10

11

12
13

Extracting hierarchical features of cultural variation using network-based

clustering

Xiran Liu,' Noah A. Rosenberg,>*t Gili Greenbaum™*+

1. Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California,
USA

2. Department of Biology, Stanford University, Stanford, California, USA

3. Department of Ecology, Evolution and Behavior, Hebrew University of Jerusalem, Jerusalem, Israel

1 Joint senior authors

* Corresponding author. Email: noahr@stanford.edu; gil.g@mail.huji.ac.il

Key words: cultural evolution, hierarchical clustering, network


mailto:noahr@stanford.edu
mailto:gil.g@mail.huji.ac.il

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

Abstract

High-dimensional data sets on cultural characters contribute to uncovering insights about factors that
influence cultural evolution. Because cultural variation in part reflects descent processes with a
hierarchical structure—including descent of populations and vertical transmission of cultural traits—
methods designed for hierarchically structured data have potential to find applications in the analysis of
cultural variation. We adapt a network-based hierarchical clustering method for use in analyzing cultural
variation. Given a set of entities, the method constructs a similarity network, hierarchically depicting
community structure among them. We illustrate the approach using four data sets: pronunciation variation
in the United States mid-Atlantic region, folklore variation in worldwide cultures, phonemic variation
across worldwide languages, and temporal variation in first names in the United States. In these examples,
the method provides insights into processes that affect cultural variation, uncovering geographic and other

influences on observed patterns and cultural characters important in contributing to them.

Social media summary: Network-based clustering reveals structure in cultural variation in pronunciation,

folklore, phonemes, and first names
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Introduction

In recent years, increasingly available large-scale data sets on aspects of variation across human cultures
and within cultures over time have provided rich information about fine-scale details of human cultural
variation and the factors that influence its dynamics (Mesoudi, 2016; Kolodny et al., 2018). For example,
investigations of variation in folktales among cultures have identified interactions of cultural diffusion
and demic diffusion in the spread of folklore and mythology (Bortolini et al., 2017; Thuillard et al.,
2018). A study of design features of traditional canoes across Polynesian societies has suggested a faster
rate of cultural change in canoe traits that were less significant to functional performance of the
watercraft, in line with the faster evolution that occurs for non-functional rather than functional genetic
variants (Rogers & Ehrlich, 2008). Studies of variation in the presence and absence of linguistic
characters across languages have uncovered influences of ancient migrations on patterns of language

variation observed today (Atkinson, 2011; Creanza et al., 2015).

The analysis of complex data to reveal features of cultural variation makes use of a variety of statistical
methods designed for high-dimensional data analysis more generally. Such methods include analyses of
distance matrices based on cultural traits of interest (Rogers & Ehrlich, 2008; Creanza et al., 2015;
Bortolini et al., 2017; Thuillard et al., 2018), multivariate analysis techniques such as principal
components analysis (Creanza et al., 2015), correlations involving spatial statistics and geographic maps
(Atkinson, 2011; Creanza et al., 2015; Bortolini ef al., 2017), and hierarchical tree-based clustering

(Creanza et al., 2015; Thuillard et al., 2018).

Viewed in relation to their underlying generative processes, different forms of cultural variation often
possess shared features (Cavalli-Sforza & Feldman, 1981; Boyd & Richerson, 1985). Different cultural
entities might possess a shared variant, as a result of processes such as the independent origin of
functionally significant variants, random recurrence of nonfunctional variants, or cultural exchange.

Salient among the forces contributing to patterns of cultural variation is shared descent, so that even if
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independent origins and cultural exchange are important in specific settings, hierarchical or geographic

structure can often contribute to features of cultural variation.

Owing to the importance of shared descent in influencing cultural variation, tools for analyzing cultural
variation data can employ methods suited to analysis of genetic data, which also possess signatures of
shared descent; thus, many statistical methods used in cultural data analysis are similar to those used for
genetic data (Bromham, 2017; Gray et al., 2010; Pagel, 2009). Recently, we have introduced a method,
NetStruct, for use in understanding genetic variation data that result from hierarchical genetic structure
(Greenbaum et al., 2016, 2019). The method, employing ideas from network analysis, produces a
distinctive form of visualization of hierarchical population relationships. It has been seen to detect subtle

patterns that have been overlooked using earlier forms of data analysis.

The NetStruct method consists of three main steps: construction of similarity matrices between entities,
community detection in similarity matrices, and hierarchical visualization of communities. The method is
general beyond genetic data, as the form of the data contributes only to the choice of similarity function.
It can thus be modified for use with other types of data that result from distinct but related generative

processes, including data on cultural variation.

Here, we adapt the NetStruct method for use in the study of cultural evolution. We examine a variety of
data sets on different forms of cultural variation, considering geographic variation in English
pronunciation, variation across cultures in folklore, phonemic variation across languages, and temporal
variation in frequencies of first names. Using each of the four forms of cultural data, we illustrate the
potential of the method as an exploratory tool to reveal features of geographic and temporal structure in
cultural phenomena and to extract patterns that can inspire hypotheses about underlying mechanisms.
Each example additionally highlights a different aspect of the hierarchical analysis: analyses at different
levels of detail in the hierarchy, identification of characters that are important in driving the partitioning,
analysis of outliers, and the relationship of the hierarchy to features of entities beyond those used in its

construction.
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Results

Generalizing the NetStruct pipeline

In the first step of the NetStruct method, for a set of entities, each having a value for each of a series of
characters, we construct an n xm data matrix 4 with n rows corresponding to entities and m columns
corresponding to characters. Entry 4;; gives the value of character j for entity 7; this value can be either

categorical or quantitative, depending on the type of character.

The similarity between two entities 7 and 72, denoted s;, ;,, is computed by a function applied to rows i;
and i;. We normalize pairwise similarities so that they take on values in [0,1]. The resulting n xn
similarity matrix S then becomes the adjacency matrix of a similarity network. The similarity function is

chosen based on a particular application of interest.

In a network, community structure exists when high concentrations of edges occur within certain groups
of nodes in the network and low concentrations occur between these groups (Girvan & Newman, 2002).
In the second step of NetStruct, we iteratively remove edges with lower weights from the network to
reveal the finer-scale structure within coarser communities. NetStruct uses a community-detection
Louvain algorithm (Blondel et al., 2008) together with an iterative edge-pruning method (Greenbaum et
al., 2019). The Louvain algorithm maximizes a “modularity score” for each community, quantifying the
difference between the actual density of edges within the community and the expected density if all edges
in the network were distributed at random while preserving the degree distribution of the network. The
Louvain algorithm starts by assigning each node to its own community, sequentially merging nodes into
communities in a manner that produces the greatest modularity increase—until no further increase occurs.
NetStruct iteratively removes edges below a weight threshold of increasing value and applies community-
detection in each subdivided community at each iteration, generating hierarchical structure at multiple

levels.
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Finally, in the last step, the communities detected at each iteration are assembled to form the output
hierarchy, which can be visualized as a hierarchical tree coded by a coloring scheme. Because clustering
is hierarchical, each entity can belong to multiple communities, or clusters, at different hierarchical levels;

that is, each cluster can have finer-scale “child” clusters.

NetStruct visualizes community structure using a diagram that depicts hierarchical relationships among
clusters. Each cluster is assigned an interval representation of a color gradient; the root node is assigned
the unit interval. Child clusters are assigned equal portions of the interval associated with their parental
node. Clusters are colored by the midpoint of the associated interval, such that at each hierarchical level,
child clusters of the same parent have colors that are more similar than are those of different parents. The
color scheme facilitates interpretation, as the original entities can be labeled by the finest-scale cluster to

which they are assigned in the diagram.

To generalize use of NetStruct beyond genetic data, we require a function that describes similarity
between pairs of entities of interest. Many similarity measures are possible, and NetStruct is applied to the
similarity matrix after it has been constructed. For a given data set of interest, the similarity function is
chosen in a manner suited to the application. We follow Greenbaum et a/l. (2016, 2019) in choosing

frequency-weighted similarity measures that emphasize shared rare values of a character.

Variation in pronunciation across locations

For our first example, we examined data on individual variation in pronunciation. Local variation in
communication variants has potential to provide insight into cultural transmission and spatial patterns of
distinctiveness and interaction in a population (Nerbonne & Kleiweg, 2003; Rendell & Whitehead, 2005;
Aplin, 2019). To understand the relationship between geography and individual-level pronunciation of a
shared human language, we applied NetStruct to data on English pronunciation variation in the middle

and south Atlantic region of the United States.
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LAMSAS pronunciation data

We obtained pronunciation variation data from the Linguistic Atlas of the Middle and South Atlantic
States (LAMSAS) (Kretzschmar Jr. ef al., 1993). These data consist of dialect records on pronunciations
of everyday words collected in 1933-1942 from eleven states: Delaware, Maryland, New Jersey, New
York, North Carolina, Pennsylvania, South Carolina, Virginia, and West Virginia, with some records

from eastern Georgia and northeastern Florida included as well.

We restricted our analysis to n=839 informants interviewed by the major field worker (Nerbonne &
Kretzschmar, 2003) and m=69 words recorded for most informants. We constructed the n xn similarity
matrix based on phonetic transcriptions of pronunciations of the m words. The similarity is greater when
informants share many pronunciations, and when they share rare pronunciations (Methods). We then

applied NetStruct to infer hierarchical structure.

Hierarchical structure of pronunciation variation: levels of detail

Fig. 1 presents the hierarchical structure of pronunciation variation in the LAMSAS data. In Fig. 1A, we
color informants on the map by their finest-scale clusters in the tree diagram. In the NetStruct color
scheme, informants with more similar colors appear closer in the tree diagram, and those with distinct
colors are placed in different branches at relatively high levels in the hierarchy. For example, in Fig. 1A,
distant colors purple and yellow belong to different major branches of the hierarchy; informants colored
purple are mostly in the northern part of the Atlantic region, and those colored yellow are mostly in the

southern part.

To examine the two major clusters at a finer level of detail, we reapply the coloring, for each cluster
assigning the root node the color corresponding to the midpoint in the unit interval (Fig. 1, B and C).
Within each of the two clusters, finer levels of the hierarchy group together informants who are
geographically closer. In the cluster that contains most of the individuals from the more northerly regions
(Fig. 1B), pronunciation distinctions can be observed in groups corresponding largely to New York and to

West Virginia. In the cluster that contains most of the more southerly individuals (Fig. 1B), a distinction



149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

is noticeable between finer clusters corresponding to North Carolina and to Virginia, with some

individuals in both states placed in small clusters.

We repeat the process to examine Fig. 1C in even finer detail. This analysis, in Fig. 1D and Fig. 1E,
illustrates that at lower levels of the hierarchy, clusters are not always associated with geographical
features. However, we observe that year of birth is strongly associated with cluster assignment at this
local geographic scale (Fig. 1, D and E). In other words, in some tree branches, clusters within a branch

correspond to age structure, rather than to geography.

This analysis highlights that our clustering extracts one set of features from pronunciation variation at
high hierarchical levels—geographical variation in informants—and at lower hierarchical levels, it
captures other features, such as age structure. The analysis of multiple hierarchical levels assists in the

interpretation of the patterns both at the broadest scale as well as at fine-scale levels.

Variation in folklore motifs across cultures

In the study of folklore and mythology, recurring plot patterns, or “motifs,” occur across cultures. Motif
variation can provide insight into cross-cultural patterns, including migrations and cultural transmission in
relation to ethnolinguistic barriers (Berezkin, 2010; Bortolini et al., 2017; Korotayev et al., 2017;
Thuillard et al., 2018). Here we used folklore motifs to analyze cultural variation, identifying motifs

important in constructing the proposed hierarchical relationships.

Database of folklore

We examined data on presence and absence of folklore motifs in individual cultures. Using folklore data
from around the world, Berezkin et al. (Berezkin et al., 2009; Korotayev et al., 2017) tabulated recurring
motifs prominent in links between folklore traditions, defining a motif to be “any image, compositional
structure, episode or chain of episodes found in more than one text.” Berezkin ef al. reported a list of

cultures for each motif.
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We focused our analysis on the #=65 regions in the Berezkin et al. database and the m=2459 motifs
appearing in at least two of these regions. We computed similarities between pairs of regions based on

numbers of shared motifs, negatively weighted by motif frequency (Methods).

Hierarchical structure of folklore variation: important characters

Fig. 2A presents the hierarchical structure of motif variation extracted using the pairwise similarities
calculated based on all motifs. The geographic regions are mostly clustered into three large areas: Eurasia
and Africa (purple), North America (blue), and South America (orange), with varied placement of

populations from Australia and Oceania.

To identify which motifs are most important for extracting the hierarchical features, we adopt the
normalized mutual information (NMI) approach to compare hierarchies constructed using different sets of
motifs (Greenbaum et al., 2019). For a pair of hierarchical clusterings, the NMI measure ranges from 0 to
1, quantifying the information obtained about one clustering by observing another. The NMI measure is
high when two clustering hierarchies describe similar clustering structures (Methods). The NMI approach
is flexible in that it enables comparisons between subsets of the hierarchical structure, for example by

comparing only the leaves of the hierarchy.

We sampled 100 random subsets of 20, 50, 100, and 500 motifs, for each subset applying NetStruct to
extract a hierarchy from the similarity network based on the sampled motifs. We then computed the NMI
between the hierarchy of the sampled motifs and the hierarchy for all motifs, both for the full tree and for
only the leaf clusters. In both NMI analyses, as the number of motifs in the subset increases, the mean of
the NMI distribution increases (Fig. 2, B and D). The hierarchy produced by a larger subset of motifs is

more informative than those generated with fewer motifs.

Different motifs can be more informative or less informative regarding the hierarchical structure of the
data. For example, a motif found in all regions, or one not correlated with the main cultural patterns, will
not be informative about the clustering. To identify the most informative motifs, we sampled 5,000

subsets of 20 motifs with replacement, counting occurrences of motifs in the 200 subsets possessing the
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highest NMI with the full tree and those possessing the highest NMI for leaf clusters. With random

sampling, the expected number of occurrences of each motif in the top 200 subsets is 20/m*200~1.6.

The five most informative motifs for the full hierarchical structure appear in Fig. 2C. The motif most
frequently found in high-NMI subsets is ‘trickster is a feline,” appearing in 16 of 200 subsets (P=1.5 <10
1 "binomial test). This motif is common in Central and South America. ‘To sort grain” has 11 occurrences
(P=9.8%107), and the next three most informative motifs have eight occurrences each (P=2.7x10*) and
are also associated with large geographic regions (Fig. 2C). Some informative motifs correspond to
natural or cultural phenomena restricted by geography, such as the practice of agriculture and the habitat

ranges of animals.

The three most informative motifs for the fine-scale cultural structure represented by the leaves of the
hierarchy are shown in Fig. 2E. Each appears eight times, above the number expected from random
sampling (P=2.7x10*). Two of these, ‘a drop of blood” and ‘the packed kingdom” have restricted
geographic ranges. This result suggests that motifs of local folklore contribute to fine-scale features of the

hierarchy.

In addition to visualizing hierarchical patterns of variation in folklore in relation to geography, this
analysis demonstrates the use of NetStruct to identify characters—folklore motifs in this case—that play
an important role in driving the hierarchical structure. The analysis of many subsets of characters, and the
identification of those that appear in subsets that give rise to high NMI with the full-data analysis,

uncovers those that contribute most to hierarchical clustering patterns.

Variation in phonemes across languages

A salient feature of linguistic variation is phonemic variation: variation in the sounds present within
languages. Phonemic variation can be used to study inter-language relationships and population
migrations (Atkinson, 2011; Creanza ef al., 2015; Fort & Pérez-Losada, 2016; Pérez-Losada & Fort,

2018), and for our next example, we analyzed hierarchical structure in worldwide phonemic variation.

10
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Ruhlen phoneme database

Creanza et al. (2015) analyzed two databases that have been assembled on phonemes across large
numbers of languages. We applied NetStruct on one of these, the Ruhlen database, as studied by Creanza
et al. (2015) to explore phoneme-based hierarchical structure across languages. This database contains

presence/absence information for 728 phonemes, organized by language classification and geography.

In our analysis, we included all ~=2082 languages and m=454 phonemes that exist in more than one
language. We then constructed the hierarchy based on the pairwise frequency-weighted phoneme-sharing

similarities calculated from the n xm data matrix (Methods).

Hierarchical structure of phonemic variation: outlier entities
The hierarchy extracted from phonemic variation clusters languages in accord with geography on a broad
scale (Fig. 3A). In Fig. 3B, major clusters tend to be localized within continents, in many places co-

occurring with other such clusters.

Fig. 3, panels C-E, highlights patterns in local regions. In northeast Siberia (Fig. 3D), four of five
languages of the Chukotko-Kamchatkan language family—Alyutor, Chukchi, Kerek, and Koryak—
cluster in one branch (purple to yellow colors), whereas the Kamchadal language is alone in another
(green). Indeed, the first four languages and Kamchadal are assigned to different branches in the family,

Chukotian and Itelmen, and the unity of the family has been uncertain (Fortescue, 2005).

In East Africa (Fig. 3E), three languages shown in a distinct color from their surrounding languages—
Dahalo, Hadza, and Sandawe—are the only three languages in the region that are click languages, a
phonemic group of languages for which clicks function as normal consonants (Westphal, 1971).
Similarly, in Northeast Asia (Fig. 3C), Korean, a language isolate, is clustered into a branch distinct from

other neighboring languages.

This analysis, like the analyses of pronunciation and folklore motifs, illustrates the use of the NetStruct

framework to identify geographic effects on entities of interest (assemblages of pronunciation variants,

11
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folklore motif repertoires, and phoneme inventories). The local patterns additionally illustrate the
potential of the method for understanding effects on entities—in this case, languages—whose placements

in the hierarchy differ from those of their geographic neighbors.

Variation in first names over time

Frequencies of first names among births in a population represent a rich source of cultural data, enabling
tests about mechanisms of cultural change (Hahn & Bentley, 2003; Gureckis & Goldstone, 2009; Berger
et al.,2012; Kessler et al., 2012; Acerbi & Bentley, 2014; O’Dwyer & Kandler, 2017). Our final example

used NetStruct to analyze relationships among names in their patterns of temporal variation.

Social Security data on first names

Data on frequent first names from Social Security card applications for births starting in 1880 are
provided publicly by the U.S. Social Security Administration. Separately for male and female names, for
each year of birth, frequency data are provided. We analyzed female and male names separately,
restricting attention to 1397 female and 1074 male names of total frequency greater than or equal to

10,000 through the end of 2019.

Considering each year 1880-2019 separately, the data set gives two n xm matrices with m=140 years, and
n=1397 for female and n=1074 for male names. The similarity score between two names is computed
based on the Pearson correlation between their frequency vectors over the m years of available data

(Methods). We generated the NetStruct hierarchy from these similarities.

To interpret the NetStruct hierarchy, we made use of state-specific data, which are available alongside the
national data starting from 1910. In the state-level data, each of » names has 53 vectors of counts of
length 110, for 53 locations (50 states plus District of Columbia, Puerto Rico, and other territories) and
110 years (1910-2019). After normalizing counts from each year by the total number of individuals for
that year, we identified for each name the state with the greatest mean normalized frequency over 110

years. In other words, we labeled each name by the state in which it was most frequent.

12
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Hierarchical structure of variation in temporal patterns among names: features of entities

We present the hierarchical structure extracted from time series data on the frequencies of female names,
as well as the temporal trends of the corresponding names, in Fig. 4A, with seven major branches of the
hierarchy colored differently. The same visualization for male names appears in Fig. 4E, with five major
branches assigned different colors. Both for female and for male names, names in branches of different
color have distinct frequency trends over time, with those on the left indicating names that had greatest

frequency at the beginning of the time series.

Fig. 4B and Fig. 4F relabel the hierarchies in Fig. 4A and Fig. 4E by the state in which a name has
occurred most frequently over the full data set. The calculation of the state with highest frequency for a
name is described in Methods. Initially, the most populous states were New York and Pennsylvania;
California and Texas have been most populous more recently. Thus, the leftmost names, frequent early in
the period, tend to be associated with New York, and to some extent, Pennsylvania and Texas. Names in
the center are more closely associated with California. Names in the rightmost clusters are associated with
California or Texas, whose recent population growth has reduced the difference from California in the

number of annual births.

Because the patterns in Fig. 4B and 4F are driven in large part by population sizes of states, we next
relabel the hierarchies using a frequency that is normalized by population size. In particular, we group
states into four regions—Midwest, South, Northeast, and West—normalizing the region-wise count of
each name by the total number of individuals in the region. The calculation of the region with highest
normalized frequency for a name is described in Methods. Fig. 4C and Fig. 4G relabel the hierarchies in
Fig. 4A and Fig. 4E by the region in which the normalized frequency is greatest. In this relabeling, the
South is the region that has the largest number of names associated with it, both for females and for
males. This pattern is particularly pronounced at the beginning of the time series, during which the South

was the region of greatest frequency for large numbers of names.

13
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Fig. 4D and Fig. 4H examine the hierarchies in relation to a second variable: the number of syllables in
names. As was seen when considering names by the state with highest frequency, much structure is
observable with this variable. Female names in Clusters 1 and 2 of Fig. 4A, which share a common
predecessor node as the parent cluster, have similar temporal trends, with a high frequency in the early
20th century. In a fine-scale analysis, however, they separate into a branch whose names have fewer
syllables (Cluster 1; e.g., Mary, Helen), and a branch whose names have more syllables (Cluster 2; e.g.,

Dorothy, Virginia). For male names, later names tend to have more syllables than earlier names (Fig. 4H).

In summary, the NetStruct analysis reveals relationships in co-occurrences of names, identifying names
with similar temporal trends. The recoding of clustering hierarchies by additional variables—the state
with highest frequency, and the number of syllables—illustrates the use of NetStruct in understanding
attributes that correlate with, and potentially contribute to, relationships among entities. The visualization
can potentially suggest analyses of other factors that influence the dynamics, including immigration,

regional correlations, and differences in naming practices by state over time.

Discussion

Inspired by the potential of hierarchical clustering analyses to illuminate features of population-genetic
variation, we have adapted the network-based clustering framework NetStruct for use in the analysis of
cultural variation. In four examples, we have illustrated several aspects of the framework in applications
to data matrices representing a set of entities, each associated with values of a set of characters. These
applications demonstrate the potential of NetStruct to extract broad- and fine-scale relationships among
entities. They illustrate the use of NetStruct to analyze relationships of geography with clustering patterns,
to uncover the characters that drive relationships, and to understand effects on cultural data points of
interest in specific scenarios. The algorithmic perspective incorporates flexibility in the design of

similarity measures and in visualization schemes to aid the analysis.

Interpretations of data on cultural variation

14



317  The four examples illustrate the potential of NetStruct for producing novel visualizations to deepen the
318  understanding of cultural entities—pronunciation repertoires of individuals, folklore repertoires of

319  cultures, phoneme inventories of languages, and time series of name frequencies. The technique can
320 uncover hierarchical features underlying the variation in cultural traits at different scales, and it enables
321  the examination of different hierarchical levels. For example, the LAMSAS data, the data set among the
322  four that has been studied for longest, has given rise to numerous analyses of dialect variation, often
323  seeking to partition the Atlantic region into dialects (Lee & Jr, 1993; Nerbonne & Kretzschmar, 2003;
324  Nerbonne 2015); our approach contributes to observing hierarchical divisions at multiple levels, to

325  detecting spatially continuous variation beyond the level of dialects, and to identifying birth date as a

326  variable that contributes to deviations from spatial patterns.

327  Fewer studies have examined the folklore data set that we have considered. With the use of normalized
328  mutual information (NMI), we have shown that NetStruct can help to identify informative motifs for

329  describing broad- and fine-scale structures of folklore variation. The recurrence of a shared motif in

330  widely separated cultural groups has been useful for reconstructing cross-cultural contact and examining
331  cultural diffusion. In this context, past studies have considered the diffusion of specific motifs, sometimes
332  chosen as those that are widespread or that have particular cultural salience (Korotaev et al., 2006;

333  Berezkin, 2010; Ross et al., 2013; Tehrani, 2013). Rather than choosing motifs based on prior

334  significance, the NMI approach identifies motifs that are most informative about cultural groupings from
335  patterns of motif occurrence alone. The identification using NMI of motifs of particular informativeness
336  can further focus the choice of specific motifs for use in detailed analysis of diffusion patterns of folklore
337  across worldwide cultural groups; studies such as those examining ‘The Tale of the Kind and the Unkind
338  Girls’ (Ross et al., 2013) and ‘Little Red Riding Hood’ (Tehrani, 2013) can be informative for

339 interpreting patterns in well-known motifs, but studies of other motifs might be more informative for

340  understanding cultural diffusion.
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NetStruct requires little prior knowledge of data sets of interest. For the phonemes, as in the principal
components analysis of Creanza et al. (2015), NetStruct identifies broad-scale geographic differentiation
by a method that supposes no prior relationships among entities. Our analysis illustrates the potential to
highlight distinctions of certain languages from their neighbors, finding that phonemic distinctiveness can

reflect distinctiveness of one language in relation to others.

For first names, previous studies of the data have examined many aspects, including spatial correlations
(Barucca et al., 2015; Pomorski et al., 2016) and phonemic influences (Berger et al., 2012); our analyses
of the state of greatest popularity and of patterns in syllables contribute further to understanding patterns
in name frequencies. Some studies of naming patterns are model-based, assuming factors that drive the
variation and incorporating these factors as variables in the models to compare to observed trends (Hahn
& Bentley, 2003; Gureckis & Goldstone, 2009; Berger et al., 2012; Kessler et al., 2012; Acerbi &
Bentley, 2014; O’Dwyer & Kandler, 2017); our approach can augment such studies by suggesting

hypotheses that can be used in evaluating different generative models.

In our choices of examples for application of NetStruct, the four data sets had several features in common.
First, in each case, entities corresponding to rows of the initial data matrix had a natural set of
relationships reflected in the NetStruct hierarchy—geographic proximity of informants for the
pronunciation data, geographic proximity of cultures for the folklore data, geographic proximity of
languages for the phonemic data, and proximity in time of the period of greatest popularity for the data on
names. Second, additional salient attributes of the entities were possible to consider—birth dates for
pronunciation informants, locally specific components of folklore such as geographically restricted
cultural practices and animal ranges, family memberships for languages, and states of greatest popularity
and numbers of syllables for names. Additional data sets with spatial structure, temporal structure, or
both, such as data on attributes of ceramics or other artifacts of material culture, or data on individual
variation in word choices or other idiolectal variation, potentially provide natural examples as well. For

future data sets, the existence of geographic and temporal structure and the availability of other
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meaningful attributes on entities of interest can be used to support use of NetStruct and to guide

interpretation of the results that it produces.

Limitations and extensions

We have chosen to focus on similarity measures borrowed from genetics in which the sharing of a rare
genetic variant between two individuals or populations suggests recent common ancestry. Similarly, for
cultural data, in which shared descent is also a salient phenomenon, our use of a frequency-weighted trait-
sharing similarity measures presupposes the potential importance of shared rare variants in characterizing
relationships between entities. However, the choice of similarity measure occurs prior to application of
NetStruct; the emphasis of similarity measures on shared rare variants can therefore be tuned as
appropriate to a specific type of data. A possible systematic difference from the genetics context is that
fast-evolving cultural data could generate more homoplasy than is seen for genetic markers (Tehrani &
Collard, 2002; Haasl & Payseur, 2011), so that a shared rare variant could be less meaningful in cultural
data than in genetic data. Distance-based hierarchical clustering studies in genetics have generally
identified many shared features in population relationships irrespective of the similarity measure
considered, even for fast-evolving genetic markers with significant homoplasy (Takezaki & Nei, 1996). In
a preliminary analysis of the choice of similarity measure, considering the LAMSAS data, we see that
generally similar patterns are obtained with two additional similarity measures: a measure that is not
frequency-weighted, and a measure designed specifically for linguistic data (Figs. S1 and S2). With a
specific scientific question and dataset, measures that encode aspects of similarity of greatest interest can
be considered, and researchers can employ multiple similarity statistics to identify patterns that are robust

and patterns that are distinctive to particular measures.

As in genetic studies that use tree-like models of population relationships, we have assumed that a
hierarchical relationship between clusters exists, focusing on transferring the application of a hierarchical

clustering method from population-genetic data to data on cultural variation. In cultural data, as is often
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seen in population-genetic data, the appropriate generative model that underlies the data need not be fully
tree-like. Studies in population genetics have introduced methods for testing the suitability of
evolutionary trees for explaining patterns of genetic variation, a key concept being the “treeness” of the
data (Cavalli-Sforza & Piazza 1975; Patterson et al. 2012; Pickrell & Pritchard 2012). It would be of
interest to develop comparable approaches for testing the extent to which a hierarchical structure from
NetStruct explains cultural variation data; a permutation test of Greenbaum et al. (2016) for significance
of clustering in a two-level NetStruct hierarchy containing a root and offspring nodes, devised in the
population-genetic context, can potentially be adapted for arbitrary hierarchies and applied to data on

cultural variation.

Conclusions: uses and applications of NetStruct

In population genetics, the interplay of evolutionary processes contributes to producing hierarchical
patterns in genetic composition among populations. Similarly, in the study of cultural data, many forces
interact to shape hierarchical trait variation. Interpreting the clustering results requires consideration of
multiple interacting processes and phenomena, including global and local selection pressures on specific
cultural variants (e.g. positive, negative, or balancing), linkage of multiple variants in “cultural
complexes” (similar to genetic linkage), and random drift. As in the study of genetic data, geographic
patterns need not uniquely identify the underlying processes; for example, similarly to the phenomenon of
convergent evolution in genetic data, convergent evolution of cultural variants (e.g. Tehrani & Collard
2002; Mesoudi et al. 2006; Rogers & Ehrlich 2008) can produce a level of similarity that can be conflated
with shared descent. For example, in our phonemic analysis in Figure 3, the potential for rapid change in
languages can produce similarity in phonemes of otherwise distant languages. The cluster of languages
colored in light green in Figure 3, which includes languages from sub-Saharan Africa, the Caucasus, and
western North America, may result from convergent evolution combined with linkage of phoneme
complexes that have developed independently. Consideration of the mechanistic processes underlying
cultural data while incorporating domain-knowledge specific to datasets of interest is important in
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interpreting the hierarchical structure generated by NetStruct. Because cultural data often possess the type

of geographic structure, temporal structure, hierarchical categorization, or defining attributes for which
NetStruct results can be productively interpreted, patterns from NetStruct can be informative alongside

other statistical methods for assessing specific generative models for cultural data.

As a non-model-based tool, the strength of the method lies in its potential as an exploratory approach for
producing informative patterns, patterns that potentially inspire hypotheses about factors that drive the
features of cultural variation. We suggest that the use of this exploratory approach should be accompanied
by analyses of hypotheses based on additional methods and domain knowledge; analyses of data on
variation in artifacts of culture can be productively advanced by adding NetStruct to the repertoire of the

field of cultural evolution.
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Methods

Between-informant similarity for LAMSAS pronunciation variation

We obtained the LAMSAS data from the project website (www.lap.uga.edu/Site/LAMSAS.html). To
eliminate systematic effects of different interviewers, we considered only informants interviewed by the
main interviewer, G. Lowman, who collected the earliest LAMSAS data (Nerbonne & Kleiweg, 2003).
We therefore restricted attention to 839 informants interviewed during 1933-1942. Because words chosen
for pronunciation differed across interviews, many words only appear in the records of a subset of
informants. We considered only words collected for at least 700 informants, resulting in a list of 69

words.

Consider n informants and m words. Suppose word j has /; distinct transcriptions, counting diacritics.
Entry 4; of the data matrix is a categorical variable that indicates the transcription of word ; for informant
i:A;j € {1,2, s lj} if the information of word j has been collected from informant i, or 4;; = 0 if word j

1s unavailable for informant i.

We computed a frequency-weighted transcription-sharing similarity, adapting the allele-sharing similarity
for genetic data (Greenbaum et al., 2019). For two informants i; and i», their frequency-weighted

transcription-sharing similarity is calculated as

m
§ .,
. 1(1 Plaiy )11y j= A0 Ay jonagy j0)
— J= ,

Siji, = ™
Ia: ; .
ijl (Aj, j*O0NAj, j%0)

(1

where pjij is the frequency of transcription 4;; for word j. The indicator function I () is 1 if the condition
holds, and it is 0 otherwise. The similarity matrix S is obtained by normalization:

S _ Siqip ~Smin
i1l =

2)

)
Smax~Smin

where Syin = mi.n{siliz} and Spmax = max{siliz}-
l1,l2 l1,l2
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In rare instances, two individuals have no shared words with data present. In these cases, we assigned for

the similarity score the mean similarity of the remaining pairs.

Between-region similarity for folklore motif variation

We downloaded the folklore data from the Berezkin et al. database
(http://www.ruthenia.ru/folklore/berezkin/). The database provides (in Russian) for each indexed motif, a
list of all numbered regions in which the motif is present. Considering all 2495 motifs, we constructed the
matrix of presence/absence entries, associating the region and motif names with matrix rows and

columns, respectively.

We denote the n xm matrix by A, where n=65 is the number of regions and m=2459 is the number of
motifs appearing in at least two regions. 4;=1 if motif j appears in region i, and 4,=0 otherwise. The
pairwise frequency-weighted motif-sharing similarity for two regions i; and i is calculated by a weighted
Jaccard distance:

m

Zj_l(l_fj)Aileizj

Siyi, = o - (3)
Zj:1(1_fj)I(Ai1j¢0VAi2]’¢O)

n

The quantity f; = %Z Ajj is the frequency of motif j across all regions. Eq. 3 places greater weight on
i=1

contributions of less frequent motifs and less weight on common motifs.

We applied the same normalization from Eq. 2 to obtain a normalized similarity matrix that we used in

our analysis.

Normalized mutual information (NMI)

Denote two hierarchical clusterings on n entities by C’ and C?, Suppose they partition the same set of
entities E={ej,es,...,e,} into k and [ clusters C{, C..., Cf and CZ, C2..., C?, respectively, where

U?=1 le = Uf=1 Cjz = E. Note that for each clustering—for example, C—the clusters are not necessarily
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disjoint, so that each e; can belong to multiple clusters Cj; indeed child clusters C;- are contained in parent
clusters Cj, or Cj, © C;. The NMI between these two hierarchical clusterings is then computed from the C jl
and C jz following the procedure of Greenbaum et al. (2019). This approach is flexible in the sense that
NMI can also be computed for subsets of the clusters in the hierarchy, rather than for the entire set of

clusters. To address clustering at the finer scale of the hierarchy, we computed NMI for the set of leaf

clusters at the tips of the hierarchy.

Between-language similarity for phoneme inventories

We obtained phoneme data from the supplement of Creanza et al. (2015). The similarity calculation
follows that of the motif-sharing similarity, except that 4 now represents an n xm matrix of #=2082
languages and m=454 phonemes. Eq. 3 gives the similarity between a pair of languages, with f; denoting
the frequency of a phoneme among languages; we normalized the similarity matrix by Eq. 2 for our

subsequent analysis.

Between-name similarity for name frequency profiles

We downloaded the name data from https://www.ssa.gov/oact/babynames/limits.html. For the analysis,
performed separately for female and male names, a matrix entry 4; tabulates the number of appearances
of name i in year j, normalized by the total number of individuals in year j. We write 4;=0 if name i is
absent during year j, or if it is rare enough to have been omitted from the database for privacy reasons
(fewer than 5 appearances nationally). For each pair of rows i;, i> of 4, we computed the Pearson

correlation 13, ;, between them, and transformed it to a value in [0,1] by s; ;, = (7y,;, + 1)/2.

To obtain syllable counts for individual names, two raters separately assigned the counts, discussing cases
of disagreement to assign a number of syllables. We computed averages of the number of syllables for

names in specific clusters.
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States of highest frequency and regions of highest normalized frequency for names

Separately for female and male names, let B;x denote the number of appearances of name 7 in state & in
year j. The frequency of name i in state k is calculated as fj;, = (Zj Bijk)/(Zk’ X Bijk’)- The state of
highest frequency for name i is obtained by argmaxy (f;;), which we denote the majority state in Fig. 4B

and 4F.

The states are then grouped into four regions described in Fig. 4. For each region / containing a group of
states, let Cy; denote the number of appearances of name i in region / in year j, or C;j; = Y.xe; Biji- For
each year j, this number of appearances is divided by the total number of individuals in a region to obtain
the fraction that it represents of all names in the region during year j: Cjj; = Cjj; /i Cyr ji- Averaging
across years, the normalized frequency of name i in region / is then calculated as g;; =

(Z j Ci*ﬂ) / (Z 2 Ci*j l,). The region of highest normalized frequency for name i is obtained by

argmax;(g;;), which we denote the majority region in Fig. 4C and 4G.
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Figures

Fig. 1: Hierarchical features of variation in English pronunciation in the middle and south Atlantic
region of the United States. (A) Hierarchical tree of the pronunciation similarity network. Informants are
marked on the map by the color of the finest-scale cluster to which they belong. (B, C) Two major
clusters detected at the first level of the hierarchy in (A), each re-colored with the full color interval. (D,
E) Two finer-scale clusters of the hierarchy in (C). In these panels, colors are assigned based on
placement in the area of the hierarchy circled in (C), with all descendants of a child in the circled area
assigned the same color. The colors in (D) correspond to 1/4 and 3/4 on the unit interval, and the colors in
(E) correspond to 1/14, 3/14, 5/14, 7/14, 9/14, 11/14, and 13/14. For convenience, the child clusters
associated with specific internal nodes in the tree diagrams are numbered. Birth-year distributions of

informants in these child clusters appear at right.

Fig. 2: Hierarchical features of variation in folklore motifs across cultures. (A) Hierarchical tree of
the motif similarity network. Regions are marked on the map by the color of the finest-scale cluster to
which they belong. (B) Distributions of normalized mutual information (NMI) between hierarchies
extracted from sampled subsets of motifs and from all motifs, with 100 subsets of 20, 50, 100, and 500
motifs each. (C) Geographic distributions of five motifs that occur most frequently in the 200 of 5,000
subsets of 20 motifs that produce hierarchies with highest NMI to the hierarchy produced by all motifs.
These motifs drive the hierarchy at higher levels, separating regions into major clusters. (D) Distributions
of NMI between the leaves of hierarchies extracted from subsets of motifs (those from B) and the leaves
extracted from all motifs. (E) Geographic distributions of three motifs that occur most frequently in the
200 subsets that produce hierarchies whose leaf clusters produce highest NMI to those produced by all
motifs. These motifs are more specific to the hierarchy in lower levels and potentially capture fine-scale

regional differences.
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Fig. 3: Hierarchical features of phonemic variation. (A) Hierarchical tree of the phoneme similarity
network. Major branches that contain most of the languages are assigned distinct colors, and other
branches are colored gray. (B) Language map. Languages are marked by the color of the finest-scale
cluster to which they belong. Three regions are magnified. (C) Northeast Asia. (D) Northeastern Siberia.

(E) East Africa.

Fig. 4: Hierarchical features of time series for frequencies of female names (A-D) and male names
(E-H). (A, E) Hierarchical tree of similarity in time series for name frequencies. Major branches are
assigned distinct colors. Time series of annual national frequencies appear below the trees, with two
names selected from each major branch highlighted. Node area is proportional to the number of names in
a cluster, except that clusters containing greater than 25 names are set to a fixed size and are colored half-
transparently. (B, F) Recoding of the hierarchies in (A, E) by states of highest frequency. Each cluster
shows a pie chart tabulating the states in which names in the cluster have the highest frequency. Time
series of name frequencies appear below the hierarchies. (C, G) Recoding of the hierarchies in (A, E) by
regions of highest normalized frequency. The states are grouped into four regions: West (AK, AZ, CA,
CO, HI, ID, MT, NM, NV, OR, UT, WA, WY), Midwest (IA, IL, IN, KS, MI, MN, MO, ND, NE, OH,
SD, WI), South (AL, AR, DC, DE, FL, GA, KY, LA, MD, MS, NC, OK, SC, TN, TX, VA, WV), and
Northeast (CT, MA, ME, NH, NJ, NY, PA, RI, VT). The normalized frequency of a name in a region is
the count of the name in the region normalized by the total number of individuals in the region. The steps
to obtain the states of highest frequency and regions of highest normalized frequency are described in

Methods. (D, H) Recoding of the hierarchies in (A, E) by mean number of syllables of names in clusters.
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Top Motifs Based on NMI of Full Trees

“ To sort grain. A task-giver asks to sort a
large amount or small particles of different
kind (usually seeds of different plants) mixed
in container or to count such particles or to
pick up the spilled grains.

©* Stuck in a tree hollow. Person who puts
her or his head or hand into a tree hollow or

i Trickster is a feline. In episades related
to deception, absurd, obscene or anti-social
behavior the protagonist is a feline (jaguar,
acelot, puma).

The bear is a failure. Because of its
stupidity and unsocial behavior, the bear
suffers a reverse, is injured or dies.

(rare) other hole is stuck fast or falls into the
hollow and dies or wundergoes a
metamorphosis,

¥ Animal skins as metamorphosis
amulets. Person temporarily turns into a bird
or an animal putting on corresponding skin or
animal skins are amulets that become alive
and help the person,

number of areas

mean NMI for leaf clusters
20 motifs: 0.16

== 50 motifs: 0.24

== 100 motifs: 0.31

== 500 motifs: 0.48

Top Motifs Based on NMI of Leaf Clusters

. The packed kingdom. Coming from the
underworld to the earth, princess puts objects.
that she used (clothes, house, “kingdom”) into
a small container {an egg, a ball, etc.) and
brings them with her.

D claims food and is wounded. A

& A drop of blood. A demonic person or
animal is killed but revives or can revive if a
small piece of its flesh or blood goes out of
control,

Figure 2.

demonic person comes to the hero and claims
food that the latter possesses or cooks, The
hero overcomes and wounds him, follows his
trace and comes to his world.

33



Korean (language isolate) Chukotko-Kamchatkan languages
D (kamchadal ~ Chukchi ~Kerek |
i \Alyutor  Koryak | |

!
4
1
WE 50N g 'l-:-‘-‘ -.—-.‘ N

click languages

{. Hadza _ Sandawe  Dahalo |

672

673  Figure 3.

34



2018

4
E

130

100

REEEN

m LER DULIBL B YN S JO S0gUInG

P g
.&,Nn‘..a.h..amnh.n.&f
A

La= =

=<ty . teget
2 4&;&...» sA

s ..H...... o frgggd
«m EERE R

mnmin i ) S 0 e
< @ o a

Female

674

Figure 4.

675

35



