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NEW SAV-PRESSURE CORRECTION METHODS

FOR THE NAVIER-STOKES EQUATIONS:

STABILITY AND ERROR ANALYSIS

XIAOLI LI, JIE SHEN, AND ZHENGGUANG LIU

Abstract. We construct new first- and second-order pressure correction
schemes using the scalar auxiliary variable approach for the Navier-Stokes
equations. These schemes are linear, decoupled and only require solving a
sequence of Poisson type equations at each time step. Furthermore, they are
unconditionally energy stable. We also establish rigorous error estimates in
the two dimensional case for the velocity and pressure approximation of the
first-order scheme without any condition on the time step.

1. Introduction

We consider numerical approximation of the time-dependent incompressible
Navier-Stokes equations

∂u

∂t
+ (u · ∇)u− νΔu+∇p = f in Ω× J,(1a)

∇ · u = 0 in Ω× J,(1b)

u = 0 on ∂Ω× J,(1c)

where Ω is an open bounded domain in R
d (d = 2, 3) with a sufficiently smooth

boundary ∂Ω, J = (0, T ], (u, p) represent the unknown velocity and pressure, f is
an external body force, ν > 0 is the viscosity coefficient and n is the unit outward
normal of the domain Ω.

The above system is one of the most fundamental systems in mathematical
and physical science. Its numerical approximations play an eminent role in many
branches of science and engineering, and an enormous amount of work has been
devoted to the design and analysis of numerical schemes for its approximation; see,
for instance, [8, 9, 15, 36] and the references therein.

Two of the main difficulties in numerically solving Navier-Stokes equations are:
(i) the coupling of velocity and pressure by the incompressible condition ∇ ·u = 0;
and (ii) the treatment of nonlinear term. There are essentially two classes of numer-
ical approaches to deal with the incompressible constraint: the coupled approach
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142 XIAOLI LI ET AL.

and the decoupled approach. The coupled approach requires solving a saddle point
problem at each time step so it could be computationally expensive for dynamical
simulations although many efficient solution techniques are available [3, 6, 8]. The
decoupled approach, originated from the so called projection method [5,34], leads to
a sequence of Poisson type equations to solve at each time step, assuming that the
nonlinear term is treated explicitly; hence it can be extremely efficient, particularly
for dynamical simulations using finite difference or spectral methods. An enormous
amount of work (cf., for instance, [10,11,14,29,38–40]) has been devoted to develop
various projection type schemes. We refer to [13] for an overview of the decoupled
approach before 2006. Some more recent work can be found in [12, 19, 20, 26, 27]
and the references therein. For examples, Rebholz and Xiao [27] constructed a new
alternative of Yosida algebraic splitting methods by applying the usual or pressure-
corrected Yosida splitting techniques to the Navier-Stokes equations, see also [26],
Guermond and Minev [12] proposed a high-order time stepping technique based on
an artificial compressibility perturbation by using a Taylor series technique.

From a computational point of view, it is desirable to be able to treat the non-
linear term explicitly so that one only needs to solve simple linear equations with
constant coefficients at each time step. This is especially beneficial if a decoupled
approach is used so one only needs to solve a sequence of Poisson type equations
at each time step. However, such an explicit treatment usually leads to a stability
constraint on the time step. To the best of the authors’ knowledge, apart from
the recently developed schemes [25] based on the scalar auxiliary variable (SAV)
approach [32, 33], there were no schemes with explicit treatment of nonlinear term
that were unconditionally energy diminishing, an important property satisfied by
the exact solution of the Navier-Stokes equations. We mention however that it
is possible to prove that the numerical solution of a semi-implicit scheme remains
to be bounded (but not energy diminishing) assuming the time step is sufficiently
small, but independent of spatial discretization size; see for instance [16, 40]. In a
recent work [25], Dong et al. constructed the following scheme: Find (un+1, pn+1,
qn+1) by solving⎧⎪⎪⎪⎨

⎪⎪⎪⎩

un+1−un

Δt + qn+1√
E(un)+C0

(un · ∇)un − νΔun+1 +∇pn+1 = 0, un+1|∂Ω = 0;(2)

∇ · un+1 = 0,(3)

2qn+1 qn+1−qn

Δt = (u
n+1−un

Δt + qn+1√
E(un)+C0

(un · ∇)un,un+1),(4)

where E(u) =
∫
Ω

1
2 |u|2 is the total energy. It is shown in [25] that the above scheme

satisfies the following property:

(5) |qn+1|2 − |qn|2 ≤ −ν‖∇un+1‖2L2(Ω), ∀n ≥ 0.

Since qn is an approximation of the energy E(u(tn)), the above scheme is uncon-
ditionally energy stable with a modified energy. It can be shown that the above
scheme reduces to two generalized Stokes equations (with constant coefficient) plus
a nonlinear algebraic equation for the auxiliary variable qn+1 at each time step. So
the scheme is essentially as efficient as the usual semi-implicit scheme without the
auxiliary variable. Moreover, one can also adopt a pressure-correction strategy so
that the two generalized Stokes equations at each time step can be replaced by a se-
quence of Poisson-type equations. Ample numerical results presented in [25] shown
that the above scheme is more efficient and robust than the usual semi-implicit
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ERROR ESTIMATES FOR THE NAVIER-STOKES EQUATIONS 143

schemes. However, there are also some theoretical and practical issues: (i) It only
provides a bound for the scalar sequence {qn} which is intended as an approxima-
tion of the energy E(u) but with no direct relation in the discrete case. (ii) The
scheme requires solving a nonlinear algebraic equation. Hence, it is very difficult to
show that the nonlinear algebraic equation always has a real positive solution and
to derive an error estimate based just on (5).

The main purpose of this paper is to construct new SAV schemes for the Navier-
Stokes equations and to carry out a rigorous error analysis. Our main contributions
are:

• We construct new SAV schemes with first-order pressure-correction and
second-order rotational pressure-correction. The new scheme enjoys the
following additional advantages: (i) it is purely linear so it does not require
solving nonlinear algebraic equation; (ii) it provides better stability: instead
of (5), our first-order scheme satisfies

(‖un+1‖2L2(Ω) + |qn+1|2)− (‖un‖2L2(Ω) + |qn|2) ≤ −2ν‖∇un+1‖2L2(Ω), ∀n ≥ 0,

where the extra term ‖un+1‖2L2(Ω) is essential to carry out an error analysis;

(iii) it is coupled with a pressure-correction strategy [10,38] so only Poisson-
type equations need to be solved at each time step.

• We prove that our new second-order scheme based on the second-order ro-
tational pressure-correction is unconditionally energy stable. To the best of
our knowledge, these are the first purely linear schemes for Navier-Stokes
equations with explicit treatment of nonlinear terms with proven uncondi-
tional energy stability.

• We carry out a rigorous error analysis for our first-order scheme and derive
optimal error estimates in the two-dimensional case for the velocity and
pressure without any restriction on the time step.

The paper is organized as follows. In Section 2, we provide some preliminaries. In
Section 3, we present first- and second-order pressure correction projection schemes
based on the SAV approach, and describe the solution procedure. In Section 4, we
derive the unconditional energy stability for both first- and second-order schemes.
In Section 5, we carry out a rigorous error analysis to establish for the first-order
SAV pressure-correction scheme. Numerical experiments are presented in Section
6 to validate our theoretical results.

2. Preliminaries

We describe below some notations and results which will be frequently used in
this paper.

Throughout the paper, we use C, with or without subscript, to denote a positive
constant, which could have different values at different appearances.

Let Ω be an open bounded domain in R
d (d = 2, 3); we will use the standard

notations L2(Ω), Hk(Ω) and Hk
0 (Ω) to denote the usual Sobolev spaces over Ω.

The norm corresponding to Hk(Ω) will be denoted simply by ‖ · ‖k. In particular,
we use ‖ · ‖ to denote the norm in L2(Ω). Besides, (·, ·) is used to denote the inner
product in L2(Ω). The vector functions and vector spaces will be indicated by
boldface type.
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We define

H = {v ∈ L2(Ω) : divv = 0,v · n|Γ = 0}, V = {v ∈ H1
0(Ω) : divv = 0},

and the Stokes operator

Au = −PHΔu, ∀ u ∈ D(A) = H2(Ω) ∩V,

where PH is the orthogonal projector in L2(Ω) onto H and the Stokes operator A
is an unbounded positive self-adjoint closed operator in H with domain D(A).

Let us recall the following inequalities which will be used in the sequel [17, 36]:

(6) ‖∇v‖ ≤ c1‖A
1
2v‖, ‖Δv‖ ≤ c1‖Av‖, ∀v ∈ D(A) = H2(Ω) ∩V.

We then derive from the above and Poincaré inequality that

(7) ‖v‖ ≤ c1‖∇v‖, ∀v ∈ H1
0(Ω), ‖∇v‖ ≤ c1‖Av‖, ∀v ∈ D(A),

where c1 is a positive constant depending only on Ω.
Next we define the trilinear form b(·, ·, ·) by

b(u,v,w) =

∫
Ω

(u · ∇)v ·wdx.

We can easily obtain that the trilinear form b(·, ·, ·) is a skew-symmetric with respect
to its last two arguments, i.e.,

(8) b(u,v,w) = −b(u,w,v), ∀ u ∈ H, v,w ∈ H1
0(Ω),

and

(9) b(u,v,v) = 0, ∀ u ∈ H, v ∈ H1
0(Ω).

By using a combination of integration by parts, Holder’s inequality, and Sobolev
inequalities [29, 35], we have that for d ≤ 4,

b(u,v,w) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c2‖u‖1‖v‖1‖w‖1,
c2‖u‖2‖v‖‖w‖1,
c2‖u‖2‖v‖1‖w‖,
c2‖u‖1‖v‖2‖w‖,
c2‖u‖‖v‖2‖w‖1,

(10)

and that for d ≤ 2,

b(u,v,w) ≤ c2‖u‖1/21 ‖u‖1/2‖v‖1/21 ‖v‖1/2‖w‖1,(11)

where c2 is a positive constant depending only on Ω.
We will frequently use the following discrete version of the Gronwall lemma

[16, 28]:

Lemma 2.1. Let ak, bk, ck, dk, γk, Δtk be nonnegative real numbers such that

(12) ak+1 − ak + bk+1Δtk+1 + ck+1Δtk+1 − ckΔtk ≤ akdkΔtk + γk+1Δtk+1

for all 0 ≤ k ≤ m. Then

(13) am+1 +
m+1∑
k=0

bkΔtk ≤ exp

(
m∑

k=0

dkΔtk

)
{a0 + (b0 + c0)Δt0 +

m+1∑
k=1

γkΔtk}.
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3. The pressure-correction schemes based on the SAV approach

In this section, we construct first- and second-order pressure-correction schemes
based on the SAV approach for the Navier-Stokes equations.

Set

Δt = T/N, tn = nΔt, dtg
n+1 =

gn+1 − gn

Δt
, for n ≤ N,

and introduce a scalar function

(14) q(t) = exp(− t

T
).

This function will serve as the scalar auxiliary variable (SAV). Then, we rewrite
the governing system into the following equivalent form:⎧⎪⎪⎨

⎪⎪⎩
∂u
∂t + q(t)

exp(− t
T )

(u · ∇)u− νΔu+∇p = f ,(15)

dq
dt = − 1

T q +
1

exp(− t
T )

∫
Ω
u · ∇u · udx,(16)

∇ · u = 0.(17)

Note that the last term in (16) is zero thanks to (9). This term is added to balance
the nonlinear term in (15) in the discretized case. It is clear that the above system
is equivalent to the original system.

Remark 3.1. Note that in the case of inhomogeneous Dirichlet boundary condition
u|∂Ω = g, (16) should be replaced by

(18)
dq

dt
= − 1

T
q +

1

exp(− t
T )

(

∫
Ω

u · ∇u · udx−
∫
∂Ω

(n · g) · 1
2
|g|2ds).

Next we construct below linear, decoupled, first-order and second-order pressure-
correction schemes for the above system (15)-(17).

Scheme I (first-order accuracy). The first-order semi-discrete version of the
pressure-correction method can be written as follows: Find (ũn+1,un+1, pn+1, qn+1)
by solving

ũn+1 − un

Δt
+

qn+1

exp(− tn+1

T )
(un · ∇)un − νΔũn+1 +∇pn = fn+1,(19)

ũn+1|∂Ω = 0;

un+1 − ũn+1

Δt
+∇(pn+1 − pn) = 0;(20)

∇ · un+1 = 0, un+1 · n|∂Ω = 0;(21)

qn+1 − qn

Δt
= − 1

T
qn+1 +

1

exp(− tn+1

T )
((un · ∇)un, ũn+1).(22)

We now describe how to solve the semi-discrete-in-time scheme (19)-(22) efficiently.

We denote Sn+1 = exp( t
n+1

T )qn+1 and set

(23) ũn+1 = ũn+1
1 + Sn+1ũn+1

2 ,
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in (19); we can determine ũn+1
i (i = 1, 2) from

ũn+1
1 − un

Δt
= νΔũn+1

1 −∇pn + fn+1, ũn+1
1 |∂Ω = 0;(24)

ũn+1
2

Δt
+ (un · ∇)un = νΔũn+1

2 , ũn+1
2 |∂Ω = 0.(25)

Then, setting {
un+1 = un+1

1 + Sn+1un+1
2 ,(26)

pn+1 = pn+1
1 + Sn+1pn+1

2(27)

in (20)-(21), Then we can determine un+1
i , pn+1

i (i = 1, 2) from⎧⎪⎪⎨
⎪⎪⎩

un+1
1 −ũn+1

1

Δt +∇(pn+1
1 − pn) = 0,(28)

un+1
2 −ũn+1

2

Δt +∇pn+1
2 = 0,(29)

∇ · un+1
i = 0, un+1

i · n|∂Ω = 0.(30)

Once ũn+1
i , un+1

i , pn+1
i (i = 1, 2) are known, we can plug (23) and Sn+1 =

exp( t
n+1

T )qn+1 in (22) to determine explicitly Sn+1 from:

(31)

(
T +Δt

TΔt
− exp(

2tn+1

T
)((un · ∇)un, ũn+1

2 )

)
exp(− tn+1

T
)Sn+1

= exp(
tn+1

T
)((un · ∇)un, ũn+1

1 ) +
1

Δt
qn.

We observe that it is not clear that the first term(
T +Δt

TΔt
− exp(

2tn+1

T
)((un · ∇)un, ũn+1

2 )

)

is non zero from the above. However, we can replace the term ((un · ∇)un, ũn+1
2 )

in the above by taking the inner product of (25) with ũn+1
2 to obtain

(32)

(
T +Δt

TΔt
+ exp(

2tn+1

T
)(
‖ũn+1

2 ‖2
Δt

+ ν‖∇ũn+1
2 ‖2)

)
exp(− tn+1

T
)Sn+1

= exp(
tn+1

T
)((un · ∇)un, ũn+1

1 ) +
1

Δt
qn.

Hence, we can unique determine Sn+1 from the above. Finally, we can obtain un+1

and pn+1 from (26) to (27).
In summary, at each time step, we only need to solve two Poisson-type equations

(24)-(25) and (28)–(30) which can be solved as two Poisson equations. Hence, the
scheme is very efficient.

Scheme II (second-order accuracy). The second-order semi-discrete version
of the rotational pressure-correction method [10] can be written as follows: Find
(ũn+1,un+1, pn+1, qn+1) by olving
(33)
3ũn+1 − 4un + un−1

2Δt
+

qn+1

exp(− tn+1

T )
(ūn·∇)ūn−νΔũn+1+∇pn = fn+1, ũn+1|∂Ω = 0;
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ERROR ESTIMATES FOR THE NAVIER-STOKES EQUATIONS 147

3un+1 − 3ũn+1

2Δt
+∇(pn+1 − pn + ν∇ · ũn+1) = 0;(34)

∇ · un+1 = 0, un+1 · n|∂Ω = 0;(35)

(36)
3qn+1 − 4qn + qn−1

2Δt
= − 1

T
qn+1 +

1

exp(− tn+1

T )
((ūn · ∇)ūn, ũn+1),

where ūn = 2un − un−1. For n = 0, we can compute (ũ1, u1, p1, q1) by the
first-order scheme described above.

Implementation of the second-order scheme (33)-(36) is essentially the same as
that of the first-order scheme (19)-(22).

4. Energy stability

In this section, we will demonstrate that the first- and second-order pressure-
correction schemes (19)-(22) and (33)-(36) are unconditionally energy stable.

Theorem 4.1. In the absence of the external force f , the scheme (19)-(22) is
unconditionally stable in the sense that

En+1 − En ≤ −2νΔt‖∇ũn+1‖2, ∀Δt, n ≥ 0,

where

En+1 = ‖un+1‖2 + |qn+1|2 + (Δt)2‖∇pn+1‖2.

Proof. Taking the inner product of (19) with Δtũn+1 and using the identity

(37) (a− b, a) =
1

2
(|a|2 − |b|2 + |a− b|2),

we have

(38)

‖ũn+1‖2 − ‖un‖2
2

+
‖ũn+1 − un‖2

2
+ Δt

qn+1

exp(− tn+1

T )
((un · ∇)un, ũn+1)

= −νΔt‖∇ũn+1‖2 −Δt(∇pn, ũn+1).

Recalling (20), we have

(39) un+1 +Δt∇pn+1 = ũn+1 +Δt∇pn.

Taking the inner product of (39) with itself on both sides and noticing (∇pn+1,un+1)
= −(pn+1,∇ · un+1) = 0, we have

(40) ‖un+1‖2 + (Δt)2‖∇pn+1‖2 = ‖ũn+1‖2 + 2Δt(∇pn, ũn+1) + (Δt)2‖∇pn‖2.
Combining (38) with (40) leads to

‖un+1‖2 − ‖un‖2
2

+
‖ũn+1 − un‖2

2
+

(Δt)2

2
‖∇pn+1‖2(41)

+ Δt
qn+1

exp(− tn+1

T )
((un · ∇)un, ũn+1) =

(Δt)2

2
‖∇pn‖2 − νΔt‖∇ũn+1‖2.

Multiplying (22) by qn+1Δt and using the above equation, we have

(42)

1

2
|qn+1|2 − 1

2
|qn|2 + 1

2
|qn+1 − qn|2

=− 1

T
Δt|qn+1|2 +Δt

qn+1

exp(− tn+1

T )
((un · ∇)un, ũn+1).

Licensed to Purdue Univ. Prepared on Wed Jun  1 09:18:39 EDT 2022 for download from IP 128.210.107.25.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



148 XIAOLI LI ET AL.

Then summing up (41) with (42) results in

‖un+1‖2 − ‖un‖2 + |qn+1|2 − |qn|2 + 2

T
Δt|qn+1|2 + (Δt)2‖∇pn+1‖2

− (Δt)2‖∇pn‖2 + |qn+1 − qn|2 + ‖ũn+1 − un‖2 ≤ −2νΔt‖∇ũn+1‖2,

which implies the desired result. �

The energy stability for any rotational pressure-correction schemes is much more
involved [10], particularly in the nonlinear case. Previously, the energy stability
of second-order rotational pressure-correction schemes is only proved for the time
dependent Stokes equations [4,10], and only very recently, an energy stability result
is proved for the first-order rotational pressure-correction scheme for the Navier-
Stokes equations in [4].

Theorem 4.2. In the absence of the external force f , the scheme (33)-(36) is
unconditionally stable in the sense that

En+1 − En ≤ −2νΔt‖∇ũn+1‖2, ∀Δt, n ≥ 0,

where

En+1 =‖un+1‖2 + ‖2un+1 − un‖2 + 4

3
(Δt)2‖∇(pn+1 + gn+1)‖2

+ 2ν−1Δt‖gn+1‖2 + |qn+1|2 + |2qn+1 − qn|2,

where {gn+1} is recursively defined by

(43) g0 = 0, gn+1 = ν∇ · ũn+1 + gn, n ≥ 0.

Proof. Taking the inner product of (33) with 4Δtũn+1 leads to

(44)

2(3ũn+1 − 4un + un−1, ũn+1) + 4νΔt‖∇ũn+1‖2

=− 4Δt
qn+1

exp(− tn+1

T )
((ūn · ∇)ūn, ũn+1)− 4Δt(∇pn, ũn+1).

Using (34) and the identity

(45) 2(3a− 4b+ c, a) = |a|2 + |2a− b|2 − |b|2 − |2b− c|2 + |a− 2b+ c|2,

we have
(46)
2(3ũn+1 − 4un + un−1, ũn+1) = 2

(
3(ũn+1 − un+1) + 3un+1 − 4un + un−1, ũn+1

)
= 6(ũn+1 − un+1, ũn+1) + 2(3un+1 − 4un + un−1,un+1)

+ 2(3un+1 − 4un + un−1, ũn+1 − un+1)

= 3(‖ũn+1‖2 − ‖un+1‖2 + ‖ũn+1 − un+1‖2) + ‖un+1‖2 + ‖2un+1 − un‖2

− ‖un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2.

Setting Hn+1 = pn+1 + gn+1, we can recast (34) as

(47)
√
3un+1 +

2√
3
Δt∇Hn+1 =

√
3ũn+1 +

2√
3
Δt∇Hn.
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ERROR ESTIMATES FOR THE NAVIER-STOKES EQUATIONS 149

Taking the inner product of (47) with itself on both sides, we have

(48)
3‖un+1‖2 + 4

3
(Δt)2‖∇Hn+1‖2

=3‖ũn+1‖2 + 4

3
(Δt)2‖∇Hn‖2 + 4Δt(ũn+1,∇pn) + 4Δt(ũn+1,∇gn).

Thanks to (43), we have

(49)

4Δt(ũn+1,∇gn) = −4ν−1Δt(gn+1 − gn, gn)

=2ν−1Δt(‖gn‖2 − ‖gn+1‖2 + ‖gn+1 − gn‖2)
=2ν−1Δt‖gn‖2 − 2ν−1Δt‖gn+1‖2 + 2νΔt‖∇ · ũn+1‖2.

Using the identity

(50) ‖∇ × v‖2 + ‖∇ · v‖2 = ‖∇v‖2, ∀ v ∈ H1
0(Ω),

we have

(51)
4Δt(ũn+1,∇gn) = 2ν−1Δt‖gn‖2 − 2ν−1Δt‖gn+1‖2

+ 2νΔt‖∇ũn+1‖2 − 2νΔt‖∇ × un+1‖2.

Then combining (44) with (45)-(51) results in

(52)

‖un+1‖2 + ‖2un+1 − un‖2 + 4

3
(Δt)2‖∇Hn+1‖2 + 2ν−1Δt‖gn+1‖2

+ 3‖ũn+1 − un+1‖2 + 2νΔt‖∇ũn+1‖2 + 2νΔt‖∇ × un+1‖2

≤‖un‖2 + ‖2un − un−1‖2 + 4

3
(Δt)2‖∇Hn‖2 + 2ν−1Δt‖gn‖2

− 4Δt
qn+1

exp(− tn+1

T )
((ūn · ∇)ūn, ũn+1).

Multiplying (36) by 4Δtqn+1 and using (45), we have

(53)

|qn+1|2 + |2qn+1 − qn|2 − |qn|2 − |2qn − qn−1|2 + |qn+1 − 2qn + qn−1|2

=− 4

T
Δt|qn+1|2 + 4Δt

qn+1

exp(− tn+1

T )
((ūn · ∇)ūn, ũn+1).

Then summing up (52) with (53) results in

(54)

‖un+1‖2 + ‖2un+1 − un‖2 + 4

3
(Δt)2‖∇Hn+1‖2 + 2ν−1Δt‖gn+1‖2

+ |qn+1|2 + |2qn+1 − qn|2 + |qn+1 − 2qn + qn−1|2 + 4

T
Δt|qn+1|2

+ 3‖ũn+1 − un+1‖2 + 2νΔt‖∇ũn+1‖2 + 2νΔt‖∇ × un+1‖2

≤‖un‖2 + ‖2un − un−1‖2 + 4

3
(Δt)2‖∇Hn‖2

+ 2ν−1Δt‖gn‖2 + |qn|2 + |2qn − qn−1|2,

which implies the desired result. �
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5. Error analysis

In this section, we carry out a rigorous error analysis for the first-order semi-
discrete scheme (19)-(22). We shall only consider the two-dimensional case. Error
estimates for the three dimensional case are still elusive.

There exists a large body of work devoted to the error analysis of various numer-
ical schemes for the Navier-Stokes equations (1); we refer to, e.g., [2, 16, 18, 21, 37]
for different schemes with coupled approach, and [11, 13, 29, 30, 39, 40] for differ-
ent schemes with decoupled approach. On the other hand, for the SAV approach,
some error analysis has been carried out for various gradient flows [1, 24, 31]. In a
recent attempt [23], we considered a MAC discretization to a second-order version
of the scheme (2)-(4) and proved corresponding error estimates. However, due to
the difficulty associated with the nonlinear algebraic equation, we had to assume
that there is a numerical solution satisfying qn+1/E(un) ≥ c0 > 0. Since our new
scheme is purely linear, we shall prove optimal error estimates below without any
assumption on the numerical solution.

Let (ũn+1, un+1, pn+1, qn+1) be the solution of (19)-(22). Then we derive
immediately from Theorem 4.1 that

‖um+1‖ ≤ k0, |qm+1| ≤ k1, ∀ 0 ≤ m ≤ N − 1,(55)

Δt

m∑
n=0

‖ũn+1‖21 ≤ k2, ∀ 0 ≤ m ≤ N − 1,(56)

where the constants ki (i = 0, 1, 2) are independent of Δt.
We set {

ẽn+1
u = ũn+1 − u(tn+1), en+1

u = un+1 − u(tn+1),

en+1
p = pn+1 − p(tn+1), en+1

q = qn+1 − q(tn+1).

5.1. Error estimates for the velocity. The main result of this section is stated
in Theorem 5.1.

Theorem 5.1. Assuming d = 2 and u ∈ H3(0, T ;L2(Ω))
⋂
H1(0, T ;H2

0(Ω))
⋂

W 1,∞(0, T ;W 1,∞(Ω)), p ∈ H2(0, T ;H1(Ω)), then for the first-order scheme (19)-
(22), we have

(57)

‖em+1
u ‖2 +Δt

m∑
n=0

‖∇ẽn+1
u ‖2 +

m∑
n=0

‖ẽn+1
u − enu‖2 + (Δt)2‖∇em+1

p ‖2

+ |em+1
q |2 +Δt

m∑
n=0

|dten+1
q |2 ≤ C(Δt)2, ∀ 0 ≤ m ≤ N − 1,

where C is a positive constant independent of Δt.

Proof. We shall follow the steps in the stability proof of Theorem 4.1.

Step 1. We start by establishing an error equation corresponding to (41). Let Rn+1
u

be the truncation error defined by

(58) Rn+1
u =

∂u(tn+1)

∂t
− u(tn+1)− u(tn)

Δt
=

1

Δt

∫ tn+1

tn
(tn − t)

∂2u

∂t2
dt.
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Subtracting (15) at tn+1 from (19), we obtain

(59)

ẽn+1
u − enu

Δt
− νΔẽn+1

u =
q(tn+1)

exp(− tn+1

T )
(u(tn+1) · ∇)u(tn+1)

− qn+1

exp(− tn+1

T )
(un · ∇)un −∇(pn − p(tn+1)) +Rn+1

u .

We obtain from (20) that

(60)
en+1
u − ẽn+1

u

Δt
+∇(pn+1 − pn) = 0.

Taking the inner product of (59) with ẽn+1
u , we obtain

(61)

‖ẽn+1
u ‖2 − ‖enu‖2

2Δt
+

‖ẽn+1
u − enu‖2

2Δt
+ ν‖∇ẽn+1

u ‖2

=

(
q(tn+1)

exp(− tn+1

T )
(u(tn+1) · ∇)u(tn+1)− qn+1

exp(− tn+1

T )
(un · ∇)un, ẽn+1

u

)

− (∇(pn − p(tn+1)), ẽn+1
u ) + (Rn+1

u , ẽn+1
u ).

Taking the inner product of (60) with
en+1
u +ẽn+1

u

2 , we derive

(62)
‖en+1

u ‖2 − ‖ẽn+1
u ‖2

2Δt
+

1

2

(
∇(pn+1 − pn), ẽn+1

u

)
= 0.

Adding (61) and (62), we have

(63)

‖en+1
u ‖2 − ‖enu‖2

2Δt
+

‖ẽn+1
u − enu‖2

2Δt
+ ν‖∇ẽn+1

u ‖2

=

(
q(tn+1)

exp(− tn+1

T )
(u(tn+1) · ∇)u(tn+1)− qn+1

exp(− tn+1

T )
(un · ∇)un, ẽn+1

u

)

− 1

2

(
∇(pn+1 + pn − 2p(tn+1)), ẽn+1

u

)
+ (Rn+1

u , ẽn+1
u ).

For the first term on the right hand side of (63), we have

(64)

(
q(tn+1)

exp(− tn+1

T )
(u(tn+1) · ∇)u(tn+1)− qn+1

exp(− tn+1

T )
(un · ∇)un, ẽn+1

u

)

=
q(tn+1)

exp(− tn+1

T )

(
((u(tn+1)− un) · ∇)u(tn+1), ẽn+1

u

)

+
q(tn+1)

exp(− tn+1

T )

(
(un · ∇)(u(tn+1)− un), ẽn+1

u

)

−
en+1
q

exp(− tn+1

T )

(
(un · ∇)un, ẽn+1

u

)
.
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Thanks to (55) and (10), the first term on the right hand side of (64) can be
estimated by
(65)

q(tn+1)

exp(− tn+1

T )

(
((u(tn+1)− un) · ∇)u(tn+1), ẽn+1

u

)
≤c2(1 + c1) exp(1)‖u(tn+1)− un‖‖u(tn+1)‖2‖∇ẽn+1

u ‖

≤ν

6
‖∇ẽn+1

u ‖2 + C‖u(tn+1)‖22‖enu‖2 + C‖u(tn+1)‖22Δt

∫ tn+1

tn
‖ut‖2dt.

Using Cauchy-Schwarz inequality and recalling (55), the second term on the right
hand side of (64) can be bounded using (10) and (11) by
(66)

q(tn+1)

exp(− tn+1

T )

(
(un · ∇)(u(tn+1)− un), ẽn+1

u

)

=
q(tn+1)

exp(− tn+1

T )

(
(un · ∇)(u(tn+1)− u(tn)), ẽn+1

u

)
− q(tn+1)

exp(− tn+1

T )

(
(enu · ∇)enu, ẽ

n+1
u

)

− q(tn+1)

exp(− tn+1

T )

(
(u(tn) · ∇)enu, ẽ

n+1
u

)

≤ c2(1 + c1) exp(1)‖∇ẽn+1
u ‖(‖un‖‖

∫ tn+1

tn
utdt‖2 + ‖enu‖‖u(tn)‖2)

+ c2(1 + c1) exp(1)‖enu‖1/2‖enu‖
1/2
1 ‖enu‖1/2‖enu‖

1/2
1 ‖∇ẽn+1

u ‖

≤ ν

6
‖∇ẽn+1

u ‖2 + C(‖u(tn)‖22 + ‖enu‖21)‖enu‖2

+ CΔt

∫ tn+1

tn
‖ut‖22dt.

Next we estimate the second term on the right hand side of (63). Recalling (60),
we have
(67)

− 1

2

(
∇(pn+1 + pn − 2p(tn+1)), ẽn+1

u

)
= −1

2

(
∇(en+1

p + enp − p(tn+1) + p(tn)), ẽn+1
u

)
= −1

2

(
∇(en+1

p + enp − p(tn+1) + p(tn)),

en+1
u +Δt(∇(en+1

p − enp ) +∇(p(tn+1)− p(tn))
)

= −Δt

2
(‖∇en+1

p ‖2 − ‖∇enp‖2)−Δt(∇(p(tn+1)− p(tn)),∇enp )

+
Δt

2
‖∇(p(tn+1)− p(tn))‖2

≤ −Δt

2
(‖∇en+1

p ‖2 − ‖∇enp‖2) + (Δt)2‖∇enp‖2

+ C
(
Δt+ (Δt)2

) ∫ tn+1

tn
‖∇pt(t)‖2dt.
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For the last term on the right hand side of (63), we have

(68) (Rn+1
u , ẽn+1

u ) ≤ ν

6
‖∇ẽn+1

u ‖2 + CΔt

∫ tn+1

tn
‖utt‖2−1dt.

Finally, combining (63) with (64)-(68), we obtain
(69)
‖en+1

u ‖2 − ‖enu‖2
2Δt

+
‖ẽn+1

u − enu‖2
2Δt

+
ν

2
‖∇ẽn+1

u ‖2 + Δt

2
(‖∇en+1

p ‖2 − ‖∇enp‖2)

≤−
en+1
q

exp(− tn+1

T )

(
(un · ∇)un, ẽn+1

u

)
+ C(‖u(tn)‖22 + ‖enu‖21)‖enu‖2

+ (Δt)2‖∇enp‖2 + C‖u(tn+1)‖22Δt

∫ tn+1

tn
‖ut‖2dt

+ CΔt

∫ tn+1

tn
‖ut‖22dt+ CΔt

∫ tn+1

tn
‖utt‖2−1dt

+ C
(
Δt+ (Δt)2

) ∫ tn+1

tn
‖∇pt(t)‖2dt, ∀ 0 ≤ m ≤ N − 1.

Step 2. Note that the first term on the right hand side cannot be easily bounded.
As in the stability proof, we shall balance it with a term from the error equation
for q corresponding to (42). We proceed as follows.

Subtracting (16) from (22) leads to
(70)

en+1
q − enq

Δt
+

1

T
en+1
q

=
1

exp(− tn+1

T )

(
((un · ∇)un, ũn+1)− ((u(tn+1) · ∇)u(tn+1),u(tn+1))

)
+Rn+1

q ,

where

(71) Rn+1
q =

dq(tn+1)

dt
− q(tn+1)− q(tn)

Δt
=

1

Δt

∫ tn+1

tn
(tn − t)

∂2q

∂t2
dt.

Multiplying both sides of (70) by en+1
q yields

(72)
|en+1

q |2 − |enq |2

2Δt
+

|en+1
q − enq |2

2Δt
+

1

T
|en+1

q |2

=
en+1
q

exp(− tn+1

T )
((un · ∇)un, ẽn+1

u )−
en+1
q

exp(− tn+1

T )

(
(un · ∇)(u(tn+1)− un),u(tn+1)

)

−
en+1
q

exp(− tn+1

T )

(
((u(tn+1)− un) · ∇)u(tn+1),u(tn+1)

)
+Rn+1

q en+1
q .
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Thanks to (10) and (56), the second term on the right hand side of (72) can be
bounded by

(73)

−
en+1
q

exp(− tn+1

T )

(
(un · ∇)(u(tn+1)− un),u(tn+1)

)
≤c2 exp(1)‖un‖1‖u(tn+1)− un‖0‖u(tn+1)‖2|en+1

q |

≤ 1

4k2
‖un‖21|en+1

q |2 + C‖enu‖2 + CΔt

∫ tn+1

tn
‖ut‖20dt.

The third term on the right hand side of (72) can be bounded by

(74)

−
en+1
q

exp(− tn+1

T )

(
((u(tn+1)− un) · ∇)u(tn+1),u(tn+1)

)
≤c2 exp(1)‖u(tn+1)− un‖‖u(tn+1)‖1‖u(tn+1)‖2|en+1

q |

≤C‖enu‖2 +
1

4T
|en+1

q |2 + CΔt

∫ tn+1

tn
‖ut‖2dt.

For the last term on the right hand side of (72), we have

(75) Rn+1
q en+1

q ≤ 1

4T
|en+1

q |2 + CΔt

∫ tn+1

tn
‖qtt‖2dt.

Combining (72) with (73)-(75) results in

(76)

|en+1
q |2 − |enq |2

2Δt
+

|en+1
q − enq |2

2Δt
+

1

2T
|en+1

q |2

≤
en+1
q

exp(− tn+1

T )
((un · ∇)un, ẽn+1

u ) +
1

4k2
‖un‖21|en+1

q |2 + C‖enu‖2

+ CΔt

∫ tn+1

tn
‖ut‖20dt+ CΔt

∫ tn+1

tn
‖qtt‖2dt.

Note that the first term on the right hand side above is what we need to balance
the first term on the right hand side of (69).

Step 3. Summing up (76) with (69) leads to

(77)

|en+1
q |2 − |enq |2

2Δt
+

|en+1
q − enq |2

2Δt
+

1

2T
|en+1

q |2 + ‖en+1
u ‖2 − ‖enu‖2

2Δt

+
‖ẽn+1

u − enu‖2
2Δt

+
ν

2
‖∇ẽn+1

u ‖2 + Δt

2
(‖∇en+1

p ‖2 − ‖∇enp‖2)

≤ 1

4k2
‖un‖21|en+1

q |2 + C(‖u(tn)‖22 + ‖enu‖21)‖enu‖2

+ (Δt)2‖∇enp‖2 + C‖u(tn+1)‖22Δt

∫ tn+1

tn
‖ut‖2dt

+ CΔt

∫ tn+1

tn
‖ut‖22dt+ CΔt

∫ tn+1

tn
‖utt‖2−1dt

+ C
(
Δt+ (Δt)2

) ∫ tn+1

tn
‖∇pt(t)‖2dt+ CΔt

∫ tn+1

tn
‖qtt‖2dt.
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Multiplying (77) by 2Δt and summing over n, n = 0, 2, . . . ,m∗, where m∗ is the
time step at which |em∗+1

q | achieves its maximum value, we can obtain
(78)

|em∗+1
q |2+Δt

T

m∗∑
n=0

|en+1
q |2 + ‖em∗+1

u ‖2 + νΔt
m∗∑
n=0

‖∇ẽn+1
u ‖2 + (Δt)2‖∇em

∗+1
p ‖2

≤ 1

2k2
|em∗+1

q |2Δt

m∗∑
n=0

‖un‖21 + CΔt

m∗∑
n=0

(‖u(tn)‖22 + ‖enu‖21)‖enu‖2

+ (Δt)3
m∗∑
n=0

‖∇enp‖2 + C‖u(tn+1)‖22(Δt)2
∫ tm

∗+1

t0
‖ut‖2dt

+ C(Δt)2
∫ tm

∗+1

t0
‖ut‖22dt+ C(Δt)2

∫ tm
∗+1

t0
‖utt‖2−1dt

+ C
(
(Δt)2 + (Δt)3

) ∫ tm
∗+1

t0
‖∇pt(t)‖2dt+ C(Δt)2

∫ tm
∗+1

t0
‖qtt‖2dt.

Thanks to (56), the first term on the right hand side is bounded by 1
2 |em

∗+1
q |2.

Then, applying the discrete Gronwall lemma 2.1, we obtain

|em∗+1
q |2 +Δt

m∗∑
n=0

|en+1
q |2 + ‖em∗+1

u ‖2 + νΔt

m∗∑
n=0

‖∇ẽn+1
u ‖2 + (Δt)2‖∇em

∗+1
p ‖2

≤ C(‖u‖2H1(0,T ;H2(Ω)) + ‖u‖2H2(0,T ;H−1Ω)) + ‖q‖2H2(0,T ))(Δt)2.

Since |em∗+1
q | = max0≤m≤N−1 |em+1

q |, the above also implies

(79)

|em+1
q |2 +Δt

m∑
n=0

|en+1
q |2 + ‖em+1

u ‖2 + νΔt
m∑

n=0

‖∇ẽn+1
u ‖2

≤ C(‖u‖2H1(0,T ;H2(Ω)) + ‖u‖2H2(0,T ;H−1Ω)) + ‖q‖2H2(0,T ))(Δt)2,

∀0 ≤ m ≤ N − 1.

Next multiplying both sides of (70) with dte
n+1
q leads to

(80)

|dten+1
q |2 +

|en+1
q |2 − |enq |2

2TΔt
+

|en+1
q − enq |2

2TΔt

=
dte

n+1
q

exp(− tn+1

T )
((un · ∇)un, ẽn+1

u )

−
dte

n+1
q

exp(− tn+1

T )

(
(un · ∇)(u(tn+1)− un),u(tn+1)

)

−
dte

n+1
q

exp(− tn+1

T )

(
((u(tn+1)− un) · ∇)u(tn+1),u(tn+1)

)
+Rn+1

q dte
n+1
q .

Thanks to (79), we have

(81) Δt

m∑
n=0

‖∇ẽn+1
u ‖2 ≤ C(Δt)2,
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which implies that

(82) ‖un+1‖1 ≤ C‖ũn+1‖1 ≤ C
(
(Δt)1/2 + ‖∇u(tn+1)‖

)
.

The above inequality holds thanks to the fact that [36]

‖un+1‖H1(Ω) = ‖PH ũn+1‖H1(Ω) ≤ c(Ω)‖ũn+1‖H1(Ω).

Then, thanks to (11), the first term on the right hand side of (80) can be estimated
by

(83)

dte
n+1
q

exp(− tn+1

T )
((un · ∇)un, ẽn+1

u )

≤(1 + c1)c2‖un‖1/2‖un‖1/21 ‖un‖1/2‖un‖1/21 ‖∇ẽn+1
u ‖|dten+1

q |

≤1

6
|dten+1

q |2 + C(Δt+ ‖∇u(tn+1)‖2)‖∇ẽn+1
u ‖2.

The second and third terms on the right hand side of (80) can be bounded by

(84)

−
dte

n+1
q

exp(− tn+1

T )

(
(un · ∇)(u(tn+1)− un),u(tn+1)

)

−
dte

n+1
q

exp(− tn+1

T )

(
((u(tn+1)− un) · ∇)u(tn+1),u(tn+1)

)
≤1

6
|dten+1

q |2 + C‖ẽn+1
u ‖2 + C(Δt)2.

The last term on the right hand side of (80) can be bounded by

(85) Rn+1
q dte

n+1
q ≤ 1

6
|dten+1

q |2 + CΔt

∫ tn+1

tn
‖qtt‖2dt.

Finally combining (80) with (81)-(84) results in

(86)

|dten+1
q |2 +

|en+1
q |2 − |enq |2

2TΔt
+

|en+1
q − enq |2

2TΔt

≤1

2
|dten+1

q |2 + C(Δt+ ‖∇u(tn+1)‖2)‖∇ẽn+1
u ‖2

+ C‖ẽn+1
u ‖2 + CΔt

∫ tn+1

tn
‖qtt‖2dt+ C(Δt)2.

Multiplying (86) by 2TΔt and summing up for n from 0 to m, we obtain

TΔt

m∑
n=0

|dten+1
q |2 + |em+1

q |2

≤CΔt
m∑

n=0

‖∇ẽn+1
u ‖2 + CΔt

m∑
n=0

‖ẽn+1
u ‖2 + C(Δt)2.

Combining the above with (79), we obtain the desired result. �
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5.2. Error estimates for the pressure. The main result in this subsection is
the following error estimate for the pressure which requires additional regularities.

Theorem 5.2. Assuming d = 2 and u ∈ H3(0, T ;L2(Ω))
⋂
H1(0, T ;H2

0(Ω))
⋂

W 1,∞(0, T ;W 1,∞(Ω)), p ∈ H2(0, T ;H1(Ω)), then for the first-order scheme (19)-
(22), we have

(87) Δt
m∑

n=0

‖en+1
p ‖2L2(Ω)/R ≤ C(Δt)2, ∀ 0 ≤ m ≤ N − 1,

where C is a positive constant independent of Δt.

Proof. In order to prove the above results, we need to first establish an estimate
on ‖en+1

u − enu‖.
Adding (59) and (60) leads to

(88)

en+1
u − enu

Δt
− νΔẽn+1

u =
q(tn+1)

exp(− tn+1

T )
(u(tn+1) · ∇)u(tn+1)

− qn+1

exp(− tn+1

T )
(un · ∇)un −∇en+1

p +Rn+1
u .

Define dtte
n+1
u =

dte
n+1
u −dte

n
u

Δt . Then taking the difference of two consecutive steps
in (88), we have

(89) dtte
n+1
u − νΔdtẽ

n+1
u = dtR

n+1
u −∇dte

n+1
p +

3∑
i=1

Si,

where

(90)

S1 =dt(q
n+1 exp(

tn+1

T
))((u(tn+1)− un) · ∇)u(tn+1)

+ qn exp(
tn

T
)((dtu(t

n+1)− dtu
n) · ∇)u(tn+1)

+ qn exp(
tn

T
)((u(tn)− un−1) · ∇)dtu(t

n+1),

(91)

S2 =dt(q
n+1 exp(

tn+1

T
))(un · ∇)(u(tn+1)− un)

+ qn exp(
tn

T
)(dte

n
u · ∇)(u(tn+1)− un)

+ qn exp(
tn

T
)(dtu(t

n) · ∇)(u(tn+1)− un)

+ qn exp(
tn

T
)(un−1 · ∇)(dtu(t

n+1)− dtu
n),

and

(92)

S3 =− dt(e
n+1
q exp(

tn+1

T
))(u(tn+1) · ∇)u(tn+1)

− enq exp(
tn

T
)(dtu(t

n+1) · ∇)u(tn+1)

− enq exp(
tn

T
)(u(tn) · ∇)dtu(t

n+1).
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Taking the inner product of (89) with dtẽ
n+1
u , we find

(93)

(dtte
n+1
u , dtẽ

n+1
u ) + ν‖∇dtẽ

n+1
u ‖2 = (dtR

n+1
u , dtẽ

n+1
u )

− (∇dte
n+1
p , dtẽ

n+1
u ) +

3∑
i=1

(Si, dtẽ
n+1
u ).

For the first term on the left hand side, we have

(94) (dtte
n+1
u , dtẽ

n+1
u ) =

‖dten+1
u ‖2 − ‖dtenu‖2

2Δt
+

‖dten+1
u − dte

n
u‖2

2Δt
.

We bound the terms on the right hand side as follows.

(95) (dtR
n+1
u , dtẽ

n+1
u ) ≤ ν

8
‖∇dtẽ

n+1
u ‖2 + CΔt

∫ tn+1

tn−1

‖uttt(t)‖2dt.

The second term on the right hand of (93) can be transformed into

(96) − (∇dte
n+1
p , dtẽ

n+1
u ) = −(∇dte

n
p , dtẽ

n+1
u )− (∇(dte

n+1
p − dte

n
p ), dtẽ

n+1
u ).

Since we can derive from (60) that

(97) dtẽ
n+1
u = dte

n+1
u +∇(pn+1 − 2pn + pn−1).

The first term on the right hand of (96) can be estimated by

(98)

− (∇dte
n
p , dtẽ

n+1
u ) = −(∇dte

n
p ,∇(pn+1 − 2pn + pn−1))

=−Δt(∇dte
n
p ,∇(dte

n+1
p − dte

n
p ))

− (Δt)2
(
∇dte

n
p ,

1

(Δt)2
∇(p(tn+1)− 2p(tn) + p(tn−1))

)

≤− Δt

2
(‖∇dte

n+1
p ‖2 − ‖∇dte

n
p‖2 − ‖∇dte

n+1
p −∇dte

n
p‖2)

+ (Δt)2‖∇dte
n
p‖2 + CΔt

∫ tn+1

tn−1

‖∇ptt‖2dt.

The second term on the right hand of (96) can be bounded by
(99)

− (∇(dte
n+1
p − dte

n
p ), dtẽ

n+1
u ) = −

(
∇(dte

n+1
p − dte

n
p ),∇(pn+1 − 2pn + pn−1)

)
=−Δt

(
∇(dte

n+1
p − dte

n
p ),

1

Δt
∇(p(tn+1)− 2p(tn) + p(tn−1))

)
−Δt

(
∇(dte

n+1
p − dte

n
p ),∇(dte

n+1
p − dte

n
p )
)

≤− Δt

2
‖∇dte

n+1
p −∇dte

n
p‖2 + C(Δt)2

∫ tn+1

tn−1

‖∇ptt‖2dt.

Recalling (10)-(11), (55) and (82) and using Young inequality, we have
(100)

(S1, dtẽ
n+1
u ) ≤ ν

8
‖∇dtẽ

n+1
u ‖2 + C‖dtenu‖2 + C‖enu‖2 + C‖en−1

u ‖2 + C(Δt)2,
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(101)

(S2, dtẽ
n+1
u ) ≤C|

(
(dte

n
u · ∇)enu, dtẽ

n+1
u

)
|+ C|

(
(un−1 · ∇)dte

n
u, dtẽ

n+1
u

)
|

+
ν

32
‖∇dtẽ

n+1
u ‖2 + C‖enu‖21 + C(Δt)2

≤C|
(
(dte

n
u · ∇)enu, dtẽ

n+1
u

)
|+ C|

(
(en−1

u · ∇)dte
n
u, dtẽ

n+1
u

)
|

+
ν

16
‖∇dtẽ

n+1
u ‖2 + C‖enu‖21 + C‖dtenu‖2 + C(Δt)2

≤C‖dtenu‖1/2‖∇dtẽ
n
u‖1/2‖enu‖1/2‖enu‖

1/2
1 ‖∇dtẽ

n+1
u ‖

+ C‖en−1
u ‖1/2‖en−1

u ‖1/21 ‖dtenu‖1/2‖∇dtẽ
n
u‖1/2‖∇dtẽ

n+1
u ‖

+
ν

16
‖∇dtẽ

n+1
u ‖2 + C‖enu‖21 + C‖dtenu‖2 + C(Δt)2

≤ν

8
‖∇dtẽ

n+1
u ‖2 + C(‖en−1

u ‖20‖en−1
u ‖21 + ‖enu‖20‖enu‖21)‖∇dtẽ

n
u‖2

+ C‖dtenu‖2 + C‖enu‖21 + C(Δt)2,

and

(102) (S3, dtẽ
n+1
u ) ≤ ν

8
‖∇dtẽ

n+1
u ‖2 + C|dten+1

q |2 + C|en+1
q |2 + C(Δt)2.

Then combining (93) with (97)-(102), we have
(103)

‖dten+1
u ‖2 − ‖dtenu‖2

2Δt
+

‖dten+1
u − dte

n
u‖2

2Δt

+
ν

2
‖∇dtẽ

n+1
u ‖2 + Δt

2
(‖∇dte

n+1
p ‖2 − ‖∇dte

n
p‖2 + ‖∇dte

n+1
p −∇dte

n
p‖2)

≤(Δt)2‖∇dte
n
p‖2 + C(‖en−1

u ‖20‖en−1
u ‖21 + ‖enu‖20‖enu‖21)‖∇dtẽ

n
u‖2

+ C‖dtenu‖2 + C‖enu‖21 + C‖en−1
u ‖2 + C|dten+1

q |2

+ C|en+1
q |2 + C(Δt)2.

Recalling Theorem 5.1, we have

‖∇dtẽ
n
u‖2 ≤ (Δt)−2‖∇ẽnu‖2 ≤ C(Δt)−1, ∀1 ≤ n ≤ N.

Then multiplying (103) by 2Δt, summing up for n from 1 to m and applying the
discrete Gronwall lemma 2.1, we can obtain

(104)

‖dtem+1
u ‖2 + (Δt)2‖∇dte

m+1
p ‖2

≤‖dte1u‖2 + (Δt)3
m∑

n=1

‖∇dte
n+1
p ‖2 + (Δt)2‖∇dte

1
p‖2 + C(Δt)2.

It remains to estimate ‖dte1u‖2 and (Δt)2‖∇dte
1
p‖2. Using (59), we have

(105)
ẽ1u − νΔtẽ1u =Δt

q(t1)

exp(− t1

T )
(u(t1) · ∇)u(t1)−Δt

q1

exp(− t1

T )
u0 · ∇u0

−Δt∇(p0 − p(t1)) + ΔtR1
u.
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Taking the inner product of (105) with ẽ1u leads to
(106)

‖ẽ1u‖2 + νΔt‖∇ẽ1u‖2 =Δt

(
q(t1)

exp(− t1

T )
(u(t1) · ∇)u(t1)− q1

exp(− t1

T )
(u0 · ∇)u0, ẽ1u

)

−Δt(∇(p(t0)− p(t1)), ẽ1u) + Δt(R1
u, ẽ

1
u)

≤1

2
‖ẽ1u‖2 + C(Δt)4,

from which we obtain

‖dte1u‖2 ≤ ‖dtẽ1u‖2 = (Δt)−2‖ẽ1u‖2 ≤ C(Δt)2.

We can derive from (60) with n = 1 that

(107) (Δt)2‖∇dte
1
p‖2 ≤ (Δt)−2(‖e1u‖2 + ‖ẽ1u‖2) + (Δt)2‖∇dtp(t

1)‖2 ≤ C(Δt)2.

Combining the above estimates with (104), we finally obtain

(108) ‖dtem+1
u ‖2 + (Δt)2‖∇dte

m+1
p ‖2 ≤ C(Δt)2,

which implies in particular

(109) ‖en+1
u − enu‖ ≤ C(Δt)2.

We are now in position to prove the pressure estimate. Taking the inner product
of (88) with v ∈ H1

0(Ω), we have

(110)

(∇en+1
p ,v) = −(

en+1
u − enu

Δt
,v) + ν(Δẽn+1

u ,v) + (Rn+1
u ,v)

+

(
q(tn+1)

exp(− tn+1

T )
(u(tn+1) · ∇)u(tn+1)− qn+1

exp(− tn+1

T )
(un · ∇)un,v

)
.

Taking notice of the fact that

(111) ‖en+1
p ‖L2(Ω)/R ≤ sup

v∈H1
0(Ω)

(∇en+1
p ,v)

‖∇v‖ .

By using (64)-(66) and (82), we can derive that, for all v ∈ H1
0(Ω),

(112)

(
q(tn+1)

exp(− tn+1

T )
(u(tn+1) · ∇)u(tn+1)− qn+1

exp(− tn+1

T )
(un · ∇)un,v

)

=
q(tn+1)

exp(− tn+1

T )

(
((u(tn+1)− un) · ∇)u(tn+1),v

)

+
q(tn+1)

exp(− tn+1

T )

(
(un · ∇)(u(tn+1)− un),v

)

−
en+1
q

exp(− tn+1

T )
((un · ∇)un,v)

≤C(‖enu‖+ ‖∇ẽnu‖+ ‖
∫ tn+1

tn
utdt‖1 + |en+1

q |)‖∇v‖.
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Hence thanks to Theorem 5.1 and (68), (108), we can derive from the above that

(113)

Δt

m∑
n=0

‖en+1
p ‖2L2(Ω)/R ≤ CΔt

m∑
n=0

(
‖dten+1

u ‖2 + ‖∇ẽn+1
u ‖2

+‖∇ẽnu‖2 + ‖enu‖2 + |en+1
q |2

)
+ C(Δt)2

∫ tm+1

t0
(‖ut‖21 + ‖utt‖2−1)dt ≤ C(Δt)2.

The proof is complete. �

6. Numerical experiments

In this section, we carry out some numerical experiments to verify the accuracy
and stability of the first- and second-order SAV schemes with pressure correction
for the Navier-Stokes equations. In all examples below, we take Ω = (0, 1)× (0, 1).

6.1. Convergence test. In this subsection, we present two examples to verify the
convergence rates for the first- and second-order SAV schemes with pressure cor-
rection for the Navier-Stokes equations. We set T = 1, ν = 0.1 and the spatial dis-
cretization is based on the MAC scheme on the staggered grid with Nx = Ny = 250
so that the spatial discretization error is negligible compared to the time discretiza-
tion error for the time steps used in the experiments.

Example 1. The right hand side of the equations is computed according to the
analytic solution given by:⎧⎪⎨

⎪⎩
p(x, y, t) = sin(t)(sin(πy)− 2/π),

u1(x, y, t) = sin(t) sin2(πx) sin(2πy),

u2(x, y, t) = − sin(t) sin(2πx) sin2(πy).

Example 2. The right hand side of the equations is computed according to the
analytic solution given by:⎧⎪⎨

⎪⎩
p(x, y, t) = t2(x− 0.5),

u1(x, y, t) = −128t2x2(x− 1)2y(y − 1)(2y − 1),

u2(x, y, t) = 128t2y2(y − 1)2x(x− 1)(2x− 1).

Numerical results for Examples 1 and 2 with first- and second-order schemes are
presented in Tables 1-4. We observe that the results for the first-order scheme
are consistent with the error estimates in Theorems 5.1 and 5.2. While second-
order convergence rates for the velocity and SAV variable in L∞ norm, and nearly
second-order convergence rates for the pressure in L2 norm were observed for the
second-order scheme.

Table 1. Errors and convergence rates for Example 1 with the
first-order scheme (19)-(22)

Δt ‖eu‖l∞ Rate ‖ep‖l2 Rate ‖eq‖∞ Rate
1
10

5.77E-3 — 2.20E-2 — 2.26E-2 —
1
20

2.25E-3 1.36 1.06E-2 1.06 1.02E-2 1.14
1
40

1.04E-3 1.11 5.13E-3 1.04 4.87E-3 1.07
1
80

5.01E-4 1.05 2.54E-3 1.01 2.37E-3 1.04
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Table 2. Errors and convergence rates for Example 1 with the
second-order scheme (33)-(36)

Δt ‖eu‖l∞ Rate ‖ep‖l2 Rate ‖eq‖∞ Rate
1
10

1.99E-3 — 7.83E-3 — 4.69E-3 —
1
20

5.25E-4 1.92 2.47E-3 1.66 1.24E-3 1.92
1
40

1.36E-4 1.95 7.20E-4 1.78 3.17E-4 1.97
1
80

3.95E-5 1.78 1.99E-4 1.85 7.97E-5 1.99

Table 3. Errors and convergence rates for Example 2 with the
first-order scheme (19)-(22)

Δt ‖eu‖l∞ Rate ‖ep‖l2 Rate ‖eq‖∞ Rate
1
10

1.14E-2 — 2.13E-2 — 2.03E-2 —
1
20

5.08E-3 1.17 1.07E-2 0.99 9.44E-3 1.11
1
40

2.46E-3 1.05 5.30E-3 1.01 4.61E-3 1.03
1
80

1.23E-3 1.00 2.63E-3 1.01 2.30E-3 1.01

Table 4. Errors and convergence rates for Example 2 with the
second-order scheme (33)-(36)

Δt ‖eu‖l∞ Rate ‖ep‖l2 Rate ‖eq‖∞ Rate
1
10

3.95E-3 — 5.95E-3 — 1.82E-3 —
1
20

1.06E-3 1.90 1.66E-3 1.84 4.09E-4 2.16
1
40

2.77E-4 1.94 4.51E-4 1.88 9.82E-5 2.06
1
80

8.09E-5 1.78 1.21E-4 1.89 2.42E-5 2.02

As a comparison, we also implemented the following pressure-correction version
of the scheme (2)-(4).

Scheme III. Find (ũn+1, un+1,pn+1,qn+1) by solving⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũn+1−un

Δt + qn+1√
E(un)+C0

(un · ∇)un − νΔũn+1 +∇pn = fn+1,(114)

ũn+1|∂Ω = 0;

un+1−ũn+1

Δt +∇(pn+1 − pn) = 0;(115)

∇ · un+1 = 0, un+1 · n|∂Ω = 0;(116)

2qn+1 qn+1−qn

Δt = (u
n+1−un

Δt + qn+1√
E(un)+C0

(un · ∇)un, ũn+1),(117)

where E(u) =
∫
Ω

1
2 |u|2 is the total energy. Numerical results with the MAC dis-

cretization of the above scheme are listed in Tables 5 and 6. It is observed that the
results with this scheme are essentially the same as the results by our new first-
order SAV scheme in Tables 1 and 3. Note that the above scheme requires solving
a nonlinear algebraic equation at each time step.

6.2. Energy dissipation. The new schemes are unconditionally energy dissipative
with a modified energy. In the following example, we show that the original energy
computed by the new schemes is also dissipative. We set

T = 1, Δt = 0.001, Nx = Ny = 100, f = 0,
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Table 5. Errors and convergence rates for Example 1 with the
first-order scheme (114)-(117)

Δt ‖eu‖l∞ Rate ‖ep‖l2 Rate
1
10

5.75E-3 — 2.10E-2 —
1
20

2.24E-3 1.36 9.55E-3 1.13
1
40

1.04E-3 1.11 4.46E-3 1.10
1
80

5.01E-4 1.05 2.17E-3 1.04

Table 6. Errors and convergence rates for Example 2 with the
first-order scheme (114)-(117)

Δt ‖eu‖l∞ Rate ‖ep‖l2 Rate
1
10

1.14E-2 — 1.88E-2 —
1
20

5.05E-3 1.17 8.91E-3 1.08
1
40

2.44E-3 1.05 4.30E-3 1.05
1
80

1.22E-3 1.00 2.11E-3 1.03

and use as initial velocity u1(x, y)=sin2(πx) sin(2πy), u2(x, y)=− sin(2πx) sin2(πy).
Evolutions of original energy 1

2‖u‖2 with different Reynolds numbers Re = 1
ν =

1000, 3000, 5000, 8000, 10000 are presented in Figure 1. We observe that the original
energy is dissipative in all cases.

Figure 1. Evolutions of the original energy with different
Reynolds numbers Re = 1000, 3000, 5000, 8000, 10000, respec-
tively

6.3. Lid-driven cavity. As the last example, we demonstrate that our new
schemes are also robust for a real physical simulation, the well-known lid-driven
cavity benchmark problem [7, 22].

We take Re = 5000, and use the first-order SAV scheme with pressure correction
with Nx = Ny = 128 MAC discretization and Δt = 2e− 3. We plot the snapshots
at 2000, 3000 and 5000 time steps in Figure 2, and at the final steady state with
the velocity at the center line compared with the benchmark results in Figure 3.

Licensed to Purdue Univ. Prepared on Wed Jun  1 09:18:39 EDT 2022 for download from IP 128.210.107.25.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



164 XIAOLI LI ET AL.

0.1

0
.1

0.
1

0.1

0.1
0.2 0.2

0
.2

0
.2

0
.2

0.2

0.3 0.3

0.3

0.
3

0
.4

0
.4

0.4 0.4

0
.5

0.5 0.50.6 0.60.7 0.70.8 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.1

0.1

0
.1

0.1

0.1
0.2 0.2

0.2

0.2

0
.2

0
.2

0.3 0.3

0
.3

0.3

0
.3

0
.4

0
.4

0.4 0.4

0
.5

0.5 0.50.6 0.60.7 0.70.8 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.1

0
.1

0.1

0
.1

0.1

0.1
0.2 0.2

0
.2

0.2

0
.2

0.2

0
.2

0
.2

0.3 0.3 0.3

0.3

0.3

0
.4

0
.4

0.4 0.4

0
.5

0.5 0.50.6 0.60.7 0.70.8 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2. The combined velocity field for Re = 5000 at different
time steps 2000, 3000 and 5000

We observe that our numerical simulation captures the dynamical evolution of the
velocity field, and leads to identical final steady state compared with the benchmark
results.
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Figure 3. The combined velocity field and the velocity at the
center line with x-component velocity at x = 0.5 and y-component
velocity at y = 0.5 for Re = 5000 at the final steady state

7. Concluding remarks

We constructed novel first- and second-order linear and decoupled pressure cor-
rection schemes based on the SAV approach for the Navier-Stokes equations, and
proved that they are unconditionally energy stable. Compared with the previous
version of SAV scheme (2)-(4), the new schemes possess two distinct advantages:
(i) they are purely linear, eliminating the numerical and theoretical difficulties as-
sociated with the nonlinear algebraic equation in (4), and (ii) they lead to a much
stronger stability result with a uniform bound on the L2-norm of the numerical
solution, which is essential for the error analysis, and enable us to derive optimal
error estimates for the first-order scheme without any restriction on the time step.
Another main contribution is that we proved unconditional energy stability for the
new SAV scheme based on the second-order rotational pressure-correction scheme.
To the best of the authors’ knowledge, these schemes are the first of such kind for
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the Navier-Stokes equations with unconditional energy stability while treating the
nonlinear term explicitly.

We only carried out a rigorous error analysis for the first-order scheme in the
two dimensional case. Due to the rotational form of the pressure correction in the
second-order scheme, its error analysis will be much more involved, as indicated
by the technicality in its analysis without the nonlinear term [10]. Also, we
encounter an essential difficulty for the error analysis of the pressure-correction
scheme in the three dimensional case so that our error analysis is limited to the
two-dimensional case. The error estimates for the second-order scheme and/or for
the three-dimensional case will be left for a future endeavor.

References

[1] G. Akrivis, B. Li, and D. Li, Energy-decaying extrapolated RK-SAV methods for the Allen-
Cahn and Cahn-Hilliard equations, SIAM J. Sci. Comput. 41 (2019), no. 6, A3703–A3727,
DOI 10.1137/19M1264412. MR4033693

[2] A. Ait Ou Ammi and M. Marion, Nonlinear Galerkin methods and mixed finite elements:
two-grid algorithms for the Navier-Stokes equations, Numer. Math. 68 (1994), no. 2, 189–213,
DOI 10.1007/s002110050056. MR1283337

[3] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Com-
putational Mathematics, vol. 15, Springer-Verlag, New York, 1991, DOI 10.1007/978-1-4612-
3172-1. MR1115205

[4] F. Chen and J. Shen, Stability and convergence analysis of rotational velocity correction
methods for the Navier-Stokes equations, Adv. Comput. Math. 45 (2019), no. 5-6, 3123–
3136, DOI 10.1007/s10444-019-09729-2. MR4047675

[5] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968),
745–762, DOI 10.2307/2004575. MR242392

[6] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast itera-
tive solvers: with applications in incompressible fluid dynamics, 2nd ed., Numerical
Mathematics and Scientific Computation, Oxford University Press, Oxford, 2014, DOI
10.1093/acprof:oso/9780199678792.001.0001. MR3235759

[7] U. Ghia, K. N. Ghia, and C. Shin, High-Re solutions for incompressible flow using the Navier-
Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), 387–411.

[8] V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations,
Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR548867

[9] R. Glowinski, Finite element methods for incompressible viscous flow, Handbook of numerical
analysis, Vol. IX, Handb. Numer. Anal., IX, North-Holland, Amsterdam, 2003, pp. 3–1176.
MR2009826

[10] J. L. Guermond and J. Shen, On the error estimates for the rotational pressure-correction

projection methods, Math. Comp. 73 (2004), no. 248, 1719–1737, DOI 10.1090/S0025-5718-
03-01621-1. MR2059733

[11] J.-L. Guermond, Un résultat de convergence d’ordre deux en temps pour l’approximation
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