T Available online at www.sciencedirect.com _—
Journal of

et ScienceDirect Differential
. < Equations
ELSEVIER Journal of Differential Equations 320 (2022) 419-468 E———————

www.elsevier.com/locate/jde

Pointwise dispersive estimates for Schrodinger
operators on product cones

Blake Keeler “*, Jeremy L. Marzuola "

& Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
b Department of Mathematics, UNC-Chapel Hill, CB#3250 Phillips Hall, Chapel Hill, NC 27599, United States of
America

Received 30 May 2021; revised 1 January 2022; accepted 27 February 2022
Available online 10 March 2022

Abstract

In this manuscript, we investigate the dispersive properties of solutions to the Schrodinger equation with
a weakly decaying radial potential on cones. If the potential has sufficient polynomial decay at infinity, we
obtain a variety of results on the perturbed conic resolvent operator Ry and the nature of the continuous
spectrum of —A + V. Using these results, we are able to show that the Schrodinger flow on each eigenspace
of the link manifold satisfies a weighted L' —» > dispersive estimate. In odd dimensions, the decay rate
we compute is consistent with that of the Schrodinger equation in a Euclidean space of the same dimension,
but the spatial weights reflect the more complicated regularity issues in frequency that we face in the form
of the spectral measure. In even dimensions, we prove a similar estimate, but with a loss of 11/2 compared
to the sharp Euclidean estimate.
© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Let (X, h) be a smooth, compact Riemannian manifold of dimension n — 1, and consider the
cone on X, denoted C(X) and defined as RT x X with metric g given by g = dr? + r2h. The
corresponding Laplace operator on C(X) is given by

* Corresponding author.
E-mail addresses: bkeeler2015@gmail.com (B. Keeler), marzuola@math.unc.edu (J.L. Marzuola).

https://doi.org/10.1016/j.jde.2022.02.060
0022-0396/© 2022 Elsevier Inc. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2022.02.060&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2022.02.060
http://www.elsevier.com/locate/jde
mailto:bkeeler2015@gmail.com
mailto:marzuola@math.unc.edu
https://doi.org/10.1016/j.jde.2022.02.060

B. Keeler and J.L. Marzuola Journal of Differential Equations 320 (2022) 419-468
s n—1 1
Acix) =0, + Tar + r—zAh,

where Ay, is the Laplacian on X, taken with the negative semidefinite sign convention. We take
Acx) with the Friedrich’s extension for simplicity. We are interested in dispersive estimates for
the Schrodinger flow

P, H=-Acx) +V, (1.1

where P, denotes projection onto the continuous spectrum of H. Here, we assume that V is a
real-valued radial potential satisfying certain decay assumptions at infinity.

Besides giving direct insight into the behavior of waves, dispersive bounds also have interest-
ing applications in nonlinear problems. For example, stability questions around static solutions
in nonlinear models such as wave maps have been studied using dispersive decay estimates.
See the work of Krieger-Schlag [44] and more recently Krieger-Miao-Schlag [43] for instance.
See also the many works of Lawrie-Oh-Shahshahani [45-50] for treatment of geometric wave
and Schrodinger equations in hyperbolic space. Pointwise decay estimates also play a role in
obtaining enhanced existence times using normal form methods, see for instance recent works
of Ifrim-Tataru [40] and Germain-Pusateri-Rousset [23]. It is also an intrinsically interesting
question to understand the interaction between a background potential and diffraction in order to
better characterize the dynamics of waves on manifolds with conic singularities. Conic manifolds
have arisen naturally in the work of Hintz-Vasy and Hafner-Hintz-Vasy on general relativity, see
[34,38,39] and in particular the recent discussion in the work of Hintz [37].

Dispersive behavior of Schrédinger flows has been studied in a tremendous variety of ge-
ometric settings and under many different conditions on the asymptotic decay and regularity
properties of the potential V. In R”, some of the first ideas arose in the seminal paper of Journé-
Soffer-Sogge [41], who proved dispersive decay for n > 3 with potentials that had no zero energy
eigenvalues or resonances and were somewhat strongly decaying and regular. Since then, decay
estimates have been improved in a variety of settings. Early works by Goldberg and collaborators
carefully addressed the regularity required of the potential in higher dimensions and decay rates
in 3 dimensions in the absence of embedded resonance and eigenvalues, see [4,24,25,29,30].

Further works for perturbations of the Euclidean Laplacian have extended dispersive decay
results to the setting where —A 4 V has an embedded resonance at zero energy, which results
in a weaker decay estimate in time, see for instance especially the works of Erdogan-Schlag in 3
dimensions [16,18], Erdogan-Green in two dimensions [14,17], Green in 5 dimensions [31], as
well as Goldberg-Green and Erdogan-Goldberg-Green in odd and even dimensions > 4 [15,26—
28]. Recent progress by Blair-Sire-Sogge [7] has pushed the construction of the spectral measure
for —A + V to cases where the regularity of the potential V is at very critical levels, though
the authors have not explored dispersive decay directly. This is by no means an exhaustive list,
but these results are representative of the techniques involved, namely careful control of the free
resolvent, the use of resolvent expansions, the role of the regularity of the potential V, and the
spectral structure of the operator —A + V. The survey article by Wilhelm Schlag [60] contains
an excellent overview of the key ideas involved.

Dispersive decay estimates have also been studied in several other geometries. For example,
Schrodinger operators with potential were studied on hyperbolic space by David Borthwick and
the second author in [8]. See the recent article of Bouclet [9] for a broad overview of results on
the asymptotically Euclidean setting, the article by Hassell-Zhang [36] and references therein
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for results on asymptotically conic manifolds, as well as the articles of Schlag-Soffer-Staubach
[61,62] for manifolds with conical ends. Analysis of the Laplacian on product cones is related
to the analysis of Schrodinger operators on R” with an inverse square potential which have been
studied in various settings, e.g. the works [42,55-57,68] by various authors.

The study of the Laplacian on product cones has a rich history. See the classical results of
Cheeger-Taylor, [10,11], where the spectral measure was first described. As a result, there have
been several works that studied evolution equations and their decay estimates on product cones,
especially wave equations [3,5,6,19,20,51,71]. See also [1] for information about scattering res-
onances on hyperbolic cones.

Analysis of dispersive estimates for Schrodinger equations using the resolvent and spectral
measure on a product cone has been studied in the recent results of Zhang-Zheng [69,70]. These
are the most closely related results to ours, but only study specific types of potentials that can
be treated more perturbatively, hence they need not fully explore the regularity and decay of the
spectral measure in the same fashion undertaken here. See also the very recent work of Chen [12]
that studies local dispersive behavior on manifolds with non-product conic singularities.

On pure product cones, we prove pointwise decay estimates for the mode-by-mode decom-
position of the Schrodinger flow (1.1). By this, we mean that if {¢ j}?io is a basis of L?(X)
consisting of eigenfunctions of Ay, then the Schrédinger flow on C(X) can be formally decom-
posed as

o0
"M p.=Y """ P.E;, 1.2)
j=0

where E; : L?(X) — L*(X) denotes projection on to the linear span of ¢ ;. We show that if

Ve p_z"Loo(R+) for o sufficiently large, where p(r) = 1 4 r is a weight function, and if the
perturbed resolvent

Ry(2?) = (=Acx) +V — 257!

does not have a pole at z = 0, then each component of (1.2) satisfies a weighted pointwise esti-
n

mate. In odd dimensions, we prove this with the same ¢~ 2 decay rate as in the Euclidean case,
while in even dimensions, there is a loss of t% which we do not expect to be sharp. The signifi-
cance of the resolvent can be seen quite directly if we express the Schrodinger flow in terms of
the continuous part of spectral measure for —Ac(x) + V, which we denote by dIly. In partic-
ular, if we assume for the moment that there are no resonances or eigenvalues embedded in the
continuous spectrum, then we have

0
S p. =/e”” dTly ().
0

By Stone’s formula and a change of variables from 1 to A%, we can rewrite the spectral measure
in terms of the boundary values of the resolvent via

Ay Gy = - 2100y~ RyO2 —i
Vo) =5 [RV()\ +i0) — Ry (A 10)] di.
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The behavior of the resolvent is thus of critical importance for understanding the properties of
the Schrodinger flow. Hence, a large portion of this manuscript is dedicated to analyzing the
structure of Ry (z2), or more specifically its projections Ry, j(zz) = Ry (A)E j- Our first main
result establishes that each Ry ; admits a meromorphic continuation to the logarithmic cover of
C \ {0} and satisfies a version of the limiting absorption principle.

Theorem 1. For V € p~2° L®(R") with o > % Rv’j(zz) admits a meromorphic continuation
to the logarithmic cover of C \ {0}. In the region where Im(zz) > 0, we have that

RV,J‘(ZZ) CLPSRT N dr) — L2 TSR, dr)

is a bounded operator for all % < 8 < 0. Here, the notation L>*(R*,r*~1dr) denotes the
weighted L*-space given by {f :RT — C: [ |f(r)2p(r)® r"~1dr < o).

Furthermore, if 0 > % + k, then the derivatives of Ry, j up to order k satisfy the limiting
absorption principle. That is, for 0 < € < k, there exists an My > 0 such that

¥Ry ;A £i0): LXRY, " dr) — L2 P (RT, r" " dr) (1.3)

is a bounded operator for all . > My and all % +k < & < . In particular, we have the operator
bound

2.8 2.8 = (1.4)

C.
H 'Ry (A2 + iO)‘ %

foreach O <€ <k, for some Cjy > 0andall A > My.

We note that (1.4) implies that —Ac(x) + V does not have any embedded resonances in the in-
terval [My, co), but analysis of the Schrodinger flow requires information about the spectrum at
low energy as well. The next theorem handles this by showing that indeed there are no embedded
eigenvalues or resonances in (0, 0o). In fact, for this theorem, we do not need V to be a radial
potential, since the arguments involved do not rely as heavily on the conic structure.

Theorem 2. For V € p~2° L®(C(X)) with o > %, then —Ac(x) + V has continuous spectrum
[0, 00), with no embedded eigenvalues or resonances in the range (0, 00).

This theorem will be used implicitly throughout this manuscript, but we postpone its proof un-
til Appendix A, since the techniques involved in the proof are quite distinct from those used
elsewhere in the argument.

In order to analyze the Schrodinger flow, we also require estimates on the behavior of the
resolvent at low energy. For this we must assume that —Ac(x) 4+ V does not have a resonance
at zero. With this assumption, we obtain the following refinements in our operator bounds from
Theorem 1.

Theorem 3. Suppose V € p~2? L°(R") with o > % + k, and assume that —Acx) + V does
not have a resonance at zero energy. Then, (1.4) can be improved to

C]’[
<=L forallr>0 (1.5)

o 124
HaARV,,(x L0 L, =
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for % +k <8 <o and 0 < £ < k. Under the stronger hypothesis that 5 + k < § < o, we also
have that the imaginary part of Ry j satisfies

H 8¢ Im Ry _j (32 + i0)

<C, AMT2R forall a e [0, 11, (1.6)

L2*5~>L2*_5 -

for some C},e > 0and each0 < (¢ <k.

By combining these mapping properties with the behavior of the free resolvent Ry(z?) :=
(—Acx) — zz)_l , we are able to establish weighted pointwise estimates on the Schwartz kernel
of Ry, j()\2 £ i0), from which we can obtain our primary result on the time-decay rate of the
Schrodinger flow.

Theorem 4. Suppose C(X) is of odd dimension n > 3. Let V € p~2° LR ") with

n
0>2n(——|.
4

If Ry (%) does not have a pole at z = 0, then for any integer j > 0 and o > 2 [ﬂ n—-2)—
% + 2, we have

o= PeEj fll oo+ < Ciaot 2 Ip“Ej fll 1R+ o1 dr» (1.7)
for some Cj s > 0.

We do not claim that the lower bound on the exponent « in the spatial weights is optimal,
but these weights are required to obtain Theorem 4 from the techniques used in this article.
In particular, the weights are needed to counteract certain regularity issues which arise when
differentiating the resolvent with respect to 1. See Remark 3.7 for additional details. Furthermore,
the dependence on j appears as a consequence of the fact that the pointwise bounds we establish
on each Ry ; are not necessarily summable in j. Similar weighted mode-by-mode estimates are
obtained in the works of Schlag-Soffer-Staubach [61,62] in the case of surfaces of revolution and
related mode by mode decay rates were established for the wave equation on the Schwarzschild
space-time in Donninger-Schlag-Soffer [13].

Remark 1.1. In the case where 7 is even, the techniques of this article give a slightly weaker
estimate of the form

o=t P.E; <Ciaot™ T Ip%E; 1.8
p e ¢ jf||L°°(R+)_ jaol llo ]f”Ll(]RJr,r"*ldr)’ (1.8)

for analogous conditions on V and «, where the loss of the % power of decay in ¢ arises as a
result of regularity issues encountered in the analysis of the spectral measure near zero energy.
We expect that with more sophisticated techniques it may be possible to improve this estimate to
give the full 173 decay rate exhibited in R”.
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1.1. Outline of the paper

In Section 2, we summarize known facts regarding the form of the free resolvent Ro(z%). The
results presented are primarily taken from [3], which draws heavily upon the seminal work of
[11]. In Section 3, we prove operator bounds on the free resolvent using properties of Bessel
and Hankel functions. These bounds include a limiting absorption principle for the projections
Ro,j := RoE ;. Section 4 combines these bounds on the free resolvent with perturbation theory
arguments to prove Theorems | and 3. Then, in Section 5, we prove weighted pointwise bounds
on the perturbed resolvent kernel using a Birman-Schwinger expansion along with the previous
operator estimates. Finally, in Section 6, we use the representation of the spectral measure in
terms of the resolvent combined with the pointwise resolvent bounds to establish Theorem 4.
We also provide three appendices at the end of the paper. Appendix A contains the proof of
Theorem 2, which demonstrates the absence of embedded eigenvalues and resonances. This fact
is of critical importance throughout the paper. For the benefit of the reader, Appendix B provides
a full derivation of the free resolvent formula presented in Section 2. This derivation largely
follows the work of [3], but we provide some additional clarifying details. Finally, Appendix C
uses ideas from [19] to give a modified dispersive estimate for the free Schrodinger flow which
is both unweighted and not restricted to individual eigenspaces of the link manifold.
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2. The free resolvent
In this section, we outline some key facts about the kernel of the free resolvent operator
Ro(2) = (=Acw — )7 1 LA(C(X)) — LHC(X)), .1
for complex z. This is equivalent to analyzing solutions of the equation
(—Acp —Du=f 2.2)

for f € L2(C(X)). To proceed, we decompose u and f into the basis {¢;} of eigenfunctions on
X as

e 9]

FEO) =3 5000, ut.0)= u;(r)g;®).

Jj=1 Jj=1
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Denote by — u? the eigenvalues of Ay, associated to each ;. Then, we obtain that (2.2) is equiv-
alent to the collection of equations

2
n—1 I
(3r2+ p 3r+Z2—r—2j)uj(r)=—fj(r), j=0,1,2,.... (2.3)

Therefore, we can express the resolvent Ro(zz) as

Ro(*) f(r,0) =) u;(r)g;(©®),

j=0

with u ; as above. If we define the jth radial resolvent Ry ; %) by

r r

1 AN
e ;
Ro j(z%) = (a,z b0 42— —2’) (2.4)

as an operator on L>(R*, r"~1 dr), then the full resolvent is given by

Ro(2)f(r.0) =) Ro j(z*) f;(r)p;(6).

j=0

The work of Baskin and Yang [3] presents several results about these radial resolvents, which we
summarize in the following lemma.

Lemma 2.1 (Baskin-Yang [3]). For Imz > 0, the action of the j-th radial resolvent is given by

e ¢]

Roj ()1 () = / Ro.j (515 8) f ()8 ds,

0

and the kernel Ry, j(zz; r; s) takes the form

: n—=2
T(rs)” 2y, (zs)Hlf})(zr), s<r

(s} 2 2.5)
T (rs) "2y, 2 HP (29), 5 >,

Ro.j(z%;758) = {

where J,; and HU(}) denote the Bessel and Hankel functions of the first kind of order vj, re-

spectively. Moreover, for any fixed x € C°(R™ x X), the cutoff resolvent x Ro(z®) x admits a
meromorphic continuation to the logarithmic cover A of C \ 0.

Remark 2.2. We note that the above formula for the kernel of Ry ; differs from that presented
in [3] by a sign, since we have defined the resolvent as (—Ac¢(x) — 72! rather than (Acx) +

z2)~!, but this is of no consequence for the remainder of the analysis.
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From Lemma 2.1, we can construct the absolutely continuous part of the spectral measure for
the free Laplacian on C(X), which we denote by dIlp. By Stone’s formula, we can write the
continuous part of the spectral measure in terms of the difference between the boundary values
of the resolvent as we approach the continuous spectrum from above and below. That is, for
pneRT,

| =1 =1
dMo(u) = 5= lim [(=Ace) = (u+ie)" = (=Ace = (w—ie) ™| du

1
= Tlm(_AC(X) —(n+i0)"du.
Tl

We can then reparametrize the continuous spectrum by changing variables via > A2 for A > 0,
which allows us to write

1
dTo(p) = —ImRy(A2 + i0)A d .
Tl

Noting that H,f]) = ij +iY,, where Y, is the Bessel function of the second kind of order v, we
have by Lemma 2.1 that

ImRy ; (Az +i0;r,5) = %(rs)f% ij (kr)ij (As).
From this, we obtain the following lemma.

Lemma 2.3. The continuous part of the spectral measure of —Ac(x), with the convention that
A2 is the spectral parameter, is given by

1 a2 —
dTlo(:x,y) = —(rs)" 2 Y Jy (Ar)Jy;(As); ()9 (D) hdh, 1 >0,
i e .
]:
where x = (r,0) and y = (s, {) are points in C(X).
3. Estimates on the free resolvent

In this section, we prove a variety of weighted estimates on the unperturbed radial resolvents
Ry, j. These estimates heavily rely on the asymptotic formulae for the Bessel and Hankel func-
tions near zero and infinity. Of particular interest is the behavior of Ry, ; measured in the weighted
LY spaces defined by

oo
L%%R+,W—Hh)={f:R+—>C:/}f@ﬂqﬁwopﬂ*dr<ox,
0

where p(r) = 1 + r. For ease of notation, we simply write L9° to denote the space
L%°(R™T, r"~1dr) where there can be no confusion. The estimates for the free resolvent on
these spaces will prove useful in Sections 4 and 5 for establishing the mapping properties of the
perturbed resolvent.
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We begin with a quantitative formulation of the Limiting Absorption Principle for the ra-
dial resolvents. See [65] for a recent discussion of this in the more general setting of scattering
manifolds.

Proposition 3.1. Let k > 0 be an integer. Then for any o > % +k,

. Cjx,
10X Ro_j (A +i0) || p2.0y j2o < —27

3.1
=T 3.1

forall |A] > 1.

Remark 3.2. A noteworthy observation here is that the constant C;  » in Proposition 3.1 is not
known a priori to be bounded as a function of j. In the special case where k = 0, the statement of
Proposition 3.1 can be shown to hold for the full resolvent Ry (A2 4 i0) with a uniform constant
using extremely precise asymptotics for the Bessel and Hankel functions such as those found in

[21]. However, when k > O this method fails due to the fact that differentiating J, (Ar)H,fl) (As)
yields a linear combination of products of Bessel and Hankel functions with mismatched orders,
and hence the resulting constants in the estimates for the Hankel functions are not balanced by
those of the Bessel functions, in contrast to the kK = 0 case.

Proof. If f € L>, we have

2

x| 00
185 Ro.; W* +i0) f 175, = / / A Ro ;A2 40057, 8) f(s)s" Tds| (A1 4+r)"2r " ar.
0 10
Inserting a factor of (1 4 s5)7? (1 +5)? and applying Cauchy-Schwartz, we see that

o0
195 Ro,j (A% +i0) f1I75 o < / 185 Ro,j A% +i0; 7, )25 o 1 f 1122, (1 4+ 1) 727" dr
0

= 135 Ro,j 32 405 - )25 5 oo I f 11720

L}

Hence, it suffices to show that the kernel satisfies

aQ

k 2 ). 2
||8AR0,]()" +l05 y ‘)”L%,—rrLz.—d S _2

>

By definition,

oo 00
15 Ro,j (32 +i0: - )20 20 =//a§Ro,,;<A2+io; r. ) (148) 72 (14r) 72 ()"~ ds r,
0 0

(3.2)
Recalling the piecewise formula (2.5) for the resolvent kernel, we have that
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195 Ro.j 32 400t )20 20

22 oo r 5
=7 / f [af (Hv(})(kr)ij (,\s))] rs)(1+7)"2 (1 + )% dsdr
o (3.3)

T[2 o0 0
T// ok (HP 0, (,\r))] ()1 + )2 (1 +5)72 dsdr.
o r

By changing the order of integration, we get that the first term on the right-hand side of (3.3) can
be rewritten as
7'[2
4

/ [af (Hlfj_l)(kr)Jy_, ()\s))]2 rs)(1+7)"2° (1 4+ 5)~2 dr ds. (3.4)

We note that up to a relabeling of r, s, this is exactly equal to the second term in (3.3), and hence

15 Ro,j (32 +i0: -, )72 20 =

27T v 2 , ) (3.5)
5 / / [aA (H§j>(xs)1v_, (,\r))] rs)(1+ )2 (1 + 5)2% ds dr.
0o r
Note that if C, (x) is either a Bessel or Hankel function of order v, we have
y 1
Cy(x) = 3 Cr1(x) = Cyo1 (X)), (3.6)

and so the triangle inequality reduces the proof of Proposition 3.1 to showing that the following
lemma holds. O

Lemma 3.3. Let £, m, k be nonnegative integers with £ +m = k, and suppose «, B € Z are such
that |a| < £ and |B| < m. Then for any v > "— there exists a C > 0 depending only on k, v
such that

C
/f|Jv+a(kr)|2|Hlf_1:ﬂ()»s)|2r1+2€s1+2’”(1+s)_2"(l+r)_2°dsdr§p, A>1, 3.7)

0 r
provided that o > % + k.
Proof. This proof, and others which follow it, make extensive use of asymptotic estimates for

the Bessel and Hankel functions, which we record here for later use. For any v € R, there exist
constants C,,, C{, > O such that when 0 < |7]| < 1,

@l Clel’, |HO @] <™ (3.8)
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and when |t| > 1,

1 _1
@l = Clel 72, [HD @] < Cllel 2, (3.9)

To prove Lemma 3.3, let us first write the left-hand side of (3.7) as (X)) + I (A), where
each term is obtained by restricting the integral in the r variable to 0 < r < % and ; <r < oo,
respectively. To estimate I (A), note that by (3.9), we have

9] o0
4

C C
/s‘+2’"(1 +5) 7 Hy )y (hs) P ds < — - /szm(l +5) 20 ds < -
1 1
A A
aslongaso >m+ % Combining this with (3.8), we have

1 1
% 00

C/
\/‘\/\|Jv+a()‘-r)|2|H(]) ()\.S)lz 1+2@ 1+2Yn(l+s)—2o'(l+r)—20 dsdrf 7\/‘rl-‘rzf()\',,)2(114-0{)dr
0
C//
<
= )\‘2

(3.10)

for any £ > 0, since A > 1. Furthermore, if 0 < r < i, we have

1
%

1
x
C
/ 1+2m(1+ §)~ 20|H(]) ()»S)| ds < S0TF /S1+2(n1—v—ﬂ)ds
r

r

C 14+2(m—v—pB) 1 C’ —2(v+p)..2m
< WV X —r | < 7(}\.}") r

since 1 +2(m — B —v) <0. Hence, if we recall that k = £ + m > |«| + || and apply (3.8), we
have

>—=

|Jv+a<xr>| 21 H )y Q)P P2 (1L 4 5)72 (1 + 1) 72 ds dr

\PI—‘

1 1

A
/
- %/szkw)z(a—mdr /(A Ji+2kta=p) g,
0

A2k+2

aQ
aQ

>
&)
N
+
W

>
&}
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for all k > 0 when A > 1. Combining this with (3.10) proves that I (1) < )% for some C > 0 and
all A > 1. Since for any fixed k there are only finitely many possibilities for £, m, «, B, we can
choose C to depend only on k and v.

Now, to estimate Il (1), we apply (3.9) to both the Bessel and Hankel functions to obtain

o0 o0
no) < C//rlﬂf(l +r) 7202 4+ 9) 72 () "L ds dr

L1

>

C o0 00
= —2//(1 +r)X D1 +5)2 ) ds dr
00

=<

e

’

provided that o > k + % which completes the proof of Lemma 3.3. O
It will also prove useful to have a bound on the L>° — L?>~° mapping properties of the
imaginary part of each Rg ; when A is small. In particular, we are able to show that this operator
norm has a precise polynomial rate of vanishing as A — 0.
Proposition 3.4. For any integer k > 0 and any o > 5 + k, we have that
195 Tm Ro,j (A% + i0) || 20—y 20 < Cjpg A7

when 0 < A < 1.

Proof. By the discussion at the beginning of the proof of Proposition 3.1, it is sufficient to show
that

185 Tm R j 0% 40 7, 8)|| 20 20 < CA" 727K (3.11)
for 0 < A < 1. By (3.5) we have

105 Im Ro,j (3% +i0; 7, )12 5 o

[e.e]

=cf/[a§ (ij(kr)ij(As))]z(l + 1) +9)" 2 (rs) dr ds.
00

Using the recursive formula for derivatives of the Bessel functions as before, we can reduce the
proof to showing that

o)
[P G Pl g G P 4 120 14 9) 7 drds < €20 G
0
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for any integers ¢, m > 0 with £ 4+ m = k and integers «, § with |a| < £ and |8| < m. Since the
above integral is separable, it is in fact enough to show

o0
/r1+2£|ij+a()Lr)|2(l +r) 7 dr <CATTH (3.13)
0

for any ¢ <k and || < ¢, since analogous estimates will apply to the integral in the s variable.
First, notice that (3.8) implies

1 1

A A

/ P AP 41T dr < C / PGP (L )T dr
0 0

1 1

:Ck2(VJ+a)/r]+2(e+a+Vj)(l+r)720’ drSC/)LZ(Uj+a)/(l+r)1+2(£+a+vj7ﬂ) dr
0 0

1 242(t4+a+vj—o)
(1 + x) 1

< C1K2(07K)*2(A’ 4 1)2+2((+a+v]»70) + C2)\’2(Vj+01)

< C//)\Z(vﬂra)

< C1A2(076)72 + C2A2(vj+a).

Recalling that o > % +k and £ < k, we have that 2(c — £) > n. Also, we have 2(v; + a) >
n — 2+ 2a, and since |o| < € < k, we have that the above is bounded by a constant times
A272% for 0 < A < 1 as claimed.

Next, we consider the integral over the region where % < r < o0. For this, we use (3.9) to
obtain

oo oo

/rl+2£|ij+a()Lr)|2(1 +r) 2 dr gcfrlm(xr)—l(l +r) 72 dr

1

1
x

oo
C C/ 1 1+2(€*0’)
< _ 1 Z(Z—U)d < 1 _
=7 /( +7r) r< + .
1

A

— C/)\2(0—E)—2(A + 1)14‘2(3—0) S C//)\,2(U_l)_2.

The restrictions on o guarantee that the above is bounded by a constant times A" > for 0 < A < 1.
Therefore, (3.13) holds, and the proof is complete. O

Next, we aim to prove weighted L9 estimates on the free radial resolvent kernels Ry_;, which
enables us to control the terms in the Birman-Schwinger series for Ry ; when applied iteratively.

First, we make note of a technical lemma.
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Lemma 3.5. Let v > 5=, 2 and ) > 0. Suppose that 8, m € Z are such that || <m and v+ > 0.
Assume also that 1 < g < oo and that o > Z + m. Then there exist C1, Cy > 0 such that

n—1
- q\n-"7
/us) T G114 )05 ds < | €1 et o
cao, O<r=l.
(3.14)

Proof. Letus denote by 7 (}) the integral in the statement above, and observe that I (1) is clearly
nonnegative for all A > 0. If we split the integral into the regions where 0 < s < % and % <s<
oo, we can apply (3.8) and (3.9) to J,,4g to obtain that

1
* o
_n=2 7 _n—=1
I(A)gC/(As)q<v 2 +‘”")(1+s)—‘1<’s"—1ds+c/mf(’" 2 )(1+s)_‘/“s”_lds
1
x

for some constant C > 0. To estimate these integrals, we treat the cases A > 1 and A < 1 sepa-
rately. First suppose that A > 1. Then we see that

1 1
A

_n=2
/(xs)q(” 2 +ﬁ*’”)(l 1 5) 995 gg < A1 /(1 1+5)79%ds < CAT", (3.15)
0 0

since v — % + B +m >0 and go > 0. For the integral over % < § < 00, we have
o
/(A.) (1+S) qUnlds_ fn1+q )(1+S) quS
Under the hypothesis that o > g + m, the integral
x
f n— 1+q )(1+S) qads
1

converges and is bounded by constant which is independent of A. For the region where % <s<l,
we have

1
Sn l+t]( )(1+S) —49 ds < Ch —n— q( 1).

Thus,
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e¢]

a1
/sq (1+s) 995"~ 1ds<max{k"k( 2)}

when A > 1.
Now take the case where 0 < A < 1. Then, since || <m and v > %, we have

1
X

_n=2
/(As)"(” P +5+’")(1+s)—q“s"—1ds §C/(1+s)"_l_q“ ds

1\"—4°
=C’ (1+—) <C"a°",
by =

For the integral over % < s < 00, we notice that

o]

/A.S) (1+S) qan lds<)» f(1+ )I‘l 1+q )d

since 1 < % s. Recalling the assumption that o > g + m, we can see that

and therefore,

—1 < 1 n—1 n—1 1 n+q<m—%—a>
") f(l Loyl ) gy < el <1 + ‘)
1

<)o",
Therefore, I(A) < CA9° " forO<A<1. O

Next, we establish some estimates on the L7-° norms of Ry ; (A2 £i0)(r, s) when the norm is
only taken with respect to one variable.

Proposition 3.6. Let k > 0 be an integer. Also assume that 1 < g < oo and

o>" 4k (3.16)
q

Then for . > 1, we have
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[0Im Ry ; (A> 4 i0; 7, ) || oo

< Cigoid 2 3 [ (e i opmt)] G
L+m=k
for some C; 4 51 > 0. Furthermore, when A < 1, we have
k 12 4. . n—2 k=151
10, ImRy ; (A" +i0; 7, )pae <Cjgorr" “(1+Ar)"~ 2. (3.18)
By symmetry, we also have the analogous estimates
05 Im Ry ; (A> 4 i0; -, 5)|| a0
S Cj,q,a,k)"n_z_k Z I:(l +)\.S)Z_% (Cl)"—g + CZ)\-m_%)iI (319)
C+m=k
for A > 1, and
k VTS . n—2 k—1s1
19, ImRy, ; (A" +i0; -, $)|[Lac < Cjgokr" “(1+As)" " 2 (3.20)
when A < 1.

Remark 3.7. Note that in the special case where the order of differentiation is less than or equal
to %, these estimates reduce to simple polynomial behavior in A. However, if the number of
derivatives exceeds this threshold value, we begin to see a non-uniformity with respect to the
secondary radial variable. This phenomenon is why the spatial weights appear in the statement
of Theorem 4.

Proof. Recall that the kernel of ImRy_; (A% 4 i0) has the explicit expression
2, . Y _n=2
ImRo j (A" +i0;r,5) = E(rs) 7 Jy; (Ar) Jy; (As).
Since Bessel functions satisfy the recursion relation
, 1
Ty () =5 (Hom1 () = o1 (x))
we see that 8/’{ ImRy, 2+ i0) can be written as a finite linear combination of terms of the form

(rs) ™" FES Jy () g5 (A), (3.21)
where £, m, o, B are integers satisfying £ + m =k, |a¢| < £, and |B| < m. Therefore, by the

triangle inequality, it suffices to estimate the weighted L4 norms of such terms. Taking the L9-?
norm with respect to the s variable in (3.21) yields

n=2
2

o
_n=2 _
M<"—2—k>(,\r)q(4 2 )|ij+a(kr)|qf(ks)q<m )|ij+ﬁ()\s)|q(1+S)_qosn_lds.
0
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Note that since || < £, we have that the product (Ar)e_% |J,,_ i+a (Ar)| is a continuous function
of Ar, and thus by (3.9) we obtain

()"’)q(z_%>|hj+a()\")|q <cq _i_)\r)q(l—%).

Thus, we have that the L?°° norm of (3.21) is bounded by
CA9n=2=h (1 +Ar) /(As) |ij+ﬂ(xs)|q(1 +5)79%s"  ds. (3.22)

Now, observe that the integral above is in exactly the right form for us to apply Lemma 3.5.
Hence, we have that (3.22) is bounded by

n—1 n—1
CAIm=2-k) (] 4 Ar)"(“T) max{A ™", ,\q(’"‘T)}, A>1
CHan—2=ktqo—n| 4 )Lr)q(e—%)’ A<,
for some possibly larger constant C. In the case where A > 1, simply taking gth roots gives
estimate (3.17). When A < 1, we can use that ¢ satisfies (3.16) to obtain that g(n — 2 — k) +
qo —n > q(n — 2). Once again, taking gth roots gives (3.18). O

Next, we estimate the L¢ norm of the resolvent when we do not take the imaginary part.

Proposition 3.8. Let k > 0 be an integer and suppose 1 < q < 5. Then, if o satisfies (3.16),
we have that when A > 1,

18 Roj (A% +i0: r, g < CA"2HF Y [(1+Ar)f (C1+C2/\”’ )] (3.23)
L+m=k

for some C,C1,Cy > 0. If0 < A <1, then we have
108 Roj (A2 +i0): 7, )l oo < CIA™ + Coa" 27K (1 4 ar) "7 (3.24)

Under the same assumptions on o, we also have

13 Ro ;G2 £0; -, 9)llae < C 2 30 [ 42977 (Cr e )] G25)
L+m=k

when A > 1, and
18Ry j (A2 4 i0; -, $) || Lae < C1A™* + Coa" =27k (1 4 Ak (3.26)
when 0 < A < 1.
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Proof. Recalling that

gy, () HS) (), s <r

Ro,j (A +i0)(r,s) =1 2
0. )7, 5) 21y, O HSP (1s), s >

and (3.6), we see that when s < r, B)If Ry, j()L2 + i0; r, s) can be written as a finite linear combi-
nation of terms of the form

(rs)” T Sva +a()\s)H‘fllﬁ(kr),

where, as in the proof of Proposition 3.6, ¢, m are nonnegative integers with £ +m =k and «,
are any integers with |o| < £ and |8| < m. Similarly, when r < s, we can write BfRoyj()\z +
i0)(r, s) as a combination of terms of the same form, but with the roles of r and s reversed.
Therefore, it suffices to estimate

LG 7) = 109) T 1™ 0y, g G Y Gr) 0~ ()L o<y 1 (3.27)
and
n—2
HOur) = 1s)™ T '™ dy s Or) Hy 5 ()0 ™ ()L s (3.28)

for any ¢, m, «, B as above.
We first estimate / (A, r) in the case where Ar > 1. Under this hypothesis, we can apply (3.9)
to obtain

I(h,r) < CAI0—2~ k)()»r) /(As) |ij+,g(xs)|qa+s) 975" ds.

We now apply Lemma 3.5 to the integral above, which gives

Cpa(n—2- k)(kr) ( n )max{)» —n ,\ ( an1)}, Ar>1,12>1

I(A,r)< (3.29)

n—1
C)ﬂ(”*sz“’)*"(kr) ( _T), Aar>1,0<r<l.

Now let us consider the case where Ar < 1. Here we can apply (3.8), which gives
e
16, r) = =20 gyt (17 e /(x) FH) (| )90 sn a5, (330)

If r < 1, we can bound the right-hand side of (3.30) by
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’
C)Lq(n72fk)()Lr)q(kfotJrﬂf(an))rnfl /(1 +S)7qa ds < gkq(nfsz)(kr)fq(n72)rn
— aqukrnfq(nfbi

p
since k —a+ > 0and [(145)797ds < C'r for some C" > 0. Recalling that g < -5, we
0
obtain
IO, <, ar<lr<L (3.31)

Now, if r > 1, we can bound the right-hand side (3.30) by

.
8020 (3 pyg(k=a+p—(1-2) /(1 4 5)99 511 g < CAIM=27K) (3 ) =0 0=D) (| | pyn—go

(3.32)
since k —a + B >0 and Ar < 1. Recalling that o > g, we have that the right-hand side of (3.31)
by

CA~akp=a=2) < o4k, (3.33)
Combining (3.31) and (3.33), we have that
I,y <CA %, ar<l. (3.34)

Combining (3.34) with (3.29), we have that

c/\q<”—2"‘)(1+xr)"< El)max{/\ . (- %1)}’ A=l

I(h,r)< (3.35)

g—nzl
CiAtk + Cppa02(1 4+ a3 ), 0<i=1.

Next, we move on to estimating I (A, r). Again we consider the cases Ar > 1 and Ar <1
separately. For Ar > 1, we apply (3.8) and (3.9) to obtain

I (A, r)<C)\q(n 2— k)()L ) /(}\ ) (1+S) qogn—1 go

We can then repeat arguments from the proof of Lemma 3.5 to obtain

_ n—1
Aq(n=2—k) (3 ( 2) Ank(_T) Aar>1,12>1
1o, n <€ ants T max hoarzbizlo g5
C)Lq(n72fk)()hr)q(e_7>’ Aar>1,0<1.
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Now consider the case where Ar < 1. Here we rewrite II (A, r) as

o0
_n=2 _n—=2
39020y (¢ 2)|Jv,-+a<xr)l‘f / T / G " E ) HD )91 +5)7975 ds,

vi+pB

For the integral over % < § < 00, we can apply (3.9) to H( )ﬂ and (3.8) to Jy, 44 and repeat

previous calculations to show that

21020 0yt ()5, e / Gy )lH“lﬁ<ks>|q(1+s) 405" ds

1
*

_n—l
_ Jcra=20 max g, MO e <iaz (3.37)
- CAI(n=2-k)yqo—n_ ar<l,a<l1
_n=l
_ Jenae=2-0 maxpn, WO <tz
| oaa=2), ar <1, A<,

where the last inequality follows since o > = + k. Now, in the region where r < s < }1” we must
apply (3.8), which yields
1
(eY) q qo gn—1 —12 -y i*f}) —go n—1
(A ) |H Jrﬁ()\s)l 1+s)" ds<C (ks) : (1+s5)"9%s"""ds

1
A
_ cpo(m=r5i-v-p) /s””‘f(’”"zz“fﬁ)(l +5)7 ds.
r

If A > 1, then (1 4+ s)79° is bounded by a uniform constant for all » < s < -, and so the above is

bounded by

A’

C (r” - r"(xr)q(’"‘%‘”f‘ﬂ»

after possibly increasing C. We note that under our assumptions on r and X, this quantity is still
nonnegative. Combining this with (3.8) applied to J,; o, We obtain
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1

vj

A
_n=2 _n=2
028 e ”UWMMW/@N@ ) IH )91+ )77 ds
r

< CA1=27R) (1 (=252 +vj+e) <x" —r"(r)? (’”"zzv-fﬂ)) (3:38)

< 24(1=2-k) [Cl)\n(kr)q(lz—%wﬁa) 4 C2rnq(:12)(kr)q(k+aﬁ)j| ’

for some Cy, C; > 0. Recalling that || < £, v; > %, and || + |B| < k, we obtain

1
X
_n=2 —n2
Aq(n*Z*k)(Ar)q(e 7 )|ij+a(xr)|q/()»s)q(m : )IH,f;i_ﬁ()\S)lq(l +9)7s" ds
r (3.39)
< 2401=2k) [Cl)f” i Czrnfq(an)]

for Ar <1 and A > 1, since ¢ < .%5.
1

Finally, we consider the same integral over » < s < -, once again where 0 < Ar < 1 but with

A < 1. For this, we further subdivide into the cases where r < 1 and r > 1. If r < 1, we split

the integral into the regions where r <s <l and 1 <s < % For the integral over r <s < 1, we

can repeat the above argument to obtain the same bound as in (3.39). To bound the integral over
l<s< %, we use (3.8) to obtain

1

vj

%
_n=2 _n=2
;ﬂ(n—z—k)(,\,f)"(Z 2 >|Jv+a(kr)|q/(ks)q(m : )IH(llﬁ(M)lq(l+S)_q05n_ld5
1

1
n—2 ) ‘ _n=2_
sMWPWMﬂ“T*W@fWVWZ )14 515 ds
1

1

1
n=2 . _n=2_ _
=)ﬂ(°‘_ﬁ)rq(€_ 2 +v]+a)/sq(m 7Y ﬁ)+n l(l—l—s)—q" ds

1

[e¢]

S)\‘—qlcv/qu+rz—l(1 +s)—q0 ds
1

<ca,
where the last inequality follows from the fact that o > g + k. Now, if r > 1, we have
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1

vj

A
_n=2 _n=2
202061 () Gy f Gy (5 )lH‘?iﬂ(sz(l+s>—q"s"—1ds

(z-%w,—m)

n—2 L
< )Lq(n—Z—k) (}Lr)q (AS)Q(M—T—W /3)(1 +s)—qnszz—l ds

‘\
M~

0
SC}\‘I(O‘—ﬂ)rq@”22+"j+‘1)/s‘1(mnzzvjf3>qa+nlds
r

< C19@=PB) palkta—p—(1-2)—go+n

< C9@—B) pq(a—p—(n=2))

where in the last inequality we once again used that o > 3 + k. Now, since r < %, we have that
the above is bounded by a constant times 290=2) for p < 1. Combining this with (3.36), (3.37),

and (3.39), we obtain

1

a0 (1 4 ") maxg, 20Ty s

I, r)< (3.40)

_n=l
Cia—k 4 Cuaa=2-0 (1 4 ,\r)"(‘Z 2 ), 0<ir<l.
In light of (3.35) and (3.40), taking gth roots completes the proof of Proposition 3.8. O
4. Operator estimates for Ry

In this section we establish some weighted operator norm estimates for the perturbed radial
resolvents Ry ;, defined via the mode-by-mode decomposition of R v(z?):

o
Ry(z*)=) Ry j()E;.
j=0

Since V is radial, it follows that we can write

2 —1
n—1 w5
Rv,,-(z2>=<83+Tar+z2—r—;+vm) , 4.1)

wherever this inverse is well defined. Here, we prove that the mapping properties established
for Ry, ; in Proposition 3.1 and Proposition 3.4 extend to Ry ;. Similar weighted estimates for
Schrodinger operators on hyperbolic space are given in Section 4 of [8], and the techniques
therein follow an analogous structure.

For a potential V € p 2 L®°RY) with o > % the operator norm || V Ro(z?) ||L2_)L2 is small

for Imz large by the standard resolvent norm estimate on Ro(z>), which is computable in a similar
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fashion to that discussed in Proposition 3.1. Hence, the operator 1 + V Ry(z?) is invertible by
Neumann series for large Imz. For z in this range, we can write

Ry @) =Ro @1+ VR j(z*)7".

We begin our analysis of these perturbed resolvents by proving Theorem 1, which we recall states
that Ro_; admits a meromorphic continuation to the logarithmic cover of C \ {0} and satisfies the
limiting absorption principle.

Proof of Theorem 1. As mentioned in Section 2, the meromorphic extension of

XxRo,jx

with x a smooth, compactly supported function, follows from [3]. The meromorphic continuation
of xRy, j(A)x follows from the work of Guillopé—Zworski [33] and the compactness of the
resolvent on a compact manifold with a conic singularity, which can be seen for instance in
the treatment of domains for conic operators in the work of Melrose-Wunsch [51]. Using the
techniques from Section 3, we can easily see that o(r)™"Rp,;(z) is compact as an operator on
L2 provided that Im(zz) > 0 and n > §, since the upper bounds (3.8) and (3.9) remain valid for
arguments in the upper half plane.

Next, we prove the limiting absorption principle for Ry, ;. Following [29], we observe that
mapping properties of Ry ; can be deduced from the estimates established for Rg j. By the
resolvent identity

Ro,j(z) = Rv,;j(z*) + Ry j(z*)V Ry j (%),

we can write

Ro,j(z90™° =Ry j(Z)p " (1 +p° VR j(z)p ™)

for p(r) =14 r. The factor on the right is meromorphically invertible by the analytic Fredholm
theorem, so that

Ry, ()07 =R ;j@)p (14 p°VRo j(zH)p )", (4.2)

o

whenever the inverse exists. By Proposition 3.1 and the fact that p° V = p2° Vo~ we have

Hence for V e p’z"L"O, there exists a constant My such that for [A| > My,

implying that (1 + p° V Ro(A%2 4 i0)p—?)~! exists and satisfies

p° VRo (W2 £i0)p~°

<clpv]

L2122

1

o 12 4 —o -
PTVR G2 £I0pT| =5
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<2

[+ 07V Ry ;02 07|

L2112

The estimates then follow from (4.2) and Proposition 3.1. O

As stated in the introduction, we postpone the proof of Theorem 2 until the appendices, and
so we take the absence of embedded eigenvalues and resonances in the range (0, 00) as given
for now. With this property in hand, our next goal is to prove the low energy estimates from
Theorem 3 under the assumption that —Ac(x) + V does not have a resonance at zero energy.

Proof of Theorem 3. We prove the desired estimates only for Ry ; (X2 4+ 0), since the proof is
analogous for Ry ; (A2 — i0). Using a resolvent expansion motivated by [8], we observe that

Ry j(.+i0) = Ro (A +i0)[I + VRo (A +i0)]"".

Hence, if we can establish boundedness and regularity of [ + V Ry ; (A2 4+i0)]~! through A =0,
then (1.5) follows immediately from Proposition 3.1. We observe that boundedness and regularity
of the operator (/ + Rq,; (A2 +i0)V)~! follows from Theorem 2 and the assumption that 0 is not
a resonance or an eigenvalue of —Ac(x) + V and hence the boundedness of

(I 4+ VRo,;(3*—i0)~" =[(I + Ro;(A* +i0)V)~']*

follows from analytic Fredholm theory. Thus, we may extend (1.4) through A = 0 to arrive at

(1.5).
To estimate 8f Im Ry, we first consider the case where k = 0 and establish the pointwise
bounds in A. For this, we take note of the following resolvent identity

Ry j(A* +i0) — Ry ; (3% —i0)
= (I + Ro j(A* +i0)V) ' [Ro ;j(A* +i0) — Ry j(A* —i0)I(I + V Ry j(A* —i0))™".
4.3)

This shows that the behavior of Im Ry, j()»2 +i0) near A = 0 is the same as that of ImRy ; A2+
i0), provided that the operators

(I +Ro (> +i0)V)~! and (I +VRy ;2> —i0))~!
are bounded for A in a neighborhood of 0, which we have already observed earlier in the proof.
As aresult, the k = 0 bound in (1.6) clearly follows. The results for £ > O then follow by differ-
entiating term by term and applying Proposition 3.4. O
5. Full spectral resolution estimates
With the mapping properties for both the free and perturbed resolvents established in the
previous sections, we are now able to obtain some precise pointwise estimates on the Schwartz

kernel of ImRv,j()»2 +i0;7r,5).
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Proposition 5.1. Let k > 0 be an integer. Suppose V € p~2° L®(R*) with

n
o>4(ﬂ—2+k, (5.1)
then for any a > max{k — %, 0},

sup ‘p*‘*(r)ai< Im Ry (02 +i0; 7, s)p*“(s)‘ < CjpyalEl-2-1 (5.2)

r,s>0

forall & > 1 and some C > 0. Furthermore, if 0 < A < 1, we have that

sup
r,s>0

p (AN Im Ry ;A2 £i0;r,5)p ()| < CjrvA" 27K, (5.3)

under the same restrictions on «.

The proof proceeds similarly to [8, §6], which utilizes the following modified version of
Young’s inequality.

Lemma 5.2. Suppose that on a measure space (Y, ) the integral kernels K;(z,w), j =1,2,
satisfy

IKi(z )l <A, IKiCwlipa <A, [Ka(,w)llpe < B

uniformly in z, w, w’ for q1, q2 € [1, 00)]. Then zfqil + é = % + 1, we have that

<AB
Lp

H / K w) K (w, w') dpu(w)

uniformly in w'. The bound on || K| (-, w)||La1 is not required if p = occ.
With this lemma in hand, we proceed to the proof of Proposition 5.1.

Proof of Proposition 5.1. We begin by expanding Ry ; in a Birman-Schwinger series at all fre-
quencies, as in [29], which gives

2M—1

Ry (= Roj(@)(=VRo () +[Ro;@VI" Ry ;@[VR, 1. (5.4)
=0

As previously discussed, it suffices to consider only the case where we choose A2 + i0 with
A > 0. For simplicity, we write Ro ; for Ro j(A> 4+ i0) and Ry ; for Ry j(A* + i0). We first
consider the remainder term [Ro,jV]MRV,j[VRo,j]M. Since V € p_2”L°°, we may write
V)= ,0_2" (r) f (r) for some f € L (R™). Also, note that for any two operators with Schwartz
kernels A(r, s), B(r, s), the kernel of their composition is given by

(A(r, ), B(-.8)) 2@r+) = (B(. 8), A(r, ) 2R+
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provided the composition makes sense. Therefore, we can write
P~ *[Ro; VIM Ry ;IVRo ;1M o™ (r,) =((0 ™" Ry, jp~)A(.8), A*(r, )2, (5.5)
where
A(r,5)=(p"" fRojp~ )M (0™ fRo jp~*)(r,5),

and A* denotes the adjoint with respect to the L? pairing. However, we know that A*(r, s) =
A(s, r), and hence we can express the right-hand side of (5.5) as

((p_URV,j/)—G)A(', §), AC, 1)) 2

By (1.5), we have that

o Ry o)A AC | = o max ([alac.o] ]

(X) ki+hko<k

Lz) . (5.6)

To estimate the norms on the right, we wish to iteratively apply Lemma 5.2 to each factor in the
definition of A. For this we consider the high and low frequency cases separately. First, suppose
A > 1. By Proposition 3.8, we have that for | <¢ < %5 and any 0 < k<ki,

|0~ )8R 07 0 )H =Co T E 3 [a4an' T (G o).
O+m=k
(5.7
Note that if £ < %, we can see that the corresponding term in (5.7) is bounded by a constant
times

a2k max{l, X(;_Z)_%} < max{)L”—Z—E, k%—z}
uniformly for r € [0, 00). On the other hand, if £ > 25! then we have that
PN+ AT TR < T (1T o2k
< C(1 + ko= ) -0, (5.8)

by Cauchy-Schwarz. Recalling our conditions on o, we see that k—o— % < 0. Therefore, the
corresponding term in (5.7) is bounded by a constant times

A#—(E—z) max{1, k(?—e) = } = max{k P -Gk-0 LA 1}
uniformly in . Maximizing over the possible combinations of ¢, m with £ +m = k, we have that
—6 ok —0 n—2—k 5153
[o= 8 Ro s~ 0|, = Cmaxiar 250 (5.9)
for some C > 0, uniformly in 7. A similar argument gives
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< Cmax{p—27K 37 (5.10)

—o qk A0 (.
lp= ok R0 00 )|
uniformly in s.

For the final factor in the definition of A, which has asymmetric weights, we only need an
estimate in the left variable in order to apply Lemma 5.2. By Proposition 3.8 we have, for 1 <

n
q=,-7

Hp_"gai‘Ro,jp_“(n )

L4

<Co Wk Y [(1 )T <C1 + szm—%)] .
Z—',—m:;

We may repeat our previous argument almost exactly in order to bound this quantity. The only
difference here is that the analogue of (5.8) has a factor of p~ instead of p~. So in order to
obtain an estimate which is uniform in s, we must enforce the condition that @ > max{k — %, 0}
and recall that k < k. Aside from this, the rest of the argument is identical, and so we have

o7 rafRo o7 o) | = Cmaxian 2K 207 (5.11)

uniformly in s, provided that &« > max{k — %, 0}.

We can now iteratively apply Lemma 5.2 to ||8;LCl A(-, 5)|lz2. To do this, we must choose g =
% so that % = % + (M — 1). We also require 1 < g < "5, which is equivalent to taking
M > 7. This then implies that we must take o > % + k1 in order for Proposition 3.6 and
Proposition 3.8 to apply. In particular, we can take M = [%—‘ , the smallest integer larger than 7.
Using (5.1), we see that

4M —2 4M -2 2M —1
0>4{%—‘—2+k=n< )—I—kzn( Y, )—}—kzn( i >+k1,
n

and so the following argument holds under this condition on . Repeatedly applying Lemma 5.2

to H 8/)\<1 A(,s) HL2 and using that f is uniformly bounded, we obtain
k _
HGA‘A(-,S)HU < CaMm-D),
The analogous estimate for || szA(-, r)|| combined with (5.6) gives

(8507 Ry o~V AC, ), AT, 1) 2| = €22M =21 (5.12)

for A > 1, and this estimate holds uniformly in r and s.
Next, we consider the remainder term in (5.4) when 0 < A < 1. In this case, taking the imagi-
nary part in the left-hand side of (5.6) is essential, so we must estimate

A Im(p™" Ry ;0 " A, s), A1) 2. (5.13)
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First, we note that the above can be written as a finite linear combination of terms where the
imaginary part falls on either Ry ; or at least one of the factors of A. Thus, by (1.5) and (1.6),
we can write

k —o =0 Al . < n—2—k3 | 9k1 4 (. ka4
0, Im(p~" Ry jp " A(-,5), A, ) 2| < Ckwgi)l;skk 18;," AC, )l 211057 AC, )l 2

ki k>
+C ma a9, ImA(, 3,2 A(-,
k1+kzxsk” A ( S)||L2|| s ( r)||L2

(5.14)

for 0 < A < 1. To estimate the first term on the right-hand side of (5.6), we can argue analogously
to the A > 1 case, but now we use the low-frequency estimates from Proposition 3.8, which give

1o~ 9 Ro,jp ™ llLe < C10.7Fp™" (1) + Co" 2K (1 44T oo () < €a7F
for any k <kand 1 <g < nnTz as before. Similarly, we have
10~ f Ro,jp~lls < CA7F, (5.15)
for o > max{k — % 0}. Therefore, using Lemma 5.2, we have that
19FAC. )l 2 < CaF

uniformly in s, for 0 < A < 1. Therefore, we have

max _ A"2R A, 32 AC Pl 2 < CAn2 k. 5.16
ki+ko+k3 <k 10, AC, ) 21107 AC, )l 2 < ( )

Now, to handle the second term on the right-hand side of (5.14), we note that one may expand
ImA(-, s) into a linear combination of terms in which the imaginary part falls on at least one
factor of Ry, ;. Therefore, we can use Proposition 3.6 to obtain that

Ip=" 8K Im Ro_j =" lla < CAM2(1 + Ar)k="T' p=0 < Can—2 (5.17)
for any k < k. Thus, applying Lemma 5.2 in combination with (5.15) and (5.17) gives
lof Im A 5)[| < cA"~2F
for any k < k. Hence, we have

k k 2k
(A 16, Im AC, )| 219;2 AC, )l 2 < CA” (5.18)

uniformly in r, s. Combining (5.16) and (5.18) with (5.14) yields
A Im(p Ry jp " A(.$), AC,r) 2 < CA" 27K, (5.19)
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and so the remainder in the Birman-Schwinger expansion of Ry ; satisfies the claimed estimate
forO< A <1.

Now we consider a generic term in the sum in (5.4) for 1 < ¢ <2M — 1. As before, we use
the fact that V = p=2° (r) f (r) for some f € L®(R") to write

P8Ry j (VR0 ) 0™ (r,s) =50 *Ro,jp )" fRo,jp ") (077 fRo,jp *)(r,s).
(5.20)

Writing the above as an L2-pairing, we have
—a ak { —a
P "0 Ro,j(VRo ;) p " (r,5)
= 050" Ro,jp (). (0™ fRojp ™) T 0™ fRojp ™) 2 (52D)

Upon taking the imaginary part, we obtain a finite linear combination of terms of the form (5.21)
where at least one factor of Ro ; has the imaginary part acting on it. We assume without loss of
generality that the leftmost factor on the right-hand side of (5.21) has the imaginary part, and
thus we can apply Holder’s inequality to obtain

A (p™Im R0, jp " (r,), (0" fRo,jp ") (0™ fRo ;0™\ 5)) 12
< Cllp™ 85" Tm Ro ;™7 ()|l ¢ (5.22)

o pak _ o ke o 0 ook _
X [1(p™7 f0;,7Ro,jp )+ (0™ f0;,""Ro,jp )07 f3, Ro,j p~*) (. $)lIe

for some 1 < ¢’ < 0o to be determined, and p given by % + % =1,where ki +ky+---+ko =k.
If 0 < X <1, we recall that by Proposition 3.6,

L~ Im Ry jp =7 (r, )l g < CA" 2 (5.23)

provided that o > % +k and o > max{k; — %, 0}. Similarly, for any k <k, we have by Propo-
_n_

sition 3.8 that for any 1 < g < -l

lp ™9 Ro.jp~7 () lee < C17F, (5.24)
if o > 2 + k, along with the analogous estimate when the norm is taken with respect to the other

variable. Using (5.23), (5.24), and repeated applications of Lemma 5.2 to the right-hand side of
(5.22), we obtain

(o *Im Ry ;jp 7 (r,-), (0™ fRojp ™) (0™ fRojp ), 8)) 2| <CA"FF (5.25)

when 0 < A < 1, as long as we choose ¢, ¢’ such that % + = = £ and provided that o >

max{%, 3} + k. Since ;l >n — 2 —k, we have by (5.1) that

£
q

a>4(%]—2+kzn—2+k,
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and so we can ensure that o > 7 + k if ¢ is chosen sufficiently close to, but just below 5.

Given this choice of ¢, we also have that ¢’ lies just above 5, and so
o >4(%] 24 k=202M —1)+k

and since 1 < ¢ <2M — 1, we can ensure that o > 2 + k, since & + k can be made arbitrarily
close to 2¢ + k. Therefore, under the claimed conditions on o and «, we have that

’afRo,j(VRo,j)‘f‘ <2k
forO<A<landany 1 <¢<2M — 1.
In the case where A > 1, we have that

n,z,m,% n=3

— k — n—>
”10 aa)\l ImRO,]/O U(r» ')”Lq/ §Cmax{k 7)‘- 2 }

uniformly in r as before, provided that « > max{k — %, 0} and o > % + k. Next, choose some

g which lies just below —"5 as above. Then, for any k<k,

—oak - o % .n=3
o8 Ro,jp~° (r, )llLa < Cmax{A" 2% A7},

uniformly in r, provided that o > 2 + k, along with the analogous estimate when the L? norm
is taken over the second variable. We also note that for the rightmost factor in (5.22), we have

g _ 9y % . n=3
o8 Ro,jp (-, 8)llLe < Cmax{A" 7% 177},

uniformly in s, provided o > max{k — %, 0}. Given these estimates and Lemma 5.2, we can
maximize over the possible combinations of k1, ..., k; to see from (5.22) that

A (p™*Im Ry jp 7 (r,), (0" fRo,jp ") (0™ fRojp™*)(,9)) 2
(5.26)

_y_n n—3
< AHO=Dk oy (37201

provided that % + g =/{¢and o > max{%, g} + k. As shown previously, this condition on o
is satisfied under the hypothesis (5.1) if g is chosen close enough to ;%5. Furthermore, for this
choice of ¢, we have that ¢ lies just above 57. We claim that this implies that the bound (5.26)
is smaller than the estimate (5.12). To see this, note that if ¢’ is chosen sufficiently close to 57,
then % =2¢ + ¢ for some ¢ > (. Then, we have
ln—2)4+n—2— 1/=E(n—2)+(n—2)—2E—8§£(n—4)+(n—2).
q

If n < 4, then the above is smallerthann —2 forall£ =1, ...,2M — 1. If n > 4, then we have
n—H+m-2)<2M-1)(n—-4dH+n-2)=2Mn—-2)-2QM —-1)<2M{n —-2) — 1.
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Furthermore, we note that
-3 -3 -1
Z(n—2)+nT§(2M—1)(n—2)—nT§2M(n—2)—nT§2M(n—2)—l.

Therefore, the exponent on A in (5.26) is smaller than that of (5.12) for any ¢, and hence we have

O (p~*ImRo jp =" (r, ), (0~ fRo,jp~ ") (077 fRojp~ ), 9)) 2| < 22MO=271 (5.27)
when A > 1.

Now, if the imaginary part falls on any factor other than the first on the right-hand side of
(5.21), we simply repeat the preceding argument, but with the L9 norm on that factor.

Finally, we consider the case where £ = 0 in (5.4). For this term, we must simply obtain

pointwise bounds on ,()‘“‘(r)aiC Im R (r,s)p~%(s). Recall that by the discussion preceding
Lemma 2.1, we have

=) —n2
Im Ry, j(r,s) = 5)\ (Aris)” 2 JUJ. (Ar)ij (As).
Therefore, 8;“ Ry, j (r, s) can be written as a finite linear combination of terms of the form

kn—Z—k(Ar)Z—% (AS)M—% Jv_/+oz ()LV)JV_/+ﬁ (As) (5.28)

for £ +m =k, |o| < ¥, and | 8| < m. Using the standard asymptotics of the Bessel functions, we
have that the above is bounded in absolute value by a constant times

)Ln—Z—k(l +)\r)£—%(1 _'_)\'S)m_%. (529)

Next, we note that

P+ )T < C(1+ 1),

for all A, uniformly in r, under the assumption that &« > max{k — %, 0}. The analogous estimate

holds for p=%(s)(1 + )»s)m_% , and therefore, we have that
PRy (r,5)p ™% (5)| < CA27R (1 4 )k, (5.30)

Combining (5.30) with (5.19), (5.12), (5.25), and (5.26), the proof of Proposition 5.1 is com-
plete. O

6. Dispersive estimates

In this section, we prove the main estimate in Theorem 4. To accomplish this, we write the
spectral measure for —Ac(x) + V as

1 1
dTy (h; x,y) = —[Ry (W2 +i0; x,y) — Ry (W —i0; x, y)]Adr = —ImRy (A% +i0; x, y)A dA.
T

i
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Then, we can write

o0 o0
[e”(_AC(X>+V)Pc] (x,y)= / e”)‘deV(A; X,y)= —/e”)‘z Im Ry (A% 4 i0; x, y)AdA,
T
0 0

where we recall that P, denotes projection onto the continuous spectrum of —Ac(x) + V. Pro-
jecting further onto the span of ¢;, we obtain

o0
[e”(*AC(XﬁV)PCEj] (r.s) = _/e”AZImRV,,-(AZHO; r. YA dA 6.1)
T
0

since V is radial. Therefore, the estimate in Theorem 4 is equivalent to

00
1 ; 3
= / e”)‘zp_a(r)lmRV,j()\z +i0;r, s)p_a(s))\ dr| <Ct™ 2 (6.2)
T
0

foroa>2[2](n—2) -5t +2.

Proof of Theorem 4. Assume that 7 is odd, and let x € C§°(R) be a cutoff function which is
identically one on [—1/2, 1/2] and zero outside [—1, 1]. We then consider the low-frequency
component of the left-hand side of (6.2), given by

o0
1 .
1 / ¢ Y ()p =% (ImRy, ; (2 +i0; 7, 5)p ™ () d. (6.3)
3

0
it2?

Noting that the operator ﬁak preserves e'’*", we may integrate by parts N = % times in A to

obtain

o0

C ) 1 N-—1

Z—N/e”“ak (Xak) [X(A)p_“(r)ImRv’j(k2+iO; r,s)p—“(s)] i (6.4)
0

for some Cy € C \ 0. That no boundary terms appear at A = 0 follows from the fact that all
derivatives of x (1) vanish identically near the origin and that p—¢ (r)é)fImR V,j (A2 4i0) P %(s)
vanishes to order n — 2 — k. To be more precise, all boundary terms at A = 0 must involve factors
of the form

1 ¢ —a 2, —a
(ﬁ) [£p™ () Im Ry ;G2 +10)p™(5)]

forsome 0<k<N-1= % If any derivatives fall on y, then the corresponding term obvi-
ously vanishes at A = 0. If instead, all derivatives fall on ImRy ;, then by Proposition 5.1, the
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corresponding term is bounded by a constant times A" 272K < 37=2-(=3) — ) "which vanishes
at A = 0. Therefore, all boundary terms are necessarily zero.

Now, observe that when expanding the integrand in (6.4) via the product rule, any terms in
which a derivative falls on the factor of x (1) can be written as

o0
CNt—Nfe'”zG(x; r,s)dh
0

for some G(A;r;s) which is smooth and compactly supported away from 0 in A, and
bounded uniformly in r, s by Proposition 5.1. Applying the standard dispersive estimate for
the Schrodinger equation on R, we have

o
. 1
= / GO s)dr| < CrVT2NG s ), (6.5)
0

where G denotes the Fourier transform in A (extend G by zero to a function on R to compute
this Fourier transform). Since n is odd, we may choose N = %, so the right-hand side of (6.5)

is bounded by C 77 as claimed, after possibly increasing C.
Now, any terms obtained from expanding (6.4) where no derivatives fall on the factor of x
must be of the form

M2V () p ™ (K ImRy (W2 +i0; 7, 5)p ™% (5) (6.6)

for some k =1,2,..., N since at least one derivative always falls on the factor of ImRy ;. By
Proposition 5.1, we have that each of the above terms is bounded in absolute value by a constant
times

)\’172N+kx()\'))\’n727k — }\'nilizNX()\)

uniformly for r, s > 0. For our choice of N = %, we have that A" ~1=2¥ = 1, and hence (6.6)

is a smooth function of A, and so its Fourier transform is bounded in L!. Once again, using the
standard L' — L dispersive estimate for the free one-dimensional Schrédinger equation, we
have that

n

o0
N /ei“zx‘—z“"x(A)p—“(r)aflmRV,j(xz+i0)(r,s)p—“(s)dx <crVN-1=cr%,
0

6.7)
uniformly in r, s. We remark that it is in this calculation that the choice of N = % , and hence the

power of =%, cannot be improved, since any additional derivatives which fall on ImRy ; 2+
i0) would yield an integrand which is not bounded smooth near A = 0. We also note that for this
portion of the argument, we only require that & > 0, since we did not differentiate ImRy_ ; more
than % times.
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Next, we consider the “high-frequency” component of (6.2), which we define by

[e¢]

% / Y O/ RY(1 = x()p~*(MIMRy,j (A2 +i0; r.5)p "% (s) Adk (6.8)
0

for any R € [1, 00). To control this term, we integrate by parts as before to obtain

e ¢]

%/e”’\zx(k/R)(l — X))~ (MImRy ;1> 4i0; 7, 5)p~*(s) L dA
0

% N-1
:cNfN/e”* 9 ( 3A> [X(k/R)(l — Xx())p () ImRy ; (A2 +i0; 7, s)p*‘*(s)] .
0

for any N > 0 and some corresponding constant C. We aim to show that the integrand can be
bounded uniformly in L'(R,d)) as R — oco. We also claim that it is sufficient to consider the
case where all the derivatives in A fall on the factor of Im Ry ;. To see this, note that 9, (1 — x (1))
is supported in a fixed compact set which is bounded away from A =0, and that 9, x (A/R) =
% x'(A/R) is supported away from A = 0 in a set of size O(R). Therefore, we need only show
that

1
v X /R = X))~ (M3 Im Ry, (A% +i0; 7, 8)p ™% (s) (6.9)

has bounded L' norm, and that the estimate is uniform with respect to 7, s, and R. For this, we
utilize Proposition 5.1, which implies that if & > max{N — ”;1 ,0land o >4 Vﬂ — 24+ N, then
(6.9) is bounded by a constant times (A)! ¥ uniformly in 7, s, and R, where L=2[%] (n —
2) — 1. Thus, choosing

N = 2( —‘(n—2)+2

guarantees that (6.9) is uniformly bounded in L. Noting that N > % if N is chosen as above, we
obtain

1 o0
lim - / ¢y (L JR)(1 — xO)ImRy j(A2 4i0;r,s) AdA| < Ct73, (6.10)

R—o0
0

where C > 0 is independent of r, s and R. Our choice of N also determines the maximum
number of derivatives of ImRy j(kz +i0; r, s) that must be taken, which yields

n
4[—] 2 2(] —)+2= 2[}
o> ) + (n )+ n )
as the sufficient condition on the decay rate of V. Also, the condition on o becomes
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n—1 n n—1
N——=2(——| —2) 42— ,
o> 5 ] (n )+ 5

as stated in Theorem 4. Under these conditions on the weights, we can combine (6.7) and (6.10)
to obtain (6.2), which completes the proof of Theorem 4. O

Remark 6.1. In the case where n is even, we find that in repeating the argument just prior to

(6.7), the largest N we can choose is % which leads to a decay rate of t_% inthe L! — L®
estimate. The remainder of the argument goes through without modification, yielding (1.8).

Appendix A. Absence of embedded resonances on product cones
A.l. Radial potentials and ODE methods

In this appendix, we establish the absence of embedded resonances and eigenvalues result
claimed in Theorem 2 using the results from Theorem XIII.56 of [58]. To prove this, we need to
use the fact that V is decaying to treat Vu as a perturbative term in the limit and prove that if
u € L?, then hence Vu is perturbative and we can write

o]

et / sin(A(r — 5))

us(r)=—= 7% V(s)ux(s)ds,

rz

n—1

Ars) T

where by u+ we mean the outgoing/incoming functions converging to the Jost solution asymp-
totic of the form

This gives the exact integrability condition in Theorem XIII.56 of [58]. It is also an integral
equation that can also be solved using Picard iteration. Using the variation of parameters formula
to solve

(—Acx) — 2Du=V(r)u
for any V with faoo V (r)dr < oo for some a > 0, we can write
w(r) = cup(r) +c_u_(r)

u_(ryus(s)

/M W) V(s)u(s)s" ds,

W) V(s)u(s)s" ds +f

r r

where W (s) = 25"~ Hence, if we have a resonance u € L% foro > l, we have that indeed we
can see the integral terms on the right converge and hence derive a contradiction to the existence
of resonances that are not eigenvalues.

For radial potentials, we have observed that there are no embedded eigenvalues using the ODE
based tools of Theorem XIII1.56 of [58], but the issue of absence of embedded resonances down
to A = 0 still must be established. We state the result here.
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Proposition A.1. For V € p~20 L°(R*) with o > 1, if Ry, j(z?) has a pole at T for T € R\{0},
then t2 is an embedded eigenvalue for —Acxy+ V.

Proof of Theorem 2. By Proposition A.1, it suffices to prove that Ry (z?) has no real poles
corresponding to eigenvalues of —Ac(x) + V embedded in the continuous spectrum. It also
suffices to prove this fact for Ry, j(zz), since the fact that V is radial means that Ry respects
the decomposition into harmonics on the link. The method of proof from Theorem XIII.56 of
[58] proves that for V sufficiently decaying, a radial operator has no positive eigenvalues. This
relies on a formal analysis of Jost solutions, proving that no linear combination of them can be
an L? function. In particular, if we assume we have an embedded eigenvalue at energy A> with
corresponding radial eigenfunction ¢ on the jth harmonic, it satisfies

2
-1 I
<33+—" ar+x2——2’>¢_—o
r r

meaning that oo is a regular singular point. As a result, as r — oo the Jost solutions are of the
form

() =T L 00T,
Hence, linear combinations generically take the form
Asin(vr +6)r—"7,

which is easily seen to not be in L23(C (X)), which yields a contradiction. Further discussion of
the Jost solutions can be computed as in [59], Ch. 5. O

A.2. Absence of embedded resonances for non-radial potentials

For the purposes of ruling out embedded resonances, a geometrically robust approach is to
use a boundary pairing formula on radially compactified space, as in [54, §2.3], to prove that an
embedded resonance is an embedded eigenvalue and hence has at least L? decay. The boundary

pairing formula for Schrédinger operators on Euclidean space is derived from the observation
that a pole of the resolvent corresponds to a solution to

(—Agr +V =2 Du=f,

say for f € S a Schwartz class function. The solution to this equation takes the form

O | A1
u=e5x20" Dy, 4o 5x20 Dy wy e C>(Sh)

where x = % and S’} is the upper hemisphere of the sphere S”. The boundary pairing formula
states that for solutions

(—A+V —2Hu® = f©
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with £ =1, 2, we have

2iM / (vg)vf) — vg)vg))dzz /(f(])m—ku(])f(z))dz
Sn—l R~

with v
cally.

Hence, any embedded resonance can be seen to be an embedded eigenvalue. To eliminate
embedded eigenvalues, we follow the work of Froese et al. [22] to prove that L? eigenfunctions
must in fact exhibit super-polynomial decay. The arguments there involve constructing a series
of positive commutator arguments to obtain this rapid decay. To begin, take &, y > 0 and define
p(lx]) = (x). Then, the function

Ef ) = w(f ) las . For a pole of the outgoing resolvent, we observe that v vanishes identi-

F(x)=yIn(o(1+ep)™").
Then, VF =xg for g = yp>(1 +ep)~! and
(x-V)’g—(x-V)VF)* <dy(y +2)p 2.

Defining ¥ = X, a conjugated form of the equation can be written as a modified quadratic
form. Coupling this form with a Mourre estimate (positive commutator using rdr (the radial
version of x - V) we can prove that the set of polynomial weights for which ¥ € L? is open and
can be extended to co. The Mourre estimate serves as a means to construct the weak limit of the
resolvent at the real axis.

Once super-polynomial behavior is established, a similar open set for exponential decay can

be established using the assumption that e®0? p*y € L? for all A and showing that this implies
then that e@0+7)Py, € L2, To do this, build the function

F(x)=agp+rIn(1+yp/1)
and derive a similar contradiction.
Once super-exponential decay is established, the strategy of Vasy-Wunsch [66] can be applied
to prove a unique continuation argument by conjugating the operator to
Py=e¢"" (=A+V —1)e "
for  some smoothed version of r to be determined. Then,

0= || Pygoll’ = IRe Py g > + IITm Py g ||* + (i[Re Py, Im Py 1¥r, Vo).

Hence, one uses that i[Re P, Im P, ] is a positive commutator term. We require that

1
[A, 209, + (8, log A)] = c—5 Ag + R
r
for R in the calculus of first order conic vector fields.
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A.3. The boundary pairing formula

Following a suggestion of Dean Baskin, we can interpret embedded resonances for more
general conic Schrodinger operators through the boundary pairing formula of Melrose.

A.3.1. Existence of the boundary pairing formula on cones

We outline the necessary generalizations to the presentation of the Boundary Pairing formula
from the book of Melrose [54]. First, we must consider the radial compactification of a cone to a
compactified manifold C=Xx [0, 1] for X the link of the cone, which is similar to that in [2].
We again consider solutions of the equation

(—Apn+V =2 Pu=f

for f € S for instance say a Schwartz class function.
Let

Uu=uy+u_,

namely a sum of the outgoing and incoming solutions, with

g = M (A1)

for wy € C%(C). This formula appears in a variety of settings in the literature, starting with
the foundational work of Melrose [53] on asymptotically Euclidean manifolds, then Melrose-
Zworski [52] on general scattering manifolds with smooth boundary, Hassell-Vasy [35] on
scattering manifolds with conic points, and the corresponding discussion of Guillarmou-Hassell-
Sikora in [32], Section 5. See also [3,67] for a recent discussion on product cones that contains
formulae from which such a decomposition can be obtained.

Then, we claim that

i / [P0 — v Py Pan, = / [FDu@ — O FD)drdv, (A.2)
X C(X)

with vi) = w$)| x. We will need to consider behaviors both at x = 0 and 1 whereas on Eu-

clidean space the compactification really only sees co. See Ch. 2.3 and Ch. 6 of Melrose [54].
Compactify via the stereographic projection to the quarter circle

Sty ={G1,2) €S CR?*z1>0,22>0}
with r — (r, 1)/+/1 + r2. This is a manifold with boundaries of the form

2=r/V1+r2 z0=1/V/1+7r2,

Define M = S}_’ 4 x X and we get the compactified structure.
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The formula (A.2) then follows from integration by parts on the expression

/ [f(l)m — u(l)ﬁ]x (er)drdvy
C(X)

for x a smooth cut-off function localized near 0. Integrating by parts in r, applying formula (A.1),
and taking the limit as ¢ — 0 the formula follows after an application of the Riemann-Lebesgue
lemma.

Note, the boundary pairing formula is strongly related to structure of the Jost solutions through
the existence of polyhomogeneous expansions (power series solutions near the boundary).

A.3.2. Outline of the remaining arguments

To prove the absence of embedded resonances, we use the boundary pairing formula with
f =0 to prove that any outgoing solution vanishes to leading order on the x; = 0 boundary. This
may be iterated to show that in fact the power series vanishes to arbitrary order and hence the
solution is indeed Schwarz on the cone. To see this, differentiate the equation with respect to x|
and look at the resulting inhomogeneous equation in the boundary pairing. Otherwise, the power
series solution depends uniquely on the first terms in the expansion.

In most circumstances, eliminating embedded eigenvalues requires unique continuation. In
the radial problem, we may apply the Theorem XIII.56 of [58] built around Jost solutions as
mentioned above. For conic metrics, we must follow the procedure of Froese-Herbst [22] built
around seperable metric, which has been extended and formalized by Vasy [63,64].

Appendix B. Construction of the free resolvent

In this appendix, we provide a detailed construction integral kernel for the free resolvent
operator

Ro(z%) = (=Acx) — )71 L2(C (X)) — L*(C (X)), (B.1)

for Imz # 0, closely following the exposition of [3]. This is equivalent to analyzing solutions of
the equation

(~Acixy—u=f (B.2)

for f € L2(C(X)). To proceed, we decompose u and f into the basis {¢;} of eigenfunctions on
X as

FE0) =" fiei©0). utr.0)=> u;jr)g;®).

j=1 j=1

Denote by —,u? the eigenvalues of A, associated to each ¢;. Then, we obtain that (B.2) is
equivalent to the collection of equations

2
n—1 05
(af+ - ar+z2—r—;)uj(r)=—fj(r), j=0.12.... (B.3)
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Therefore, we can express the resolvent Ry (z?) as

Ro(*) f(r,0) =) u;(r)g;(©®),

j=0

with u ; as above. If we define the jth radial resolvent Ry j %) by

1 w\

P .

Ro,j(z%) = (af +—08 +22— —2’) (B.4)
r r

as an operator on L2(R™, 7"~ dr), then the full resolvent is given by

Ro(*) f(r,0) =) Ro j(z*) f;(r)p;(6).

j=0

For each j, the defining equation (B.3) for Ry, j(zz) fj is an ODE with a regular singular point
at zero, and so by applying the Frobenius method we find that the indicial roots of the equation

_ _97\2 . . . _
are —% + 4/ (%) + /L;. For this reason, we introduce the notations § = —% and vj =

82 S
(%) + u? The structure of the indicial roots suggests that we rescale by r°, and so we

define w; by u(r) = r‘sa)j (r) so that w; is analytic near r = 0. Then, (B.3) becomes

2

1
afwj+;a,w,»+<z2—r—§)w,-=—r—5fj(r), j=0,1,2,....

At this point it is helpful to restrict to particular class of f;, namely those for which the Fourier
transform f; is compactly supported (in order to compute the Fourier transform, we simply ex-
tend f; by zero to a function on all of R). For such f;, we know that there exists a holomorphic
extension to all of C by the Paley-Weiner-Schwartz Theorem. We continue to denote this exten-
sion by f;. That we can make this restriction without loss of generality follows from the fact that
such functions are dense in L?. Given this, if z # 0, we make the change variables via ¢ = zr to
obtain the following inhomogeneous Bessel equation of order v;:

~// 1~/ UIZ. ~ C—3
e = e A ®

where @;({) = w; (£ /z), and the “prime” notation denotes the complex derivative with respect to
¢. Here, we define ¢~ using the principal branch of the square root. For notational convenience,
we define f; ,(¢) := —%afj(g/z), which is holomorphic for ¢ € C \ (—o0, 0].

The solutions to the homogeneous Bessel equation of order v are the well-known Bessel
functions of the first and second kind, denoted J, and Y,, respectively. Closely related to these
are the Hankel functions Hlfl) and Hv(z), given by
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HY =g, +iv,, H? =, —iv,.

Any two of these Bessel and/or Hankel functions can be used to form a fundamental solution
set for the homogeneous equation. Given an appropriate choice of fundamental solution set, we
use the method of variation of parameters to construct solutions to the inhomogeneous problem.
So let y1, y» be a fundamental solution set for the homogeneous problem associated to (B.5) for
some fixed j. We then construct our solution @; as

@j=viy1 +v2)2
where all objects above are functions of ¢. Straightforward calculations show that if

~ »@) )
W (y1,y2)(©)’

y1(8) f.2(5)

and )= @)

vi(©) =
then @ ; as given above solves the inhomogeneous equation (B.5), where % (y1, y2)(¢) denotes

the Wronskian determinant of y; and y, evaluated at . Therefore, we may compute vy and v,
by taking path integrals in the complex plane, which yields

~ »2(8)fj(8) dt | o + 1) /5.

W (y1, y2) (&) W (y1, y2)(§)
61(¢) 62(¢)

@j(5) = £ 1208

where % (¢), 6>(¢) are any complex contours connecting fixed points ¢y, ¢z € C \ (—o0, 0] to
¢, respectively. In fact, it suffices to take ¢y, c; € R*. We then choose our contours to be the
piecewise linear paths defined by

1) ={(1 —t)ci +tRe¢ :t €[0, 1]} U{Re¢ +itIm¢ : ¢t € [0, 1]}
and
© (&) ={(1—1t)cy+1tRe¢ :t €[0, 1]} U{Re¢ +itIm¢ : t € [0, 1]}.

Of particular interest are the boundary values of the resolvent near the continuous spectrum of
—Acx) + V. Therefore, if we consider 72 =22+ ie, we have

Ar ter
—»2(0) fj.:(t) ; =y (r +it) f ;(Ar +it)
W (y1, y2)(t) J W (y1, y2)(Ar +it)

wj(zr) = y1(zr)
1
+er

A
Y1) fj.2(0) dt i/ yi(r +it) fj (A +it)
W (y1, y2) (1) W (y1, y2) (Ar +it)

+ y2(zr)

2

All that remains is to determine that appropriate fundamental solution set yj, y» and constants
c1, ¢ so that our solution is a well defined element of L2(C(X)). If we take y, = J,,]. and c; =0,
then @, is bounded as r — 0, provided that the coefficient integrals converge. We then choose y;
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to be either Hv(}) or Hlf), depending on the sign of Imz. By the asymptotic forms of the Hankel

functions, we have
e~ 25
44

o~ 2o

for — < arg¢ < 7, and the branch of the square root is defined by ¢!/ = ez (nl¢l+iargs) for
such ¢. We can now see that if z> = A2 4 ie, then ¢ = zr also has positive imaginary part, and so
Hv(.:)(zr) decays exponentially as » — oo, while HU(J.Z) exhibits exponential growth. Hence, when

22 =22 +ic we take v = Hv(}) and ¢ = oo, which yields

and

Ar +er
Jo; (1) i Jo. O +it) fi O +1i
&(zr) = HO (zr) /Mdt+,./ (G 40 [0 +i0)

2i/(mt) 2i /[ (Ar +it)]
0

00 +er
4y @) /Mm_i[ HV(})()».r+it)fj,ZQr+it) \
j 20/ (o) 2i /[ (Ar +i1)]

r

since V/(H,f_}), Jv)(E) = —%. We can then take the limit as ¢ — 0 to obtain

@j(r) = —H“>(zr)/rjv, O fj:(0dr+ 2 JV, (zr)/tH(l)(t)f]z(t)dt

Ar
n_—TZ
Recalling that u ; (r) = (zr)‘sch)j (zr) and f; . (t) = L p i (t/z), we get that the outgoing solu-
tion corresponding to the jth resolvent is
5, (r)f, ny

uj(r) = —(x )= HOGr )/

A2

Ly A
+ 200~ F 0, 00 / H 050

If we then change variables via t = As, we can rewrite the above as
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. r . o0
()= T HO ) [ 530, 08) i) ds + = T 0y, 0) [ sTHD (us) £(5) ds
ujlr) == v (AF v j 5" vj AT vj J )
0 r

The integral kernel of Ry ; (A% 4 i0) with respect to the measure s" ! ds is therefore given by

%i(rs)_% ij ()\.S)ng.:)()\r), s<r

U (B.6)
Zi(rs)~ "7 D, GV HY (hs), s> 7,

Ro.j(A* +i0; r,S)={

. n n—1.—1=2
since s2 =§ s 2.

We can repeat this analysis for z2> = A2 — ie, and we find that we must take use Hlff) instead

of HU(}) due to the asymptotic behavior at infinity, which also causes the Wronskian to change
sign, but otherwise the calculations are identical. We therefore obtain

%(rs)_%hj ()\S)H‘S%) ar), s<r

e . B.7)
%(rs)fT2 Jy; (Ar)H,f?) (As), s>r.

Ro,j(A* —i0; 7, s) =i

Remark B.1. We note that one could also obtain the formula for Ry, j(kz — i0) from that of
Ro,j (A% 4 i0) by using the analytic continuation formulae

Jy(ze™) =¢e""" J,(z) and H,fl)(ze”“') = —e*‘””'H,fz) (2).

Given (B.6) and (B.7), we can express the imaginary part of the resolvent kernels Rp ; as
follows.

Lemma B.2. For A real, we have
2 . V4 _n=2
Im R, j (A" +i0;r,5) = E(rs) 7 Jy; (Ar) Jy; (As)

as an integral kernel with respect to the measure s"~'ds.
Proof. This follows immediately from the fact that
HY +H® =, +iYV, )+, —iY,)=2J,.. O
Vi Vi Vj Vj Vj Vj vj

We can now write down an expression for the spectral measure of —Ac(x) as in [10], which
follows from Stone’s formula.

Lemma B.3. For A real,

o0

. T _n=2 [

Im Ro(2 +i0:x. ) = Z(05) ™% Y7y, (), (1) 01 )
j=0
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where x = (r,01) and y = (s, 02) are points in C(X). Moreover, the absolutely continuous part
of the spectral measure of —Ac(x), with the convention that A2 is the spectral parameter, is given

by

1
dMoGiix,y) = 5~ [RO(Az 400 x, y) — Ro(W2 — i0; x, y)] 20 d

i

= )T Dy, (), (1)} (0107 @A di.
j=0

Appendix C. Dispersive estimates for the free Schrodinger equation

Here, we discuss bounds on solutions of the unperturbed Schrodinger equation, given by

(78 = Acan) u=0.

C.1
uli=o = f. ( )

We prove that the solution to this equation satisfies a dispersive estimate analogous to Theorem 4,
but without the need for projection onto the harmonics of the link, provided that the solution is
measured in L (R*; L?(X)), rather than simply L°(C(X)). We do this by using a modification
of the techniques outlined in [ 19], which handled flat two-dimensional cones, to obtain an explicit
asymptotic formula for the kernel of ¢/’2A¢( as a function of a rescaled variable.

Theorem 5. Let C(X) =R™ x X be the product cone on X, for (X, h) a compact Riemannian
manifold of dimension n — 1. Then the solution to (C.1) satisfies

”eitAC(X)f||L°°(R+;L2(X)) <Ct™2 ”f”Ll(]RJr;LZ(X))y > O,
for some C > 0. Here, L' (R") is defined with respect to the measure r"~' dr.

Remark C.1. We note that this result is somewhat weaker than similar estimates obtained in [71],
but we include it here because the proof is quite short and requires significantly less machinery.

Since X is compact, there exists an orthonormal basis {(pj}?io of L%(X), satisfying

AV =M§<Pj

for 0 = ,u% < u% <... repeated according to multiplicity. By the functional calculus of Cheeger
[10] discussed in Section 2, we can define the shifted eigenvalues

’ n—2\2
Uj= //L]+ 2 9

in order to write the spectral measure of —Ac(x) as
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o
n—2 P —
dllo(r1,01,r2,62) = (rir)™ 2 E Jv; Ar) Jv; (Ar2) @ (01) @ (62) Ad A,
j=0

where J, is the Bessel function of the first kind of order v. Hence, the fundamental solution to
(C.1) has the form

00 @]

n—2 .
K jitacx, (r1, 01,12, 02) = (r112) () Z /emz Ju; (r1) y(Ar)dd) | ¢ (01)9;(02),
7=0 \j
(C2)
with respect to the standard measure on the cone, r"~Ldr dvy, (0), where dvy, is the Riemannian
volume measure on X. As in [19], we let t = is in the above expression to obtain a formula for
the heat kernel e 2, By Weber’s second exponential integral formula, we have that

o0
l r2+r2
/e—ﬂzjv(,\rl)Jv(,\rz)x dh=—e 571, (ﬂ) ,
2s 2s
0

where /, is the modified Bessel function of order v, defined by

e¢]

1 X\ 2k+v
RIS g E— bl
v gk!r(v+k+ 1 \2
Analytic continuation in s and taking s = —it gives us
rlzfr% 00

ie i . rir —_—
K gracin (101,12, 02) = ——— 3" 100, (72 ) ¢, 60)9; 00),
2t(rir) 7 5o 2

since I,,(ix) = i"J,(x). For non-integer values of v, we choose z" to have its branch cut along

the negative real axis. For convenience, we define x = % and let

(12 & -
S(x,01,0) =x ( : )Zi”jfu, (x) @019} (6),
=0

so that

KeitAC(X) (r1,601,r2,602) = ) S(x,01,62). (C.3)

n

Furthermore, we define the family of operators S(x) : C°°(X) — D/(X) by

S@) f(61) = / SCe, 00,00 F O dun(@) =5 CT) 32081, 01 f 071605 0).

X j=0
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Next, we make note of an asymptotic expansion for K irac(y, in the regime where x — 0,
which is analogous to [19, Prop 4.1].

Proposition C.2. The free Schrodinger propagator has the asymptotic behavior

i exp <r12+r22) 2
4t i/2)'T rir\¢ riry
K i 01,12, 07) = _ +O(<—)> , nre o,
Zacon (1, 01,72, 62) (21)2 |:l"(%)vol(X) 2t @ 2t
where @ = min{2, v| — —”52}.
Proof. It suffices to show that
i/2)"T
i
S(x,01,6,) = +0(x¥), asx—0, (C4)

['(5)vol(X)

uniformly in 61, 6. Since the ¢; are L?-normalized, we have that ©o = \/ﬁ, and so

i/2)"T

S(x,01,6r) =
(x.61,62) vol(X)

_(n=2 n=2) & —
() (= )anz(x)+x—(72)Ziwvj<x>¢j(el>¢,-<ez>.

j=1

By the standard power series representation for J,—2, we have
2

n—2
@2z | _
S(x,01,92)_m B
n—-2 oo 3
vol(X) ,;k!r(%ﬂc) <§) i ;l R

Using the bound |/, (x)| < F(vl—i-l) %)v for x real and v > 0, along with the standard L*° eigen-
n—2

function estimate ¢ |z~ < C[LjT, shows that for 0 < x < 2, we have

) 00 N 00 2(n—1) n_2
i/2)2 1 (x ) M X\Vi—"2"
S(x,01,6) — < — ] + — 3
I'(z)vol(X) | ~ vol(X) kX:]: 4 ; 2" Fwj+1) <2)
i e e (C.5)

X x\vi—45= j
= vol(X)(4 — x?) + (5) Z Fwj+1)°

j=1

Note that p; ~ Cj = by the Weyl law for the eigenvalues of —Aj. Since v; > u; for all j,
the summation in the last inequality of (C.5) converges, which demonstrates (C.4) with o =
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min{2, v| — %}. We observe that by definition, v; — % > (. Hence, by (C.3), the proof is
complete. O

Corollary C.3. The family of operators S(x) satisfies

1S fllz2xy < CILf 2y
for all x > 0 and for some C > 0 which is uniform in x.

Proof. For x <2 — ¢ with ¢ > 0, the estimate follows from the proof of Proposition C.2, which
shows that |S(x, 61, 67)| < C for some C which is uniform in 61, 6,. Thus, for such x,

2

1SCO 1122y = / / S(x, 01, 62) f (62) du (62)| vy (61)

X X

< / ISGE 81 I 1 W 0 61)

< CVOIX? 1 £ 1172y

For x > 1, we can simply use the fact that |J,(x)| is bounded uniformly in both x and v to see
that

oo

ISC) I 2y =% "Zﬂ @(f.9;)? Z £ = Cllf I3 x)
=0 j=0

for some C > 0, sincen>2. 0O

We are now ready to present the proof of the dispersive estimate in Theorem 5.

Proof of Theorem 5. Recalling that K jiac, (r1, 01,72, 62) is the Schwartz kernel of elthc
and applying (C.3), we have that for any ry, ¢ > 0,

it A 2
||€” C(X)f(rh .)”LZ(X)

2

o
=/ //KefTAC(x) (71,91,72,92)f(72,92)V§_1dvh(92)dr2 dvp(61)
X 1o x
o0 ;44::2 r1r2
= (r2,01) Ydr)
/ / (2t)2 )f ]
x \o
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2,2

rlJrr3

oo, < 4it
Le

/ 203 [ <r1r3)f(”3 91)] “Ldrs | duy61)
0

72 —r

=@n” //e /S(r1 2) 12,608 (52) £ 3,60 dvn(@) | (rars)"™" dradry

<" //Hs () £ o 15 (57) £

(r2r3)”_1 drydrs.

In the last inequality, we are able to omit the complex exponential factor by taking absolute
values, since the integral is known to be real-valued and non-negative. By Corollary C.3, the
above is bounded by

oo o0
[ 02z 1503 i G dradrs = CEM AR gy
00

for some C > 0 which is independent of r;. Taking square roots completes the proof of Theo-
rem 5. O
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