

1 Extracting hierarchical features of cultural variation using network-based  
2 clustering

3

4 Xiran Liu,<sup>1</sup> Noah A. Rosenberg,<sup>2,\*†</sup> Gili Greenbaum<sup>3,\*†</sup>

5

6 1. Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California,  
7 USA

8 2. Department of Biology, Stanford University, Stanford, California, USA

9 3. Department of Ecology, Evolution and Behavior, Hebrew University of Jerusalem, Jerusalem, Israel

10 <sup>†</sup> Joint senior authors

11 \* Corresponding author. Email: [noahr@stanford.edu](mailto:noahr@stanford.edu); [gil.g@mail.huji.ac.il](mailto:gil.g@mail.huji.ac.il)

12

13 Key words: cultural evolution, hierarchical clustering, network

14 **Abstract**

---

15 High-dimensional data sets on cultural characters contribute to uncovering insights about factors that  
16 influence cultural evolution. Because cultural variation in part reflects descent processes with a  
17 hierarchical structure—including descent of populations and vertical transmission of cultural traits—  
18 methods designed for hierarchically structured data have potential to find applications in the analysis of  
19 cultural variation. We adapt a network-based hierarchical clustering method for use in analyzing cultural  
20 variation. Given a set of entities, the method constructs a similarity network, hierarchically depicting  
21 community structure among them. We illustrate the approach using four data sets: pronunciation variation  
22 in the United States mid-Atlantic region, folklore variation in worldwide cultures, phonemic variation  
23 across worldwide languages, and temporal variation in first names in the United States. In these examples,  
24 the method provides insights into processes that affect cultural variation, uncovering geographic and other  
25 influences on observed patterns and cultural characters important in contributing to them.

26

27 Social media summary: Network-based clustering reveals structure in cultural variation in pronunciation,  
28 folklore, phonemes, and first names

29 **Introduction**

---

30 In recent years, increasingly available large-scale data sets on aspects of variation across human cultures  
31 and within cultures over time have provided rich information about fine-scale details of human cultural  
32 variation and the factors that influence its dynamics (Mesoudi, 2016; Kolodny *et al.*, 2018). For example,  
33 investigations of variation in folktales among cultures have identified interactions of cultural diffusion  
34 and demic diffusion in the spread of folklore and mythology (Bortolini *et al.*, 2017; Thuillard *et al.*,  
35 2018). A study of design features of traditional canoes across Polynesian societies has suggested a faster  
36 rate of cultural change in canoe traits that were less significant to functional performance of the  
37 watercraft, in line with the faster evolution that occurs for non-functional rather than functional genetic  
38 variants (Rogers & Ehrlich, 2008). Studies of variation in the presence and absence of linguistic  
39 characters across languages have uncovered influences of ancient migrations on patterns of language  
40 variation observed today (Atkinson, 2011; Creanza *et al.*, 2015).

41 The analysis of complex data to reveal features of cultural variation makes use of a variety of statistical  
42 methods designed for high-dimensional data analysis more generally. Such methods include analyses of  
43 distance matrices based on cultural traits of interest (Rogers & Ehrlich, 2008; Creanza *et al.*, 2015;  
44 Bortolini *et al.*, 2017; Thuillard *et al.*, 2018), multivariate analysis techniques such as principal  
45 components analysis (Creanza *et al.*, 2015), correlations involving spatial statistics and geographic maps  
46 (Atkinson, 2011; Creanza *et al.*, 2015; Bortolini *et al.*, 2017), and hierarchical tree-based clustering  
47 (Creanza *et al.*, 2015; Thuillard *et al.*, 2018).

48 Viewed in relation to their underlying generative processes, different forms of cultural variation often  
49 possess shared features (Cavalli-Sforza & Feldman, 1981; Boyd & Richerson, 1985). Different cultural  
50 entities might possess a shared variant, as a result of processes such as the independent origin of  
51 functionally significant variants, random recurrence of nonfunctional variants, or cultural exchange.  
52 Salient among the forces contributing to patterns of cultural variation is shared descent, so that even if

53 independent origins and cultural exchange are important in specific settings, hierarchical or geographic  
54 structure can often contribute to features of cultural variation.

55 Owing to the importance of shared descent in influencing cultural variation, tools for analyzing cultural  
56 variation data can employ methods suited to analysis of genetic data, which also possess signatures of  
57 shared descent; thus, many statistical methods used in cultural data analysis are similar to those used for  
58 genetic data (Bromham, 2017; Gray *et al.*, 2010; Pagel, 2009). Recently, we have introduced a method,  
59 *NetStruct*, for use in understanding genetic variation data that result from hierarchical genetic structure  
60 (Greenbaum *et al.*, 2016, 2019). The method, employing ideas from network analysis, produces a  
61 distinctive form of visualization of hierarchical population relationships. It has been seen to detect subtle  
62 patterns that have been overlooked using earlier forms of data analysis.

63 The *NetStruct* method consists of three main steps: construction of similarity matrices between entities,  
64 community detection in similarity matrices, and hierarchical visualization of communities. The method is  
65 general beyond genetic data, as the form of the data contributes only to the choice of similarity function.  
66 It can thus be modified for use with other types of data that result from distinct but related generative  
67 processes, including data on cultural variation.

68 Here, we adapt the *NetStruct* method for use in the study of cultural evolution. We examine a variety of  
69 data sets on different forms of cultural variation, considering geographic variation in English  
70 pronunciation, variation across cultures in folklore, phonemic variation across languages, and temporal  
71 variation in frequencies of first names. Using each of the four forms of cultural data, we illustrate the  
72 potential of the method as an exploratory tool to reveal features of geographic and temporal structure in  
73 cultural phenomena and to extract patterns that can inspire hypotheses about underlying mechanisms.

74 Each example additionally highlights a different aspect of the hierarchical analysis: analyses at different  
75 levels of detail in the hierarchy, identification of characters that are important in driving the partitioning,  
76 analysis of outliers, and the relationship of the hierarchy to features of entities beyond those used in its  
77 construction.

78 **Results**

---

79 **Generalizing the *NetStruct* pipeline**

80 In the first step of the *NetStruct* method, for a set of entities, each having a value for each of a series of  
81 characters, we construct an  $n \times m$  data matrix  $A$  with  $n$  rows corresponding to entities and  $m$  columns  
82 corresponding to characters. Entry  $A_{ij}$  gives the value of character  $j$  for entity  $i$ ; this value can be either  
83 categorical or quantitative, depending on the type of character.

84 The similarity between two entities  $i_1$  and  $i_2$ , denoted  $s_{i_1, i_2}$ , is computed by a function applied to rows  $i_1$   
85 and  $i_2$ . We normalize pairwise similarities so that they take on values in  $[0,1]$ . The resulting  $n \times n$   
86 similarity matrix  $S$  then becomes the adjacency matrix of a similarity network. The similarity function is  
87 chosen based on a particular application of interest.

88 In a network, community structure exists when high concentrations of edges occur within certain groups  
89 of nodes in the network and low concentrations occur between these groups (Girvan & Newman, 2002).

90 In the second step of *NetStruct*, we iteratively remove edges with lower weights from the network to  
91 reveal the finer-scale structure within coarser communities. *NetStruct* uses a community-detection  
92 Louvain algorithm (Blondel *et al.*, 2008) together with an iterative edge-pruning method (Greenbaum *et*  
93 *al.*, 2019). The Louvain algorithm maximizes a “modularity score” for each community, quantifying the  
94 difference between the actual density of edges within the community and the expected density if all edges  
95 in the network were distributed at random while preserving the degree distribution of the network. The  
96 Louvain algorithm starts by assigning each node to its own community, sequentially merging nodes into  
97 communities in a manner that produces the greatest modularity increase—until no further increase occurs.  
98 *NetStruct* iteratively removes edges below a weight threshold of increasing value and applies community-  
99 detection in each subdivided community at each iteration, generating hierarchical structure at multiple  
100 levels.

101 Finally, in the last step, the communities detected at each iteration are assembled to form the output  
102 hierarchy, which can be visualized as a hierarchical tree coded by a coloring scheme. Because clustering  
103 is hierarchical, each entity can belong to multiple communities, or clusters, at different hierarchical levels;  
104 that is, each cluster can have finer-scale “child” clusters.

105 *NetStruct* visualizes community structure using a diagram that depicts hierarchical relationships among  
106 clusters. Each cluster is assigned an interval representation of a color gradient; the root node is assigned  
107 the unit interval. Child clusters are assigned equal portions of the interval associated with their parental  
108 node. Clusters are colored by the midpoint of the associated interval, such that at each hierarchical level,  
109 child clusters of the same parent have colors that are more similar than are those of different parents. The  
110 color scheme facilitates interpretation, as the original entities can be labeled by the finest-scale cluster to  
111 which they are assigned in the diagram.

112 To generalize use of *NetStruct* beyond genetic data, we require a function that describes similarity  
113 between pairs of entities of interest. Many similarity measures are possible, and *NetStruct* is applied to the  
114 similarity matrix after it has been constructed. For a given data set of interest, the similarity function is  
115 chosen in a manner suited to the application. We follow Greenbaum *et al.* (2016, 2019) in choosing  
116 frequency-weighted similarity measures that emphasize shared rare values of a character.

## 117 Variation in pronunciation across locations

118 For our first example, we examined data on individual variation in pronunciation. Local variation in  
119 communication variants has potential to provide insight into cultural transmission and spatial patterns of  
120 distinctiveness and interaction in a population (Nerbonne & Kleiweg, 2003; Rendell & Whitehead, 2005;  
121 Aplin, 2019). To understand the relationship between geography and individual-level pronunciation of a  
122 shared human language, we applied *NetStruct* to data on English pronunciation variation in the middle  
123 and south Atlantic region of the United States.

124 **LAMSAS pronunciation data**

125 We obtained pronunciation variation data from the Linguistic Atlas of the Middle and South Atlantic  
126 States (LAMSAS) (Kretzschmar Jr. *et al.*, 1993). These data consist of dialect records on pronunciations  
127 of everyday words collected in 1933-1942 from eleven states: Delaware, Maryland, New Jersey, New  
128 York, North Carolina, Pennsylvania, South Carolina, Virginia, and West Virginia, with some records  
129 from eastern Georgia and northeastern Florida included as well.

130 We restricted our analysis to  $n=839$  informants interviewed by the major field worker (Nerbonne &  
131 Kretzschmar, 2003) and  $m=69$  words recorded for most informants. We constructed the  $n \times n$  similarity  
132 matrix based on phonetic transcriptions of pronunciations of the  $m$  words. The similarity is greater when  
133 informants share many pronunciations, and when they share rare pronunciations (*Methods*). We then  
134 applied *NetStruct* to infer hierarchical structure.

135 ***Hierarchical structure of pronunciation variation: levels of detail***

136 Fig. 1 presents the hierarchical structure of pronunciation variation in the LAMSAS data. In Fig. 1A, we  
137 color informants on the map by their finest-scale clusters in the tree diagram. In the *NetStruct* color  
138 scheme, informants with more similar colors appear closer in the tree diagram, and those with distinct  
139 colors are placed in different branches at relatively high levels in the hierarchy. For example, in Fig. 1A,  
140 distant colors purple and yellow belong to different major branches of the hierarchy; informants colored  
141 purple are mostly in the northern part of the Atlantic region, and those colored yellow are mostly in the  
142 southern part.

143 To examine the two major clusters at a finer level of detail, we reapply the coloring, for each cluster  
144 assigning the root node the color corresponding to the midpoint in the unit interval (Fig. 1, B and C).  
145 Within each of the two clusters, finer levels of the hierarchy group together informants who are  
146 geographically closer. In the cluster that contains most of the individuals from the more northerly regions  
147 (Fig. 1B), pronunciation distinctions can be observed in groups corresponding largely to New York and to  
148 West Virginia. In the cluster that contains most of the more southerly individuals (Fig. 1B), a distinction

149 is noticeable between finer clusters corresponding to North Carolina and to Virginia, with some  
150 individuals in both states placed in small clusters.

151 We repeat the process to examine Fig. 1C in even finer detail. This analysis, in Fig. 1D and Fig. 1E,  
152 illustrates that at lower levels of the hierarchy, clusters are not always associated with geographical  
153 features. However, we observe that year of birth is strongly associated with cluster assignment at this  
154 local geographic scale (Fig. 1, D and E). In other words, in some tree branches, clusters within a branch  
155 correspond to age structure, rather than to geography.

156 This analysis highlights that our clustering extracts one set of features from pronunciation variation at  
157 high hierarchical levels—geographical variation in informants—and at lower hierarchical levels, it  
158 captures other features, such as age structure. The analysis of multiple hierarchical levels assists in the  
159 interpretation of the patterns both at the broadest scale as well as at fine-scale levels.

## 160 Variation in folklore motifs across cultures

161 In the study of folklore and mythology, recurring plot patterns, or “motifs,” occur across cultures. Motif  
162 variation can provide insight into cross-cultural patterns, including migrations and cultural transmission in  
163 relation to ethnolinguistic barriers (Berezkin, 2010; Bortolini *et al.*, 2017; Korotayev *et al.*, 2017;  
164 Thuillard *et al.*, 2018). Here we used folklore motifs to analyze cultural variation, identifying motifs  
165 important in constructing the proposed hierarchical relationships.

### 166 ***Database of folklore***

167 We examined data on presence and absence of folklore motifs in individual cultures. Using folklore data  
168 from around the world, Berezkin *et al.* (Berezkin *et al.*, 2009; Korotayev *et al.*, 2017) tabulated recurring  
169 motifs prominent in links between folklore traditions, defining a motif to be “any image, compositional  
170 structure, episode or chain of episodes found in more than one text.” Berezkin *et al.* reported a list of  
171 cultures for each motif.

172 We focused our analysis on the  $n=65$  regions in the Berezkin *et al.* database and the  $m=2459$  motifs  
173 appearing in at least two of these regions. We computed similarities between pairs of regions based on  
174 numbers of shared motifs, negatively weighted by motif frequency (*Methods*).

175 ***Hierarchical structure of folklore variation: important characters***

176 Fig. 2A presents the hierarchical structure of motif variation extracted using the pairwise similarities  
177 calculated based on all motifs. The geographic regions are mostly clustered into three large areas: Eurasia  
178 and Africa (purple), North America (blue), and South America (orange), with varied placement of  
179 populations from Australia and Oceania.

180 To identify which motifs are most important for extracting the hierarchical features, we adopt the  
181 normalized mutual information (NMI) approach to compare hierarchies constructed using different sets of  
182 motifs (Greenbaum *et al.*, 2019). For a pair of hierarchical clusterings, the NMI measure ranges from 0 to  
183 1, quantifying the information obtained about one clustering by observing another. The NMI measure is  
184 high when two clustering hierarchies describe similar clustering structures (*Methods*). The NMI approach  
185 is flexible in that it enables comparisons between subsets of the hierarchical structure, for example by  
186 comparing only the leaves of the hierarchy.

187 We sampled 100 random subsets of 20, 50, 100, and 500 motifs, for each subset applying *NetStruct* to  
188 extract a hierarchy from the similarity network based on the sampled motifs. We then computed the NMI  
189 between the hierarchy of the sampled motifs and the hierarchy for all motifs, both for the full tree and for  
190 only the leaf clusters. In both NMI analyses, as the number of motifs in the subset increases, the mean of  
191 the NMI distribution increases (Fig. 2, B and D). The hierarchy produced by a larger subset of motifs is  
192 more informative than those generated with fewer motifs.

193 Different motifs can be more informative or less informative regarding the hierarchical structure of the  
194 data. For example, a motif found in all regions, or one not correlated with the main cultural patterns, will  
195 not be informative about the clustering. To identify the most informative motifs, we sampled 5,000  
196 subsets of 20 motifs with replacement, counting occurrences of motifs in the 200 subsets possessing the

197 highest NMI with the full tree and those possessing the highest NMI for leaf clusters. With random  
198 sampling, the expected number of occurrences of each motif in the top 200 subsets is  $20/m \times 200 \approx 1.6$ .  
199 The five most informative motifs for the full hierarchical structure appear in Fig. 2C. The motif most  
200 frequently found in high-NMI subsets is ‘trickster is a feline,’ appearing in 16 of 200 subsets ( $P=1.5 \times 10^{-11}$ , binomial test). This motif is common in Central and South America. ‘To sort grain’ has 11 occurrences  
201 ( $P=9.8 \times 10^{-7}$ ), and the next three most informative motifs have eight occurrences each ( $P=2.7 \times 10^{-4}$ ) and  
202 are also associated with large geographic regions (Fig. 2C). Some informative motifs correspond to  
203 natural or cultural phenomena restricted by geography, such as the practice of agriculture and the habitat  
204 ranges of animals.

206 The three most informative motifs for the fine-scale cultural structure represented by the leaves of the  
207 hierarchy are shown in Fig. 2E. Each appears eight times, above the number expected from random  
208 sampling ( $P=2.7 \times 10^{-4}$ ). Two of these, ‘a drop of blood’ and ‘the packed kingdom’ have restricted  
209 geographic ranges. This result suggests that motifs of local folklore contribute to fine-scale features of the  
210 hierarchy.

211 In addition to visualizing hierarchical patterns of variation in folklore in relation to geography, this  
212 analysis demonstrates the use of *NetStruct* to identify characters—folklore motifs in this case—that play  
213 an important role in driving the hierarchical structure. The analysis of many subsets of characters, and the  
214 identification of those that appear in subsets that give rise to high NMI with the full-data analysis,  
215 uncovers those that contribute most to hierarchical clustering patterns.

## 216 Variation in phonemes across languages

217 A salient feature of linguistic variation is phonemic variation: variation in the sounds present within  
218 languages. Phonemic variation can be used to study inter-language relationships and population  
219 migrations (Atkinson, 2011; Creanza *et al.*, 2015; Fort & Pérez-Losada, 2016; Pérez-Losada & Fort,  
220 2018), and for our next example, we analyzed hierarchical structure in worldwide phonemic variation.

221 **Ruhlen phoneme database**

222 Creanza *et al.* (2015) analyzed two databases that have been assembled on phonemes across large  
223 numbers of languages. We applied *NetStruct* on one of these, the Ruhlen database, as studied by Creanza  
224 *et al.* (2015) to explore phoneme-based hierarchical structure across languages. This database contains  
225 presence/absence information for 728 phonemes, organized by language classification and geography.

226 In our analysis, we included all  $n=2082$  languages and  $m=454$  phonemes that exist in more than one  
227 language. We then constructed the hierarchy based on the pairwise frequency-weighted phoneme-sharing  
228 similarities calculated from the  $n \times m$  data matrix (*Methods*).

229 ***Hierarchical structure of phonemic variation: outlier entities***

230 The hierarchy extracted from phonemic variation clusters languages in accord with geography on a broad  
231 scale (Fig. 3A). In Fig. 3B, major clusters tend to be localized within continents, in many places co-  
232 occurring with other such clusters.

233 Fig. 3, panels C-E, highlights patterns in local regions. In northeast Siberia (Fig. 3D), four of five  
234 languages of the Chukotko-Kamchatkan language family—Alyutor, Chukchi, Kerek, and Koryak—  
235 cluster in one branch (purple to yellow colors), whereas the Kamchadal language is alone in another  
236 (green). Indeed, the first four languages and Kamchadal are assigned to different branches in the family,  
237 Chukotian and Itelmen, and the unity of the family has been uncertain (Fortescue, 2005).

238 In East Africa (Fig. 3E), three languages shown in a distinct color from their surrounding languages—  
239 Dahalo, Hadza, and Sandawe—are the only three languages in the region that are click languages, a  
240 phonemic group of languages for which clicks function as normal consonants (Westphal, 1971).

241 Similarly, in Northeast Asia (Fig. 3C), Korean, a language isolate, is clustered into a branch distinct from  
242 other neighboring languages.

243 This analysis, like the analyses of pronunciation and folklore motifs, illustrates the use of the *NetStruct*  
244 framework to identify geographic effects on entities of interest (assemblages of pronunciation variants,

245 folklore motif repertoires, and phoneme inventories). The local patterns additionally illustrate the  
246 potential of the method for understanding effects on entities—in this case, languages—whose placements  
247 in the hierarchy differ from those of their geographic neighbors.

## 248 Variation in first names over time

249 Frequencies of first names among births in a population represent a rich source of cultural data, enabling  
250 tests about mechanisms of cultural change (Hahn & Bentley, 2003; Gureckis & Goldstone, 2009; Berger  
251 *et al.*, 2012; Kessler *et al.*, 2012; Acerbi & Bentley, 2014; O'Dwyer & Kandler, 2017). Our final example  
252 used *NetStruct* to analyze relationships among names in their patterns of temporal variation.

### 253 ***Social Security data on first names***

254 Data on frequent first names from Social Security card applications for births starting in 1880 are  
255 provided publicly by the U.S. Social Security Administration. Separately for male and female names, for  
256 each year of birth, frequency data are provided. We analyzed female and male names separately,  
257 restricting attention to 1397 female and 1074 male names of total frequency greater than or equal to  
258 10,000 through the end of 2019.

259 Considering each year 1880-2019 separately, the data set gives two  $n \times m$  matrices with  $m=140$  years, and  
260  $n=1397$  for female and  $n=1074$  for male names. The similarity score between two names is computed  
261 based on the Pearson correlation between their frequency vectors over the  $m$  years of available data  
262 (*Methods*). We generated the *NetStruct* hierarchy from these similarities.

263 To interpret the *NetStruct* hierarchy, we made use of state-specific data, which are available alongside the  
264 national data starting from 1910. In the state-level data, each of  $n$  names has 53 vectors of counts of  
265 length 110, for 53 locations (50 states plus District of Columbia, Puerto Rico, and other territories) and  
266 110 years (1910-2019). After normalizing counts from each year by the total number of individuals for  
267 that year, we identified for each name the state with the greatest mean normalized frequency over 110  
268 years. In other words, we labeled each name by the state in which it was most frequent.

269 ***Hierarchical structure of variation in temporal patterns among names: features of entities***

270 We present the hierarchical structure extracted from time series data on the frequencies of female names,  
271 as well as the temporal trends of the corresponding names, in Fig. 4A, with seven major branches of the  
272 hierarchy colored differently. The same visualization for male names appears in Fig. 4E, with five major  
273 branches assigned different colors. Both for female and for male names, names in branches of different  
274 color have distinct frequency trends over time, with those on the left indicating names that had greatest  
275 frequency at the beginning of the time series.

276 Fig. 4B and Fig. 4F relabel the hierarchies in Fig. 4A and Fig. 4E by the state in which a name has  
277 occurred most frequently over the full data set. The calculation of the state with highest frequency for a  
278 name is described in *Methods*. Initially, the most populous states were New York and Pennsylvania;  
279 California and Texas have been most populous more recently. Thus, the leftmost names, frequent early in  
280 the period, tend to be associated with New York, and to some extent, Pennsylvania and Texas. Names in  
281 the center are more closely associated with California. Names in the rightmost clusters are associated with  
282 California or Texas, whose recent population growth has reduced the difference from California in the  
283 number of annual births.

284 Because the patterns in Fig. 4B and 4F are driven in large part by population sizes of states, we next  
285 relabel the hierarchies using a frequency that is normalized by population size. In particular, we group  
286 states into four regions—Midwest, South, Northeast, and West—normalizing the region-wise count of  
287 each name by the total number of individuals in the region. The calculation of the region with highest  
288 normalized frequency for a name is described in *Methods*. Fig. 4C and Fig. 4G relabel the hierarchies in  
289 Fig. 4A and Fig. 4E by the region in which the normalized frequency is greatest. In this relabeling, the  
290 South is the region that has the largest number of names associated with it, both for females and for  
291 males. This pattern is particularly pronounced at the beginning of the time series, during which the South  
292 was the region of greatest frequency for large numbers of names.

293 Fig. 4D and Fig. 4H examine the hierarchies in relation to a second variable: the number of syllables in  
294 names. As was seen when considering names by the state with highest frequency, much structure is  
295 observable with this variable. Female names in Clusters 1 and 2 of Fig. 4A, which share a common  
296 predecessor node as the parent cluster, have similar temporal trends, with a high frequency in the early  
297 20th century. In a fine-scale analysis, however, they separate into a branch whose names have fewer  
298 syllables (Cluster 1; e.g., Mary, Helen), and a branch whose names have more syllables (Cluster 2; e.g.,  
299 Dorothy, Virginia). For male names, later names tend to have more syllables than earlier names (Fig. 4H).  
300 In summary, the *NetStruct* analysis reveals relationships in co-occurrences of names, identifying names  
301 with similar temporal trends. The recoding of clustering hierarchies by additional variables—the state  
302 with highest frequency, and the number of syllables—illustrates the use of *NetStruct* in understanding  
303 attributes that correlate with, and potentially contribute to, relationships among entities. The visualization  
304 can potentially suggest analyses of other factors that influence the dynamics, including immigration,  
305 regional correlations, and differences in naming practices by state over time.

306 **Discussion**

---

307 Inspired by the potential of hierarchical clustering analyses to illuminate features of population-genetic  
308 variation, we have adapted the network-based clustering framework *NetStruct* for use in the analysis of  
309 cultural variation. In four examples, we have illustrated several aspects of the framework in applications  
310 to data matrices representing a set of entities, each associated with values of a set of characters. These  
311 applications demonstrate the potential of *NetStruct* to extract broad- and fine-scale relationships among  
312 entities. They illustrate the use of *NetStruct* to analyze relationships of geography with clustering patterns,  
313 to uncover the characters that drive relationships, and to understand effects on cultural data points of  
314 interest in specific scenarios. The algorithmic perspective incorporates flexibility in the design of  
315 similarity measures and in visualization schemes to aid the analysis.

316 Interpretations of data on cultural variation

317 The four examples illustrate the potential of *NetStruct* for producing novel visualizations to deepen the  
318 understanding of cultural entities—pronunciation repertoires of individuals, folklore repertoires of  
319 cultures, phoneme inventories of languages, and time series of name frequencies. The technique can  
320 uncover hierarchical features underlying the variation in cultural traits at different scales, and it enables  
321 the examination of different hierarchical levels. For example, the LAMSAS data, the data set among the  
322 four that has been studied for longest, has given rise to numerous analyses of dialect variation, often  
323 seeking to partition the Atlantic region into dialects (Lee & Jr, 1993; Nerbonne & Kretzschmar, 2003;  
324 Nerbonne 2015); our approach contributes to observing hierarchical divisions at multiple levels, to  
325 detecting spatially continuous variation beyond the level of dialects, and to identifying birth date as a  
326 variable that contributes to deviations from spatial patterns.

327 Fewer studies have examined the folklore data set that we have considered. With the use of normalized  
328 mutual information (NMI), we have shown that *NetStruct* can help to identify informative motifs for  
329 describing broad- and fine-scale structures of folklore variation. The recurrence of a shared motif in  
330 widely separated cultural groups has been useful for reconstructing cross-cultural contact and examining  
331 cultural diffusion. In this context, past studies have considered the diffusion of specific motifs, sometimes  
332 chosen as those that are widespread or that have particular cultural salience (Korotaev *et al.*, 2006;  
333 Berezkin, 2010; Ross *et al.*, 2013; Tehrani, 2013). Rather than choosing motifs based on prior  
334 significance, the NMI approach identifies motifs that are most informative about cultural groupings from  
335 patterns of motif occurrence alone. The identification using NMI of motifs of particular informativeness  
336 can further focus the choice of specific motifs for use in detailed analysis of diffusion patterns of folklore  
337 across worldwide cultural groups; studies such as those examining ‘The Tale of the Kind and the Unkind  
338 Girls’ (Ross *et al.*, 2013) and ‘Little Red Riding Hood’ (Tehrani, 2013) can be informative for  
339 interpreting patterns in well-known motifs, but studies of other motifs might be more informative for  
340 understanding cultural diffusion.

341 *NetStruct* requires little prior knowledge of data sets of interest. For the phonemes, as in the principal  
342 components analysis of Creanza *et al.* (2015), *NetStruct* identifies broad-scale geographic differentiation  
343 by a method that supposes no prior relationships among entities. Our analysis illustrates the potential to  
344 highlight distinctions of certain languages from their neighbors, finding that phonemic distinctiveness can  
345 reflect distinctiveness of one language in relation to others.

346 For first names, previous studies of the data have examined many aspects, including spatial correlations  
347 (Barucca *et al.*, 2015; Pomorski *et al.*, 2016) and phonemic influences (Berger *et al.*, 2012); our analyses  
348 of the state of greatest popularity and of patterns in syllables contribute further to understanding patterns  
349 in name frequencies. Some studies of naming patterns are model-based, assuming factors that drive the  
350 variation and incorporating these factors as variables in the models to compare to observed trends (Hahn  
351 & Bentley, 2003; Gureckis & Goldstone, 2009; Berger *et al.*, 2012; Kessler *et al.*, 2012; Acerbi &  
352 Bentley, 2014; O'Dwyer & Kandler, 2017); our approach can augment such studies by suggesting  
353 hypotheses that can be used in evaluating different generative models.

354 In our choices of examples for application of *NetStruct*, the four data sets had several features in common.  
355 First, in each case, entities corresponding to rows of the initial data matrix had a natural set of  
356 relationships reflected in the *NetStruct* hierarchy—geographic proximity of informants for the  
357 pronunciation data, geographic proximity of cultures for the folklore data, geographic proximity of  
358 languages for the phonemic data, and proximity in time of the period of greatest popularity for the data on  
359 names. Second, additional salient attributes of the entities were possible to consider—birth dates for  
360 pronunciation informants, locally specific components of folklore such as geographically restricted  
361 cultural practices and animal ranges, family memberships for languages, and states of greatest popularity  
362 and numbers of syllables for names. Additional data sets with spatial structure, temporal structure, or  
363 both, such as data on attributes of ceramics or other artifacts of material culture, or data on individual  
364 variation in word choices or other idiolectal variation, potentially provide natural examples as well. For  
365 future data sets, the existence of geographic and temporal structure and the availability of other

366 meaningful attributes on entities of interest can be used to support use of *NetStruct* and to guide  
367 interpretation of the results that it produces.

## 368 Limitations and extensions

369 We have chosen to focus on similarity measures borrowed from genetics in which the sharing of a rare  
370 genetic variant between two individuals or populations suggests recent common ancestry. Similarly, for  
371 cultural data, in which shared descent is also a salient phenomenon, our use of a frequency-weighted trait-  
372 sharing similarity measures presupposes the potential importance of shared rare variants in characterizing  
373 relationships between entities. However, the choice of similarity measure occurs prior to application of  
374 *NetStruct*; the emphasis of similarity measures on shared rare variants can therefore be tuned as  
375 appropriate to a specific type of data. A possible systematic difference from the genetics context is that  
376 fast-evolving cultural data could generate more homoplasy than is seen for genetic markers (Tehrani &  
377 Collard, 2002; Haasl & Payseur, 2011), so that a shared rare variant could be less meaningful in cultural  
378 data than in genetic data. Distance-based hierarchical clustering studies in genetics have generally  
379 identified many shared features in population relationships irrespective of the similarity measure  
380 considered, even for fast-evolving genetic markers with significant homoplasy (Takezaki & Nei, 1996). In  
381 a preliminary analysis of the choice of similarity measure, considering the LAMSAS data, we see that  
382 generally similar patterns are obtained with two additional similarity measures: a measure that is not  
383 frequency-weighted, and a measure designed specifically for linguistic data (Figs. S1 and S2). With a  
384 specific scientific question and dataset, measures that encode aspects of similarity of greatest interest can  
385 be considered, and researchers can employ multiple similarity statistics to identify patterns that are robust  
386 and patterns that are distinctive to particular measures.

387 As in genetic studies that use tree-like models of population relationships, we have assumed that a  
388 hierarchical relationship between clusters exists, focusing on transferring the application of a hierarchical  
389 clustering method from population-genetic data to data on cultural variation. In cultural data, as is often

390 seen in population-genetic data, the appropriate generative model that underlies the data need not be fully  
391 tree-like. Studies in population genetics have introduced methods for testing the suitability of  
392 evolutionary trees for explaining patterns of genetic variation, a key concept being the “treeness” of the  
393 data (Cavalli-Sforza & Piazza 1975; Patterson et al. 2012; Pickrell & Pritchard 2012). It would be of  
394 interest to develop comparable approaches for testing the extent to which a hierarchical structure from  
395 *NetStruct* explains cultural variation data; a permutation test of Greenbaum *et al.* (2016) for significance  
396 of clustering in a two-level *NetStruct* hierarchy containing a root and offspring nodes, devised in the  
397 population-genetic context, can potentially be adapted for arbitrary hierarchies and applied to data on  
398 cultural variation.

### 399 Conclusions: uses and applications of *NetStruct*

400 In population genetics, the interplay of evolutionary processes contributes to producing hierarchical  
401 patterns in genetic composition among populations. Similarly, in the study of cultural data, many forces  
402 interact to shape hierarchical trait variation. Interpreting the clustering results requires consideration of  
403 multiple interacting processes and phenomena, including global and local selection pressures on specific  
404 cultural variants (e.g. positive, negative, or balancing), linkage of multiple variants in “cultural  
405 complexes” (similar to genetic linkage), and random drift. As in the study of genetic data, geographic  
406 patterns need not uniquely identify the underlying processes; for example, similarly to the phenomenon of  
407 convergent evolution in genetic data, convergent evolution of cultural variants (e.g. Tehrani & Collard  
408 2002; Mesoudi et al. 2006; Rogers & Ehrlich 2008) can produce a level of similarity that can be conflated  
409 with shared descent. For example, in our phonemic analysis in Figure 3, the potential for rapid change in  
410 languages can produce similarity in phonemes of otherwise distant languages. The cluster of languages  
411 colored in light green in Figure 3, which includes languages from sub-Saharan Africa, the Caucasus, and  
412 western North America, may result from convergent evolution combined with linkage of phoneme  
413 complexes that have developed independently. Consideration of the mechanistic processes underlying  
414 cultural data while incorporating domain-knowledge specific to datasets of interest is important in

415 interpreting the hierarchical structure generated by *NetStruct*. Because cultural data often possess the type  
416 of geographic structure, temporal structure, hierarchical categorization, or defining attributes for which  
417 *NetStruct* results can be productively interpreted, patterns from *NetStruct* can be informative alongside  
418 other statistical methods for assessing specific generative models for cultural data.

419 As a non-model-based tool, the strength of the method lies in its potential as an exploratory approach for  
420 producing informative patterns, patterns that potentially inspire hypotheses about factors that drive the  
421 features of cultural variation. We suggest that the use of this exploratory approach should be accompanied  
422 by analyses of hypotheses based on additional methods and domain knowledge; analyses of data on  
423 variation in artifacts of culture can be productively advanced by adding *NetStruct* to the repertoire of the  
424 field of cultural evolution.

425 **Methods**

---

426 **Between-informant similarity for LAMSAS pronunciation variation**

427 We obtained the LAMSAS data from the project website ([www.lap.uga.edu/Site/LAMSAS.html](http://www.lap.uga.edu/Site/LAMSAS.html)). To  
428 eliminate systematic effects of different interviewers, we considered only informants interviewed by the  
429 main interviewer, G. Lowman, who collected the earliest LAMSAS data (Nerbonne & Kleiweg, 2003).  
430 We therefore restricted attention to 839 informants interviewed during 1933-1942. Because words chosen  
431 for pronunciation differed across interviews, many words only appear in the records of a subset of  
432 informants. We considered only words collected for at least 700 informants, resulting in a list of 69  
433 words.

434 Consider  $n$  informants and  $m$  words. Suppose word  $j$  has  $l_j$  distinct transcriptions, counting diacritics.  
435 Entry  $A_{ij}$  of the data matrix is a categorical variable that indicates the transcription of word  $j$  for informant  
436  $i$ :  $A_{ij} \in \{1, 2, \dots, l_j\}$  if the information of word  $j$  has been collected from informant  $i$ , or  $A_{ij} = 0$  if word  $j$   
437 is unavailable for informant  $i$ .

438 We computed a frequency-weighted transcription-sharing similarity, adapting the allele-sharing similarity  
439 for genetic data (Greenbaum *et al.*, 2019). For two informants  $i_1$  and  $i_2$ , their frequency-weighted  
440 transcription-sharing similarity is calculated as

$$441 S_{i_1 i_2} = \frac{\sum_{j=1}^m (1-p_{A_{i_1 j}}^j) I(A_{i_1 j} = A_{i_2 j}) I(A_{i_1 j} \neq 0 \wedge A_{i_2 j} \neq 0)}{\sum_{j=1}^m I(A_{i_1 j} \neq 0 \wedge A_{i_2 j} \neq 0)}, \quad (1)$$

442 where  $p_{A_{i j}}^j$  is the frequency of transcription  $A_{ij}$  for word  $j$ . The indicator function  $I(\cdot)$  is 1 if the condition  
443 holds, and it is 0 otherwise. The similarity matrix  $S$  is obtained by normalization:

$$444 S_{i_1 i_2} = \frac{s_{i_1 i_2} - s_{min}}{s_{max} - s_{min}}, \quad (2)$$

445 where  $s_{min} = \min_{i_1, i_2} \{s_{i_1 i_2}\}$  and  $s_{max} = \max_{i_1, i_2} \{s_{i_1 i_2}\}$ .

446 In rare instances, two individuals have no shared words with data present. In these cases, we assigned for  
447 the similarity score the mean similarity of the remaining pairs.

#### 448 Between-region similarity for folklore motif variation

449 We downloaded the folklore data from the Berezkin *et al.* database  
450 (<http://www.ruthenia.ru/folklore/berezkin/>). The database provides (in Russian) for each indexed motif, a  
451 list of all numbered regions in which the motif is present. Considering all 2495 motifs, we constructed the  
452 matrix of presence/absence entries, associating the region and motif names with matrix rows and  
453 columns, respectively.

454 We denote the  $n \times m$  matrix by  $A$ , where  $n=65$  is the number of regions and  $m=2459$  is the number of  
455 motifs appearing in at least two regions.  $A_{ij}=1$  if motif  $j$  appears in region  $i$ , and  $A_{ij}=0$  otherwise. The  
456 pairwise frequency-weighted motif-sharing similarity for two regions  $i_1$  and  $i_2$  is calculated by a weighted  
457 Jaccard distance:

$$458 \quad s_{i_1 i_2} = \frac{\sum_{j=1}^m (1-f_j) A_{i_1 j} A_{i_2 j}}{\sum_{j=1}^m (1-f_j) I_{(A_{i_1 j} \neq 0 \vee A_{i_2 j} \neq 0)}}. \quad (3)$$

459 The quantity  $f_j = \frac{1}{n} \sum_{i=1}^n A_{ij}$  is the frequency of motif  $j$  across all regions. Eq. 3 places greater weight on  
460 contributions of less frequent motifs and less weight on common motifs.

461 We applied the same normalization from Eq. 2 to obtain a normalized similarity matrix that we used in  
462 our analysis.

#### 463 Normalized mutual information (NMI)

464 Denote two hierarchical clusterings on  $n$  entities by  $C^1$  and  $C^2$ , Suppose they partition the same set of  
465 entities  $E=\{e_1, e_2, \dots, e_n\}$  into  $k$  and  $l$  clusters  $C_1^1, C_2^1, \dots, C_k^1$  and  $C_1^2, C_2^2, \dots, C_l^2$ , respectively, where  
466  $\bigcup_{j=1}^k C_j^1 = \bigcup_{j=1}^l C_j^2 = E$ . Note that for each clustering—for example,  $C$ —the clusters are not necessarily

467 disjoint, so that each  $e_i$  can belong to multiple clusters  $C_j$ ; indeed child clusters  $C_{j'}$  are contained in parent  
468 clusters  $C_j$ , or  $C_{j'} \subset C_j$ . The NMI between these two hierarchical clusterings is then computed from the  $C_j^1$   
469 and  $C_j^2$  following the procedure of Greenbaum *et al.* (2019). This approach is flexible in the sense that  
470 NMI can also be computed for subsets of the clusters in the hierarchy, rather than for the entire set of  
471 clusters. To address clustering at the finer scale of the hierarchy, we computed NMI for the set of leaf  
472 clusters at the tips of the hierarchy.

#### 473 Between-language similarity for phoneme inventories

474 We obtained phoneme data from the supplement of Creanza *et al.* (2015). The similarity calculation  
475 follows that of the motif-sharing similarity, except that  $A$  now represents an  $n \times m$  matrix of  $n=2082$   
476 languages and  $m=454$  phonemes. Eq. 3 gives the similarity between a pair of languages, with  $f_j$  denoting  
477 the frequency of a phoneme among languages; we normalized the similarity matrix by Eq. 2 for our  
478 subsequent analysis.

#### 479 Between-name similarity for name frequency profiles

480 We downloaded the name data from <https://www.ssa.gov/oact/babynames/limits.html>. For the analysis,  
481 performed separately for female and male names, a matrix entry  $A_{ij}$  tabulates the number of appearances  
482 of name  $i$  in year  $j$ , normalized by the total number of individuals in year  $j$ . We write  $A_{ij}=0$  if name  $i$  is  
483 absent during year  $j$ , or if it is rare enough to have been omitted from the database for privacy reasons  
484 (fewer than 5 appearances nationally). For each pair of rows  $i_1, i_2$  of  $A$ , we computed the Pearson  
485 correlation  $r_{i_1, i_2}$  between them, and transformed it to a value in  $[0, 1]$  by  $s_{i_1, i_2} = (r_{i_1, i_2} + 1)/2$ .  
486 To obtain syllable counts for individual names, two raters separately assigned the counts, discussing cases  
487 of disagreement to assign a number of syllables. We computed averages of the number of syllables for  
488 names in specific clusters.

489 States of highest frequency and regions of highest normalized frequency for names

490 Separately for female and male names, let  $B_{ijk}$  denote the number of appearances of name  $i$  in state  $k$  in

491 year  $j$ . The frequency of name  $i$  in state  $k$  is calculated as  $f_{ik} = (\sum_j B_{ijk}) / (\sum_{k'} \sum_j B_{ijk'})$ . The state of

492 highest frequency for name  $i$  is obtained by  $\text{argmax}_k(f_{ik})$ , which we denote the majority state in Fig. 4B

493 and 4F.

494 The states are then grouped into four regions described in Fig. 4. For each region  $l$  containing a group of

495 states, let  $C_{ijl}$  denote the number of appearances of name  $i$  in region  $l$  in year  $j$ , or  $C_{ijl} = \sum_{k \in l} B_{ijk}$ . For

496 each year  $j$ , this number of appearances is divided by the total number of individuals in a region to obtain

497 the fraction that it represents of all names in the region during year  $j$ :  $C_{ijl}^* = C_{ijl} / \sum_{i'} C_{i'jl}$ . Averaging

498 across years, the normalized frequency of name  $i$  in region  $l$  is then calculated as  $g_{il} =$

499  $(\sum_j C_{ijl}^*) / (\sum_{l'} \sum_j C_{ijl'}^*)$ . The region of highest normalized frequency for name  $i$  is obtained by

500  $\text{argmax}_l(g_{il})$ , which we denote the majority region in Fig. 4C and 4G.

501

## 502 **Acknowledgements**

---

503 We thank E. Alimpiev for assistance with the folklore data and D. Cotter for assistance with the name

504 data.

## 505 **Authors' contributions**

---

506 XL contributed conceptualization, methodology, investigation, visualization, and writing. NAR

507 contributed conceptualization, methodology, supervision, and writing. GG contributed conceptualization,

508 methodology, supervision, and writing.

## 509 **Financial support**

---

510 This work was supported by National Institutes of Health grant R01 HG005855 and National Science  
511 Foundation grant BCS-2116322 awarded to NAR, and a grant from the Hebrew University of Jerusalem  
512 Center for Interdisciplinary Data Science Research (CIDR) awarded to GG.

513 **Conflicts of interest**

---

514 Authors declare that they have no competing interests.

515 **Data availability statement**

---

516 The data that support the findings of this study are available as supplementary files. Functions for  
517 processing and visualizing *NetStruct* output are provided, as are example uses of those functions.

518 **References**

---

519 Acerbi, A., & Bentley, R. A. (2014). Biases in cultural transmission shape the turnover of popular traits.  
520 *Evolution and Human Behavior*, 35(3), 228–236.

521 Aplin, L. M. (2019). Culture and cultural evolution in birds: A review of the evidence. *Animal Behaviour*,  
522 147, 179–187.

523 Atkinson, Q. D. (2011). Phonemic diversity supports a serial founder effect model of language expansion  
524 from Africa. *Science*, 332(6027), 346–349.

525 Barucca, P., Rocchi, J., Marinari, E., Parisi, G., & Ricci-Tersenghi, F. (2015). Cross-correlations of  
526 American baby names. *Proceedings of the National Academy of Sciences*, 112(26), 7943–7947.

527 Berezkin, Y. (2010). Tricksters trot to America: areal distribution of folklore motifs. *Folklore: Electronic  
528 Journal of Folklore*, 46, 125–142.

529 Berezkin, Yu. E., Borinskaya, S. A., Kuznetsova, A. V., & Sen'ko, O. V. (2009). Study of folklore and  
530 mythological traditions using intellectual data mining. *Pattern Recognition and Image Analysis*, 19(4),  
531 630–633.

532 Berger, J., Bradlow, E. T., Braunstein, A., & Zhang, Y. (2012). From Karen to Katie: using baby names  
533 to understand cultural evolution. *Psychological Science*, 23(10), 1067–1073.

534 Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in  
535 large networks. *Journal of Statistical Mechanics: Theory and Experiment*, 2008(10), P10008.

536 Bortolini, E., Pagani, L., Crema, E. R., Sarno, S., Barbieri, C., Boattini, A., Sazzini, M., da Silva, S. G.,  
537 Martini, G., Metspalu, M., Pettener, D., Luiselli, D., & Tehrani, J. J. (2017). Inferring patterns of folktale  
538 diffusion using genomic data. *Proceedings of the National Academy of Sciences*, 114(34), 9140–9145.

539 Boyd, R., & Richerson, P. J. (1985). *Culture and the Evolutionary Process*. Chicago: University of  
540 Chicago Press.

541 Bromham, L. (2017). Curiously the same: Swapping tools between linguistics and evolutionary biology.  
542 *Biology & Philosophy*, 32(6), 855–886.

543 Cavalli-Sforza, L. L., & Feldman, M. W. (1981). *Cultural Transmission and Evolution*. Princeton, NJ:  
544 Princeton University Press.

545 Cavalli-Sforza, L. L., & Piazza, A. (1975). Analysis of evolution: evolutionary rates, independence and  
546 treeness. *Theoretical Population Biology*, 8(2), 127-165.

547 Creanza, N., Ruhlen, M., Pemberton, T. J., Rosenberg, N. A., Feldman, M. W., & Ramachandran, S.  
548 (2015). A comparison of worldwide phonemic and genetic variation in human populations. *Proceedings  
549 of the National Academy of Sciences*, 112(5), 1265–1272.

550 Fort, J., & Pérez-Losada, J. (2016). Can a linguistic serial founder effect originating in Africa explain the  
551 worldwide phonemic cline? *Journal of The Royal Society Interface*, 13(117), 20160185.

552 Fortescue, M. (2005). *Comparative Chukotko-Kamchatkan Dictionary*. Berlin: Mouton de Gruyter.

553 Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks.  
554 *Proceedings of the National Academy of Sciences*, 99(12), 7821–7826.

555 Gray, R. D., Bryant, D., & Greenhill, S. J. (2010). On the shape and fabric of human history.  
556 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1559), 3923–3933.

557 Greenbaum, G., Rubin, A., Templeton, A. R., & Rosenberg, N. A. (2019). Network-based hierarchical  
558 population structure analysis for large genomic data sets. *Genome Research*, 29(12), 2020–2033.

559 Greenbaum, G., Templeton, A. R., & Bar-David, S. (2016). Inference and analysis of population structure  
560 using genetic data and network theory. *Genetics*, 202(4), 1299–1312.

561 Gureckis, T. M., & Goldstone, R. L. (2009). How you named your child: understanding the relationship  
562 between individual decision making and collective outcomes. *Topics in Cognitive Science*, 1(4), 651–674.

563 Haasl, R. J., & Payseur, B. A. (2011). Multi-locus inference of population structure: A comparison  
564 between single nucleotide polymorphisms and microsatellites. *Heredity*, 106(1), 158–171.

565 Hahn, M. W., & Bentley, R. A. (2003). Drift as a mechanism for cultural change: An example from baby  
566 names. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 270(suppl\_1), S120–  
567 S123.

568 Kessler, D. A., Maruvka, Y. E., Ouren, J., & Shnerb, N. M. (2012). You name it – how memory and delay  
569 govern first name dynamics. *PLoS One*, 7(6), e38790.

570 Kolodny, O., Feldman, M. W., & Creanza, N. (2018). Integrative studies of cultural evolution: Crossing  
571 disciplinary boundaries to produce new insights. *Philosophical Transactions of the Royal Society B:*  
572 *Biological Sciences*, 373(1743), 20170048.

573 Korotaev, A. V., Berezkin, Y., Kozmin, A., & Arkhipova, A. (2006). Return of the white raven:  
574 Postdiluvial reconnaissance motif A2234.1.1 reconsidered. *Journal of American Folklore*, 119(472), 203–  
575 235.

576 Korotayev, A. V., Berezkin, Y. E., Borinskaya, S. A., Davletshin, A. I., & Khaltourina, D. A. (2017).  
577 Genes and myths: which genes and myths did the different waves of the peopling of Americas bring to the  
578 New World? In L. E. Grinin, A. V. Korotayev, eds., *History & Mathematics: Economy, Demography,*  
579 *Culture, and Cosmic Civilizations* (pp. 9–77). Volgograd: Uchitel Publishing House.

580 Kretzschmar Jr., W. A., McDavid, V. G., Lerud, T. K., & Johnson, E. (1993). *Handbook of the Linguistic*  
581 *Atlas of the Middle and South Atlantic States*. Chicago: University of Chicago Press.

582 Lee, J., & Kretzschmar Jr, W. A. (1993). Spatial analysis of linguistic data with GIS functions.  
583 *International Journal of Geographical Information Systems*, 7(6), 541–560.

584 Mesoudi, A. (2016). Cultural evolution: A review of theory, findings and controversies. *Evolutionary*  
585 *Biology*, 43(4), 481–497.

586 Mesoudi, A., Whiten, A., & Laland, K. N. (2006). Towards a unified science of cultural evolution.  
587 *Behavioral and Brain Sciences*, 29(4), 329-347.

588 Nerbonne, J. (2015). Various variation aggregates in the LAMSAS south. In M. D. Picone & C. E.  
589 Davies, eds., *Language Variety in the South III* (pp. 369-382). Tuscaloosa, AL: University of Alabama  
590 Press.

591 Nerbonne, J., & Kleiweg, P. (2003). Lexical distance in LAMSAS. *Computers and the Humanities*, 37(3),  
592 339–357.

593 Nerbonne, J., & Kretzschmar, W. (2003). Introducing computational techniques in dialectometry.  
594 *Computers and the Humanities*, 37(3), 245–255.

595 O'Dwyer, J. P., & Kandler, A. (2017). Inferring processes of cultural transmission: The critical role of  
596 rare variants in distinguishing neutrality from novelty biases. *Philosophical Transactions of the Royal  
597 Society B: Biological Sciences*, 372(1735), 20160426.

598 Pagel, M. (2009). Human language as a culturally transmitted replicator. *Nature Reviews Genetics*, 10(6),  
599 405–415.

600 Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., &  
601 Reich, D. (2012). Ancient admixture in human history. *Genetics*, 192(3), 1065-1093.

602 Pérez-Losada, J., & Fort, J. (2018). A serial founder effect model of phonemic diversity based on  
603 phonemic loss in low-density populations. *PLoS One*, 13(6), e0198346.

604 Pickrell, J., & Pritchard, J. (2012). Inference of population splits and mixtures from genome-wide allele  
605 frequency data. *PLoS Genetics* 8: e1002967.

606 Pomorski, M., Krawczyk, M. J., Kułakowski, K., Kwapienie, J., & Ausloos, M. (2016). Inferring cultural  
607 regions from correlation networks of given baby names. *Physica A: Statistical Mechanics and Its  
608 Applications*, 445, 169–175.

609 Rendell, L., & Whitehead, H. (2005). Spatial and temporal variation in sperm whale coda vocalizations:  
610 Stable usage and local dialects. *Animal Behaviour*, 70(1), 191–198.

611 Rogers, D. S., & Ehrlich, P. R. (2008). Natural selection and cultural rates of change. *Proceedings of the*  
612 *National Academy of Sciences*, 105(9), 3416–3420.

613 Ross, R. M., Greenhill, S. J., & Atkinson, Q. D. (2013). Population structure and cultural geography of a  
614 folktale in Europe. *Proceedings of the Royal Society B: Biological Sciences*, 280(1756), 20123065.

615 Takezaki, N., & Nei, M. (1996). Genetic distances and reconstruction of phylogenetic trees from  
616 microsatellite DNA. *Genetics*, 144(1), 389–399.

617 Tehrani, J., & Collard, M. (2002). Investigating cultural evolution through biological phylogenetic  
618 analyses of Turkmen textiles. *Journal of Anthropological Archaeology*, 21(4), 443–463.

619 Tehrani, J. J. (2013). The phylogeny of Little Red Riding Hood. *PLoS One*, 8(11), e78871.

620 Thuillard, M., Quellec, J. L., D'huy, J., & Berezkin, Y. (2018). A large-scale study of world myths.  
621 *Trames: A Journal of the Humanities and Social Sciences*, 22(4), 407–424.

622 Westphal, E. O. J. (1971). The click languages of Southern and Eastern Africa. In T. A. Sebeok, ed.,  
623 *Linguistics in Sub-Saharan Africa* (pp. 367–420). The Hague: De Gruyter Mouton.

624 **Figures**

---

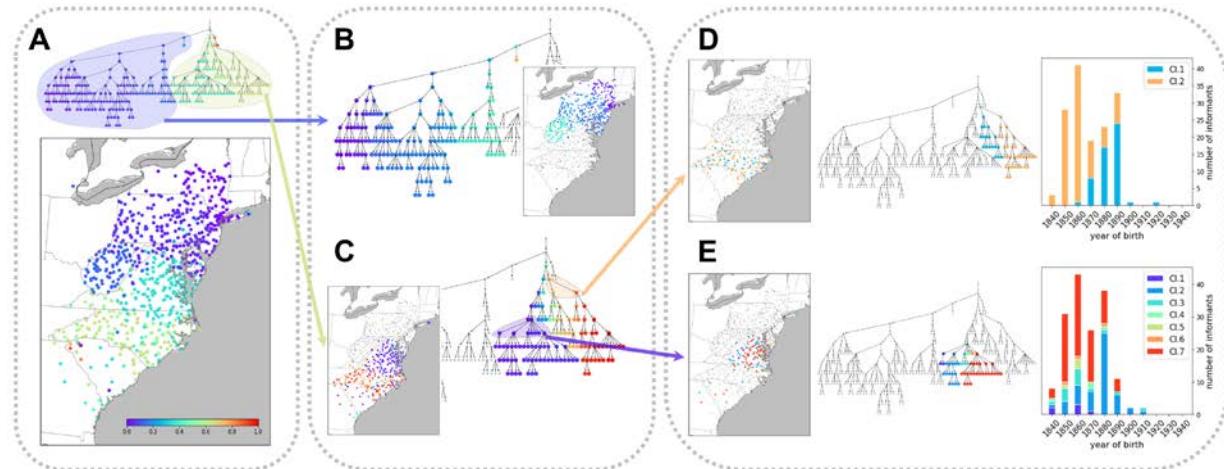
625 **Fig. 1: Hierarchical features of variation in English pronunciation in the middle and south Atlantic**  
626 **region of the United States.** (A) Hierarchical tree of the pronunciation similarity network. Informants are  
627 marked on the map by the color of the finest-scale cluster to which they belong. (B, C) Two major  
628 clusters detected at the first level of the hierarchy in (A), each re-colored with the full color interval. (D,  
629 E) Two finer-scale clusters of the hierarchy in (C). In these panels, colors are assigned based on  
630 placement in the area of the hierarchy circled in (C), with all descendants of a child in the circled area  
631 assigned the same color. The colors in (D) correspond to 1/4 and 3/4 on the unit interval, and the colors in  
632 (E) correspond to 1/14, 3/14, 5/14, 7/14, 9/14, 11/14, and 13/14. For convenience, the child clusters  
633 associated with specific internal nodes in the tree diagrams are numbered. Birth-year distributions of  
634 informants in these child clusters appear at right.

635 **Fig. 2: Hierarchical features of variation in folklore motifs across cultures.** (A) Hierarchical tree of  
636 the motif similarity network. Regions are marked on the map by the color of the finest-scale cluster to  
637 which they belong. (B) Distributions of normalized mutual information (NMI) between hierarchies  
638 extracted from sampled subsets of motifs and from all motifs, with 100 subsets of 20, 50, 100, and 500  
639 motifs each. (C) Geographic distributions of five motifs that occur most frequently in the 200 of 5,000  
640 subsets of 20 motifs that produce hierarchies with highest NMI to the hierarchy produced by all motifs.  
641 These motifs drive the hierarchy at higher levels, separating regions into major clusters. (D) Distributions  
642 of NMI between the leaves of hierarchies extracted from subsets of motifs (those from B) and the leaves  
643 extracted from all motifs. (E) Geographic distributions of three motifs that occur most frequently in the  
644 200 subsets that produce hierarchies whose leaf clusters produce highest NMI to those produced by all  
645 motifs. These motifs are more specific to the hierarchy in lower levels and potentially capture fine-scale  
646 regional differences.

647 **Fig. 3: Hierarchical features of phonemic variation.** (A) Hierarchical tree of the phoneme similarity  
648 network. Major branches that contain most of the languages are assigned distinct colors, and other  
649 branches are colored gray. (B) Language map. Languages are marked by the color of the finest-scale  
650 cluster to which they belong. Three regions are magnified. (C) Northeast Asia. (D) Northeastern Siberia.  
651 (E) East Africa.

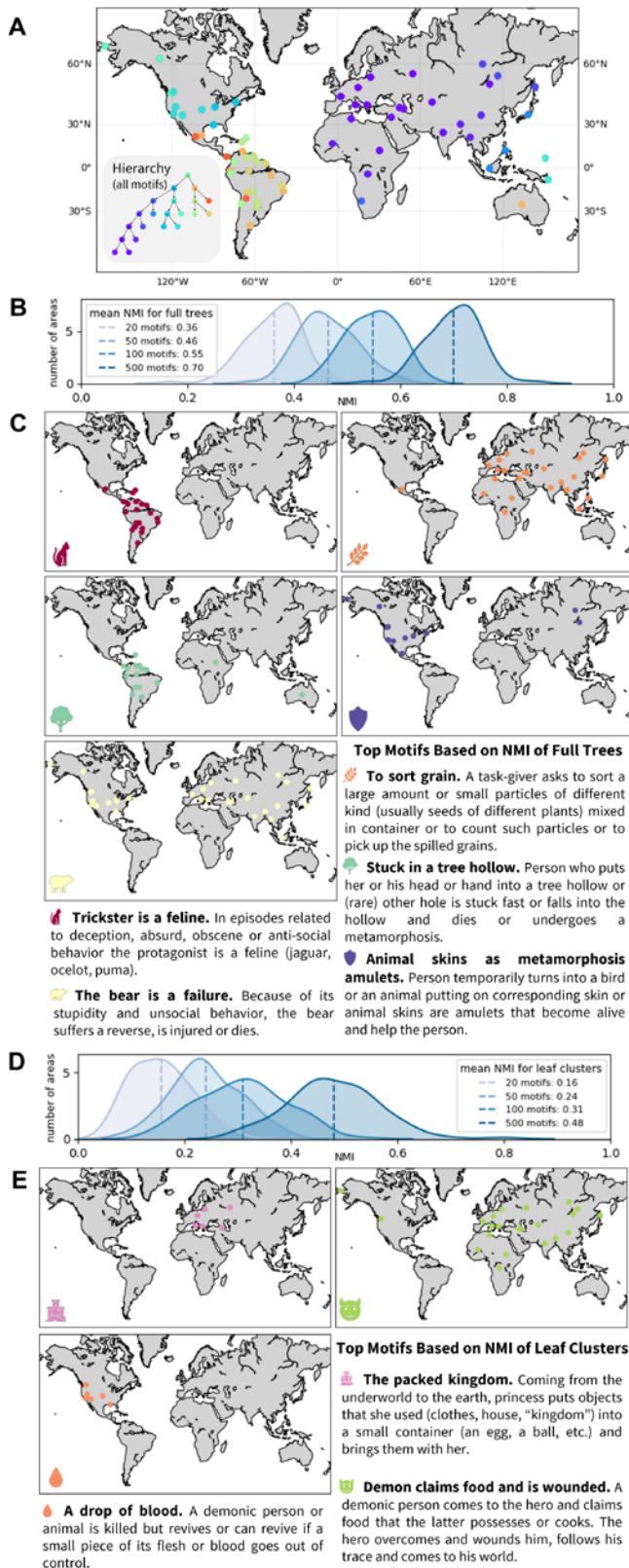
652 **Fig. 4: Hierarchical features of time series for frequencies of female names (A-D) and male names**  
653 **(E-H).** (A, E) Hierarchical tree of similarity in time series for name frequencies. Major branches are  
654 assigned distinct colors. Time series of annual national frequencies appear below the trees, with two  
655 names selected from each major branch highlighted. Node area is proportional to the number of names in  
656 a cluster, except that clusters containing greater than 25 names are set to a fixed size and are colored half-  
657 transparently. (B, F) Recoding of the hierarchies in (A, E) by states of highest frequency. Each cluster  
658 shows a pie chart tabulating the states in which names in the cluster have the highest frequency. Time  
659 series of name frequencies appear below the hierarchies. (C, G) Recoding of the hierarchies in (A, E) by  
660 regions of highest normalized frequency. The states are grouped into four regions: West (AK, AZ, CA,  
661 CO, HI, ID, MT, NM, NV, OR, UT, WA, WY), Midwest (IA, IL, IN, KS, MI, MN, MO, ND, NE, OH,  
662 SD, WI), South (AL, AR, DC, DE, FL, GA, KY, LA, MD, MS, NC, OK, SC, TN, TX, VA, WV), and  
663 Northeast (CT, MA, ME, NH, NJ, NY, PA, RI, VT). The normalized frequency of a name in a region is  
664 the count of the name in the region normalized by the total number of individuals in the region. The steps  
665 to obtain the states of highest frequency and regions of highest normalized frequency are described in  
666 *Methods.* (D, H) Recoding of the hierarchies in (A, E) by mean number of syllables of names in clusters.

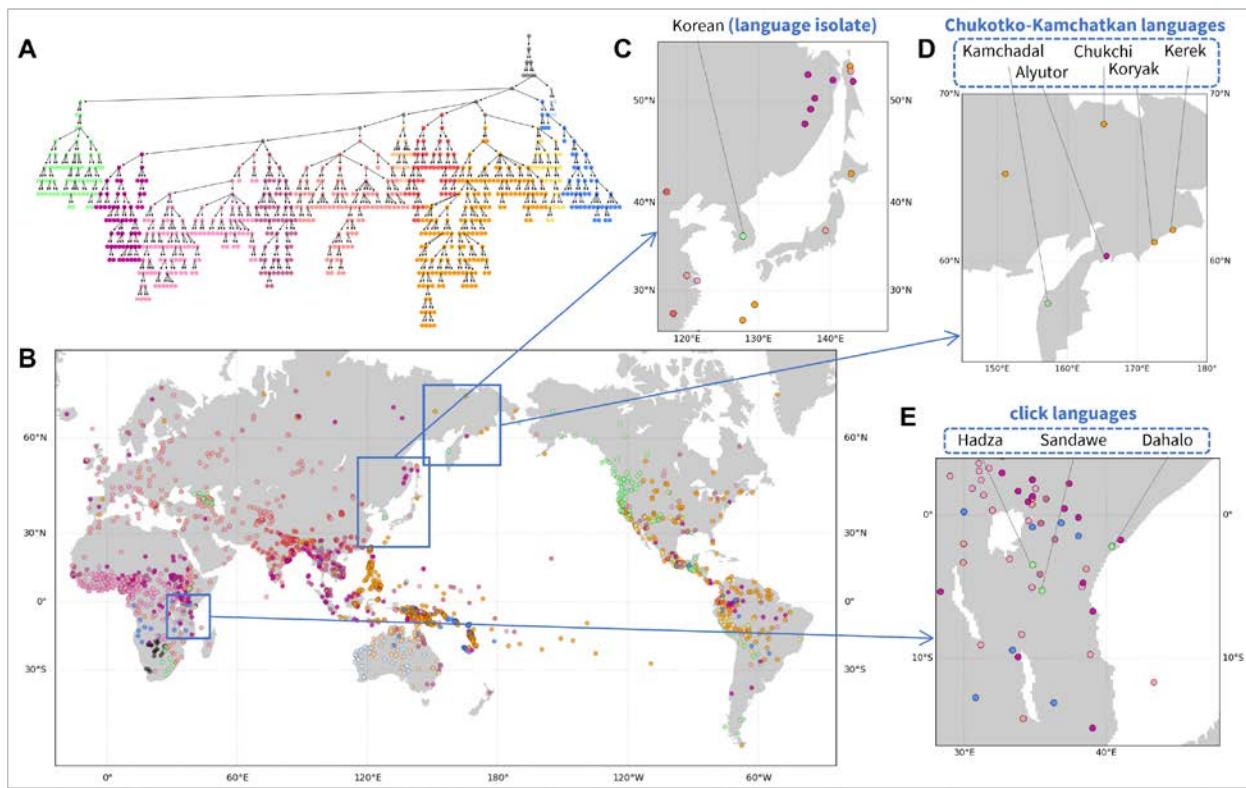
667



668

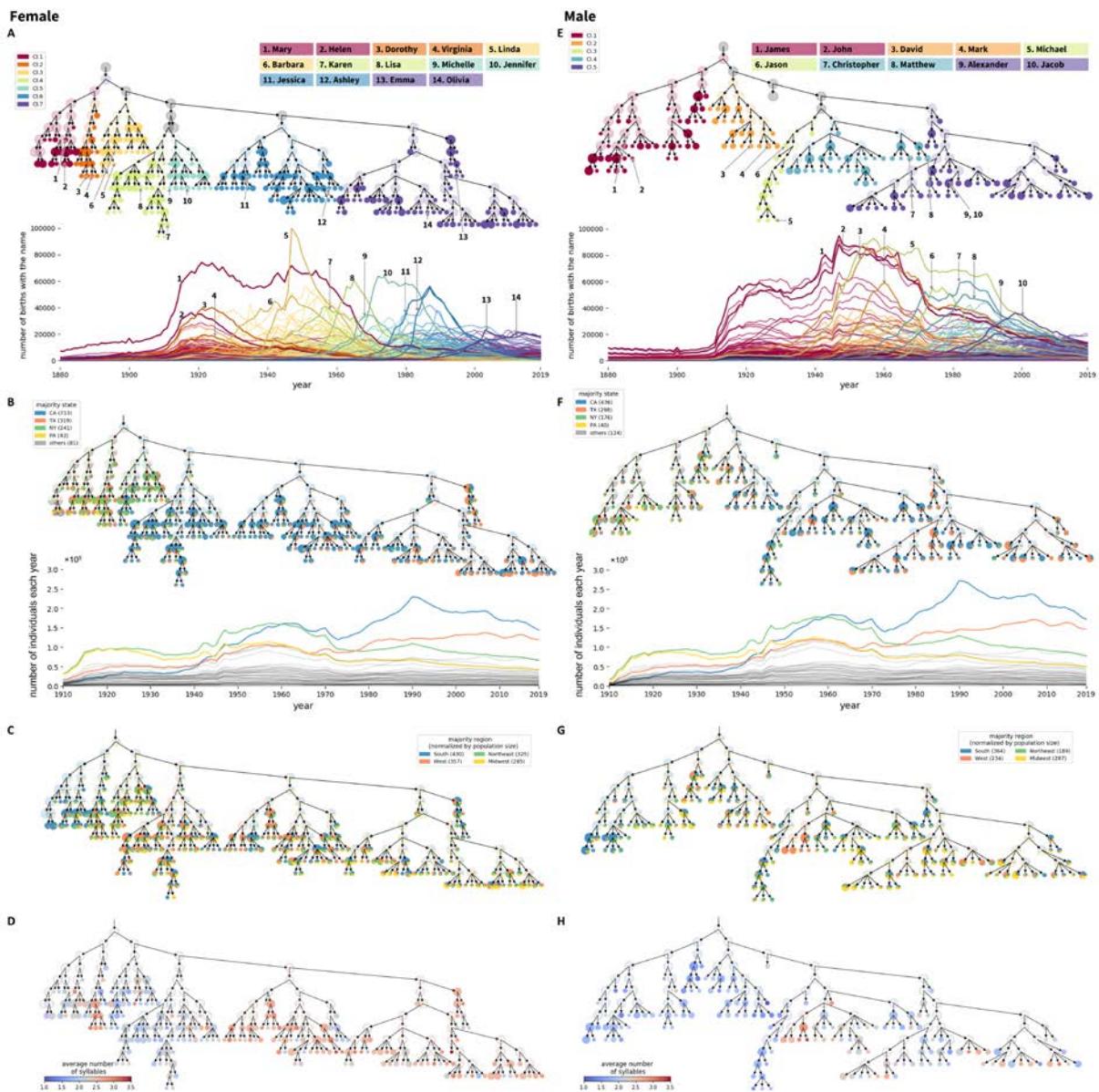
669 Figure 1.





672

673 Figure 3.



674

675 Figure 4.