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Following a sudden change of interactions in an integrable system of one-dimensional fermions, we analyze
the dependence of the static structure factor on the observation time after the quantum quench. At small waiting
times after the quench, we map the system to noninteracting bosons such that we are able to extract their occupa-

tion numbers from the Fourier transform of the density-density correlation function, and use these to compute a
bosonic entropy from a diagonal ensemble. By comparing this bosonic entropy with the asymptotic steady-state
entanglement entropy per fermion computed with exact diagonalization, we find excellent agreement.
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Recent experimental and theoretical advances have eluci-
dated the time evolution of spatial entanglement for a system
that remains in a pure quantum state after a sudden change in
the Hamiltonian. In the steady-state asymptotic limit, the en-
tanglement entropy becomes extensive in the size of a spatial
subsystem [1,2], and plays the role of a thermodynamic en-
tropy arising from a microcanonical ensemble with the same
energy density [3-6].

Here, we show that the entanglement entropy density af-
ter an interaction quench can be obtained from the diagonal
ensemble density matrix [6—10] of noninteracting bosons,
whose properties can be determined from density-density
correlations. Such correlations are readily accessible via cur-
rent experimental technologies in a quantum gas via Bragg
spectroscopy [11-14] without the need to directly measure
coherences. This result presents a complementary route to the
experimental measurement of entanglement entropy in quan-
tum systems that is not based on the creation of replicas [2,15—
17], and highlights the role played by entanglement dynam-
ics in generating an effective thermodynamic description that
underlies our current framework of quantum statistical me-
chanics.

The study of quantum quenches in one-dimensional sys-
tems has been very fruitful in understanding thermalization
in closed quantum systems [8,18-25]. We here consider an
integrable model of interacting spinless fermions in one spa-
tial dimension and obtain an explicit formula for the time
dependence of the postquench static structure factor via
bosonization. The occupation numbers of bosonic modes can
then be used to compute the entropy within the framework
of an effective diagonal ensemble. This entropy is compared
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to the extensive asymptotic spatial entanglement entropy
found via large-scale exact diagonalization of the underlying
fermions and we find excellent agreement between the two.
Our results can be readily adapted to an experimental protocol
for measuring the entanglement after a quantum quench in
trapped one-dimensional quantum gases.

Fermions with finite-range interactions. In equilibrium, all
thermodynamic quantities characterizing interacting fermions
in one dimension can be computed via a mapping to a ther-
mal ensemble of noninteracting bosons [26,27]. In particular,
the thermal bosonic entropy can be directly computed from
knowledge of the average bosonic mode occupancy. In the fol-
lowing, we describe how this concept can be generalized to a
nonequilibrium situation after a quantum quench, and how the
bosonic mode occupancies can be determined experimentally.
The starting point is an analysis of the Fourier transform of
the density-density correlation function, known as the static
structure factor.

We consider a system of N fermions on a one-dimensional
lattice with L sites, described by a Hamiltonian Hy + 6(¢)H],
which undergoes a quantum quench at time # = 0. The
fermions are described by creation and annihilation operators
¢!, ¢; with commutation relations {c;, cj} = §;;. One can then
define the density operator p; = cj'c,', with an average density
po = N/L. We now consider the density operator p;(t) in
the Heisenberg picture, evaluated at time ¢ after the quantum
quench, and define the density-density correlation function,

(pi()pj))  8i,

goli— jiry = LEDAIN % )
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We stress that g, is an equal-time correlation function, with ¢
denoting the observation time after the quantum quench. Via
a Fourier transform we obtain the static structure factor s(g; )
after observation time ¢ as

L/2-1

s(gt)=1+po Y [ga(r;t) — 11", )
r=0

Published by the American Physical Society



DEL MAESTRO, BARGHATHI, AND ROSENOW

PHYSICAL REVIEW RESEARCH 4, 1022023 (2022)

Bosonization methods can be used to obtain a prediction
for the observation time dependence of the structure factor,
which in turn allows one to extract the occupation numbers
of bosonic modes after the quantum quench. The result of
such a calculation for a Luttinger liquid (LL) with a quadratic
Hamiltonian (shown in the Supplemental Material [28]) is

stL(g:t) = stL(@)[2(ng) + 1 + sinh(28,) cos(2wyt)],  (3)

where B, parametrizes the transformation between free
fermions and the eigenstates of the postquench Hamiltonian,
and o, is the dispersion relation of density waves after the
quantum quench. Above, sy (g) is the equilibrium ground-
state static structure factor, which at low energies and long
wavelengths is given by [27]

su(g) = gl
(@) =

“

The Luttinger parameter K is related to the strength of in-
teractions and kg is the Fermi wave vector. Considering the
ratio s1.(q;t)/s.L(q) allows us to extract the bosonic occu-
pation (n,) from the time-independent part of this expression.
For a LL with a pointlike (i.e., momentum-independent) in-
teraction, one finds that (ng) = (n4—0) = LK + % —2) is
independent of g. For more realistic Hamiltonians, the inter-
action is momentum dependent, giving rise to a g-dependent
bosonic mode occupancy (n,) after the quench. In addition,
band curvature effects lead to a coupling between bosonic
modes [29-32], such that the mode occupancy (n,) is no
longer a constant of motion but acquires a time dependence.
We expect these nonlinear effects to be suppressed by at least
a factor of (n,), which is small (see Fig. 3). In our numerical
analysis, we use Eq. (3) only for short times ¢ after the quench,
for which the mode coupling has not yet had any appreciable
effect.

Staying within the Luttinger model, the Hamiltonian is
quadratic in boson operators and thus the entropy of the
density wave excitations can be computed exactly. In this
picture, the bosonic mode occupation operator 7, commutes
with the postquench Hamiltonian, and thus all its higher-order
correlations are time-independent conserved quantities. When
computing them using a squeezing transformation [18,33,34]
between the original and postquench bosons [28], one finds,
for instance, (ng) = 2(nq)2 + (ng). This hierarchy can be de-
scribed by a diagonal ensemble with a density matrix

- )
Paing = €~ Za07048, (5)

where A, is an effective temperature chosen to fix (n,) [8].
This ensemble preserves correlations between modes with op-
posite momenta, (n,n_,) = (ngn,), arising from interactions
between them. The density matrix in Eq. (5) is not equivalent
to the generalized Gibbs ensemble density matrix [4,6,21,35];
it is constructed from nonlocal degrees of freedom and does
not include any information about nonparticle conserving cor-
relations [21].

We compute the bosonic entropy via Sp=
—2Tr pgiag 10g pgiag, With the factor of 2 originating from
the diagonal nature of the ensemble [9,10]. Exploiting the
fact that there are no interactions between the bosonic density

waves, their entropy density is

S 2
5= 7 = = D L+ () In(L+ (1)) = () Inn, )1
q>0

(6)

Here, the sum runs over positive momenta only due to the
constraint between modes in Eq. (5), enforcing the same oc-
cupancy of positive and negative ¢ modes and thus the modes
with negative momenta do not contribute.

In the following, we argue that the postquench entropy
Eq. (6) evaluated for the LL model is equal to the density
of asymptotic spatial entanglement entropy for the underlying
fermions. This is motivated by the result that in equilibrium
and at low temperatures, the bosonic entropy is equal to
the thermodynamic entropy of the microscopic interacting
fermion system [27]. For an integrable system after a quantum
quench, the Yang-Yang entropy computed from the occupa-
tion numbers of the exact eigenstates of the interacting system
is known to agree with the asymptotic steady-state spatial
entanglement entropy per particle [22,24,36], computed as the
von Neumann entropy

S(t;8) = =Trlpe(2) In pe(1)], @)

where p;(t) is the postquench spatially reduced density ma-
trix.

We define a quadratic Luttinger model by demanding that
it faithfully reproduces the first few oscillations of the static
structure factor as a function of waiting time after the quench.
We then compute the entropy of this LL model from its
asymptotic diagonal ensemble density matrix. In this way, we
approximate the exact eigenstates of an interacting fermion
model with those of the Luttinger model, and propose in
analogy to the Yang-Yang entropy that Eq. (6) computed from
the LL mode occupancies is equal to the density of spatial
entanglement. For the LL model, (n;) can be determined in
an unambiguous manner from the structure factor by using
Eq. (3). The above approximation seems reasonable as both
the microscopic and the LL model are similarly constrained
integrable models. We test this hypothesis with an extensive
numerical experiment, and find excellent agreement between
the postquench diagonal ensemble entropy Eq. (6) and the
asymptotic spatial entanglement entropy from Eq. (7).

Demonstration for a lattice model. We consider an inte-
grable one-dimensional model of spinless fermions described

by
L L
H=—J (cfe,,; +He)+ 00V Y cleic) jcipi, )

i=1 i=1

where the first term corresponds to free fermions (Hp), and
the second term to a nearest-neighbor interaction V, switched
on at time t = 0 [H; with 6(¢) the Heaviside step function].
The equilibrium phases of the postquench Hamiltonian at
half filling (N = L/2) are known via a mapping to the XXZ
spin model [37,38]. For —2 < V/J < 2 the ground state is a
quantum liquid, with a first-order transition at V/J = —2to a
phase-separated solid (ferromagnet in the spin language). At
V/J = 2 there is a continuous transition to an insulating state
with staggered density wave order (antiferromagnet in the

L022023-2



MEASURING POSTQUENCH ENTANGLEMENT ENTROPY ...

PHYSICAL REVIEW RESEARCH 4, 1022023 (2022)

0.35
post-quench ¢t -v = L/4

03071 o equilibrium
% 0.25 -
—
3
£ 0.20 1 /
e
o 0.15 A
=
3
S 0.10 A
ot
0 A

0.05 P L =26

0.00 ‘ ‘ ‘ V = —0.500|J

0.0 0.1 0.2 0.3 0.4 0.5

Wavevector q/kp

FIG. 1. Comparison between equilibrium and postquench struc-
ture factor. The static structure factor at small wave vectors for
a quantum quench to interaction strength V = 0.5J at fixed time
t -v = L/4 (corresponding to an extremum of the oscillations) de-
viates significantly from its equilibrium counterpart. The solid lines
correspond to Luttinger-liquid predictions as defined in Egs. (4)
and (2) using values of K and v computed from Eq. (9).

XXZ model). The quantum liquid regime at low energies is
described by the linear hydrodynamics of the Luttinger model
with interaction parameters K and velocity v given by

_ T v 1—(V/2J)?
k= 2cos (= %) T =7 cos~h(v/2n)’ ©)

where the lattice spacing has been set to unity.

At t =0, the ground state |W,) of Eq. (8) corresponds
to noninteracting fermions, and after the sudden quench, the
initial state evolves according to |W(t)) = e | Wy) which
is obtained via numerical exact diagonalization for system
sizes up to L = 26 by exploiting translation, reflection, and
particle-hole symmetries of the microscopic Hamiltonian. All
postquench observables are computed from |\W(¢)) or its asso-
ciated density matrix p = |W(z))(W(z)|. All code, data, and
scripts necessary to reproduce the results of this work are
included in an online repository [39].

In Fig. 1 we compare the postquench static structure
factor Eq. (2) at a fixed time ¢ (corresponding to its first
extremum for g = 2 /L), with the time-independent structure
factor of an associated equilibrium model having the same
nearest-neighbor interaction strength (V = —0.5J here) for
L = 26 sites at half filling. In both cases, data points (circles)
were obtained via exact diagonalization, and the theoretical
Luttinger-liquid predictions for small g (solid lines) were
computed from Egs. (3) and (4). We have used the Bethe
ansatz solution to convert the interaction strength to the effec-
tive parameters of the Luttinger model where (n,) = (n4—0) =
‘]—1(K—+-K’l —2), sinh2B, = %(K—K’l), and w, =vq as
discussed in the Supplemental Material [28]. At small wave
vectors, the exact diagonalization results are in very good
agreement with the Luttinger-liquid predictions, both in equi-
librium and for a quantum quench, while deviations start to
increase as the wave vector approaches a finite fraction of k.

Extracting the bosonic momenta distribution. Exact diago-
nalization results for the postquench time dependence of the
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FIG. 2. Exact diagonalization results for the observation time de-
pendence of the normalized static structure factor § = s(g;1)/scq(q)
after a quantum quench at the smallest value of momentum g =
27 /L. Panels correspond to different final interaction strengths V.
After a spline interpolation, the period of the oscillation is deter-
mined, allowing for the determination of (n,), K, and v by taking
into account the first one and a half periods. Time after the quench
is measured in units of the inverse velocity given in Eq. (9). Dash
length and transparency indicate different system sizes.

static structure factor [Eq. (2)] 5(g; 1) = s(g;1)/Seq(g) normal-
ized by its equilibrium ground-state value s.q(q) are shown in
Fig. 2 for a number of interaction strengths and system sizes
for the smallest admitted wave vector, g = 27 /L. In practice,
the appearance of finite-size effects is suppressed by rescaling
the dimensionless time by the system size L, to achieve data
collapse. The oscillatory structure seen in Fig. 2 predicted by
the Luttinger-liquid result sr1.(g;¢)/sir.(q) in Eq. (3) can be
exploited to recover the parameters of the underlying micro-
scopic model as well as the g-dependent boson occupations
(ng) without the need for nonlinear fitting. For each interaction
strength V, system size L, and wave vector g, we perform a
cubic spline interpolation to the discrete time sampled 5(q; 7).
The frequency of oscillations w, can then be independently
determined from the location of the first three nontrivial ex-
trema, corresponding to 1/2, 1, and 3/2 periods, respectively.
Integrating 5(g;t) over these respective times yields

w, niw/wgy B ni
L(g) = — dt[5(g;t)+6-t] =1+2(ng) + 56—,
nw Jo 2w,
(10)
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FIG. 3. Bosonic density mode occupations. The expectation
value (n,) for ¢ — 0 obtained via finite-size scaling (inset) is com-
pared with the prediction from Luttinger-liquid theory, and we find
very good agreement over a wide range of interaction strengths.
Symbol colors are used to indicate different interaction strengths.

where we have introduced a possible linear drift term 6 - ¢
to confirm the consistency of the quadratic Luttinger-liquid
theory for density wave excitations. The drift term can be
obtained from

% = —Lp)=Wp—1hH)= %(13/2 —nLp), (A1)
and for all values of g < kg, we find |§]/J < 2 X 1074, justi-
fying the LL form of the static structure factor introduced in
Eq. (3). We thus ignore any short-time drift in our subsequent
analysis.

Next, we can similarly determine the g-dependent boson
occupations from the I, by combining

1+2(ng) =2Lp — I = 312 — I2) = 31 — 232,
(12)
where in practice we determine (n,) and its uncertainty as
the average and standard error of the three different measure-
ments. Finally, the prefactor of the oscillating term can be
found from the extremal values att = 0, 7 /2wy, 7 /w,.

Thus, utilizing Eqs. (10)-(12) we extract (n,), w4, and
sinh(28,) from our exact diagonalization data (a numerical
experiment). Performing finite-size scaling for each ¢ and
extrapolating to ¢ — 0, the LL boson occupation number can
be computed as shown in Fig. 3 as a function of interaction
strength. The success of this procedure can be independently
confirmed by comparing the extracted values with those pre-
dicted from bosonization, (n40) = (K + K —1 —2)/4 using
Eq. (9), which produces the solid line in Fig. 3. As can be seen,
the agreement is excellent over a wide range of interaction
strengths suggesting that the Luttinger parameter K could also
be estimated in experiments using this procedure. With access
to (n,) we can now directly employ Eq. (6) to obtain the
bosonic entropy.

Comparison with spatial entanglement entropy. This
bosonic entropy can then be compared with the steady-state
(t — o0) value of the spatial entanglement entropy computed
from Eq. (7). To this end, we determine the time dependence
of the system’s state after the quantum quench |\W(#)) via exact
diagonalization and compute the reduced density matrix of a
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FIG. 4. Entanglement entropy density. We compare the steady-
state spatial entanglement entropy density s for fermions with the
entropy density s, computed from a bosonic diagonal ensemble of
density excitations Eq. (6). The bosonic occupation numbers (n,)
were obtained from an analysis of the data presented in Fig. 2.
The dashed line is a guide to the eye. The ratio of the two entropy
densities is consistent within error bars (inset).

subsystem of macroscopic size £ = L/2 by tracing over half
spatial modes available to the fermions. By applying the finite-
size scaling and temporal extrapolation procedure described
in a previous work by the authors [40], the density of the en-
tanglement entropy § = limy _, » lim,_,  S(¢, L/2)/(N/2) can
be obtained, where N/2 is the average number of particles
in the spatial subregion. In Fig. 4 we show the comparison
between the fermionic s and bosonic s, entropy densities. The
agreement is within error bars estimated from uncertainties in
the two finite-size scaling procedures.

Conclusions. In this Letter, we have introduced a protocol
to extract bosonic occupation numbers from the postquench
time evolution of the static structure factor in a fermionic lat-
tice model. Such a protocol could be implemented in current
generation experiments of ultracold atomic gases via access to
the density-density correlation function after a sudden change
in the system. The resulting occupation numbers of bosonic
density waves can be used to compute their entropy within
a diagonal ensemble of noninteracting bosons. We compare
this entropy with the exact steady-state entanglement entropy
of the microscopic fermionic model under a spatial bipar-
tition and find excellent agreement between the two. This
provides evidence that the fluctuating degrees of freedom of
the approximate Luttinger model and the exact Bethe ansatz
solution contribute equivalently to the steady-state entropy
density. While the model considered here is integrable, the
method can be extended to include integrability breaking per-
turbations. In this case, any disagreement between the two
entropies could indicate additional sources of entanglement
generation and dynamics due to the reduction in conservation
laws.

Acknowledgments. This work was supported in part by the
NSF under Grants No. DMR-1553991 and No. 2041995 and
the Deutsche Forschungsge-meinschaft (DFG) under Grants
No. RO 2247/11-1 and No. 406116891 within the Research
Training Group RTG 2522/1. A.D. expresses gratitude to
the Institut fiir Theoretische Physik, Universitit Leipzig for
hospitality during the initial phase of this work.

L022023-4



MEASURING POSTQUENCH ENTANGLEMENT ENTROPY ...

PHYSICAL REVIEW RESEARCH 4, 1022023 (2022)

[1] P. Calabrese and J. Cardy, Evolution of entanglement entropy
in one-dimensional systems, J. Stat. Mech. (2005) P04010.

[2] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, Quantum thermalization through
entanglement in an isolated many-body system, Science 353,
794 (2016).

[3] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E
50, 888 (1994).

[4] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation
in a Completely Integrable Many-Body Quantum System: An
Ab Initio Study of the Dynamics of the Highly Excited States
of 1D Lattice Hard-Core Bosons, Phys. Rev. Lett. 98, 050405
(2007).

[5] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
its mechanism for generic isolated quantum systems, Nature
(London) 452, 854 (2008).

[6] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Colloquium: Nonequilibrium dynamics of closed interacting
quantum systems, Rev. Mod. Phys. 83, 863 (2011).

[7] L. F. Santos, A. Polkovnikov, and M. Rigol, Entropy of Isolated
Quantum Systems after a Quench, Phys. Rev. Lett. 107, 040601
(2011).

[8] B. Doéra, A. Bacsi, and G. Zarand, Generalized Gibbs ensemble
and work statistics of a quenched Luttinger liquid, Phys. Rev. B
86, 161109(R) (2012).

[9] V. Gurarie, Global large time dynamics and the generalized
Gibbs ensemble, J. Stat. Mech. (2013) P02014.

[10] L. Piroli, E. Vernier, P. Calabrese, and M. Rigol, Correlations
and diagonal entropy after quantum quenches in XXZ chains,
Phys. Rev. B 95, 054308 (2017).

[11] E. Altman, E. Demler, and M. D. Lukin, Probing many-body
states of ultracold atoms via noise correlations, Phys. Rev. A
70, 013603 (2004).

[12] E. D. Kuhnle, H. Hu, X.-J. Liu, P. Dyke, M. Mark, P. D.
Drummond, P. Hannaford, and C. J. Vale, Universal Behavior
of Pair Correlations in a Strongly Interacting Fermi Gas, Phys.
Rev. Lett. 105, 070402 (2010).

[13] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo,
L. Pollet, I. Bloch, and C. Gross, Spin-and density-resolved
microscopy of antiferromagnetic correlations in Fermi-Hubbard
chains, Science 353, 1257 (2016).

[14] T. L. Yang, P. GriSins, Y. T. Chang, Z. H. Zhao, C. Y. Shih,
T. Giamarchi, and R. G. Hulet, Measurement of the Dynamical
Structure Factor of a 1D Interacting Fermi Gas, Phys. Rev. Lett.
121, 103001 (2018).

[15] P. Calabrese and J. Cardy, Entanglement entropy and quantum
field theory, J. Stat. Mech. 2004, P06002 (2004).

[16] A. J. Daley, H. Pichler, J. Schachenmayer, and P. Zoller,
Measuring Entanglement Growth in Quench Dynamics of
Bosons in an Optical Lattice, Phys. Rev. Lett. 109, 020505
(2012).

[17] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli,
and M. Greiner, Measuring entanglement entropy in a quantum
many-body system, Nature (London) 528, 77 (2015).

[18] M. A. Cazalilla, Effect of Suddenly Turning on Interactions in
the Luttinger Model, Phys. Rev. Lett. 97, 156403 (2006).

[19] A. M. Léauchli and C. Kollath, Spreading of correlations and
entanglement after a quench in the one-dimensional Bose-
Hubbard model, J. Stat. Mech. (2008) PO5018.

[20] J. Sabio and S. Kehrein, Sudden interaction quench in the quan-
tum sine-Gordon model, New J. Phys. 12, 055008 (2010).

[21] E. llievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L. Essler,
and T. Prosen, Complete Generalized Gibbs Ensembles in an
Interacting Theory, Phys. Rev. Lett. 115, 157201 (2015).

[22] V. Alba, Eigenstate thermalization hypothesis and integrability
in quantum spin chains, Phys. Rev. B 91, 155123 (2015).

[23] F. H. L. Essler and M. Fagotti, Quench dynamics and relaxation
in isolated integrable quantum spin chains, J. Stat. Mech. (2016)
064002.

[24] V. Alba and P. Calabrese, Entanglement and thermodynamics
after a quantum quench in integrable systems, Proc. Natl. Acad.
Sci. USA 114, 7947 (2017).

[25] D. Jansen, J. Stolpp, L. Vidmar, and F. Heidrich-Meisner,
Eigenstate thermalization and quantum chaos in the Holstein
polaron model, Phys. Rev. B 99, 155130 (2019).

[26] J. von Delft and H. Schoeller, Bosonization for beginners —
refermionization for experts, Ann. Phys. 7, 225 (1998).

[27] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, Oxford, UK, 2004)

[28] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.4.1.022023 for more details on the
bosonization calculation of the time evolution of the static struc-
ture factor.

[29] F. D. M. Haldane, “Luttinger liquid theory” of one-dimensional
quantum fluids. 1. Properties of the Luttinger model and their
extension to the general 1D interacting spinless Fermi gas, J.
Phys. C 14, 2585 (1981).

[30] K. V. Samokhin, Lifetime of excitations in a clean Luttinger
liquid, J. Phys.: Condens. Matter 10, L533 (1998).

[31] R. G. Pereira, J. Sirker, J.-S. Caux, R. Hagemans, J. M. Maillet,
S.R. White, and I. Affleck, Dynamical Spin Structure Factor for
the Anisotropic Spin-1/2 Heisenberg Chain, Phys. Rev. Lett.
96, 257202 (2006).

[32] A.Del Maestro and I. Affleck, Interacting bosons in one dimen-
sion and the applicability of Luttinger-liquid theory as revealed
by path-integral quantum Monte Carlo calculations, Phys. Rev.
B 82, 060515(R) (2010).

[33] A. Tucci and M. A. Cazalilla, Quantum quench dynamics of the
Luttinger model, Phys. Rev. A 80, 063619 (2009).

[34] B. Déra, M. Haque, and G. Zardnd, Crossover from Adiabatic
to Sudden Interaction Quench in a Luttinger Liquid, Phys. Rev.
Lett. 106, 156406 (2011).

[35] J.-S. Caux and R. M. Konik, Constructing the Generalized
Gibbs Ensemble after a Quantum Quench, Phys. Rev. Lett. 109,
175301 (2012).

[36] C. N. Yang and C. P. Yang, Thermodynamics of a one-
dimensional system of bosons with repulsive delta-function
interaction, J. Math. Phys. 10, 1115 (1969).

[37] J. D. Cloizeaux, A soluble Fermi-gas model. Validity of trans-
formations of the Bogoliubov type, J. Math. Phys. 7, 2136
(1966).

[38] C. N. Yang and C. P. Yang, One-Dimensional Chain of
Anisotropic Spin-Spin Interactions. I. Proof of Bethe’s Hypoth-
esis for Ground State in a Finite System, Phys. Rev. 150, 321
(1966).

[39] All code, scripts and data used in this work are included in
a GitHub repository: https://github.com/DelMaestroGroup/
papers-code-QuenchStructureFactorEntanglement, doi:
10.5281/zen0do.5679241.

[40] A. Del Maestro, H. Barghathi, and B. Rosenow, Equivalence
of spatial and particle entanglement growth after a quantum
quench, Phys. Rev. B 104, 195101 (2021).

1L022023-5



