skeleton. Enlarge ( ⋅ ) to a connected subset of %̃(1) by fixing P ∈ )(0)
and choosing, for each Z ∈ {1, … , :}, a geodesic DZ between P and ℎZ ⋅ P, and replacing ( ⋅ ) by( ⋅ ) ∪ {( ⋅ DZ ∣ 1 ⩽ Z ⩽ :}. Denote this (connected,(-cocompact) sub-graph of %̃(1) by Γ( .
It suffices to prove the combinatorial convex hull of Γ( is (-cocompact. By Corollary 3.2, (-

orbits in %̃ are quasi-convex, so by [21, Proposition 3.3] there exists ? ⩾ 0 so that Hull(Γ() ⊆?(( ⋅ )). For the following, let X ∶= Hull(Γ(), let [ ∈ X(0) and let Y = Stab(([). Let [,(
denote the collection of edges \ adjacent to [ in %̃(1) for which the hyperplane]\ dual to \ inter-
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sects Γ( non-trivially. Observe [,( is precisely the set of edges adjacent to [ which lie in X. We
claim there are only finitely many Y-orbits of edges in [,( . If Stab$([) is finite, then this is clear
from the fact that $\%̃ is compact. On the other hand, if Y is infinite, then since ( is full and
the $-action on %̃ is relatively geometric, Y acts cocompactly on the edges adjacent to [, so again
the claim is clear. If [ has finite valence there is nothing to show.
The remaining case is that Stab$([) is infinite, [ has infinite valence, and Y is finite. For sim-

plicity, since we have fixed ( and [, we simply write  for [,( .
Towards a contradiction, suppose  is infinite. For \ ∈  with dual hyperplane ]\, let P\ ∈Γ( ∩]\ and let ^\ = Stab$(]\). By passing to an infinite subset of  we may assume:

(1) all elements of  belong to the same Stab$([)-orbit and
(2) all P\ lie in the same(-orbit.
We may insist on the first point because Stab$([) acts cocompactly on the set of edges adjacent

to [, and the second because( acts cocompactly on Γ( (and all of the intersection points P\ lie at
the midpoint of some edge in %̃(1)). We henceforth make the above two assumptions on  (with
extra assumptions to come, also ensured by passing to a further infinite subset).
We claim that for all \ ∈  , |^\ ∩ Stab$([)| <∞. Indeed, the Stab$([) orbit of \ is infinite, soStab$(\) has infinite index in Stab$([), and because the action is relatively geometric Stab$(\) is

finite. Since ^\ ∩ Stab$([) ⊆ Stab$(\), we have the required claim.
Fix \1 ∈  , with dual hyperplane ]1 =]\1 , and let ^1 = ^\1 = Stab$(]1), and P1 = P\1 ∈]1 ∩ Γ( .
For each \ ∈  , choose _\ ∈ Stab$([) so _\ ⋅ \ = \1, and note that _\ ⋅]\ =]1. Since ^1

acts cocompactly on ]1, and we have _\ ⋅ P\ ∈ ]1, there is an infinite subset  ′ ⊂  so that
for all a1,a2 ∈  ′ there exists Oa1,a2 ∈ ^1 so that Oa1,a2_a1 ⋅ Pa1 = _a2 ⋅ Pa2 , which is to say that_−1a2 Oa1,a2_a1 ⋅ Pa1 = Pa2 . We have already ensured that Pa1 and Pa2 lie in the same(-orbit, so letℎa1,a2 ∈ ( be so that ℎa1,a2 ⋅ Pa1 = Pa2 . We now see that _−1a2 Oa1,a2_a1ℎ−1a1,a2 ∈ Stab$(Pa2 ).
Now, Pa2 is themidpoint of an edge dual to the unique hyperplane]a2 , so clearly Stab$(Pa2 ) ⩽^a2 , so there exists ba1,a2 ∈ ^a2 so that

_−1a2 Oa1,a2_a1ℎ−1a1,a2 = (ba1,a2)−1.
From this it follows immediately that

ℎ−1a1,a2ba1,a2_−1a2 Oa1,a2_a1 = 1.
We now translate to the cusped space  = ($,) for ($,) (see Definition 2.2). Recall from

Definition 2.3 that the cusped space is >-hyperbolic for some >, and that it contains a copy of the
Cayley graph of $. So elements of $ are vertices in  (the other vertices lie at some positive depth
and lie in combinatorial horoballs stabilized by the conjugates of elements of ).
Fix a2 ∈  ′, and let _ = _a2 . LetF( ,F^1 andF^a2 be the constants obtained by applying Propo-

sition 2.10 to (, ^1 and ^a2 , respectively.
We now consider other edges a ∈  ′ and make the following simplifying notational choices:Oa = Oa,a2 ∈ ^1, ℎa = ℎa,a2 ∈ (, ba = ba,a2 ∈ ^a2 . Therefore, the above equation becomesℎ−1a ba_−1Oa_a = 1.
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We make some observations. First, ba ∈ ^a2 and ℎa = ℎa,a2 was chosen so that ℎa ⋅ Pa = Pa2 .
Therefore, ℎa ⋅]a =]a2 and ℎ−1a baℎa ∈ ^a . As above, ^a ∩ Stab$([) and ^1 ∩ Stab$([) are
both finite. Since _−1a ∈ Stab$([), ^_−1a1 ∩ Stab$([) is also finite. Finally note that Oa ∈ ^1.
Now, consider a geodesic pentagon in  with vertices 1,ℎ−1a ,ℎ−1a ba ,ℎ−1a ba_−1,ℎ−1a ba_−1Oa , so

the sides are labeled (in order) ℎ−1a , ba , _−1, Oa , _a . Let E[ be the horoball stabilized by Stab$([).
We claim there exists F > 0 not depending on a so that _a penetrates E[ to a depth at most F .
Let c be any point on the edge labeled _a . By subdividing the pentagon into 3 triangles and

applying a standard hyperbolic geometry argument, c is at most 3> from one of the other four
sides of the geodesic pentagon. Therefore, to prove the claim, it suffices to show that each of the
other four sides penetrate Stab$([) to some bounded depth not depending on a. The length of the
side labeled _ does not depend on a. Therefore, the claim reduces to proving that the sides labeledℎ−1a , Oa and ba penetrate E[ to a depth bounded independent of a.
We are in the case where Y = ( ∩ Stab$([) is finite, and the side of the pentagon labeled ℎ−1a

has endpoints in (. Therefore, this side penetrates E[ to a depth at most F( .
Above, we observed ^1 ∩ Stab$([) is finite, so a geodesic with endpoints O−1a and 1 penetratesE[ to a depth at most F^1 . Translating this geodesic by _−1a = ℎ−1a ba_−1Oa ∈ Stab$([) on the left

implies that the side of the pentagon labeled Oa penetrates E[ to a depth at most F^1 .
Recall that |^a ∩ Stab$([)| <∞. Therefore, we have:

|^a2 ∩ Stab$([)ℎa | = |^ℎ−1aa2 ∩ Stab$([)| = |^a ∩ Stab$([)| <∞.
Thus, any geodesic with endpoints 1 and ba ∈ ^a2 penetrates the horoball stabilized by Stab$([)ℎa
to a depth of at most F^a2 . Translating by ℎ−1a , the side of the pentagon labeled ba penetratesStab$([) to a depth at most F^a2 . Hence, we have proved the claim that the side of the pentagon
labeled _a penetrates E[ to a bounded depth not depending on the choice of a.
The bounded depth of _a in E[ implies a bound on the distance (independent of a) between 1

and _a in the naturally embedded copy of the Cayley graph of$ inR. Since$ is finitely generated,
there are only finitelymany possibilities for_a . Recall_a ⋅]a =]1, so we obtain a contradiction
that implies  is finite, as required.
To finish the proof of Theorem 1.3, we finally prove that the(-action onX = Hull(Γ() is cocom-

pact.
For all W ∈ X(0) we have ;%̃(W,Γ() ⩽ ?. Let >W be a shortest path in %̃(1) from Γ( to W so that

|>W| ⩽ ?. Also, (\Γ( is compact, so up to the(-action there are only finitely many possibilities
for the starting point of >W . Also, >W ⊆ X, so by the claim each vertex of >W has only finitely many(-orbits of edges in X adjacent to it. It now follows that the number of (-orbits of paths >W is
finite, meaning that (\X is compact, as required. □

To ensure that these convex cores are compatible with the relatively hyperbolic geometry, we
want to ensure they satisfy a condition similar to fullness.

Corollary 3.7. Let ($,) be a group pair acting relatively geometrically on a CAT(0) cube complex%̃, let ( be a full relatively quasi-convex subgroup. For any compact )0 ⊆ %̃ there exists a convex(-invariant subset +̃(,)0 ⊂ %̃ so that (i))0 ⊆ +̃(,)0 , (ii) for each 1 ∈  we have R(1) ⊂ +̃(,)0 and
(iii) (\+̃(,)0 is compact. Moreover, the(-action on +̃(,)0 is relatively geometric.
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Proof. There are finitely many 1 ∈  and by Proposition 3.5 each R(1) is compact, so we can
choose ) = )0 ∪⋃1∈ R(1) and apply Theorem 1.3. That the (-action is relatively geometric
follows immediately from the following facts: (i) the $-action on %̃ is relatively geometric, (ii) (
is full relatively quasi-convex and (iii) (\+̃(,)0 is compact. □

4 DEHN FILLING AND CUBE COMPLEXES

In previous papers such as [1, 5, 8, 22] the combination of (relatively) hyperbolic groups acting onCAT(0) cube complexes and the behavior under Dehn filling has yielded very powerful tools. We
continue in this theme, in the context of relatively geometric actions.
The following result is [5, Proposition 2.3], and is an immediate consequence of [8, Corollary

6.6]. It follows immediately from the definition of relatively geometric that there exists a family as in the statement below.

Proposition 4.1 [5, Proposition 2.3]. Suppose ($,) is relatively hyperbolic and that $ admits a
relatively geometric action on a CAT(0) cube complex %̃. Let  be a collection of finite-index sub-
groups of elements of  so that any infinite cell stabilizer contains a conjugate of an element of .
For sufficiently long -fillings

$ → $ = $∕)
of ($,), the quotient )\%̃ is a CAT(0) cube complex.
Corollary 4.2. Let ($,) and  be as in Proposition 4.1. For sufficiently long -fillings $ → $ =$(J1 ∣ 1 ∈ ), where each 1∕J1 is virtually special and hyperbolic, the group $ is virtually special
and hyperbolic.
In particular, for sufficiently long peripherally finite -fillings, $ is hyperbolic and virtually spe-

cial.†
Proof. By Theorem 2.11, for sufficiently long fillings $ → $ = $(J1 ∣ 1 ∈ ) the natural map1∕J1 → $ is an embedding for each 1 ∈  and the pair ($, {1∕J1 ∣ 1 ∈ }) is relatively hyper-
bolic. Thus, if each 1∕J1 is hyperbolic then $ itself is a hyperbolic group. Since ($, {1∕J1}) is
relatively hyperbolic, the subgroups 1∕J1 of $ are quasi-convex.
By Proposition 4.1 for sufficiently long -fillings the space % ∶= )\%̃ is a CAT(0) cube com-

plex, and $ = $∕) acts on %. The quotient $\% has the same underlying space as $\%̃ , so it
is compact.
The cell stabilizers for the$-action on% are finite-index subgroups of the parabolic subgroups,

and so these cell stabilizers are also quasi-convex in $. Therefore, if each 1∕J1 is hyperbolic and
virtually special then $ is virtually special by [8, Theorem D]. □

We now prove Theorem 1.4 from the introduction. Recall the statement.

†Recall a group is virtually special if it has a finite-index subgroup which admits a proper and cocompact action on aCAT(0) cube complex with quotient a special cube complex.
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Theorem 1.4. Under Assumption 1.2, if the elements of  are residually finite then there is a finite-
index subgroup $0 of $ so that $0\%̃ is a special cube complex.

Proof. Because the elements of are residually finite, by Proposition 4.1 and Corollary 4.2 there is
a peripherally finite filling $ → $ = $∕) so that$ is virtually special and% = )\%̃ is a CAT(0)

cube complex. Thus, there is a finite-index subgroup $0 ⩽ $ so that $0\% is a special cube com-
plex. Let $0 be the (finite-index) pre-image of $0 in $, and observe that the underlying space of$0\%̃ is the same as the underlying space of $0\% . □

4.1 Cores map to cores under suitable fillings

Suppose ($,) acts relatively geometrically on the CAT(0) cube complex %̃ with residually finite
peripherals. Let  be the set of subgroups from Proposition 4.1, so that for sufficiently long -
fillings $ → $∕) the space )\%̃ is a CAT(0) cube complex. Let ( be a full relatively quasi-
convex subgroup of $ and let +̃ ⊂ %̃ be a convex(-invariant and(-cocompact sub-complex, the
existence of which is guaranteed by Theorem 1.3.
The following summarizes a collection of known and straightforward results about the exis-

tence of certain well-controlled Dehn fillings.

Proposition 4.3. For sufficiently long ( ∪ {(})-fillings$ → $∕), the following statements hold:
(1) The induced maps from each 1∕J1 to $∕) are injective, and if 1 is the image of 1∕J1, then($∕), {1 ∣ 1 ∈ }) is relatively hyperbolic;
(2) If )( ⊴ ( is the kernel of the induced filling of(, then )( = ) ∩ (;
(3) If ( denotes the image of ( in $∕), and  is the collection of images of elements of , then((,) is relatively quasi-convex in ($∕), {1});
(4) % = )\%̃ is a CAT(0) cube complex;
(5) + = )(\+̃ is a CAT(0) cube complex;
(6) If ^1 and ^2 are distinct maximal parabolic subgroups, then ) ∩ ^1 ∩ ^2 = {1};
(7) If = is a finite cell stabilizer, then = ∩ ) = ∅;
(8) The induced map + → % is an immersion.

Proof. Each of the items can be shown to hold for sufficiently long ( ∪ {(})-fillings, and then
we can take a single filling to satisfy them all. Thus, we explain how to ensure each of the items
individually. Item 1 follows from Theorem 2.11. Items 2 and 3 follow from Theorem 2.13. Item 4
follows from Proposition 4.1. For Item 5, note that the (-action on +̃ is relatively geometric by
Corollary 3.7, so this item also follows from Proposition 4.1.
Consider Item 6. By [10, Lemma 2.6] there existsd > 0 so that if^1,^2 aremaximal parabolics,

then ^1 ∩ ^2 acts freely on a subset of the Cayley graph of $ of diameter at most d. Up to the
action of $ there are only finitely many such sub-graphs of the Cayley graph, so there are only
finitelymany$-conjugacy classes of intersections ofmaximal parabolic subgroups^1 ∩ ^2. Recall
that |^1 ∩ ^2| <∞. Therefore, ensuring Item 6 involves excluding finitely many elements from
the filling kernels, so this item holds for sufficiently long fillings. For Item 7, there are finitely
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many conjugacy classes of finite stabilizers by cocompactness of the action. Item 7 then follows
by again excluding finitely many elements from the filling kernels.
Finally, we prove that we can ensure Item 8. Consider the set of cells e ∈ +̃ so that Stab$(e) is

infinite, but Stab((e) is finite. Since (\+̃ is compact, there are only finitely many cells f1, … , f:
in +̃ which contain e. For each such distinct pair fZ , fg so that Stab$(fZ) is finite, let Z,g be the
(possibly empty) finite set of elements g ∈ Stab$(e) so that g ⋅ fZ = fg . There are only finitely
many (-orbits of cells in +̃, so by Theorem 2.11 for sufficiently long fillings $ → $∕) we haveZ,g ∩ ) = ∅ for all such Z, g (and e). Now suppose that$ → $∕) is such a ( ∪ {(})-filling so that
also Items 2, 4 and 5 hold. Further, by taking a longer filling if necessary, we suppose that for any
cell h in % so that Stab$(h) is finite we have ) ∩ Stab$(h) = ∅. In order to obtain a contradiction,
suppose that+ → % is not an immersion and let T1 and T2 be adjacent (distinct) cells in+with the
same image in%. Note that T1 ∩ T2 is a cell in+. Wemay lift to cells T1,T2 in +̃ with e = T1 ∩ T2 a
cell in +̃. Since the images of T1 and T2 are equal in % there exists : ∈ ) so that : ⋅ T1 = T2. Since% is a CAT(0) cube complex, we have : ⋅ e = e, so : ∈ Stab$(e). If Stab$(e) is finite, then we have) ∩ Stab$(e) = ∅, so there is no such :. Therefore, we may assume that Stab$(e) is infinite. IfStab((e) is also infinite, then because we have a relatively geometric action, and the filling is an(-filling, we have ) ∩ Stab$(e) ⩽ (, which means that T1 = T2 in +, contrary to our choice.
We are left with the possibility that Stab$(e) is infinite, but Stab((e) is finite. If Stab$(TZ) is

infinite, it is commensurable into Stab$(e). Then, since the filling is a -filling, ) ∩ Stab$(e) ⩽Stab$(TZ), which contradicts the equation : ⋅ T1 = T2. Finally, suppose that Stab$(T1) andStab$(T2) are both finite, but that Stab$(e) is infinite (and Stab((e) is still finite). In this case,
we have T1 = fZ and T2 = fg for some Z and g, where the fZ and fg are as chosen above. IfStab$(fZ) is infinite and we clearly have : ∈ Z,g , contradicting the assumption about our filling
that Z,g ∩ ) = ∅. This completes the proof. □

We now prove themain result of this section, which immediately implies Theorem 1.5 from the
introduction.

Theorem 4.4. For all sufficiently long ( ∪ {(})-fillings $ → $, the immersion a ∶ + → % is an
embedding, and (the image of) + is convex in %.
Proof. Let be the set of subgroups as in Proposition 4.1. Let be the induced peripheral structure
for(. Let ( =  ∪ {(}.
We only consider (-fillings which are long enough to satisfy the conclusions of Proposi-

tion 4.3. We impose a further condition below so that if both conditions are simultaneously satis-
fied then + is convex in %.
For a cell T ⊆ %̃, denote the $-orbit of T by !T". Moreover, for a cell e ⊆ +̃, let !e"( denote the(-orbit of e. Consider the set  of all pairs (!\1"( , !\2"(), where \1 and \2 are (oriented) edges

in +̃ so that there exist \′1 ∈ !\1"( and \′2 ∈ !\2"( so that \′1 and \′2 have the same initial vertex,
and so that \′1 and \′2 bound the corner of a square in %̃. Since (\+̃ is compact,  is finite. By
rechoosing \2 if necessary, we always assume that if (!\1"( , !\2"() ∈  then the edges \1, \2 in +̃
share the same initial vertex.
Let  ′ denote the set of all f = (!\1"( , !\2"() ∈  so that

(1) \1 and \2 do not bound a square in +̃ and
(2) Stab$(\1) and Stab$(\2) are finite.
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Let f = (!\1"( , !\2"() ∈  ′. Since +̃ is convex in %̃, \1 and \2 do not bound a square in %̃ either.
Furthermore, since Stab$(\1) is finite and because the action of $ on %̃ is cocompact, there are
only finitely many squares a1, … ,a: adjacent to \1 in %̃. For each aZ , let \̂Z2 be the edge of aZ which
shares the initial vertex of \1.
Since Stab$(\2) is finite there are only finitely many elements g ∈ $ so that for some 1 ⩽ Z ⩽ j

we have g ⋅ \̂Z2 = \2. Let f denote the set of all such g , and let  be the union of the f over allf ∈  ′. Note that each f is finite and  ′ ⊆  is finite, so  is finite.
By Theorem 2.11 for sufficiently long fillings $ → $/) , ) ∩  = ∅. Fix now a (–filling $ →$/) long enough to satisfy the conclusion of Proposition 4.3, and also so that ) ∩  = ∅.
We claim that with such a filling, and the notation as above, the subspace + is convex in %. In

order to obtain a contradiction, suppose that there are edges \1, \2 ∈ + so that \1 and \2 do not
bound a square in + but they do bound a square a in %.
Lift \1 to an edge \1 in +̃, and \2 to an edge \2 with the same initial vertex, P say, as \1. Let a be a

lift of a to %̃ so that \1 is an edge on the boundary of a. Since a ∉ +, we see that a ∉ +̃. Moreover,
there is no square in %̃ with \1 and \2 at a corner, because +̃ is convex in %̃.
Let \̂2 be the edge on the boundary of a with initial point P. Because the images of \̂2 and \2 are

both \2 in %, there exists : ∈ ) ∩ Stab$(P) so : ⋅ \̂2 = \2.
First suppose that Stab$(\1) is infinite. Since the$-action on %̃ is relatively geometric, Stab$(\1)

is finite-index in Stab$(P), and since $ → $∕) is a (-filling, Stab$(P) ∩ ) ⩽ Stab$(\1). There-
fore, : ⋅ \1 = \1, so : ⋅ a is a 2-cell which has \1 and \2 as a corner. This is a contradiction, soStab$(\1) is finite.
Now suppose that Stab$(\2) is infinite. In this case, ) ∩ Stab$(P) ⩽ Stab$(\2), which contra-

dicts the equation : ⋅ \̂2 = \2. Therefore, Stab$(\2) is also finite.
Using !⋅" to denote orbits as above, f = (!\1"( , !\2"() ∈  ′. Then : ∈ f ⊆  , contradicting) ∩  = ∅. This contradiction proves the immersion+ → % is locally convex. Since% is aCAT(0)

cube complex, a locally convex immersion is an embedding with convex image, completing the
proof. □

5 COMPLETION AND RETRACTIONWITH COMPLEXES OF
GROUPS

In this section we prove Theorem 1.6. Our approach is to prove a relatively geometric analogue
of the canonical completion and retraction due to Haglund and Wise [12] (see Theorem 5.9
below). We prove this by applying a Dehn filling as in Proposition 4.3 and Theorem 4.4, applying
Agol’s Theorem [1, Theorem 1.1], passing to a carefully chosen finite-index subgroup, applying
the Haglund–Wise construction, and then noting that the retraction of cube complexes induces a
retraction of complexes of groups. For the basic theory of complexes of groups,we refer to [3, III.].
Remark 5.1. The completion and retraction we construct in Theorem 5.9 below relies on a partic-
ular Dehn filling, and so is not as ‘canonical’ as that of Haglund–Wise.

5.1 The canonical completion for relatively geometric complexes of
groups

The following result summarizes Haglund and Wise’s construction of the canonical completion
and retraction for special cube complexes.
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Theorem 5.2 [12, § 6], [13, § 3]. Suppose that Y and E are cube complexes, that E is special, that Y
is compact and that a∶ Y → E is a locally convex combinatorial map. There exists a pair of cube
complexes l(Y,E) and l⊟(Y,E), along with
(1) a homeomorphism b ∶ l⊟(Y,E)→ l(Y,E),
(2) a finite (combinatorial) covering _∶ l(Y,E)→ E,
(3) a (combinatorial) embedding Z ∶ Y → l⊟(Y,E) so that b◦Z is a (combinatorial) embedding, and_◦b◦Z = a,
(4) a cellular retraction n∶ l⊟(Y,E)→ Y (so n◦Z = IdY).
The following diagram commutes:

As described in [13, Definition 3.5], l⊟(Y,E) is obtained from l(Y,E) by sub-dividing certain
cubes (some of those outside of the image of Y), and the map n maps each cube onto a face of a
cube in the target by orthogonal projection.
Our goal is to set up a situation of complexes of groups so that the underlying spaces are

arranged in a diagram as above. We then explain how to turn the corresponding maps into mor-
phisms of complexes of groups, giving Theorem 1.6. We now record the set-up to our construction
in the following assumption, which builds on Assumption 1.2.

Assumption 5.3. Suppose that ($,) is relatively hyperbolic, that %̃ is a CAT(0) cube complex
which admits a relatively geometric action of $ with respect to  , and let % = $\%̃ . Further,
suppose all elements of  are residually finite.
Let ( be a full relatively quasi-convex subgroup, and let ((,) be the peripheral structure on( induced from ($,). If ? ∈  and ? ⩽ 1@?? for some @? ∈ $ and 1? ∈  , let R(1?) be the

sub-complex of %̃ associated to 1? from Definition 3.4. Let +̃ ⊂ %̃ be a convex (-invariant and(-cocompact sub-complex as in the conclusion of Theorem 1.3 so that for each ? ∈  we have@? ⋅ R(1?) ⊂ +̃ (this can be ensured by Proposition 3.5 and Theorem 1.3).
Let  be a collection of subgroups as in the hypotheses of Proposition 4.1.
Let o∶ $ → $ = $(J1 ∣ 1 ∈ ) = $∕) be a peripherally finite ( ∪ {(})-filling which satis-

fies the conclusions of Proposition 4.3 and Theorem 4.4.
Let( be the image of( in $, and let % = )\%̃ , + = )(\+̃ be as in Proposition 4.3.

For the remainder of this section, we make Assumption 5.3.

Proposition 5.4. The group $ is hyperbolic and virtually special. In particular, it is residually
finite and virtually torsion-free. Moreover, there is a finite-index torsion-free subgroup $0 ⩽ $ so
that $0\% is a special cube complex.

Proof. Since the filling $ → $ is peripherally finite, $ is hyperbolic relative to finite groups, and
hence is hyperbolic. Moreover, $ acts cocompactly on the CAT(0) cube complex % (since $\%
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and $\%̃ have the same underlying space). Because the $-action on %̃ is relatively geometric, it
follows that stabilizers for the$-action on% are finite. Thus, the hyperbolic group$ acts properly
and cocompactly on the CAT(0) cube complex %. By Agol’s Theorem, $ is virtually special, and
hence residually finite. It is well known that any residually finite hyperbolic group is virtually
torsion-free, so there is a torsion-free finite-index subgroup $0 ⩽ $ so that $0\% is a special
cube complex, as required. □

Let E = $0\% . Since $0 is torsion-free, $0 = o1(E). Define (0 = ( ∩ $0, and note that (0
is torsion-free, so acts freely on +. Let Y = (0\+ . The convex embedding + → % from the con-
clusion of Theorem 4.4 descends to a locally convex immersion a∶ Y → E. Since E is special,
Theorem 5.2 applies to the map a∶ Y → E, and we obtain the canonical completion l(Y,E),
and its subdivided version l⊟(Y,E) as in Theorem 5.2. Let $1 be the finite-index subgroup of $0
corresponding to the finite cover l(Y,E)→ E. By the construction of the canonical completion(0 ⩽ $1.
Let R = l⊟(Y,E), so $1 = o1(R) (recall l⊟(Y,E) is homeomorphic to l(Y,E)). Let R̃ be theCAT(0) universal cover of R. Since Y → R is an inclusion as a sub-complex, +̃ is a convex sub-

complex of R̃.
Let R̃ be the induced sub-divided version of %̃, and let $1 = o−1($1), a finite-index subgroup

of $0, and(0 = ( ∩ $1, a finite-index subgroup of( so o((0) = (0. The universal cover R of R
is a CAT(0) cube complex which is a sub-divided version of %.
There is a $1-action on R̃ and an (0-action on +̃, so that the underlying space of $1\R̃ is R

and the underlying space of (0\+̃ is Y. Observe the $1-action on R̃ is relatively geometric, with
respect to the induced peripheral structure ($1,1) on $1.
Proposition 5.5. The following properties for the $1-action on R̃ and the(0-action on +̃ hold:

(1) Stabilizers in $1 of cells in R̃ are either trivial or else maximal parabolic subgroups of $1.
(2) If 11 ∈ 1 then the sub-complex R(11) from Definition 3.4 has cells whose stabilizers are exactly11, and R(11) embeds in R under the quotient map.
(3) If T ∈ +̃ is a cell with non-trivial(0-stabilizer then Stab(0 (T) = Stab$1 (T).
Proof. Stabilizers are already finite or finite-index in a maximal parabolic because the action is
relatively geometric. Since $1 is torsion free and o∶ $ → $ is injective on finite stabilizers by
Proposition 4.3.(7), $1 has no non-trivial finite cell stabilizers. The filling o ∶ $ → $ is a-filling
and o is injective on the finite groups {1∕J1}, so because $1 is torsion free any infinite stabilizer
must be maximal parabolic in $1. This proves (1).
Item (2) follows because all non-trivial stabilizers are maximal parabolic in $1 and maximal

parabolic subgroups are malnormal.
For Item 3, suppose T ∈ +̃ has Stab(0 (T) ≠ {1}. By Proposition 4.3.(7) the map( → ( is injec-

tive on finite cell stabilizers. Moreover, (0 is torsion-free, and (0 is the induced filling of (0.
Therefore, Stab(0 (T) is infinite, and hence full parabolic. Let ^ be the maximal parabolic sub-
group of $1 containing Stab(0 (T). Then ^ = Stab$1 (T) by Item 1. Since $1 is torsion-free and o is
an(-filling, Stab(0 (T) = ^ = Stab$1 (T), as required. □
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The actions of $1 on R̃ and (0 on +̃ give rise to a pair of complexes of groups $() and ((),
with underlying scwols  arising from R and arising from Y, respectively. The map Z ∶ Y → R
gives rise to a (non-degenerate) morphism of scwols aZ ∶  →  as in [3, III..1.5]. A complex of
groups comes with a collection of data, one part of which is ‘twisting elements’ (see [3, Definition
III..2.1]. A complex of groups is simple if all the twisting elements are trivial (see [3, III..2.1]). To
build the complexes of groups $() and ((), follow the construction from [3, § III..2.9]. This
construction involves some choices (of the lifts of objects, and of the elements ℎp). However, we
make the following observation.

Lemma 5.6. We may make choices in the constructions of $() and (() so that both are simple
complexes of groups.

Proof. Suppose T is an object in  whose stabilizer is non-trivial, then we lift to (the scwol asso-
ciated to)% and obtain a non-trivial cell stabilizer in $1. By Proposition 5.5.(2) the set of objects in whose stabilizers intersect Stab(T) non-trivially can be simultaneously lifted to  when defin-
ing $(), so for these cells the twisting elements can be chosen to be trivial. For other cells, the
stabilizer is trivial, so twisting elements are trivial. The proof for (() is the same. □

By [3, Corollary III..2.18], the (0-equivariant inclusion +̃ → %̃ induces a morphism of com-
plexes of groups q∶ (()→ $() over aZ . We can, and do, consider themorphism aZ to be inclu-
sion, so that objects and arrows of  are contained in . By choosing lifts of  before lifts of 
when defining the complex of groups structures, we can ensure that if T is an object of, and(T
is non-trivial, then(T = $T, and the map qT ∶ (T → $T is the identity.
Now, let n∶ R → Y be the canonical retraction from Theorem 5.2, and let an ∶  →  be the

associated morphism of scwols (since cells in R may be collapsed under n, the morphism an is
probably degenerate).
We now define a morphism of complexes of groups r∶ $()→ (() over an. Let T be an

object of , and consider the object an(T) ∈ .
Lemma 5.7. Either(an(T) = $T or else(an(T) ∩ $T = {1}.
Proof. The subgroup (an(T) is a cell stabilizer for the action of (0 on +̃, so if (an(T) ≠ {1} then by
Proposition 5.5.(3)(an(T) is a cell stabilizer for the action of $1 on R̃. Cell stabilizers for the action
of$1 on R̃ are either trivial ormaximal parabolic. Therefore, either$T = (an(T) or they are distinct
cell stabilizers in $1 and have trivial intersection by Proposition 4.3.(6) and the construction of$1. □

In case (an(T) = $T define rT to be the identity map, and in case (an(T) ∩ $T = {1} define rT
to be the trivial map. For each arrow p ∈ , define the element r(p) to be the identity element of(s(an(p)).
These data define the structure of a morphism of complexes of groups r, as follows from the

next result (where tan(p) and tp are the homomorphisms in the complexes of groups (() and$(), respectively).
Lemma 5.8. For each arrow p of  we have

tan(p)rZ(p) = rs(p)tp.
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Proof. Suppose first that $s(p) ≠ (s(an(p)). Then $s(p) ∩ (s(an(p)) = {1} by Lemma 5.7. If rZ(p) is
non-trivial, then $Z(p) = (Z(an(p)). The local maps tp,tan(p) are inclusions, so $s(p) ∩ (s(an(p)) is
non-trivial, a contradiction. Therefore, rZ(p) must be trivial, and the lemma holds in this case.
On the other hand, suppose that $s(p) = (s(an(p)). Then rs(p) is the identity map. Non-trivial

cell stabilizers in $1 are maximal parabolic by Proposition 5.5.(1) and intersections of maximal
parabolics are trivial by Proposition 4.3.(6). Therefore, $Z(p) is trivial or $Z(p) = $s(p). In the first
case, rZ(p) is the trivial map and the lemma follows, so suppose $Z(p) = $s(p), a maximal parabolic
subgroup. Note that rZ(p)tp($Z(p)) = $Z(p). Also, we have (in this case) $Z(p) = $s(p) = (s(an(p)).
Moreover, (s(an(p)) is some maximal parabolic in (0, which in turn is finite-index in a maximal
parabolic in(. Becausewe chose +̃ to contain all of the @? ⋅ R(1?) in Assumption 5.3, and because+̃ is(-invariant, we see thatR($Z(p)) ⊆ +̃. Then Z(p) is a cell in the image of (0\+̃ ⊆ $1\R̃ that
is fixed by an. Therefore, rZ(p) is the identity map, and the lemma follows. □

It follows immediately from the construction that r ◦q = Id(().
The induced map on o1 from q is the inclusion A ∶ (0 → $1. Moreover, if f∶ $1 → (0 isf = o1(r) then the fact that r◦q = Id(() implies f ◦ A = Id(0 . This proves Theorem 1.6 from

the introduction.
For future use, we summarize the above construction in the following result (in the statement

below, we elide the difference between a quotient space and the induced complex of groups).

Theorem 5.9. Make Assumption 1.2, and suppose further that elements of  are residually finite.
Let( be a full relatively quasiconvex subgroup of $. There exist∙ a cocompact convex core +̃ ⊆ %̃ for(;∙ finite index subgroups(0 ⩽ ( and $1 ⩽ $, so(0 ⩽ $1; and∙ a subdivision R̃ of %̃ with an embedding +̃ ↪ R̃;
together with morphisms of complexes of groups:

q ∶ (0\+̃ → $1\R̃ and r ∶ $1\R̃ → (0\+̃
so that∙ the underlying map of q is an embedding of special cube complexes;∙ for each cell T of (0\+̃ , either the local group (T is trivial or (T and the local group $q(T) are
equal and the map qT ∶ (T → $q(T) is the identity map;∙ r ◦q is the identity morphism on (0\+̃ .

ACKNOWLEDGEMENTS
The first author is supported in part by an AMS-Simons Travel Grant. The second author is sup-
ported in part by NSF grant DMS-1904913.

JOURNAL INFORMATION
The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.



18 EINSTEIN and GROVES

REFERENCES
1. I. Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087. With an appendix by Agol, Daniel

Groves, and Jason F. Manning.
2. I. Agol, D. Groves, and J. F.Manning,Residual finiteness, QCERFand fillings of hyperbolic groups, Geom. Topol.

13 (2009), no. 2, 1043–1073.
3. M. R. Bridson and A. Haefliger,Metric spaces of non-positive curvature, volume 319 of Grundlehren der Math-

ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, 1999.
4. R. Charney and J. Crisp, Relative hyperbolicity and Artin groups, Geom. Dedicata 129 (2007), 1–13.
5. E. Einstein and D. Groves, Relative cubulations and groups with a 2-sphere boundary, Compos. Math. 156

(2020), no. 4, 862–867.
6. B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810–840.
7. D. Groves and J. F. Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317–429.
8. D. Groves and J. F. Manning, Hyperbolic groups acting improperly, arxiv.org:1808.02325, 2018.
9. D. Groves and J. F. Manning, Specializing cubulated relatively hyperbolic groups, J. Topol., to appear.
10. D. Groves and J. F. Manning, Quasiconvexity and Dehn filling, Amer. J. Math. 143 (2021), no. 1, 95–124.
11. F. Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (2008), 167–209.
12. F. Haglund and D. T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008), no. 5, 1551–1620.
13. F. Haglund and D. T. Wise, A combination theorem for special cube complexes, Ann. of Math. (2) 176 (2012), no.

3, 1427–1482.
14. G. C. Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10

(2010), no. 3, 1807–1856.
15. G. C. Hruska and D. T. Wise, Finiteness properties of cubulated groups, Compos. Math. 150 (2014), no. 3, 453–

506.
16. T. Hsu and D. T. Wise, Cubulating malnormal amalgams, Invent. Math. 199 (2015), no. 2, 293–331.
17. J. F. Manning and E. Martínez-Pedroza, Separation of relatively quasiconvex subgroups, Pacific J. Math. 244

(2010), no. 2, 309–334.
18. D. V. Osin,Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem.

Amer. Math. Soc. 179 (2006), no. 843, vi+100.
19. D. V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295–326.
20. P. Przytycki andD. T.Wise,Mixed 3-manifolds are virtually special, J. Amer.Math. Soc. 31 (2018), no. 2, 319–347.
21. M. Sageev and D. T. Wise, Cores for quasiconvex actions, Proc. Amer. Math. Soc. 143 (2015), no. (7), 2731–2741.
22. D. T. Wise, The structure of groups with a quasiconvex hierarchy, Princeton University Press, Princeton, 2021.


	Relatively geometric actions on (0) cube complexes
	Abstract
	1 | INTRODUCTION
	2 | PRELIMINARIES
	2.1 | Relatively hyperbolic groups and relatively quasi-convex subgroups
	2.2 | Relatively hyperbolic Dehn filling

	3 | BASIC PROPERTIES OF RELATIVELY GEOMETRIC ACTIONS
	3.1 | Stabilizers of cells
	3.2 | Cocompact cores for relatively geometric groups

	4 | DEHN FILLING AND CUBE COMPLEXES
	4.1 | Cores map to cores under suitable fillings

	5 | COMPLETION AND RETRACTION WITH COMPLEXES OF GROUPS
	5.1 | The canonical completion for relatively geometric complexes of groups

	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


