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The accuracy of quasilinear theory applied to the electron bump-on-tail instabil-

ity, a classic model problem, is explored with conservative high-order discontinuous

Galerkin methods applied to both the quasilinear equations and to a direct simulation

of the Vlasov-Poisson equations. The initial condition is chosen in the regime of beam

parameters for which quasilinear theory should be applicable. Quasilinear diffusion

is initially in good agreement with the direct simulation but later underestimates the

turbulent momentum flux. The greater turbulent flux of the direct simulation leads

to a correction from quasilinear evolution by quenching the instability in a finite time.

Flux enhancement above quasilinear levels occurs as the phase space eddy turnover

time in the largest amplitude wavepackets becomes comparable to the transit time of

resonant phase fluid through wavepacket potentials. In this regime eddies effectively

turn over during wavepacket transit so that phase fluid predominantly disperses by

eddy phase mixing rather than by randomly phased waves. The enhanced turbu-

lent flux of resonant phase fluid leads in turn, through energy conservation, to an

increase in non-resonant turbulent flux and thus to an enhanced heating of the main

thermal body above quasilinear predictions. These findings shed light on the kinetic

turbulence fluctuation spectrum and support the theory that collisionless momen-

tum diffusion beyond the quasilinear approximation can be understood through the

dynamics of phase space eddies (or clumps and granulations).
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I. INTRODUCTION

One-dimensional electrostatic turbulence is among the oldest model problems in plasma

physics and stimulated the development of the quasilinear theory (QLT) of plasma diffu-

sion1–3. Quasilinear diffusion theories are used to predict the statistical properties of turbu-

lent energy and the plasma distribution function in the saturated state of high-dimensional

dynamic processes such as velocity space instability with a reduced low-dimensional model.

Quasilinear methods have been widely applied to model turbulent diffusion in both physical

and velocity space (e.g. gyrokinetic modeling4, rotating Couette flow5, lower-hybrid drift in-

stability6, firehose instability7, electron interaction with whistlers8, etc.), often reproducing

experimental phenomena beyond the theory’s formal region of validity9.

Quasilinear theory is concerned with the dynamics of macroscopic observables such as

spatially-averaged quantities and the fluctuation power spectrum. It is applicable for weak

turbulence, i.e. a broad spectrum of small-amplitude non-self-correlated linear waves in a

homogeneous medium10,11. In order that phase interference, or wave beating, not lead to

nonlinearity it is also necessary to suppose random phasing of the waves12. However the

random phase approximation is somewhat fictional because the spectral width of unstable

wavenumbers is finite. Interference of finite spectral width produces a spatial distribution of

wave energy (wavepackets) even for random phases. For example the two-species numerical

study in13 saw the late-time development of Langmuir cavitons from an initial ensemble

of randomly-phased linear waves. The high amplitudes of wavepacket potentials lead to

deviations from quasilinear predictions as linear waves grow from instability14.

Nevertheless quasilinear theory makes accurate predictions of the saturated state of insta-

bility despite the breakdown of the random phase approximation. This article demonstrates

by a direct simulation of an electron bump-on-tail instability for which quasilinear theory

should be applicable that weak nonlinearity due to spatial structure in the distribution of

wave energy enhances the rate of turbulent flux above quasilinear levels. However the effect

of this discrepancy is to reach a similar saturated state as the quasilinear prediction, but

in a finite time rather than asymptotically with corresponding corrections to the transient

linear growth rates and with significant fluctuations in the probability distribution function

atop the quasilinear equilibrium. The success of quasilinear theory is in prediction of the

greatest amplitude part of the field spectrum as this portion is due to linear growth. On
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the other hand, the quasilinear prediction does not capture some aspects of the weak kinetic

turbulence spectrum such as plasma wave harmonics and the eddy turbulence of resonant

particles, i.e. phase space granulations.

Many numerical studies have been done comparing quasilinear analysis to solutions of

the Vlasov equation using particle-in-cell (PIC) method15–17. Yet it is well-known that

PIC methods are prone to errors due to statistically sampling the sensitive trajectories of

the continuous distribution18–20, so it is worthwhile to explore alternative kinetic modeling

methods. In one such alternative the equation for the continuous distribution is solved by a

demonstrably convergent and conservative finite element discretization of phase space, using

for example discontinuous Galerkin methods21–23. This work uses a high-order discontinuous

Galerkin method to sufficiently resolve the detailed phase flow up to and past saturation of

the kinetic instability. From this point of view the turbulent nature of resonant electrons,

and the distinct behavior of resonant and non-resonant electrons, can be clearly seen.

The structure of the article is a review of the theory of the bump-on-tail instability with

an emphasis on the aspects necessary for a numerical study, followed by novel methods of

discretization, and finally an analysis of the simulation results. Linear electrostatic theory is

reviewed in Section II in order to identify the kinetic eigenmodes used for the perturbation of

the distribution function, followed by a review of the quasilinear theory of the bump-on-tail in

Section III with comments on the role of resonant and non-resonant parts of the distribution

function and on the hierarchy of timescales required for validity of the approximation. The

details of the discretization methods are discussed in Section IV. The simulation results are

then explored in Section V by an analysis of phase space structures in the Vlasov-Poisson

simulation and a comparison of quasilinear and Vlasov-Poisson levels of turbulent flux.

II. LINEAR THEORY OF BUMP-ON-TAIL INSTABILITY

This section reviews electrostatic plasma instability with an emphasis on the linear re-

sponse associated with unstable modes. One-dimensional collisionless electron dynamics in

a uniform neutralizing background are governed by the Vlasov-Poisson equations24,

∂f

∂t
+ v

∂f

∂x
− E(x)

∂f

∂v
= 0, (1)

dE

dx
= 1−

∫ ∞
−∞

f(x, v, t)dv, (2)
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which describes the evolution of the probability distribution function f(x, v, t) through phase

space as influenced by the self-consistent electric field E(x). Velocities are normalized to the

thermal velocity vt, lengths normalized to the Debye screening length λD, and electric field

normalized to the thermal energy per Debye length. Static ions and collisionless trajectories

are valid for timescales τ less than the ion plasma period and the electron-electron collision

time, i.e. τ � ω−1
pi and τ � Λ

log Λ
ω−1
pe where Λ � 1 is the inverse plasma parameter. This

article simulates the Vlasov-Poisson system, and the result will be referred to as either the

Vlasov-Poisson simulation or just the Vlasov simulation.

A. General linear theory of electrostatic instability

The linearized Vlasov-Poisson equations about a homogeneous equilibrium f0(v) are

∂f1

∂t
+ v

∂f1

∂x
+∇ϕ∂f0

∂v
= 0, (3)

∇2ϕ =

∫ ∞
−∞

f1(x, v, t)dv (4)

with ϕ the potential. Following Landau25, spatial Fourier transform and one-sided temporal

Fourier transform (or Laplace transform with s → −iω) leads, if the initial condition is

denoted g(k, v) ≡ f1(k, v, t = 0), to a solution for electric potential,

g∗(k, ζ) ≡
∫
C

g(k, v)

ζ − v
dv, (5)

ϕ(k, ζ) = − i

k3

g∗(k, ζ)

ε(k, ζ)
(6)

with ζ = ω
k

the complex phase velocity where the complex dielectric function is

ε(k, ζ) = 1 +
1

k2

∫
C

1

ζ − v
∂f0

∂v
dv (7)

and C the Landau contour. Inversion of Eq. 6 by the residue theorem suggests that the

response to a general perturbation g(k, ζ) will include all solutions of ε(k, ζ) = 0. However

initial conditions of the linear response form, with a single complex pole at an unstable

frequency, excite only that mode. That is, suppose the initial condition is chosen as

g(k, v) =
1

k2

1

ζn − v
∂f0

∂v
(8)
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where Im(ζn) > 0 solves the dispersion relation in the upper half-plane, i.e. ε(k, ζn) = 0.

Then its transform along the Landau contour is the dielectric function with a pole at ζ = ζn,

g∗(k, ζ) = −ε(k, ζ)

ζ − ζn
. (9)

The potential response is ϕ(k, ζ) = i
k3

1
ζ−ζn , inverting to ϕ(k, t) = 1

k3
e−iωnt. An initial

condition in the form of Eq. 8 represents the discrete part of the spectrum of the linearized

Vlasov-Poisson integral operator, as found by Case and van Kampen26,27. Equation 8 is used

in this work as the perturbation to excite the bump-on-tail instability.

B. Initialization of many discrete linear modes

An unstable distribution which should meet the applicability conditions of quasilinear

theory consists of a hot drifting Maxwellian through a main thermal population

f0(v) =
1

(1 + χ)
√

2π

{ 1

vt0
exp

(
− v2

2v2
t0

)
+

χ

vtb
exp

(
− (v − vb)2

2v2
tb

)}
.

(10)

The bump-on-tail instability is the textbook example of a distribution with quasilinear evo-

lution. According to Ref. [28], reasoning by the Bohm-Gross dispersion relation, instability

development should be in the weak turbulence regime given a bump fraction χ = 0.05, bump

spread vtb = χ1/3vb, and beam velocity vb = 5vt0. Velocities are then normalized to vt0 = 1.

Figure 1 shows the unstable branch of ε(k, ζ) = 0 corresponding to the coupling of right-

going oscillations of the main body and left-going oscillations on the drifting beam. The

unstable spectrum somewhat corresponds to the expected mode content of the saturated in-

stability, though both a spread of the unstable range and a shift in the highest growth-rate

mode accompany relaxation of the bump-on-tail.

The Vlasov-Poisson simulation is initialized as a sum over the eigenmodes,

g(x, v) = f0(v) +
∑
n

αn
kn

Re
( 1

ζn − v
ei(knx+θn)

)∂f0

∂v
(11)

where each ζn with Im(ζn) > 0 is the solution to ε(kn, ζn) = 0, the factor θn is a random phase

shift, and αn is the field amplitude. The factor k−1
n sets each initialized mode’s field energy

to |En|2 = α2
n. Figure 2 shows the perturbation on a domain of L = 5000λD initialized in

this manner. The initial condition is chosen in this way to avoid exciting the other damped

branches of ε(k, ζ) = 0, as the quasilinear theory studies the unstable wave branch.
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FIG. 1. Bump-on-tail dispersion relation showing: a) wave velocities; and b) frequencies. The

bump-on-tail distribution has an unstable branch of solutions with phase velocities bounded by

the regions of ∂f0
∂v > 0 in the tail, in this case for v ∈ (3, 5)vt. The unstable solution is an electron-

acoustic wave at the beam velocity for long wavelengths and an acoustic wave propagating at the

bulk thermal velocity for short wavelengths. This unstable coupled acoustic wave is damped at

both extremes and has maximum instability growth where the frequency ω ≈ ωp.

III. QUASILINEAR THEORY OF THE BUMP-ON-TAIL

The quasilinear approximation is the first approximation to velocity-space diffusion in

electrostatic turbulence and is a reduction from the Vlasov-Poisson theory1,2,11,24,28. It is

mathematically similar to theories of Reynolds-averaging and eddy-viscosity in neutral fluid

turbulence29. Consider a spatially-periodic domain of length L. Let 〈f〉L ≡ L−1
∫ L

0
fdx be

the spatially-averaged distribution and δf ≡ f − 〈f〉L the fluctuation. Equation 1 is then

spatially averaged and the resulting mean equation is subtracted out to obtain an equation

for the fluctuation. The two equations for the mean and the fluctuation are then

∂〈f〉L
∂t

=
∂

∂v
〈Eδf〉L (12)

∂(δf)

∂t
+ v

∂(δf)

∂x
=

∂

∂v

(
E〈f〉L + Eδf − 〈Eδf〉L

)
. (13)

Note that E = δE for internal fields, and since the average of a fluctuation is zero,

i.e. 〈δ(·)〉 = 0, only the mean of a product of fluctuations contributes as a source to Eq. 12.

The momentum flux of the fluctuation δf is composed of two terms: the flux from the mean
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FIG. 2. a) The perturbation is shown in phase space representation as a subset of the full domain,

which has 5000λD length and spans velocities v ∈ (−25, 25). The main thermal body (v ∈ (−3, 3))

supports coherent plasma oscillations while the modes in the resonant band (v ∈ (3, 5)) appear

randomly phased. The unstable modes are rightward-propagating so the non-resonant distribution

of positive velocity (v ∈ (0, 3)) oscillates with greater energy than the negative velocity part.

Wavepackets in the initial condition are seen as regions of greater amplitude.

b) The Fourier amplitudes as log(1 + |f |) of the perturbation. Spectral energy is peaked along a

coherent crescent shape bridging the band of unstable velocities.
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distribution E〈f〉L and the second fluctuation Eδf − 〈Eδf〉L. The quasilinear closure is

∂

∂v

(
Eδf − 〈Eδf〉L

)
� ∂

∂v

(
E〈f〉L

)
, (14)

transforming Eq. 13 into a quasilinear PDE (one linear in its highest derivatives). The

quasilinear equations are

∂〈f〉L
∂t

=
∂

∂v

〈
Eδf

〉
L

(15)

d(δf)

dt
=

∂

∂v

(
E〈f〉L

)
(16)

with d
dt

= ∂t + v∂x the change along a zero-order trajectory. The momentum flux of the

background distribution 〈Eδf〉L is statistically the un-normalized field-particle correlation

coefficient30 and is a tool increasingly used independent of quasilinear theories in the anal-

ysis of energy transfer in collisionless plasmas31–34. The quantity 〈Eδf〉L also has a basic

interpretation as the turbulent momentum flux, in analogy to a similar quantity arising

in the averaged equation for advection of a passive scalar in a fluctuating velocity field29.

These interpretations of 〈Eδf〉L as a correlation coefficient and as a mean turbulent flux are

independent of any closure assumptions.

The quasilinear closure amounts to assuming that the field-particle correlation has no

variance, or in other words negligible structure inside the averaging box. This assumption is

often stated as the random phase approximation as there are no wavepackets, or structure,

in white noise. The fluctuating distribution and field are expanded in Fourier series to solve

the linear equation for δf as

δfn =
iEn

ω(kn)− knv
∂〈f〉L
∂v

. (17)

The covariance 〈Eδf〉L is converted to a spectral sum by Plancheral’s theorem,

〈Eδf〉L =
1

L

∫ L

0

Eδfdx =
∞∑

n=−∞

δfnE
∗
n. (18)

Substituting Eq. 17 into Eq. 18 gives the turbulent momentum flux in the quasilinear closure,

〈Eδf〉L =
( ∞∑
n=−∞

i

ω(kn)− knv
|En|2

)∂〈f〉L
∂v

. (19)

As the left-hand side is the mean momentum flux, and the right-hand side proportional

to the mean gradient, Eq. 19 defines a diffusivity as 〈Eδf〉L = D(v)∂v〈f〉L. In the sense
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that the quasilinear closure sets the turbulent flux as proportional to the mean gradient this

specification of diffusivity is closely related to the eddy viscosity theory in physical space

dating to Boussinesq35. Now, the simplest equation for the evolution of the spectrum E(k)

is exponential growth (assuming no modal interactions and slow modulations), where the

dispersion relation ω(k) = ωr(k) + iωi(k) is taken as the solution to ε(ω, k) = 0. From all

this one arrives at the electrostatic quasilinear diffusion equations1,2,11,28,36,

∂〈f〉L
∂t

=
∂

∂v

(
D(v)

∂〈f〉L
∂v

)
, (20)

D(v) =
∞∑
n=1

2|ωi|
(ωr − knv)2 + ω2

i

|En|2, (21)

d|En|2

dt
= 2ωi|En|2, ε(ω, kn) = 0, (22)

with the absolute value |ωi| following a one-sided time analysis, i.e. causality36. The equa-

tions are intrinsically nonlinear with a self-consistent determination of the dispersion relation

key to the system’s energy and momentum conservation properties24. The analytic solution

of ε(ω, k) = 0 as a complex root can be numerically expensive as 〈f〉L evolves from a sum

of Maxwellians to a general form. The dispersion relation can be solved approximately on

the real line using the well-known small growth-rate approximation, valid for ωi � ωr
28,

εr(ωr, k) ≡ 1 +
1

k2
P
∫ ∞
−∞

1

ζr − v
∂〈f〉L
∂v

dv = 0, (23)

ωi = π
∂〈f〉L
∂v

( ∂εr
∂ωr

∣∣∣
ω=ωr

)−1

(24)

where ζr = ωr/k and P is the Cauchy principal value (P.V.), calculable by Hilbert transform.

A. The continuous spectrum limit

By defining a spectral density E(k) = k−1
0 |E(kn)|2 with k0 = 2π

L
and considering the limit

as L→∞, the quasilinear equations can be modeled with a continuous energy spectrum28

∂f

∂t
=

∂

∂v

(
D(v)

∂f

∂v

)
, (25)

D(v) =

∫ ∞
0

2|ωi|
(ωr − kv)2 + ω2

i

E(k)dk, (26)

dE(k)

dt
= 2ωiE(k), ε(ω, k) = 0. (27)
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The continuous-spectrum approximation is appropriate for large domains and for analysis

of the resonant and non-resonant contributions to the diffusivity. A numerical advantage of

using a continuous spectrum is that a high-order polynomial representation may be used for

the spectral density E(k). The solution of the dielectric function on the spectral points kn is

typically the most expensive part of a numerical solution. With a high-order representation

fewer interpolation nodes are required than the evenly-spaced lattice frequencies of the

finite-interval problem. Fewer evaluations of ε(ω, k) speed the simulations considerably.

1. Resonant and non-resonant parts of the diffusivity

The diffusion coefficient is understood to be made up of resonant and non-resonant parts

in the limit of slow modulation ωi → 011,12,28. In a rather ad-hoc approach, one can apply

the Plemelj relation to the linear response, Eq. 17, and consider it to be made up of two

principal terms,

f1,n → P
i

ωr − knv
En

∂f0

∂v
+ πδ(ω − knv)En

∂f0

∂v
. (28)

The first term represents the non-resonant contribution, the response of the main body

thermal plasma particles in sustaining the wave motion (seen in Fig. 2(a) as the checkerboard

pattern for v ∈ (−3, 3)), while the second term accounts for resonant energy transfer and

is the primary contribution to the integration36,37. Having consistently taken the small

growth-rate limits, the quasilinear system is usually written as

∂f

∂t
=

∂

∂v

(
(Dr(v) +Dnr(v))

∂f

∂v

)
, (29)

dE
dt

= 2ωiE , (30)

Dr(v) = π

∫ ∞
−∞

δ(ωr − kv)E(k)dk, (31)

Dnr(v) = “P”

∫ ∞
−∞

ωi
(ωr − kv)2

E(k)dk (32)

with “P” the principal value operator. Quotes are used because the principal value operation

on the denominator, a term quadratic in a nonlinear function ωr(k), is not necessarily well-

defined. While it may be tempting to discard the non-resonant diffusivity and evolve only

the resonant distribution as it is smaller than the resonant diffusivity by approximately

ωi/ωr, it was well-phrased by Kadomtsev that the population of nonresonant particles is

greater by this same factor and Dnr cannot be neglected36. The difficulty in a numerical
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implementation of the resonantly-split quasilinear equations lies in approximating the non-

resonant diffusivity. For example, a typical approximation for Dnr is constant in velocity11,28.

For the problem under consideration there is no need to make this approximation. The

numerical solution presented in this article is of the non-split QLT system in Eqs. 20 and 21.

The quasilinear theory presented and summarized in this section may be called classic

QLT. It should be clear that the derivation of classic QLT is ad-hoc, in particular from

the construction of the diffusion coefficient and the introduction of the equation for wave

energy. Since the work of Ref. [37], where it was suggested that conservation of wave action

was more primary than of wave energy, important contributions putting the theory on a

rigorous foundation have been made38–40. When Eq. 21 is formulated as a wave action

conservation law quasilinear theory is naturally connected to the theory of wave kinetics41

by a transformation to oscillation-center coordinates42. In fact, approaches to considering

saturated states of plasma turbulence beginning from wave kinetics have proven fruitful43.

In simple situations the wave action differs from the energy by the factor ∂ωεr, and this

factor is approximately constant for the unstable Langmuir waves considered in this article.

For this reason classic QLT is an acceptable approach to the bump-on-tail instability in a

homogeneous plasma.

2. On analytic prediction of the saturated spectrum

Note that as the growth-rate ωi(kn)→ 0 the diffusivity corresponding to mode kn becomes

singular, i.e. D(v = ζr(kn)) = 2
|ωi| |En|

2 →∞. As ωi ∝ ∂f0
∂v

the dynamic equation approaches

a singular diffusion equation in the region of resonant velocities, similar in form to

∂f

∂t
→ π−1

∑
kn

∂v

(
ε′r|Ekn |2

∂vf

|∂vf |v=vφ,kn

)
. (33)

Such singular diffusion equations instantaneously flatten the diffusing variable44, but the

singular problem is approached asymptotically in QL theory. The singular behavior of the

turbulent diffusivity does not require having taken the small-growth rate limit ωi → 0 or

having considered a resonant/non-resonant splitting of the diffusivity. From a numerical

standpoint the transition from a regular diffusion equation with smooth diffusivity to a

near-singular equation with delta-valued diffusivity peaks poses a serious challenge for a

numerical time-dependent solution of the QL equations. Yet this is not necessarily a problem
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for analysis.

A theory is sometimes discussed which analytically predicts the asymptotic state assum-

ing dispersionless waves ε = 1− ω2
p/ω

2 and only resonant interaction, i.e. Dnr = 036. From

this one can show that, with v1 the lower limit of the asymptotically flat region,

|Ek|2(t∞) = ζ3

∫ ζ

v1

f(t∞, v
′)− f(t0, v

′))dv′. (34)

The analysis leading to Eq. 34 must be cautioned as approximate because the neglect of

non-resonant diffusivity means that the growth rate at the edges of the diffusing region is

significantly overestimated, as illustrated in Fig. 3 for the considered bump-on-tail problem.

Sharp gradients develop in the distribution near the “notch” and “hill” of the bump as

seen in Fig. 3(a) which would be otherwise filled in by non-resonant diffusion. These sharp

gradients correspond to near-singular instability growth rates, as shown in Fig. 3(b).

FIG. 3. Solution of the quasilinear system using only the resonant diffusion coefficient and assuming

ω = ωp, showing: a) flattening of the distribution function in the region of ∂vf > 0 and b) modal

growth rates. Use of only resonant diffusion results in near-singular growth rates at the edges of

the diffusing region as sharp gradients develop in the distribution. This means the growth rate is

greatly overestimated, and the saturated spectrum is not correctly predicted by Eq. 34 across the

full breadth of wavenumbers, specifically for non-initially-resonant phase velocities.

B. Conditions for validity of the QL approximation

A considerable amount of research has been conducted on the conditions under which

QL theory should be valid45–47, aptly summarized in Ref. [11] and briefly repeated here.
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The validity conditions center around whether the condition given by Eq. 14 is justified

so that the fluctuation δf should satisfy a quasilinear equation. The second fluctuation

δ(Eδf) vanishes unless the wavefield has variance inside the averaging box, i.e. localized

concentrations of wave energy within wavepackets. On the other hand, if the wave energy

were consistently randomly phased then resonant electron trajectories would be random

walks. Since some distribution of wavepackets from spectral superposition is inevitable,

the condition is generally rephrased as to what extent particles undergo random walks in

the wavefield11. The quantities of importance for this are: the electron bounce frequency

ωb ≈
√
ρc with ρc the normalized charge density; the wavepacket autocorrelation frequency

τ−1
ac ≡ |(ζ− vg)∆k| with ζ phase velocity, vg group velocity, and ∆k the wavepacket spectral

width, describing the timescale on which phase waves remain within a wavepacket; and the

distribution relaxation frequency τ−1
r ≡ 〈f〉−1

L ∂t〈f〉L.

With these quantities, the conditions for validity are that i) the bounce frequency be

less than the autocorrelation frequency ωb � τ−1
ac , and ii) the growth rates lie between

the relaxation and autocorrelation frequencies τ−1
r < ωi < τ−1

ac . Since the growth rates

ωi → 0, this second condition suggests that the QL theory should saturate asymptotically

with τr →∞. Instability saturation in a finite time violates this condition.

IV. NUMERICAL SIMULATION METHODS

The 1D1V Vlasov-Poisson system is a two-dimensional hyperbolic-elliptic system, while

the QL theory is a 0D1V diffusion equation with nonlinear time-dependent diffusivity. Thus

each model requires its own method of numerical solution. This section describes the high-

order discontinuous Galerkin methods48–51 developed and applied to each of the two systems.

A. Discretization of the quasilinear equations

The QL diffusion equation is discretized in velocity using the local discontinuous Galerkin

(LDG) method52 as high resolution and accuracy is needed in the region of resonant velocities

when the diffusivity becomes highly peaked. A small modification in the LDG method is

made to account for the nonlinearity of the system appearing as, defining q ≡ ∂vf , the

flux F = D(v)q(v) being a product of two interpolated functions. The modification from
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the usual linear LDG method is that the Galerkin matrix elements on the right-hand side

of the semi-discrete equation are computed by an exact quadrature of the products of the

interpolation polynomial basis for both D(v) and q(v).

The grid nodes of high-order DG methods are not evenly spaced, so the Hilbert trans-

form used to compute the principal-value integral in the small-growth rate approximation

for ε(k, ζ) cannot be done using FFTs or most other methods discussed in the literature.

Instead the principal value integral is determined by a quadrature approximation of the

velocity Fourier coefficients to form the analytic signal, and the P.V. integral extracted as

its imaginary part. This is not an optimal approximation but it works sufficiently well

on the existing grid provided that the distribution is represented to high-enough velocity

in the tail regions to be effectively zero. For this reason velocity-space is resolved from

v = (−20, 30) with one hundred finite elements. Each element contains a ninth-order poly-

nomial basis on Lobatto quadrature node interpolants. Only twenty elements are used in

the tails, with eighty elements spanning v ∈ (2, 10). A Fourier-by-quadrature evaluation of

the Hilbert transform is not computationally time-limiting as the P.V. integral needs to be

evaluated only once per timestep. Rather, the nonlinear solution to ε(k, ζ) = 0 for each

lattice frequency k is typically the computational time-limiting factor.

With the P.V. integral determined, the dielectric function ε(k, ζ) is evaluated as a func-

tion of arbitrary phase velocity ζ via the Vandermonde matrix of the quadrature grid’s

interpolation polynomials. After solution with a nonlinear solver to obtain the phase ve-

locity root to ε(k, ζ) = 0 corresponding to the unstable wave branch, the gradient ε′(k, ζ)

on the interpolated point is found using the local derivative matrix. Further computing the

interpolated gradient of the distribution function, this determines the approximate linear

growth rates ωi(k) by Eq. 24. Since the velocity space is highly resolved the discretization

is limited in accuracy by the O
(
ωi
ωr

)
expansion of ε.

As the distribution flattens and ωi → 0 the diffusivity becomes highly peaked. Use of an

implicit time integration scheme is necessary to avoid restrictive CFL-limited timestepping

and avoid dispersive errors, as such oscillations feedback into the growth rate calculation.

A second-order implicit midpoint method is used to evolve the diffusion equation. As the

diffusivity nonlinearly depends on the distribution, a nonlinear global solve is avoided by

taking an approximate explicit half-step in wave energy to the midpoint with a sufficiently

small time-step. The diffusion equation is then solved by the implicit midpoint method.
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That is, with the semi-discrete QL system as

df

dt
= A(E)f (35)

dE

dt
= 2ωi(∂vf)E (36)

where A represents the discretized diffusion operator and E = |Ek|2 the spectral energy,

En+1/2 = En exp(hωi(∂vfn)), (37)

An+1/2 ≡ A(En+1/2), (38)

fn+1 = (I − h

2
An+1/2)−1(I +

h

2
An+1/2)fn (39)

where h is the time-step. The calculations use h = 0.1ω−1
pe for the time-advance.

B. Discretization of the Vlasov-Poisson system

The Vlasov-Poisson system is solved using a mixed Fourier/DG spectral method. The

spatial coordinate is represented on a grid of evenly spaced nodes and the variables f(x, v, t),

E(x) are projected onto a truncated Fourier series53. The Fourier coefficients each satisfy

∂fn
∂t

+ iknvfn + ∂vFn = 0, (40)

Fn(v, t) = −(E ∗ f)n, (41)

En = ik−1
n

∫ ∞
−∞

fndv, E0 = 0. (42)

An advantage of this formulation is that Gauss’s law is solved exactly and computationally

is only a constraint associated with the system, a familiar approach in incompressible flows.

The velocity flux Fn(v, t) is computed pseudospectrally using zero-padded FFTs according to

Orszag’s two-thirds rule and is thus de-aliased53. Velocity space is divided into finite elements

and the coupled system of first-order PDEs for fn(v, t) is discretized with the discontinuous

Galerkin method using interpolants on Legendre-Gauss-Lobatto (LGL) quadrature nodes48.

As the flux is delocalized in spectral space by the convolution product, numerical fluxes

are computed pseudospectrally by upwinding in physical space54. The variable-coefficient

term iknvfn is integrated exactly up to the order of the basis polynomials and is thus also

alias-free.
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As both spatial and velocity fluxes are alias-free the method has good conservation prop-

erties. For example, domain-integrated particle number is conserved to machine precision.

Energy, with no artificial hyperviscosity, is conserved to O(10−10) for the resolution used.

Spectral blocking, when the turbulent cascade hits the Nyquist frequency of the spatial grid,

breaks this energy conservation. For this reason a hyperviscosity ν∇4
xf with ν = 1.0× 10−2

for kλD > 1 is used to introduce an artificial cutoff scale at the Debye length. This artificial

dissipation results in an energy loss O(10−7) by saturation while electric energy saturates at

O(10−3), meaning the important dynamics are not adversely affected. Momentum is con-

served to O(10−13)) at the studied resolution by saturation. The L2 norm is conserved to

O(10−3) with hyperviscosity enabled; L2 norm conservation is poorer without hyperviscosity

due to the errors introduced by spectral blocking. Nonlinear functionals are not explicitly

conserved by the method. Their conservation is dependent on the degree to which the equa-

tions have been accurately integrated by quadrature. Higher resolution and a higher-order

basis result in better conservation of quantities nonlinear in f .

A non-uniform discretization is used, as in the bump-on-tail instability most of the action

occurs in the resonant band of velocities with v ∈ (3, 6) but velocity space must be truncated

at large v for the above-discussed particle, momentum, and energy conservation. Thus only

a few elements are used in the tails while most elements are clustered around the main

bodies of the two Maxwellian distributions. In this way sufficient resolution is obtained

for fine-scale velocity features without wasted resolution in the tails. A semi-implicit time-

integrator is used called the AB3CN method53. In this use of the method the linear advection

term iknvfn is treated implicitly with the second-order Crank-Nicholson method while the

nonlinear velocity flux is evolved explicitly by the third-order Adams-Bashforth multistep

method. This semi-implicit method is CFL-limited by the spectral velocity flux rather

than particle advection, enabling arbitrarily large velocity domains. The trade-off is that

distribution positivity (f > 0) is not preserved because the semi-implicit method produces

grid-scale dispersion at high velocities where the translation frequency exceeds the resolved

frequency, kv > (∆t)−1. Ooscillations are small amplitude out in the Maxwellian tails. With

a timestep ∆t = 2.5×10−3 the largest negative values observed are O(10−8) with decreasing

amplitude out into the tails. Because the dispersive waves in the tails are consistently

induced by the discretization they do not cause a loss in density, momentum, etc.

In this work Nv = 50 elements are used to discretize velocity space, each with a ninth-
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order interpolant polynomial basis. Velocity space is truncated at vmax = ±25 thermal

velocities in order that total density be conserved to machine precision. Thirty elements

are clustered into the range of approximately resonant velocities from v ∈ (3, 8) where high

accuracy is needed to resolve the fine trapping trajectories, with the remainder of elements

distributed in the main thermal body and tails. The physical domain is taken as a periodic

box of length of L = 5000λD and is divided into Nx = 5000 evenly-spaced nodes.

When the perturbation spectrum is initially peaked at max(|Ek|2) = 10−6 the instability

saturates at tωp ≈ 130. The simulation is run to tmax = 170 with a ∆t = 2.5×10−3, requiring

about fifteen minutes on a single RTX 3090 GPU. For a given time-advance the numerical

results are well converged, such that discretization errors are below machine precision as

verified by varying the resolution. However some phase error is introduced by the implicit

time integration of spectral velocity advection as the very smallest scales are slowed to

the chosen time-advance53. As these smallest modes are damped by the hyperviscosity no

significant difference is seen in domain averages such as 〈Eδf〉L when compared to explicitly

time integrated simulations. This error does mean that care should be taken with the choice

of time-step as small scales are slowed in addition to large velocities.

V. ANALYSIS OF SIMULATION RESULTS

Here the Vlasov-Poisson and quasilinear simulations are analyzed, and the discrepancy

between the two simulations explored. Both results use the initial background distribution

specified in Eq. 10 and suppose a domain length of L = 5000λD. Section V A makes some

comments on the choice of initial condition. A comparison of the turbulent flux is made

in Section V B, along with a discussion on the fluctuations in the field-particle correlation

〈δfE〉L responsible for deviation from quasilinear diffusion. Section V C analyzes the role

of phase space structures in the solution of the Vlasov equation followed by an analysis of

the validity conditions as discussed in Section III B.

A. On the choice of initial energy spectrum

The dynamic behavior of the quasilinear system as an initial value problem depends on

the choice of initial condition, because the spatially-averaged distribution 〈f〉L and also
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FIG. 4. Domain-integrated energy traces for the length L = 5000λD Vlasov-Poisson simulation of:

a) electric field energy and b) change in kinetic energy. The bump relaxes as electrons release free

kinetic energy. A typical feature of nonlinear saturation is an overshoot of equilibrium and slow

nonlinear evolution, seen here as an increase in kinetic energy past saturation at tωp ≈ 125. An

artificial hyperviscosity is applied for wavenumbers kλD > 1, but total energy per unit length is

conserved to O(10−7).

the initial energy spectrum |Ek|2 are free to be specified. All modes must be energized as

change takes place only through linear growth or damping. A variety of choices exist for

the initial distribution of spectral field energy |Ek|2. A possible choice is a constant energy

in all modes Ek with random phases, e.g. a white noise. Yet one cannot put energy into

damped “eigenmodes” of the Vlasov-Poisson system without exciting the other branches

of the kinetic dispersion relation, as Landau-damped modes are not true eigenfunctions26.

If initialized, damped kinetic modes can couple into the dynamics of growing modes. For

example, Fig. 4 shows the temporal change of domain-integrated electric and kinetic energies

in the development of the instability. If perturbations other than eigenmodes are initialized

then the domain-integrated energy will oscillate as it grows in time. The Vlasov-Poisson

simulation is perturbed only by unstable modes for better comparison to quasilinear theory.

Initialization of constant energy across all modes results in a cusped diffusivity profile,

nearly discontinuous at the edges of the resonant velocities, because some wavenumbers

have near-zero growth rates. Because of this cusp effect the energy spectrum is initialized in

both simulations to match a scaled version of the positive growth rates with the maximum
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α2
n = 10−6 in Eq. 11. In the quasilinear system the damped part of the spectrum is initialized

to the minimum positive growth rate in order that the initial spectrum is continuous.

B. Comparisons of turbulent diffusivity and momentum flux

Primary quantities of interest in phase space turbulence are the velocity-space diffusivity

and the turbulent momentum flux 〈Eδf〉L, in particular its profile and magnitude, in the

regions of resonant and non-resonant velocities. Based on Eq. 19, a turbulent diffusivity

can be estimated from the Vlasov-Poisson simulation by decomposing the distribution into

a component that is averaged over physical space 〈f〉L and a component fluctuating about

this average, δf = f − 〈f〉L. Then diffusivity is estimated as

Destimated(v) ≡ 〈Eδf〉L
∂v〈f〉L

(43)

as the turbulent momentum flux normalized to the gradient of the background distribution.

The variation of diffusivity with velocity is important for the change in 〈f〉L in the

tail region, with the two simulations compared in Fig. 5 to an intermediate time in the

simulation. The main thermal body is non-resonantly heated primarily in positive velocities.

The “notch” or depression between the main thermal body and the bump in 〈f〉L is in this

way filled in by diffusion from near-resonant, but not fully resonant, velocities.

Figure 6 shows the Vlasov-Poisson and quasilinear velocity-space diffusivities in the res-

onant (a-b) and non-resonant regions (c-d), demonstrating that quasilinear theory correctly

predicts the shape and early development of the profile of turbulent diffusivity, but later

presents an underestimate. By tωp = 50 the velocity-space diffusivity is underestimated by

between 30–100%. Regarding the non-resonant diffusivity, Fig. 6(c-d) shows that this value

varies by an order of magnitude across the positive velocities of the main thermal body,

becoming smaller for negative velocities.

For later times in the Vlasov simulation fluctuations of 〈f〉L make the diffusivity estimate

unreliable as its gradient oscillates. This happens to occur as the two models begin to

diverge and the diffusive closure breaks down. A smoother quantity to compare is the

covariance, or turbulent flux, 〈Eδf〉L. Figure 7 compares the quasilinear turbulent flux

to that of the Vlasov-Poisson simulation. This figure shows that the flux in the region of

non-resonant velocities close to the resonant region around v ≈ [3, 6] is underestimated by
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FIG. 5. Diffusion of the distribution function in the tail region, (a), (c) in simulation of the

quasilinear theory and (b), (d) in the Vlasov-Poisson simulation. Evolution up to time tωp = 50

is shown in parts (a) and (b), while times up to tωp = 100 are shown in parts (c) and (d).

Up to time tωp = 30 the quasilinear solution agrees closely with the Vlasov solution, though by

tωp = 50 the Vlasov-Poisson simulation has a noticeably smoother profile as the diffusivity has

grown significantly greater than the quasilinear value. In later times the Vlasov evolution has a

non-diffusive, fluctuating charater. By tωp = 90 the Vlasov simulation has completely filled in the

low-velocity notch, while the quasilinear simulation maintains a steep notch area.
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FIG. 6. Evolution of diffusivity D(v) in: (a-b) the region of resonant velocities; and (c-d) for non-

resonant velocities in the main thermal body. The diffusivities agree well until around tωp = 40,

where they diverge significantly. A key difference is the width of the diffusing region, as the Vlasov

simulation diffusivity at the resonant edges (v = 3.5 and v = 5) is twice as large as the quasilinear

prediction. Note that wave energies, plotted in Fig. 4, are not yet at nonlinear levels. By tωp = 50

non-resonant diffusivity of the Vlasov-Poisson simulation in (c) is roughly 30% greater than the

diffusivity in (d) predicted by quasilinear theory for the L = 5000λD interval. Diffusivity is not

plotted beyond tωp = 50 as the Vlasov-Poisson diffusivity (estimated by Eq. 43) becomes incoherent

when the simulation diverges from QLT.

quasilinear theory. This enhanced turbulent flux flattens the extreme regions of the unstable

distribution, meaning the “notch” and “bump” of the evolving tail. These two regions are

flattened asymptotically in the quasilinear model. The effect of this enhanced diffusion is
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to quench the instability in a finite time, in contrast to quasilinear theory’s asymptotic

approach to quenching. This is seen as the saturation of electric energy in Fig. 4(a).

FIG. 7. Time-evolution of the field-particle correlation, or equivalently turbulent momentum flux of

the averaged distribution function, for (a, c) the Vlasov-Poisson solution and (b, d) the quasilinear

solution. The turbulent flux of both systems peaks around tωp = 50 for this initial condition, yet

the observed flux of the Vlasov simulation is significantly greater than the quasilinear value for all

times beyond tωp = 30. The amplitudes of the functions E and δf both increase as the variance

〈Eδf〉L of the functions spreads. In quasilinear theory the increase in this variance causes the

increase in the fluctuating component of the distribution δf .
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C. Analysis of phase space structures in the Vlasov-Poisson simulation

Section III reviewed quasilinear theory and highlighted parallels to models of eddy viscos-

ity in the turbulence of an incompressible fluid. In such eddy viscosity models a passive scalar

is mixed by its partial participation in an ensemble of fluid eddies, resulting in a diffusive

character to the scalar’s averaged profile. By observing the phase flow within the averaging

box a similar structure of eddies is observed due to phase fluid resonantly interacting with

phase waves.

Section V B shows that the Vlasov simulation evolves in two phases, at first in agreement

with quasilinear diffusion and later diverging as wave energy increases. Figure 8 shows the

development of the fluctuation δf at an early time corresponding to quasilinear evolution

for a domain of L = 1000λD. Phase fluid mixes without the formation of closed eddies.

A shorter domain was chosen here to present a complete picture which can be reasonably

viewed as a whole. The simulation in Fig. 8 uses 5000 spatial nodes and does not use spatial

hyperviscosity. Note that the checkerboard pattern of the plasma oscillations is similar to

the eigenmodes discussed in Section II A and visualized in Fig. 2.

The Vlasov simulation begins to disagree with quasilinear theory as phase space eddies

form. These eddies are also referred to as clumps or granulations and are a central ingre-

dient of the theory of phase space structures55–57. These structures can be roughly divided

into coherent (eigenmode-like) and incoherent (eddy-like) parts. This section discusses the

dynamics of the eddy-like part of the fluctuation. An extensive textbook discussion of gran-

ulations and their role in phase space turbulence can be found in Chapter 8 of Ref. [11]. Of

course the analogy to eddy-viscosity models is only partial since phase space eddies account

only for resonant diffusion; it is well-known from theory that coherent oscillations of the

main thermal body are responsible for energy transfer at non-resonant velocities37,58.

1. Eddy analysis of the direct Vlasov simulation

One might expect each linear mode to evolve independently until terms nonlinear in

the wave amplitude dominate the dynamics. Yet as seen in the Fourier spectrum of the

fluctuating component of the distribution in Fig. 9(b), instability development leads to a

broadening of the initialized coherent crescent shape in the distribution spectrum f(k, v) and
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FIG. 8. The fluctuation in the distribution function, δf ≡ f−〈f〉L, of a Vlasov simulation is plotted

during the quasilinear phase of evolution at tωp = 10. A short domain (L = 1000λD) is shown

in order that the whole flow can be observable at once. A clear distinction can be made between

resonant and non-resonant parts of the fluctuation. Non-resonant velocities undergo coherent

oscillations (seen as the striped pattern) while phase fluid at resonant velocities (v ∈ (3, 5)) is

accelerated by randomly-phased waves. These structures are consistent with quasilinear evolution.

the gradual development of a power law in these Fourier coefficients around the resonant

band of velocities. Initial broadening of the Fourier spectrum in the linear phase of the

instability, representing evolution of fine structures in the band of resonant velocities from

reaction on the mean momentum flux, is the essence of the quasilinear effect. However the

power law seen in Fig. 9(a) represents turbulent features not captured by the quasilinear

approximation.

An analysis of phase space eddies reveals how quasilinear closure breaks down as this

resonant-velocity power law from turbulent eddy mixing develops. Eddies consist of electron

phase fluid oscillating in a local potential well. The typical electron bounce frequency at

saturation, measured as the rms charge density fluctuation, is ωb ≈ 0.1ωp, extending to

bounce frequencies of ωb ≈ 0.2–0.4ωp in the largest amplitude wavepackets. This gives a

range of eddy turn-over times from τbωp ≈ 15–60. Resonant particles do not experience a
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FIG. 9. a) The field spectrum |Ek|2 of the Vlasov simulation averaged from tωp = 140–170,

consisting of two peaks at kλD ≈ 0.25 and 0.5, as well an inertial range-like power law for kλD & 0.6.

The primary peak is due to the saturated instability and the secondary peak to its first harmonic.

The spectral knee and dissipation around kλD = 2 is due to the artificial hyperviscosity.

b) Fourier-decomposition of the distribution function at tωp = 170, shown in logarithmic view as

log(1 + |f |) and with the maximum of the colorbar set to 5% of the largest spectral amplitude.

This demonstrates that the high-k power law is due to eddy turbulence of resonant electrons, while

the energy-containing oscillations are present in the population of non-resonant electrons.
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full period of bounce motion, as phase fluid transits each potential well in a time

τtransit ≡
λ

v − vg
(44)

with v the local phase fluid velocity, vg the wavepacket group velocity, and λ the width

of a wavepacket potential trough. In the simulation considered the width of a wavepacket

potential trough is roughly λ ≈ 10λD, the group velocity of wavepackets roughly one thermal

velocity, and the velocities of resonant particles v ≈ (3, 6)vt (here estimated as greater than

the original v ∈ (3, 5)vt as the resonant region expands with time). This gives transit times of

τtransitωp = 2–5. Thus groups of resonant particles in the mixing layer participate in between

3–30% of a typical phase space eddy motion per trough. However, since the potential profile

is similar in each wavepacket trough, and the clump enters the trough approximately as it

left, a rotating clump can turn over in the process of passing through multiple potential

troughs. In this way a clump of phase fluid is progessively distorted by its passage through

the potential profile of a wavepacket and trajectories randomized by the process of phase

mixing in a nonlinear potential.

2. Visualization of phase space eddy turnover in a single-time snapshot

A recurrence effect allows this progressive eddy turnover to be visualized in a single-time

snapshot of the phase flow. To understand the recurrence effect, consider the fluctuation’s

autocorrelation function 〈δf(x, v, t)δf(x − vgτ, v, t − τ)〉L11, plotted in Fig. 10 for resonant

velocities during early quasilinear evolution and a later time when evolution deviates from

quasilinear diffusion. During the quasilinear phase the autocorrelation signature is sinusoidal

but during later evolution the signature changes to that of a structure repeating at the

plasma frequency. The repeating signal corresponds to a temporal similarity in the phase

flow. That is, one can approximately trace the past and future behavior of a phase space

clump in a given potential well by looking at the neighboring potential wells because clumps

transit between wells in approximately one plasma period. Figure 11b shows this effect in

detail, tracing the approximate future state of a clump as it transits a wavepacket with a

series of small circles. In the way visualized, resonant particle mixing becomes governed by

progressive eddy turnover through the distinct potential wells of a wavepacket. The eddies

visualized are not trapped in any particular potential well.
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FIG. 10. Autocorrelation 〈δf(x, v, t)δf(x− vgτ, v, t− τ)〉L of the fluctuating distribution function

in the Vlasov-Poisson simulation as a function of time-delay τ plotted for: (a), (b) tωp = 50 during

the quasilinear phase of instability evolution; (c), (d) tωp = 75 the development of anomalously

high diffusivity; and (e), (f) tωp = 125 at instability saturation. A sinusoidal signal is indicative of

an underlying oscillatory pattern, while a positively-peaked signal indicates a repeating pattern.

Oscillation is observed during the quasilinear phase of evolution, while by saturation there is only

recurrence at resonant velocities. Recurrence coincides the formation of phase space clumps and

the increase of turbulent flux beyond the quasilinear value. The resonant fluctuation recurs at the

plasma frequency, decorrelating into the past and future over about six plasma periods at tωp = 75

and only two at tωp = 125. The decay in autocorrelation peaks corresponds to the approximate

coherence time of phase space clumps.
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The phase fluid patterns have a long coherence time because the degree of phase mixing in

a sinusoidal potential depends on the time spent participating in the eddy motion. Particle

trajectories in a given clump slowly decorrelate, with a decorrelation time given by the decay

of peaks in Fig. 10. The change from a sinusoidal signal to that of a repeating structure in the

autocorrelation function at resonant velocities is concurrent with the time of disagreement

of the turbulent flux from the quasilinear prediction. This is the time for which the particle

bounce frequency (or equivalently, phase space eddy turnover time) becomes smaller than

but comparable to the wavepacket autocorrelation and resonant particle transit times.

3. Wavepacket autocorrelation and quasilinear applicability

Besides its oscillation frequency a wavepacket is characterized by its autocorrelation

time τac, or the lifetime of the potential profile in the wavepacket, and the lifetime of the

wavepacket τlife as an amplitude envelope. The autocorrelation time, similar to the particle

potential transit time, is estimated as τac = 2π|(ζ − vg)∆k|−1 as in Section III B. The quan-

tity ∆k is the spectral width of the energy-containing oscillations, and can be estimated

from the saturated spectrum, shown in Fig. 9(a), as ∆k ≈ 0.1. The phase velocities range

from ζ ≈ 3–5vt, so with vg ≈ 1vt the autocorrelation frequency is approximately ωac = 0.4.

The importance of wavepacket lifetime can be estimated using the Hilbert transform

to obtain the wave envelope ψ, and computing the group velocity-shifted autocorrelation

function 〈ψ(x, t)ψ(x− vgτ, t− τ)〉L. When this shifted autocorrelation is compared against

the unshifted autocorrelation of the envelope during the saturated state of the instability a

stationary signal is observed. The slow evolution of the wavepacket envelope points to the

robustness of the saturated state of oscillation.

Returning to the question of quasilinear applicability, the relaxation time is first estimated

from finite differences of the Vlasov-Poisson averaged distribution 〈f〉L as τ−1
r ≈ O(10−3)ωp.

The maximum growth rate is initially ωi ≈ 0.03ωp. Thus the inequality τ−1
r < ωi < τ−1

ac

is satisfied as 10−3 < 10−2 < 10−1. The rms bounce frequency of the perturbation is

ωb ≈ 0.05ωp, but by saturation the bounce frequency has grown to ωb ≈ 0.1ωp with maximum

values of up to ωb = 0.4ωp in the largest amplitude wavepackets. While the instability

saturates at only 0.2% of the total thermal energy of the system this is enough to make the

bounce frequency comparable to the autocorrelation frequency and the quasilinear flux is
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FIG. 11. Detailed phase-space views of the fluctuation δf ≡ f − 〈f〉L in the Vlasov-Poisson simu-

lation: a) outside a wavepacket; and b) within a wavepacket. Phase space is shown at tωp = 120

for the 1000λD domain. Null-points between wavepackets can be determined from the phase-space

view as the regions where the coherent plasma oscillation sustained by non-resonant electrons goes

to zero amplitude. The mixing mechanism depends on the local potential structure. Outside

wavepackets filaments mainly free-stream while within wavepackets eddies mix. The long decorre-

lation time of a clump is illustrated in (b) by a circle tracking a recurrent clump, demonstrating

that an eddy can complete a turn as it propagates from trough-to-trough, even though the rotating

clump is experiencing different potential amplitudes in each trough.
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found to be modified14 as discussed previously.

To quantify the quasilinear closure assumption, recall the ordering made in Eq. 14

comparing the fluxes in the equation for the fluctuation. This flux is made up of two

terms, one due to the mean distribution E〈f〉L and another due to the second fluctuation

δ(Eδf) = Eδf − 〈Eδf〉L. This ordering is initially valid but begins to be weakly violated

within wavepackets (where the amplitude of E is large) at resonant velocities. The velocity

gradient scale of the mean flux E〈f〉L is limited by gradients in 〈f〉L, but the second fluc-

tuation develops small gradient scales in the resonant velocity region. The smaller gradient

scale of the second fluctuation makes the two flux divergences comparable despite the flux

E〈f〉L remaining much larger in amplitude than the second fluctuation. Figure 12 compares

these two fluxes by following a wavepacket through a phase space view at three points in

time, where the gradient scale of the second fluctuation is seen to be much smaller than the

scale of the mean flux. The key observation in Fig. 12 is the difference in velocity gradient

scale-lengths between the two fluxes. The amplitude of the neglected fluxes is comparable

to but smaller than the amplitude of the mean flux at resonant velocities (v ≈ 3–6), but

the gradient scale-length of the neglected flux is much smaller than the mean flux with the

development of phase space eddits. Because it is the divergence of the flux that matters

this translates to a violation of the quasilinear closure at resonant velocities. The closure

at non-resonant velocities is not violated, and its effect in the Vlasov-Poisson simulation is

to pump energy into the oscillation harmonics. The harmonic peak in the power spectrum

(Fig. 9) is observed to be small, in agreement with the conclusion that the closure is not

violated at non-resonant velocities.

VI. SUMMARY OF FINDINGS

This study revisited the bump-on-tail instability with a conservative high-order discon-

tinuous Galerkin method applied to its quasilinear theory as well as to a direct simulation

of the Vlasov-Poisson equations. The initial condition was chosen in the regime of beam

parameters for which quasilinear theory should be applicable according to Ref. [28]. It was

found that quasilinear theory is initially in good agreement with the system evolution but

underestimates the rate of turbulent momentum flux beginning at field energies halfway to

instability saturation. The result of the correction beyond the quasilinear approximation is
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FIG. 12. Quantification of the quasilinear closure assumption by comparison of the fluxes for the

fluctuation δf in QLT, tracking a wavepacket over time in the L = 5000λD simulation. The phase

space is shown for (a, b) the initial condition tωp = 0, (c, d) the beginning of anomalously high flux

for the mean 〈f〉L at tωp = 50, and (e, f) during the time of disagreement between QLT and the

Vlasov-Poisson simulation at tωp = 80. Parts (a), (c), and (e) show the flux due to the background

distribution, E〈f〉L, while parts (b), (d), and (f) shows the remaining flux δ(Eδf) = Eδf−〈Eδf〉L.

Initially the inequality ∂v(Eδf −〈Eδf〉L)� ∂v(E〈f〉L) is satisfied, but by tωp = 50 the divergence

of δ(Eδf) is comparable to the divergence of the mean flux in the region of resonant velocities

as steep gradients form around phase space eddies. The closure assumption is violated in other

wavepackets in the same way.
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a quenching of the instability in a finite time and the replacement of the unstable initial

condition by a robust state of oscillation. This correction occurs as the phase space eddy

turnover time in the largest amplitude wavepackets becomes comparable to the phase fluid

transit time through the wavepacket potentials.

When these timescales become comparable, groups of correlated particles, i.e. phase

space eddies, effectively turn over within wavepackets without being trapped in a single

potential well. This effect is termed progressive eddy turnover because the eddies turn

over while transiting wavepackets rather than turning over within a single potential well.

Progressive eddy turnover transitions the mechanism of resonant electron scattering from

diffusive random walks to effective nonlinear phase mixing in potential wells. The findings

of this article support the theory of phase space density granulations11,55,56 and shed light

on the distribution of fluctuations with velocity in collisionless plasma turbulence.

Limitations of quasilinear theory have been known for some time. Theories to account for

the discrepancies discussed in this article include resonance broadening theory and expansion

to higher-order in the field amplitude3,11,12. These approaches can considerably complicate

the analysis without a necessarily rewarding conclusion, as energy conservation in resonance

broadening theory is still actively researched3 and higher-order expansions may lead to

misleading analysis for nonlinear Landau damping processes59. The findings of this study

suggest that using quasilinear theory to predict plasma processes for all but the weakest

instabilities should be considered as only order-of-magnitude accurate.
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