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Abstract: Robust change-point detection for large-scale data streams has many real-world applications in
industrial quality control, signal detection, biosurveillance. Unfortunately, it is highly non-trivial to develop
efficient schemes due to three challenges: (1) the unknown sparse subset of affected data streams, (2) the
unexpected outliers, and (3) computational scalability for real-time monitoring and detection. In this article,
we develop a family of efficient real-time robust detection schemes for monitoring large-scale independent
data streams. For each data stream, we propose to construct a new local robust detection statistic called Lα-
CUSUM statistic that can reduce the effect of outliers by using the Box-Cox transformation of the likelihood
function. Then the global scheme will raise an alarm based upon the sum of the shrinkage transformation
of these local Lα-CUSUM statistics so as to filter out unaffected data streams. In addition, we propose a
new concept called false alarm breakdown point to measure the robustness of online monitoring schemes
and propose a worst-case detection efficiency score to measure the detection efficiency when the data con-
tain outliers. We then characterize the breakdown point and the efficiency score of our proposed schemes.
Asymptotic analysis and numerical simulations are conducted to illustrate the robustness and efficiency of
our proposed schemes.
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1. Introduction

Robust statistics have been extensively studied in the offline context when the entire data set is
available for decision-making and is contaminated with outliers, e.g., robust estimation [1, 2], ro-
bust hypothesis testing [3, 4], and robust regression [5, 6]. Also, see the classical books, [7] or [8],
for literature review. In this paper, we propose to develop robust methods in the context of sequen-
tial change-point detection when one is interested in detecting sparse, persistent smaller changes
in large-scale data streams under the contamination of transient larger outliers. The problem of
robust monitoring large-scale data streams in the presence of outliers occurs in many real-world
applications such as industrial quality control, biosurveillance, key infrastructure, or internet traffic
monitoring, in which sensors are deployed to constantly monitor the changing environment, see
[9],[10],[11]. Unfortunately, it is highly non-trivial to develop efficient, robust real-time monitor-
ing schemes or algorithms due to three challenges: (1) the sparsity, where only a few unknown
data streams might be affected; (2) the robustness, where we are interested in detecting smaller
persistent changes, not the larger transient outliers; and (3) the computational scalability, where
the algorithms can be implemented recursively to make real-time decisions.

In the literature of sequential change-point detection for a large number of data streams, to
the best of our knowledge, while the sparsity issue has been investigated, no research has been
done on the robustness issue. To be more specific, the sparsity has been first addressed by [12]
using a semi-Bayesian approach and later by [13] using shrinkage-estimation-based schemes. [14]
developed asymptotic optimality theory for large-scale independent Gaussian data streams. Unfor-
tunately, all these methods are sensitive to outliers since they are based on the likelihood function
of specific parametric models (e.g. Gaussian) of the observations. Meanwhile, regarding the ro-
bustness issue, research is available for monitoring one- or low- dimensional streaming data such
as rank-based method in [15, 16], kernel-based method in [17]. However, these nonparametric
methodologies generally lose detection efficiency under specific parametric or semi-parametric
models. By considering the worst-case of the outlier distribution, [18] formulated the problem of
finding the optimal robust change detection procedure by solving a minimax problem. However,
the resulting optimal test is based on the least-favorable-pair distributions of two uncertainty sets,
which depends on the information of outliers. More importantly, it is unclear how to extend their
method from monitoring a single data stream to monitoring multiple data streams when we also
need to deal with the sparsity issue in which there is uncertainty on the subset of affected data
streams.

In this paper, we develop efficient real-time monitoring schemes that are able to robustly de-
tect smaller persistent changes in the presence of larger transient outliers when online monitoring
of large-scale data streams. From the methodology viewpoint, our proposed schemes are semi-
parametric and extend two contemporary concepts to the context of online monitoring of data
streams: (i) Lq-likelihood [19, 20] for robustness, and (ii) the sum-shrinkage technique [21, 22]
for sparsity. These allow us to develop statistically efficient and computationally simple schemes
that can be implemented recursively over time for robust real-time monitoring of a large number
of data streams. Moreover, we also extend the concept of breakdown in the offline robust statis-
tics [23] to the sequential change-point detection context and conduct the false alarm breakdown
point analysis, which turns out to be useful for the choices of tuning parameters in our proposed
schemes.

We should point out that our contribution is not on the optimality theory but on the asymp-
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totic properties of our proposed schemes that include the classical CUSUM-based procedures as
a special case. Our research makes four contributions in the statistics field by combining robust
statistics with sequential change-point detection for large-scale data streams. First, our proposed
method is robust to infrequent outliers as well as the uncertainty of affected data streams. Sec-
ond, our proposed method can be implemented recursively and distributed via parallel computing
and thus is suitable for real-time monitoring over a long time period. Third, inspired by the con-
cept of breakdown point [23] in the offline robust statistics, we propose a novel concept of false
alarm breakdown point to quantify the robustness of any online monitoring schemes and show
that our proposed schemes indeed have much larger false alarm breakdown point than the classical
CUSUM-based schemes. Finally, from the mathematical viewpoint, we use Chebyshev’s inequal-
ity to derive non-asymptotic lower bounds on the average run length of false alarm of our proposed
methods. The non-asymptotic results hold regardless of dimensionality and allow us to provide
a deep insight into the effect of high-dimensionality in change-point detection under the modern
asymptotic regime when the dimension or the number of data streams goes to∞.

The remainder of this article is organized as follows. In Section 2, we start with problem for-
mulations and model assumptions. In Section 3, we introduce our proposed family of robust mon-
itoring schemes. In Section 4, the properties of the detection efficiency of our proposed schemes
and the guideline to choose tuning parameters in our proposed schemes are provided. Then, we
investigate the robustness of our proposed methods by conducting breakdown point analysis in
Section 5. Simulation results are presented in Section 6. In Section 7, we conclude our paper with
a few remarks The proofs of our main theorems are postponed to Appendix.

2. Problem Formulation

Suppose we are monitoring K independent data streams in a system.

Data Stream 1 : X1,1, X1,2, · · · (2.1)
Data Stream 2 : X2,1, X2,2, · · ·

. . . . . .
Data Stream K : XK,1, XK,2, · · · .

Under the classical change-point detection model for monitoring multi-streams (e.g., [12, 14,
24, 21, 22]), one assumes that the data Xk,n’s are initially independent and identically distributed
(i.i.d.) with probability density function (pdf) f0(x). At some unknown time ν ≥ 1, an undesired
event occurs, and change the distributions of m out of K data streams, i.e., the affected local
streams Xk,n’s have another distribution f1(x) when n ≥ ν. The objective is to raise an alarm
as soon as possible once a change occurs. Here, we refer to this classical model as the idealized
model.

In this paper, we investigate the change-point detection problem under Tukey-Huber’s gross
error model. As mentioned in the introduction, we want to raise an alarm as quickly as possible if
there is a persistent distribution change on the data, but we prefer to take observations without any
actions if there are only transient outliers. Mathematically, we assume the distribution of data Xk,n

might be changed from h0 to h1 at some change time ν, the h0 and h1 are the Tukey-Huber’s gross
error model of the mixture densities

h0(x) = (1− ε)f0(x) + εg0(x), h1(x) = (1− ε)f1(x) + εg1(x), (2.2)
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where ε ∈ [0, 1) is referred to as the contamination/outlier ratio, g0 and g1 are the (unknown) outlier
distributions. Denote by P

(∞)
h0

and E
(∞)
h0

the probability measure and expectation when the data
Xk,n’s are i.i.d. with the density h0 when no change occurs, and denote by P

(ν)
h1

and E
(ν)
h1

the same
when the change occurs at time ν and m out of K streams Xk,n’s have the post-change distribution
h1.

As in the classical sequential change-point problem, a statistical procedure under our setting
is defined as a stopping time T that represents the time when we raise an alarm to declare that
a change has occurred. Here T is an integer-valued random variable, and the decision {T = t}
is based only on the observations in the first t time steps. To evaluate the performance of the
detection procedure T under Tukey-Huber’s gross error model when the outlier distributions g0
and g1 in (2.2) are unknown, we first assume the average run length to false alarm of the procedure
T is controlled under the idealized model. That is, we assume that the procedure T is designed to
satisfy the false alarm constraint

E
(∞)
f0

(T ) ≥ γ, (2.3)

for some pre-specified value γ > 0. We then investigate the robustness and the detection efficiency
of the monitoring procedure under the gross error model in (2.2).

First, we propose quantifying the robustness of a monitoring procedure T under the gross
error model in (2.2) by borrowing the concept of breakdown point analysis from the offline robust
statistics literature. To be more specific, we propose to define a new concept called false alarm
breakdown point, which characterizes the minimal percentage of outliers that can make the false
alarm rate under the gross error model h0 = (1 − ε)f0(x) + εg0(x) very different from that under
the idealized model f0.

The false alarm breakdown point ε∗(T ) of a family of monitoring schemes T (b)’s is defined as

ε∗(T ) = inf{ε ≥ 0 : inf
h0∈~0,ε

log(E
(∞)
h0

T (bγ)) = o(log γ)}, (2.4)

where E(∞)
f0

(T (bγ)) ∼ γ as γ →∞, and the set ~0,ε is the ε-contaminated distribution density class
of the idealized model f0(x) for given ε ∈ [0, 1) :

~0,ε = {h|h = (1− ε)f0 + εg, g ∈ G}, (2.5)

and G denotes the class of all probability densities of the data Xk,n.
Roughly speaking, the false alarm breakdown point characterizes the minimal percentage of

outliers that can make the designed average run length to false alarm γ unreliable. Thus, a scheme
with larger breakdown points is more robust.

Second, we quantify the detection efficiency of the monitoring procedure T under the gross
error model in (2.2). For that purpose, recall that under the Lorden’s minimax criteria [25], the
worst-case detection delay under h1 is defined as

Dh1(T ) = sup
ν≥1

ess supE(ν)
h1

(
(T − ν + 1)+

∣∣Fν−1) . (2.6)

Here Fν−1 = (X1,[1,ν−1], . . . , XK,[1,ν−1]) denotes past global information at time ν. Xk,[1,ν−1] =
(Xk,1, . . . , Xk,ν−1) is past local information for the k-th data stream. However, since the outlier
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distribution g1 is unknown, we propose to define two quantities on detection efficiency: one is
asymptotic efficiency score defined by

AE(T, ε; g0, g1) = lim
γ→∞

log(E
(∞)
h0

(T (bγ)))

Dh1(T (bγ))
, (2.7)

and the other is the worst-case asymptotic efficiency score defined by

WAE(T, ε) = inf
g0∈G,g1∈G

AE(T, ε; g0, g1) = lim
γ→∞

inf
g0∈G

[
log(E

(∞)
h0

(T (bγ)))
]

sup
g1∈G

[Dh1(T (bγ))]
. (2.8)

In both definitions, bγ is a threshold of T = T (bγ) so that E(∞)
f0

(T (bγ)) ∼ γ. Clearly, when
the data contain outliers, the procedure with a larger asymptotic efficiency score implies more
efficiency in detecting the persistent change. Note that the definition of the asymptotic efficiency in
(2.7) depends on the outlier distributions g0 and g1, which are unknown in practice, but the worst-
case detection efficiency WAE(T, ε) in (2.8) measures the worst case among all set G of outlier
distributions g0 and g1. Note when we are monitoring a single data stream, i.e., the dimension
K = 1, the optimal procedure that maximizes WAE(T, ε) is a CUSUM procedure constructed
by a least-favorable-pair g∗0, g

∗
1, as shown in [18]. However, the problem of finding the optimal

procedure that minimizes WAE(T, ε) becomes more complicated when the dimension K is large
and the set of affected data streams is unknown.

In this paper, our objective is to develop a family of efficient, robust monitoring schemes that
have a large breakdown point ε∗(T ) in (2.4) and a large worst-case asymptotic efficiency score
WAE(T, ε) in (2.8) subject to the constraints that this family of schemes satisfy the false alarm
constraint in (2.3) under the idealized pre-change distribution f0.

3. Our proposed method

In this section, we will present our proposed schemes. At the high-level, our proposed schemes
include two components: (i) robust monitoring each local data stream individually in parallel,
and then (ii) combining local detection statistics to make an online global-level decision. For
the purpose of easy understanding, we split the presentation of our proposed schemes into two
subsections, and each subsection focuses on one component of the proposed scheme.

3.1. Robust local statistics

For the kth data stream, we propose to define a new local Lα-CUSUM statistic:

Wα,k,n = max
(
Wα,k,n−1 +

[f1(Xk,n)]
α − [f0(Xk,n)]

α

α
, 0
)
, (3.1)

for n ≥ 1, and Wα,k,0 = 0. Here α ≥ 0 is a tuning parameter that can control the tradeoff between
statistical efficiency and robustness under the gross error model in (2.2) and its suitable choice will
be discussed later.

The motivation of our Lα-CUSUM statistic in (3.1) is as follows. Recall that when locally
monitoring the single kth data stream Xk,n with a possible local distribution change from f0 to
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f1, the generalized likelihood ratio test becomes the classical CUSUM statistic W ∗
k,n, which has a

recursive form:

W ∗
k,n = max

1≤ν<∞
log

∏ν−1
i=1 f0(Xk,i)

∏n
i=ν f1(Xk,i)∏n

i=1 f0(Xk,i)
= max

(
W ∗
k,n−1 + log

f1(Xk,n)

f0(Xk,n)
, 0
)
. (3.2)

The CUSUM statistic enjoys nice optimality properties when all models are fully correctly speci-
fied [26], but unfortunately it is very sensitive to the outliers as in all other likelihood based meth-
ods in offline statistics. One recent idea in offline robust statistics is to replace the log-likelihood
statistic log f(X) by Lα-likelihood statistic ([f(X)]α − 1)/α for some α > 0, see [19],[20]. At
the high-level, Lα-likelihood statistic [f(X)]α−1

α
is always bounded below by −1/α whereas the

log-likelihood statistic log f(X) could go to −∞. Thus, the impact of outliers is bounded for the
Lα-likelihood statistic but unbounded for the log-likelihood statistic. Moreover, as α → 0, the
Lα-likelihood function converges to the log-likelihood statistic, and thus it keeps statistical effi-
ciencies when α is small. Here we apply this idea to develop our Lα-CUSUM statistic. More
rigorous robust properties will be discussed later in Section 5.

3.2. Efficient global monitoring statistics

With local Lα-CUSUM statistics Wα,k,n in (3.1) for each local stream, it is important to fuse these
local statistics together smartly so as to address the sparsity issue. Here we propose to combine
these local statistics together via the sum-shrinkage technique in [21], i.e., we raise a global-level
alarm at time

Nα(b) = inf

{
n ≥ 1 :

K∑
k=1

h(Wα,k,n) ≥ b

}
, (3.3)

where h(·) ≥ 0 are some suitable shrinkage transformation functions, and b > 0 is a pre-specified
constant. Intuitively, the shrinkage functions h(·)’s in (3.3) play the role of dimension reduction by
automatically filtering out those non-changing local data streams and by keeping only those local
streams that might provide information about the changing event. This will allow us to improve the
detection power in the sparsity scenario when only a few local features are involved in the change.

For the purpose of illustration, here we focus on two kinds of shrinkage functions: one is
the soft-thresholding function h(x) = max{x − d, 0}, and the other is the order-thresholding
function h(x) = x1{x ≥ w(r)}, where w(r) is the r-th largest statistic of w1, · · · , wK . Then the
corresponding two global monitoring schemes are defined by

N (soft)
α (b, d) = inf

{
n ≥ 1 :

K∑
k=1

max{0,Wα,k,n − d} ≥ b

}
, (3.4)

N (r)
α (b) = inf

{
n ≥ 1 :

r∑
k=1

Wα,(k),n ≥ b
}
, (3.5)

where Wα,(1),n ≥ Wα,(2),n ≥ . . . ≥ Wα,(K),n are the order statistics of the K local Lα-CUSUM
statistics Wα,1,n, . . . ,Wα,K,n.
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One can also consider other shrinkage functions such as the detectability score tansformation
h(x) = log [1− p0 + 0.64p0 exp(x/2)] proposed in [14]. This yields another global monitoring
scheme

NChan,α(b, p0) = inf

{
n ≥ 1 :

K∑
k=1

log [1− p0 + 0.64 ∗ p0 exp(Wα,k,n/2)] ≥ b

}
.

Our extensive numerical simulation experiences illustrate that for a given α, the schemeNChan,α(b)

in (3.6) has the similar statistical/robustness properties to those schemes N (soft)
α (b, d) and N (r)

α (b)
in (3.4) and (3.5) in many interesting sparse post-change scenarios when p0 = r/K. This is because
all these procedures utilize the same local Lα-CUSUM statistics Wα,k,n in (3.1) and aim to detect
the same post-change scenarios (after regularization).

Besides these aforementioned shrinkage transformations, there are other approaches to com-
bine the local detection statistics together to make a global alarm. Two popular approaches in the
literature are the “MAX” and the “SUM” schemes, see [27] and [28]:

Nα,max(b) = inf

{
n ≥ 1 : max

1≤k≤K
Wα,k,n ≥ b

}
, (3.6)

Nα,sum(b) = inf

{
n ≥ 1 :

K∑
k=1

Wα,k,n ≥ b

}
. (3.7)

On one hand, the “MAX” and the “SUM” schemes could be considered as the special cases of our
proposed top-r based scheme N (r)

α (b) in (3.5) when r = 1 and r = K respectively. On the other
hand, the “MAX” and “SUM” approaches are generally statistically inefficient unless in extreme
cases of very few or many affected local data streams.

Note that there are three tuning parameters in our proposed schemes: (α, d, b) for the schemes
N

(soft)
α (b, d) in (3.4) and (α, r, b) for the scheme N (r)

α (b) in (3.5). It is natural to ask what are the
“optimal” choices of these tuning parameters. It turns out that the most challenging one is the
optimal choice of the common parameter α, which is related to the robustness from the gross error
models in (2.2), and will be discussed in Section 5. Next, the “optimal” choice of the shrinkage
parameter d or r mainly depends on the number of affected local data streams, see our asymptotic
properties in the next section. Finally, the choice of the threshold b is straightforward for given two
other parameters since it can be chosen to satisfy the false alarm constraint in (2.3).

4. Worst-case asymptotic efficiency score

In this section, we derive the worst-case asymptotic efficiency score (2.8) of our proposed schemes
N

(soft)
α (b, d) in (3.4) and N (r)

α (b) in (3.5). To see that, we first report two standard change-point
detection properties of our proposed schemes: the ARL to false alarm and detection delay under
the gross error model hi = (1− ε)fi+ εgi, where the outlier distributions gi are given and i = 0, 1.
Then, we will look at the worst-case of the outlier distributions to derive the worst-case asymptotic
efficiency. It is important to note that our proposed schemes do not involve the contamination ratio
ε or the information of outliers ε, g. Finally, based on our detection delay analysis, we provide
guidelines on how to choose the tuning parameters in our proposed schemes. The proofs of the
theorems are presented in the Appendix.
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Let us begin with the definition of the expectation of the Lα-likelihood ratio statistic Y =
([f1(X)]α − [f0(X)]α)/α when X is distributed according to hi = (1 − ε)fi + εgi for given ε, gi,
and i = 0, 1 Note that when α = 0, the variable Y should be treated as the log-likelihood ratio
log(f1(X)/f0(X)).

Definition 4.1. Given ε ≥ 0 and α ≥ 0, for i = 0, 1, define

Ii(ε, α; gi) = Ehi

[ [f1(X)]α − [f0(X)]α

α

]
(4.1)

= (1− ε)Efi

[ [f1(X)]α − [f0(X)]α

α

]
+ εEgi

[ [f1(X)]α − [f0(X)]α

α

]
.

Note when ε = 0, Ii(ε = 0, α; gi) does not depend on gi. So we further denote Ii(α) := Ii(ε =
0, α; gi) for simplification. It turns out that the ARL to false alarm and detection delay of our
proposed schemes are depending on whether Ii(ε, α; gi) < 0 or > 0. Next, let us summarize the
false alarm properties of our proposed schemes under the gross error model h0 = (1− ε)f0 + εg0.

Theorem 4.1. Assume I0(ε, α; g0) < 0, then there exists a unique positive constant λ(ε, α; g0)
depends on f0, f1, g0, α, ε such that

Eh0 exp
{
λ(ε, α; g0)

[f1(X)]α − [f0(X)]α

α

}
= 1. (4.2)

With the constant λ(ε, α; g0) > 0 in (4.2), the ARL to false alarm of our proposed schemes,
N

(soft)
α (b, d) in (3.4) and N (r)

α (b) in (3.5), are given as follows under different sufficient condi-
tions:
(a) When λ(ε, α; g0)b > K exp{−λ(ε, α; g0)d}, we have

E
(∞)
h0

[N (soft)
α (b, d)] ≥ 1

4
exp

([√
λ(ε, α; g0)b−

√
K exp{−λ(ε, α; g0)d}

]2)
. (4.3)

(b) When λ(ε, α; g0)b > K, we have

E
(∞)
h0

[N (r)
α (b)] ≥ 1

4
exp

([√
λ(ε, α; g0)b−

√
K
]2)

. (4.4)

Let us add some comments to better understand the theorem. First, the existence of the unique
constant λ(ε, α; g0) > 0 in (4.2) is based on the assumption that I0(ε, α; g0) < 0, see Appendix
A2 of [29]. Moreover, when ε = 0, both I0(0, α; g0) and λ(0, α; g0) only depend on the idealized
model fi(x) and α, but do not depend on the information of outliers, i.e., ε and gi. For simplifica-
tion, we denote λ(α) = λ(0, α; g0).

Second, our rigorous, non-asymptotic results in (4.3) and (4.4) hold no matter how large the
number K of data streams is. This allows us to investigate the modern asymptotic regime when
the dimension K goes to∞.

Finally, the assumptions of λ(ε, α; g0)b > K exp{−λ(ε, α; g0)d} or λ(ε, α; g0)b > K essen-
tially says that the global threshold b of our proposed schemes should be large enough if one wants
to control the global false alarm rate when online monitoring large-scale streams. These results
allow us to find a conservative threshold b so as to satisfy the false alarm constraint in (2.3), also
see the details of parameter setting below.
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Next, the following theorem summarizes the detection delays of our proposed schemesN (soft)
α (b, d)

in (3.4) and N (r)
α (b) in (3.5) when m out of K features are affected by the occurring event for some

given 1 ≤ m ≤ K. The detailed proof of Theorem 4.2 will be presented in Appendix.

Theorem 4.2. Suppose I1(ε, α; g1) > 0 , and m out of K features are affected.
(a) If b/m+ d goes to∞, then the detection delay of N (soft)

α (b, d) satisfies

Dh1(N
(soft)
α (b, d)) ≤ (1 + o(1))

1

I1(ε, α; g1)

(
b

m
+ d

)
, (4.5)

(b) If r ≥ m and b/m goes to∞, then the detection delay of N (r)
α (b) satisfies

Dh1(N
(r)
α (b)) ≤ (1 + o(1))

1

I1(ε, α; g1)

(
b

m

)
, (4.6)

where the o(1) term does not depend on the dimension K, but might depend on m and α as well
as the distributions h1.

To simplify the notation, we use Nα to denote both the scheme N
(soft)
α (b, d) and scheme

N
(r)
α (b). By Theorem 4.1 and Theorem 4.2, when K is fixed, if I0(ε, α; g0) < 0 and I1(ε, α; g1) >

0, we can get a natural lower bound of the asymptotic efficiency score (2.7) of our proposed
schemes,

AE(Nα, ε; g0, g1) ≥ mλ(ε, α; g0)I1(ε, α; g1). (4.7)

However, if we can find outlier distributions g∗0, g
∗
1 such that I0(ε, α; g∗0) > 0 and I1(ε, α; g∗1) < 0,

we will get

AE(Nα, ε; g
∗
0, g
∗
1) = 0, (4.8)

which implies the procedure cannot detect the persistent change from f0 to f1 at all due to the
contamination of outliers.

Now, we are ready to present the worst-case asymptotic efficiency score of our proposed
schemeNα. First, assume I0(α) = Ef0

[
[f1(X)]α−[f0(X)]α

α

]
< 0 and I1(α) = Ef1

[
[f1(X)]α−[f0(X)]α

α

]
>

0, denote

M∗(α) = ess sup
x
| [f1(x)]

α − [f0(x)]
α

α
|. (4.9)

Then we have the following theorem:

Theorem 4.3. For our proposed scheme Nα(b)with α ≥ 0, suppose K is fixed and b→∞,
(a) if ε < −I0(α)/[M∗(α)− I0(α)] and ε < I1(α)/[M

∗(α) + I1(α)], we have

WAE(Nα, ε) ≥ mλ∗(ε, α)
[
(1− ε)I1(α)− εM∗(α)

]
> 0, (4.10)

where λ∗(ε, α) = inf
g0∈G

λ(ε, α; g0) > 0.

(b) Otherwise, WAE(Nα, ε) = 0.
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Note if log(f1(x)/f0(x)) is unbounded, we haveM∗(0) = +∞. Based on Theorem 4.3, for any
ε > 0,WAE(Nα=0, ε) = 0, which implies the CUSUM based method cannot detect the persistent
change at all under any percentage of outliers. However, if both f0, f1 are bounded, for any α > 0,
we have M∗(α) < +∞. Thus, our proposed schemes Nα will always have a positive worst-case
asymptotic efficiency score when the contamination ratio ε is small. This implies the detection
efficiency of our proposed schemes under the gross error model.

Note that there are three tuning parameters in our proposed schemes: (α, d, b) for the schemes
N

(soft)
α (b, d) in (3.4) and (α, r, b) for the scheme N (r)

α (b) in (3.5). It is natural to ask what are
the “optimal” choices of these tuning parameters. It turns out that Theorems 4.1 and 4.2 provide
the optimal choices of (d, b) or (r, b) that asymptotically minimize the detection delay subject to
the false alarm constraint γ in (2.3). Below we will report the corresponding results, and detailed
proofs and descriptions are postponed to Appendix.

(1) The optimal choice of parameter α, which turns out to be the most challenging one, as it is
related to the robustness from the gross error models in (2.2). We will discuss in more details in
Section 5 through the concept of false alarm breakdown point. The result in Section 5 shows the
optimal αopt only depends on the distributions f0, f1 but independent of other parameters d, r, b,
and outliers information ε, g.

(2) Given αopt, the choice of the shrinkage parameter d or r mainly depends on the number
m of affected local feature coefficients. If we want to minimize the detection delay subject to the
false alarm constraint γ in (2.3), we can set r = m for the scheme N (r)

αopt(b) in (3.5). The optimal
choice of d for the proposed scheme N (soft)

αopt (b, d) in (3.4) is a little complicated, and given by

dopt =
1

λ(αopt)

(
log

K

m
+ log

log γ

m

)
, (4.11)

where λ(αopt) is defined in (4.2) and only depends on f0, f1 and αopt.
(3) The choice of the threshold b is straightforward for given two other parameters, since it can

be chosen to satisfy the false alarm constraint in (2.3) under the idealized distribution f0. A choice
of global detection threshold

bγ =
1

λ(αopt)

(√
log(4γ) +

√
K exp{−λ(αopt)dopt}

)2

, (4.12)

will guarantee that our proposed scheme N (soft)
αopt (bγ, dopt) satisfies the global false alarm constraint

γ in the idealized model as in (2.3).
Note that all these choices of parameters do not depend on the ε or g, and only depend on the

idealized model f0, f1 and a prior knowledge on the number m of affected data streams.

5. Breakdown point analysis

In this section, we will investigate the robustness properties of our proposed schemes, N (soft)
α (b, d)

in (3.4) and N (r)
α (b) in (3.5), through the false alarm breakdown point analysis. This will pro-

vide the guideline on how to choose the tuning parameter α, which controls the robustness of our
proposed schemes.
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In the classical offline robust statistics, the breakdown point is one of the most popular mea-
sures of robustness of statistical procedures. At a high-level, in the context of finite samples, the
breakdown point is the smallest percentage of contaminations that may cause an estimator or sta-
tistical test to be really poor. Since the pioneering work of [23] for the asymptotic definition of
breakdown point, much research has been done to investigate the breakdown point for different
robust estimators or hypothesis testings in the offline statistics, see [30], [31]. To the best of our
knowledge, no research has been done on the breakdown point analysis under the online monitor-
ing or change-point context.

Given the importance of the system-wise false alarm rate for online monitoring large-scale
data streams in real-world applications, here we focus on the breakdown point analysis for false
alarms. Intuitively, for a family of procedures T (b) that is robust, if it is designed to satisfy the
false alarm constraint γ in (2.3) under the idealized model f0, then its false alarm rate should not
be too bad under the gross error model h0 with some small amount of outliers. There are two
specific technical issues that require further clarification. First, how bad is a “bad” false alarm
rate? We propose to follow the sequential change-point detection literature to assess the false
alarm rate by logE

(∞)
h0

(T (b)) and deem the false alarm rate unacceptable if logE
(∞)
h0

(T (b)) is
much smaller than the designed level of log γ, i.e., if logE(∞)

h0
(T (b)) = o(log γ). Second, what

kind of the contamination function g in (2.5) should we consider in the gross error model? Here
we propose to follow the offline robust statistics literature to consider the worst-case scenario in
the ε-contaminated distribution class in [1] that includes any arbitrary contamination functions g’s,
which leads to the definition of the false alarm breakdown point in (2.4).

Now we are ready to conduct the false alarm breakdown point analysis for our proposed
schemes N (soft)

α (b, d) and N (r)
α (b) with a given tuning parameter α ≥ 0. To do so, for the densities

f0(x) and f1(x), and for any given α ≥ 0, we define an intrinsic bound

M(α) = ess sup
x

[f1(x)]
α − [f0(x)]

α

α
, (5.1)

and the density power divergence between f0 and f1:

dα(f0, f1) =

∫ {
[f1(x)]

1+α − (1 +
1

α
)f0(x)[f1(x)]

α +
1

α
[f0(x)]

1+α
}
dx. (5.2)

Note that dα(f0, f1) was proposed in [2], which showed that it is always positive when f1 and f0
are different. Moreover, when α = 0, dα=0(f0, f1) becomes Kullback-Leibler information number∫
f0(x) log

f0(x)
f1(x)

dx.
With these two new notations, the following theorem derives the false alarm breakdown point

of our proposed schemes N (soft)
α (b, d) and N

(r)
α (b) as a function of the tuning parameter α for

a fixed soft-thresholding parameter d and r when online monitoring a given K number of data
streams. Since they have the same breakdown point, to simplify the notation, we use Nα to denote
both the scheme N (soft)

α (b, d) and scheme N (r)
α (b).

Theorem 5.1. Suppose that fθ(x) = f(x−θ) is a location family of density function with continu-
ous probability density function f(x), and assume fθ0(x)−fθ1(x) takes both positive and negative
values for x ∈ (−∞,+∞). For α ≥ 0, and any fixed d and K, the false alarm breakdown point of
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our proposed schemes Nα in (3.4) and (3.5) is the same and given by

ε∗(Nα) =
dα(fθ0 , fθ1)

dα(fθ0 , fθ1) + (1 + α)M(α)
, (5.3)

where M(α) and dα(fθ0 , fθ1) are defined in (5.1) and (5.2). In particular, ε∗(Nα) = 0 if M(α) =
∞ and dα(fθ0 , fθ1) is finite.

The proof of Theorem 5.1 requires the asymptotic properties of our proposed schemesN (soft)
α (b, d)

in (3.4) and N (r)
α (b) in (3.5) under the assumption that ε and g are given, which has been studied

in the previous section. The detailed proof of Theorem 5.1 will be presented in the supplementary
materials.

Next, let us apply Theorem 5.1 to guide us to choose the optimal robustness parameter α. Since
the false alarm breakdown point of our proposed schemes do not require any information about the
contamination ratio ε and contamination distribution g, one nature idea is to maximize the false
alarm breakdown point in (5.3):

αopt = argmax
α≥0

dα(fθ0 , fθ1)

dα(fθ0 , fθ1) + (1 + α)M(α)
(5.4)

As an illustration, let us see the results of (5.3) and (5.4) for widely used normal distributions,
i.e., when fθ is the pdf of N(θ, σ2). In this case, when α = 0, the density power divergence
dα=0(fθ0 , fθ1) = 1

2σ2 (θ1 − θ0)2 is finite, but the bound M(α = 0) in (5.1) becomes +∞ since it
is the supremum of the log-likelihood ratio log fθ1(x) − log fθ0(x) = (θ1 − θ0)x − (θ21 − θ20)/2
over x ∈ (−∞,∞).Hence, ε∗(Nα=0) = 0. That is, the false alarm breakdown point of the baseline
CUSUM-based schemeNα=0 is 0, i.e., any amount of outliers will deteriorate the false alarm rate of
the classical CUSUM statistics-based schemes. This is consistent with the offline robust statistics
literature that the likelihood-function based methods are very sensitive to model assumptions and
are generally not robust.

Meanwhile, for any α > 0, note that∫ ∞
−∞

fθ0(x)[fθ1(x)]
αdx =

1

(
√
2πσ)α

√
1 + α

exp

(
−α(θ1 − θ0)

2

2(1 + α)σ2

)
,

and thus it is not difficult to derive from (5.2) that

dα(fθ0 , fθ1) =

√
1 + α

α(
√
2πσ)α

(
1− exp(−α(θ1 − θ0)

2

2(1 + α)σ2
)

)
. (5.5)

Moreover, if we let M(= 1/
√
2πσ2), then |fθ(x)| ≤ M for all x. By the definition in (5.1), we

have |M(α)| ≤ 2Mα/α, which is finite for any α > 0. This implies that for normal distributions,
ε∗(Nα) > 0 for any α > 0. Thus our proposed Lα-CUSUM based scheme with α > 0 is much
more robust than the classical CUSUM scheme.

To see the optimal choice of α based on (5.4), let us consider a concrete numerical example
when fθ0 ∼ N(0, 1) and fθ1 ∼ N(1, 1). By (5.5), we can compute the value dα(0, 1) for any α ≥ 0.
While we do not have analytic formula for the upper bound M(α) in (5.1), its numerical value can
be easily found by brute-force exhaustive search over the real line x ∈ (−∞,∞). The result shows
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Figure 1: The value αopt in (5.4) for different θ1.
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Figure 2: The false alarm breakdown point
ε∗(Nα) in (5.3) when α = αopt for different θ1.

the false alarm breakdown point of our proposed schemeNα will first increase and then decrease as
α varies from 0 to 2., and yields the optimal choice of αopt as 0.51, with corresponding breakdown
point as 0.233. That means our proposed scheme with the choice of α = 0.51 could tolerate 23.3%
arbitrarily bad observations in terms of keeping the designed false alarm constraint stable.

Finally, we should emphasize that the optimal value αopt in (5.4) and the false alarm breakdown
point ε∗(Nα) in (5.3) will generally depend on the change magnitude or signal-to-noise-ratio. To
illustrate this, we consider three families: Normal, Laplace, and Logistic distributions with the
scale parameter σ = 1. This yields three families of pdfs, fθ(x) = 1√

2π
exp(− (x−θ)2

2
), 1

2
exp(−|x−

θ|), or exp(−(x−θ))
(1+exp(−(x−θ)))2 . In each case, we assume that the pre-change parameter θ0 = 0, the designed

post-change parameter θ1 varies from 1 to 5. In Figures 1 and 2, we plot the optimal value αopt
and the corresponding false alarm breakdown point ε∗(Nα) as a function of θ1. Figure 2 implies
that with the increasing of the post-change θ1 or the signal-to-noise-ratio, our proposed robust
schemes with optimal α can tolerate more outliers. Also it is interesting to see from Figure 1
that the optimal αopt decreases for normal or logistic distribution as the post-change parameter
θ1 increases. A surprising result is that the optimal αopt = 0 for the Laplace distribution. This
implies the classical CUSUM procedure for Laplace distribution is actually optimal in the sense of
having the largest breakdown point. One possible explanation is that for the Laplace distribution,
the log-likelihood ratio log(fθ1(x)/fθ0(x)) = −|x − θ1| + |x − θ0| takes values in the interval
[θ0 − θ1, θ1 − θ0] when θ1 > θ0. Thus the impact of outliers is directly controlled.

6. Numerical Simulations

In this section we conduct numerical simulation studies to illustrate the robustness and efficiency
of our proposed schemes N (soft)

α (b, d) and N (r)
α (b).

In our simulation studies, we assume there are K = 100 independent data streams, and at
some unknown time, m = 10 features are affected by the occurring event. Also the change is
instantaneous if a stream is affected, and we do not know which subset of streams will be affected.
We set fθ = pdf of N(θ, 1), the pre-change parameter θ0 = 0, the post-change parameter θ1 = 1,
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and the contamination densities g0, g1 are pdfs of N(0, 32). Our proposed schemes N (soft)
α (b, d) in

(3.4) and N (r)
α (b) in (3.5) are constructed by using the density function fθ0 and fθ1 .

In the first simulation study, we consider the idealized model when ε = 0. In this case, for our
proposed robust schemeN (soft)

α (b, d) in (3.4), as shown in the previous section, the optimal choices
of αopt = 0.51. By (4.11), if log(γ) << K, then the corresponding optimal shrinkage parameters
d ≈ 1

λ(ε=0,α=0.51)
log K

m
= 0.8915 for K = 100 and m = 10, since λ(ε = 0, α = 0.51) = 2.5829.

For our proposed robust scheme N (r)
α (b) in (3.5), we choose α = αopt = 0.51 and r = 10. For the

baseline CUSUM-based scheme, i.e., N (soft)
α=0 (b, d) with α = 0, we choose the shrinkage parameter

d = 1
λ(ε=0,α=0)

log K
m

= 2.3026, since λ(ε = 0, α = 0) = 1.
In summary, we will compare the following different schemes.

• Our proposed scheme N (soft)
α (b, d) in (3.4) with αopt = 0.51 and d = 0.8915.

• Our proposed scheme N (r)
α (b) in (3.5) with αopt = 0.51 and r = 10.

• The baseline CUSUM-based scheme N (soft)
α=0 (b, d) with d = 2.3026.

• The MAX scheme Nα=0.51,max(b) in (3.6);

• The SUM scheme Nα=0.51,sum(b) in (3.7);

• The method NXS(b, p0 = 0.1) in [12] based on generalized likelihood ratio:

NXS(b, p0) = inf
{
n ≥ 1 : max

0≤i<n

K∑
k=1

log(1− p0+ p0 exp[
(
U+
k,n,i

)2
/2]) ≥ b

}
,

where for all 1 ≤ k ≤ K, 0 ≤ i < n,

U+
k,n,i = max

(
0,

1√
n− i

n∑
j=i+1

Xk,j

)
.

• The method NChan,α=0(b, p0 = 0.1) in [14] under the idealized model that is an extension of
the SUM scheme in [28]:

NChan,α=0(b, p0) = inf
{
n ≥ 1 :

K∑
k=1

log
(
1− p0 + 0.64 ∗ p0 exp(W ∗

k,n/2)
)
≥ b
}
,

where W ∗
k,n is the CUSUM statistics in (3.2).

• The method NChan,α=0.51(b, p0 = 0.1) in (3.6) which is similar to NChan,α=0 but replace the
CUSUM statistic by our proposed Lα-CUSUM statistic.

For each of these schemes T (b), we first find the appropriate values of the threshold b to satisfy
the false alarm constraint γ ≈ 5000 under the idealized model with ε = 0 (within the range of
sampling error). Next, using the obtained global threshold value b, we simulate the detection delay
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Table 1: A comparison of the detection delays of 8 schemes with γ = 5000 under the idealized
model. The smallest and largest standard errors of these 8 schemes are also reported under each
post-change hypothesis based on 1000 repetitions in Monte Carlo simulations.

Gross error model with ε = 0
# affected local data streams

1 3 8 10 15 20 50 100

Smallest standard error 0.29 0.12 0.05 0.04 0.03 0.03 0.01 0.00
Largest standard error 0.58 0.20 0.07 0.06 0.05 0.03 0.02 0.01

Our proposed robust scheme
N

(soft)
α=0.51(b = 8.5, d = 0.8915) 41.0 18.6 10.3 9.2 7.5 6.5 4.5 3.9

N
(r=10)
α=0.51(b = 17.19) 40.6 18.5 10.3 9.2 7.7 6.9 5.3 4.8

Comparison of other methods
N

(soft)
α=0 (b = 21.52, d = 2.3026) 33.6 15.2 8.4 7.5 6.1 5.3 3.7 3.0

Nα=0.51,max(b = 4.3) 27.7 19.6 16.2 15.6 14.8 14.2 12.7 11.9
Nα=0.51,sum(b = 36.85) 63.7 26.9 12.5 10.5 7.8 6.4 3.3 2.0
NChan,α=0.51(b = 1.04, p0 = 0.1) 31.4 17.7 10.8 9.7 7.8 6.7 4.1 3.0
NChan,α=0(b = 21.6, p0 = 0.1) 32 15.2 11.2 7.5 5.3 4.2 3.3 2.3
NXS(b = 19.5, p0 = 0.1) 30.9 13.2 7.2 5.7 4.7 3.5 1.8 1.0

when the change-point occurs at time ν = 1 under several different post-change scenarios, i.e.,
different number of affected sensors. All Monte Carlo simulations are based on 1000 repetitions.

Table 1 summarizes the detection delays of these 8 schemes under 9 different post-change hy-
pothesis. Among all schemes, NXS(b, p0) generally yields the smallest detection delay. However,
we want to emphasize that it is computationally expensive. Specifically, even if we use a time
window of size k as in [12] to speed up the implementation of NXS(b, p0), at each time n, O(Kk2)
computations are needed to get the global monitoring statistics, whereas our proposed scheme
N

(soft)
α (b, d) only require O(K) computations to get the global monitoring statistics.

Another interesting observation from Table 1 is that the detection delay of our proposed robust
schemes N (soft)

α=0.51(b, d) and N (r)
α=0.51(b) are not too bad compared with the CUSUM-based scheme

N
(soft)
α=0 (b, d = 2.3026), and it just takes additional 1.7 time steps to raise a correct global alarm

under the idealized model when m = 10 data streams are affected.
In the second simulation study, we will examine the detection efficiency of these schemes un-

der the gross error model when ε = 0.1. For each of these 8 schemes, we use the same threshold
b obtained from the first simulation to guarantee these schemes satisfy the same false alarm con-
straint γ = 5000 under the idealized model. Then, we wilsimulate the in-control average run and
the detection delay of these schemes when both the pre-change distribution and post-change distri-
bution are the gross error model in (2.2) with ε = 0.1, g0, g1 as pdfs ofN(0, 32).We then report the
empirical version of the asympototic efficiency score in (2.7) of these schemes under 8 different
post-change hypothesis in Table 2.

First, we can see our proposed scheme N (soft)
α=0.51(b, d = 0.8915) and N (r=10)

α=0.51(b = 18.7) have
the largest detection efficiency score among all comparison methods when 10 data streams are
affected. Moreover, by using our proposed Lα-CUSUM statistics with α = 0.51, the method
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Table 2: A comparison of the detection efficiency score of 8 schemes under the gross error model
with ε = 0.1 based on 1000 repetitions in Monte Carlo simulations. The threshold b is chosen to
satisfy γ = 5000 in the idealized model.

Gross error model with ε = 0.1
# affected local data streams

1 3 8 10 15 20 50 100

Our proposed robust scheme
N

(soft)
α=0.51(b = 8.5, d = 0.8915) 0.17 0.34 0.61 0.68 0.83 0.95 1.37 1.66

N
(r=10)
α=0.51(b = 17.09) 0.17 0.35 0.62 0.68 0.82 0.92 1.2 1.35

Other methods for comparison
N

(soft)
α=0 (b = 21.52, d = 2.3026) 0.27 0.32 0.4 0.43 0.48 0.53 0.7 0.8

Nα=0.51,max(b = 4.3) 0.3 0.36 0.44 0.46 0.49 0.51 0.58 0.62
Nα=0.51,sum(b = 36.85) 0.12 0.25 0.5 0.58 0.77 0.94 1.73 2.88
NChan,α=0(b = 21.6, p0 = 0.1) 0.26 0.32 0.36 0.43 0.54 0.63 0.75 1.03
NChan,α=0.51(b = 1.04, p0 = 0.1) 0.21 0.37 0.59 0.65 0.81 0.94 1.53 2.19
NXS(b = 19.5, p0 = 0.1) 0.22 0.39 0.44 0.49 0.52 0.55 0.78 0.93

NChan,α=0.51(b, p0 = 0.1) yields the similar detection efficiency to our proposed schemes. This
illustrates that the improvement of Lα-CUSUM statistics is significant as compared to the baseline
CUSUM statistics in the presence of outliers.

It is also interesting to note that the MAX-schemeNα=0.51,max(b) and the SUM-schemeNα=0.51,sum(b)
are designed for the case when m = 1 or m = K features are affected, and Table 2 confirmed that
their detection efficinecys are indeed the largest in their respective designed scenarios. However,
when the number of affected features m is moderate and is arround 10, our proposed scheme
N

(soft)
α=0.51(b, d) and N (r)

α=0.51(b) have larger detection efficiency, which implies our proposed schemes
with sum-shrinkage technique could be more robust to the number of affected features.

In the third experiment, we investigate the impact of contamination rate ε on the false alarms
of different methods to illustrate the robustness of our proposed Lα-CUSUM statistics. Since
the top-r scheme N (r)

α=0.51(b), MAX-scheme Nα=0.51,max(b), the SUM-scheme Nα=0.51,sum(b) and
NChan,α=0.51(b, p0) are all based on local Lα-CUSUM statistics, their robustness properties are
similar to our proposed scheme N (soft)

α=0.51(b, d). To highlight the robustness of our proposed Lα-
CUSUM statistics, we only compare our proposed scheme N (soft)

α=0.51(b, d) with other three schemes:
N

(soft)
α=0 (b, d), NChan,α=0(b, p0), and NXS(b, p0).

Figure 3 reports the curve of logE(∞)
h0

(T ) as the contamination ratio ε varies from 0.02 to 0.2
with stepsize 0.02. Clearly, all curves decrease with the increasing of contaminations, meaning
that all schemes will raise false alarm more frequently when there are more outliers. However,
the curves for the CUSUM or likelihood-ratio based methods decreased very quickly, whereas
our proposed Lα-CUSUM statistics-based method with αopt = 0.51 decreases rather slowly. This
suggests that our proposed scheme is more robust in the sense of keeping the designed ARL more
stable with a small departure from the assumed model.
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7. Conclusion

In this paper, we study the problem of robust monitoring of large-scale data streams when the
true observed data follow Huber’s gross error model. We develop a family of efficient and robust
detection schemes that can be implemented in real-time. From the worst-case detection efficiency
point of view, we show our proposed methods can still have positive detection efficiency under a
small proportion of arbitrary outliers. In contrast, the CUSUM-based methods lose all detection
efficiency once the data include outliers. From the robustness point of view, we propose a new
concept called false alarm breakdown point, which measures the stability of the designed false
alarm constraint of any monitoring procedures under the effects of outliers. Our breakdown point
analysis implies our proposed methods can have positive breakdown points. We also provide
detailed guidelines on the choices of tuning parameters in our detection procedures. However, in
this work, we focus on the problem of monitoring homogeneous independent data streams. It is
of future interest to extend the problem to nonhomogeneous data streams with some correlation
structures.

Appendix

In this online supplementary material, we provide detailed proofs to Theorems 4.1, 4.2, and Theo-
rem 4.3, the optimal parameter choice in Section 4, and the proof of Theorem 5.1.

A. Proof of Theorem 4.1

(a) For any x ≥ 0, by Chebyshev’s inequality,

E
(∞)
h0

[N (soft)
α (b, d)] ≥ xP

(∞)
h0

(N (soft)
α (b, d) ≥ x)

= x
[
1−P

(∞)
h0

(N (soft)
α (b, d) < x)

]
= x

[
1−P

(∞)
h0

(
K∑
k=1

max{0,Wα,k,n − d} ≥ b) for some 1 ≤ n ≤ x

]
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≥ x

[
1− xP(∞)

h0
(
K∑
k=1

max{0,W ∗
α,k − d} ≥ b)

]
, (7.1)

where W ∗
α,k = lim supn→∞Wα,k,n. We will show that W ∗

α,k exists later, and when it does exist, it is
clear that W ∗

α,k are i.i.d. across different k under the pre-change measure P
(∞)
h0

. Now if we define
the log-moment generating function of the W ∗

α,k’s

ψα(θ) = logE
(∞)
h0

exp{θmax(0,W ∗
α,k − d)} (7.2)

for some θ ≥ 0, then another round application of Chebyshev’s inequality yields

exp(Kψα(θ)) = E
(∞)
h0

exp{θ
K∑
k=1

max(0,W ∗
α,k − d)}

≥ eθbP
(∞)
h0

(
K∑
k=1

max{0,W ∗
α,k − d} ≥ b) (7.3)

for θ > 0. Combining (7.1) and (7.3) yields that

E
(∞)
h0

[N (soft)
α (b, d)] ≥ x [1− x exp(−θb+Kψα(θ))] (7.4)

for all x ≥ 0. Since x(1 − xu) is maximized at x = 1/(2u) with the maximum value 1/(4u). We
conclude from (7.4) that

E
(∞)
h0

[N (soft)
α (b, d)] ≥ 1

4
exp (θb−Kψα(θ)) . (7.5)

for any θ > 0 as long as ψα(θ) in (7.2) is well-defined.
The remaining proof is to utilize the definition of λ(ε, α; g0) > 0 in (4.2) to show that the upper

limiting W ∗
α,k of the proposed Lα-CUSUM statistics is well-defined and derive a careful analysis

of ψα(θ) in (7.2). When α = 0, the Lα-CUSUM statistics become the classical CUSUM statistics,
and the corresponding analysis is well-known, see [21]. Here our main insight is that our proposed
Lα-CUSUM statistics Wα,k,n for detecting a change from h0(x) to h1(x) in (2.2) can be thought of
as the classical CUSUM statistic for detecting a local change from h0(x) to another new density
function h2(x). Hence, under the pre-change hypothesis of h0(·), the false alarm properties of our
proposed Lα-CUSUM statistics can be derived through those of the classical CUSUM statistics.

By the definition of λ(ε, α; g0) > 0, if we define a new function

h2(x) := exp

{
λ(ε, α; g0)(

(f1(x))
α − (f0(x))

α

α
)

}
h0(x), (7.6)

then h2(x) is a well-defined probability density function. Then in the problem of detection a local
change from h0(x) to h2(x), the local CUSUM statistics for the kth local data stream is defined
recursively by

W ′
k,n = max{0,W ′

k,n−1 + log
h2(Xk,n)

h0(Xk,n)
}

= max{0,W ′
k,n−1 + λ(ε, α; g0)

[f1(Xk,n)]
α − [f0(Xk,n)]

α

α
}.
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Compared with our proposed Lα-CUSUM statistics Wα,k,n, it is clear that W ′
k,n = λ(ε, α)Wα,k,n,

and thus our proposedLα-CUSUM statisticsWα,k,n’s are equivalent to the standard CUSUM statis-
ticsW ′

k,n up to a positive constant λ(ε, α; g0).By the classical results on the CUSUM, see Appendix
2 on Page 245 of [32], as n → ∞, W ′

k,n converges to a limit and thus Wα,k,n also converges to a
limit, denoted by W ∗

α,k. Moreover, the tail probability of W ∗
α,k satisfies

G(x) = P
(∞)
θ0

(W ∗
α,k ≥ x) = P

(∞)
θ0

(lim sup
n→∞

W ′
k,n ≥ λ(ε, α; g0)x) ≤ e−λ(ε,α;g0)x. (7.7)

Now we shall use (7.7) to derive information bound of ψα(θ) in (7.2). In order to simplify our
arguments, we abuse the notation and simply denote λ(ε, α; g0) by λ in the remaining proof of the
theorem. By the definition of ψα,k(θ) in (7.2) and the tail probability G(x) in (7.7), for θ > 0,

ψα(θ) = log[P
(∞)
θ0

(W ∗
α,k ≤ d)−

∫ ∞
d

eθ(x−d)dG(x)] (7.8)

= log[1 + θ

∫ ∞
d

eθ(x−d)G(x)dx]

≤ log[1 + θ

∫ ∞
d

eθ(x−d)e−λxdx]

= log

(
1 +

θ

λ− θ
e−dλ

)
≤ θ

λ− θ
e−dλ,

where the second equation is based on the integration by parts. Clearly, relation (7.8) holds for any
0 < θ < λ = λ(ε, α; g0).

By (7.5) and (7.8), we have

E∞ε N
(soft)
α (b, d) ≥ 1

4
exp

(
θb− Kθ

λ− θ
e−dλ

)
(7.9)

for all 0 < θ < λ = λ(ε, α; g0).When λb > K exp{−λd}, relation (4.3) follows at once from (7.9)
by letting θ =

√
λ/b

(√
λb−

√
K exp{−dλ}

)
∈ (0, λ). This completes the proof of Theorem

4.1 (a).
(b) Note N (soft)

α (b, d = 0) ≤ N
(r)
α (b) for any b ≥ 0. Therefore, (4.4) can be derived directly

from (4.3) by letting d = 0 in (4.3).

B. Proof of Theorem 4.2

First, we will prove the part (a) of Theorem 4.2. To prove the detection delay bound (4.6) in
Theorem 4.2, without loss of generality, assume the first m data streams are affected. Consider a
new stopping time

T ′(b, d) = inf{n ≥ 1 :
m∑
k=1

(Wα,k,n − d) ≥ b} = inf{n ≥ 1 :
m∑
k=1

Wα,k,n ≥ b+md}.

Clearly N (soft)
α (b, d) ≤ T ′(b, d), and thus

Dh1(N
(soft)
α (b, d)) ≤ Dh1(T

′(b, d)).
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Next, by the recursive definition of Wα,k,n in (3.1), using the same approach in Theorem 2 of [25]
that connects the recursive CUSUM-type scheme to the random walks, we have

Dh1(T
′(b, d))) ≤ E1T

′′(b, d),

where E1 denotes the expectation when the change happen at time ν = 1, and T ′′(b, d) is the first
passage time when the random walk with i.i.d. increment of mean mI1(ε, α; g1) exceeds the bound
b+md, and is defined as

T ′′(b, d) = inf{n ≥ 1 :
n∑
i=1

m∑
k=1

[f1(Xk,i)]
α − [f0(Xk,i)]

α

α
≥ b+md}.

By standard renewal theory, as ( b
m
+ d)→∞, we have

E1T
′′(b, d) ≤ 1 + o(1)

mI1(ε, α; g1)
(b+md) .

Relation (4.6) then follows at once from the above relations, which completes the proof of part (a)
of Theorem 4.2.

To prove the part (b), we define another stopping time

τ(b) := inf{n ≥ 1 :
m∑
k=1

Wα,k,n ≥ b}.

Note for the sorted statistics Wα,(1),n ≥ Wα,(2),n ≥ · · · ≥ Wα,(K),n, we have
∑m

k=1Wα,k,n ≤∑m
k=1Wα,(k),n. Thus,when m ≤ r, N

(r)
α (b) ≤ τ(b). By standard renew theory, we have

Dh1(N
(r)
α (b)) ≤ Dh1(τ(b)) ≤ (1 + o(1))

b

mIθ(ε, α)
,

which completes the proof of part (b) of Theorem 4.2.

C. Proof of Theorem 4.3

Note if ε < −I0(α)/[M∗(α)− I0(α)],

sup
g0∈G

I0(ε, α; g0) = (1− ε)I0(α) + ε sup
x
(
[f1(x)]

α − [f0(x)]
α

α
)

≤ (1− ε)I0(α) + εM∗(α) < 0. (7.10)

Therefore, by Theorem 4.1, there exists a postive number λ∗(ε, α) = inf
g0∈G

λ(ε, α; g0) > 0 such that

lim
b→∞

inf
g0∈G

[
log(E

(∞)
h0

(Nα(b)))
]

b
≥ λ∗(ε, α).
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Moreover, if ε < I1(α)/[M
∗(α) + I1(α)],

inf
g1∈G

I1(ε, α; g1) = (1− ε)I1(α) + ε inf
x
(
[f1(x)]

α − [f0(x)]
α

α
)

≥ (1− ε)I1(α)− εM∗(α) > 0. (7.11)

By Theorem 4.2, we have

lim
b→∞

sup
g1∈G

[Dh1(Nα(b))]

b
≤ 1

m inf
g1∈G

I1(ε, α; g1)
≤ 1

m[(1− ε)I1(α)− εM∗(α)]
.

Thus, by the definition of worst-case detection efficiency in (2.8), we have

WAE(Nα, ε) = lim
b→∞

inf
g0∈G

[
log(E

(∞)
h0

(Nα(b)))
]

sup
g1∈G

[Dh1(Nα(b))]
≥ mλ∗(ε, α)

[
(1− ε)I1(α)− εM∗(α)

]
.

D. Parameter Setting in Section 4

The choice of b = bγ in (4.12) follows directly from Theorem 4.1 (a). To prove (4.11), we abuse
the notation and use λ to denote λ(α) for simplification. By Theorem 4.2, the optimal d is the
non-negative value that minimize the function

`(d) :=
bγ
m

+ d =
1

λm
(
√

log(4γ) +
√
Ke−λd)2 + d. (7.12)

This is an elementary optimization problem, and the optimal d can be found by taking derivative
of `(d) with respect to d, since `(d) is a convex function of d. To see this,

`′(d) = − 1

m
(
√
Ke−λd +

√
log(4γ)

2
)2 + 1 +

log(4γ)

4m

`′′(d) =
λ

m
(
√
Ke−λd +

√
log(4γ)

2
)
√
Ke−λd > 0.

Thus `(d) is a convex function on [0,+∞), and the optimal dopt value can be found by setting
`′(d) = 0 :

√
Ke−λd =

√
m+

log(4γ)

4
− 1

2

√
log(4γ).

This gives an unique optimal value

dopt =
1

λ
log

K

(
√
m+ 1

4
log(4γ)− 1

2

√
log(4γ))2

(7.13)

=
1

λ

log

[√
m+ 1

4
log(4γ) + 1

2

√
log(4γ)

]2
m

+ log
K

m

 ,

which is equivalent to those in (4.11) under the assumption that m = m(K) << min(log γ,K).
Plugging d = dopt in (7.13) back to (4.12) yields the choice of bγ .
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D. Proof of Theorem 5.1

By Theorems 4.1 and 4.2, the false alarm breakdown point of our proposed method Nα can be
found by finding the smallest ε value such that I0(ε, α; g0) > 0 for some distribution g0, where
I0(ε, α; g0) is defined in (4.1). That is equivalent to

ε∗(Nα) = inf{ε ≥ 0 : sup
g0

I0(ε, α; g0) > 0}, (7.14)

The remaining proof is based on a careful analysis of I0(ε, α; g0) for any arbitrary outlier den-
sity function g0. For any h0(x) = (1− ε)f0(x) + εg0(x) ∈ ~0,ε, by (4.1), we have

I0(ε, α; g0) = − 1− ε
1 + α

dα(f0, f1) + ε

∫
(
[f1(x)]

α − [f0(x)]
α

α
)g(x)dx, (7.15)

where dα(f0, f1) is defined in (5.2) and is the density power divergence between f0 and f1 proposed
by [2]. Here we use the fact that

∫
[f1(x)]

1+αdx =
∫
[f0(x)]

1+αdxwhen f0(x) and f1(x) come from
the same location family.

By the definition of M(α) in (5.1), it is clear from (7.15) that

sup
g0

I0(ε, α; g0) = −
1− ε
1 + α

dα(f0, f1) + εM(α). (7.16)

Therefore, by (7.14), if both dα(f0, f1) and M(α) are finite, the false alarm breakdown point of
Nα should be

ε∗(Nα) =
dα(f0, f1)

dα(f0, f1) + (1 + α)M(α)
. (7.17)

If dα(f0, f1) is finite but M(α) = +∞, by (7.14) and (7.16), ε∗(Nα) = 0. If dα(f0, f1) = +∞ but
M(α) is finite, ε∗(Nα) = 1. If both dα(f0, f1) and M(α) are +∞ and dα(f0,f1)

M(α)
= ρ, by (7.14) and

(7.16), we have ε∗(Nα) = ρ
ρ+(1+α)

no matter ρ is finite or not. Therefore, for all cases, the false
alarm breakdown point of Nα have the same expression in (7.17), which completes the proof of
Theorem 5.1.
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