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Interpretations of values of the FST measure of genetic differentiation rely on an understanding of its mathematical
constraints. Previously, it has been shown that FST values computed from a biallelic locus in a set of multiple
populations and FST values computed from a multiallelic locus in a pair of populations are mathematically
constrained as a function of the frequency of the allele that is most frequent across populations. We generalize
from these cases to report here the mathematical constraint on FST given the frequency M of the most frequent
allele at a multiallelic locus in a set of multiple populations. Using coalescent simulations of an island model of
migration with an infinitely-many-alleles mutation model, we argue that the joint distribution of FST and M helps
in disentangling the separate influences of mutation and migration on FST . Finally, we show that our results
explain a puzzling pattern of microsatellite differentiation: the lower FST in an interspecific comparison between
humans and chimpanzees than in the comparison of chimpanzee populations. We discuss the implications of our
results for the use of FST .
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1. Introduction
Multiallelic loci such as microsatellites and haplotype assign-
ments are used to study genetic differentiation in a variety of
fields, ranging from ecology and conservation genetics to anthro-
pology and human genomics. Genetic differentiation is often
measured for multiallelic loci using the multiallelic extension of
Wright’s fixation index FST [1]:

FST =
HT − HS

HT
. (1)

For a polymorphic multiallelic locus with I distinct alleles in
a set of K subpopulations, denoting by pk,i the frequency of
allele i in subpopulation k, HS = 1− 1

K ∑K
k=1 ∑I

i=1 p2
k,i and HT =

1−∑I
i=1(

1
K ∑K

k=1 pk,i)
2.

FST values are known to be smaller for multiallelic than for
biallelic loci [2]. One reason invoked to explain this difference
is that within-subpopulation heterozygosity HS mathematically
constrains the maximal value of FST to be below 1, and the
constraint is stronger when HS is high. This phenomenon was
noticed concurrently in simulation-based, empirical, and theo-
retical studies [3, 4, 5, 6, 7], and the mathematical constraints
describing the dependence were subsequently clarified [8, 9].

Studies have found that the maximal value of FST can be
viewed as constrained not only by functions of the within-
subpopulation allele frequency distribution such as HS, but
alternatively by aspects of the global allele frequency distri-
bution across subpopulations. For a biallelic locus in K = 2
subpopulations, MARUKI et al. [10] showed that the maximal
FST as a function of the frequency M of the most frequent allele
decreases as M increases from 1

2 to 1 (see also [11]). General-
izing the biallelic case to arbitrarily many alleles, JAKOBSSON
et al. [12] showed that for multiallelic loci with an unspecified
number of distinct alleles, the maximal FST increases from 0 to
1 as a function of M if 0 < M < 1

2 , and decreases from 1 to 0
for 1

2 ≤ M < 1 in the manner reported by MARUKI et al. [10]
for biallelic loci. EDGE and ROSENBERG [13] generalized these
results to the case of a fixed finite number of alleles, showing
that the maximal FST differs slightly from the unspecified case
when the fixed number of distinct alleles is an odd number.

Generalizing the simplest case of K = I = 2 in a different
direction, ALCALA and ROSENBERG [14] considered biallelic
loci in the case of a fixed number of subpopulations K ≥ 2.
We showed that the maximal value of FST displays a peculiar
behavior as a function of M: the upper bound has a maximum
of 1 if and only if M = k

K , for integers k with d K
2 e ≤ k ≤ K− 1.

The constraints on the maximal value of FST dissipate as K tends
to infinity, even though for any fixed K, there always exists a
value of M for which FST < 2

√
2− 2 ≈ 0.8284.

Relating FST to its maximum as a function of M helps explain
surprising phenomena that arise during population-genetic
data analysis. For example, JAKOBSSON et al. [12] showed that
stronger constraints on FST could explain the low FST values
seen in pairs of African human populations. They also found
that such constraints could explain the lower FST values seen
in high-diversity multiallelic loci compared to lower-diversity
loci—microsatellites compared to single-nucleotide polymor-
phisms. ALCALA and ROSENBERG [14] showed that constraints
on the maximal FST could explain the lower FST values between
human populations seen when computing FST pairwise rather
than from all populations simultaneously.

In this study, we characterize the relationship between FST
and the frequency M of the most frequent allele, for a multi-
allelic locus and an arbitrary specified value of the number of
subpopulations K. We derive the mathematical upper bound
on FST in terms of M, extending the biallelic result of ALCALA
and ROSENBERG [14] to the multiallelic case, and providing the
most comprehensive description of the mathematical constraints
on FST in terms of M to date (Table 1). To assist in interpreting
the new bound, we simulate the joint distribution of FST and
M in the island migration model, describing its properties as a
function of the number of subpopulations, the migration rate,
and a mutation rate. The K-subpopulation upper bound on
FST in terms of M facilitates an explanation of counterintuitive
aspects of inter-species genetic differentiation. We discuss the
importance of the results for applications of FST more generally.

2. Model
Our goal is to derive the range of values FST can take—the lower
and upper bounds on FST—as a function of the frequency M of
the most frequent allele for a multiallelic locus, when the number
of subpopulations K is a fixed finite value greater than or equal
to 2. We follow previous studies [12, 13, 14, 15] in describing
notation and constructing the scenario.

We consider a polymorphic locus with an unspecified number
of distinct alleles, in a setting with K subpopulations contribut-
ing equally to the total population. We denote the frequency
of allele i in subpopulation k by pk,i, with sum σi = ∑K

k=1 pk,i
across subpopulations. Each allele frequency pk,i lies in [0, 1].
Within subpopulations, allele frequencies sum to 1: for each
k, ∑∞

i=1 pk,i = 1. Hence, σi lies in [0, K], and ∑∞
i=1 σi = K. We

number alleles from most to least frequent, so σi ≥ σj for i ≤ j.
Because by assumption the locus is polymorphic, σi < K for

each i. Alleles 1 and 2 have nonzero frequency in at least one
subpopulation, not necessarily the same one; we have σ1 > 0
and σ2 > 0. We denote the mean frequency of the most fre-
quent allele across subpopulations by M = σ1/K. We then have
0 < M < 1. We treat the allele frequencies pk,i and associated
quantities M and σi as parametric values, and not as estimates
computed from data.

Eq. 1 expresses FST as a ratio involving within-subpopulation
heterozygosity, HS, and total heterozygosity, HT , with 0 ≤ HS <
1 and 0 ≤ HT < 1. Because we assume the locus is polymorphic,
HT > 0. We write eq. 1 in terms of allele frequencies, permitting
the number of distinct alleles to be arbitrarily large:

FST =

1
K

K
∑

k=1

∞
∑

i=1
p2

k,i −
∞
∑

i=1

(
K
∑

k=1

pk,i
K

)2

1−
∞
∑

i=1

(
K
∑

k=1

pk,i
K

)2 . (2)

Hence, our goal is, for fixed σ1 = KM, 0 < σ1 < K, to iden-
tify the matrices (pk,i)K×∞, with pk,i in [0, 1], ∑∞

i=1 pk,i = 1 and
1
K ∑K

k=1 pk,1 = σ1/K = M, that minimize and maximize FST in
eq. 2.

Note that we adopt the interpretation of FST as a “statis-
tic” that describes a mathematical function of allele frequencies
rather than as a “parameter” that describes coancestry of indi-
viduals in a population [e.g. 16]. See ALCALA and ROSENBERG
[14] for a discussion of interpretations of FST when studying its
mathematical properties.
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Table 1 Studies describing the mathematical constraints on FST .

Reference Number of alleles Number of subpopulations Variable in terms of which constraints
are reported∗

LONG and KITTLES [8] unspecified value ≥ 2 fixed finite value ≥ 2 HS

ROSENBERG et al. [11] 2 2 δ

HEDRICK [9] unspecified value ≥ 2 fixed finite value ≥ 2 HS

MARUKI et al. [10] 2 2 HS, M

JAKOBSSON et al. [12] unspecified value ≥ 2 2 HT , M

EDGE and ROSENBERG [13] fixed finite value ≥ 2 2 HT , M

ALCALA and ROSENBERG [14] 2 fixed finite value ≥ 2 M

This paper unspecified value ≥ 2 fixed finite value ≥ 2 M

HS and HT denote the within-subpopulation and total heterozygosities, respectively. δ denotes the absolute difference in the frequency
of a specific allele between two subpopulations, and M denotes the frequency of the most frequent allele in the total population.
Instead of heterozygosities HS or HT , some studies consider homozygosities 1− HS or 1− HT .

3. Mathematical constraints

(a) Lower bound of FST
Bounds on FST in terms of the frequency of the most frequent
allele can be written with respect to M or σ1, noting that M
ranges in (0, 1) and σ1 ranges in (0, K). For the lower bound,
from eq. 2, for any choice of σ1, FST = 0 can be achieved. Con-
sider (σ1, σ2, . . .) with σi in [0, K) for each k, σi ≥ σj for i ≤ j,
∑∞

i=1 σi = K, and σ1 > 0 and σ2 > 0. We set pk,i = σi/K for all
subpopulations k and alleles i; this choice yields FST = 0.

FST = 0 implies that the numerator of eq. 2, HT − HS, is zero.
This numerator can be written ( 1

K2 )∑∞
i=1(K ∑K

k=1 p2
k,i − σ2

i ). The

Cauchy-Schwarz inequality guarantees that K ∑K
k=1 p2

k,i ≥ σ2
i ,

with equality if and only if p1,i = p2,i = . . . = pK,i = σi/K.
Applying the Cauchy-Schwarz inequality to all alleles i, the
numerator of eq. 2 is zero only if for all i, (p1,i, p2,i, . . . , pK,i) =
(σi/K, σi/K, . . . , σi/K).

Thus, we can conclude that the allele frequency matrices
in which all K subpopulations have identical allele frequency
vectors are the only matrices for which FST = 0. The lower
bound on FST is equal to 0 irrespective of M or σ1, for any value
of the number of subpopulations K.

(b) Upper bound of FST
To derive the upper bound on FST in terms of M = σ1/K, we
must maximize FST in eq. 2, assuming that σ1 and K are constant.
The computations are performed in the Appendix; we write the
main result as a function of σ1, noting that it can be converted
into a function of M by replacing σ1 with KM.

In Theorem 1, we treat the case in which σ1 has an integer
value. For non-integer σ1, Theorem 2 shows that the maximal
FST requires that (i) the sum of squared allele frequencies across
alleles and subpopulations, S = ∑∞

i=1 ∑K
k=1 p2

k,i, is maximal, and
(ii) alleles i = 2, 3, . . . are each present in at most one subpopula-
tion, but allele 1 might be present in more than one subpopula-
tion. We then separately maximize FST as a function of σ1 for σ1
in (0, 1) and non-integer σ1 in (1, K). These two cases differ in
that allele 1 appears in a single subpopulation in the former case,
and it must appear in at least two subpopulations in the latter.

The maximal FST as a function of σ1 for σ1 in (0, K) is

FST≤



1, σ1 = 1, 2, . . . , K− 1,

(K− 1)[1− σ1(J − 1)(2− Jσ1)]

K− [1− σ1(J − 1)(2− Jσ1)]
, 0 < σ1 < 1,

K(K− 1)− σ2
1 + bσ1c − 2(K− 1){σ1}+ (2K− 1){σ1}2

K(K− 1)− σ2
1 − bσ1c+ 2σ1 − {σ1}2

,

non-integer σ1, 1 < σ1 < K,
(3)

where J = dσ−1
1 e. Here, dxe denotes the smallest integer greater

than or equal to x, bxc denotes the greatest integer less than or
equal to x, and {x} = x−bxc denotes the fractional part of x.
Note that for an integer choice of σ1, the maximum from eq. 3
and the limits as σ1 tends to the integer from above and below all
equal 1, so that the maximum as a function of σ1 is continuous.

From the Appendix, FST reaches its upper bound for integer
σ1 when allele 1 has frequency 1 in each of σ1 subpopulations,
and when in each of the remaining K− σ1 subpopulations, an
allele other than allele 1 has frequency 1. These alleles of fre-
quency 1 need not be private, although they can be; any identity
relationships among them are permissible, provided that when
summing frequencies across subpopulations, none of these al-
leles has a sum that exceeds σ1. The locus can have as few as
dKσ−1

1 e alleles of nonzero frequency and as many as K− σ1 + 1.
For σ1 in interval (0, 1), FST is maximal when each allele is

present in only a single subpopulation, and when each subpopu-
lation has exactly J alleles with a nonzero frequency: J− 1 alleles
at frequency σ1 and one allele at frequency 1− (J − 1)σ1 ≤ σ1.
Because each subpopulation has J distinct alleles and no alleles
are shared across subpopulations, this upper bound requires
that the locus has KJ alleles of nonzero frequency.

For non-integer σ1 in (1, K), FST reaches its maximum when
there are bσ1c subpopulations in which the most frequent allele
has frequency 1, a single subpopulation in which it has frequency
{σ1} and a private allele has frequency 1−{σ1}, and K− bσ1c −
1 subpopulations each with a different private allele at frequency
1. Only the most frequent allele is shared across subpopulations,
and a single subpopulation displays polymorphism. At the
maximum, K− bσ1c+ 1 alleles have nonzero frequency.
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(a) (b) (c) (d) (e)K=2 K=3 K=6 K=40 K=100

Figure 1 Bounds on FST as a function of the frequency of the most frequent allele, M, for a multiallelic locus, for each of several
different numbers of subpopulations K. (a) K = 2. (b) K = 3. (c) K = 6. (d) K = 40. (e) K = 100. The gray region represents
the space between the upper and lower bounds on FST . The dashed line represents the curve that the jagged maximal FST touches
when M < 1

K , computed from eq. 4. The upper bound is computed from eq. 3; for each K, the lower bound is 0 for all values of M.

(c) Properties of the upper bound
Figure 1 shows the maximal value of FST in terms of M = σ1/K
for various values of the number of subpopulations, K. We
describe a number of properties of this upper bound.

Piecewise structure of the upper bound. First, we observe that the
upper bound has a piecewise structure.

For M < 1
K , the upper bound depends on J = dσ−1

1 e =

d 1
KM e. As KM increases in (0, 1), each decrement in the inte-

ger value of d 1
KM e produces a distinct “piece” with domain

[ 1
Kj , 1

K(j−1) ), for integers j ≥ 2. Within each interval [ 1
Kj , 1

K(j−1) ),
J has the constant value j.

At M = 1
K , the upper bound has its first transition between

cases. For M > 1
K , the upper bound depends on bσ1c = bKMc.

As KM increases in [1, K), each increment in bKMc also pro-
duces a distinct piece of the domain. For each k from 1 to K− 1,
bKMc = k for M in [ k

K , k+1
K ).

Counting the intervals of the domain, we see that an infinite
number of distinct intervals occur for M in (0, 1

K ), and K − 1
intervals occur for M in ( 1

K , 1). Within intervals, the function
describing the upper bound is smooth.

Behavior of the upper bound for M = 1
K , 2

K , . . . K−1
K . The upper

bound is equal to 1 at M = 1
K , 2

K , . . . K−1
K . For M in (0, 1

K ), setting
the numerator and denominator equal in eq. 3, we find that the
upper bound is never equal to 1. For M in ( 1

K , 1), the upper
bound is equal to 1 if and only if {σ1} = 0, that is, if and only if
σ1 is an integer and M = k

K for k = 2, 3, . . . , K− 1.
Hence, noting that the upper bound is equal to 1 at M = 1

K ,
we conclude that the upper bound can equal 1 if and only if M =
k
K for integers k = 1, 2, . . . , K− 1. For fixed K, the upper bound
on FST has exactly K − 1 maxima at which FST can equal 1, at
M = 1

K , 2
K , . . . , K−1

K . We can conclude that FST is unconstrained
within the unit interval only for a finite set of values of the
frequency M of the most frequent allele. The size of this set
increases with the number of subpopulations K.

Behavior of the upper bound for M in (0, 1
K ) .

For M in (0, 1
K ), we can compute the value of the upper

bound at the transition points between distinct pieces of the
domain, namely values of 1

Kj for integers j ≥ 2. Applying eq. 3,

we observe that at M = 1
Kj , the upper bound has value K−1

Kj−1 . In

other words, the upper bound touches the curve

q∗(M) =
(K− 1)M

1−M
. (4)

This curve is represented in Fig. 1 as a dashed line.
Note that for K = 2, the special case considered by JAKOB-

SSON et al. [12], eq. 4 reduces to q∗(M) = M/(1 − M) =
σ1/(2− σ1), which matches eq. 21 from JAKOBSSON et al. [12].
In fact, setting K = 2, eq. 3 for M in (0, 1

K ) reduces to the K = 2
upper bound on FST in eq. 9 of [12].

Behavior of the upper bound for M in ( 1
K , 1). Because the up-

per bound is a smooth function on each interval of its do-
main, and because it possesses maxima at interval boundaries
M = 1

K , 2
K , . . . , K−1

K , it must possess local minima in intervals
[ k

K , k+1
K ) for k = 1, 2, . . . , K− 2. Indeed, such minima are visible

in Figure 1 in cases with K = 3, K = 6, K = 40, and K = 100; for
K = 2, only one maximum occurs, so that there is no interval
between a pair of maxima in which a minimum can occur. Note
that because we restrict attention to M in (0, 1), we do not count
the point at M = 1 and FST = 0 as a local minimum.

4. Joint distribution of M and FST under an evolu-
tionary model

So far, we have described the mathematical constraint imposed
on FST by M without respect to the frequency with which par-
ticular values of M arise in evolutionary scenarios. As an as-
sessment of the bounds in evolutionary models can illuminate
the settings in which they are most salient in population-genetic
data analysis [9, 14, 17, 18, 19, 20], we simulated the joint distri-
bution of FST and M under an island migration model, relating
the distribution to the mathematical bounds on FST . This analy-
sis considers allele frequency distributions, and hence values of
M and FST , generated by evolutionary models. The simulation
approach is modified from [14, 15].

(a) Simulations
We simulated alleles under a coalescent model, using the soft-
ware MS [21]. We considered a total population of KN diploid
individuals subdivided into K subpopulations of size N. At
each generation, a proportion m of the individuals in a subpop-
ulation originated outside the subpopulation. Thus, the scaled
migration rate is 4Nm, and it corresponds to twice the number of
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Figure 2 Joint density of the frequency M of the most
frequent allele and FST in the island migration model
with K = 2 subpopulations, for different scaled migra-
tion rates 4Nm and mutation rates 4Nµ. (a) 4Nµ = 0.1,
4Nm = 0.1. (b) 4Nµ = 1, 4Nm = 0.1. (c) 4Nµ = 10,
4Nm = 0.1. (d) 4Nµ = 0.1, 4Nm = 1. (e) 4Nµ = 1,
4Nm = 1. (f) 4Nµ = 10, 4Nm = 1. (g) 4Nµ = 0.1,
4Nm = 10. (h) 4Nµ = 1, 4Nm = 10. (i) 4Nµ = 10,
4Nm = 10. The black solid line represents the upper
bound on FST in terms of M (eq. 3); the black point
plots the mean values of M and FST . Colors represent
the density of loci, estimated using a Gaussian ker-
nel density estimate with a bandwidth of 0.02, with
density set to 0 outside of the bounds. Loci are simu-
lated using coalescent software MS, assuming an island
model of migration and an infinitely-many-alleles mu-
tation model. Each panel considers 1,000 replicate sim-
ulations, with 100 lineages sampled per subpopulation.
Figures S1 and S2 present similar results for K = 6 and
K = 40 subpopulations, respectively.

individuals in a subpopulation that originate elsewhere. We con-
sidered the island model [22, 23, 24], in which migrants have the
same probability m

K−1 to come from any specific other subpop-
ulation. We used an infinitely-many-alleles model; mutations
occur at rate µ, and the scaled mutation rate is 4Nµ.

We examined three values of K (2, 6, 40), three values of 4Nµ
(0.1, 1, 10), and three values of 4Nm (0.1, 1, 10). Note that in MS,
time is scaled in units of 4N generations, and there is no need
to specify subpopulation sizes N. MS simulates an infinitely-
many-sites model, where each mutation occurs at a new site;
each haplotype is a new allele, so that each mutation creates a
new allele. For our analysis, we are concerned only with the
allelic categories, and not with the simulated sequences; thus,
although the simulation follows the infinitely-many-sites model,
the analysis treats simulated data sets as having been generated
under an infinitely-many-alleles model.

For each parameter triplet (K, 4Nµ, 4Nm), we performed
1,000 replicate simulations, sampling 100 sequences per sub-
population in each replicate. We computed FST values from the
parametric allele (haplotype) frequencies. MS commands appear
in File S1; note that the simulation approach here uses the stan-
dard method of simulating MS with a specified mutation rate
θ = 4Nµ, whereas in our previous analyses of biallelic cases
[14, 15], we had employed the alternative approach of requiring
simulated datasets to possess exactly one segregating site.

Figure 2 shows the joint distribution of M and FST for the
nine values of (4Nµ, 4Nm) in the case of K = 2. Figures S1 and
S2 provide similar figures for K = 6 and K = 40, respectively.

(b) Impact of the mutation rate
For fixed migration rate 4Nm and number of subpopulations
K, the main impact of the mutation rate is on the frequency M
of the most frequent allele. For K = 2, under weak mutation
(4Nµ = 0.1), the joint distribution of M and FST is highest in the
high-M region, for all values of 4Nm (Fig. 2A, D, G). Although
most simulation replicates produce M > 1

2 with an upper bound
on FST less than one, this set of parameter values does give rise
to replicates near the peak at (M, FST) = ( 1

2 , 1).
Under intermediate mutation (4Nµ = 1), the increased muta-

tion rate tends to decrease M, shifting the joint distribution to

lower values of M for all values of 4Nm (Fig. 2B, E, H). Finally,
under strong mutation (4Nµ = 10), the joint distribution of M
and FST is highest in the low-M region, for all values of 4Nm
(Fig. 2C, F, I). In this region, the upper bound on FST is most
strongly constrained, leading to low FST values.

(c) Impact of the migration rate
For fixed mutation rate 4Nµ and number of subpopulations K,
the impact of the migration rate is seen primarily in the FST
values rather than the values of M. Under weak migration
(4Nm = 0.1), subpopulations are differentiated, and the joint
distribution of M and FST is highest near the upper bound on
FST in terms of M (Fig. 2A, B, C).

Under intermediate migration (4Nm = 1), differentiation
between subpopulations decreases, and the joint density of M
and FST is highest at lower values of FST (Fig. 2D, E, F). Under
strong migration (4Nm = 10), the joint density of M and FST
nears the lower bound (Fig. 2G, H, I).

(d) Impact of the number of subpopulations
In Figure 1, the number of subpopulations changes the shape of
the region in which FST is permitted to range as a function of M.
Thus, in simulations, the impact of the number of subpopula-
tions K is observed in cases in which a change in K permits FST to
expand its range within the unit square for (M, FST). For each of
the nine choices of (4Nµ, 4Nm), Figure 3 summarizes the means
observed for (M, FST) in Figures 2, S1, and S2, corresponding to
K = 2, K = 6, and K = 40, respectively.

The number of subpopulations generally increases FST for
fixed 4Nµ and 4Nm. For example, the mean FST can be substan-
tially larger for K = 6 than for K = 2. Consider (4Nµ, 4Nm) =
(0.1, 0.1). For K = 2, the mean FST is near its upper bound
(Fig. 3A); for K = 6, FST is not as close to the bound (Fig. 3B).
However, because the upper bound for K = 6 exceeds that for
K = 2, the mean FST is nevertheless larger in the case of K = 6.

5. Example: humans and chimpanzees
We now use our theoretical results to examine genetic differ-
entiation in humans and chimpanzees. Because humans and
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Figure 3 Mean frequency M of the most frequent allele and mean FST in the island migration model, for different scaled migration
rates 4Nm and mutation rates 4Nµ and different numbers of subpopulations K. (a) K = 2. (b) K = 6. (c) K = 40. The black solid
line represents the upper bound on FST in terms of M (eq. 3). The colored points represent the mean M and mean FST , where colors
correspond to values of 4Nm. These points are taken from Figures 2, S1, and S2.

chimpanzees are distinct species, we might expect a genetic dif-
ferentiation measure such as FST to produce a greater value for a
computation between them than for a computation among pop-
ulations within one or the other. Indeed, studies of multiallelic
loci do find that adding chimpanzees to data on multiple human
populations increases the value of FST [8, 25]. However, we will
see that FST has a more subtle pattern when considering data
on multiple chimpanzee populations, and that our theoretical
computations explain a surprising result.

We examine data on 246 multiallelic microsatellite loci assem-
bled by PEMBERTON et al. [26] from several studies of worldwide
human populations and a study of chimpanzees [27]. We con-
sider FST comparisons both between humans and chimpanzees
and among populations of chimpanzees. For the human data,
we consider all 5795 individuals in the dataset, and for the chim-
panzee data, we consider 84 chimpanzee individuals from 6 pop-
ulations: one bonobo population, and 5 common chimpanzee
populations (Central, Eastern, Western, hybrid, and captive).

In the data analysis, we perform a computation to summarize
the relationship of FST to the upper bound. For a set of Z loci,
denote by Fz and Mz the values of FST and M at locus z. The
mean FST for the set, or F̄ST , is

F̄ST =
1
Z

Z

∑
z=1

Fz. (5)

Using eq. 3, we can compute the corresponding maximum FST
given the observed σz = KMz, z = 1, 2, . . . , Z. Denoting this
quantity by Fmax,z, we have

FST/Fmax =
1
Z

Z

∑
z=1

Fz

Fmax,z
. (6)

FST/Fmax measures the proximity of the FST values to their up-
per bounds: it ranges from 0, if FST values at all loci equal 0, to
1, if FST values at all loci equal their upper bounds.

We computed the parametric allele frequencies for each
subpopulation—the human and chimpanzee groups for the
human–chimpanzee comparison, and chimpanzee subpopula-
tions for the comparison of chimpanzees—averaging across sub-
populations to obtain the frequency M of the most frequent
allele. We then computed FST and the associated upper bound
for each locus, averaging across loci to obtain the overall F̄ST
and FST/Fmax for the full microsatellite set (eqs. 5 and 6).

Surprisingly, given the longer evolutionary time between hu-
mans and chimpanzees than among chimpanzee populations,

the FST value is significantly greater when comparing chim-
panzee populations (F̄ST = 0.16) than when comparing humans
and chimpanzees (F̄ST = 0.10; p = 4.2× 10−14, Wilcoxon rank
sum test). The explanation for this result can be found in the
properties of the upper bound on FST given M.

Values of M are similar in the two comparisons (Fig. 4A, 4B).
However, K differs, equaling 2 for the human–chimpanzee com-
parison and 6 for the comparison of chimpanzee subpopulations.
Because the theoretical range of FST is seen to be smaller for FST
values computed among smaller sets of subpopulations than
among larger sets (Fig. 1), the FST values among chimpanzees
possess a larger range. For example, the maximal FST at the
mean M of 0.27 observed in pairwise comparisons is 0.34 for
K = 2 (red segment in Figure 4A), whereas the maximal FST at
the mean M of 0.36 observed for six chimpanzee populations is
0.93 for K = 6 (Fig. 4B). Given the stronger constraint in pairwise
calculations than in calculations with more subpopulations, it
is not unexpected that pairwise FST values would be smaller
than those in a 6-region computation. A high FST among chim-
panzees compared to between humans and chimpanzees is a
byproduct of mathematical constraints on FST .

Interestingly, the effect of K on FST is largely eliminated
when each FST value is normalized by the associated maximum
given K and M (Fig. 4C). The normalization leads to higher
values for human–chimpanzee comparisons than among chim-
panzee subpopulations (FST/Fmax = 0.32 and 0.20, respectively;
p = 1.1 × 10−9, Wilcoxon rank sum test), as expected from
the greater evolutionary distance between humans and chim-
panzees compared to that among chimpanzees.

6. Discussion
We have analyzed the range of values that FST can take as a
function of the frequency M of the most frequent allele at a mul-
tiallelic locus, for an arbitrary value of the number of subpop-
ulations K. We showed that FST can span the full unit interval
only for a finite set of values of M, at M = k

K for integers k in
[1, K − 1]. For all other M, FST necessarily lies below 1. The
number of subpopulations K enlarges the range of values that
FST can take as it increases.

This study provides the most complete relationship between
FST and M obtained to date, generalizing previous results for the
case of K = 2 subpopulations [12] and for a restriction to I = 2
alleles [14]. Interestingly, the maximal FST we have obtained
merges patterns observed in these previous studies. Fixing K =
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Figure 4 FST values for comparisons involving humans and chimpanzees based on multiallelic microsatellite loci. (a) FST between
humans and chimpanzees, considering K = 2 subpopulations (humans, chimpanzees). (b) FST among K = 6 chimpanzee subpopu-
lations. In (a) and (b), colors represent the number of points in a neighborhood of radius 0.03; red points indicate the mean M and
FST , and vertical red segments indicate the permissible range of FST at the mean M. (c) FST , computed using eq. 2, and FST/Fmax,
computed using eqs. 2 and 3. Each point plotted represents one locus.

2, we obtain the upper bound on FST in terms of M that was
reported by JAKOBSSON et al. [12]. As K increases, the piecewise
pattern seen by JAKOBSSON et al. [12] for the maximal FST in the
K = 2 case for M in (0, 1

2 ) is observed in the multiallelic case for
M in (0, 1

K ). The decay from (M, FST) = ( 1
2 , 1) to (M, FST) =

(1, 0) seen by JAKOBSSON et al. [12] for K = 2 is observed for M
in the decay from (K−1

K , 1) to (1, 0) for arbitrary K.

The allele frequency values for which the upper bound is
reached for M in (0, 1

K ) generalize those seen for the case of
K = 2 and M in (0, 1

2 ) [12]. The upper bound is reached when
all alleles are private, each subpopulation has as many alleles as
possible at frequency KM, and at most one additional allele. The
allele frequency values for which the upper bound is reached
for M in (K−1

K , 1) also generalize those seen for K = 2 and M in
( 1

2 , 1): the maximum is reached when the most frequent allele
is fixed in all subpopulations except one, and a single private
allele is present in this last subpopulation.

The results from ALCALA and ROSENBERG [14] for I = 2 pro-
duce a more constrained upper bound on FST than for arbitrary
I, with the domain of M restricted to ( 1

2 , 1). Nevertheless, many
properties of the maximal FST we observe for unspecified I and
M in ( 1

K , 1) are similar to those seen for I = 2 and M in ( 1
2 , 1):

finitely many peaks at points M = k
K , local minima between

the peaks, and an increase in coverage of the unit square for
(M, FST) as K increases. The maximal FST functions for M in
(K−1

K , 1) for unspecified I and for I = 2 agree, as the number of
alleles required to maximize FST in this interval in the case of
unspecified I is simply equal to 2.

In assuming that the number of alleles is unspecified, we
found that the number of distinct alleles needed for achieving
the maximal FST is Kdσ−1

1 e for M in (0, 1
K ) and K− bσ1c+ 1 for

non-integer M in ( 1
K , 1); the maximum can be achieved with

each number of distinct alleles in [dKσ−1
1 e, K − σ1 + 1] for M

equal to 1
K , 2

K , . . . , K−1
K . With a fixed maximal number of distinct

alleles, such as in the I = 2 case of ALCALA and ROSENBERG
[14] with K specified and in the K = 2 case with I specified [13],
the upper bound on FST is less than or equal to that seen in the
corresponding unspecified-I case. For K = 2, specifying I has
a relatively small effect in reducing the maximal value of FST
[13]. As in EDGE and ROSENBERG [13], specifying I in the case
of larger values of K is expected to have the greatest impact on

the FST upper bound at the lowest end of the domain for M.
In coalescent simulations, we found that the joint distribution

of M and FST within their permissible space can help separate
the impact of mutation and migration. Although the depen-
dence of FST on mutation and migration rates has been long
documented, the symmetric effects of mutation and migration
under the island model [22] illustrate the difficulty in separat-
ing their effects. Under the island model, allele frequency M
is informative about the scaled mutation rate 4Nµ, and com-
paring the value of FST to its maximum given M is informative
about the scaled migration rate 4Nm. Adding a dimension that
is more sensitive to mutation than to migration—M in our case—
enables the separation of their effects. Other statistics, such as
total heterozygosity HT or within-subpopulation heterozygosity
HS, have the potential to play a similar role [20].

Our results can inform data analyses. In particular, we cau-
tion users to examine upper bounds on FST to assess how math-
ematical constraints influence observations. As the constraints
are strongest for K = 2, this step is valuable in pairwise compar-
isons; it is also useful when the frequency M of the most frequent
allele can be small in relation to the number of populations K,
such as for high-diversity forensic [28] and immunological [29]
loci in human populations. Visual inspection of the values of M
and FST within their bounds can suggest that constraints have an
effect. FST/Fmax can provide a helpful summary by evaluating
the proximity of FST values to their maxima.

Further, joint use of M along with FST could be useful in
various applications of FST , such as in inference of model param-
eters by approximate Bayesian computation [30] and machine-
learning [31]. FST outlier tests to detect local adaptation from
multiallelic loci [32] could search for FST values that represent
outliers not in the distribution of FST values, but rather, outliers
in relation to associated upper bounds. Computing null distri-
butions for FST conditional on M could enhance the approach.

In an example data analysis, we have shown that taking
into account mathematical constraints on FST can help under-
stand puzzling FST behavior. In our example, FST at a set of loci
was higher when comparing K = 6 chimpanzee populations
than when comparing humans and chimpanzees (K = 2), even
though the same loci were used and the mean value for M was
similar in the two comparisons. A comparison of FST values to
their respective maxima explained these counterintuitive results.

We note that analyses of FST in relation to M differ from anal-
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yses of FST in relation to within-subpopulation statistics HS and
JS = 1− HS, such as those performed in deriving the influential
Hedrick’s G′ST [9] and Jost’s D [33] statistics. We have previously
shown that for biallelic loci in K subpopulations, for fixed M,
the statistics FST , G′ST , and D are all maximized at the same set
of allele frequency values [15]. Although the normalizations of
FST used to produce G′ST and D lead to statistics that are un-
constrained in the unit interval as functions of HS, G′ST and D
continue to be constrained as functions of M. A statistic that
instead normalizes FST by its maximum as a function of M, a
statistic of the total population, captures aspects of the allele-
frequency dependence of FST that differ from those captured by
normalizations by functions of within-subpopulation statistics.

In human populations, efforts to understand FST patterns
trace in large part to Lewontin’s foundational FST-like variance-
partitioning computation [34], in which it was seen that among-
population differences (analogous to FST) were small relative to
within-population differences (analogous to 1− FST). Studies
using loci with different numbers of alleles, loci with different
frequencies for the most frequent allele, and samples with differ-
ent numbers of subpopulations have varied to some extent in
their numerical estimates of FST [14, 35, 36, 37, 38]. Mathemat-
ical results on FST bounds provide part of the explanation for
these differences: they establish that each data set differing in the
character of its loci and subpopulation set has its own distinctive
interval in which its associated FST calculation could potentially
land. Hence, each data set can give rise to a numerically distinct
value not due to features of the underlying human biology, but
rather, due to different constraints on the FST measure itself.
FST bounds contribute to explaining quantitative variation in
variance-partitioning computations—in which, although numer-
ical values differ, the within-population component of genetic
variation consistently predominates. The mathematics serves
to support the qualitative claim that worldwide human genetic
differentiation measurements represented by FST-like statistics
have low values—as was argued by Lewontin fifty years ago.
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Appendix. Proof of eq. 3
This appendix derives the upper bound on FST as a function
of σ1 (eq. 3). First, we separate the case of integer values of
σ1. Next, for non-integer values of σ1, we reduce the problem

of maximizing FST to the problem of maximizing the sum of
squared allele frequencies across alleles and subpopulations,
S = ∑∞

i=1 ∑K
k=1 p2

k,i. Next, we maximize S as a function of σ1,
separately for σ1 in (0, 1) and for non-integer σ1 in (1, K).

A useful expression for FST
Suppose K ≥ 2 is a specified integer. Suppose σ1 is a fixed value,
with 0 < σ1 < K. We leave the number of alleles I unspecified.
For each i ≥ 1, we write σi = ∑K

k=1 pk,i, with σi ≥ σj for each i
and j with i ≤ j. For convenience, σ1 is taken to mean both the
function that computes the sum ∑K

k=1 pk,1 for a specified set of
values of the pk,i and a fixed value for that sum.

For each (k, i) with 1 ≤ k ≤ K and i ≥ 1, pk,i lies in [0, 1], and
∑∞

i=1 pk,i = 1 for all k, 1 ≤ k ≤ K. Define FST as in eq. 2. We seek
to maximize FST over all possible sets of values of the pk,i with a
fixed value σ1 for the sum ∑K

k=1 pk,1. Note that because σ1 < K
and ∑K

k=1 ∑∞
i=1 pk,i = ∑∞

i=1 σi = K, it follows that σ2 > 0.
Denote the sum of squared frequencies of allele 1 across sub-

populations, ∑K
k=1 p2

k,1, by S1. Denote S = ∑∞
i=1 ∑K

k=1 p2
k,i =

∑K
k=1 ∑∞

i=1 p2
k,i for the corresponding sum of squared frequencies

of all alleles. We express eq. 2 in terms of σ1, S1, and S:

FST =

(K− 1)S + S1 − σ2
1 − 2

∞
∑

i=2

K−1
∑

k=1

K
∑

`=k+1
pk,i p`,i

K2 − S + S1 − σ2
1 − 2

∞
∑

i=2

K−1
∑

k=1

K
∑

`=k+1
pk,i p`,i

. (A.1)

By construction of eq. 2, the denominator of eq. A.1 lies in (0, K2),
as 0 < HT < 1 from the fact that σ2 > 0. The numerator lies in
[0, K2), as 0 ≤ HS ≤ HT < 1, so that 0 ≤ HT − HS < 1. FST lies
in [0, 1], as 0 ≤ HS and 0 < HT imply 0 ≤ (HT − HS)/HT ≤ 1.

The case of integer values of σ1
In eq. A.1, the numerator is less than or equal to the denominator,
with equality if and only if K = S = ∑K

k=1 ∑∞
i=1 p2

k,i. This equality
in turn requires that for each k, there exists some i for which
pk,i = 1, a condition that can be achieved only if σ1 is an integer.

Theorem 1. Suppose σ1 is an integer value, 1, 2, . . . , K− 1. FST = 1
if and only if (i) pk,1 = 1 in each of σ1 subpopulations, and (ii) for
each of the K− σ1 remaining subpopulations, there exists a value of
i ≥ 2 with pk,i = 1.

Proof. FST = 1 if and only if S = K, and S = K if and only if
for each k, there exists an associated i with pk,i = 1. For a fixed
integer value of σ1, pk,1 = 1 in exactly σ1 subpopulations.

Note that any set of equivalence relationships can exist
among the values of i associated with the K − σ1 subpopula-
tions in which pk,1 = 0, provided that none of these values of i
is associated with more than σ1 subpopulations. For example,
these values of i can be mutually distinct, or groups of them
with size as large as σ1 can be mutually equal.

Non-integer values of σ1
For non-integer σ1, the numerator of eq. A.1 is strictly
less than the denominator. Hence, if the other quantities
in eq. A.1 are fixed, then FST decreases with increasing
2 ∑∞

i=2 ∑K−1
k=1 ∑K

`=k+1 pk,i p`,i. We have the following theorem.
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Theorem 2. Suppose σ1 is not an integer. FST satisfies

FST ≤
(K− 1)S + S1 − σ2

1
K2 − S + S1 − σ2

1
, (A.2)

equality requiring that for each i ≥ 2, there exists at most one value of
k for which pk,i > 0.

Proof. Because 2 ∑∞
i=2 ∑K−1

k=1 ∑K
`=k+1 pk,i p`,i is subtracted in both

the numerator and the denominator of eq. A.1, and because the
numerator is strictly less than the denominator for non-integer
σ1, FST can be bounded above by minimizing this term. Because
pk,i ≥ 0 for all (k, i), each sum ∑K−1

k=1 ∑K
`=k+1 pk,i p`,i is bounded

below by zero. Setting the sum to 0 for all i ≥ 2 gives the upper
bound in eq. A.2.

For the equality condition, ∑∞
i=2 ∑K−1

k=1 ∑K
`=k+1 pk,i p`,i = 0 if

and only if all products pk,i p`,i are zero—that is, if and only if
for each i ≥ 2, at most one value of k has pk,i > 0.

By Theorem 2, to maximize FST for fixed non-integer σ1, we
must maximize the quantity in eq. A.2. It suffices to consider
sets of values of pk,i in which for each i ≥ 2, at most one value
of k has pk,i > 0.

The case of (non-integer) σ1 in (0, 1)
In this section, we find the set of values of the pk,i that maximize
FST for σ1 in (0, 1). We proceed in two steps. (i) We show that
for σ1 in (0, 1), the maximal FST occurs at a set of pk,i values for
which all alleles are private: that is, for each i ≥ 1, pk,i > 0 for at
most one value of k. (ii) We determine the set of pk,i values that,
with all alleles private, maximizes FST .

(i) In eq. A.2, note that σ2
1 − S1 = 2 ∑K−1

k=1 ∑K
`=k+1 pk,1 p`,1.

Because σ2
1 − S1 is subtracted from both numerator and denomi-

nator in eq. A.2, the quantity in eq. A.2 is maximal when σ2
1 − S1

is minimal. In other words, the upper bound on FST is maximal
if and only if 2 ∑K−1

k=1 ∑K
`=k+1 pk,1 p`,1 is minimal.

Because σ1 < 1, a minimum of 0 for 2 ∑K−1
k=1 ∑K

`=k+1 pk,1 p`,1
is achieved if and only if there is a single value k = k′ at which
pk′ ,1 = σ1, so that pk,1 = 0 for all k 6= k′. We then have σ2

1 = S1,
and from eq. A.2,

FST ≤
(K− 1)S
K2 − S

. (A.3)

Each allele is private, and because allele 1 is the most frequent,
pk,i lies in [0, σ1] for all (k, i).

(ii) The problem of finding the set of pk,i values that maxi-
mizes FST has now been reduced to the problem of maximizing
the right-hand side of eq. A.3, with the constraint that all al-
leles are private. Because the numerator in eq. A.3 increases
with S and the denominator decreases with S, the maximum
is achieved if and only if S achieves its maximal value. In
other words, we seek to maximize S = ∑K

k=1 ∑∞
i=1 p2

k,i, with
the constraints ∑∞

i=1 pk,i = 1 and pk,i ≤ σ1 for each (k, i) with
1 ≤ k ≤ K and i ≥ 1. Because each allele is private, the maxi-
mum is achieved by separately maximizing each ∑∞

i=1 p2
k,i with

constraints ∑∞
i=1 pk,i = 1 and pk,i ≤ σ1.

This maximization is precisely that of Lemma 3 of ROSEN-
BERG and JAKOBSSON [39]. Applying the lemma, the max-
imum is achieved with pk,1 = pk,2 = . . . = pk,J−1 = σ1,
pk,J = 1− (J − 1)σ1, and pk,i = 0 for i > J, where J = dσ−1

1 e. It
satisfies ∑∞

i=1 p2
k,i ≤ 1− σ1(J − 1)(2− Jσ1). In other words, each

subpopulation k possesses J − 1 private alleles with frequency

σ1 and one private allele with frequency 1− (J − 1)σ1. Hence,
S ≤ K[1− σ1(J − 1)(2− Jσ1)], so that eq. A.3 leads to eq. 3 for
σ1 in (0, 1).

The case of non-integer σ1 in (1, K)
This section finds the set of values of the pk,i that maximizes FST
for non-integer σ1 in (1, K). For non-integer σ1 = ∑K

k=1 pk,1 in
(1, K), because 0 ≤ pk,1 ≤ 1 for all k, pk,1 > 0 for at least two
values of k. Writing S∗ = S− S1, Eq. A.2 can be rewritten

FST ≤
KS1 + (K− 1)S∗ − σ2

1
K2 − S∗ − σ2

1
. (A.4)

Because the numerator increases with S1, and because the nu-
merator increases with S∗ and the denominator decreases with
S∗, the upper bound on FST is greatest when both S1 and S∗ are
maximized subject to ∑∞

i=1 pk,i = 1 for each k and ∑K
k=1 pk,i ≤ σ1

for each i. If S1 and S∗ can be simultaneously maximized at the
same set of values of the pk,i, then this set of values of the pk,i
achieves the maximal FST .

We proceed in three steps. (i) First, we find the set of values
of the pk,i that maximizes S1. (ii) Next, we find the set of values
that maximizes S∗. (iii) We then conclude that because the same
set maximizes both S1 and S∗ separately, this set achieves the
upper bound in eq. A.4, and hence in eq. A.2.

(i) We first maximize S1 for fixed non-integer σ1 in (1, K).
More precisely, we seek to maximize S1 = ∑K

k=1 p2
k,1 with con-

straints ∑K
k=1 pk,1 = σ1 and pk,1 ≤ 1 for each k from 1 to K.

This maximization is precisely that performed in Theorem 1
from ALCALA and ROSENBERG [14], a corollary of Lemma 3 of
ROSENBERG and JAKOBSSON [39]. Applying the theorem, the
maximum is achieved by setting p1,1 = p2,1 = . . . = pbσ1c,1 = 1,
pbσ1c+1,1 = {σ1}, and pk,1 = 0 for all k > bσ1c+ 1. The maximal
value of S1 is {σ1}2 + bσ1c.

(ii) Next, we maximize S∗ = ∑∞
i=2 ∑K

k=1 p2
k,i. Because, by

Theorem 2, all alleles with i ≥ 2 are private at the set of val-
ues of the pk,i that maximizes FST for fixed non-integer σ1, each
nonzero pk,i for i ≥ 2 is equal to the associated σi. The sum
of the frequencies of all alleles across all subpopulations is
∑∞

i=1 σi = K, so that ∑∞
i=2 σi = K − σ1. The problem of max-

imizing S∗ is the problem of maximizing S∗ = ∑∞
i=2 σ2

i with
the constraints ∑∞

i=2 σi = K − σ1 and σi ≤ 1 for each i from 2
to ∞. This maximization is again that performed in Lemma 3
of ROSENBERG and JAKOBSSON [39]. Applying the lemma, the
maximum is achieved by setting σ2 = σ3 = . . . = σK−bσ1c = 1,
σK−bσ1c+1 = 1− {σ1}, and σi = 0 for i > K − bσ1c + 1. The
maximum is (1− {σ1})2 + (K− bσ1c − 1).

(iii) S1 is maximized at a set of pk,i for which bσ1c subpopu-
lations are fixed for allele 1, allele 1 has frequency {σ1} in one
subpopulation, and allele 1 has frequency 0 in all other subpop-
ulations. S∗ is maximized at a set of pk,i for which K− bσ1c − 1
subpopulations are fixed, each for a distinct allele i with i ≥ 2,
one subpopulation possesses a distinct allele i ≥ 2 with fre-
quency 1− {σ1}, and all bσ1c other subpopulations possess no
alleles i ≥ 2 of nonzero frequency.

The upper bound in eq. A.4 depends on both S1 and S∗, each
of which depends on the pk,i. Were the set of values of the pk,i
that maximizes S1 and the set of values of the pk,i that maxi-
mizes S∗ to differ, additional work would be required to find the
set of values of the pk,i that maximizes FST . However, we now
observe that S1 and S∗ can be simultaneously maximized at the
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same set of values of pk,i, so that the same set of values of the pk,i
maximizes S1 and S∗ and hence FST . In particular, bσ1c subpopu-
lations are fixed for allele 1, each of K− bσ1c − 1 subpopulations
is fixed for its own private allele, and a single subpopulation
possesses allele 1 with frequency {σ1} and a private allele with
frequency 1− {σ1}. The number of alleles of nonzero frequency
is K− bσ1c+ 1. Only the most frequent allele is shared by more
than one subpopulation, and a single subpopulation possesses
more than one allele of nonzero frequency.

Substituting the maximal values of S1 and S∗ into eq. A.4, for
non-integer σ1 in (1, K), we obtain the maximal FST in terms of
σ1 shown in eq. 3.
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Figure S1 Joint density of the frequency M of the most
frequent allele and FST in the island migration model
with K = 6 subpopulations, for different scaled migra-
tion rates 4Nm and mutation rates 4Nµ. The simula-
tion procedure and figure design follow Figure 2.
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Figure S2 Joint density of the frequency M of the most
frequent allele and FST in the island migration model
with K = 40 subpopulations, for different scaled mi-
gration rates 4Nm and mutation rates 4Nµ. The simula-
tion procedure and figure design follow Figure 2.



Supplementary File S1: MS commands
We applied MS, specifying the scaled mutation and migration parameters. We performed the simulations for K = 2, K = 6, and K = 40
subpopulations. For each command, we replace x by the desired 4Nµ value and y by the desired 4Nm value.

K = 2

./ms 200 1000 -t x -I 2 100 100 y

K = 6

./ms 600 1000 -t x -I 6 100 100 100 100 100 100 y

K = 40

./ms 4000 1000 -t x -I 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 y
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