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Abstract

In many real-world problems of real-time monitoring high-dimensional streaming
data, one wants to detect an undesired event or change quickly once it occurs, but
under the sampling control constraint in the sense that one might be able to only
observe or use selected components data for decision-making per time step in the
resource-constrained environments. In this paper, we propose to incorporate multi-
armed bandit approaches into sequential change-point detection to develop an efficient
bandit change-point detection algorithm based on the limiting Bayesian approach to
incorporate a prior knowledge of potential changes. Our proposed algorithm, termed
Thompson-Sampling-Shiryaev-Roberts-Pollak (TSSRP), consists of two policies per
time step: the adaptive sampling policy applies the Thompson Sampling algorithm to
balance between exploration for acquiring long-term knowledge and exploitation for
immediate reward gain, and the statistical decision policy fuses the local Shiryaev-
Roberts-Pollak statistics to determine whether to raise a global alarm by sum shrink-
age techniques. Extensive numerical simulations and case studies demonstrate the
statistical and computational efficiency of our proposed TSSRP algorithm.

Keywords: adaptive sampling; change-point detection; partially observed variables; Shiryaev-
Roberts procedure; Thompson sampling

1



1 Introduction

Real-time monitoring high-dimensional streaming data under sampling control con-

straints appears in many important applications such as intrusion detection in computer

networks (Bass, 1999), event detection in social networks (Viswanath et al., 2014), epi-

demic disease outbreak monitoring (Yang et al., 2015), anomaly detection in manufacture

processes (Ding et al., 2006). In these applications, one often can only observe or use se-

lected components of the data for decision-making due to the capacity limitation in data

acquisition, transmission, processing, or storage. For instance, the sensor devices might

have limited battery powers; thus, one might want to use a subset of sensors per time step

over a long period instead of using full sensors simultaneously over a short period. Like-

wise, while sensing is usually cheap, the communication bandwidth is often limited from

remote sensors to the fusion center that makes a global decision. The fusion center might

prioritize certain local sensors to send local information for decision making. Also, in many

applications such as quality engineering or biosurveillance, one faces the design issue and

needs to decide which variables or patients to be measured to detect the defect or disease

outbreak more efficiently.

In this work, we investigate how to efficiently real-time monitor high-dimensional stream-

ing data under resource constraints. We assume that the full data from a system is a

K-dimensional random vector Xt = (X1,t, · · · , XK,t) at each time step, but we can only

observe q out of K components per time step. Here the component Xk,t, with k = 1, . . . , K

and t = 1, 2, . . ., can be either the raw data from local sensors or the derived features such

as wavelet coefficients, principal components. Initially, the system is in control in the sense
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that Xk,t follows a probability density function fk. At some unknown time ν, an event may

occur and change the distributions of a sparse subset of the components. Our goal is to

design an efficient algorithm to adaptively decide which variable to sample at each time

step, and when to raise a global alarm to indicate the possible occurrence of the change.

Without resource constraints, monitoring fully observed streaming data has raised much

attention in the statistical quality control (SPC) and sequential change-point detection lit-

erature, see Zou and Qiu (2009); Li (2019, 2020); Li et al. (2020); Zou et al. (2015). The

existing work generally falls into two frameworks: the cumulative sum (CUSUM) type

method, which is based on the generalized likelihood ratio (GLR) framework; and the

Shiryaev-Roberts type method, which is based on the Bayesian framework. For classi-

cal research on one-dimensional data streams, see Shiryaev (1963); Lorden (1971); Pollak

(1985); Lai (1995, 1998); Basseville and Nikiforov (1993); Poor and Hadjiliadis (2008); Tar-

takovsky et al. (2014). For recent research on high-dimensional data streams with fully

observed data, see Zhang and Siegmund (2012); Xie and Siegmund (2013); Wang and Mei

(2015); Cho and Fryzlewicz (2015); Chan (2017); Chu and Chen (2019). Additionally, an-

other framework is to monitor each data stream separately by computing respective local

detection statistics and then fuse local statistics into a global-level monitoring statistic, see

Mei (2010, 2011); Liu et al. (2019); Li (2020). This framework can balance the tradeoff

between computational efficiency and statistical efficiency.

Real-time monitoring high-dimensional partially observed data streams under the sam-

pling control has been studied in the literature of statistical process control in applied

statistics. A prominent line of work is based on the CUSUM procedure for observed local
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streams with an artificially introduced compensation parameter for the unobserved local

stream, see Liu et al. (2015); Xian et al. (2018); Wang et al. (2018); Xian et al. (2021).

While the compensation parameter can increase the chance of exploring unobserved local

streams, tuning the parameter is challenging. Another line of work leverages extra informa-

tion such as the correlation structure to approximate unobserved local streams and then to

plug in the standard monitoring methods of fully observed data, see Zhang and Hoi (2019);

Nabhan et al. (2021).

We propose a bandit change-point detection algorithm for efficient real-time monitor-

ing of high-dimensional streaming data under the sampling control. Our contributions are

twofold: (i) We incorporate prior knowledge of potential changes to update unobserved

local streams by treating the likelihood ratios of unobserved data as one. (ii) We in-

corporate the Thompson Sampling algorithm in the multi-armed bandit (MAB) problem

into the Shiryaev-Roberts-Pollak procedure in the sequential change-point detection liter-

ature. While Bayesian methods often involve extensive computations, our method, termed

as Thompson-Sampling-Shiryaev-Roberts-Pollak (TSSRP) algorithm, is computationally

efficient when monitoring high-dimensional data when the data streams are mutually inde-

pendent and we have some prior knowledge on the post-change distribution. The limiting

Bayesian framework allows our algorithm to have a natural interpretation and avoid the

tuning of artificial tuning parameters such as the compensation parameters for unobserved

data. It can balance the tradeoff between exploiting the observed local components that

maximize the immediate detection performance and exploring not-been-monitored local

components that might provide new information to improve future detection performance.
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In particular, our proposed TSSRP algorithm performs similar to random sampling in

the in-control state when no changes occurring, but becomes a greedy sampling on those

affected local components in the out-of-control state when a change occurs. Numerical

simulations and case studies show the efficiency of our proposed TSSRP algorithm.

The classical MAB problem focuses on developing algorithms to balance the tradeoff

between exploration for acquiring long-term knowledge and exploitation for immediate re-

ward gain, see Lai and Robbins (1985); Robbins (1985); Scott (2010); Gittins et al. (2011);

Bubeck and Cesa-Bianchi (2012); Agrawal and Goyal (2012); Cao et al. (2019); Zhao (2019)

and references therein. Our work and the classical MAB problem both deal with the dynam-

ical/adaptive sampling strategy that samples those local streams with the largest values of

some suitable local statistics. Nevertherless, our work is different from the existing research

on the MAB with non-stationary or piecewise constant rewarding functions, see Cao et al.

(2019); Ghatak (2020), because our primary objective is to minimize the average detec-

tion delay subject to controlling false alarm rate, whereas the bandit problems minimize

cumulative regret. In summary, we apply the bandit ideas to develop a new sequential

change-point detection algorithm for monitoring partially observed data.

The remainder of this paper is organized as follows. In Section 2, we provide the math-

ematical formulation of our problem and also review the background of the multi-armed

bandit problem and the sequential change-point detection problem. Next, we introduce

our proposed method and develop its theoretical properties in Section 3. Then we evaluate

the performance of our proposed algorithm through simulation studies and real data case

studies in Section 4 and 5, respectively. Concluding remarks are included in Section 6.
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We provide the detailed proofs of all theorems in the Supplementary Materials, which also

include additional numerical experiments.

2 Problem Formulation and Backgrounds

In this section, we present the mathematical formulation of real-time monitoring high-

dimensional streaming data in resource-constrained environments in Subsection 2.1. Then

we provide a brief review of the Thompson Sampling algorithm for the multi-armed bandit

problem in Subsection 2.2, followed by the review of the Bayesian approach for sequential

change-point detection in Subsection 2.3.

2.1 Problem Formulation

Suppose we are monitoring K independent data streams in a system. Let Xk,t denote the

observation of the k-th data stream at time t for t = 1, 2, . . . and k = 1, 2, . . . , K. Here each

data streamXk,t can be the raw data itself or its derived features such as wavelet coefficients,

principal components. Samples from data streams are assumed mutually independent.

Each data stream generates identically distributed data from a specific distribution fθk .

At some unknown change time ν ∈ {1, 2, . . .}, an undesirable event occurs and changes

the distributions of some data streams abruptly in the sense of changing the values of the

parameters θk. Conditional on the change time ν > 1, for those affected data streams, the

observation Xk,1, . . . , Xk,ν−1 are independent and identically distributed (iid) with density

fθk,0 while Xk,ν , Xk,ν+1, . . . are iid with another density fθk,1 , where θk,1 > θk,0, and the

case where θk,1 < θk,0 can be handled similarly. For those unaffected data streams, all
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observations Xk,1, Xk,2 . . . are iid with density fθk,0 . Here we do not know which subset of

the local streams changed, and we assume that the affected local streams are sparse. In

practice, practitioners usually specify fθk,1 as the interested-smallest magnitude of a change

to be detected.

Under sampling control, we can only observe or use selected partial data for decision

making. We assume that only q < K data streams can be selected to collect data at

each time t. Mathematically, let δk,t be the indicator function that δk,t = 1 if and only

if the k-th data stream Xk,t is selected at time step t. The resource constraint implies

that
∑K

k=1 δk,t = q at each time step t = 1, 2, · · · . Imagine that we put q sensors onto K

locations, then the δk,t can be thought as whether to put a sensor to the k-th data stream

at time t. Let St denote the locations where δk,t = 1, and we refer to it as the sensor

layouts. Under our notation, the observed data can be represented as {X∗k,t} = {Xk,tδk,t},

k = 1, 2, . . . , K.

For the change-point detection problem under sampling control, a statistical scheme

consists of two policies per time step. One is the adaptive sampling policy δ that decides

the observable location δk,t, and the other is the statistical decision policy, often defined

as a stopping time T, that raises an alarm based on the observations available {X∗k,t} =

{Xk,tδk,t}1≤k≤K,1≤t≤T . Our objective is to design a scalable and efficient statistical scheme

of (δ, T ) that minimizes the average detection delay

D(T ) = sup
1≤ν<∞

Eν(T − ν|T ≥ ν), (1)
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subject to the Average Run length (ARL) to False Alarm constraint

E(T |ν =∞) ≥ γ, (2)

where γ is a pre-specified constant.

It is worth noting that our problem connects to the multi-armed bandit problem in the

sampling policy; however, they are fundamentally different due to different performance

criteria.

2.2 Thompson Sampling for Multi-Armed Bandit

In this subsection, we briefly review the multi-armed bandit (MAB) problem, first in-

troduced by Robbins (1952), and one of the most popular algorithms, Thompson Sampling

(Thompson, 1933). Under a classical setting of MAB, a gambler can play one of K slot

machines (or arms) for K ≥ 2, but she or he has no prior knowledge about which machine

has a potentially higher reward. The only way to learn rewards is to play the machines.

The problem of interest is how the gambler decides which arm to play at each time step,

to maximize the total rewards through N plays.

One of the most popular MAB algorithms is Thompson Sampling, which is a natural

Bayesian algorithm. It has been widely used for personalized advertisements and product

recommendation (Agrawal and Goyal, 2013), as its efficiency has been well demonstrated in

many real-world applications, especially in the high-dimensional setting. See Scott (2010),

Chapelle and Li (2011). In particular, Agrawal and Goyal (2012) showed that the Thomp-

son Sampling algorithm asymptotically minimizes the expected regret.
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The idea of Thompson Sampling is to sample arms based on the largest values of the ran-

dom realizations of the posterior distributions instead of the posterior means. Specifically,

at each time step, after updating the posterior distribution of the mean θk for each arm, we

randomly sample a realization from the posterior distributions, denoted by θ̂k from the k-th

arm. Then we select the arm with the largest random realization, i.e., arg max1≤k≤K θ̂k.

This allows us to have better chances to sample those arms with fewer observations, thereby

balancing the tradeoff between the exploration for acquiring long-term knowledge and the

exploitation for immediate reward gain.

In the multi-armed bandit problem, when we are allowed to observe q arms each time,

it is natural to extend the original Thompson Sampling algorithm to select the q-largest

realizations. Such an approach often holds nice properties under reasonable conditions, see

Anantharam et al. (1987); Pandelis and Teneketzis (1999); Kaufmann et al. (2016). Thus

we will adopt the Thompson sampling with q-largest realizations in our context.

2.3 Shiryaev-Roberts Procedure

We now review the Bayesian approach for the simplest sequential change-point detec-

tion problem pioneered by Shiryaev (1963), as well as the corresponding limiting Bayesian

approach. See Roberts (1966); Pollak (1985, 1987). Consider the simplest univariate case

when we observe a sequence of independent observations X1, X2, . . ., whose distribution

might change from fθ0 to fθ1 at some unknown time ν. Since the goal is to detect the

change time ν quickly, the statistical procedure is defined as a stopping time T with re-

spect to the observed data {Xt}t≥1, where {T = t} means that we raise the alarm at time
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t to indicate that a change has occurred up to time t.

Under the Bayesian formulation, it is assumed that the change-point ν has a geometric

prior distribution:

P (ν = t) = p(1− p)t−1 for t = 1, 2, 3, · · · (3)

where 0 < p < 1 is a pre-specified constant. Moreover, conditional on the (unknown)

change-point ν, the pre-change observations, X1, . . . , Xν−1, are iid with density fθ0 and

are independent of the post-change observations, Xν , Xν+1, . . . which are iid with density

fθ1 . Assume that the cost of per post-change observation is c > 0. Then the Bayesian

formulation of sequential change-point detection is to find a statistical procedure T that

minimizes the Bayes risk P (T < ν) + cE(T − ν)+.

Shiryaev (1963) first solved this problem, and the Bayesian solution is to raise an alarm

at the first time when the posterior probability of change having occurred, i.e., P (ν ≤

t|X1, . . . , Xt), is greater than a certain threshold. Under the limiting Bayes framework, one

considers the test statistic of the form P (ν ≤ t|X1, . . . , Xt)/p(1− P (ν ≤ t|X1, . . . , Xt)) as

p goes to zero. This yields the so-called Shiryaev-Roberts procedure (Roberts (1966)) that

raises an alarm at time

TA = inf{t|Rt ≥ A}, (4)

where Rt is the Shiryaev-Roberts statistic defined as

Rt =
t∑

j=1

t∏
i=j

fθ1(Xi)

fθ0(Xi)
, (5)

and the threshold A is a pre-specified constant. Pollak (1985, 1987) showed that this

procedure enjoys nice asymptotic minimax properties, i.e., minimize the worst average
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detection delay in (1) up to within an o(1) term subject to the ARL to false alarm constraint

in (2), as γ goes to ∞.

3 Bandit Change-Point Detection

In this section, we present our proposed TSSRP algorithm for the real-time monitoring

high-dimensional streaming data under sampling control. Our proposed algorithm can be

thought of as the limit of Bayesian procedures that adapt the Thompson sampling policy

of sampling local streams based on the random realizations of the posterior distributions.

We assume the data contains K independent data streams. The local change time νk

of the k-th local data stream has a prior Geometric(p) distribution. The k-th local stream

has an initial prior probability Πk,0 of change and Πk,0’s are mutually independent, and

identically distributed from a common prior G = Gp. We can extend the idea to other non-

homogeneous scenarios, e.g., in quality control of K-stages manufacturing process where

some stages are more prone to defect. Specifically, the distribution of the local change time

νk is as follows:

P (νk = 0) = Πk,0, P (νk = t) = (1− Πk,0)p(1− p)t−1 for t = 1, 2, 3, · · · , (6)

where Πk,0 can be either a constant, e.g., Πk,0 ≡ 0, or a random variable that has a

distribution Gp.

After taking observations at the time step t, we update the posterior distribution of νk,

denoted by Πk,t = P (νk ≤ t| Observed Data). This computation is straightforward since the

raw data Xk,t is distributed as fθk,0I(νk < t)+fθk,1I(νk ≥ t), although it is observable if and
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only if the sampling indicator δk,t = 1. Next, we combine the local posterior distributions

Πk,t’s together to decide if we would raise a global alarm. If yes, then we stop taking any

observations. If no, then we will proceed to the next time step — as in the Thompson

sampling algorithm, we decide to observe those local streams in time step t + 1 with the

largest values of the posterior values Πk,t’s if the initial values Πk,0 are constant, or their

random realizations if the initial values Πk,0 are random variables.

Implementing the Bayesian algorithm in a naive way is computationally infeasible. Our

algorithm overcomes this challenge by leveraging the property that the limit of the Bayesian

algorithms as p goes to 0 has a mathematical equivalent representation that is computation-

ally scalable. Therefore, our algorithm is both statistically and computationally efficient.

We present our proposed TSSRP methodology in Subsection 3.1 and discuss the choice

of parameters and prior distribution in Subsection 3.2. We develop the theoretical proper-

ties of our proposed TSSRP algorithm including its connection to the Bayesian procedures

in Subsection 3.3.

3.1 Methodology Development

In the context of real-time monitoring high-dimensional streaming data under sampling

control, a statistical procedure consists of two policies per time step: (1) the adaptive

sampling policy to decide the observation location; (2) the statistical decision policy to

raise a global alarm based on the observed data. A common challenge in both components

or policies is how to construct local statistics for each local stream that can guide us to

make efficient decisions for both adaptive sampling and statistical decision policies. Our
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proposed method’s key novelty is to recursively update two-dimensional local statistics over

time that allow conveniently implement the Thompson Sampling.

3.1.1 Local Statistics

We propose to recursively compute two-dimensional local statistics, denoted by Rk,t

and Lk,t, at the k-th local data steam at each time step t = 1, 2, · · · , where Rk,t mimics

the classical Shiryaev-Robert statistics

Rk,t =


(Rk,t−1 + 1)

fθk,1 (Xk,t)

fθk,0 (Xk,t)
, if δk,t = 1;

Rk,t−1 + 1, if δk,t = 0.

(7)

with initial value Rk,t=0 = 0, and the statistics Lk,t mimics the likelihood ratio function

and

Lk,t =


Lk,t−1

fθk,1 (Xk,t)

fθk,0 (Xk,t)
, if δk,t = 1;

Lk,t−1, if δk,t = 0.

(8)

with initial value Lk,t=0 = 1.

At a high-level, the local statistic Rk,t mainly provides the evidence how likely a local

change has occurred, whereas the other local statistic Lk,t is related to the number of

samples taken at a given local data stream. If δk,t = 1, i.e., if one takes observations

from that specific local data streams, then the update on Rk,t and Lk,t follows the classical

Shiryaev-Robert or likelihood statistics, respectively. On the other hand, if δk,t = 0, i.e., if

we do not take local observations, then we recursively update Rk,t and Lk,t by adding or

multiplying the constant 1, respectively. The intuition is to treat
fθk,1 (Xk,t)

fθk,0 (Xk,t)
as 1 if Xk,t is

missing.
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Note that the definition or computation of (Rk,t, Lk,t) depends on which local sensors

will be observed, i.e., the values of sampling indicator variables δk,t’s, which will be defined

in the next subsection.

3.1.2 Adaptive Sampling Policy

Our proposed adaptive sampling policy is as follows.

At each time step t = 0, 1, 2 · · · , we compute the two-dimensional local statistics,

(Rk,t, Lk,t), based on the observed data streams, and we also sample a randomized value

R̃k,t from a pre-specified prior distribution G. The R̃k,t can be treated as the “initial

values.”

When G is a point mass density of 0, R̃k,t ≡ 0 for all k = 1, · · · , K. Otherwise, R̃k,t

can be different across sensors, which can be viewed as the prior knowledge of how likely

a local data stream is likely affected by the change. Next, we compute a real-valued local

statistic that determines the sampling policies:

R∗k,t = Rk,t + Lk,tR̃k,t. (9)

Finally, at time step t + 1, we follow the Thompson Sampling to adaptively choose the

local data streams with the largest q values of R∗(k),t in (9). Let l(k),t+1 denote the cor-

responding index of the kth largest values, then the new sensor layout will be St+1 =

{l(1),t+1, . . . , l(q),t+1} at time t+ 1.

Let us provide a high-level rationale for our proposed adaptive sampling policy. First,

note that R∗k,t in (9) can be thought of as a randomized version of Rk,t and allows us to

balance better the tradeoff between those local streams having larger observed Rk,t and
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those local streams having fewer observations. Second, our sampling policy is computa-

tionally efficient, since it is based on the recursive updates of the two-dimensional local

statistics, (Rk,t, Lk,t). Finally, our sampling policy is the Thompson sampling method un-

der the limiting Bayes framework, since the larger the R∗k,t value, the larger the realization

of the posterior distribution of a local change.

3.1.3 Global Decision

Our proposed global decision policy is to raise a global alarm based on the largest r

values of the local statistics Rk,t in (7), and is defined as the stopping time

T = inf{t ≥ 1 :
r∑

k=1

R(k),t ≥ A}, (10)

where r is a pre-specified parameter, and A is a pre-specified constant so as to satisfy the

false alarm constraint in (2). Here R(1),t ≥ . . . ≥ R(k),t ≥ . . . ≥ R(K),t denote the decreasing

order of the local statistics Rk,t in (7).

We should acknowledge that there are many other ways to raise a global decision. For

instance, for local statistics in the summation, we can use the randomized version R∗(k),t

or the logarithm version logR(k),t. Moreover, there are different ways to use the shrinkage

transformation to combine local statistics to raise a global alarm; see Mei (2011) and Liu

et al. (2019). Based on our extensive simulation experiences, the stopping time in (10) is

stable and outperforms other stopping rules in most cases. The discussion on comparison

with other stopping rules is deferred to the supplementary material Section 3.
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Algorithm 1 Thompson-Sampling-Shiryaev-Roberts-Pollak (TSSRP) algorithm

Parameters: the number r, the number of observed sensors q, a prior distribution G and

the stopping threshold A.

Input: K data streams

Initialize: Set Rk,t = 0, Lk,t = 1, and sample R̃k,t fromG for all k = 1, 2, . . . , K. Randomly

sample q data streams as the initial layout S1

Algorithm: In each round t← 1, 2, . . . do the following:

(1) based on the current sensor layout St, recursively update two-dimensional local statistics

(Rk,t, Lk,t) in (7) and (8)

(2) For each data stream k, sample the “initial” value R̃k,t from G, and calculate the local

sampling statistics R∗k,t in (9)

(3) Order the local sampling statistics R∗k,t k = 1, 2, . . . , K, from the largest to the smallest,

and let l(k),t denote the variable index of the order statistics R∗(k),t

(4) Update the sensor layout = {l(1),t, . . . , l(q),t}

(5) Check if the criterion of the stopping time in (10) is reached. If yes, stop and raise a

global alarm. If not, proceed to the next iteration.

3.1.4 Summary of Proposed Algorithm

We summarize the proposed Thompson-Sampling-Shiryaev-Roberts-Pollak (TSSRP) in

Algorithm 1.

Our proposed TSSRP method is not only statistical efficient as a limiting Bayesian

procedure that is able to incorporate prior knowledge of potential changes, but also com-

putationally scalable. First, it requires only 3K registers for retaining relevant information
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of (Rk,t, Lk,t, R̃k,t) about the K local processes: the first two are on the observed data

regarding the local change, and the last is on the prior knowledge of the local change.

Second, since the two-dimensional local statistics (Rk,t, Lk,t) can be computed recursively

and the “initial” values R̃k,t can be sampled directly from the prior distribution G at each

time step, the computational cost of our TSSRP method is linear to the number K of local

data streams. Thus our method can be easily implemented for real-time monitoring.

3.2 Choice of Parameters

The TSSRP algorithm involves several parameters. Below we will discuss the choice of

these parameters.

Choice of the prior distribution: In practice, we could choose the prior distribution

according to our prior knowledge. For example, in the manufacturing process, we may

know that certain production lines could have a higher chance of being out of control.

Alternatively, if no prior knowledge is present, we could choose some non-informative priors

such as the uniform distribution or the point mass 0 distribution, i.e., P (R̃k,t = 0) = 1.

In the latter case, it reduces to a greedy sampling algorithm without randomization. In

our numerical simulation studies in Section 4, we compare the performance of TSSRP with

four different priors. The results suggest that the TSSRP significantly reduces the average

detection delay regardless of the choice of the priors and that a valid prior can further

improve the performance.

We note that Pollak (1985) also investigates the choice of the prior distribution G, but

under a different context in which the randomized Shiryaev-Roberts statistics leads to an
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equalizer stopping time T in that sense that Eν(T − ν|T ≥ ν) is constant as a function

of candidate change-point ν. Unfortunately, it is generally challenging to find an explicit

solution for such prior distribution. Nevertheless, our purpose of the randomization is

different from Pollak (1985): ours is for balancing the exploration and exploitation, while

theirs is for almost minimax property.

Choice of r: Intuitively, the tuning parameter r in the stopping time (10) decides how

many local sensors should be involved in the final decision making. Thus an ideal choice

should be a plausible approximation of the actual number of changed data streams. If r is

much smaller than the actual number of changed data streams, our final decision will not

use all information that the data might provide. If r is much larger, our final decision will

involve unnecessary noisy local statistics and lead to poor performance. Meanwhile, from

the in-control performance viewpoint, as discussed in Wu (2019), the Shiryaev-Roberts

statistic is heavy-tailed under the in-control hypothesis, and thus there is no practice dif-

ference between a smaller value of r (e.g., r = 3) to a larger value of r (e.g., r = q). Thus,

when the total number of changed data streams is unknown, one might simply choose r = q.

Choice of A: The parameter A is the stopping threshold that controls the average run

length to false alarm of our method, which is analogous to controlling the type I error. In

practice, the threshold A is usually determined by Monte-Carlo simulation. One often uses

the bisection method to find the smallest A so that the proposed method satisfies the false

alarm constraint in (2).
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3.3 Theoretical Properties of TSSRP

In this subsection, we provide some theoretical properties of the TSSRP algorithm:

Theorem 1 establishes the close relationship between our algorithm and the Bayesian pro-

cedures. Theorem 2 investigates the in-control average run length properties, whereas

Theorem 3 and Theorem 4 provide a deep understanding of the sensor layouts.

First, the following theorem provides theoretical bases for the proposed adaptive sam-

pling in our TSSRP algorithm.

Theorem 1. Assume that the change time νk for the k-th data stream has a prior Geometric(p)

distribution in (6), where the initial prior probability Πk,0 has a prior Gp distribution. Sup-

pose that Gp/p→ G in distribution, then R∗k,t in (9) with its random component R̃k,t ∼ G

has the same distribution as

lim
p→0

Πk,t

p(1− Πk,t)
, (11)

where Πk,t = P(νk ≤ t|X∗k,1, · · · , X∗k,t) is the posterior estimation how likely a local change

occurs, and X∗k,t = Xk,tδk,t denotes the observed data.

The detailed proof of Theorem 1 is presented in the Appendix A.1 in online supplemen-

tary material. By this theorem, sampling based on the largest values of local statistics R∗k,t

in (9) is mathematically equivalent to sampling based on the largest values of random re-

alizations of the posterior distribution Πk,t as p→ 0, since u
p(1−u) is a monotonic increasing

function of u. Hence, the adaptive sampling policy in the TSSRP algorithm is the limit of

the Thompson Sampling policy.

Second, we investigate the ARL to false alarm of the proposed TSSRP algorithm in the

following theorem.
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Theorem 2 (Average Run Length to False Alarm). E∞(T ) ≥ A/K. Moreover, E∞(T ) =

O(A), where O(A)/A is bounded as A→∞.

Theorem 2 provides us guidance to select conservative upper and lower bounds of A.

Specifically, K ·ARL can serve as the upper bound in the bisection search to speed up the

threshold choosing procedure. The detailed proof of Theorem 2 is given in Appendix A.2

in online supplementary material. Unfortunately, it remains an open problem to derive the

bounds on the average detection delays.

Next, we investigate the properties for sensor layouts. Theorem 3 shows that the sensor

layout will go through all the data streams eventually when the system is in control.

Theorem 3. Let St be the sensor layout at time t. Then under H0 : ν = ∞, there exsits

a t′ > t such that P (k ∈ St′) > 0, for each t > 0 and each k, 1 ≤ k ≤ K.

Theorem 3 implies that each variable has a chance to be explored, regardless of the

sensor deployments in previous steps when no changes occur. In other words, the algorithm

performs similar to random sampling in the in-control state.

Finally, Theorem 4 below implies that the sensor layout of the TSSRP algorithm will

eventually converge to the changed data streams when the system is out of control.

Theorem 4. Let St be the sensor layout at time t. Then under H1 : ν < ∞, we have

P (k ∈ St, ∀t > t0|k ∈ St0) > 0 for all changed data stream k, and all t0 > ν.

We have shown that the sensor layout will not stay on any unchanged data streams

forever in Theorem 3. The sensors will eventually be redistributed to the affected data

streams at a certain time. Theorem 4 states that once a sensor is deployed to the out-of-

control data stream, then there is a nonzero probability that the sensor will stay on this
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data stream forever. This property ensures that the sensors will eventually keep monitoring

the affected data streams. The proofs of Theorem 3 and Theorem 4 are given in Appendix

A.3 in online supplementary material.

In summary, our TSSRP algorithm admits a nice property that it does more exploration

when the system is in control, while more exploitation when the system is out of control.

Intuitively, such nice property comes from the structure of the local statistics. When

we observe a new data, the recursive formula for local statistics involves the likelihood

ratio fθk,1(xk,t)/fθk,0(xk,t). Under the in-control state, the expectation of the increment of

all local statistics at time t is 1, i.e., E[R∗k,t] = t, ∀k, t. Thus our adaptive sampling is

similar to random sampling under the in-control state. Under the out-of-control state, the

likelihood ratio under the post-change distribution will be more likely to be greater than

one. Therefore, the affected data streams’ local statistics will increase faster than those

of unaffected data streams, which enables the sensor layout to converge to those affected

local components.

4 Simulation Experiments

In this section, we report the numerical performance of the proposed TSSRP algorithm

and compare it with the existing algorithms. The general setting for our simulations is

as follows. We consider monitoring K = 100 independent data streams. We assume that

q = 10 out of K = 100 data streams can be monitored at each time step. The nominal

value for the ARL to a false alarm is fixed as E∞T = γ = 1000. We follow the classic

approach (Xie and Siegmund, 2013; Xie et al., 2013; Mei, 2010) and report the average
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detection delay when the change occurs at time ν = 1. It is the most challenging setting

because it is more difficult to detect when the change occurred at the very beginning.

We report our simulation results in two subsections, depending on different true gener-

ative models of the data. Subsection 4.1 focuses on the statistical efficiency of the TSSRP

algorithm when our prior knowledge on the candidate affected local streams and the Gaus-

sian distribution of the data are valid, and Subsection 4.2 considers the robustness of our

algorithm under the mis-specified models. In our simulation studies below, all numerical

results are based on 1000 Monte Carlo replications.

For our proposed TSSRP algorithm, we consider four choices for the prior distribution

G on the initial statistics R̃k,t=0, which is the prior knowledge of how likely a local stream

might be affected by the change:

(i) G0 : Uniform U [0.5, 1] for the first ten local streams, and Uniform U [0, 0.5] for the

remaining local streams;

(i) G1 : Uniform U [0.5, 1] for the first five local streams, and Uniform U [0, 0.5] for the

remaining local streams;

(ii) G2 : Uniform U [0, 1] for all local streams;

(iii) G3 : the point mass 0 for all local streams, i.e., P0 = P (R̃k,t = 0) = 1.

We referred them to as TSSRP(G0), TSSRP(G1), TSSRP(G2) and TSSRP(G3), respec-

tively.

We compare our TSSRP algorithms with the baseline Top-r Based Adaptive Sampling

(TRAS) algorithm proposed by Liu et al. (2015). The TRAS algorithm first constructs a
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local CUSUM statistic for each observed variable. For the unobserved variables, the local

statistics are updated by adding a compensation parameter ∆. That is, under our notation,

each local stream computes a local statistic

Wk,t =


max(Wk,t−1 + log

fθk,1 (Xk,t)

fθk,0 (Xk,t)
, 0), if δk,t = 1;

wk,t−1 + ∆, if δk,t = 0.

(12)

where ∆ is the so-called compensation parameter for unobserved data streams. Next, the

TRAS algorithm combines the top-r local statistics to determine whether to raise an alarm,

i.e., the stopping time of the TRAS algorithm is given by

τ(a) = inf{t ≥ 1 :
r∑

k=1

W(k),t ≥ a}, (13)

where W(k),t’s are the order statistics of Wk,t’s in (12). Moreover, the TRAS algorithm

adaptively deploys the sensors to the data streams with q largest local statistics Wk,t’s in

(12) at the next time step t+1. As reported in Liu et al. (2015), the average detection delay

performance of the TRAS algorithm is sensitive to the choice of the compensation parameter

∆, and it remains an open problem to decide how to choose it suitably. In our simulations

below, we present results obtained by three different choices of ∆ = 0.03, 0.05, 0.1.

4.1 Statistical Efficiency

In this subsection, we focus on the statistical efficiency of the TSSRP algorithms when

the prior knowledge is valid. We consider the scenario where we monitor K = 100 inde-

pendent Gaussian data streams whose pre-change distributions are N(0, 1), and the first

r local streams change to the post-change distribution N(1.5, 1). We compare our TSSRP

algorithm against other procedures with the four choices of initial distribution G and the
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correct post-change mean µ1 = 1.5. We vary the number of changed data streams ranging

from 1 to 10. As mentioned in Section 3.2, the parameter r in the global stopping time

defined in (10) ideally should be the number of changed data steams. The latter, however,

is usually unknown in practice. We report the simulation results of different global moni-

toring schemes under a large r = 10 in Table 1. Additional simulation results under a small

r = 3 is deferred to Table 5 in supplementary material. The corresponding standard errors

are also included in these tables to characterize the average detection delay distribution.

Table 1: average detection delay under various number of changed data streams for the eval-

uation of the statistical efficiency experiments when the data is independent multivariate

Gaussian distributed. All the experiments are conducted under r = 10.

The number of changes 1 3 5 8 10

TSSRP(G0) 12.15(0.23) 7.67(0.07) 6.66(0.05) 6.05(0.04) 5.81(0.03)

TSSRP(G1) 12.06(0.23) 7.59(0.07) 6.75(0.05) 6.57(0.04) 6.49(0.04)

TSSRP(G2) 18.84(0.33) 11.93(0.14) 10.05(0.11) 8.67(0.08) 8.22(0.07)

TSSRP(G3) 19.43(0.35) 11.79(0.14) 9.84(0.11) 8.74(0.08) 8.04(0.07)

TRAS(∆ = 0.03) 36.12(0.60) 21.10(0.25) 17.01(0.20) 13.43(0.15) 11.87(0.13)

TRAS(∆ = 0.05) 36.79(0.54) 22.84(0.24) 18.52(0.18) 15.17(0.13) 13.52(0.12)

TRAS(∆ = 0.1) 63.43(0.44) 37.87(0.25) 30.47(0.18) 25.39(0.13) 22.89(0.12)

RSADA 71.87(1.63) 36.61(0.69) 26.94(0.51) 21.20(0.38) 18.54(0.34)

We make two key observations from Table 1. First, all four variants of our proposed

TSSRP algorithms are statistically efficient in the sense of having significantly smaller av-
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erage detection delays compared to other procedures. When incorporating the correct prior

information, i.e., with the prior G0 and G1 on the initial statistics R̃k,t=0, the TSSRP algo-

rithm achieves the smallest average detection delays, since it appropriately incorporates the

Bayesian information on the spatial locations of changes. Even if we use non-informative

priors such as G2 or G3, the TSSRP algorithm still provides good performance as compared

to the baseline TRAS algorithm, suggesting that the choice of priors in the TSSRP algo-

rithm can be flexible. Second, fewer tuning efforts are required for the TSSRP algorithm,

because we set the likelihood of the unobserved or missing data to be 1 under the Bayesian

framework. Moreover, the performance of the TSSRP algorithm is relatively stable to

the tuning parameter r, e.g., the number of local sensors involved in the final decision

making, see table 5 in the supplementary material. This is consistent with our intuition

that the Shiryaev-Roberts statistics is the exponent of the CUSUM statistics, and the sum

of top-r Shiryaev-Roberts statistics mainly captures the maximum local statistics across

all the data streams, since
∑r

i=1 exp(ai) ∼ exp(a1) for large values of ordered sequences

a1 > a2 > · · · > ar. Therefore, our TSSRP algorithm is not only statistically efficient but

also easy to tune and use in practice.

4.2 Robustness

In this subsection, we focus on the robustness of the TSSRP algorithm when the un-

derlying generative model is mis-specified. We focus on two cases: (i) TSSRP algorithm

is constructed for the post-change mean lower bound µ1 = 1.5 when the true post-change

mean of Gaussian distribution is µ1,true = 2 and (ii) TSSRP algorithm is constructed for
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Table 2: average detection delay under various number of changed data streams for ro-

bustness experiments when the post-change parameter is mis-specified. The data streams

follows Gaussian distribution.

The number of changes 1 3 5 8 10

TSSRP(G0) 7.37(0.10) 5.43(0.03) 4.98(0.03) 4.54(0.02) 4.43(0.02)

TSSRP(G1) 7.33(0.10) 5.33(0.03) 4.87(0.03) 4.77(0.03) 4.72(0.02)

TSSRP(G2) 8.64(0.17) 5.84(0.07) 5.64(0.06) 5.49(0.05) 5.32(0.04)

TSSRP(G3) 12.77(0.18) 8.28(0.09) 7.18(0.07) 6.16(0.05) 5.87(0.05)

TRAS(∆ = 0.03) 27.03(0.42) 16.42(0.21) 12.69(0.15) 10.03(0.11) 8.87(0.10)

TRAS(∆ = 0.05) 27.79(0.34) 17.42(0.18) 14.38(0.15) 11.10(0.11) 9.91(0.09)

TRAS(∆ = 0.1) 44.93(0.28) 27.73(0.17) 22.40(0.13) 18.78(0.11) 17.11(0.10)

Gaussian distributions when the data follows t distributions with degree of freedom df = 5.

The results for the first case are shown in Table 2, which summarizes the average average

detection delay and the corresponding standard errors for TSSRP under four choices of

priors and TRAS under ∆ = 0.03, 0.05, 0.1. As in the case in subsection 4.1, we see that

TSSRP outperforms TRAS and that performance of TSSRP generally improves as the

prior information gets correct. Moreover, compared with the results in Table 1, we see that

a larger magnitude of change is easier to detect, suggesting that we can use the smallest

magnitude of change to specify the post-change parameters if they are unknown.

For the latter case, we determine the stopping threshold A by 1000 Monte Carlo simu-

lations under the t distribution with mean 0, and we choose r = 10 to construct the global
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Δ
Δ

Figure 1: average detection delay versus the number of changed data streams for robust-

ness experiments when the distribution is mis-specified. The data streams follows the t

distribution.

statistics. Figure 1 plots the average detection delays against the number of changed data

streams for TSSRP and TRAS, with varying priors (G1 and G2) and tuning parameters

(Δ = 0.03, 0.05). We observe a similar pattern as before, again reinforcing the usefulness

of incorporating Bayesian information.

Our results suggest that our TSSRP algorithm can be robust when the distributional

assumption is somewhat violated, and our TSSRP still outperforms the TRAS algorithm.

This experiment further bolsters the stability of our algorithm, indicating that the hypoth-

esized distributions can be slightly different from the underlying distributions of the data,

and our algorithm will still raise an alarm quickly. In theory, the robustness of the TSSRP

algorithm depends heavily on the robustness of the likelihood f1
f0
. As a result, when the

underlying models are significantly mis-specified, our TSSRP algorithm can be less efficient
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Figure 2: Left: 2-D illustration of the hot forming process. Right: Bayesian network for

the hot forming process

as compared to other robust methods such as the RSADA algorithm in Xian et al. (2021)

that is based on ranks. In such a case, our algorithm can be extended to a more robust

variant by considering the likelihood of sequential ranks as in Gordon and Pollak (1995),

which is beyond the scope of this article, and we will leave it as future work.

5 Case Study

In this section, we evaluate the performance of the TSSRP algorithm on a real case

example: the hot forming process. We also give an additional solar flare detection example

on the high-dimensional case in Appendix B in supplementary material.

We consider the Hot Forming Process example in Li and Jin (2010). We want to detect

anomalies in this physical system. Figure 2 (Left) illustrates a two-dimensional (2-D)

physical illustration of the hot forming process. Li and Jin (2010) identified the causal

relationship of the five variables in this process: the final dimension of workpiece X1, the
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tension in workpiece X2, the material flow stress X3, temperature X4 and Blank Holding

Force X5, which can be represented as a Bayesian network. All the variables are proven to

follow standard normal distribution when the system is under normal operating conditions.

Li and Jin (2010) gave the parameterization model of the Bayesian network, and Figure 2

Right illustrates the dependence across the five variables:

Xi =
∑

Xj∈p(Xi)

wj,iXj + εi (14)

where p(X) = {Y : Y → X ∈ Edge Set} denotes the parents of X; and w(Xj, Xi) is

the weight of the edge Xj → Xi, which refers to the causal influence from Xj to Xi;

εi ∼ N(0, σ2
i ) is the independent Gaussian noise.

In this study, we assume that the Bayesian network is unknown to us. We will only use

the network structure to generate data under different scenarios. We generate the changed

root variables by setting the true mean change as two, and the remaining variables according

to the Bayesian network. In the algorithm, we set the post-change mean as the interested

smallest shift magnitude µk,1 = 1.5 according to the characteristics of the actual system.

We set the in-control ARL to be 100 and r = 2 as in Liu et al. (2015). In each replicate,

the changed data streams and the initial sensor layouts are selected randomly. We evaluate

the average detection delay D(T ) as the average average detection delay under any change

possibilities.

Table 3 summarizes the average detection delay comparisons between the TSSRP al-

gorithm and the TRAS algorithm in the single change and two changes cases. It implies

that the performance of our TSSRP algorithm is better than that of the baseline TRAS

algorithm in this hot forming procedure.
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Table 3: Comparisons of the average detection delay between the TSSRP algorithm and

the TRAS algorithm under different numbers of changed root variables in the hot forming

process example

The number of changes 1 2

TSSRP(U [0, 1]) 5.84(0.10) 4.54(0.06)

TSSRP(P0) 6.48(0.09) 5.29(0.07)

TRAS(∆ = 0.01) 8.41(0.13) 7.39(0.11)

TRAS(∆ = 0.1) 8.17(0.13) 7.09(0.12)

TRAS(∆ = 0.5) 9.94(0.15) 8.78(0.14)

We are interested in studying how the sensor layouts update over the time under the

in-control and out-of-control states empirically to validate Theorem 3 and Theorem 4. We

summarize the average percentages of each data stream being observed under the two states

in Table 4, based on 1000 replicates. Specifically, it is defined as

percentage of being observed =
#time steps being observed

#total time steps until raising an alarm
.

Here, the out-of-control state is when X1 and X2 change at the very beginning. The

simulations further confirm that our TSSRP algorithm works similar to random sampling

when the system is in control, and greedily selects the changed data streams when the

system is out-of-control.
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Table 4: Sensor layouts distribution under the in-control and out-of-control states in the

hot forming process example

Variable Percentage (In-control) Percentage (Out-of-control)

X1 0.408 0.718

X2 0.396 0.606

X3 0.400 0.226

X4 0.400 0.224

X5 0.396 0.226

6 Conclusions and Discussion

Processing high-velocity streams of high-dimensional data in resource-constrained en-

vironments is a big challenge. In this paper, we propose a bandit change-point detection

approach to adaptively sample useful local components and determine a global stopping

time for real-time monitoring of high-dimensional streaming data. Our proposed algorithm,

termed Thompson-Sampling Shiryaev-Roberts-Pollak (TSSRP) algorithm, can balance be-

tween exploiting those observed local components that maximize the immediate detection

performance and exploring not-been-monitored local components that might accumulate

new information to improve future detection performance. Our numerical simulations and

case studies show that the TSSRP algorithm can significantly reduce the average detection

delay compared to the existing methods.

This work can be extended in several directions. First, based on the numerical simula-

tion studies, we conjecture that our proposed TSSRP algorithm is first-order asymptotically
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optimal under a general setting. Still, it remains an open problem to prove it, as it is highly

non-trivial to analyze the expected average detection delay of the proposed method. Sec-

ond, instead of a fixed number of active sensors, one could consider changing the number

of active sensors per time step, and increase the number of sensors if a change likely occurs.

Third, it is also interesting to find an optimal value of the number of active sensors that

can adaptively adjust to make the best use of the resource.

Finally, we remark that our TSSRP algorithm is a computationally scalable represen-

tation of the limit of Bayesian procedures under the simplest model assumption where the

data is i.i.d. and the post-change parameters are known. It can be extended to handle

the case when the post-change parameters are unknown if we introduce a prior distribu-

tion on the post-change parameters. Furthermore, for more complicated models where

the data streams have a spatial or temporal correlation structure, the proposed Bayesian

and Thompson sampling framework can still be applicable if we can update the posterior

distribution efficiently, say, via Markov chain Monte Carlo (MCMC). Therefore, our work

opens a new research direction on statistical process control and sequential change-point

detection when monitoring high-dimensional data streams under the sampling control.

Supplementary Materials

In the supplementary materials, we provide (A) the detailed proofs of all theorems,

(B) an additional case study in Solar Flare data, (C) additional simulation studies on our

proposed algorithm when raising a global alarm based on the sum of the largest r = 3 local

statistics, and (D) the comparison with more global decision policies. The zip file contains
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R codes for our algorithm.
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