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Abstract

In this manuscript, we investigate the dispersive properties of solutions to the Schrödinger equation with 
a weakly decaying radial potential on cones. If the potential has sufficient polynomial decay at infinity, we 
obtain a variety of results on the perturbed conic resolvent operator RV and the nature of the continuous 
spectrum of −� +V . Using these results, we are able to show that the Schrödinger flow on each eigenspace 
of the link manifold satisfies a weighted L1 → L∞ dispersive estimate. In odd dimensions, the decay rate 
we compute is consistent with that of the Schrödinger equation in a Euclidean space of the same dimension, 
but the spatial weights reflect the more complicated regularity issues in frequency that we face in the form 
of the spectral measure. In even dimensions, we prove a similar estimate, but with a loss of t1/2 compared 
to the sharp Euclidean estimate.
© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Let (X, h) be a smooth, compact Riemannian manifold of dimension n − 1, and consider the 
cone on X, denoted C(X) and defined as R+ × X with metric g given by g = dr2 + r2h. The 
corresponding Laplace operator on C(X) is given by
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�C(X) = ∂2
r + n − 1

r
∂r + 1

r2 �h,

where �h is the Laplacian on X, taken with the negative semidefinite sign convention. We take 
�C(X) with the Friedrich’s extension for simplicity. We are interested in dispersive estimates for 
the Schrödinger flow

eitH Pc, H = −�C(X) + V, (1.1)

where Pc denotes projection onto the continuous spectrum of H . Here, we assume that V is a 
real-valued radial potential satisfying certain decay assumptions at infinity.

Besides giving direct insight into the behavior of waves, dispersive bounds also have interest-
ing applications in nonlinear problems. For example, stability questions around static solutions 
in nonlinear models such as wave maps have been studied using dispersive decay estimates. 
See the work of Krieger-Schlag [44] and more recently Krieger-Miao-Schlag [43] for instance. 
See also the many works of Lawrie-Oh-Shahshahani [45–50] for treatment of geometric wave 
and Schrödinger equations in hyperbolic space. Pointwise decay estimates also play a role in 
obtaining enhanced existence times using normal form methods, see for instance recent works 
of Ifrim-Tataru [40] and Germain-Pusateri-Rousset [23]. It is also an intrinsically interesting 
question to understand the interaction between a background potential and diffraction in order to 
better characterize the dynamics of waves on manifolds with conic singularities. Conic manifolds 
have arisen naturally in the work of Hintz-Vasy and Hafner-Hintz-Vasy on general relativity, see 
[34,38,39] and in particular the recent discussion in the work of Hintz [37].

Dispersive behavior of Schrödinger flows has been studied in a tremendous variety of ge-
ometric settings and under many different conditions on the asymptotic decay and regularity 
properties of the potential V . In Rn, some of the first ideas arose in the seminal paper of Journé-
Soffer-Sogge [41], who proved dispersive decay for n ≥ 3 with potentials that had no zero energy 
eigenvalues or resonances and were somewhat strongly decaying and regular. Since then, decay 
estimates have been improved in a variety of settings. Early works by Goldberg and collaborators 
carefully addressed the regularity required of the potential in higher dimensions and decay rates 
in 3 dimensions in the absence of embedded resonance and eigenvalues, see [4,24,25,29,30].

Further works for perturbations of the Euclidean Laplacian have extended dispersive decay 
results to the setting where −� + V has an embedded resonance at zero energy, which results 
in a weaker decay estimate in time, see for instance especially the works of Erdogan-Schlag in 3
dimensions [16,18], Erdogan-Green in two dimensions [14,17], Green in 5 dimensions [31], as 
well as Goldberg-Green and Erdogan-Goldberg-Green in odd and even dimensions ≥ 4 [15,26–
28]. Recent progress by Blair-Sire-Sogge [7] has pushed the construction of the spectral measure 
for −� + V to cases where the regularity of the potential V is at very critical levels, though 
the authors have not explored dispersive decay directly. This is by no means an exhaustive list, 
but these results are representative of the techniques involved, namely careful control of the free 
resolvent, the use of resolvent expansions, the role of the regularity of the potential V , and the 
spectral structure of the operator −� + V . The survey article by Wilhelm Schlag [60] contains 
an excellent overview of the key ideas involved.

Dispersive decay estimates have also been studied in several other geometries. For example, 
Schrödinger operators with potential were studied on hyperbolic space by David Borthwick and 
the second author in [8]. See the recent article of Bouclet [9] for a broad overview of results on 
the asymptotically Euclidean setting, the article by Hassell-Zhang [36] and references therein 
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for results on asymptotically conic manifolds, as well as the articles of Schlag-Soffer-Staubach 
[61,62] for manifolds with conical ends. Analysis of the Laplacian on product cones is related 
to the analysis of Schrödinger operators on Rn with an inverse square potential which have been 
studied in various settings, e.g. the works [42,55–57,68] by various authors.

The study of the Laplacian on product cones has a rich history. See the classical results of 
Cheeger-Taylor, [10,11], where the spectral measure was first described. As a result, there have 
been several works that studied evolution equations and their decay estimates on product cones, 
especially wave equations [3,5,6,19,20,51,71]. See also [1] for information about scattering res-
onances on hyperbolic cones.

Analysis of dispersive estimates for Schrödinger equations using the resolvent and spectral 
measure on a product cone has been studied in the recent results of Zhang-Zheng [69,70]. These 
are the most closely related results to ours, but only study specific types of potentials that can 
be treated more perturbatively, hence they need not fully explore the regularity and decay of the 
spectral measure in the same fashion undertaken here. See also the very recent work of Chen [12]
that studies local dispersive behavior on manifolds with non-product conic singularities.

On pure product cones, we prove pointwise decay estimates for the mode-by-mode decom-
position of the Schrödinger flow (1.1). By this, we mean that if {ϕj }∞j=0 is a basis of L2(X)

consisting of eigenfunctions of �h, then the Schrödinger flow on C(X) can be formally decom-
posed as

eitH Pc =
∞∑

j=0

eitH PcEj , (1.2)

where Ej : L2(X) → L2(X) denotes projection on to the linear span of ϕj . We show that if 
V ∈ ρ−2σ L∞(R+) for σ sufficiently large, where ρ(r) = 1 + r is a weight function, and if the 
perturbed resolvent

RV (z2) := (−�C(X) + V − z2)−1

does not have a pole at z = 0, then each component of (1.2) satisfies a weighted pointwise esti-

mate. In odd dimensions, we prove this with the same t−
n
2 decay rate as in the Euclidean case, 

while in even dimensions, there is a loss of t
1
2 which we do not expect to be sharp. The signifi-

cance of the resolvent can be seen quite directly if we express the Schrödinger flow in terms of 
the continuous part of spectral measure for −�C(X) + V , which we denote by d�V . In partic-
ular, if we assume for the moment that there are no resonances or eigenvalues embedded in the 
continuous spectrum, then we have

eitH Pc =
∞∫

0

eitμ d�V (μ).

By Stone’s formula and a change of variables from μ to λ2, we can rewrite the spectral measure 
in terms of the boundary values of the resolvent via

d�V (λ) = λ [
RV (λ2 + i0) − RV (λ2 − i0)

]
dλ.
2πi
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The behavior of the resolvent is thus of critical importance for understanding the properties of 
the Schrödinger flow. Hence, a large portion of this manuscript is dedicated to analyzing the 
structure of RV (z2), or more specifically its projections RV,j (z

2) = RV (z2)Ej . Our first main 
result establishes that each RV,j admits a meromorphic continuation to the logarithmic cover of 
C \ {0} and satisfies a version of the limiting absorption principle.

Theorem 1. For V ∈ ρ−2σ L∞(R+) with σ > 1
2 , RV,j (z

2) admits a meromorphic continuation 
to the logarithmic cover of C \ {0}. In the region where Im(z2) > 0, we have that

RV,j (z
2) : L2,δ(R+, rn−1 dr) → L2,−δ(R+, rn−1 dr)

is a bounded operator for all 1
2 < δ < σ . Here, the notation L2,δ(R+, rn−1 dr) denotes the 

weighted L2-space given by {f : R+ →C : ∫ |f (r)|2ρ(r)2δ rn−1 dr < ∞}.
Furthermore, if σ > 1

2 + k, then the derivatives of RV,j up to order k satisfy the limiting 
absorption principle. That is, for 0 ≤ � ≤ k, there exists an MV > 0 such that

∂�
λRV,j (λ

2 ± i0) : L2,δ(R+, rn−1 dr) → L2,−δ(R+, rn−1 dr) (1.3)

is a bounded operator for all λ ≥ MV and all 1
2 + k < δ < σ . In particular, we have the operator 

bound ∥∥∥∂�
λRV,j (λ

2 ± i0)

∥∥∥
L2,δ→L2,−δ

≤ Cj,�

λ
(1.4)

for each 0 ≤ � ≤ k, for some Cj,� > 0 and all λ ≥ MV .

We note that (1.4) implies that −�C(X) + V does not have any embedded resonances in the in-
terval [MV , ∞), but analysis of the Schrödinger flow requires information about the spectrum at 
low energy as well. The next theorem handles this by showing that indeed there are no embedded 
eigenvalues or resonances in (0, ∞). In fact, for this theorem, we do not need V to be a radial 
potential, since the arguments involved do not rely as heavily on the conic structure.

Theorem 2. For V ∈ ρ−2σ L∞(C(X)) with σ > 1
2 , then −�C(X) + V has continuous spectrum 

[0, ∞), with no embedded eigenvalues or resonances in the range (0, ∞).

This theorem will be used implicitly throughout this manuscript, but we postpone its proof un-
til Appendix A, since the techniques involved in the proof are quite distinct from those used 
elsewhere in the argument.

In order to analyze the Schrödinger flow, we also require estimates on the behavior of the 
resolvent at low energy. For this we must assume that −�C(X) + V does not have a resonance 
at zero. With this assumption, we obtain the following refinements in our operator bounds from 
Theorem 1.

Theorem 3. Suppose V ∈ ρ−2σ L∞(R+) with σ > 1
2 + k, and assume that −�C(X) + V does 

not have a resonance at zero energy. Then, (1.4) can be improved to∥∥∥∂�
λRV,j (λ

2 ± i0)

∥∥∥
2,δ 2,−δ

≤ Cj,�
for all λ ≥ 0 (1.5)
L →L 〈λ〉
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for 1
2 + k < δ < σ and 0 ≤ � ≤ k. Under the stronger hypothesis that n

2 + k ≤ δ < σ , we also 
have that the imaginary part of RV,j satisfies

∥∥∥∂�
λ ImRV,j (λ

2 ± i0)

∥∥∥
L2,δ→L2,−δ

≤ C′
j,�λ

n−2−k for all λ ∈ [0,1], (1.6)

for some C′
j,� > 0 and each 0 ≤ � ≤ k.

By combining these mapping properties with the behavior of the free resolvent R0(z
2) :=

(−�C(X) − z2)−1, we are able to establish weighted pointwise estimates on the Schwartz kernel 
of RV,j (λ

2 ± i0), from which we can obtain our primary result on the time-decay rate of the 
Schrödinger flow.

Theorem 4. Suppose C(X) is of odd dimension n ≥ 3. Let V ∈ ρ−2σ L∞(R+) with

σ > 2n
⌈n

4

⌉
.

If RV (z2) does not have a pole at z = 0, then for any integer j ≥ 0 and α ≥ 2 
⌈

n
4

⌉
(n − 2) −

n−1
2 + 2, we have

‖ρ−αeitH PcEjf ‖L∞(R+) ≤ Cj,α,σ t−
n
2 ‖ραEjf ‖L1(R+,rn−1 dr), (1.7)

for some Cj,α,σ > 0.

We do not claim that the lower bound on the exponent α in the spatial weights is optimal, 
but these weights are required to obtain Theorem 4 from the techniques used in this article. 
In particular, the weights are needed to counteract certain regularity issues which arise when 
differentiating the resolvent with respect to λ. See Remark 3.7 for additional details. Furthermore, 
the dependence on j appears as a consequence of the fact that the pointwise bounds we establish 
on each RV,j are not necessarily summable in j . Similar weighted mode-by-mode estimates are 
obtained in the works of Schlag-Soffer-Staubach [61,62] in the case of surfaces of revolution and 
related mode by mode decay rates were established for the wave equation on the Schwarzschild 
space-time in Donninger-Schlag-Soffer [13].

Remark 1.1. In the case where n is even, the techniques of this article give a slightly weaker 
estimate of the form

‖ρ−αeitH PcEjf ‖L∞(R+) ≤ Cj,α,σ t−
n−1

2 ‖ραEjf ‖L1(R+,rn−1 dr), (1.8)

for analogous conditions on V and α, where the loss of the 1
2 power of decay in t arises as a 

result of regularity issues encountered in the analysis of the spectral measure near zero energy. 
We expect that with more sophisticated techniques it may be possible to improve this estimate to 
give the full t− n

2 decay rate exhibited in Rn.
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1.1. Outline of the paper

In Section 2, we summarize known facts regarding the form of the free resolvent R0(z
2). The 

results presented are primarily taken from [3], which draws heavily upon the seminal work of 
[11]. In Section 3, we prove operator bounds on the free resolvent using properties of Bessel 
and Hankel functions. These bounds include a limiting absorption principle for the projections 
R0,j := R0Ej . Section 4 combines these bounds on the free resolvent with perturbation theory 
arguments to prove Theorems 1 and 3. Then, in Section 5, we prove weighted pointwise bounds 
on the perturbed resolvent kernel using a Birman-Schwinger expansion along with the previous 
operator estimates. Finally, in Section 6, we use the representation of the spectral measure in 
terms of the resolvent combined with the pointwise resolvent bounds to establish Theorem 4. 
We also provide three appendices at the end of the paper. Appendix A contains the proof of 
Theorem 2, which demonstrates the absence of embedded eigenvalues and resonances. This fact 
is of critical importance throughout the paper. For the benefit of the reader, Appendix B provides 
a full derivation of the free resolvent formula presented in Section 2. This derivation largely 
follows the work of [3], but we provide some additional clarifying details. Finally, Appendix C
uses ideas from [19] to give a modified dispersive estimate for the free Schrödinger flow which 
is both unweighted and not restricted to individual eigenspaces of the link manifold.
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2. The free resolvent

In this section, we outline some key facts about the kernel of the free resolvent operator

R0(z
2) = (−�C(X) − z2)−1 : L2(C(X)) → L2(C(X)), (2.1)

for complex z. This is equivalent to analyzing solutions of the equation

(−�C(X) − z2)u = f (2.2)

for f ∈ L2(C(X)). To proceed, we decompose u and f into the basis {ϕj } of eigenfunctions on 
X as

f (r, θ) =
∞∑

fj (r)ϕj (θ), u(r, θ) =
∞∑

uj (r)ϕj (θ).
j=1 j=1
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Denote by −μ2
j the eigenvalues of �h associated to each ϕj . Then, we obtain that (2.2) is equiv-

alent to the collection of equations(
∂2
r + n − 1

r
∂r + z2 − μ2

j

r2

)
uj (r) = −fj (r), j = 0,1,2, . . . . (2.3)

Therefore, we can express the resolvent R0(z
2) as

R0(z
2)f (r, θ) =

∞∑
j=0

uj (r)ϕj (θ),

with uj as above. If we define the j th radial resolvent R0,j (z
2) by

R0,j (z
2) =

(
∂2
r + n − 1

r
∂r + z2 − μ2

j

r2

)−1

(2.4)

as an operator on L2(R+, rn−1 dr), then the full resolvent is given by

R0(z
2)f (r, θ) =

∞∑
j=0

R0,j (z
2)fj (r)ϕj (θ).

The work of Baskin and Yang [3] presents several results about these radial resolvents, which we 
summarize in the following lemma.

Lemma 2.1 (Baskin-Yang [3]). For Im z > 0, the action of the j -th radial resolvent is given by

R0,j (z
2)f (r) =

∞∫
0

R0,j (z
2; r; s)f (s)sn−1 ds,

and the kernel R0,j (z
2; r; s) takes the form

R0,j (z
2; r; s) =

{
πi
2 (rs)− n−2

2 Jνj
(zs)H

(1)
νj

(zr), s < r

πi
2 (rs)− n−2

2 Jνj
(zr)H

(1)
νj

(zs), s > r,
(2.5)

where Jνj
and H(1)

νj
denote the Bessel and Hankel functions of the first kind of order νj , re-

spectively. Moreover, for any fixed χ ∈ C∞
c (R+ × X), the cutoff resolvent χR0(z

2)χ admits a 
meromorphic continuation to the logarithmic cover � of C \ 0.

Remark 2.2. We note that the above formula for the kernel of R0,j differs from that presented 
in [3] by a sign, since we have defined the resolvent as (−�C(X) − z2)−1 rather than (�C(X) +
z2)−1, but this is of no consequence for the remainder of the analysis.
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From Lemma 2.1, we can construct the absolutely continuous part of the spectral measure for 
the free Laplacian on C(X), which we denote by d�0. By Stone’s formula, we can write the 
continuous part of the spectral measure in terms of the difference between the boundary values 
of the resolvent as we approach the continuous spectrum from above and below. That is, for 
μ ∈R+,

d�0(μ) = 1

2πi
lim

ε→0+

[
(−�C(X) − (μ + iε)−1 − (−�C(X) − (μ − iε))−1

]
dμ

= 1

2πi
Im(−�C(X) − (μ + i0))−1 dμ.

We can then reparametrize the continuous spectrum by changing variables via μ �→ λ2 for λ > 0, 
which allows us to write

d�0(μ) = 1

πi
ImR0(λ

2 + i0)λdλ.

Noting that H(1)
ν = Jνj

+ iYν , where Yν is the Bessel function of the second kind of order ν, we 
have by Lemma 2.1 that

ImR0,j (λ
2 + i0; r, s) = π

2
(rs)−

n−2
2 Jνj

(λr)Jνj
(λs).

From this, we obtain the following lemma.

Lemma 2.3. The continuous part of the spectral measure of −�C(X), with the convention that 
λ2 is the spectral parameter, is given by

d�0(λ;x, y) = 1

πi
(rs)−

n−2
2

∞∑
j=0

Jνj
(λr)Jνj

(λs)ϕj (θ)ϕj (ζ )λdλ, λ > 0,

where x = (r, θ) and y = (s, ζ ) are points in C(X).

3. Estimates on the free resolvent

In this section, we prove a variety of weighted estimates on the unperturbed radial resolvents 
R0,j . These estimates heavily rely on the asymptotic formulae for the Bessel and Hankel func-
tions near zero and infinity. Of particular interest is the behavior of R0,j measured in the weighted 
Lq spaces defined by

Lq,σ (R+, rn−1 dr) = {f :R+ → C :
∞∫

0

|f (r)|q ρqσ (r) rn−1 dr < ∞},

where ρ(r) = 1 + r . For ease of notation, we simply write Lq,σ to denote the space 
Lq,σ (R+, rn−1 dr) where there can be no confusion. The estimates for the free resolvent on 
these spaces will prove useful in Sections 4 and 5 for establishing the mapping properties of the 
perturbed resolvent.
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We begin with a quantitative formulation of the Limiting Absorption Principle for the ra-
dial resolvents. See [65] for a recent discussion of this in the more general setting of scattering 
manifolds.

Proposition 3.1. Let k ≥ 0 be an integer. Then for any σ > 1
2 + k,

‖∂k
λR0,j (λ

2 + i0)‖L2,σ →L2,−σ ≤ Cj,k,σ

|λ| (3.1)

for all |λ| ≥ 1.

Remark 3.2. A noteworthy observation here is that the constant Cj,k,σ in Proposition 3.1 is not 
known a priori to be bounded as a function of j . In the special case where k = 0, the statement of 
Proposition 3.1 can be shown to hold for the full resolvent R0(λ

2 + i0) with a uniform constant 
using extremely precise asymptotics for the Bessel and Hankel functions such as those found in 
[21]. However, when k > 0 this method fails due to the fact that differentiating Jν(λr)H

(1)
ν (λs)

yields a linear combination of products of Bessel and Hankel functions with mismatched orders, 
and hence the resulting constants in the estimates for the Hankel functions are not balanced by 
those of the Bessel functions, in contrast to the k = 0 case.

Proof. If f ∈ L2,σ , we have

‖∂k
λR0,j (λ

2 + i0)f ‖2
L2,−σ =

∞∫
0

∣∣∣∣∣∣
∞∫

0

∂k
λR0,j (λ

2 + i0; r, s)f (s)sn−1 ds

∣∣∣∣∣∣
2

(1 + r)−2σ rn−1 dr.

Inserting a factor of (1 + s)−σ (1 + s)σ and applying Cauchy-Schwartz, we see that

‖∂k
λR0,j (λ

2 + i0)f ‖2
L2,−σ ≤

∞∫
0

‖∂k
λR0,j (λ

2 + i0; r, ·)‖2
L

2,−σ
s

‖f ‖2
L

2,σ
s

(1 + r)−2σ rn−1 dr

= ‖∂k
λR0,j (λ

2 + i0; ·, ·)‖2
L

2,−σ
s L

2,−σ
r

‖f ‖2
L

2,σ
s

.

Hence, it suffices to show that the kernel satisfies

‖∂k
λR0,j (λ

2 + i0; ·, ·)‖2
L

2,−σ
s L

2,−σ
r

≤ C

λ2 .

By definition,

‖∂k
λR0,j (λ

2 + i0; ·, ·)‖2
L

2,−σ
s L

2,−σ
r

=
∞∫

0

∞∫
0

∂k
λR0,j (λ

2 + i0; r, s)(1+s)−2σ (1+r)−2σ (rs)n−1 ds dr,

(3.2)
Recalling the piecewise formula (2.5) for the resolvent kernel, we have that
427
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‖∂k
λR0,j (λ

2 + i0; ·, ·)‖2
L

2,−σ
s L

2,−σ
r

= π2

4

∞∫
0

r∫
0

[
∂k
λ

(
H(1)

νj
(λr)Jνj

(λs)
)]2

(rs)(1 + r)−2σ (1 + s)−2σ ds dr

+ π2

4

∞∫
0

∞∫
r

[
∂k
λ

(
H(1)

νj
(λs)Jνj

(λr)
)]2

(rs)(1 + r)−2σ (1 + s)−2σ ds dr.

(3.3)

By changing the order of integration, we get that the first term on the right-hand side of (3.3) can 
be rewritten as

π2

4

∞∫
0

∞∫
s

[
∂k
λ

(
H(1)

νj
(λr)Jνj

(λs)
)]2

(rs)(1 + r)−2σ (1 + s)−2σ dr ds. (3.4)

We note that up to a relabeling of r, s, this is exactly equal to the second term in (3.3), and hence

‖∂k
λR0,j (λ

2 + i0; ·, ·)‖2
L

2,−σ
s L

2,−σ
r

=

π2

2

∞∫
0

∞∫
r

[
∂k
λ

(
H(1)

νj
(λs)Jνj

(λr)
)]2

(rs)(1 + r)−2σ (1 + s)−2σ ds dr.
(3.5)

Note that if Cν(x) is either a Bessel or Hankel function of order ν, we have

C′
ν(x) = 1

2
(Cν+1(x) − Cν−1(x)) , (3.6)

and so the triangle inequality reduces the proof of Proposition 3.1 to showing that the following 
lemma holds. �
Lemma 3.3. Let �, m, k be nonnegative integers with � + m = k, and suppose α, β ∈ Z are such 
that |α| ≤ � and |β| ≤ m. Then for any ν ≥ n−2

2 , there exists a C > 0 depending only on k, ν
such that

∞∫
0

∞∫
r

|Jν+α(λr)|2|H(1)
ν+β(λs)|2r1+2�s1+2m(1 + s)−2σ (1 + r)−2σ ds dr ≤ C

λ2 , λ ≥ 1, (3.7)

provided that σ > 1
2 + k.

Proof. This proof, and others which follow it, make extensive use of asymptotic estimates for 
the Bessel and Hankel functions, which we record here for later use. For any ν ∈ R, there exist 
constants Cν, C′

ν > 0 such that when 0 < |τ | ≤ 1,

|Jν(τ )| ≤ Cν |τ |ν,
∣∣∣H(1)

ν (τ )

∣∣∣≤ Cν |τ |−ν (3.8)
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∫
0

and when |τ | ≥ 1,

|Jν(τ )| ≤ C′
ν |τ |− 1

2 ,

∣∣∣H(1)
ν (τ )

∣∣∣≤ C′
ν |τ |− 1

2 . (3.9)

To prove Lemma 3.3, let us first write the left-hand side of (3.7) as I (λ) + II (λ), where 
each term is obtained by restricting the integral in the r variable to 0 < r < 1

λ
and 1

λ
< r < ∞, 

respectively. To estimate I (λ), note that by (3.9), we have

∞∫
1
λ

s1+2m(1 + s)−2σ |H(1)
ν+β(λs)|2 ds ≤ C

λ

∞∫
1
λ

s2m(1 + s)−2σ ds ≤ C′

λ
,

as long as σ > m + 1
2 . Combining this with (3.8), we have

1
λ ∞∫

1
λ

|Jν+α(λr)|2|H(1)
ν+β(λs)|2r1+2�s1+2m(1 + s)−2σ (1 + r)−2σ ds dr ≤ C′

λ

1
λ∫

0

r1+2�(λr)2(ν+α) dr

≤ C′′

λ2

(3.10)

for any � ≥ 0, since λ ≥ 1. Furthermore, if 0 < r ≤ 1
λ

, we have

1
λ∫

r

s1+2m(1 + s)−2σ |H(1)
ν+β(λs)|2 ds ≤ C

λ2(ν+β)

1
λ∫

r

s1+2(m−ν−β) ds

≤ C

λ2(ν+β)
r1+2(m−ν−β)

(
1

λ
− r

)
≤ C′

λ
(λr)−2(ν+β)r2m

since 1 + 2(m − β − ν) ≤ 0. Hence, if we recall that k = � + m ≥ |α| + |β| and apply (3.8), we 
have

1
λ∫

0

1
λ∫

r

|Jν+α(λr)|2|H(1)
ν+β(λs)|2r1+2�s1+2m(1 + s)−2σ (1 + r)−2σ ds dr

≤ C′

λ

1
λ∫

0

r1+2k(λr)2(α−β)dr = C′

λ2k+2

1
λ∫

0

(λr)1+2(k+α−β)dr

≤ C′

λ2k+3 ≤ C′

λ2
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for all k ≥ 0 when λ ≥ 1. Combining this with (3.10) proves that I (λ) ≤ C
λ2 for some C > 0 and 

all λ ≥ 1. Since for any fixed k there are only finitely many possibilities for �, m, α, β , we can 
choose C to depend only on k and ν.

Now, to estimate II (λ), we apply (3.9) to both the Bessel and Hankel functions to obtain

II (λ) ≤ C

∞∫
1
λ

∞∫
1
λ

r1+2�(1 + r)−2σ (λr)−1s1+2m(1 + s)−2σ (λs)−1 ds dr

= C

λ2

∞∫
0

∞∫
0

(1 + r)2(�−σ)(1 + s)2(m−σ) ds dr

≤ C

λ2 ,

provided that σ > k + 1
2 , which completes the proof of Lemma 3.3. �

It will also prove useful to have a bound on the L2,σ → L2,−σ mapping properties of the 
imaginary part of each R0,j when λ is small. In particular, we are able to show that this operator 
norm has a precise polynomial rate of vanishing as λ → 0.

Proposition 3.4. For any integer k ≥ 0 and any σ > n
2 + k, we have that

‖∂k
λ ImR0,j (λ

2 + i0)‖L2,σ →L2,−σ ≤ Cj,k,σ λn−2−k

when 0 < λ ≤ 1.

Proof. By the discussion at the beginning of the proof of Proposition 3.1, it is sufficient to show 
that

‖∂k
λ ImR0,j (λ

2 + i0; r, s)‖
L

2,−σ
r L

2,−σ
s

≤ Cλn−2−k (3.11)

for 0 < λ ≤ 1. By (3.5) we have

‖∂k
λ ImR0,j (λ

2 + i0; r, s)‖2
L

2,−σ
r L

2,−σ
s

= C

∞∫
0

∞∫
0

[
∂k
λ

(
Jνj

(λr)Jνj
(λs)

)]2
(1 + r)−2σ (1 + s)−2σ (rs) dr ds.

Using the recursive formula for derivatives of the Bessel functions as before, we can reduce the 
proof to showing that

∞∫ ∞∫
r1+2�s1+2m|Jνj +α(λr)|2|Jνj +β(λs)|2(1 + r)−2σ (1 + s)−2σ dr ds ≤ Cλ2(n−2−k) (3.12)
0 0

430



B. Keeler and J.L. Marzuola Journal of Differential Equations 320 (2022) 419–468
for any integers �, m ≥ 0 with � + m = k and integers α, β with |α| ≤ � and |β| ≤ m. Since the 
above integral is separable, it is in fact enough to show

∞∫
0

r1+2�|Jνj +α(λr)|2(1 + r)−2σ dr ≤ Cλn−2−2α (3.13)

for any � ≤ k and |α| ≤ �, since analogous estimates will apply to the integral in the s variable. 
First, notice that (3.8) implies

1
λ∫

0

r1+2�|Jνj +α(λr)|2(1 + r)−2σ dr ≤ C

1
λ∫

0

r1+2�(λr)2(νj +α)(1 + r)−2σ dr

= Cλ2(νj +α)

1
λ∫

0

r1+2(�+α+νj )(1 + r)−2σ dr ≤ C′λ2(νj +α)

1
λ∫

0

(1 + r)1+2(�+α+νj −σ) dr

≤ C′′λ2(νj +α)

∣∣∣∣∣
(

1 + 1

λ

)2+2(�+α+νj −σ)

− 1

∣∣∣∣∣
≤ C1λ

2(σ−�)−2(λ + 1)2+2(�+α+νj −σ) + C2λ
2(νj +α)

≤ C1λ
2(σ−�)−2 + C2λ

2(νj +α).

Recalling that σ > n
2 + k and � ≤ k, we have that 2(σ − �) > n. Also, we have 2(νj + α) ≥

n − 2 + 2α, and since |α| ≤ � ≤ k, we have that the above is bounded by a constant times 
λn−2−2α for 0 < λ ≤ 1 as claimed.

Next, we consider the integral over the region where 1
λ

≤ r < ∞. For this, we use (3.9) to 
obtain

∞∫
1
λ

r1+2�|Jνj +α(λr)|2(1 + r)−2σ dr ≤ C

∞∫
1
λ

r1+2�(λr)−1(1 + r)−2σ dr

≤ C

λ

∞∫
1
λ

(1 + r)2(�−σ) dr ≤ C′

λ

(
1 + 1

λ

)1+2(�−σ)

= C′λ2(σ−�)−2(λ + 1)1+2(�−σ) ≤ C′′λ2(σ−�)−2.

The restrictions on σ guarantee that the above is bounded by a constant times λn−2 for 0 < λ ≤ 1. 
Therefore, (3.13) holds, and the proof is complete. �

Next, we aim to prove weighted Lq estimates on the free radial resolvent kernels R0,j , which 
enables us to control the terms in the Birman-Schwinger series for RV,j when applied iteratively. 
First, we make note of a technical lemma.
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Lemma 3.5. Let ν ≥ n−2
2 , and λ > 0. Suppose that β, m ∈Z are such that |β| ≤ m and ν+β ≥ 0. 

Assume also that 1 ≤ q < ∞ and that σ > n
q

+ m. Then there exist C1, C2 > 0 such that

∞∫
0

(λs)
q
(
m− n−2

2

)
|Jν+β(λs)|q(1 + s)−qσ sn−1 ds ≤

⎧⎨⎩C1λ
−n + C2λ

q
(
m− n−1

2

)
, 1 ≤ λ < ∞

Cλqσ−n, 0 < λ ≤ 1.

(3.14)

Proof. Let us denote by I (λ) the integral in the statement above, and observe that I (λ) is clearly 
nonnegative for all λ > 0. If we split the integral into the regions where 0 < s < 1

λ
and 1

λ
< s <

∞, we can apply (3.8) and (3.9) to Jν+β to obtain that

I (λ) ≤ C

1
λ∫

0

(λs)
q
(
ν− n−2

2 +β+m
)
(1 + s)−qσ sn−1 ds + C

∞∫
1
λ

(λs)
q
(
m− n−1

2

)
(1 + s)−qσ sn−1 ds

for some constant C > 0. To estimate these integrals, we treat the cases λ ≥ 1 and λ ≤ 1 sepa-
rately. First suppose that λ ≥ 1. Then we see that

1
λ∫

0

(λs)
q
(
ν− n−2

2 +β+m
)
(1 + s)−qσ sn−1 ds ≤ λ1−n

1
λ∫

0

(1 + s)−qσ ds ≤ Cλ−n, (3.15)

since ν − n−2
2 + β + m ≥ 0 and qσ > 0. For the integral over 1

λ
< s < ∞, we have

∞∫
1
λ

(λs)
q
(
m− n−1

2

)
(1 + s)−qσ sn−1 ds = λ

q
(
m− n−1

2

) ∞∫
1
λ

s
n−1+q

(
m− n−1

2

)
(1 + s)−qσ ds.

Under the hypothesis that σ > n
q

+ m, the integral

∞∫
1

s
n−1+q

(
m− n−1

2

)
(1 + s)−qσ ds

converges and is bounded by constant which is independent of λ. For the region where 1
λ

< s < 1, 
we have

1∫
1
λ

s
n−1+q

(
m− n−1

2

)
(1 + s)−qσ ds ≤ Cλ

−n−q
(
m− n−1

2

)
.

Thus,
432



B. Keeler and J.L. Marzuola Journal of Differential Equations 320 (2022) 419–468
λ
q
(
m− n−1

2

) ∞∫
1
λ

s
q
(
m− n−1

2

)
(1 + s)−qσ sn−1 ds ≤ max{λ−n, λ

q
(
m− n−1

2

)
}

when λ ≥ 1.
Now take the case where 0 < λ ≤ 1. Then, since |β| ≤ m and ν ≥ n−2

2 , we have

1
λ∫

0

(λs)
q
(
ν− n−2

2 +β+m
)
(1 + s)−qσ sn−1 ds ≤ C

1
λ∫

0

(1 + s)n−1−qσ ds

= C′
(

1 + 1

λ

)n−qσ

≤ C′′λqσ−n.

For the integral over 1
λ

≤ s < ∞, we notice that

∞∫
1
λ

(λs)
q
(
m− n−1

2

)
(1 + s)−qσ sn−1 ds ≤ λ

q
(
m− n−1

2

) ∞∫
1
λ

(1 + s)
n−1+q

(
m− n−1

2 −σ
)
ds

since 1 ≤ 1
λ

≤ s. Recalling the assumption that σ > n
q

+ m, we can see that

n − 1 + q

(
m − n − 1

2
− σ

)
< −1,

and therefore,

λ
q
(
m− n−1

2

) ∞∫
1
λ

(1 + s)
n−1+q

(
m− n−1

2 −σ
)
ds ≤ C′λq

(
m− n−1

2

) (
1 + 1

λ

)n+q
(
m− n−1

2 −σ
)

≤ C′′λqσ−n.

Therefore, I (λ) ≤ Cλqσ−n for 0 < λ ≤ 1. �
Next, we establish some estimates on the Lq,σ norms of R0,j (λ

2 ± i0)(r, s) when the norm is 
only taken with respect to one variable.

Proposition 3.6. Let k ≥ 0 be an integer. Also assume that 1 ≤ q < ∞ and

σ >
n

q
+ k. (3.16)

Then for λ ≥ 1, we have
433



B. Keeler and J.L. Marzuola Journal of Differential Equations 320 (2022) 419–468
‖∂k
λImR0,j (λ

2 + i0; r, ·)‖Lq,σ

≤ Cj,q,σ,kλ
n−2−k

∑
�+m=k

[
(1 + λr)�−

n−1
2

(
C1λ

− n
q + C2λ

m− n−1
2

)] (3.17)

for some Cj,q,σ,k > 0. Furthermore, when λ ≤ 1, we have

‖∂k
λImR0,j (λ

2 + i0; r, ·)‖Lq,σ ≤ Cj,q,σ,kλ
n−2(1 + λr)k− n−1

2 . (3.18)

By symmetry, we also have the analogous estimates

‖∂k
λImR0,j (λ

2 + i0; ·, s)‖Lq,σ

≤ Cj,q,σ,kλ
n−2−k

∑
�+m=k

[
(1 + λs)�−

n−1
2

(
C1λ

− n
q + C2λ

m− n−1
2

)] (3.19)

for λ ≥ 1, and

‖∂k
λImR0,j (λ

2 + i0; ·, s)‖Lq,σ ≤ Cj,q,σ,kλ
n−2(1 + λs)k− n−1

2 (3.20)

when λ ≤ 1.

Remark 3.7. Note that in the special case where the order of differentiation is less than or equal 
to n−1

2 , these estimates reduce to simple polynomial behavior in λ. However, if the number of 
derivatives exceeds this threshold value, we begin to see a non-uniformity with respect to the 
secondary radial variable. This phenomenon is why the spatial weights appear in the statement 
of Theorem 4.

Proof. Recall that the kernel of ImR0,j (λ
2 + i0) has the explicit expression

ImR0,j (λ
2 + i0; r, s) = π

2
(rs)−

n−2
2 Jνj

(λr)Jνj
(λs).

Since Bessel functions satisfy the recursion relation

J ′
ν(x) = 1

2
(Jν−1(x) − Jν+1(x)) ,

we see that ∂k
λImR0,j (λ

2 + i0) can be written as a finite linear combination of terms of the form

(rs)−
n−2

2 r�smJνj +α(λr)Jνj +β(λs), (3.21)

where �, m, α, β are integers satisfying � + m = k, |α| ≤ �, and |β| ≤ m. Therefore, by the 
triangle inequality, it suffices to estimate the weighted Lq norms of such terms. Taking the Lq,σ

norm with respect to the s variable in (3.21) yields

λq(n−2−k)(λr)
q
(
�− n−2

2

)
|Jνj +α(λr)|q

∞∫
(λs)

q
(
m− n−2

2

)
|Jνj +β(λs)|q(1 + s)−qσ sn−1 ds.
0
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Note that since |α| ≤ �, we have that the product (λr)�− n−2
2 |Jνj +α(λr)| is a continuous function 

of λr , and thus by (3.9) we obtain

(λr)
q
(
�− n−2

2

)
|Jνj +α(λr)|q ≤ C(1 + λr)

q
(
�− n−1

2

)
.

Thus, we have that the Lq,σ norm of (3.21) is bounded by

Cλq(n−2−k)(1 + λr)
q
(
�− n−1

2

) ∞∫
0

(λs)
q
(
m− n−2

2

)
|Jνj +β(λs)|q(1 + s)−qσ sn−1 ds. (3.22)

Now, observe that the integral above is in exactly the right form for us to apply Lemma 3.5. 
Hence, we have that (3.22) is bounded by

⎧⎨⎩Cλq(n−2−k)(1 + λr)
q
(
�− n−1

2

)
max{λ−n, λ

q
(
m− n−1

2

)
}, λ ≥ 1

Cλq(n−2−k)+qσ−n(1 + λr)
q
(
�− n−1

2

)
, λ ≤ 1,

for some possibly larger constant C. In the case where λ ≥ 1, simply taking qth roots gives 
estimate (3.17). When λ ≤ 1, we can use that σ satisfies (3.16) to obtain that q(n − 2 − k) +
qσ − n > q(n − 2). Once again, taking qth roots gives (3.18). �

Next, we estimate the Lq norm of the resolvent when we do not take the imaginary part.

Proposition 3.8. Let k ≥ 0 be an integer and suppose 1 ≤ q ≤ n
n−2 . Then, if σ satisfies (3.16), 

we have that when λ ≥ 1,

‖∂k
λR0,j (λ

2 + i0; r, ·)‖Lq,σ ≤ Cλn−2−k
∑

�+m=k

[
(1 + λr)�−

n−1
2

(
C1 + C2λ

m− n−1
2

)]
(3.23)

for some C, C1, C2 > 0. If 0 < λ ≤ 1, then we have

‖∂k
λR0,j (λ

2 + i0); r, ·)‖Lq,σ ≤ C1λ
−k + C2λ

n−2−k(1 + λr)k− n−1
2 . (3.24)

Under the same assumptions on σ , we also have

‖∂k
λR0,j (λ

2 ± i0; ·, s)‖Lq,σ ≤ Cλn−2−k
∑

�+m=k

[
(1 + λs)�−

n−1
2

(
C1 + C2λ

m− n−1
2

)]
(3.25)

when λ ≥ 1, and

‖∂k
λR0,j (λ

2 + i0; ·, s)‖Lq,σ ≤ C1λ
−k + C2λ

n−2−k(1 + λs)k− n−1
2 (3.26)

when 0 < λ ≤ 1.
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Proof. Recalling that

R0,j (λ
2 + i0)(r, s) =

{
πi
2 Jνj

(λs)H
(1)
νj

(λr), s < r
πi
2 Jνj

(λr)H
(1)
νj

(λs), s > r,

and (3.6), we see that when s < r , ∂k
λR0,j (λ

2 + i0; r, s) can be written as a finite linear combi-
nation of terms of the form

(rs)−
n−2

2 r�smJνj +α(λs)H
(1)
νj +β(λr),

where, as in the proof of Proposition 3.6, �, m are nonnegative integers with � + m = k and α, β
are any integers with |α| ≤ � and |β| ≤ m. Similarly, when r < s, we can write ∂k

λR0,j (λ
2 +

i0)(r, s) as a combination of terms of the same form, but with the roles of r and s reversed. 
Therefore, it suffices to estimate

I (λ, r) := ‖(rs)− n−2
2 r�smJνj +β(λs)H

(1)
νj +α(λr)ρ−σ (s)1{s<r}‖q

L
q
s

(3.27)

and

II (λ, r) := ‖(rs)− n−2
2 r�smJνj +α(λr)H

(1)
νj +β(λs)ρ−σ (s)1{s>r}‖q

L
q
s

(3.28)

for any �, m, α, β as above.
We first estimate I (λ, r) in the case where λr ≥ 1. Under this hypothesis, we can apply (3.9)

to obtain

I (λ, r) ≤ Cλq(n−2−k)(λr)
q
(
�− n−1

2

) r∫
0

(λs)
q
(
m− n−2

2

)
|Jνj +β(λs)|q(1 + s)−qσ sn−1 ds.

We now apply Lemma 3.5 to the integral above, which gives

I (λ, r) ≤
⎧⎨⎩Cλq(n−2−k)(λr)

q
(
�− n−1

2

)
max{λ−n, λ

q
(
m− n−1

2

)
}, λr ≥ 1, λ ≥ 1

Cλq(n−2−k+σ)−n(λr)
q
(
�− n−1

2

)
, λr ≥ 1, 0 < λ ≤ 1.

(3.29)

Now let us consider the case where λr ≤ 1. Here we can apply (3.8), which gives

I (λ, r) ≤ Cλq(n−2−k)(λr)
q
(
�− n−2

2 −νj −α
) r∫

0

(λs)
q
(
m− n−2

2 +νj +β
)
(1 + s)−qσ sn−1 ds. (3.30)

If r ≤ 1, we can bound the right-hand side of (3.30) by
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Cλq(n−2−k)(λr)q(k−α+β−(n−2))rn−1

r∫
0

(1 + s)−qσ ds ≤ C̃λq(n−2−k)(λr)−q(n−2)rn

= C̃λ−qkrn−q(n−2),

since k − α + β ≥ 0 and 
r∫

0
(1 + s)−qσ ds ≤ C′r for some C′ > 0. Recalling that q ≤ n

n−2 , we 

obtain

I (λ, r) ≤ Cλ−qk, λr ≤ 1, r ≤ 1. (3.31)

Now, if r ≥ 1, we can bound the right-hand side (3.30) by

Cλq(n−2−k)(λr)q(k−α+β−(n−2))

r∫
0

(1 + s)−qσ sn−1 ds ≤ Cλq(n−2−k)(λr)−q(n−2)(1 + r)n−qσ

(3.32)
since k − α + β ≥ 0 and λr ≤ 1. Recalling that σ > n

q
, we have that the right-hand side of (3.31)

by

Cλ−qkr−q(n−2) ≤ Cλ−qk. (3.33)

Combining (3.31) and (3.33), we have that

I (λ, r) ≤ Cλ−qk, λr ≤ 1. (3.34)

Combining (3.34) with (3.29), we have that

I (λ, r) ≤
⎧⎨⎩Cλq(n−2−k)(1 + λr)

q
(
�− n−1

2

)
max{λ−n, λ

q
(
m− n−1

2

)
}, λ ≥ 1

C1λ
−qk + C2λ

q(n−2)(1 + λr)
q
(
�− n−1

2

)
, 0 < λ ≤ 1.

(3.35)

Next, we move on to estimating II (λ, r). Again we consider the cases λr ≥ 1 and λr ≤ 1
separately. For λr ≥ 1, we apply (3.8) and (3.9) to obtain

II (λ, r) ≤ Cλq(n−2−k)(λr)
q
(
�− n−1

2

) ∞∫
1
λ

(λs)
q
(
m− n−1

2

)
(1 + s)−qσ sn−1 ds.

We can then repeat arguments from the proof of Lemma 3.5 to obtain

II (λ, r) ≤
⎧⎨⎩Cλq(n−2−k)(λr)

q
(
�− n−1

2

)
max{λ−n, λ

q
(
m− n−1

2

)
}, λr ≥ 1, λ ≥ 1

Cλq(n−2−k)(λr)
q
(
�− n−1

2

)
, λr ≥ 1, λ ≤ 1.

(3.36)
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Now consider the case where λr ≤ 1. Here we rewrite II (λ, r) as

λq(n−2−k)(λr)
q
(
�− n−2

2

)
|Jνj +α(λr)|q

⎛⎜⎜⎝
1
λ∫

r

+
∞∫

1
λ

⎞⎟⎟⎠ (λs)
q
(
m− n−2

2

)
|H(1)

νj +β(λs)|q(1 + s)−qσ sn−1 ds.

For the integral over 1
λ

< s < ∞, we can apply (3.9) to H(1)
νj+β and (3.8) to Jνj +α and repeat 

previous calculations to show that

λq(n−2−k)(λr)
q
(
�− n−2

2

)
|Jνj +α(λr)|q

∞∫
1
λ

(λs)
q
(
m− n−2

2

)
|H(1)

νj +β(λs)|q(1 + s)−qσ sn−1 ds

≤
⎧⎨⎩Cλq(n−2−k) max{λ−n, λ

q
(
m− n−1

2

)
}, λr ≤ 1, λ ≥ 1

Cλq(n−2−k)λqσ−n, λr ≤ 1, λ ≤ 1

≤
⎧⎨⎩Cλq(n−2−k) max{λ−n, λ

q
(
m− n−1

2

)
}, λr ≤ 1, λ ≥ 1

Cλq(n−2), λr ≤ 1, λ ≤ 1,

(3.37)

where the last inequality follows since σ > n
q

+ k. Now, in the region where r < s < 1
λ

, we must 
apply (3.8), which yields

1
λ∫

r

(λs)
q
(
m− n−2

2

)
|H(1)

νj +β(λs)|q(1 + s)−qσ sn−1 ds ≤ C

1
λ∫

r

(λs)
q
(
m− n−2

2 −νj −β
)
(1 + s)−qσ sn−1 ds

= Cλ
q
(
m− n−2

2 −νj −β
) 1

λ∫
r

s
n−1+q

(
m− n−2

2 −νj −β
)
(1 + s)−qσ ds.

If λ ≥ 1, then (1 + s)−qσ is bounded by a uniform constant for all r < s < 1
λ

, and so the above is 
bounded by

C

(
λ−n − rn(λr)

q
(
m− n−2

2 −νj −β
))

after possibly increasing C. We note that under our assumptions on r and λ, this quantity is still 
nonnegative. Combining this with (3.8) applied to Jν +α , we obtain
j

438



B. Keeler and J.L. Marzuola Journal of Differential Equations 320 (2022) 419–468
λq(n−2−k)(λr)
q
(
�− n−2

2

)
|Jνj +α(λr)|q

1
λ∫

r

(λs)
q
(
m− n−2

2

)
|H(1)

νj +β(λs)|q(1 + s)−qσ sn−1 ds

≤ Cλq(n−2−k)(λr)
q
(
�− n−2

2 +νj +α
) (

λ−n − rn(λr)
q
(
m− n−2

2 −νj −β
))

≤ λq(n−2−k)

[
C1λ

−n(λr)
q
(
�− n−2

2 +νj +α
)
+ C2r

n−q(n−2)(λr)q(k+α−β)

]
,

(3.38)

for some C1, C2 > 0. Recalling that |α| ≤ �, νj ≥ n−2
2 , and |α| + |β| ≤ k, we obtain

λq(n−2−k)(λr)
q
(
�− n−2

2

)
|Jνj +α(λr)|q

1
λ∫

r

(λs)
q
(
m− n−2

2

)
|H(1)

νj +β(λs)|q(1 + s)−qσ sn−1 ds

≤ λq(n−2−k)
[
C1λ

−n + C2r
n−q(n−2)

]
≤ Cλq(n−2−k)

(3.39)

for λr ≤ 1 and λ ≥ 1, since q ≤ n
n−2 .

Finally, we consider the same integral over r < s < 1
λ

, once again where 0 < λr ≤ 1 but with 
λ ≤ 1. For this, we further subdivide into the cases where r ≤ 1 and r ≥ 1. If r ≤ 1, we split 
the integral into the regions where r < s < 1 and 1 < s < 1

λ
. For the integral over r < s < 1, we 

can repeat the above argument to obtain the same bound as in (3.39). To bound the integral over 
1 < s < 1

λ
, we use (3.8) to obtain

λq(n−2−k)(λr)
q
(
�− n−2

2

)
|Jν+α(λr)|q

1
λ∫

1

(λs)
q
(
m− n−2

2

)
|H(1)

νj +β(λs)|q(1 + s)−qσ sn−1 ds

≤ λq(n−2−k)(λr)
q
(
�− n−2

2 +νj +α
) 1

λ∫
1

(λs)
q
(
m− n−2

2 −νj −β
)
(1 + s)−qσ sn−1 ds

= λq(α−β)r
q
(
�− n−2

2 +νj +α
) 1

λ∫
1

s
q
(
m− n−2

2 −νj −β
)
+n−1

(1 + s)−qσ ds

≤ λ−qk

∞∫
1

sqk+n−1(1 + s)−qσ ds

≤ Cλ−qk,

where the last inequality follows from the fact that σ > n + k. Now, if r ≥ 1, we have

q
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λq(n−2−k)(λr)
q
(
�− n−2

2

)
|Jν+α(λr)|q

1
λ∫

r

(λs)
q
(
m− n−2

2

)
|H(1)

νj +β(λs)|q(1 + s)−qσ sn−1 ds

≤ λq(n−2−k)(λr)
q
(
�− n−2

2 +νj +α
) 1

λ∫
r

(λs)
q
(
m− n−2

2 −νj −β
)
(1 + s)−qσ sn−1 ds

≤ Cλq(α−β)r
q
(
�− n−2

2 +νj +α
) ∞∫

r

s
q
(
m− n−2

2 −νj −β
)
−qσ+n−1

ds

≤ Cλq(α−β)rq(k+α−β−(n−2))−qσ+n

≤ Cλq(α−β)rq(α−β−(n−2)),

where in the last inequality we once again used that σ > n
q

+ k. Now, since r ≤ 1
λ

, we have that 

the above is bounded by a constant times λq(n−2) for λ ≤ 1. Combining this with (3.36), (3.37), 
and (3.39), we obtain

II (λ, r) ≤
⎧⎨⎩Cλq(n−2−k)(1 + λr)

q
(
�− n−1

2

)
max{1, λ

q
(
m− n−1

2

)
}, λ ≥ 1

C1λ
−qk + C2λ

q(n−2−k)(1 + λr)
q
(
�− n−1

2

)
, 0 < λ ≤ 1.

(3.40)

In light of (3.35) and (3.40), taking qth roots completes the proof of Proposition 3.8. �
4. Operator estimates for RV

In this section we establish some weighted operator norm estimates for the perturbed radial 
resolvents RV,j , defined via the mode-by-mode decomposition of RV (z2):

RV (z2) =
∞∑

j=0

RV,j (z
2)Ej .

Since V is radial, it follows that we can write

RV,j (z
2) =

(
∂2
r + n − 1

r
∂r + z2 − μ2

j

r2 + V (r)

)−1

, (4.1)

wherever this inverse is well defined. Here, we prove that the mapping properties established 
for R0,j in Proposition 3.1 and Proposition 3.4 extend to RV,j . Similar weighted estimates for 
Schrödinger operators on hyperbolic space are given in Section 4 of [8], and the techniques 
therein follow an analogous structure.

For a potential V ∈ ρ−2σ L∞(R+) with σ > 1
2 , the operator norm 

∥∥V R0(z
2)
∥∥

L2→L2 is small 
for Imz large by the standard resolvent norm estimate on R0(z

2), which is computable in a similar 
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fashion to that discussed in Proposition 3.1. Hence, the operator 1 + V R0(z
2) is invertible by 

Neumann series for large Imz. For z in this range, we can write

RV,j (z
2) = R0,j (z

2)(1 + V R0,j (z
2))−1.

We begin our analysis of these perturbed resolvents by proving Theorem 1, which we recall states 
that R0,j admits a meromorphic continuation to the logarithmic cover of C \ {0} and satisfies the 
limiting absorption principle.

Proof of Theorem 1. As mentioned in Section 2, the meromorphic extension of

χR0,j χ

with χ a smooth, compactly supported function, follows from [3]. The meromorphic continuation 
of χRV,j (λ)χ follows from the work of Guillopé–Zworski [33] and the compactness of the 
resolvent on a compact manifold with a conic singularity, which can be seen for instance in 
the treatment of domains for conic operators in the work of Melrose-Wunsch [51]. Using the 
techniques from Section 3, we can easily see that ρ(r)−ηR0,j (z) is compact as an operator on 
L2,δ provided that Im(z2) > 0 and η > δ, since the upper bounds (3.8) and (3.9) remain valid for 
arguments in the upper half plane.

Next, we prove the limiting absorption principle for RV,j . Following [29], we observe that 
mapping properties of RV,j can be deduced from the estimates established for R0,j . By the 
resolvent identity

R0,j (z
2) = RV,j (z

2) + RV,j (z
2)V R0,j (z

2),

we can write

R0,j (z
2)ρ−σ = RV,j (z

2)ρ−σ (1 + ρσ V R0,j (z
2)ρ−σ )

for ρ(r) = 1 + r . The factor on the right is meromorphically invertible by the analytic Fredholm 
theorem, so that

RV,j (z
2)ρ−σ = R0,j (z

2)ρ−σ (1 + ρσ V R0,j (z
2)ρ−σ )−1, (4.2)

whenever the inverse exists. By Proposition 3.1 and the fact that ρσV = ρ2σ Vρ−σ , we have∥∥∥ρσ V R0,j (λ
2 ± i0)ρ−σ

∥∥∥
L2→L2

≤ C

∥∥∥ρ2σ V

∥∥∥
L∞ |λ|−1 .

Hence for V ∈ ρ−2σ L∞, there exists a constant MV such that for |λ| ≥ MV ,

∥∥∥ρσ V R0,j (λ
2 ± i0)ρ−σ

∥∥∥
L2→L2

≤ 1

2
,

implying that (1 + ρσ V R0(λ
2 + i0)ρ−σ )−1 exists and satisfies
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∥∥∥(1 + ρσ V R0,j (λ
2 ± i0)ρ−σ )−1

∥∥∥
L2→L2

≤ 2.

The estimates then follow from (4.2) and Proposition 3.1. �
As stated in the introduction, we postpone the proof of Theorem 2 until the appendices, and 

so we take the absence of embedded eigenvalues and resonances in the range (0, ∞) as given 
for now. With this property in hand, our next goal is to prove the low energy estimates from 
Theorem 3 under the assumption that −�C(X) + V does not have a resonance at zero energy.

Proof of Theorem 3. We prove the desired estimates only for RV,j (λ
2 + i0), since the proof is 

analogous for RV,j (λ
2 − i0). Using a resolvent expansion motivated by [8], we observe that

RV,j (λ + i0) = R0,j (λ + i0)[I + V R0,j (λ + i0)]−1.

Hence, if we can establish boundedness and regularity of [I +V R0,j (λ
2 + i0)]−1 through λ = 0, 

then (1.5) follows immediately from Proposition 3.1. We observe that boundedness and regularity 
of the operator (I +R0,j (λ

2 + i0)V )−1 follows from Theorem 2 and the assumption that 0 is not 
a resonance or an eigenvalue of −�C(X) + V and hence the boundedness of

(I + V R0,j (λ
2 − i0))−1 = [(I + R0,j (λ

2 + i0)V )−1]∗

follows from analytic Fredholm theory. Thus, we may extend (1.4) through λ = 0 to arrive at 
(1.5).

To estimate ∂k
λ ImRV,j , we first consider the case where k = 0 and establish the pointwise 

bounds in λ. For this, we take note of the following resolvent identity

RV,j (λ
2 + i0) − RV,j (λ

2 − i0)

= (I + R0,j (λ
2 + i0)V )−1[R0,j (λ

2 + i0) − R0,j (λ
2 − i0)](I + V R0,j (λ

2 − i0))−1.

(4.3)

This shows that the behavior of ImRV,j (λ
2 + i0) near λ = 0 is the same as that of ImR0,j (λ

2 +
i0), provided that the operators

(I + R0,j (λ
2 + i0)V )−1 and (I + V R0,j (λ

2 − i0))−1

are bounded for λ in a neighborhood of 0, which we have already observed earlier in the proof. 
As a result, the k = 0 bound in (1.6) clearly follows. The results for k > 0 then follow by differ-
entiating term by term and applying Proposition 3.4. �
5. Full spectral resolution estimates

With the mapping properties for both the free and perturbed resolvents established in the 
previous sections, we are now able to obtain some precise pointwise estimates on the Schwartz 
kernel of ImRV,j (λ

2 ± i0; r, s).
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Proposition 5.1. Let k ≥ 0 be an integer. Suppose V ∈ ρ−2σ L∞(R+) with

σ > 4
⌈n

4

⌉
− 2 + k, (5.1)

then for any α ≥ max{k − n−1
2 , 0},

sup
r,s>0

∣∣∣ρ−α(r)∂k
λ ImRV,j (λ

2 ± i0; r, s)ρ−α(s)

∣∣∣≤ Cj,k,V λ2
 n
4 �(n−2)−1 (5.2)

for all λ ≥ 1 and some C > 0. Furthermore, if 0 < λ ≤ 1, we have that

sup
r,s>0

∣∣∣ρ−α(r)∂k
λ ImRV,j (λ

2 ± i0; r, s)ρ−α(s)

∣∣∣≤ Cj,k,V λn−2−k, (5.3)

under the same restrictions on α.

The proof proceeds similarly to [8, §6], which utilizes the following modified version of 
Young’s inequality.

Lemma 5.2. Suppose that on a measure space (Y, μ) the integral kernels Kj(z, w), j = 1, 2, 
satisfy

‖K1(z, ·)‖Lq1 ≤ A, ‖K1(·,w)‖Lq1 ≤ A, ‖K2(·,w′)‖Lq2 ≤ B

uniformly in z, w, w′ for q1, q2 ∈ [1, ∞]. Then if 1
q1

+ 1
q2

= 1
p

+ 1, we have that∥∥∥∥∫ K1(·,w)K2(w,w′) dμ(w)

∥∥∥∥
Lp

≤ AB

uniformly in w′. The bound on ‖K1(·, w)‖Lq1 is not required if p = ∞.

With this lemma in hand, we proceed to the proof of Proposition 5.1.

Proof of Proposition 5.1. We begin by expanding RV,j in a Birman-Schwinger series at all fre-
quencies, as in [29], which gives

RV,j (τ ) =
2M−1∑
�=0

R0,j (τ )(−V R0,j (τ ))� + [R0,j (τ )V ]MRV,j (τ )[V R0,j (τ )]M. (5.4)

As previously discussed, it suffices to consider only the case where we choose λ2 + i0 with 
λ > 0. For simplicity, we write R0,j for R0,j (λ

2 + i0) and RV,j for RV,j (λ
2 + i0). We first 

consider the remainder term [R0,j V ]MRV,j [V R0,j ]M . Since V ∈ ρ−2σ L∞, we may write 
V (r) = ρ−2σ (r)f (r) for some f ∈ L∞(R+). Also, note that for any two operators with Schwartz 
kernels A(r, s), B(r, s), the kernel of their composition is given by

〈A(r, ·),B(·, s)〉L2(R+) = 〈B(·, s),A(r, ·)〉L2(R+),
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provided the composition makes sense. Therefore, we can write

ρ−α[R0,jV ]MRV,j [V R0,j ]Mρ−α(r, s) = 〈
(ρ−σ RV,jρ

−σ )A(·, s),A∗(r, ·)〉
L2 , (5.5)

where

A(r, s) = (ρ−σ f R0,j ρ
−σ )M−1(ρ−σ f R0,j ρ

−α)(r, s),

and A∗ denotes the adjoint with respect to the L2 pairing. However, we know that A∗(r, s) =
A(s, r), and hence we can express the right-hand side of (5.5) as

〈(ρ−σ RV,jρ
−σ )A(·, s),A(·, r)〉L2 .

By (1.5), we have that∣∣∣∂k
λ〈(ρ−σ RV,jρ

−σ )A(·, s),A(·, r)〉L2

∣∣∣≤ C

〈λ〉 max
k1+k2≤k

(∥∥∥∂k1
λ A(·, s)

∥∥∥
L2

∥∥∥∂k2
λ A(·, r)

∥∥∥
L2

)
. (5.6)

To estimate the norms on the right, we wish to iteratively apply Lemma 5.2 to each factor in the 
definition of A. For this we consider the high and low frequency cases separately. First, suppose 
λ ≥ 1. By Proposition 3.8, we have that for 1 ≤ q ≤ n

n−2 and any 0 ≤ k̃ ≤ k1,∥∥∥ρ−σ (r)∂k̃
λR0,j ρ

−σ (r, ·)
∥∥∥

Lq
≤ Cρ−σ (r)λn−2−k̃

∑
�+m=k̃

[
(1 + λr)�−

n−1
2

(
C1 + C2λ

m− n−1
2

)]
.

(5.7)
Note that if � ≤ n−1

2 , we can see that the corresponding term in (5.7) is bounded by a constant 
times

λn−2−k̃ max{1, λ(̃k−�)− n−1
2 } ≤ max{λn−2−k̃ , λ

n−3
2 −�}

uniformly for r ∈ [0, ∞). On the other hand, if � > n−1
2 then we have that

ρ−σ (r)(1 + λr)�−
n−1

2 λn−2−k̃ ≤ (1 + λ)�−
n−1

2 (1 + r)�−
n−1

2 −σ λn−2−k̃

≤ C(1 + r)̃k−σ− n−1
2 λ

n−3
2 −(̃k−�), (5.8)

by Cauchy-Schwarz. Recalling our conditions on σ , we see that ̃k −σ − n−1
2 < 0. Therefore, the 

corresponding term in (5.7) is bounded by a constant times

λ
n−3

2 −(̃k−�) max{1, λ(̃k−�)− n−1
2 } = max{λn−3

2 −(̃k−�), λ−1}

uniformly in r . Maximizing over the possible combinations of �, m with � +m = k̃, we have that∥∥∥ρ−σ ∂k̃
λR0,j ρ

−σ (r, ·)
∥∥∥

Lq
≤ C max{λn−2−k̃ , λ

n−3
2 } (5.9)

for some C > 0, uniformly in r . A similar argument gives
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∥∥∥ρ−σ ∂k̃
λR0,j ρ

−σ (·, s)
∥∥∥

Lq
≤ C max{λn−2−k̃ , λ

n−3
2 } (5.10)

uniformly in s.
For the final factor in the definition of A, which has asymmetric weights, we only need an 

estimate in the left variable in order to apply Lemma 5.2. By Proposition 3.8 we have, for 1 ≤
q ≤ n

n−2 , ∥∥∥ρ−σ g∂k̃
λR0,j ρ

−α(·, s)
∥∥∥

Lq

≤ Cρ−α(s)λn−2−k̃
∑

�+m=k̃

[
(1 + λs)�−

n−1
2

(
C1 + C2λ

m− n−1
2

)]
.

We may repeat our previous argument almost exactly in order to bound this quantity. The only 
difference here is that the analogue of (5.8) has a factor of ρ−α instead of ρ−σ . So in order to 
obtain an estimate which is uniform in s, we must enforce the condition that α ≥ max{k− n−1

2 , 0}
and recall that ̃k ≤ k. Aside from this, the rest of the argument is identical, and so we have∥∥∥ρ−σ f ∂k̃

λR0,j ρ
−α(·, s)

∥∥∥
Lq

≤ C max{λn−2−k̃ , λ
n−3

2 } (5.11)

uniformly in s, provided that α ≥ max{k − n−1
2 , 0}.

We can now iteratively apply Lemma 5.2 to ‖∂k1
λ A(·, s)‖L2 . To do this, we must choose q =

2M
2M−1 so that M

q
= 1

2 + (M − 1). We also require 1 ≤ q ≤ n
n−2 , which is equivalent to taking 

M ≥ n
4 . This then implies that we must take σ >

n(2M−1)
2M

+ k1 in order for Proposition 3.6 and 
Proposition 3.8 to apply. In particular, we can take M = ⌈

n
4

⌉
, the smallest integer larger than n

4 . 
Using (5.1), we see that

σ > 4
⌈n

4

⌉
− 2 + k = n

(
4M − 2

n

)
+ k ≥ n

(
4M − 2

4M

)
+ k ≥ n

(
2M − 1

2M

)
+ k1,

and so the following argument holds under this condition on σ . Repeatedly applying Lemma 5.2

to 
∥∥∥∂k1

λ A(·, s)
∥∥∥

L2
and using that f is uniformly bounded, we obtain

∥∥∥∂k1
λ A(·, s)

∥∥∥
L2

≤ CλM(n−2).

The analogous estimate for ‖∂k2
λ A(·, r)‖ combined with (5.6) gives∣∣∣∂k

λ〈(ρ−σ RV,jρ
−σ )A(·, s),A(·, r)〉L2

∣∣∣≤ Cλ2M(n−2)−1 (5.12)

for λ ≥ 1, and this estimate holds uniformly in r and s.
Next, we consider the remainder term in (5.4) when 0 < λ ≤ 1. In this case, taking the imagi-

nary part in the left-hand side of (5.6) is essential, so we must estimate

∂k Im〈ρ−σ RV,jρ
−σ A(·, s),A(·, r)〉L2 . (5.13)
λ
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First, we note that the above can be written as a finite linear combination of terms where the 
imaginary part falls on either RV,j or at least one of the factors of A. Thus, by (1.5) and (1.6), 
we can write∣∣∣∂k

λ Im〈ρ−σ RV,jρ
−σ A(·, s),A(·, r)〉L2

∣∣∣≤ C max
k1+k2+k3≤k

λn−2−k3‖∂k1
λ A(·, s)‖L2‖∂k2

λ A(·, r)‖L2

+ C max
k1+k2≤k

‖∂k1
λ ImA(·, s)‖L2‖∂k2

λ A(·, r)‖L2

(5.14)

for 0 < λ ≤ 1. To estimate the first term on the right-hand side of (5.6), we can argue analogously 
to the λ ≥ 1 case, but now we use the low-frequency estimates from Proposition 3.8, which give

‖ρ−σ ∂k̃
λR0,j ρ

−σ ‖Lq ≤ C1λ
−k̃ρ−σ (r) + C2λ

n−2−k̃ (1 + λr)̃k− n−1
2 ρ−σ (r) ≤ Cλ−k̃

for any ̃k ≤ k and 1 ≤ q ≤ n
n−2 as before. Similarly, we have

‖ρ−σ ∂k̃
λR0,j ρ

−α‖Lq ≤ Cλ−k̃ , (5.15)

for α ≥ max{k − n−1
2 , 0}. Therefore, using Lemma 5.2, we have that

‖∂k̃
λA(·, s)‖L2 ≤ Cλ−k̃

uniformly in s, for 0 < λ ≤ 1. Therefore, we have

max
k1+k2+k3≤k

λn−2−k3‖∂k1
λ A(·, s)‖L2‖∂k2

λ A(·, r)‖L2 ≤ Cλn−2−k. (5.16)

Now, to handle the second term on the right-hand side of (5.14), we note that one may expand 
ImA(·, s) into a linear combination of terms in which the imaginary part falls on at least one 
factor of R0,j . Therefore, we can use Proposition 3.6 to obtain that

‖ρ−σ ∂k̃
λ ImR0,j ρ

−σ ‖Lq ≤ Cλn−2(1 + λr)k− n−1
2 ρ−σ ≤ Cλn−2 (5.17)

for any ̃k ≤ k. Thus, applying Lemma 5.2 in combination with (5.15) and (5.17) gives

‖∂k̃
λ ImA(·, s)‖ ≤ Cλn−2−k̃

for any ̃k ≤ k. Hence, we have

max
k1+k2≤k

‖∂k1
λ ImA(·, s)‖L2‖∂k2

λ A(·, r)‖L2 ≤ Cλn−2−k (5.18)

uniformly in r, s. Combining (5.16) and (5.18) with (5.14) yields

∂k Im〈ρ−σ RV,jρ
−σ A(·, s),A(·, r)〉L2 ≤ Cλn−2−k, (5.19)
λ
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and so the remainder in the Birman-Schwinger expansion of RV,j satisfies the claimed estimate 
for 0 < λ ≤ 1.

Now we consider a generic term in the sum in (5.4) for 1 ≤ � ≤ 2M − 1. As before, we use 
the fact that V = ρ−2σ (r)f (r) for some f ∈ L∞(R+) to write

ρ−α∂k
λR0,j (V R0,j )

�ρ−α(r, s) = ∂k
λ(ρ−αR0,j ρ

−σ )(ρ−σ f R0,j ρ
−σ )�−1(ρ−σ f R0,j ρ

−α)(r, s).

(5.20)

Writing the above as an L2-pairing, we have

ρ−α∂k
λR0,j (V R0,j )

�ρ−α(r, s)

= ∂k
λ〈ρ−αR0,j ρ

−σ (r, ·), (ρ−σ f R0,j ρ
−σ )�−1(ρ−σ f R0,j ρ

−α)(·, s)〉L2 . (5.21)

Upon taking the imaginary part, we obtain a finite linear combination of terms of the form (5.21)
where at least one factor of R0,j has the imaginary part acting on it. We assume without loss of 
generality that the leftmost factor on the right-hand side of (5.21) has the imaginary part, and 
thus we can apply Hölder’s inequality to obtain∣∣∣∂k

λ〈ρ−α ImR0,j ρ
−σ (r, ·), (ρ−σ f R0,j ρ

−σ )�−1(ρ−σ f R0,j ρ
−α)(·, s)〉L2

∣∣∣
≤ C‖ρ−α∂

k1
λ ImR0,j ρ

−σ (r, ·)‖
Lq′

× ‖(ρ−σ f ∂
k2
λ R0,j ρ

−σ ) · · · (ρ−σ f ∂
k�−1
λ R0,j ρ

−σ )(ρ−σ f ∂
k�

λ R0,j ρ
−α)(·, s)‖Lp

(5.22)

for some 1 ≤ q ′ < ∞ to be determined, and p given by 1
q ′ + 1

p
= 1, where k1 +k2 +· · ·+k� = k.

If 0 < λ ≤ 1, we recall that by Proposition 3.6,

‖ρ−α∂
k1
λ ImR0,j ρ

−σ (r, ·)‖
Lq′ ≤ Cλn−2 (5.23)

provided that σ > n
q ′ + k and α ≥ max{k1 − n−1

2 , 0}. Similarly, for any ̃k ≤ k, we have by Propo-
sition 3.8 that for any 1 ≤ q ≤ n

n−2 ,

‖ρ−σ ∂k̃
λR0,j ρ

−σ (r, ·)‖Lq ≤ Cλ−k̃ , (5.24)

if σ > n
q

+ k, along with the analogous estimate when the norm is taken with respect to the other 
variable. Using (5.23), (5.24), and repeated applications of Lemma 5.2 to the right-hand side of 
(5.22), we obtain∣∣∣∂k

λ〈ρ−α ImR0,j ρ
−σ (r, ·), (ρ−σ f R0,j ρ

−σ )�−1(ρ−σ f R0,j ρ
−α)(·, s)〉L2

∣∣∣≤ Cλn−2−k (5.25)

when 0 < λ ≤ 1, as long as we choose q, q ′ such that 1
q ′ + �

q
= � and provided that σ >

max{ n
q ′ , nq } + k. Since n

q
≥ n − 2 − k, we have by (5.1) that

σ > 4
⌈n⌉− 2 + k ≥ n − 2 + k,
4
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and so we can ensure that σ > n
q

+ k if q is chosen sufficiently close to, but just below n
n−2 . 

Given this choice of q , we also have that q ′ lies just above n
2�

, and so

σ > 4
⌈n

4

⌉
− 2 + k = 2(2M − 1) + k,

and since 1 ≤ � ≤ 2M − 1, we can ensure that σ > n
q ′ + k, since n

q ′ + k can be made arbitrarily 
close to 2� + k. Therefore, under the claimed conditions on σ and α, we have that∣∣∣∂k

λR0,j (V R0,j )
�
∣∣∣≤ Cλn−2−k

for 0 < λ ≤ 1 and any 1 ≤ � ≤ 2M − 1.
In the case where λ ≥ 1, we have that

‖ρ−α∂
k1
λ ImR0,j ρ

−σ (r, ·)‖
Lq′ ≤ C max{λn−2−k1− n

q′ , λ
n−3

2 }

uniformly in r as before, provided that α ≥ max{k − n−1
2 , 0} and σ > n

q ′ + k. Next, choose some 

q which lies just below n
n−2 as above. Then, for any ̃k ≤ k,

‖ρ−σ ∂k̃
λR0,j ρ

−σ (r, ·)‖Lq ≤ C max{λn−2−k̃ , λ
n−3

2 },

uniformly in r , provided that σ > n
q

+ k, along with the analogous estimate when the Lq norm 
is taken over the second variable. We also note that for the rightmost factor in (5.22), we have

‖ρ−σ ∂k̃
λR0,j ρ

−α(·, s)‖Lq ≤ C max{λn−2−k̃ , λ
n−3

2 },

uniformly in s, provided α ≥ max{k − n−1
2 , 0}. Given these estimates and Lemma 5.2, we can 

maximize over the possible combinations of k1, . . . , k� to see from (5.22) that∣∣∣∂k
λ〈ρ−α ImR0,j ρ

−σ (r, ·), (ρ−σ f R0,j ρ
−σ )�−1(ρ−σ f R0,j ρ

−α)(·, s)〉L2

∣∣∣
≤ λ�(n−2)−k max{λn−2− n

q′ , λ
n−3

2 }
(5.26)

provided that 1
q ′ + �

q
= � and σ > max{ n

q ′ , nq } + k. As shown previously, this condition on σ
is satisfied under the hypothesis (5.1) if q is chosen close enough to n

n−2 . Furthermore, for this 
choice of q , we have that q ′ lies just above n

2�
. We claim that this implies that the bound (5.26)

is smaller than the estimate (5.12). To see this, note that if q ′ is chosen sufficiently close to n
2�

, 
then n

q ′ = 2� + ε for some ε > 0. Then, we have

�(n − 2) + n − 2 − n

q ′ = �(n − 2) + (n − 2) − 2� − ε ≤ �(n − 4) + (n − 2).

If n ≤ 4, then the above is smaller than n − 2 for all � = 1, . . . , 2M − 1. If n ≥ 4, then we have

�(n − 4) + (n − 2) ≤ (2M − 1)(n − 4) + (n − 2) = 2M(n − 2) − 2(2M − 1) ≤ 2M(n − 2) − 1.
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Furthermore, we note that

�(n − 2) + n − 3

2
≤ (2M − 1)(n − 2) − n − 3

2
≤ 2M(n − 2) − n − 1

2
≤ 2M(n − 2) − 1.

Therefore, the exponent on λ in (5.26) is smaller than that of (5.12) for any �, and hence we have∣∣∣∂k
λ〈ρ−α ImR0,j ρ

−σ (r, ·), (ρ−σ f R0,j ρ
−σ )�−1(ρ−σ f R0,j ρ

−α)(·, s)〉L2

∣∣∣≤ λ2M(n−2)−1 (5.27)

when λ ≥ 1.
Now, if the imaginary part falls on any factor other than the first on the right-hand side of 

(5.21), we simply repeat the preceding argument, but with the Lq ′
norm on that factor.

Finally, we consider the case where � = 0 in (5.4). For this term, we must simply obtain 
pointwise bounds on ρ−α(r)∂k

λ ImR0,j (r, s)ρ−α(s). Recall that by the discussion preceding 
Lemma 2.1, we have

ImR0,j (r, s) = π

2
λn−2(λrλs)−

n−2
2 Jνj

(λr)Jνj
(λs).

Therefore, ∂k
λR0,j (r, s) can be written as a finite linear combination of terms of the form

λn−2−k(λr)�−
n−2

2 (λs)m− n−2
2 Jνj +α(λr)Jνj +β(λs) (5.28)

for � + m = k, |α| ≤ �, and |β| ≤ m. Using the standard asymptotics of the Bessel functions, we 
have that the above is bounded in absolute value by a constant times

λn−2−k(1 + λr)�−
n−1

2 (1 + λs)m− n−1
2 . (5.29)

Next, we note that

ρ−α(r)(1 + λr)�−
n−1

2 ≤ C(1 + λ)�,

for all λ, uniformly in r , under the assumption that α ≥ max{k− n−1
2 , 0}. The analogous estimate 

holds for ρ−α(s)(1 + λs)m− n−1
2 , and therefore, we have that∣∣∣ρ−α(r)∂k

λR0,j (r, s)ρ
−α(s)

∣∣∣≤ Cλn−2−k(1 + λ)k. (5.30)

Combining (5.30) with (5.19), (5.12), (5.25), and (5.26), the proof of Proposition 5.1 is com-
plete. �
6. Dispersive estimates

In this section, we prove the main estimate in Theorem 4. To accomplish this, we write the 
spectral measure for −�C(X) + V as

d�V (λ;x, y) = 1 [RV (λ2 + i0;x, y) − RV (λ2 − i0;x, y)]λdλ = 1
ImRV (λ2 + i0;x, y)λdλ.
πi π
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Then, we can write

[
eit (−�C(X)+V )Pc

]
(x, y) =

∞∫
0

eitλ2
d�V (λ;x, y) = 1

π

∞∫
0

eitλ2
ImRV (λ2 + i0;x, y)λdλ,

where we recall that Pc denotes projection onto the continuous spectrum of −�C(X) + V . Pro-
jecting further onto the span of ϕj , we obtain

[
eit (−�C(X)+V )PcEj

]
(r, s) = 1

π

∞∫
0

eitλ2
ImRV,j (λ

2 + i0; r, s)λdλ (6.1)

since V is radial. Therefore, the estimate in Theorem 4 is equivalent to∣∣∣∣∣∣ 1

π

∞∫
0

eitλ2
ρ−α(r)ImRV,j (λ

2 + i0; r, s)ρ−α(s)λdλ

∣∣∣∣∣∣≤ Ct−
n
2 (6.2)

for α > 2 
⌈

n
4

⌉
(n − 2) − n−1

2 + 2.

Proof of Theorem 4. Assume that n is odd, and let χ ∈ C∞
0 (R) be a cutoff function which is 

identically one on [−1/2, 1/2] and zero outside [−1, 1]. We then consider the low-frequency 
component of the left-hand side of (6.2), given by

1

π

∞∫
0

eitλ2
χ(λ)ρ−α(r)ImRV,j (λ

2 + i0; r, s)ρ−α(s)λdλ. (6.3)

Noting that the operator 1
2itλ

∂λ preserves eitλ2
, we may integrate by parts N = n−1

2 times in λ to 
obtain

CN

tN

∞∫
0

eitλ2
∂λ

(
1

λ
∂λ

)N−1 [
χ(λ)ρ−α(r)ImRV,j (λ

2 + i0; r, s)ρ−α(s)
]

dλ (6.4)

for some CN ∈ C \ 0. That no boundary terms appear at λ = 0 follows from the fact that all 
derivatives of χ(λ) vanish identically near the origin and that ρ−α(r)∂k

λ ImRV,j (λ
2 + i0)ρ−α(s)

vanishes to order n − 2 − k. To be more precise, all boundary terms at λ = 0 must involve factors 
of the form (

1

λ
∂λ

)k [
χ(λ)ρ−α(r) ImRV,j (λ

2 + i0)ρ−α(s)
]

for some 0 ≤ k ≤ N − 1 = n−3
2 . If any derivatives fall on χ , then the corresponding term obvi-

ously vanishes at λ = 0. If instead, all derivatives fall on ImRV,j , then by Proposition 5.1, the 
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corresponding term is bounded by a constant times λn−2−2k ≤ λn−2−(n−3) = λ, which vanishes 
at λ = 0. Therefore, all boundary terms are necessarily zero.

Now, observe that when expanding the integrand in (6.4) via the product rule, any terms in 
which a derivative falls on the factor of χ(λ) can be written as

CNt−N

∞∫
0

eitλ2
G(λ; r, s) dλ

for some G(λ; r; s) which is smooth and compactly supported away from 0 in λ, and 
bounded uniformly in r, s by Proposition 5.1. Applying the standard dispersive estimate for 
the Schrödinger equation on R, we have

t−N

∣∣∣∣∣∣
∞∫

0

eitλ2
G(λ; r, s) dλ

∣∣∣∣∣∣≤ Ct
−N− 1

2 ‖Ĝ(· ; , r, s)‖L1 , (6.5)

where Ĝ denotes the Fourier transform in λ (extend G by zero to a function on R to compute 
this Fourier transform). Since n is odd, we may choose N = n−1

2 , so the right-hand side of (6.5)

is bounded by Ct− n
2 as claimed, after possibly increasing C.

Now, any terms obtained from expanding (6.4) where no derivatives fall on the factor of χ
must be of the form

λ1−2N+kχ(λ)ρ−α(r)∂k
λ ImRV,j (λ

2 + i0; r, s)ρ−α(s) (6.6)

for some k = 1, 2, . . . , N since at least one derivative always falls on the factor of ImRV,j . By 
Proposition 5.1, we have that each of the above terms is bounded in absolute value by a constant 
times

λ1−2N+kχ(λ)λn−2−k = λn−1−2Nχ(λ)

uniformly for r, s > 0. For our choice of N = n−1
2 , we have that λn−1−2N = 1, and hence (6.6)

is a smooth function of λ, and so its Fourier transform is bounded in L1. Once again, using the 
standard L1 → L∞ dispersive estimate for the free one-dimensional Schrödinger equation, we 
have that

t−N

∣∣∣∣∣∣
∞∫

0

eitλ2
λ1−2N+kχ(λ)ρ−α(r)∂k

λ ImRV,j (λ
2 + i0)(r, s)ρ−α(s) dλ

∣∣∣∣∣∣≤ Ct−N− 1
2 = Ct−

n
2 ,

(6.7)

uniformly in r, s. We remark that it is in this calculation that the choice of N = n−1
2 , and hence the 

power of t− n
2 , cannot be improved, since any additional derivatives which fall on ImRV,j (λ

2 +
i0) would yield an integrand which is not bounded smooth near λ = 0. We also note that for this 
portion of the argument, we only require that α ≥ 0, since we did not differentiate ImRV,j more 
than n−1 times.
2
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Next, we consider the “high-frequency” component of (6.2), which we define by

1

π

∞∫
0

eitλ2
χ(λ/R)(1 − χ(λ))ρ−α(r)ImRV,j (λ

2 + i0; r, s)ρ−α(s)λdλ (6.8)

for any R ∈ [1, ∞). To control this term, we integrate by parts as before to obtain

1

π

∞∫
0

eitλ2
χ(λ/R)(1 − χ(λ))ρ−α(r)ImRV,j (λ

2 + i0; r, s)ρ−α(s)λdλ

= CNt−N

∞∫
0

eitλ2
∂λ

(
1

λ
∂λ

)N−1 [
χ(λ/R)(1 − χ(λ))ρ−α(r)ImRV,j (λ

2 + i0; r, s)ρ−α(s)
]

dλ

for any N > 0 and some corresponding constant CN . We aim to show that the integrand can be 
bounded uniformly in L1(R, dλ) as R → ∞. We also claim that it is sufficient to consider the 
case where all the derivatives in λ fall on the factor of ImRV,j . To see this, note that ∂λ(1 −χ(λ))

is supported in a fixed compact set which is bounded away from λ = 0, and that ∂λχ(λ/R) =
1
R

χ ′(λ/R) is supported away from λ = 0 in a set of size O(R). Therefore, we need only show 
that

1

λN−1 χ(λ/R)(1 − χ(λ))ρ−α(r)∂N
λ ImRV,j (λ

2 + i0; r, s)ρ−α(s) (6.9)

has bounded L1 norm, and that the estimate is uniform with respect to r, s, and R. For this, we 
utilize Proposition 5.1, which implies that if α ≥ max{N − n−1

2 , 0} and σ > 4 
⌈

n
4

⌉− 2 +N , then 
(6.9) is bounded by a constant times 〈λ〉1−N+L, uniformly in r, s, and R, where L = 2 

⌈
n
4

⌉
(n −

2) − 1. Thus, choosing

N = 2
⌈n

4

⌉
(n − 2) + 2,

guarantees that (6.9) is uniformly bounded in L1. Noting that N ≥ n
2 if N is chosen as above, we 

obtain

lim
R→∞

∣∣∣∣∣∣ 1

π

∞∫
0

eitλ2
χ(λ/R)(1 − χ(λ))ImRV,j (λ

2 + i0; r, s) λdλ

∣∣∣∣∣∣≤ Ct−
n
2 , (6.10)

where C > 0 is independent of r, s and R. Our choice of N also determines the maximum 
number of derivatives of ImRV,j (λ

2 + i0; r, s) that must be taken, which yields

σ > 4
⌈n

4

⌉
− 2 + 2

⌈n

4

⌉
(n − 2) + 2 = 2n

⌈n

4

⌉
as the sufficient condition on the decay rate of V . Also, the condition on α becomes
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α > N − n − 1

2
= 2

⌈n

4

⌉
(n − 2) + 2 − n − 1

2
,

as stated in Theorem 4. Under these conditions on the weights, we can combine (6.7) and (6.10)
to obtain (6.2), which completes the proof of Theorem 4. �
Remark 6.1. In the case where n is even, we find that in repeating the argument just prior to 
(6.7), the largest N we can choose is n−2

2 , which leads to a decay rate of t− n−1
2 in the L1 → L∞

estimate. The remainder of the argument goes through without modification, yielding (1.8).

Appendix A. Absence of embedded resonances on product cones

A.1. Radial potentials and ODE methods

In this appendix, we establish the absence of embedded resonances and eigenvalues result 
claimed in Theorem 2 using the results from Theorem XIII.56 of [58]. To prove this, we need to 
use the fact that V is decaying to treat V u as a perturbative term in the limit and prove that if 
u ∈ L2, then hence V u is perturbative and we can write

u±(r) = e±iλr

r
n−1

2

∓
∞∫
r

sin(λ(r − s))

λ(rs)
n−1

2

V (s)u±(s)ds,

where by u± we mean the outgoing/incoming functions converging to the Jost solution asymp-
totic of the form

e±iλr

r
n−1

2

.

This gives the exact integrability condition in Theorem XIII.56 of [58]. It is also an integral 
equation that can also be solved using Picard iteration. Using the variation of parameters formula 
to solve

(−�C(X) − λ2)u = V (r)u

for any V with 
∫∞
a

V (r)dr < ∞ for some a > 0, we can write

u(r) = c+u+(r) + c−u−(r)

+
∞∫
r

u+(r)u−(s)

W(s)
V (s)u(s)sn−1ds +

∞∫
r

u−(r)u+(s)

W(s)
V (s)u(s)sn−1ds,

where W(s) = 2sn−1. Hence, if we have a resonance u ∈ L2,σ for σ > 1
2 , we have that indeed we 

can see the integral terms on the right converge and hence derive a contradiction to the existence 
of resonances that are not eigenvalues.

For radial potentials, we have observed that there are no embedded eigenvalues using the ODE 
based tools of Theorem XIII.56 of [58], but the issue of absence of embedded resonances down 
to λ = 0 still must be established. We state the result here.
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Proposition A.1. For V ∈ ρ−2σ L∞(R+) with σ > 1
2 , if RV,j (z

2) has a pole at τ for τ ∈ R\{0}, 
then τ 2 is an embedded eigenvalue for −�C(X) + V .

Proof of Theorem 2. By Proposition A.1, it suffices to prove that RV (z2) has no real poles 
corresponding to eigenvalues of −�C(X) + V embedded in the continuous spectrum. It also 
suffices to prove this fact for RV,j (z

2), since the fact that V is radial means that RV respects 
the decomposition into harmonics on the link. The method of proof from Theorem XIII.56 of 
[58] proves that for V sufficiently decaying, a radial operator has no positive eigenvalues. This 
relies on a formal analysis of Jost solutions, proving that no linear combination of them can be 
an L2 function. In particular, if we assume we have an embedded eigenvalue at energy λ2 with 
corresponding radial eigenfunction φ on the j th harmonic, it satisfies(

∂2
r + n − 1

r
∂r + λ2 − μ2

j

r2

)
φ = 0

meaning that ∞ is a regular singular point. As a result, as r → ∞ the Jost solutions are of the 
form

φ±(r) = e±iλr r− n−1
2 + O(r

n−3
2 ).

Hence, linear combinations generically take the form

A sin(λr + θ)r− n−1
2 ,

which is easily seen to not be in L2(C(X)), which yields a contradiction. Further discussion of 
the Jost solutions can be computed as in [59], Ch. 5. �
A.2. Absence of embedded resonances for non-radial potentials

For the purposes of ruling out embedded resonances, a geometrically robust approach is to 
use a boundary pairing formula on radially compactified space, as in [54, §2.3], to prove that an 
embedded resonance is an embedded eigenvalue and hence has at least L2 decay. The boundary 
pairing formula for Schrödinger operators on Euclidean space is derived from the observation 
that a pole of the resolvent corresponds to a solution to

(−�Rn + V − λ2)u = f,

say for f ∈ S a Schwartz class function. The solution to this equation takes the form

u = ei λ
x x

1
2 (n−1)w+ + e−i λ

x x
1
2 (n−1)w−, w± ∈ C∞(Sn+)

where x = 1
r

and Sn+ is the upper hemisphere of the sphere Sn. The boundary pairing formula 
states that for solutions

(−� + V − λ2)u(�) = f (�)
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with � = 1, 2, we have

2iλ

∫
Sn−1

(v
(1)
+ v

(2)
+ − v

(1)
− v

(2)
− )dz =

∫
Rn

(f (1)u(2) + u(1)f (2))dz

with v(�)
± = w

(�)
± |∂Sn+ . For a pole of the outgoing resolvent, we observe that v+ vanishes identi-

cally.
Hence, any embedded resonance can be seen to be an embedded eigenvalue. To eliminate 

embedded eigenvalues, we follow the work of Froese et al. [22] to prove that L2 eigenfunctions 
must in fact exhibit super-polynomial decay. The arguments there involve constructing a series 
of positive commutator arguments to obtain this rapid decay. To begin, take ε, γ > 0 and define 
ρ(|x|) = 〈x〉. Then, the function

F(x) = γ ln(ρ(1 + ερ)−1).

Then, ∇F = xg for g = γρ−2(1 + ερ)−1 and

(x · ∇)2g − (x · ∇)(∇F)2 ≤ 4γ (γ + 2)ρ−2.

Defining ψR = eF ψ , a conjugated form of the equation can be written as a modified quadratic 
form. Coupling this form with a Mourre estimate (positive commutator using r∂r (the radial 
version of x · ∇) we can prove that the set of polynomial weights for which ψ ∈ L2 is open and 
can be extended to ∞. The Mourre estimate serves as a means to construct the weak limit of the 
resolvent at the real axis.

Once super-polynomial behavior is established, a similar open set for exponential decay can 
be established using the assumption that eα0ρρλψ ∈ L2 for all λ and showing that this implies 
then that e(α0+γ )ρψ ∈ L2. To do this, build the function

F(x) = α0ρ + λ ln(1 + γρ/λ)

and derive a similar contradiction.
Once super-exponential decay is established, the strategy of Vasy-Wunsch [66] can be applied 

to prove a unique continuation argument by conjugating the operator to

Pα = eαr ′
(−� + V − λ)e−αr ′

for r ′ some smoothed version of r to be determined. Then,

0 = ‖Pαφα‖2 = ‖RePαψα‖2 + ‖ImPαψα‖2 + 〈i[RePα, ImPα]ψα,ψα〉.

Hence, one uses that i[RePα, ImPα] is a positive commutator term. We require that

[�,2∂r + (∂r logA)] ≥ c
1

r2 �θ + R

for R in the calculus of first order conic vector fields.
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A.3. The boundary pairing formula

Following a suggestion of Dean Baskin, we can interpret embedded resonances for more 
general conic Schrödinger operators through the boundary pairing formula of Melrose.

A.3.1. Existence of the boundary pairing formula on cones
We outline the necessary generalizations to the presentation of the Boundary Pairing formula 

from the book of Melrose [54]. First, we must consider the radial compactification of a cone to a 
compactified manifold Ĉ = X × [0, 1] for X the link of the cone, which is similar to that in [2]. 
We again consider solutions of the equation

(−�Rn + V − λ2)u = f

for f ∈ S for instance say a Schwartz class function.
Let

u = u+ + u−,

namely a sum of the outgoing and incoming solutions, with

u± = e±iλ/xx
n−1

2 w± (A.1)

for w± ∈ C∞(Ĉ). This formula appears in a variety of settings in the literature, starting with 
the foundational work of Melrose [53] on asymptotically Euclidean manifolds, then Melrose-
Zworski [52] on general scattering manifolds with smooth boundary, Hassell-Vasy [35] on 
scattering manifolds with conic points, and the corresponding discussion of Guillarmou-Hassell-
Sikora in [32], Section 5. See also [3,67] for a recent discussion on product cones that contains 
formulae from which such a decomposition can be obtained.

Then, we claim that

2iλ

∫
X

[v(1)
+ v

(2)
+ − v

(1)
− v

(2)
− ]dvh =

∫
C(X)

[f (1)u(2) − u(1)f (2)]drdvh (A.2)

with v(i)
± = w

(i)
± |X . We will need to consider behaviors both at x = 0 and 1 whereas on Eu-

clidean space the compactification really only sees ∞. See Ch. 2.3 and Ch. 6 of Melrose [54]. 
Compactify via the stereographic projection to the quarter circle

S1+,+ = {(z1, z2) ∈ S1 ⊂ R2|z1 ≥ 0, z2 ≥ 0}

with r → (r, 1)/
√

1 + r2. This is a manifold with boundaries of the form

z1 = r/
√

1 + r2, z2 = 1/
√

1 + r2.

Define M = S1 × X and we get the compactified structure.
+,+
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The formula (A.2) then follows from integration by parts on the expression∫
C(X)

[f (1)u(2) − u(1)f (2)]χ(εr)drdvh

for χ a smooth cut-off function localized near 0. Integrating by parts in r , applying formula (A.1), 
and taking the limit as ε → 0 the formula follows after an application of the Riemann-Lebesgue 
lemma.

Note, the boundary pairing formula is strongly related to structure of the Jost solutions through 
the existence of polyhomogeneous expansions (power series solutions near the boundary).

A.3.2. Outline of the remaining arguments
To prove the absence of embedded resonances, we use the boundary pairing formula with 

f = 0 to prove that any outgoing solution vanishes to leading order on the x1 = 0 boundary. This 
may be iterated to show that in fact the power series vanishes to arbitrary order and hence the 
solution is indeed Schwarz on the cone. To see this, differentiate the equation with respect to x1
and look at the resulting inhomogeneous equation in the boundary pairing. Otherwise, the power 
series solution depends uniquely on the first terms in the expansion.

In most circumstances, eliminating embedded eigenvalues requires unique continuation. In 
the radial problem, we may apply the Theorem XIII.56 of [58] built around Jost solutions as 
mentioned above. For conic metrics, we must follow the procedure of Froese-Herbst [22] built 
around seperable metric, which has been extended and formalized by Vasy [63,64].

Appendix B. Construction of the free resolvent

In this appendix, we provide a detailed construction integral kernel for the free resolvent 
operator

R0(z
2) = (−�C(X) − z2)−1 : L2(C(X)) → L2(C(X)), (B.1)

for Imz �= 0, closely following the exposition of [3]. This is equivalent to analyzing solutions of 
the equation

(−�C(X) − z2)u = f (B.2)

for f ∈ L2(C(X)). To proceed, we decompose u and f into the basis {ϕj } of eigenfunctions on 
X as

f (r, θ) =
∞∑

j=1

fj (r)ϕj (θ), u(r, θ) =
∞∑

j=1

uj (r)ϕj (θ).

Denote by −μ2
j the eigenvalues of �h associated to each ϕj . Then, we obtain that (B.2) is 

equivalent to the collection of equations(
∂2
r + n − 1

r
∂r + z2 − μ2

j

r2

)
uj (r) = −fj (r), j = 0,1,2, . . . . (B.3)
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Therefore, we can express the resolvent R0(z
2) as

R0(z
2)f (r, θ) =

∞∑
j=0

uj (r)ϕj (θ),

with uj as above. If we define the j th radial resolvent R0,j (z
2) by

R0,j (z
2) =

(
∂2
r + n − 1

r
∂r + z2 − μ2

j

r2

)−1

(B.4)

as an operator on L2(R+, rn−1 dr), then the full resolvent is given by

R0(z
2)f (r, θ) =

∞∑
j=0

R0,j (z
2)fj (r)ϕj (θ).

For each j , the defining equation (B.3) for R0,j (z
2)fj is an ODE with a regular singular point 

at zero, and so by applying the Frobenius method we find that the indicial roots of the equation 

are −n−2
2 ±

√(
n−2

2

)2 + μ2
j . For this reason, we introduce the notations δ = −n−2

2 and νj =√(
n−2

2

)2 + μ2
j . The structure of the indicial roots suggests that we rescale by rδ , and so we 

define ωj by uj (r) = rδωj (r) so that ωj is analytic near r = 0. Then, (B.3) becomes

∂2
r ωj + 1

r
∂rωj +

(
z2 − ν2

j

r2

)
ωj = −r−δfj (r), j = 0,1,2, . . . .

At this point it is helpful to restrict to particular class of fj , namely those for which the Fourier 
transform f̂j is compactly supported (in order to compute the Fourier transform, we simply ex-
tend fj by zero to a function on all of R). For such fj , we know that there exists a holomorphic 
extension to all of C by the Paley-Weiner-Schwartz Theorem. We continue to denote this exten-
sion by fj . That we can make this restriction without loss of generality follows from the fact that 
such functions are dense in L2. Given this, if z �= 0, we make the change variables via ζ = zr to 
obtain the following inhomogeneous Bessel equation of order νj :

ω̃′′
j + 1

ζ
ω̃′

j +
(

1 − ν2
j

ζ 2

)
ω̃j = −ζ−δ

z2 fj (ζ/z), (B.5)

where ̃ωj (ζ ) = ωj (ζ/z), and the “prime” notation denotes the complex derivative with respect to 
ζ . Here, we define ζ−δ using the principal branch of the square root. For notational convenience, 

we define fj,z(ζ ) := − ζ−δ

z2 fj (ζ/z), which is holomorphic for ζ ∈C \ (−∞,0].
The solutions to the homogeneous Bessel equation of order ν are the well-known Bessel 

functions of the first and second kind, denoted Jν and Yν , respectively. Closely related to these 
are the Hankel functions H(1)

ν and H(2)
ν , given by
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H(1) = Jν + iYν, H (2) = Jν − iYν.

Any two of these Bessel and/or Hankel functions can be used to form a fundamental solution 
set for the homogeneous equation. Given an appropriate choice of fundamental solution set, we 
use the method of variation of parameters to construct solutions to the inhomogeneous problem. 
So let y1, y2 be a fundamental solution set for the homogeneous problem associated to (B.5) for 
some fixed j . We then construct our solution ω̃j as

ω̃j = v1y1 + v2y2

where all objects above are functions of ζ . Straightforward calculations show that if

v′
1(ζ ) = − y2(ζ )fj,z(ζ )

W (y1, y2)(ζ )
, and v′

2(ζ ) = y1(ζ )fj,z(ζ )

W (y1, y2)(ζ )
,

then ω̃j as given above solves the inhomogeneous equation (B.5), where W (y1, y2)(ζ ) denotes 
the Wronskian determinant of y1 and y2 evaluated at ζ . Therefore, we may compute v1 and v2
by taking path integrals in the complex plane, which yields

ω̃j (ζ ) =
⎛⎜⎝ ∫

C1(ζ )

− y2(ξ)fj,z(ξ)

W (y1, y2)(ξ)
dξ

⎞⎟⎠y1(ζ ) +
⎛⎜⎝ ∫

C2(ζ )

y1(ξ)fj,z(ξ)

W (y1, y2)(ξ)
dξ

⎞⎟⎠y2(ζ )

where C1(ζ ), C2(ζ ) are any complex contours connecting fixed points c1, c2 ∈ C \ (−∞, 0] to 
ζ , respectively. In fact, it suffices to take c1, c2 ∈ R+. We then choose our contours to be the 
piecewise linear paths defined by

C1(ζ ) = {(1 − t)c1 + tReζ : t ∈ [0,1]} ∪ {Reζ + itImζ : t ∈ [0,1]}
and

C2(ζ ) = {(1 − t)c2 + tReζ : t ∈ [0,1]} ∪ {Reζ + itImζ : t ∈ [0,1]}.
Of particular interest are the boundary values of the resolvent near the continuous spectrum of 
−�C(X) + V . Therefore, if we consider z2 = λ2 ± iε, we have

ω̃j (zr) = y1(zr)

⎛⎝ λr∫
c1

−y2(t)fj,z(t)

W (y1, y2)(t)
dt + i

±εr∫
0

−y2(λr + it)fj,z(λr + it)

W (y1, y2)(λr + it)
dt

⎞⎠

+ y2(zr)

⎛⎝ λr∫
c2

y1(t)fj,z(t)

W (y1, y2)(t)
dt + i

±εr∫
0

y1(λr + it)fj,z(λr + it)

W (y1, y2)(λr + it)
dt

⎞⎠
All that remains is to determine that appropriate fundamental solution set y1, y2 and constants 
c1, c2 so that our solution is a well defined element of L2(C(X)). If we take y2 = Jνj

and c1 = 0, 
then ̃ωj is bounded as r → 0, provided that the coefficient integrals converge. We then choose y1
459



B. Keeler and J.L. Marzuola Journal of Differential Equations 320 (2022) 419–468
to be either H(1)
νj

or H(2)
νj

, depending on the sign of Imz. By the asymptotic forms of the Hankel 
functions, we have

H(1)
νj

(ζ ) ∼
√

2

πζ
e
i
(
ζ− νj π

2 − π
4

)

and

H(2)
νj

(ζ ) ∼
√

2

πζ
e
−i

(
ζ− νj π

2 − π
4

)

for −π < arg ζ < π , and the branch of the square root is defined by ζ 1/2 = e
1
2 (ln |ζ |+i arg ζ ) for 

such ζ . We can now see that if z2 = λ2 + iε, then ζ = zr also has positive imaginary part, and so 
H

(1)
νj

(zr) decays exponentially as r → ∞, while H(2)
νj

exhibits exponential growth. Hence, when 

z2 = λ2 + iε we take y1 = H
(1)
νj

and c2 = ∞, which yields

ω̃j (zr) = H(1)
νj

(zr)

⎛⎝ λr∫
0

Jνj
(t)fj,z(t)

2i/(πt)
dt + i

±εr∫
0

Jνj
(λr + it)fj,z(λr + it)

2i/[π(λr + it)] dt

⎞⎠

+ Jνj
(zr)

⎛⎝ ∞∫
λr

H
(1)
νj

(t)fj,z(t)

2i/(πt)
dt − i

±εr∫
0

H
(1)
νj

(λr + it)fj,z(λr + it)

2i/[π(λr + it)] dt

⎞⎠ ,

since W (H
(1)
νj

, Jνj
)(ξ) = − 2i

πξ
. We can then take the limit as ε → 0 to obtain

ω̃j (λr) = π

2i
H (1)

νj
(zr)

λr∫
0

tJνj
(t)fj,z(t) dt + π

2i
Jνj

(zr)

∞∫
λr

tH (1)
νj

(t)fj,z(t) dt.

Recalling that uj (r) = (zr)δω̃j (zr) and fj,z(t) = − t
n−2

2

z2 fj (t/z), we get that the outgoing solu-
tion corresponding to the j th resolvent is

uj (r) = πi

2
(λr)−

n−2
2 H(1)

νj
(λr)

λr∫
0

t
n
2 Jνj

(t)fj (t/λ)

λ2 dt

+ πi

2
(λr)−

n−2
2 Jνj

(λr)

∞∫
λr

t
n
2 H

(1)
νj

(t)fj (t/λ)

λ2 dt.

If we then change variables via t = λs, we can rewrite the above as
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uj (r) = πi

2
r− n−2

2 H(1)
νj

(λr)

r∫
0

s
n
2 Jνj

(λs)fj (s) ds + πi

2
r− n−2

2 Jνj
(λr)

∞∫
r

s
n
2 H(1)

νj
(λs)fj (s) ds.

The integral kernel of R0,j (λ
2 + i0) with respect to the measure sn−1 ds is therefore given by

R0,j (λ
2 + i0; r, s) =

{
πi
2 (rs)− n−2

2 Jνj
(λs)H

(1)
νj

(λr), s < r

πi
2 (rs)− n−2

2 Jνj
(λr)H

(1)
νj

(λs), s > r,
(B.6)

since s
n
2 = sn−1s− n−2

2 .
We can repeat this analysis for z2 = λ2 − iε, and we find that we must take use H(2)

νj
instead 

of H(1)
νj

due to the asymptotic behavior at infinity, which also causes the Wronskian to change 
sign, but otherwise the calculations are identical. We therefore obtain

R0,j (λ
2 − i0; r, s) =

{
π
2i

(rs)− n−2
2 Jνj

(λs)H
(2)
νj

(λr), s < r

π
2i

(rs)− n−2
2 Jνj

(λr)H
(2)
νj

(λs), s > r.
. (B.7)

Remark B.1. We note that one could also obtain the formula for R0,j (λ
2 − i0) from that of 

R0,j (λ
2 + i0) by using the analytic continuation formulae

Jν(ze
πi) = eνπiJν(z) and H(1)

ν (ze−πi) = −e−νπiH (2)
ν (z).

Given (B.6) and (B.7), we can express the imaginary part of the resolvent kernels R0,j as 
follows.

Lemma B.2. For λ real, we have

ImR0,j (λ
2 + i0; r, s) = π

2
(rs)−

n−2
2 Jνj

(λr)Jνj
(λs)

as an integral kernel with respect to the measure sn−1ds.

Proof. This follows immediately from the fact that

H(1)
νj

+ H(2)
νj

= (Jνj
+ iYνj

) + (Jνj
− iYνj

) = 2Jνj
. �

We can now write down an expression for the spectral measure of −�C(X) as in [10], which 
follows from Stone’s formula.

Lemma B.3. For λ real,

ImR0(λ
2 + i0;x, y) = π

2
(rs)−

n−2
2

∞∑
Jνj

(λr)Jνj
(λs)ϕj (θ1)ϕj (θ2)
j=0
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where x = (r, θ1) and y = (s, θ2) are points in C(X). Moreover, the absolutely continuous part 
of the spectral measure of −�C(X), with the convention that λ2 is the spectral parameter, is given 
by

d�0(λ;x, y) = 1

2πi

[
R0(λ

2 + i0;x, y) − R0(λ
2 − i0;x, y)

]
2λdλ

=
∞∑

j=0

(rs)−
n−2

2 Jνj
(λr)Jνj

(λs)ϕj (θ1)ϕj (θ2)λdλ.

Appendix C. Dispersive estimates for the free Schrödinger equation

Here, we discuss bounds on solutions of the unperturbed Schrödinger equation, given by{( 1
i
∂t − �C(X)

)
u = 0,

u|t=0 = f.
(C.1)

We prove that the solution to this equation satisfies a dispersive estimate analogous to Theorem 4, 
but without the need for projection onto the harmonics of the link, provided that the solution is 
measured in L∞(R+; L2(X)), rather than simply L∞(C(X)). We do this by using a modification 
of the techniques outlined in [19], which handled flat two-dimensional cones, to obtain an explicit 
asymptotic formula for the kernel of eit�C(X) as a function of a rescaled variable.

Theorem 5. Let C(X) = R+ × X be the product cone on X, for (X, h) a compact Riemannian 
manifold of dimension n − 1. Then the solution to (C.1) satisfies

‖eit�C(X)f ‖L∞(
R+;L2(X)

) ≤ Ct−
n
2 ‖f ‖L1(R+;L2(X)), t > 0,

for some C > 0. Here, L1(R+) is defined with respect to the measure rn−1 dr .

Remark C.1. We note that this result is somewhat weaker than similar estimates obtained in [71], 
but we include it here because the proof is quite short and requires significantly less machinery.

Since X is compact, there exists an orthonormal basis {ϕj }∞j=0 of L2(X), satisfying

−�hϕj = μ2
jϕj

for 0 = μ2
0 < μ2

1 ≤ . . . repeated according to multiplicity. By the functional calculus of Cheeger 
[10] discussed in Section 2, we can define the shifted eigenvalues

νj =
√

μ2
j +

(
n − 2

2

)2

,

in order to write the spectral measure of −�C(X) as
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d�0(r1, θ1, r2, θ2) = (r1r2)
− n−2

2

∞∑
j=0

Jνj
(λr1)Jνj

(λr2)ϕj (θ1)ϕj (θ2) λdλ,

where Jν is the Bessel function of the first kind of order ν. Hence, the fundamental solution to 
(C.1) has the form

K
e
it�C(X) (r1, θ1, r2, θ2) = (r1r2)

−
(

n−2
2

) ∞∑
j=0

⎛⎝ ∞∫
0

eitλ2
Jνj

(λr1)Jν(λr2)λdλ

⎞⎠ϕj (θ1)ϕj (θ2),

(C.2)
with respect to the standard measure on the cone, rn−1 dr dvh(θ), where dvh is the Riemannian 
volume measure on X. As in [19], we let t = is in the above expression to obtain a formula for 
the heat kernel e−s�C(X) . By Weber’s second exponential integral formula, we have that

∞∫
0

e−sλ2
Jν(λr1)Jν(λr2)λdλ = 1

2s
e− r2

1 +r2
2

4s Iν

( r1r2

2s

)
,

where Iν is the modified Bessel function of order ν, defined by

Iν(x) =
∞∑

k=0

1

k!�(ν + k + 1)

(x

2

)2k+ν

.

Analytic continuation in s and taking s = −it gives us

K
e
it�C(X) (r1, θ1, r2, θ2) = ie

r2
1 +r2

2
4it

2t (r1r2)
n−2

2

∞∑
j=0

iνj Jνj

( r1r2

2t

)
ϕj (θ1)ϕj (θ2),

since Iν(ix) = iνJν(x). For non-integer values of ν, we choose zν to have its branch cut along 
the negative real axis. For convenience, we define x = r1r2

2t
and let

S(x, θ1, θ2) = x
−
(

n−2
2

) ∞∑
j=0

iνj Jνj (x)ϕj (θ1)ϕj (θ2),

so that

K
e
it�C(X) (r1, θ1, r2, θ2) =

i exp

(
r2
1 +r2

2
4it

)
(2t)

n
2

S(x, θ1, θ2). (C.3)

Furthermore, we define the family of operators S(x) : C∞(X) → D′(X) by

S(x)f (θ1) =
∫

S(x, θ1, θ2)f (θ2) dvh(θ2) = x
−
(

n−2
2

) ∞∑
j=0

iνj Jνj
(x)〈f,ϕj 〉ϕj (θ).
X
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Next, we make note of an asymptotic expansion for K
e
it�C(X) in the regime where x → 0, 

which is analogous to [19, Prop 4.1].

Proposition C.2. The free Schrödinger propagator has the asymptotic behavior

K
e
it�C(X) (r1, θ1, r2, θ2) =

i exp

(
r2
1 +r2

2
4it

)
(2t)

n
2

[
(i/2)

n−2
2

�(n
2 )vol(X)

+O
(( r1r2

2t

)α)]
, as

r1r2

2t
→ 0,

where α = min{2, ν1 − n−2
2 }.

Proof. It suffices to show that

S(x, θ1, θ2) = (i/2)
n−2

2

�(n
2 )vol(X)

+O
(
xα
)
, as x → 0, (C.4)

uniformly in θ1, θ2. Since the ϕj are L2-normalized, we have that ϕ0 = 1√
vol(X)

, and so

S(x, θ1, θ2) = (i/2)
n−2

2

vol(X)

(x

2

)−
(

n−2
2

)
Jn−2

2
(x) + x

−
(

n−2
2

) ∞∑
j=1

iνj Jνj
(x)ϕj (θ1)ϕj (θ2).

By the standard power series representation for Jn−2
2

, we have

∣∣∣∣∣S(x, θ1, θ2) − (i/2)
n−2

2

�(n
2 )vol(X)

∣∣∣∣∣=∣∣∣∣∣∣ (i/2)
n−2

2

vol(X)

∞∑
k=1

(−1)k

k!�(n
2 + k)

(x

2

)2k + x
−
(

n−2
2

) ∞∑
j=1

iνj Jνj
(x)ϕj (θ1)ϕj (θ2)

∣∣∣∣∣∣ .

Using the bound |Jν(x)| ≤ 1
�(ν+1)

(
x
2

)ν for x real and ν > 0, along with the standard L∞ eigen-

function estimate ‖ϕj‖L∞ ≤ Cμ
n−2

2
j , shows that for 0 ≤ x < 2, we have

∣∣∣∣∣S(x, θ1, θ2) − (i/2)
n−2

2

�(n
2 )vol(X)

∣∣∣∣∣≤ 1

vol(X)

∞∑
k=1

(
x2

4

)k

+
∞∑

j=1

μ
2(n−1)
j

2
n−2

2 �(νj + 1)

(x

2

)νj − n−2
2

≤ x2

vol(X)(4 − x2)
+
(x

2

)ν1− n−2
2

∞∑
j=1

μ
2(n−1)
j

�(νj + 1)
.

(C.5)

Note that μj ∼ Cj
1

n−1 by the Weyl law for the eigenvalues of −�h. Since νj ≥ μj for all j , 
the summation in the last inequality of (C.5) converges, which demonstrates (C.4) with α =
464
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min{2, ν1 − n−2
2 }. We observe that by definition, ν1 − n−2

2 > 0. Hence, by (C.3), the proof is 
complete. �
Corollary C.3. The family of operators S(x) satisfies

‖S(x)f ‖L2(X) ≤ C‖f ‖L2(X)

for all x ≥ 0 and for some C > 0 which is uniform in x.

Proof. For x < 2 − ε with ε > 0, the estimate follows from the proof of Proposition C.2, which 
shows that |S(x, θ1, θ2)| ≤ C for some C which is uniform in θ1, θ2. Thus, for such x,

‖S(x)f ‖2
L2(X)

=
∫
X

∣∣∣∣∣∣
∫
X

S(x, θ1, θ2)f (θ2) dvh(θ2)

∣∣∣∣∣∣
2

dvh(θ1)

≤
∫
X

‖S(x, θ1, ·)‖2
L2(X)

‖f ‖2
L2(X)

dvh(θ1)

≤ C2vol(X)2‖f ‖2
L2(X)

.

For x ≥ 1, we can simply use the fact that |Jν(x)| is bounded uniformly in both x and ν to see 
that

‖S(x)f ‖2
L2(X)

= x2−n

∞∑
j=0

J 2
νj

(x)〈f,ϕj 〉2 ≤ C

∞∑
j=0

〈f,ϕj 〉2 = C‖f ‖2
L2(X)

,

for some C > 0, since n ≥ 2. �
We are now ready to present the proof of the dispersive estimate in Theorem 5.

Proof of Theorem 5. Recalling that K
e
it�C(X) (r1, θ1, r2, θ2) is the Schwartz kernel of eit�C(X)

and applying (C.3), we have that for any r1, t > 0,

‖eit�C(X)f (r1, ·)‖2
L2(X)

=
∫
X

∣∣∣∣∣∣
∞∫

0

∫
X

K
e
it�C(X) (r1, θ1, r2, θ2)f (r2, θ2)r

n−1
2 dvh(θ2) dr2

∣∣∣∣∣∣
2

dvh(θ1)

=
∫
X

⎛⎜⎜⎝
∞∫

0

ie

(
r2
1 +r2

2
4it

)
(2t)

n
2

[
S
( r1r2

2t

)
f (r2, θ1)

]
rn−1

2 dr2

⎞⎟⎟⎠
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×

⎛⎜⎜⎝
∞∫

0

ie

(
r2
1 +r2

3
4it

)
(2t)

n
2

[
S
( r1r3

2t

)
f (r3, θ1)

]
rn−1

3 dr3

⎞⎟⎟⎠dvh(θ1)

= (2t)−n

∞∫
0

∞∫
0

e

(
r2
2 −r2

3
4it

)⎛⎝∫
X

S
( r1r2

2t

)
f (r2, θ1)S

( r2r3

2t

)
f (r3, θ1) dvh(θ1)

⎞⎠ (r2r3)
n−1 dr2 dr3

≤ (2t)−n

∞∫
0

∞∫
0

∥∥∥S ( r1r2

2t

)
f (r2, ·)

∥∥∥
L2(X)

∥∥∥S ( r1r3

2t

)
f (r3, ·)

∥∥∥
L2(X)

(r2r3)
n−1 dr2 dr3.

In the last inequality, we are able to omit the complex exponential factor by taking absolute 
values, since the integral is known to be real-valued and non-negative. By Corollary C.3, the 
above is bounded by

Ct−n

∞∫
0

∞∫
0

‖f (r2, ·)‖L2(X)‖f (r3, ·)‖L2(X) (r2r3)
n−1 dr2 dr3 = Ct−n‖f ‖2

L1(L2(X),rn−1 dr)
,

for some C > 0 which is independent of r1. Taking square roots completes the proof of Theo-
rem 5. �
References

[1] D. Baskin, J.L. Marzuola, Locating resonances on hyperbolic cones, Math. Res. Lett. 26 (2) (2019) 365–381.
[2] D. Baskin, J.L. Marzuola, The radiation field on product cones, preprint, arXiv :1906 .04769, 2019.
[3] D. Baskin, M. Yang, Scattering resonances on truncated cones, Pure Appl. Anal. 2 (2) (2020) 385–396.
[4] M. Beceanu, M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials, Commun. 

Math. Phys. 314 (2) (2012) 471–481.
[5] M.D. Blair, G.A. Ford, S. Herr, J.L. Marzuola, Strichartz estimates for the Schrödinger equation on polygonal 

domains, J. Geom. Anal. 22 (2) (2012) 339–351.
[6] M.D. Blair, G.A. Ford, J.L. Marzuola, Strichartz estimates for the wave equation on flat cones, Int. Math. Res. Not. 

2013 (3) (2013) 562–591.
[7] M.D. Blair, Y. Sire, C.D. Sogge, Quasimode, eigenfunction and spectral projection bounds for Schrödinger operators 

on manifolds with critically singular potentials, J. Geom. Anal. (2019) 1–38.
[8] D. Borthwick, J.L. Marzuola, Dispersive estimates for scalar and matrix Schrödinger operators on Hn+1, Math. 

Phys. Anal. Geom. 18 (1) (2015) 22.
[9] J.-M. Bouclet, N. Burq, Sharp resolvent and time decay estimates for dispersive equations on asymptotically Eu-

clidean backgrounds, preprint, arXiv :1810 .01711, 2018.
[10] J. Cheeger, On the spectral geometry of spaces with cone-like singularities, Proc. Natl. Acad. Sci. 76 (5) (1979) 

2103–2106.
[11] J. Cheeger, M. Taylor, On the diffraction of waves by conical singularities. I, Commun. Pure Appl. Math. 35 (3) 

(1982) 275–331.
[12] X. Chen, The semiclassical resolvent on conic manifolds and application to Schrödinger equations, preprint, arXiv :

2009 .12895, 2020.
[13] R. Donninger, W. Schlag, A. Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background, 

Commun. Math. Phys. 309 (1) (2012) 51–86.
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[16] M.B. Erdoğan, W.R. Green, Dispersive estimates for the Schrödinger equation for c
n−3

2 potentials in odd dimen-
sions, Int. Math. Res. Not. 2010 (13) (2010) 2532–2565.
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