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Engineering the bilayer: emerging genetic toolkits for mechanistic lipid biology
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Abstract

The structural diversity of lipids underpins the biophysical properties of cellular membranes,
which vary across all scales of biological organization. Since lipid composition results from
complex metabolic and transport pathways, its experimental control has been a major goal of
mechanistic membrane biology. Here, we argue that in the wake of synthetic biology similar
metabolic engineering strategies can be applied to control the composition, physicochemical
properties, and function of cell membranes. In one emerging area, titratable expression
platforms allow for specific and genome-wide alterations in lipid biosynthetic genes, providing
analogue control over lipidome stoichiometry in membranes. Simultaneously, heterologous
expression of biosynthetic genes and pathways has allowed for gain-of-function experiments
with diverse lipids in non-native systems. Finally, we highlight future directions for tool
development, including recently discovered lipid transport pathways to intracellular lipid pools.
Further tool development providing synthetic control of membrane properties can allow
biologists to untangle membrane lipid structure-associated functions.

Introduction

A long-standing question in membrane biology is simply “why are there so many lipids?” [1]. Even
simple cell compartments, like the E. coli inner membrane (IM), feature hundreds of distinct
components resulting from distinct lipid classes and their combinatorial diversity of modifications.
The heterogeneity of lipid composition across lipid bilayers is represented across multiple scales:
between organisms, cell and tissue types, between organelles, and even individual bilayer
leaflets. Advances in lipidomics, informatics, and imaging tools have begun to unravel the
complexity of biological membrane composition. For example, the molecular asymmetry of the
eukaryotic plasma membrane, although long recognized, has only recently been fully described
in its molecular details [2]**. The composition of lipids in a bilayer dictates its structural (packing,
thickness, surface charge, phase behavior) as well as dynamic (permeability, diffusivity, response
to deformation) properties, which are utilized by nearly all membrane-associated cellular
processes. Lipid composition thus represents the chemical lever by which these biophysical
concepts can be tested in cells.

In addition to compartmentalizing biology, membranes also serve as molecular
microenvironments for a range of processes in metabolism, protein biogenesis and transport, and
signaling pathways and action potential generation [3]. Natural selection has likely tailored the
biophysical properties of individual membranes for specific functions across biological systems.
Indeed, membrane composition is dynamic in organisms, responsive to environmental cues [4]
and developmental stages [5]. We are learning more about how lipids are altered in neurological
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and metabolic diseases [6] and aging processes [7]. In one recent example, shotgun lipidomics
of mouse brain tissue resolved cell-specific lipids and unique lipid class signatures across different
regions of the brain in response to aging, including plasmenyl ether lipids (plasmalogens) [8].
Plasmalogens have been implicated in ferroptosis [9] and mitochondrial respirasome assembly
[10], two major causes of reactive oxygen mediated cell death. However, like for many lipid
classes, we still do not understand their fundamental roles in cells. Identifying functional changes
in lipid composition and underlying biochemical pathways is thus directly relevant to human health
for the development of therapeutics and diagnostic platforms [11].

Despite advancements in lipidomics and other technologies, mechanistic understanding of
membrane structure and lipid function is still lacking. In our view, there are several key
experimental challenges that contribute to this. Structural lipids act via their subtle effects on
membrane packing and dynamics, in contrast to protein binding and enzyme kinetics that are
highly nonlinear and saturate quickly. Thus, quantitative manipulation of lipid stoichiometry is key
to understanding their function. Historically, this has been difficult because lipids are not easily
amenable to manipulation by classical genetic methods. Lipid synthesis is often controlled by
redundant and inter-dependent gene products and many pathways are essential for cell viability.
Supplementation strategies for adding or depleting specific lipids to cells have long sought to have
such quantitative control over composition. However, the unique properties of lipids, namely their
insolubility and non-linear partitioning between different aggregate and bound states, pose a
challenge for their controlled incorporation. Chemical inhibitors of specific lipid synthesis
pathways, such as in early sphingolipid metabolism [12], can provide dosed control over some
pathways, but fail to canvas the diversity of lipids found across organisms.

Here our focus is on genetic manipulation of lipid biosynthesis as a general strategy for untangling
membrane function. Compared to functional studies of macromolecules (protein and nucleic acid),
genetic control of lipids is challenging because they are not direct gene products, but produced
through complex metabolic pathways. However, advances in precise genetic tools, often
developed with totally different applications in mind, are allowing for increasingly fine-tuned
control of lipid composition in living cells. We highlight recent advances made using this approach,
which we trace back to experiments carried out in model microorganisms twenty years ago.

Modulation of membrane composition through metabolic engineering

Through broad advancements in genetics, genome sequencing, and recombinant DNA
technologies, the characterization and heterologous recombination of central dogma components
has enabled the emergence of metabolic engineering as a source for building key tools to
manipulate and study metabolic pathways. Since the 1960s, lipid biologists have used genetic
manipulation, e.g. knockouts, disruptions, and temperature sensitive alleles, to deduce the
diversity of biosynthetic pathways underlying lipid metabolism. Initially, loss-of-function
experiments in lipid pathways used gene disruptions or temperature sensitive alleles [13] in
bacteria to map out lipid pathways, such as phospholipid biosynthesis by Eugene Kennedy and
his lab members [14] and fatty acid synthesis by John Cronan and colleagues [15]. The essential
work of identifying lipid biosynthetic pathways still continues to this day and is the basis for all
subsequent efforts at lipid manipulation. For example, only within the past year, have key
enzymes for plasmalogen biosynthesis been identified in mammals [16] and bacteria [17].

In efforts led by Bill Dowhan’s lab 20 years ago, lipid biologists started applying the genetic
manipulation of biosynthetic pathways not just for their discovery, but to study lipid function itself
(Figure 1). This conceptual advancement is best demonstrated by the elegant work the Dowhan
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lab carried out on the role of phospholipid headgroup composition in membrane protein topology
using E. coli mutants deficient in phosphatidylethanolamine (PE). Active transport by LacY was
used as a read out of properly oriented transmembrane (TM) protein, which became inverted
upon PE loss [18]*. Importantly, physiological results were coupled to reconstitution experiments
showing LacY topology was altered by PE content in vesicles. These efforts to interrogate the
role of phospholipid composition in TM protein folding are still ongoing, but have led to significant
revisions of the classic “positive inside” rule of TM protein topology [19]

While gene disruptions can provide functional information in specific cases, fine-tuned control of
lipid stoichiometry is needed to model the cellular and biophysical roles for most bulk lipid
components. One of the cornerstone tools of metabolic engineering has been the development
and application of titratable promoters that can fine tune gene expression levels in response to
concentrations of an inducer or repressor molecule. When the synthesis of enzymes controlling
rate-limiting steps in a pathway are placed under such promoters, control over the stoichiometry
of the resulting lipid species can be achieved. Commonly used engineered promoters
include mammalian [20] and yeast [21] systems based on bacterial Tet Repressor proteins and
bacterial systems based on pBAD promoters [22]. An early example of applying these to lipid
biology was the Tet-based repression of yeast cardiolipin synthase by the Dowhan lab, first
demonstrating that this mitochondrial lipid was involved in the stability of respiratory
supercomplexes [23].

In our experience, the more precise a lipid component can be manipulated experimentally, the
more likely a researcher has of uncovering specific mechanisms underlying their function. There
are two reasons for this: 1) For lipids that have pleiotropic effects, careful titration of their
stoichiometry allows identification of processes most sensitive to their depletion i.e., what breaks
first? 2) With sufficient resolution, titration of lipid composition allows for the building of
mechanistic models based on specific biophysical measurements. Genetic tools, such as
titratable promoters, that allow for analogue control of lipid synthesis are thus generally preferable
over those, such as knockouts, that allow only binary or on/off control. An important consideration
for these systems is the homogeneity of their repression, since endogenous promoter systems
feature feedback loops to generate “on or off’ transcriptional responses. Without validation,
titration across a population can be deceiving, and in fact reflect the proportion of cells exhibiting
strictly “on” or “off” state [24]. Synthetic titratable systems or engineered cell backgrounds have
been developed to overcome these limitations, but evaluation of their performance with single cell
analytical techniques (e.g. flow cytometry) is still important.

The power of highly titratable lipid synthesis platforms is highlighted by our recent efforts to
understand cellular roles for unsaturated fatty acids (UFA), essential lipid components whose
exact stoichiometry regulates the viscosity or fluidity of membranes. In E. coli, we focused our
efforts on titration of fabB, whose gene product had been found by the Cronan lab to be rate-
limiting for UFA biosynthesis almost 40 years ago [25]. Using a highly engineered K12
background that allows for homogenous and titratable expression off the pBAD promoter, we
demonstrated that unsaturated lipid levels in the inner membrane (IM) could be manipulated
across the entire viable range [26]**. While very low levels of UFA led to pleiotropic defects in
the cell envelope, more gentle modulation revealed a specific phenotype in respiratory
metabolism. Because of the high performance of our genetic system, we were able to measure
the exact dependence of respiratory function, as well as related biochemical parameters -
membrane viscosity, diffusion rates of ubiquinone, ETC enzyme activities - as a function of UFA
levels. These data were integrated into a quantitative model of the respiratory chain that
highlighted a role for ubiquinone diffusion, which in turn is dependent on IM lipid composition.
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Current limitations in precise control of lipid stoichiometry

There are two major limitations in current lipid engineering strategies based on titratable
promoters or libraries of constitutive promoters [27]. First, there are a very limited number of high-
performing promoters systems, which both limits their application to specific organisms and/or
cell backgrounds and current systems do not allow for simultaneous manipulation of multiple lipid
components. The latter could be especially important for probing lipid interactions underlying
models of cell organization [28] and transport pathways [29]. Second, the ability of a promoter
systems suitability to alter pathway production must be empirically characterized in each
application, which is laborious and not guaranteed to work. Generally, expression levels must be
titrated in a specific and highly gene-dependent range in order to affect the final abundance of a
lipid product at steady state. Promoters that are too strong or weak can be modified by point
mutations or through changes to ribosomal binding sites [30] or elements affecting transcript
stability, but such tools are not yet commonplace outside of core systems like E. coli.

An attractive path forward to overcome these limitations is through programmable genetic
systems, such as CRISPR-Cas, which are now being applied to modulate gene expression in
numerous biological systems. CRISPR-Cas9 inhibition (CRISPRi) has emerged as an especially
versatile tool for the knockout or knockdown of genes with targeted single guide RNAs (sgRNA)
[31]. While titratable CRISPRIi repression has so far had limited applications in lipid pathways, the
recent knockout of the mammalian fatty acid desaturase gene, SCD1, in goat mammary epithelial
cells demonstrates the potential for using CRISPRI to alter cellular lipid composition [32].
Bidirectional titratable CRISPR transcription has been recently demonstrated with the
implementation of sgRNA libraries varying in target locations for the controlled tuning of metabolic
pathway genes [33-35]**. In addition, design of biological circuits to quantitatively control
repression levels has been shown through mediating the expression of CRISPRi sgRNA with
titratable promoters [36,37]. These early studies demonstrate the opportunity to overcome the
traditional confines of binary gene deletion or overexpression in genetic approaches and study
gene function at intermediate expression levels. In application to lipid biology, these metabolic
engineering methods can be used to stoichiometrically vary specific lipid content in membranes,
modulate chemical and biophysical membrane properties, and study lipid membrane mechanics
when combined with biochemical, microscopic, and -omics analysis.

Plug n’ play: porting lipid components between organism to test their function

Heterologous protein expression in non-native hosts is a well-established tool in elucidating
enzyme function. In principle, this methodology can be further extended to investigate the function
of enzyme products (e.g. lipids) by engineering their synthesis in non-native cell systems. Since
the behavior of structural lipids within membranes is governed by physical properties,
heterologous expression between organisms can allow deep inference into membrane structure-
function that is removed from specific lipid chemistries (Figure 2). The first example of applying
heterologous expression to lipid function was again carried out by the Dowhan lab to address the
determinant of TM protein topology. In PE mutants that were earlier shown to have defective LacY
topology, heterologous synthesis of the non-native phosphatidylcholine (PC) was used to
demonstrate the general role for zwitterionic lipids. In separate experiments, glycosylated
diacylglycerolipids, neutral lipids common in cyanobacteria and plants, engineered in E. coli
through expression of glycosyltransferases could also rescue PE mutants in restoring LacY
function and topology [38]*. This finding supported a model in which the reduction of membrane
charge density by either zwitterionic or neutral lipids was sufficient for proper TM topology.
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Interestingly, longer diglycosylated headgroups were unable to restore this function, revealing a
likely role for lipid spontaneous curvature [38]*.

In the age of synthetic biology, metabolic engineering has made efforts to carry out heterologous
expression commonplace through genome mining, codon optimization, and rapid design-build-
test-learn cycles. Because of the technology focus on biofuels and other lipid-derived bioproducts,
many of these approaches have themselves been demonstrated for central lipid pathways. As
an instructive example, introducing a set of five genes from Bacillus subtilis into E. coli has been
used to synthesize low melting temperature biofuels containing branched chain fatty acids
(BCFAs) [39]. In our own work, we adapted this same engineering strategy to produce fluidizing
acyl chains in E. coli phospholipids, demonstrating that decreased membrane viscosity due to
BCFA incorporation also increased respiration rates [26]**. Another example is the insertion of
the phosphoinositide (P1) and Pl-phosphate biosynthetic pathway in E.coli [40]. Pl-phosphates
are scarce but essential polyphosphate lipids in eukaryotic cells, especially for cell signaling. In
this work, E.coli is an engineered platform to study the role of Pl-phosphates in a minimal system
that can be used to bridge in vitro and endogenous in vivo studies.

One particularly striking endeavor in lipid engineering has been the effort by multiple labs to
remodel the E. coli lipidome through the synthesis of isoprenoid-based ether lipids characteristic
of archaeal cells [41,42]**. It has been hypothesized that the last universal common ancestor had
a mixed heterochiral membrane composition containing ether-linked isoprenoid lipids (archaeal)
and ester-linked fatty acid lipids (bacterial, eukaryotic), so such systems represent attractive
models for understanding this evolutionary branching point. Because these lipids diverge in the
chirality of glycerol-phosphate backbone, they represent distinct pathways that must be ported
over in full. Initial experiments expressing six archaeal genes in E. coli could only produce modest
amounts of final product, but recent advances have led to E. coli strains containing up to 30 mol%.
Key to this achievement was the simultaneous overexpression of the native E. coli DXP pathway
for producing isoprenoid building blocks, a strategy first pioneered by metabolic engineers to
produce bulk amounts of terpenes for biotechnology [43].

While major lipid classes are largely conserved across eukaryotes, there is an underappreciated
level of structural diversity within them among animals, plants, and fungi [44]. As a powerhouse
of metabolic engineering, budding yeast (Saccharomyces cerevisiae) has proven to be an
excellent platform to test the functions of chemical differences among eukaryotic lipids, such as
sterols and sphingolipids, in vivo. Recently, S. cerevisiae sterol metabolism was engineered with
plant enzymes as a heterologous production platform for plant sterols (phytosterols) [45]*.
Engineered strains were capable of producing high titers of campesterol, without growth penalty,
when heavily esterified and sequestered. However, free phytosterols produced in are1/are2 sterol
esterase mutants significantly impaired growth [45]*. Adapted laboratory evolution by repeated
culture partially restored the growth phenotype of these strains while increasing free phytosterol
production [45]*. However, the function of foreign phytosterols within S. cerevisiae membranes,
in relation to the growth phenotype, and its adapted complementation, remains puzzling. To some
extent, foreign sterols are toxic in Fungi, potentially because they can inhibit sterol transporters
such as Osh proteins [46,47]. Hence, the effect of phytosterol production in yeast on intracellular
lipid distribution, and comparative lipid distributions between plants and yeast, is of great interest.
Similarly, S. cerevisiae has been engineered to synthesize glucuronic acid-bearing glycan head
groups of plant sphingolipids (phytosphingolipids) [48,49]. Besides supporting enzyme function,
the impact of non-native sphingolipid head group composition and charge, pertaining to analogue
function in biological membranes, has not been investigated. Notably, membrane phase
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partitioning mediated by intramolecular interactions between sterols and sphingolipids is one
model by which organization within a membrane can occur [28].

Much of the emerging questions in membrane biophysics center around tissue-specific lipid
compositions in animals, especially in the central nervous system [50]. Animal brains are highly
enriched in polyunsaturated fatty acid (PUFA) containing phospholipids, plasmalogens, and
sugar-modified sphingolipids (gangliosides), all of which still have poorly defined cellular
functions. To explore these questions, lipid engineering in whole animal model systems is needed.
Drosophila melanogaster is one powerful model system with strong genetic tools that allow for
tissue and cell-type specific gene expression [51]. Recently, neuron-specific ectopic expression
of PUFA-producing 12 fatty acid desaturase from Caenorhabditis elegans altered the
thermoregulatory behavior of D. melanogaster, resulting in decreased reproductive temperature
preference [52]**. In a similar strategy, neuron-specific synthesis of foreign GM3 gangliosides in
D. melanogaster increased amyloid protein aggregation [53]. Thus, heterologous synthesis of
lipids in multicellular organisms has the potential to interconnect lipid function and membrane
properties with animal behavior and disease pathology. Because Drosophila also lacks enzymes
involved in the synthesis of sterols and PUFAs, dietary manipulation of these components has
also been demonstrated [54,55], but this lacks the tissue specificity that genetic approaches can
provide.

Future Directions

Linking the genes involved in metabolic pathways for the production of lipids provided a map for
the exploration of lipid function. Alongside the push to understand lipid function through genetic
manipulation, metabolic engineering has emerged as both a conceptual approach and discrete
set of tools for dissecting and controlling desired metabolic pathways [56]. In its application to lipid
biology, metabolic engineering can be used to control biosynthetic pathways to modify the
physicochemical parameters of cell membranes. As synthetic biology expands into broader and
more complex systems [567], we anticipate that this strategy will become more powerful for
answering fundamental questions about membranes and lipids.

Looking forward, a limitation of the approaches discussed here is that they are focused on
modifying global lipidomes — the total lipid composition of cells. In contrast, the composition of
specific organellar and sub-organellar membranes results partly from biosynthesis, but also
intracellular trafficking, lipid transport, and sorting across eukaryotic compartments. Advances in
lipidomics and biochemical fractionation have allowed us to understand heterogeneity of lipid
composition across compartments in greater details, but we still lack strong tools to experimentally
manipulate it As with the discovery of major lipid biosynthetic pathways over the past 50 years,
we are now beginning to understand the biochemical machinery underlying lipid transport
pathways [58]. In the future, it is likely that engineering efforts based on our knowledge of these
systems will allow for tailored compositions for studying unique organellar properties and
functions.
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Figure 1. The metabolic engineering pipeline to investigate lipid function. Once well
characterized, lipid biosynthetic pathways can be predictably modulated through the titration of
enzyme levels carrying out rate-limiting steps or knockdown (KOs) of genes encoding non-
essential enzymes. The former is done through engineered control systems which allow for
controllable expression levels, primarily through the replacement or targeting of the endogenous
promoter. The chemical outputs of engineered systems are first characterized through mass
spectrometry-based lipidomics. Lipid composition defines the resulting biophysical properties,
which can also be measured by spectroscopic and imaging approaches. These systems can then
be used to investigate the mechanisms by which lipid composition acts in cells. Examples of this
approach include the elucidation of how acyl chain unsaturation controls cellular respiration [26]**
and how headgroup composition controls TM protein topology [38]*.
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Figure 2. Examples of successful incorporation of heterologous lipid synthesis pathways
in non-native hosts. Row 1: Branched chain fatty acids from B. subtilis produced in E. coli next
to native unbranched fatty acid [26]**. Row 2: Isoprenoid linked ether lipids from Archaea
produced in E. coli next to native fatty acid ester [42]**. Row 3: Mono- and di-glucosyl
glycerolipids from A. thaliana produced in E. coli next to native phosphatidylethanolamine [38].
Row 4: Campesterol [45]* and mannosyl glycosyl inositol phosphorylceramide (GIPC) [49] from
A. thaliania produced in S. cerevisiae next to native ergosterol and mannosyl di-inositol
phosphorylceramide (MIP2C). Row 5: Polyunsaturated fatty acid from C. elegans produced in D.

melanogaster next to a native unsaturated fatty acid [52]**.

Row 6: Ganglio-series
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glycosphingolipid GM3 structure from M. musculus produced in D. melanogaster next to native
arthro-series glycosphingolipid [53].
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