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ABSTRACT: Linkage isomers are coordination compounds with the same composition but different donor atoms, resulting in
distinct physical and electronic structures. A pair of linkage isomers, CuL®** and CuL*®, derived from phenylglyoxal
bis(ethylthiocarbamate) were synthesized, isolated, and characterized by structural, electrochemical, and spectroscopic methods. The
isomers are stable in solution under ambient conditions, but CuL*$® converts to CuL’*® in acid, consistent with quantum-chemical
calculations. The complexes were screened against a lung adenocarcinoma cell line (AS49) and a nonmalignant lung fibroblast cell
line (IMR-90) to evaluate the antiproliferation activity. CuL%*® and CuL**® possessed ECg, values of 0.113 + 0.030 and 0.115 +
0.038 uM for AS549 and 1.87 + 0.29 and 0.77 + 0.22 uM for IMR-90, respectively.

he presence of multiple donor types within a ligand can

result in the formation of different linkage isomers that
have the same composition but distinct physical and electronic
structures. The structure of linkage isomers was first described
by Werner over a century ago regarding the different
coordination modes of nitrite in the yellow (Co-NO,) and
red (Co-ONO) isomers of [Co(NH;);(ONO)]*"." Classic
simple ligands known to display linkage isomerism include
NO,~, CN~, SCN~, and NCO™.” The variability provided by
linkage isomers has been employed in the design of
metallosupramolecules’ and the self-assembly of ruthenium (II)
metallarectangles with antiproliferation activity." Examples of
linkage isomerism with chelate ligands include variable
coordination modes for amino acids,” Schiff bases,6 oximes,””®
and bis(thiosemicarbazones) (BTSCs).”™"*

CuBTSC complexes, including CuATSM and CuGTSM
(Figure 1A), have received significant attention as diagnos-
tic'*™"® and therapeutic'>'”~>* agents. To date, all structurally
characterized CuBTSC complexes display square-planar N,S,
coordination environments containing two imine nitrogen and
two sulfur atoms, resulting in three five-membered chelate
rings, herein referred to as the 555 linkage isomer. An
alternative square-planar 465 linkage isomer has been observed
for nickel and palladium derivatives of phenylglyoxal BTSC in
which one imine nitrogen, one hydrazino nitrogen, and two
sulfur atoms coordinate to the metal, resulting in the formation
of four-, six-, and five-membered chelate rings (Figure 1B).”"°
Notably, the 465 and 555 isomers of a five coordinate Ga(III)
BTSC complex with an acenaphthoquinone backbone have
been structurally characterized."'

Recently, we reported a series of copper(Il) complexes
based on bis(alkylthiocarbamate) ligands as pendent alkoxy
derivatives of CuBTSCs™ and the antiproliferation activity of
metal complexes with hybrid alkylthiocarbamate—thiosemicar-
bazones.”” In this paper, we report the synthesis, character-
ization, and conversion of the 555 and 465 linkage isomers of
copper(Il) with phenylglyoxal bis(ethylthiocarbamate) (H,L;
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Figure 1. (A) CuGTSM and CuATSM. (B) 465 isomers of BTSCs.
(C) Interconversion of H,L (linear) and H,L (cyclic) and the
synthesis of CuL®*® and CuL*® linkage isomers, with chelate ring
sizes indicated by the numbers in light gray.
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Figure 2. ORTEP** representations of CuL®*® (A) and CuL** (B) with thermal ellipsoids displayed at the 50% probability level. (C) Cyclic
voltammograms for 0.3 mM CuL**® (top) and 0.3 mM CuL*®*® (bottom) in anhydrous acetonitrile with a 0.1 M NBu,PF supporting electrolyte at
a scan rate of 200 mV s™". (D) Electronic spectra collected during the conversion of 0.30 mM CuL**® (black) to CuL%*® (deep red) with 0.60 M
TFA in methanol at room temperature. Inset: Experimental (black) and simulated (red) [CuL®*®] as a function of time.

Figure 1C) and evaluate their antiproliferation activity against
lung adenocarcinoma cells (AS49) and nonmalignant lung
fibroblast cells (IMR90). This represents a rare investigation of
a fully characterized pair of linkage isomers based on a chelate
ligand including their conversion and antiproliferation activity.

The ligand H,L was prepared by the condensation of
phenylglyoxal monohydrate with hydrazinecarbothioic acid O-
ethyl ester, similar to previously reported bis-
(alkylthiocarbamates).”® Variable-temperature 'H NMR stud-
ies revealed fluxional behavior (Figures S4 and S5), indicating
the presence of two ligand forms that interconvert slowly at
room temperature. Structural studies on BTSCs have revealed
both cyclic and linear geometries in the solid state.”>*® The
fluxional behavior of H,L in solution is attributed to
interconversion between these forms (Figure 1C). Structurally,
the two isomers differ only in the orientation of the phenyl and
hydrazinecarbothioic acid O-ethyl ester groups with respect to
the phenyl-substituted C=N bond. In H,L (linear), the two
groups are in the E configuration with respect to the C=N
bond; in contrast, in the H,L (cyclic) conformer, they lie in the
Z configuration.

Gas-phase optimization of a single molecule using quantum-
chemical (QC) calculations (see the Supporting Information
for details on the methods) confirmed that both the cyclic and
linear conformers of H,L are thermodynamically accessible.
Three stable conformers, H,L (linear), H,L (open), and H,L
(cyclic), were optimized (Figure S1), and the linear and cyclic
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conformers with similar energies were found to be preferred
(Table S4). The energetic trend of the isomers did not change
when placed in an implicit solvent medium (simulated by the
continuum  solvation model COSMO)*” with a dielectric
constant of methanol (32.613).

The addition of copper acetate monohydrate to H,L in
methanol yielded CuL**® as a yellow-brown solid at room
temperature or CuL>*® as a red solid under reflux conditions.
X-ray crystallography identified the two solids as linkage
isomers (Figure 2A,B and Tables $2—54). The CuL>*® isomer
crystallized as dark-orange plates, and CuL**® crystallized as
dark-purple prisms. Each isomer displayed a square-planar
N,S, environment but with different coordinating atoms.

The copper atom in CuL** binds to two imine nitrogen
atoms (N1 and N3) and two sulfur atoms (S1 and S2),
resulting in three five-membered rings, as is typically observed
in BTSC complexes (Figure 2A). The Cu—N bond distances
of 1.9537(14) and 1.9875(14) A for Cu—NI and Cu—N3,
respectively, and the Cu—S bond distances of 2.2657(S) and
2.2522(5) A for Cu—S1 and Cu—S2, respectively, are
consistent with other copper alkylthiocarbamate complexes.*®
The S1—Cu—N1 and S2—Cu—N3 bond angles are 84.79(4)
and 85.35(4)°, respectively, resulting in an acute N1—-Cu—N3
bond angle of 80.11(6)° due to fusion of the three coplanar
five-membered chelate rings. For CuL*®®, the copper is
coordinated to one imine nitrogen (N1), one hydrazino
nitrogen (N3), and two sulfur (S1 and S2) atoms, resulting in
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a four-atom, a six-atom, and a five-atom chelate ring
configuration (Figure 2B). The Cu—N bond distance for the
imine nitrogen, N1, of 1.958(2) A is similar to that of the
CuL’%® isomer. However, the Cu—N distance for the
hydrazino nitrogen, N3, is significantly shorter at 1.908(2) A.
The Cu—S bond distances are 2.2141(7) A for S1 in the five-
membered ring and 2.3930(8) A for S2 in the four-membered
ring. The six- and five-membered chelate rings have bond
angles approaching 90°: S1—Cu—N1, 87.95(7)°, and N1—
Cu—N3, 88.77(9)°. The S2—Cu—N3 bond angle associated
with the four-membered chelate ring is very acute at 70.69(7)°.

The difference in the physical structure of the two isomers
results in significantly different electronic structures. Cyclic
voltammetry studies in acetonitrile display a single reversible
reduction assigned to the Cu'! couple for each isomer (Figure
2C). The E, ), values for CuL®*® and CuL**® are observed at
—0.603 and —0.807 V versus ferrocenium/ferrocene (Fc*/Fc),
respectively. The Cu'" couple of CuL®*® is shifted anodically
by 250—300 mV relative to the previously reported bis-
(alkylthiocarbamate)copper complexes.”® This is consistent
with substitution of the diacetyl backbone in the prior
complexes with phenylglyoxal in CuL%. Relative to the
BTSC complexes, both CuL**® and CuL** are easier to reduce
than CuATSM, —1.11 V, and CuGTSM, —0.950 V.*°

The electron paramagnetic resonance (EPR) spectra of
CuL’% and CuL*®® in dimethylformamide (DMF) at 77 K are
consistent with their CuN,S, coordination (see the Supporting
Information). The spectra of each complex displays two
species assigned to the parent four-coordinate complex and a
five-coordinate DMF adduct. When CuL®*® and CuL**® were
dissolved in DMF, their color changed to blue and green,
respectively, consistent with DMF coordination. Electro-
chemical measurements in DMF revealed the presence of
two distinct species for CuL**> and two unique species for
CuL** with no evidence of interconversion (Figure S17).

Because CuL®*® and CuL**® were obtained using the same
starting materials under different synthetic conditions, we
evaluated the conditions required for their conversion. The
CuL** complex yielded yellow solutions in methanol with a
charge transfer band at 457 nm, whereas CuL®*® was red in
methanol with a band at 503 nm. Heating the solid or a
methanolic solution of either compound yielded no observable
color change. However, CuL*® does convert to CuL®® in
methanol upon the addition of trifluoracetic acid (TFA; Figure
2D). A preliminary kinetic analysis reveals that the reaction is
first-order in CuL*%® and second-order in TFA, suggesting an
initial rapid equilibrium between CuL*®* and TFA, followed by
a rate-determining step that is also TFA-dependent (see the
Supporting Information). Further studies on the mechanism
are underway.

To gain a fundamental understanding of the factors
governing the conversion of CuL** to CuL%, we used QC
calculation of the gas-phase-optimized structure in the
presence of an implicit solvent medium (simulated by the
continuum solvation model COSMO) with a dielectric
constant of methanol at the density functional level of theory
(see the Supporting Information for details) to examine the
effects of protonation. Upon protonation of H,L within a
methanol solvent, the cyclic and open conformers are more
stable than the linear conformer by ~6.9 and ~4.3 kcal mol ™",
respectively (Table SS). However, the two metal isomers
(CuL*® and CuL®*®) are energetically close to each other
(within 1—2 kcal mol™ of each other) in both unprotonated
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and protonated conditions (Tables S6 and S7). This indicates
that CuL*®*® and CuL’*® are likely to coexist. This finding along
with our experiments suggests that acid helps to overcome the
kinetic barrier associated with the conversion of CuL** to
Cul S,

The isomers CuL®*® and CuL*$® were screened against a
lung adenocarcinoma cell line (AS49) and a nonmalignant
lung fibroblast cell line (IMR-90) to evaluate the antiprolifera-
tion activity (Figures 3 and S19). The copper complexes
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Figure 3. Cell proliferation results for AS49 and IMR-90 cell lines
treated with CuL®*® (red and orange) and CuL** (green and blue).

CuL® and CuL** possess similar ECg, values of 0.113 +
0.030 and 0.115 =+ 0.038 M for A549. For IMR-90, the ECy,
values of 1.87 + 0.29 and 0.77 + 0.22 uM for CuL®%® and
CuL*%, respectively, are statistically different (p = 0.0062),
suggesting that CuL%%® may have slightly higher selectivity. As
a control, each complex was separately incubated at 37 °C in
phosphate-buffered saline for 72 h, confirming that CuL** and
CuL** do not isomerize in the medium (Figures S20 and
S21). Copper loading by AS49 cells was confirmed by
inductively coupled plasma mass spectrometry. The copper
levels in CuL%*- and CuL*$-treated cells were 10.97 and 6.27
Hg g_l, respectively, which are significantly higher than that in
vehicle-treated cells, 0.11 ug g~ (Table S11). Overall, the
antiproliferation activities of CuL**® and CuL** are similar to
that of our previously reported bis(alkylthiocarbamate)
complex, which is greater than CuATSM but less than those
of our hybrid alkylthiocarbamate—thiosemicarbazone com-
plexes.”® Efforts to evaluate the mechanism of action are
ongoing.

This study reports a rare pair of isolated and structurally
characterized linkage isomers. The CuL®%® isomer is
thermodynamically favored in solution, although the isomer-
ization of CuL*® to CuL®* requires the presence of acid.
Under ambient conditions, no interconversion of the isomers is
observed. These complexes provide a unique opportunity to
study the effect of linkage isomers on biological activity
because they have the same composition but differ in their
electronic and physical structures. The nearly identical A549
ECy, values for CuL®*® and CuL*®, despite a 204 mV
difference in the Cu™! reduction potential, suggests that the
antiproliferation activity of these complexes is not just related
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to the Cu'! potential. While the isomers are stable in the
medium used for the cell studies, we cannot exclude the
possibility that the isomers converge to the thermodynamically
favorable CuL®* or demetalate upon interactions with/within
the cells. Further studies are required to evaluate the extent to
which the shape and electronic structure influence the potency
and selectivity. This could be more directly tested by the
evaluation of complexes where the ligands themselves are
isomers such that the physical structure varies but the
electronic structure remains constant. Such studies are
underway.
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