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Abstract 14 

High-dimensional data sets on cultural characters contribute to uncovering insights about factors that 15 

influence cultural evolution. Because cultural variation in part reflects descent processes with a 16 

hierarchical structure—including descent of populations and vertical transmission of cultural traits—17 

methods designed for hierarchically structured data have potential to find applications in the analysis of 18 

cultural variation. We adapt a network-based hierarchical clustering method for use in analyzing cultural 19 

variation. Given a set of entities, the method constructs a similarity network, hierarchically depicting 20 

community structure among them. We illustrate the approach using four data sets: pronunciation variation 21 

in the United States mid-Atlantic region, folklore variation in worldwide cultures, phonemic variation 22 

across worldwide languages, and temporal variation in first names in the United States. In these examples, 23 

the method provides insights into processes that affect cultural variation, uncovering geographic and other 24 

influences on observed patterns and cultural characters important in contributing to them. 25 

 26 

Social media summary: Network-based clustering reveals structure in cultural variation in pronunciation, 27 

folklore, phonemes, and first names   28 
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Introduction 29 

In recent years, increasingly available large-scale data sets on aspects of variation across human cultures 30 

and within cultures over time have provided rich information about fine-scale details of human cultural 31 

variation and the factors that influence its dynamics (Mesoudi, 2016; Kolodny et al., 2018). For example, 32 

investigations of variation in folktales among cultures have identified interactions of cultural diffusion 33 

and demic diffusion in the spread of folklore and mythology (Bortolini et al., 2017; Thuillard et al., 34 

2018). A study of design features of traditional canoes across Polynesian societies has suggested a faster 35 

rate of cultural change in canoe traits that were less significant to functional performance of the 36 

watercraft, in line with the faster evolution that occurs for non-functional rather than functional genetic 37 

variants (Rogers & Ehrlich, 2008). Studies of variation in the presence and absence of linguistic 38 

characters across languages have uncovered influences of ancient migrations on patterns of language 39 

variation observed today (Atkinson, 2011; Creanza et al., 2015).  40 

The analysis of complex data to reveal features of cultural variation makes use of a variety of statistical 41 

methods designed for high-dimensional data analysis more generally. Such methods include analyses of 42 

distance matrices based on cultural traits of interest (Rogers & Ehrlich, 2008; Creanza et al., 2015; 43 

Bortolini et al., 2017; Thuillard et al., 2018), multivariate analysis techniques such as principal 44 

components analysis (Creanza et al., 2015), correlations involving spatial statistics and geographic maps 45 

(Atkinson, 2011; Creanza et al., 2015; Bortolini et al., 2017), and hierarchical tree-based clustering 46 

(Creanza et al., 2015; Thuillard et al., 2018).  47 

Viewed in relation to their underlying generative processes, different forms of cultural variation often 48 

possess shared features (Cavalli-Sforza & Feldman, 1981; Boyd & Richerson, 1985). Different cultural 49 

entities might possess a shared variant, as a result of processes such as the independent origin of 50 

functionally significant variants, random recurrence of nonfunctional variants, or cultural exchange. 51 

Salient among the forces contributing to patterns of cultural variation is shared descent, so that even if 52 
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independent origins and cultural exchange are important in specific settings, hierarchical or geographic 53 

structure can often contribute to features of cultural variation.  54 

Owing to the importance of shared descent in influencing cultural variation, tools for analyzing cultural 55 

variation data can employ methods suited to analysis of genetic data, which also possess signatures of 56 

shared descent; thus, many statistical methods used in cultural data analysis are similar to those used for 57 

genetic data (Bromham, 2017; Gray et al., 2010; Pagel, 2009). Recently, we have introduced a method, 58 

NetStruct, for use in understanding genetic variation data that result from hierarchical genetic structure 59 

(Greenbaum et al., 2016, 2019). The method, employing ideas from network analysis, produces a 60 

distinctive form of visualization of hierarchical population relationships. It has been seen to detect subtle 61 

patterns that have been overlooked using earlier forms of data analysis. 62 

The NetStruct method consists of three main steps: construction of similarity matrices between entities, 63 

community detection in similarity matrices, and hierarchical visualization of communities. The method is 64 

general beyond genetic data, as the form of the data contributes only to the choice of similarity function. 65 

It can thus be modified for use with other types of data that result from distinct but related generative 66 

processes, including data on cultural variation.  67 

Here, we adapt the NetStruct method for use in the study of cultural evolution. We examine a variety of 68 

data sets on different forms of cultural variation, considering geographic variation in English 69 

pronunciation, variation across cultures in folklore, phonemic variation across languages, and temporal 70 

variation in frequencies of first names. Using each of the four forms of cultural data, we illustrate the 71 

potential of the method as an exploratory tool to reveal features of geographic and temporal structure in 72 

cultural phenomena and to extract patterns that can inspire hypotheses about underlying mechanisms. 73 

Each example additionally highlights a different aspect of the hierarchical analysis: analyses at different 74 

levels of detail in the hierarchy, identification of characters that are important in driving the partitioning, 75 

analysis of outliers, and the relationship of the hierarchy to features of entities beyond those used in its 76 

construction. 77 
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Results  78 

Generalizing the NetStruct pipeline 79 

In the first step of the NetStruct method, for a set of entities, each having a value for each of a series of 80 

characters, we construct an n×m data matrix A with n rows corresponding to entities and m columns 81 

corresponding to characters. Entry Aij gives the value of character j for entity i; this value can be either 82 

categorical or quantitative, depending on the type of character. 83 

The similarity between two entities i1 and i2, denoted 𝑠𝑠𝑖𝑖1,𝑖𝑖2, is computed by a function applied to rows i1 84 

and i2. We normalize pairwise similarities so that they take on values in [0,1]. The resulting n×n 85 

similarity matrix S then becomes the adjacency matrix of a similarity network. The similarity function is 86 

chosen based on a particular application of interest. 87 

In a network, community structure exists when high concentrations of edges occur within certain groups 88 

of nodes in the network and low concentrations occur between these groups (Girvan & Newman, 2002). 89 

In the second step of NetStruct, we iteratively remove edges with lower weights from the network to 90 

reveal the finer-scale structure within coarser communities. NetStruct uses a community-detection 91 

Louvain algorithm (Blondel et al., 2008) together with an iterative edge-pruning method (Greenbaum et 92 

al., 2019). The Louvain algorithm maximizes a “modularity score” for each community, quantifying the 93 

difference between the actual density of edges within the community and the expected density if all edges 94 

in the network were distributed at random while preserving the degree distribution of the network. The 95 

Louvain algorithm starts by assigning each node to its own community, sequentially merging nodes into 96 

communities in a manner that produces the greatest modularity increase—until no further increase occurs. 97 

NetStruct iteratively removes edges below a weight threshold of increasing value and applies community-98 

detection in each subdivided community at each iteration, generating hierarchical structure at multiple 99 

levels. 100 
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Finally, in the last step, the communities detected at each iteration are assembled to form the output 101 

hierarchy, which can be visualized as a hierarchical tree coded by a coloring scheme. Because clustering 102 

is hierarchical, each entity can belong to multiple communities, or clusters, at different hierarchical levels; 103 

that is, each cluster can have finer-scale “child” clusters. 104 

NetStruct visualizes community structure using a diagram that depicts hierarchical relationships among 105 

clusters. Each cluster is assigned an interval representation of a color gradient; the root node is assigned 106 

the unit interval. Child clusters are assigned equal portions of the interval associated with their parental 107 

node. Clusters are colored by the midpoint of the associated interval, such that at each hierarchical level, 108 

child clusters of the same parent have colors that are more similar than are those of different parents. The 109 

color scheme facilitates interpretation, as the original entities can be labeled by the finest-scale cluster to 110 

which they are assigned in the diagram. 111 

To generalize use of NetStruct beyond genetic data, we require a function that describes similarity 112 

between pairs of entities of interest. Many similarity measures are possible, and NetStruct is applied to the 113 

similarity matrix after it has been constructed. For a given data set of interest, the similarity function is 114 

chosen in a manner suited to the application. We follow Greenbaum et al. (2016, 2019) in choosing 115 

frequency-weighted similarity measures that emphasize shared rare values of a character. 116 

Variation in pronunciation across locations 117 

For our first example, we examined data on individual variation in pronunciation. Local variation in 118 

communication variants has potential to provide insight into cultural transmission and spatial patterns of 119 

distinctiveness and interaction in a population (Nerbonne & Kleiweg, 2003; Rendell & Whitehead, 2005; 120 

Aplin, 2019). To understand the relationship between geography and individual-level pronunciation of a 121 

shared human language, we applied NetStruct to data on English pronunciation variation in the middle 122 

and south Atlantic region of the United States.  123 
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LAMSAS pronunciation data  124 

We obtained pronunciation variation data from the Linguistic Atlas of the Middle and South Atlantic 125 

States (LAMSAS) (Kretzschmar Jr. et al., 1993). These data consist of dialect records on pronunciations 126 

of everyday words collected in 1933-1942 from eleven states: Delaware, Maryland, New Jersey, New 127 

York, North Carolina, Pennsylvania, South Carolina, Virginia, and West Virginia, with some records 128 

from eastern Georgia and northeastern Florida included as well. 129 

We restricted our analysis to n=839 informants interviewed by the major field worker (Nerbonne & 130 

Kretzschmar, 2003) and m=69 words recorded for most informants. We constructed the n×n similarity 131 

matrix based on phonetic transcriptions of pronunciations of the m words. The similarity is greater when 132 

informants share many pronunciations, and when they share rare pronunciations (Methods). We then 133 

applied NetStruct to infer hierarchical structure.  134 

Hierarchical structure of pronunciation variation: levels of detail  135 

Fig. 1 presents the hierarchical structure of pronunciation variation in the LAMSAS data. In Fig. 1A, we 136 

color informants on the map by their finest-scale clusters in the tree diagram. In the NetStruct color 137 

scheme, informants with more similar colors appear closer in the tree diagram, and those with distinct 138 

colors are placed in different branches at relatively high levels in the hierarchy. For example, in Fig. 1A, 139 

distant colors purple and yellow belong to different major branches of the hierarchy; informants colored 140 

purple are mostly in the northern part of the Atlantic region, and those colored yellow are mostly in the 141 

southern part. 142 

To examine the two major clusters at a finer level of detail, we reapply the coloring, for each cluster 143 

assigning the root node the color corresponding to the midpoint in the unit interval (Fig. 1, B and C). 144 

Within each of the two clusters, finer levels of the hierarchy group together informants who are 145 

geographically closer. In the cluster that contains most of the individuals from the more northerly regions 146 

(Fig. 1B), pronunciation distinctions can be observed in groups corresponding largely to New York and to 147 

West Virginia. In the cluster that contains most of the more southerly individuals (Fig. 1B), a distinction 148 
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is noticeable between finer clusters corresponding to North Carolina and to Virginia, with some 149 

individuals in both states placed in small clusters. 150 

We repeat the process to examine Fig. 1C in even finer detail. This analysis, in Fig. 1D and Fig. 1E, 151 

illustrates that at lower levels of the hierarchy, clusters are not always associated with geographical 152 

features. However, we observe that year of birth is strongly associated with cluster assignment at this 153 

local geographic scale (Fig. 1, D and E). In other words, in some tree branches, clusters within a branch 154 

correspond to age structure, rather than to geography. 155 

This analysis highlights that our clustering extracts one set of features from pronunciation variation at 156 

high hierarchical levels—geographical variation in informants—and at lower hierarchical levels, it 157 

captures other features, such as age structure. The analysis of multiple hierarchical levels assists in the 158 

interpretation of the patterns both at the broadest scale as well as at fine-scale levels. 159 

Variation in folklore motifs across cultures 160 

In the study of folklore and mythology, recurring plot patterns, or “motifs,” occur across cultures. Motif 161 

variation can provide insight into cross-cultural patterns, including migrations and cultural transmission in 162 

relation to ethnolinguistic barriers (Berezkin, 2010; Bortolini et al., 2017; Korotayev et al., 2017; 163 

Thuillard et al., 2018). Here we used folklore motifs to analyze cultural variation, identifying motifs 164 

important in constructing the proposed hierarchical relationships. 165 

Database of folklore 166 

We examined data on presence and absence of folklore motifs in individual cultures. Using folklore data 167 

from around the world, Berezkin et al. (Berezkin et al., 2009; Korotayev et al., 2017) tabulated recurring 168 

motifs prominent in links between folklore traditions, defining a motif to be “any image, compositional 169 

structure, episode or chain of episodes found in more than one text.” Berezkin et al. reported a list of 170 

cultures for each motif. 171 
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We focused our analysis on the n=65 regions in the Berezkin et al. database and the m=2459 motifs 172 

appearing in at least two of these regions. We computed similarities between pairs of regions based on 173 

numbers of shared motifs, negatively weighted by motif frequency (Methods). 174 

Hierarchical structure of folklore variation: important characters 175 

Fig. 2A presents the hierarchical structure of motif variation extracted using the pairwise similarities 176 

calculated based on all motifs. The geographic regions are mostly clustered into three large areas: Eurasia 177 

and Africa (purple), North America (blue), and South America (orange), with varied placement of 178 

populations from Australia and Oceania.  179 

To identify which motifs are most important for extracting the hierarchical features, we adopt the 180 

normalized mutual information (NMI) approach to compare hierarchies constructed using different sets of 181 

motifs (Greenbaum et al., 2019). For a pair of hierarchical clusterings, the NMI measure ranges from 0 to 182 

1, quantifying the information obtained about one clustering by observing another. The NMI measure is 183 

high when two clustering hierarchies describe similar clustering structures (Methods). The NMI approach 184 

is flexible in that it enables comparisons between subsets of the hierarchical structure, for example by 185 

comparing only the leaves of the hierarchy. 186 

We sampled 100 random subsets of 20, 50, 100, and 500 motifs, for each subset applying NetStruct to 187 

extract a hierarchy from the similarity network based on the sampled motifs. We then computed the NMI 188 

between the hierarchy of the sampled motifs and the hierarchy for all motifs, both for the full tree and for 189 

only the leaf clusters. In both NMI analyses, as the number of motifs in the subset increases, the mean of 190 

the NMI distribution increases (Fig. 2, B and D). The hierarchy produced by a larger subset of motifs is 191 

more informative than those generated with fewer motifs.  192 

Different motifs can be more informative or less informative regarding the hierarchical structure of the 193 

data. For example, a motif found in all regions, or one not correlated with the main cultural patterns, will 194 

not be informative about the clustering. To identify the most informative motifs, we sampled 5,000 195 

subsets of 20 motifs with replacement, counting occurrences of motifs in the 200 subsets possessing the 196 
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highest NMI with the full tree and those possessing the highest NMI for leaf clusters. With random 197 

sampling, the expected number of occurrences of each motif in the top 200 subsets is 20/m×200≈1.6.  198 

The five most informative motifs for the full hierarchical structure appear in Fig. 2C. The motif most 199 

frequently found in high-NMI subsets is ‘trickster is a feline,’ appearing in 16 of 200 subsets (P=1.5×10-200 

11, binomial test). This motif is common in Central and South America. ‘To sort grain’ has 11 occurrences 201 

(P=9.8×10-7), and the next three most informative motifs have eight occurrences each (P=2.7×10-4) and 202 

are also associated with large geographic regions (Fig. 2C). Some informative motifs correspond to 203 

natural or cultural phenomena restricted by geography, such as the practice of agriculture and the habitat 204 

ranges of animals. 205 

The three most informative motifs for the fine-scale cultural structure represented by the leaves of the 206 

hierarchy are shown in Fig. 2E. Each appears eight times, above the number expected from random 207 

sampling (P=2.7×10-4). Two of these, ‘a drop of blood’ and ‘the packed kingdom’ have restricted 208 

geographic ranges. This result suggests that motifs of local folklore contribute to fine-scale features of the 209 

hierarchy. 210 

In addition to visualizing hierarchical patterns of variation in folklore in relation to geography, this 211 

analysis demonstrates the use of NetStruct to identify characters—folklore motifs in this case—that play 212 

an important role in driving the hierarchical structure. The analysis of many subsets of characters, and the 213 

identification of those that appear in subsets that give rise to high NMI with the full-data analysis, 214 

uncovers those that contribute most to hierarchical clustering patterns. 215 

Variation in phonemes across languages 216 

A salient feature of linguistic variation is phonemic variation: variation in the sounds present within 217 

languages. Phonemic variation can be used to study inter-language relationships and population 218 

migrations (Atkinson, 2011; Creanza et al., 2015; Fort & Pérez-Losada, 2016; Pérez-Losada & Fort, 219 

2018), and for our next example, we analyzed hierarchical structure in worldwide phonemic variation. 220 
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Ruhlen phoneme database 221 

Creanza et al. (2015) analyzed two databases that have been assembled on phonemes across large 222 

numbers of languages. We applied NetStruct on one of these, the Ruhlen database, as studied by Creanza 223 

et al. (2015) to explore phoneme-based hierarchical structure across languages. This database contains 224 

presence/absence information for 728 phonemes, organized by language classification and geography.  225 

In our analysis, we included all n=2082 languages and m=454 phonemes that exist in more than one 226 

language. We then constructed the hierarchy based on the pairwise frequency-weighted phoneme-sharing 227 

similarities calculated from the n×m data matrix (Methods). 228 

Hierarchical structure of phonemic variation: outlier entities 229 

The hierarchy extracted from phonemic variation clusters languages in accord with geography on a broad 230 

scale (Fig. 3A). In Fig. 3B, major clusters tend to be localized within continents, in many places co-231 

occurring with other such clusters. 232 

Fig. 3, panels C-E, highlights patterns in local regions. In northeast Siberia (Fig. 3D), four of five 233 

languages of the Chukotko-Kamchatkan language family—Alyutor, Chukchi, Kerek, and Koryak—234 

cluster in one branch (purple to yellow colors), whereas the Kamchadal language is alone in another 235 

(green). Indeed, the first four languages and Kamchadal are assigned to different branches in the family, 236 

Chukotian and Itelmen, and the unity of the family has been uncertain (Fortescue, 2005). 237 

In East Africa (Fig. 3E), three languages shown in a distinct color from their surrounding languages—238 

Dahalo, Hadza, and Sandawe—are the only three languages in the region that are click languages, a 239 

phonemic group of languages for which clicks function as normal consonants (Westphal, 1971). 240 

Similarly, in Northeast Asia (Fig. 3C), Korean, a language isolate, is clustered into a branch distinct from 241 

other neighboring languages. 242 

This analysis, like the analyses of pronunciation and folklore motifs, illustrates the use of the NetStruct 243 

framework to identify geographic effects on entities of interest (assemblages of pronunciation variants, 244 
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folklore motif repertoires, and phoneme inventories). The local patterns additionally illustrate the 245 

potential of the method for understanding effects on entities—in this case, languages—whose placements 246 

in the hierarchy differ from those of their geographic neighbors. 247 

Variation in first names over time 248 

Frequencies of first names among births in a population represent a rich source of cultural data, enabling 249 

tests about mechanisms of cultural change (Hahn & Bentley, 2003; Gureckis & Goldstone, 2009; Berger 250 

et al., 2012; Kessler et al., 2012; Acerbi & Bentley, 2014; O’Dwyer & Kandler, 2017). Our final example 251 

used NetStruct to analyze relationships among names in their patterns of temporal variation. 252 

Social Security data on first names 253 

Data on frequent first names from Social Security card applications for births starting in 1880 are 254 

provided publicly by the U.S. Social Security Administration. Separately for male and female names, for 255 

each year of birth, frequency data are provided. We analyzed female and male names separately, 256 

restricting attention to 1397 female and 1074 male names of total frequency greater than or equal to 257 

10,000 through the end of 2019. 258 

Considering each year 1880-2019 separately, the data set gives two n×m matrices with m=140 years, and 259 

n=1397 for female and n=1074 for male names. The similarity score between two names is computed 260 

based on the Pearson correlation between their frequency vectors over the m years of available data 261 

(Methods). We generated the NetStruct hierarchy from these similarities. 262 

To interpret the NetStruct hierarchy, we made use of state-specific data, which are available alongside the 263 

national data starting from 1910. In the state-level data, each of n names has 53 vectors of counts of 264 

length 110, for 53 locations (50 states plus District of Columbia, Puerto Rico, and other territories) and 265 

110 years (1910-2019). After normalizing counts from each year by the total number of individuals for 266 

that year, we identified for each name the state with the greatest mean normalized frequency over 110 267 

years. In other words, we labeled each name by the state in which it was most frequent. 268 
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Hierarchical structure of variation in temporal patterns among names: features of entities 269 

We present the hierarchical structure extracted from time series data on the frequencies of female names, 270 

as well as the temporal trends of the corresponding names, in Fig. 4A, with seven major branches of the 271 

hierarchy colored differently. The same visualization for male names appears in Fig. 4E, with five major 272 

branches assigned different colors. Both for female and for male names, names in branches of different 273 

color have distinct frequency trends over time, with those on the left indicating names that had greatest 274 

frequency at the beginning of the time series.  275 

Fig. 4B and Fig. 4F relabel the hierarchies in Fig. 4A and Fig. 4E by the state in which a name has 276 

occurred most frequently over the full data set. The calculation of the state with highest frequency for a 277 

name is described in Methods. Initially, the most populous states were New York and Pennsylvania; 278 

California and Texas have been most populous more recently. Thus, the leftmost names, frequent early in 279 

the period, tend to be associated with New York, and to some extent, Pennsylvania and Texas. Names in 280 

the center are more closely associated with California. Names in the rightmost clusters are associated with 281 

California or Texas, whose recent population growth has reduced the difference from California in the 282 

number of annual births.  283 

Because the patterns in Fig. 4B and 4F are driven in large part by population sizes of states, we next 284 

relabel the hierarchies using a frequency that is normalized by population size. In particular, we group 285 

states into four regions—Midwest, South, Northeast, and West—normalizing the region-wise count of 286 

each name by the total number of individuals in the region. The calculation of the region with highest 287 

normalized frequency for a name is described in Methods. Fig. 4C and Fig. 4G relabel the hierarchies in 288 

Fig. 4A and Fig. 4E by the region in which the normalized frequency is greatest. In this relabeling, the 289 

South is the region that has the largest number of names associated with it, both for females and for 290 

males. This pattern is particularly pronounced at the beginning of the time series, during which the South 291 

was the region of greatest frequency for large numbers of names. 292 
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Fig. 4D and Fig. 4H examine the hierarchies in relation to a second variable: the number of syllables in 293 

names. As was seen when considering names by the state with highest frequency, much structure is 294 

observable with this variable. Female names in Clusters 1 and 2 of Fig. 4A, which share a common 295 

predecessor node as the parent cluster, have similar temporal trends, with a high frequency in the early 296 

20th century. In a fine-scale analysis, however, they separate into a branch whose names have fewer 297 

syllables (Cluster 1; e.g., Mary, Helen), and a branch whose names have more syllables (Cluster 2; e.g., 298 

Dorothy, Virginia). For male names, later names tend to have more syllables than earlier names (Fig. 4H). 299 

In summary, the NetStruct analysis reveals relationships in co-occurrences of names, identifying names 300 

with similar temporal trends. The recoding of clustering hierarchies by additional variables—the state 301 

with highest frequency, and the number of syllables—illustrates the use of NetStruct in understanding 302 

attributes that correlate with, and potentially contribute to, relationships among entities. The visualization 303 

can potentially suggest analyses of other factors that influence the dynamics, including immigration, 304 

regional correlations, and differences in naming practices by state over time. 305 

Discussion  306 

Inspired by the potential of hierarchical clustering analyses to illuminate features of population-genetic 307 

variation, we have adapted the network-based clustering framework NetStruct for use in the analysis of 308 

cultural variation. In four examples, we have illustrated several aspects of the framework in applications 309 

to data matrices representing a set of entities, each associated with values of a set of characters. These 310 

applications demonstrate the potential of NetStruct to extract broad- and fine-scale relationships among 311 

entities. They illustrate the use of NetStruct to analyze relationships of geography with clustering patterns, 312 

to uncover the characters that drive relationships, and to understand effects on cultural data points of 313 

interest in specific scenarios. The algorithmic perspective incorporates flexibility in the design of 314 

similarity measures and in visualization schemes to aid the analysis. 315 

Interpretations of data on cultural variation   316 
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The four examples illustrate the potential of NetStruct for producing novel visualizations to deepen the 317 

understanding of cultural entities—pronunciation repertoires of individuals, folklore repertoires of 318 

cultures, phoneme inventories of languages, and time series of name frequencies. The technique can 319 

uncover hierarchical features underlying the variation in cultural traits at different scales, and it enables 320 

the examination of different hierarchical levels. For example, the LAMSAS data, the data set among the 321 

four that has been studied for longest, has given rise to numerous analyses of dialect variation, often 322 

seeking to partition the Atlantic region into dialects (Lee & Jr, 1993; Nerbonne & Kretzschmar, 2003; 323 

Nerbonne 2015); our approach contributes to observing hierarchical divisions at multiple levels, to 324 

detecting spatially continuous variation beyond the level of dialects, and to identifying birth date as a 325 

variable that contributes to deviations from spatial patterns. 326 

Fewer studies have examined the folklore data set that we have considered. With the use of normalized 327 

mutual information (NMI), we have shown that NetStruct can help to identify informative motifs for 328 

describing broad- and fine-scale structures of folklore variation. The recurrence of a shared motif in 329 

widely separated cultural groups has been useful for reconstructing cross-cultural contact and examining 330 

cultural diffusion. In this context, past studies have considered the diffusion of specific motifs, sometimes 331 

chosen as those that are widespread or that have particular cultural salience (Korotaev et al., 2006; 332 

Berezkin, 2010; Ross et al., 2013; Tehrani, 2013). Rather than choosing motifs based on prior 333 

significance, the NMI approach identifies motifs that are most informative about cultural groupings from 334 

patterns of motif occurrence alone. The identification using NMI of motifs of particular informativeness 335 

can further focus the choice of specific motifs for use in detailed analysis of diffusion patterns of folklore 336 

across worldwide cultural groups; studies such as those examining ‘The Tale of the Kind and the Unkind 337 

Girls’ (Ross et al., 2013) and ‘Little Red Riding Hood’ (Tehrani, 2013) can be informative for 338 

interpreting patterns in well-known motifs, but studies of other motifs might be more informative for 339 

understanding cultural diffusion.  340 
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NetStruct requires little prior knowledge of data sets of interest. For the phonemes, as in the principal 341 

components analysis of Creanza et al. (2015), NetStruct identifies broad-scale geographic differentiation 342 

by a method that supposes no prior relationships among entities. Our analysis illustrates the potential to 343 

highlight distinctions of certain languages from their neighbors, finding that phonemic distinctiveness can 344 

reflect distinctiveness of one language in relation to others. 345 

For first names, previous studies of the data have examined many aspects, including spatial correlations 346 

(Barucca et al., 2015; Pomorski et al., 2016) and phonemic influences (Berger et al., 2012); our analyses 347 

of the state of greatest popularity and of patterns in syllables contribute further to understanding patterns 348 

in name frequencies. Some studies of naming patterns are model-based, assuming factors that drive the 349 

variation and incorporating these factors as variables in the models to compare to observed trends (Hahn 350 

& Bentley, 2003; Gureckis & Goldstone, 2009; Berger et al., 2012; Kessler et al., 2012; Acerbi & 351 

Bentley, 2014; O’Dwyer & Kandler, 2017); our approach can augment such studies by suggesting 352 

hypotheses that can be used in evaluating different generative models. 353 

In our choices of examples for application of NetStruct, the four data sets had several features in common. 354 

First, in each case, entities corresponding to rows of the initial data matrix had a natural set of 355 

relationships reflected in the NetStruct hierarchy—geographic proximity of informants for the 356 

pronunciation data, geographic proximity of cultures for the folklore data, geographic proximity of 357 

languages for the phonemic data, and proximity in time of the period of greatest popularity for the data on 358 

names. Second, additional salient attributes of the entities were possible to consider—birth dates for 359 

pronunciation informants, locally specific components of folklore such as geographically restricted 360 

cultural practices and animal ranges, family memberships for languages, and states of greatest popularity 361 

and numbers of syllables for names. Additional data sets with spatial structure, temporal structure, or 362 

both, such as data on attributes of ceramics or other artifacts of material culture, or data on individual 363 

variation in word choices or other idiolectal variation, potentially provide natural examples as well. For 364 

future data sets, the existence of geographic and temporal structure and the availability of other 365 
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meaningful attributes on entities of interest can be used to support use of NetStruct and to guide 366 

interpretation of the results that it produces. 367 

Limitations and extensions 368 

We have chosen to focus on similarity measures borrowed from genetics in which the sharing of a rare 369 

genetic variant between two individuals or populations suggests recent common ancestry. Similarly, for 370 

cultural data, in which shared descent is also a salient phenomenon, our use of a frequency-weighted trait-371 

sharing similarity measures presupposes the potential importance of shared rare variants in characterizing 372 

relationships between entities. However, the choice of similarity measure occurs prior to application of 373 

NetStruct; the emphasis of similarity measures on shared rare variants can therefore be tuned as 374 

appropriate to a specific type of data. A possible systematic difference from the genetics context is that 375 

fast-evolving cultural data could generate more homoplasy than is seen for genetic markers (Tehrani & 376 

Collard, 2002; Haasl & Payseur, 2011), so that a shared rare variant could be less meaningful in cultural 377 

data than in genetic data. Distance-based hierarchical clustering studies in genetics have generally 378 

identified many shared features in population relationships irrespective of the similarity measure 379 

considered, even for fast-evolving genetic markers with significant homoplasy (Takezaki & Nei, 1996). In 380 

a preliminary analysis of the choice of similarity measure, considering the LAMSAS data, we see that 381 

generally similar patterns are obtained with two additional similarity measures: a measure that is not 382 

frequency-weighted, and a measure designed specifically for linguistic data (Figs. S1 and S2). With a 383 

specific scientific question and dataset, measures that encode aspects of similarity of greatest interest can 384 

be considered, and researchers can employ multiple similarity statistics to identify patterns that are robust 385 

and patterns that are distinctive to particular measures. 386 

As in genetic studies that use tree-like models of population relationships, we have assumed that a 387 

hierarchical relationship between clusters exists, focusing on transferring the application of a hierarchical 388 

clustering method from population-genetic data to data on cultural variation. In cultural data, as is often 389 



18 
 

seen in population-genetic data, the appropriate generative model that underlies the data need not be fully 390 

tree-like. Studies in population genetics have introduced methods for testing the suitability of 391 

evolutionary trees for explaining patterns of genetic variation, a key concept being the “treeness” of the 392 

data (Cavalli-Sforza & Piazza 1975; Patterson et al. 2012; Pickrell & Pritchard 2012). It would be of 393 

interest to develop comparable approaches for testing the extent to which a hierarchical structure from 394 

NetStruct explains cultural variation data; a permutation test of Greenbaum et al. (2016) for significance 395 

of clustering in a two-level NetStruct hierarchy containing a root and offspring nodes, devised in the 396 

population-genetic context, can potentially be adapted for arbitrary hierarchies and applied to data on 397 

cultural variation. 398 

Conclusions: uses and applications of NetStruct 399 

In population genetics, the interplay of evolutionary processes contributes to producing hierarchical 400 

patterns in genetic composition among populations. Similarly, in the study of cultural data, many forces 401 

interact to shape hierarchical trait variation. Interpreting the clustering results requires consideration of 402 

multiple interacting processes and phenomena, including global and local selection pressures on specific 403 

cultural variants (e.g. positive, negative, or balancing), linkage of multiple variants in “cultural 404 

complexes” (similar to genetic linkage), and random drift. As in the study of genetic data, geographic 405 

patterns need not uniquely identify the underlying processes; for example, similarly to the phenomenon of 406 

convergent evolution in genetic data, convergent evolution of cultural variants (e.g. Tehrani & Collard 407 

2002; Mesoudi et al. 2006; Rogers & Ehrlich 2008) can produce a level of similarity that can be conflated 408 

with shared descent. For example, in our phonemic analysis in Figure 3, the potential for rapid change in 409 

languages can produce similarity in phonemes of otherwise distant languages. The cluster of languages 410 

colored in light green in Figure 3, which includes languages from sub-Saharan Africa, the Caucasus, and 411 

western North America, may result from convergent evolution combined with linkage of phoneme 412 

complexes that have developed independently. Consideration of the mechanistic processes underlying 413 

cultural data while incorporating domain-knowledge specific to datasets of interest is important in 414 
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interpreting the hierarchical structure generated by NetStruct. Because cultural data often possess the type 415 

of geographic structure, temporal structure, hierarchical categorization, or defining attributes for which 416 

NetStruct results can be productively interpreted, patterns from NetStruct can be informative alongside 417 

other statistical methods for assessing specific generative models for cultural data.  418 

As a non-model-based tool, the strength of the method lies in its potential as an exploratory approach for 419 

producing informative patterns, patterns that potentially inspire hypotheses about factors that drive the 420 

features of cultural variation. We suggest that the use of this exploratory approach should be accompanied 421 

by analyses of hypotheses based on additional methods and domain knowledge; analyses of data on 422 

variation in artifacts of culture can be productively advanced by adding NetStruct to the repertoire of the 423 

field of cultural evolution.  424 



20 
 

Methods  425 

Between-informant similarity for LAMSAS pronunciation variation 426 

We obtained the LAMSAS data from the project website (www.lap.uga.edu/Site/LAMSAS.html). To 427 

eliminate systematic effects of different interviewers, we considered only informants interviewed by the 428 

main interviewer, G. Lowman, who collected the earliest LAMSAS data (Nerbonne & Kleiweg, 2003). 429 

We therefore restricted attention to 839 informants interviewed during 1933-1942. Because words chosen 430 

for pronunciation differed across interviews, many words only appear in the records of a subset of 431 

informants. We considered only words collected for at least 700 informants, resulting in a list of 69 432 

words. 433 

Consider n informants and m words. Suppose word j has lj distinct transcriptions, counting diacritics. 434 

Entry Aij of the data matrix is a categorical variable that indicates the transcription of word j for informant 435 

𝑖𝑖: 𝐴𝐴𝑖𝑖𝑖𝑖 ∈ �1,2, … , 𝑙𝑙𝑗𝑗� if the information of word j has been collected from informant i, or 𝐴𝐴𝑖𝑖𝑖𝑖 = 0 if word j 436 

is unavailable for informant i. 437 

We computed a frequency-weighted transcription-sharing similarity, adapting the allele-sharing similarity 438 

for genetic data (Greenbaum et al., 2019). For two informants i1 and i2, their frequency-weighted 439 

transcription-sharing similarity is calculated as 440 

𝑠𝑠𝑖𝑖1𝑖𝑖2 =
� (1−𝑝𝑝𝐴𝐴𝑖𝑖1𝑗𝑗

𝑗𝑗 )
𝑚𝑚

𝑗𝑗=1
𝛪𝛪(𝐴𝐴𝑖𝑖1𝑗𝑗=𝐴𝐴𝑖𝑖2𝑗𝑗)  𝛪𝛪(𝐴𝐴𝑖𝑖1𝑗𝑗≠0 ∧ 𝐴𝐴𝑖𝑖2𝑗𝑗≠0

) 

� 𝛪𝛪(𝐴𝐴𝑖𝑖1𝑗𝑗≠0 ∧ 𝐴𝐴𝑖𝑖2𝑗𝑗≠0
)

𝑚𝑚

𝑗𝑗=1

,      (1) 441 

where 𝑝𝑝𝐴𝐴𝑖𝑖𝑖𝑖
𝑗𝑗  is the frequency of transcription Aij for word j. The indicator function 𝐼𝐼(∙) is 1 if the condition 442 

holds, and it is 0 otherwise. The similarity matrix S is obtained by normalization: 443 

𝑆𝑆𝑖𝑖1𝑖𝑖2 =
𝑠𝑠𝑖𝑖1𝑖𝑖2−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚−𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
,     (2) 444 

where 𝑠𝑠min = min
𝑖𝑖1,𝑖𝑖2

{𝑠𝑠𝑖𝑖1𝑖𝑖2} and 𝑠𝑠max = max
𝑖𝑖1,𝑖𝑖2

{𝑠𝑠𝑖𝑖1𝑖𝑖2}. 445 
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In rare instances, two individuals have no shared words with data present. In these cases, we assigned for 446 

the similarity score the mean similarity of the remaining pairs. 447 

Between-region similarity for folklore motif variation 448 

We downloaded the folklore data from the Berezkin et al. database 449 

(http://www.ruthenia.ru/folklore/berezkin/). The database provides (in Russian) for each indexed motif, a 450 

list of all numbered regions in which the motif is present. Considering all 2495 motifs, we constructed the 451 

matrix of presence/absence entries, associating the region and motif names with matrix rows and 452 

columns, respectively. 453 

We denote the n×m matrix by A, where n=65 is the number of regions and m=2459 is the number of 454 

motifs appearing in at least two regions. Aij=1 if motif j appears in region i, and Aij=0 otherwise. The 455 

pairwise frequency-weighted motif-sharing similarity for two regions i1 and i2 is calculated by a weighted 456 

Jaccard distance: 457 

𝑠𝑠𝑖𝑖1𝑖𝑖2 =
� (1−𝑓𝑓𝑗𝑗)

𝑚𝑚

𝑗𝑗=1
𝐴𝐴𝑖𝑖1𝑗𝑗𝐴𝐴𝑖𝑖2𝑗𝑗

� (1−𝑓𝑓𝑗𝑗)
𝑚𝑚

𝑗𝑗=1
 𝛪𝛪(𝐴𝐴𝑖𝑖1𝑗𝑗≠0 ∨ 𝐴𝐴𝑖𝑖2𝑗𝑗≠0)

.      (3) 458 

The quantity 𝑓𝑓𝑗𝑗 = 1
𝑛𝑛
� 𝐴𝐴𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 is the frequency of motif j across all regions. Eq. 3 places greater weight on 459 

contributions of less frequent motifs and less weight on common motifs. 460 

We applied the same normalization from Eq. 2 to obtain a normalized similarity matrix that we used in 461 

our analysis. 462 

Normalized mutual information (NMI) 463 

Denote two hierarchical clusterings on n entities by C1 and C2, Suppose they partition the same set of 464 

entities E={e1,e2,…,en} into k and l clusters 𝐶𝐶11, 𝐶𝐶21…, 𝐶𝐶𝑘𝑘1 and 𝐶𝐶12, 𝐶𝐶22…, 𝐶𝐶𝑙𝑙2, respectively, where 465 

∪ 𝐶𝐶𝑗𝑗1𝑘𝑘
𝑗𝑗=1 = ∪ 𝐶𝐶𝑗𝑗2ℓ

𝑗𝑗=1 = 𝐸𝐸. Note that for each clustering—for example, C—the clusters are not necessarily 466 
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disjoint, so that each ei can belong to multiple clusters Cj; indeed child clusters Cj’ are contained in parent 467 

clusters Cj, or 𝐶𝐶𝑗𝑗′ ⊂ 𝐶𝐶𝑗𝑗. The NMI between these two hierarchical clusterings is then computed from the 𝐶𝐶𝑗𝑗1 468 

and 𝐶𝐶𝑗𝑗2 following the procedure of Greenbaum et al. (2019). This approach is flexible in the sense that 469 

NMI can also be computed for subsets of the clusters in the hierarchy, rather than for the entire set of 470 

clusters. To address clustering at the finer scale of the hierarchy, we computed NMI for the set of leaf 471 

clusters at the tips of the hierarchy. 472 

Between-language similarity for phoneme inventories 473 

We obtained phoneme data from the supplement of Creanza et al. (2015). The similarity calculation 474 

follows that of the motif-sharing similarity, except that A now represents an n×m matrix of n=2082 475 

languages and m=454 phonemes. Eq. 3 gives the similarity between a pair of languages, with fj denoting 476 

the frequency of a phoneme among languages; we normalized the similarity matrix by Eq. 2 for our 477 

subsequent analysis. 478 

Between-name similarity for name frequency profiles 479 

We downloaded the name data from https://www.ssa.gov/oact/babynames/limits.html. For the analysis, 480 

performed separately for female and male names, a matrix entry Aij tabulates the number of appearances 481 

of name i in year j, normalized by the total number of individuals in year j. We write Aij=0 if name i is 482 

absent during year j, or if it is rare enough to have been omitted from the database for privacy reasons 483 

(fewer than 5 appearances nationally). For each pair of rows i1, i2 of A, we computed the Pearson 484 

correlation 𝑟𝑟𝑖𝑖1,𝑖𝑖2 between them, and transformed it to a value in [0,1] by 𝑠𝑠𝑖𝑖1,𝑖𝑖2 = (𝑟𝑟𝑖𝑖1,𝑖𝑖2 + 1)/2. 485 

To obtain syllable counts for individual names, two raters separately assigned the counts, discussing cases 486 

of disagreement to assign a number of syllables. We computed averages of the number of syllables for 487 

names in specific clusters. 488 
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States of highest frequency and regions of highest normalized frequency for names 489 

Separately for female and male names, let Bijk denote the number of appearances of name i in state k in 490 

year j. The frequency of name i in state k is calculated as 𝑓𝑓𝑖𝑖𝑖𝑖 = �∑ 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 �/�∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖𝑘𝑘′𝑗𝑗𝑘𝑘′ �. The state of 491 

highest frequency for name i is obtained by argmax𝑘𝑘(𝑓𝑓𝑖𝑖𝑖𝑖), which we denote the majority state in Fig. 4B 492 

and 4F. 493 

The states are then grouped into four regions described in Fig. 4. For each region l containing a group of 494 

states, let Cijl denote the number of appearances of name i in region l in year j, or 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘∈𝑙𝑙 . For 495 

each year j, this number of appearances is divided by the total number of individuals in a region to obtain 496 

the fraction that it represents of all names in the region during year j: 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖∗ = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝐶𝐶𝑖𝑖′𝑗𝑗𝑗𝑗𝑖𝑖′� . Averaging 497 

across years, the normalized frequency of name i in region l is then calculated as 𝑔𝑔𝑖𝑖𝑖𝑖 =498 

�∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖∗𝑗𝑗 �/ �∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑙𝑙′
∗

𝑗𝑗𝑙𝑙′ �. The region of highest normalized frequency for name i is obtained by 499 

argmax𝑙𝑙(𝑔𝑔𝑖𝑖𝑖𝑖), which we denote the majority region in Fig. 4C and 4G. 500 
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Figures 624 

Fig. 1: Hierarchical features of variation in English pronunciation in the middle and south Atlantic 625 

region of the United States. (A) Hierarchical tree of the pronunciation similarity network. Informants are 626 

marked on the map by the color of the finest-scale cluster to which they belong. (B, C) Two major 627 

clusters detected at the first level of the hierarchy in (A), each re-colored with the full color interval. (D, 628 

E) Two finer-scale clusters of the hierarchy in (C). In these panels, colors are assigned based on 629 

placement in the area of the hierarchy circled in (C), with all descendants of a child in the circled area 630 

assigned the same color. The colors in (D) correspond to 1/4 and 3/4 on the unit interval, and the colors in 631 

(E) correspond to 1/14, 3/14, 5/14, 7/14, 9/14, 11/14, and 13/14. For convenience, the child clusters 632 

associated with specific internal nodes in the tree diagrams are numbered. Birth-year distributions of 633 

informants in these child clusters appear at right. 634 

Fig. 2: Hierarchical features of variation in folklore motifs across cultures. (A) Hierarchical tree of 635 

the motif similarity network. Regions are marked on the map by the color of the finest-scale cluster to 636 

which they belong. (B) Distributions of normalized mutual information (NMI) between hierarchies 637 

extracted from sampled subsets of motifs and from all motifs, with 100 subsets of 20, 50, 100, and 500 638 

motifs each. (C) Geographic distributions of five motifs that occur most frequently in the 200 of 5,000 639 

subsets of 20 motifs that produce hierarchies with highest NMI to the hierarchy produced by all motifs. 640 

These motifs drive the hierarchy at higher levels, separating regions into major clusters. (D) Distributions 641 

of NMI between the leaves of hierarchies extracted from subsets of motifs (those from B) and the leaves 642 

extracted from all motifs. (E) Geographic distributions of three motifs that occur most frequently in the 643 

200 subsets that produce hierarchies whose leaf clusters produce highest NMI to those produced by all 644 

motifs. These motifs are more specific to the hierarchy in lower levels and potentially capture fine-scale 645 

regional differences.  646 
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Fig. 3: Hierarchical features of phonemic variation. (A) Hierarchical tree of the phoneme similarity 647 

network. Major branches that contain most of the languages are assigned distinct colors, and other 648 

branches are colored gray. (B) Language map. Languages are marked by the color of the finest-scale 649 

cluster to which they belong. Three regions are magnified. (C) Northeast Asia. (D) Northeastern Siberia. 650 

(E) East Africa. 651 

Fig. 4: Hierarchical features of time series for frequencies of female names (A-D) and male names 652 

(E-H). (A, E) Hierarchical tree of similarity in time series for name frequencies. Major branches are 653 

assigned distinct colors. Time series of annual national frequencies appear below the trees, with two 654 

names selected from each major branch highlighted. Node area is proportional to the number of names in 655 

a cluster, except that clusters containing greater than 25 names are set to a fixed size and are colored half-656 

transparently. (B, F) Recoding of the hierarchies in (A, E) by states of highest frequency. Each cluster 657 

shows a pie chart tabulating the states in which names in the cluster have the highest frequency. Time 658 

series of name frequencies appear below the hierarchies. (C, G) Recoding of the hierarchies in (A, E) by 659 

regions of highest normalized frequency. The states are grouped into four regions: West (AK, AZ, CA, 660 

CO, HI, ID, MT, NM, NV, OR, UT, WA, WY), Midwest (IA, IL, IN, KS, MI, MN, MO, ND, NE, OH, 661 

SD, WI), South (AL, AR, DC, DE, FL, GA, KY, LA, MD, MS, NC, OK, SC, TN, TX, VA, WV), and 662 

Northeast (CT, MA, ME, NH, NJ, NY, PA, RI, VT). The normalized frequency of a name in a region is 663 

the count of the name in the region normalized by the total number of individuals in the region. The steps 664 

to obtain the states of highest frequency and regions of highest normalized frequency are described in 665 

Methods. (D, H) Recoding of the hierarchies in (A, E) by mean number of syllables of names in clusters. 666 

  667 
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