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Abstract 

Digital twin is a vital enabling technology for smart manufacturing in the era of Industry 4.0. Digital twin effectively replicates its physical asset 
enabling easy visualization, smart decision-making and cognitive capability in the system. In this paper, a framework of dynamic data driven 
digital twin for complex engineering products was proposed. To illustrate the proposed framework, an example of health management on aircraft 
engines was studied. This framework models the digital twin by extracting information from the various sensors and Industry Internet of Things 
(IIoT) monitoring the remaining useful life (RUL) of an engine in both cyber and physical domains. Then, with sensor measurements selected 
from linear degradation models, a long short-term memory (LSTM) neural network is proposed to dynamically update the digital twin, which 
can estimate the most up-to-date RUL of the physical aircraft engine. Through comparison with other machine learning algorithms, including 
similarity based linear regression and feed forward neural network, on RUL modelling, this LSTM based dynamical data driven digital twin 
provides a promising tool to accurately replicate the health status of aircraft engines. This digital twin based RUL technique can also be extended 
for health management and remote operation of manufacturing systems. 
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1. Introduction 

     The concept of the digital twin was coined around 2002 [1]. 
Digital twin uses Industry Internet of Things (IIoT) as a 
framework to connect equipment and processes with high 
fidelity simulation models which replicate the physical asset in 
cyberspace. It predicts the nominal behaviour of the system of 
interest, with aims of identifying potential issues of the real 
machine counterpart and suggesting corrective actions based 
on data, historical records, and other information collected 
from various sensors deployed on the physical equipment.  
     Digital twin is a type of computer simulation model, but 
with distinction [2]: 
 A digital twin is the virtual model of a real ‘thing’. 
 A digital twin simulates both the physical state and 

behaviour of the thing. 

 A digital twin is unique, associated with a single, specific 
instance of the thing. 

 A digital twin is connected to the thing, updating itself in 
response to known changes to the thing’s state, condition, 
or context. 

 A digital twin provides value through visualization, 
analysis, prediction, or optimization. 

     Aircraft vehicle operations have been a particular area of 
interest for digital twin applications because these vehicles are 
operated in data-rich environments. NASA was the first to 
apply pairing a technology, the precursor to today’s digital 
twin, as far back as the early days of space exploration [3]. 
Now, digital twin technology is being envisioned to be the 
paradigm shift for ship/aircraft fleet maintenance by NASA 
and the Air Force [4, 5]. Digital twin technology is spanning 
wide application areas ranging from rapid requirement 
development and trade-space decisions, to design and 
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Digital twin uses Industry Internet of Things (IIoT) as a 
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cyberspace. It predicts the nominal behaviour of the system of 
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prototype efforts, to fielding, and to the operation and 
sustainment of mission-critical systems. We envision that the 
digital twin models, if designed properly, could also support a 
feedback loop based on condition sensors [6]. This can be 
further used to monitor actual deployed systems to update 
digital models for decisions regarding remaining useful life 
(RUL) and other lifecycle decisions. The digital twin for health 
management on mission-critical systems thus can play a vital 
role in the maintenance, repair, and overhaul (MRO) business 
to reduce the high costs associated with in-flight malfunctions, 
maintenance-related delays and cancellations, potential loss of 
human lives, etc. More importantly, the digital twin can also 
improve logistical responsiveness at the point of need thus 
shortening the logistics tail.  
     Consequently, in this paper, a framework of dynamic data 
driven digital twin for aircraft engine health management is 
proposed. The process to build a digital twin for engine health 
management encompasses the following steps: 
1. Collect data. The data collection can either be based on 

historical records or real time data from IIoT devices and 
sensors. The data collected will then be stored using a 
cloud service. 

2. Prepare data. In many cases, the raw data collected from 
devices and sensors involves irregularities such as signal 
noise, or missing data. Therefore, it will require 
appropriate preparation before the machine learning step 
that follows. The data preparation step may involve data 
de-noising, reformatting, and/or pre-processing to convert 
raw data to useful information, which then becomes the 
input to machine learning models in digital twin. 

3. Build the digital twin using a machine learning model. 
Based on the prepared data, this step will train different 
machine learning models and the associated parameters, 
then compare the modelling results. Further, it will 
validate and test the selected model using testing data. 

4. Deploy the digital twin. When a model that satisfies the 
selection criteria is selected, it is ready to be deployed. 
That involves wrapping the model into cyberspace using a 
web service app that can read data and return analysis 
results. The digital twin is then packed into a docker 
container, which in turn can be deployed either in the cloud 
or in an IoT Edge device.  

5. Maintain and refine the model. The work is not done after 
model deployment. The researchers and engineers need to 
continue collecting new data to update and refine the 
model. The updated digital twin model will be re-deployed 
to cyberspace. 

     When developing a digital twin for physical systems or 
products, the following research questions have yet been fully 
considered [7]: 
1) What variables in the physical domain can be extracted? 
2) How should the number and deployment of sensors either 

during design time or during the usage time (for legacy 
systems) be selected? 

3) How can a digital twin model be developed given the 
constraints of resources (such as sensors and costs)? 

4) When should the digital twins (as lightweight as possible 
to meet the resource constraints) be updated to make sure 
that they can accurately predict system performance? 

     A dynamic data-driven digital twin is promising to address 
these questions. Dynamic data driven application systems 
(DDDAS) is an emerging powerful tool that allows more 

effective measurement processes to update the model [6]. 
DDDAS naturally couples with the digital twin to enhance the 
capability to fuse sensors, data, model, and decisions together. 
DDDAS incorporate additional data into an executing digital 
twin, and in reverse, enhance a digital twin to dynamically steer 
the decision on its physical asset. DDDAS bring challenges as 
well as opportunities for engineering applications on the 
aspects of mathematical algorithms, systems software, and data 
collection [6]. However, the utilization of the DDDAS 
approach for the digital twin is still in infancy. The only 
relevant work we are aware of comes from [7]. 

2. Literature review 

     The literature has been reviewed through two aspects: 
DDDAS based applications and RUL prediction for aircraft 
engines. 
     Since DDDAS’s inception in 2000, the DDDAS concept has 
been successfully applied to broad application areas such as 
manufacturing [8], smart cities [9], health care [10], and 
security [11]. Common themes include agent simulation, model 
synchronization, user interaction, and data analytics. The 
emerging new technologies such as big data, Internet of Things, 
and cloud/edge computing are enabling DDDAS with larger-
scale impacts [12]. Meanwhile, the DDDAS research is also 
facing new challenges in hardware and embedded system 
design, middleware, data analytics, and applications. Issues 
span theoretical, algorithmic, and computational aspects. 
However, when further research is investigated, DDDAS will 
support a broader range of application in areas where the 
opportunities afforded by the DDDAS paradigm in modelling, 
simulation, and run-time execution can be fully realized.  
     To address the shortcoming of traditional machine learning 
algorithms’ deficiency in adapting to the complex and non-
linear characteristics of manufacturing systems and processes, 
a deep learning Long Short-Term Memory (LSTM) network 
was proposed to track the system degradation and predict the 
RUL [13]. This research started from the conversion of the raw 
sensor data to an interpretable health index with the aim of 
better describing the system health condition and then tracked 
the historical system degradation for accurate prediction of its 
future health condition. Evaluation using NASA’s C-MAPSS 
dataset verifies the effectiveness of the proposed method. 
Compared with other machine learning techniques, LSTM is 
more powerful and accurate in modeling degradation patterns, 
enabled by its time-dependent structure in nature. 
     An ensemble learning-based prognostic approach was 
studied to model degradation due to wear as well as to predict 
the RUL of aircraft engines [14]. The ensemble learning 
algorithm combined multiple base learners, including random 
forests (RFs), classification and regression tree (CART), 
recurrent neural networks (RNN), autoregressive (AR) model, 
adaptive network-based fuzzy inference system (ANFIS), 
relevance vector machine (RVM), and elastic net (EN), to 
achieve better predictive performance. The particle swarm 
optimization (PSO) and sequential quadratic optimization 
(SQP) methods were used to determine optimum weights to the 
base learners. The predictive model trained by the ensemble 
learning algorithm was demonstrated on the the C-MAPSS 
data. Experimental results have shown that the ensemble 
learning algorithm predicted the RUL of the aircraft engines 
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prototype efforts, to fielding, and to the operation and 
sustainment of mission-critical systems. We envision that the 
digital twin models, if designed properly, could also support a 
feedback loop based on condition sensors [6]. This can be 
further used to monitor actual deployed systems to update 
digital models for decisions regarding remaining useful life 
(RUL) and other lifecycle decisions. The digital twin for health 
management on mission-critical systems thus can play a vital 
role in the maintenance, repair, and overhaul (MRO) business 
to reduce the high costs associated with in-flight malfunctions, 
maintenance-related delays and cancellations, potential loss of 
human lives, etc. More importantly, the digital twin can also 
improve logistical responsiveness at the point of need thus 
shortening the logistics tail.  
     Consequently, in this paper, a framework of dynamic data 
driven digital twin for aircraft engine health management is 
proposed. The process to build a digital twin for engine health 
management encompasses the following steps: 
1. Collect data. The data collection can either be based on 

historical records or real time data from IIoT devices and 
sensors. The data collected will then be stored using a 
cloud service. 

2. Prepare data. In many cases, the raw data collected from 
devices and sensors involves irregularities such as signal 
noise, or missing data. Therefore, it will require 
appropriate preparation before the machine learning step 
that follows. The data preparation step may involve data 
de-noising, reformatting, and/or pre-processing to convert 
raw data to useful information, which then becomes the 
input to machine learning models in digital twin. 

3. Build the digital twin using a machine learning model. 
Based on the prepared data, this step will train different 
machine learning models and the associated parameters, 
then compare the modelling results. Further, it will 
validate and test the selected model using testing data. 

4. Deploy the digital twin. When a model that satisfies the 
selection criteria is selected, it is ready to be deployed. 
That involves wrapping the model into cyberspace using a 
web service app that can read data and return analysis 
results. The digital twin is then packed into a docker 
container, which in turn can be deployed either in the cloud 
or in an IoT Edge device.  

5. Maintain and refine the model. The work is not done after 
model deployment. The researchers and engineers need to 
continue collecting new data to update and refine the 
model. The updated digital twin model will be re-deployed 
to cyberspace. 

     When developing a digital twin for physical systems or 
products, the following research questions have yet been fully 
considered [7]: 
1) What variables in the physical domain can be extracted? 
2) How should the number and deployment of sensors either 

during design time or during the usage time (for legacy 
systems) be selected? 

3) How can a digital twin model be developed given the 
constraints of resources (such as sensors and costs)? 

4) When should the digital twins (as lightweight as possible 
to meet the resource constraints) be updated to make sure 
that they can accurately predict system performance? 

     A dynamic data-driven digital twin is promising to address 
these questions. Dynamic data driven application systems 
(DDDAS) is an emerging powerful tool that allows more 

effective measurement processes to update the model [6]. 
DDDAS naturally couples with the digital twin to enhance the 
capability to fuse sensors, data, model, and decisions together. 
DDDAS incorporate additional data into an executing digital 
twin, and in reverse, enhance a digital twin to dynamically steer 
the decision on its physical asset. DDDAS bring challenges as 
well as opportunities for engineering applications on the 
aspects of mathematical algorithms, systems software, and data 
collection [6]. However, the utilization of the DDDAS 
approach for the digital twin is still in infancy. The only 
relevant work we are aware of comes from [7]. 

2. Literature review 

     The literature has been reviewed through two aspects: 
DDDAS based applications and RUL prediction for aircraft 
engines. 
     Since DDDAS’s inception in 2000, the DDDAS concept has 
been successfully applied to broad application areas such as 
manufacturing [8], smart cities [9], health care [10], and 
security [11]. Common themes include agent simulation, model 
synchronization, user interaction, and data analytics. The 
emerging new technologies such as big data, Internet of Things, 
and cloud/edge computing are enabling DDDAS with larger-
scale impacts [12]. Meanwhile, the DDDAS research is also 
facing new challenges in hardware and embedded system 
design, middleware, data analytics, and applications. Issues 
span theoretical, algorithmic, and computational aspects. 
However, when further research is investigated, DDDAS will 
support a broader range of application in areas where the 
opportunities afforded by the DDDAS paradigm in modelling, 
simulation, and run-time execution can be fully realized.  
     To address the shortcoming of traditional machine learning 
algorithms’ deficiency in adapting to the complex and non-
linear characteristics of manufacturing systems and processes, 
a deep learning Long Short-Term Memory (LSTM) network 
was proposed to track the system degradation and predict the 
RUL [13]. This research started from the conversion of the raw 
sensor data to an interpretable health index with the aim of 
better describing the system health condition and then tracked 
the historical system degradation for accurate prediction of its 
future health condition. Evaluation using NASA’s C-MAPSS 
dataset verifies the effectiveness of the proposed method. 
Compared with other machine learning techniques, LSTM is 
more powerful and accurate in modeling degradation patterns, 
enabled by its time-dependent structure in nature. 
     An ensemble learning-based prognostic approach was 
studied to model degradation due to wear as well as to predict 
the RUL of aircraft engines [14]. The ensemble learning 
algorithm combined multiple base learners, including random 
forests (RFs), classification and regression tree (CART), 
recurrent neural networks (RNN), autoregressive (AR) model, 
adaptive network-based fuzzy inference system (ANFIS), 
relevance vector machine (RVM), and elastic net (EN), to 
achieve better predictive performance. The particle swarm 
optimization (PSO) and sequential quadratic optimization 
(SQP) methods were used to determine optimum weights to the 
base learners. The predictive model trained by the ensemble 
learning algorithm was demonstrated on the the C-MAPSS 
data. Experimental results have shown that the ensemble 
learning algorithm predicted the RUL of the aircraft engines 
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with considerable robustness and also outperformed other 
prognostic methods reported in the literature. 
     A feature-representation based transfer learning (TL) 
method was proposed to predict RUL of equipment, under 
scenarios where samples with previously unseen conditions are 
presented in the target domain and the labels are available only 
for the source domain, but not the target domain [15]. This 
setting corresponds to generalizing from a limited number of 
run-to-failure experiments performed prior to deployment into 
making prognostics with data coming from deployed 
equipment that is being used under multiple new operating 
conditions and experiencing previously unseen faults. A 
deviation detection method, Consensus Self-Organizing 
Models (COSMO), was studied to create transferable features 
the RUL regression modeling. These features capture how 
different a particular equipment is in comparison to its peers. 
The efficiency of the proposed TL method was demonstrated 
using the NASA’s C-MAPSS dataset. Models using the 
COSMO transferable features showed better performance than 
other methods on predicting RUL when the target domain is 
more complex than the source domain. 
     A transfer learning algorithm based on Bi-directional LSTM 
(BLSTM) neural networks was proposed for RUL estimation 
[16]. The authors first trained the BLSTM models on different 
but related datasets, and then fine-tuned the models by the 
target dataset. Their experimental results showed that transfer 
learning can, in general, improve the prediction models on the 
dataset with a smaller number of samples; however, when 
transferring from multi-type operating conditions to single 
operating conditions, transfer learning led to a worse result. 
    The LSTM Recurrent Neural Network (RNN) technique was 
investigated on RUL prediction within a digital twin 
framework as a means of synchronization with changing 
operational states [17]. LSTM encoder-decoder (LSTM-ED) 
was applied to train a multi-layered neural network and 
reconstruct the sensor data time series corresponding to a 
healthy state. The resulting reconstruction error can be used to 
capture patterns in input data time series and estimate health 
index (HI) of training and testing sets. Using a time lag to 
record similarity between the HI curves, a weighted average of 
the final RUL estimation is obtained. The described empirical 
approach is evaluated on publicly available engine degradation 
dataset with run-to-failure information. Results indicate a high 
RUL estimation accuracy with greater error reduction rate. This 
demonstrates wide applicability of the discussed methodology 
to various industries where event data is scarce for the 
application of only data-driven techniques. 
     When a digital twin is deployed to an aircraft engine, this 
digital twin is subject to continuous updating from the data 
received from the engine by sensors or IIoT. There are many 
scenarios that may challenge the process to update the digital 
twin. For example, the engines will go through deterioration, 
or the operation environment may have to be changed or 
disrupted. Both scenarios will cause pattern changes in the 
collected data. How to update the model subject to changed 
data is one of the challenges in the digital twin research. 
Through a review of literature, we want to propose a dynamical 
data driven digital twin based on LSTM to address this research 
question. The proposed methodology is as follows in Section 
3. 

3. Methodology 

3.1 Overview of the proposed digital twin 

     The proposed digital twin of “sensing, monitoring, analysis, 
and control” for the aircraft engine health management set up 
is shown in Fig. 1. The digital twin is built using IIoT, sensors 
and data acquisition (DAQ), edge devices, and fog/cloud 
computing based on Deloitte University’s suggestion [18]. This 
digital twin will be infused into the aircraft health management 
monitoring with five function blocks: 1) monitoring, 2) 
visualization, 3) data storage, 4) analysis, and 5) control. Fog 
and cloud computation are envisioned into the digital twin 
model. The fog nodes will perform some rudimentary 
computation on the data and make local decisions on the engine 
operation status. When intensive computation and global 
decision are needed, cloud computing will start. The cloud 
includes the local/public cloud. In the current vision, the digital 
twin will model and monitor two interesting areas in: 1) 
remaining useful life prediction and 2) diagnostics and 
prognostics. But it can be extended to other areas such as 
maintenance scheduling, and feedback control of the physical 
asset. 
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Fig. 1. Digital twin of “sensing, monitoring, analysis, and control” for the 

aircraft engine health management  
     The framework of proposed dynamic data driven 
approaches is shown in Fig. 2. A simulation model is set up to 
gain insight about the engine operation status. Then, this insight 
is used to determine what new observations should be 
collected, and the simulation is adapted to reflect these 
observations. Through measurements from sensors, computing 
systems identify the data pattern, and update the simulation and 
machine-learning model in real time. The collected data go 
through selection and normalization for pre-processing. 
Selection on the collected data is based on the linear 
degradation model which examines the trend of sensor 
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measurement towards the degradation. The selected and 
processed data is fed into machine learning models for RUL 
estimation. According to literature, the LSTM neural network 
is selected as the RUL estimation model. The challenges for 
this digital twin include the development of interfaces to 
physical devices and the creation of an infrastructure to support 
the communication and data requirements. 
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Fig. 2. Framework of DDDAS based digital twin for aircraft engine  

3.2 Long short-term memory (LSTM) networks 

     A long short-term memory (LSTM) network is a deep 
learning type of recurrent neural network (RNN) [19]. A 
disadvantage of the RNN is that the vanishing gradients often 
causes the parameters to capture short-term dependencies while 
the information from earlier time steps decays. The reverse 
issue, exploding gradients, may also occur, causing the error to 
grow drastically with each time step. LSTM networks aim to 
overcome the issue of the vanishing gradients by using the 
gates to selectively retain information that is relevant and forget 
information that is not relevant. Lower sensitivity to the time 
gap makes LSTM networks better for analysis of sequential 
data than simple RNNs. LSTMs excel in learning, processing, 
and classifying sequential data. The typical architecture for an 
LSTM based deep learning neural network is shown in Fig. 3. 
The architecture includes: 1) an input layer, 2) an LSTM layer, 
3) a fully-connected layer 1, 4) a drop out layer, 5) a fully 
connected layer 2, and 6) a response layer. 
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Fig. 3. Architecture of the LSTM based neural network for RUL estimation 

 
     The input layer contains a sequence of features that is 
extracted from the time series of sensor measurement.  
     The LSTM layer has a memory cell with two outputs: the 
long-term state tC and the short-term state th , three control 
gates: a forget gate tf , input gate ti , and output gate to , on the 
state path to control the output [19]. 
     The forget gate tf  controls the information removal from 
the previous long-term state 1tC : 

  fttft bxhWf   ,1 (1) 
     The input gate ti controls which values to be updated. Next, 
a tanh function creates a vector of new candidate values, tC

~ , 
that could be added to the state.  

  ittit bxhWi   ,1 (2)
  CttCt bxhWC   ,
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     The output gate to controls the formation of the current 
short-term state th using the information from the current long-
term state tC . The output to is computed as: 

  ottot bxhWo   ,1 (5)
)tanh( ttt COh  (6)

     In equations (4) and (6),  and  are element-wise 
multiplication and addition respectively. 

     Training of the LSTM network is using the backpropagation 
through time (BPTT) procedure [19], which is similar to train 
an RNN.  
     Fully Connected layers connect the output of the previous 
layers, “flattens” them and turns them into a single vector that 
can be an input for the next layer. A fully connected layer 
finishes the high-level reasoning in the neural network. 
Neurons in a fully connected layer have connections to all 
activations in the previous layer. Their activations can thus be 
computed as an affine transformation, with matrix 
multiplication followed by a bias offset (vector addition of a 
learned or fixed bias term). 
     The Dropout layer helps reduce over fitting and improve 
training speed. At each training stage, individual nodes are 
either “dropped out” of the net (ignored) with the probability 
1-p or kept with the probability p, so that a reduced network 
remains; incoming and outgoing edges to a dropped-out node 
are also removed. Only the reduced network is trained on the 
data in that stage. The removed nodes are then reinserted into 
the network with their original weights. p usually takes the 
value of 0.5 for input nodes. 
     The Response layer can return either sequence or state. In 
this case, it returns sequence, which is the piece-wise RUL of 
an aircraft engine. The entire degradation can be classified into 
two stages: normal performance stage showing relative flat part 
at the first part of the cycles and performance degradation stage 
showing an exponential drop trend. It is difficult to predict the 
RUL at the first stage, hence in some literatures such as [13], 
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measurement towards the degradation. The selected and 
processed data is fed into machine learning models for RUL 
estimation. According to literature, the LSTM neural network 
is selected as the RUL estimation model. The challenges for 
this digital twin include the development of interfaces to 
physical devices and the creation of an infrastructure to support 
the communication and data requirements. 
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Fig. 2. Framework of DDDAS based digital twin for aircraft engine  

3.2 Long short-term memory (LSTM) networks 

     A long short-term memory (LSTM) network is a deep 
learning type of recurrent neural network (RNN) [19]. A 
disadvantage of the RNN is that the vanishing gradients often 
causes the parameters to capture short-term dependencies while 
the information from earlier time steps decays. The reverse 
issue, exploding gradients, may also occur, causing the error to 
grow drastically with each time step. LSTM networks aim to 
overcome the issue of the vanishing gradients by using the 
gates to selectively retain information that is relevant and forget 
information that is not relevant. Lower sensitivity to the time 
gap makes LSTM networks better for analysis of sequential 
data than simple RNNs. LSTMs excel in learning, processing, 
and classifying sequential data. The typical architecture for an 
LSTM based deep learning neural network is shown in Fig. 3. 
The architecture includes: 1) an input layer, 2) an LSTM layer, 
3) a fully-connected layer 1, 4) a drop out layer, 5) a fully 
connected layer 2, and 6) a response layer. 
 

LSTM layer

  Tanh 

Tanh

Xt

ht

Fo
rg

et
 g

at
e Input gate

O
ut

pu
t g

at
e

ht-1

Ct-1 Ct

tc~ to

ht

In
pu

t L
ay

er

Fu
lly

-
Co

nn
ec

te
d 

La
ye

r

Dr
op

-o
ut

 
La

ye
r

Fu
lly

-
Co

nn
ec

te
d 

La
ye

r

Re
sp

on
se

 
La

ye
r

...

Se
le

ct
ed

 a
nd

 n
or

m
al

iz
ed

 
se

ns
or

 m
ea

su
re

m
en

t

RUL 
Estimiation

 
Fig. 3. Architecture of the LSTM based neural network for RUL estimation 
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     The output gate to controls the formation of the current 
short-term state th using the information from the current long-
term state tC . The output to is computed as: 
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     In equations (4) and (6),  and  are element-wise 
multiplication and addition respectively. 

     Training of the LSTM network is using the backpropagation 
through time (BPTT) procedure [19], which is similar to train 
an RNN.  
     Fully Connected layers connect the output of the previous 
layers, “flattens” them and turns them into a single vector that 
can be an input for the next layer. A fully connected layer 
finishes the high-level reasoning in the neural network. 
Neurons in a fully connected layer have connections to all 
activations in the previous layer. Their activations can thus be 
computed as an affine transformation, with matrix 
multiplication followed by a bias offset (vector addition of a 
learned or fixed bias term). 
     The Dropout layer helps reduce over fitting and improve 
training speed. At each training stage, individual nodes are 
either “dropped out” of the net (ignored) with the probability 
1-p or kept with the probability p, so that a reduced network 
remains; incoming and outgoing edges to a dropped-out node 
are also removed. Only the reduced network is trained on the 
data in that stage. The removed nodes are then reinserted into 
the network with their original weights. p usually takes the 
value of 0.5 for input nodes. 
     The Response layer can return either sequence or state. In 
this case, it returns sequence, which is the piece-wise RUL of 
an aircraft engine. The entire degradation can be classified into 
two stages: normal performance stage showing relative flat part 
at the first part of the cycles and performance degradation stage 
showing an exponential drop trend. It is difficult to predict the 
RUL at the first stage, hence in some literatures such as [13], 
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the RUL is assumed to be constant until it crosses certain cut 
off limit. Thus, the RUL curve over cycle is then modelled as 
two piece-wise linear functions. The difference on true and 
piece-wise RUL is shown in Fig. 4. 

 
Fig. 4. Piece-wise RUL (Piece-wise threshold RUL is 150 flight cycles) 

4. Case study 

     In order to illustrate the proposed approach on dynamic data 

driven digital twin on aircraft engine health management, a 
case study was developed as below. This case study is based on 
the famous NASA C-MAPSS dataset, which tracks 
performance delegation and predicts RUL of a turbofan jet 
engine [20].  

In the proposed digital twin, 21 sensors were deployed on a 
jet engine at different parts, where at fan, low-pressure 
compressor (HPC), high-pressure compressor (HPC), low-
pressure turbine (LPT), and high-pressure turbine (HPT). The 
sensor deployment is tabulated in Table 1 and shown in Fig. 1. 
These sensors collect time series of measurement data under a 
number of operating conditions by varying operate settings on 
altitude, Mach number, and throttle resolver angle. The dataset 
FD004 in C-MAPSS is used as an example to illustrate the 
proposed method. In the FD004 dataset, there are total 249 
trajectories (units) of data on the engine operation. The engine 
was operated under six different operating conditions. When 
collecting FD004, the engine suffered from two fault modes of 
HPC degradation and/or fan degradation. 

 
Table 1. Deployed sensors and measurements [20] 

Sensors Measurements Sensors Measurements 
T2 Total temperature at fan inlet (◦R) Ps30 Static pressure at HPC outlet (psia) 
T24 Total temperature at LPC outle(◦R) Phi Ratio of fuel flow to Ps30 (pps/psi) 
T30 Total temperature at HPC outlet(◦R) NRf Corrected fan speed (rpm) 
T50 Total temperature at LPT outlet(◦R) NRc Corrected core speed (rpm) 
P2 Pressure at fan inlet (psia) BPR Bypass ratio 
P15 Total pressure in bypass-duct (psia) farB Burner fuel-air ratio 
P30 Total pressure at HPC outlet (psia) htBleed Bleed Enthalpy 
Nf Physical fan speed (rpm) Nf_dmd Demanded fan speed (rpm) 
Nc Physical core speed (rpm) PCNfR_dmd Demanded corrected fan speed (rpm) 
EPR Engine pressure ratio (P50/P2) W31 HPT coolant bleed (lbm/s) 
  W32 LPT coolant bleed (lbm/s) 

4.1 Data collection and selection 

     Among the 21 sensor measurements, features have to be 
extracted to reduce the dimensionality of the raw data collected 
and to improve the performance of the machine learning 
models used for creating the digital twin. The feature selection 
and reduction reduces the computational complexity and avoid 
the “curse of dimensionality”, which is a phenomenon that the 
amount of data needed to support the result often grows 
exponentially when the dimensionality increases, for the 
machine-learning algorithm. Instead of using the conventional 
features reduction and selection approach such as principle 
component analysis (PCA), a linear degradation model as 
equation (7) [21] was applied for sensor selection. The linear 
degradation selection approach estimates and ranks the slope 
of each sensor measurement’s trend towards the degradation.  

     ttttS   (7) 
     In this equation, t  is the time,  is the model intercept, and 
 t is the model slope, which are estimated using sensor data 

regarding the health of an ensemble of similar components such 
as multiple engines with the same specification.  t is the 
model additive noise. 
     Through the linear degradation models, eight (8) sensor 
measurements with the most trendable  t  towards 

degradation were selected. These sensor measurements are: 
[T24, T30, T50, Nf, Nc, NRf, Ps30, htBleed]. The data acquired 
from the selected sensors on the engine operation is shown in 
Fig. 5.  
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Fig. 5. Acquired raw signal from selected sensors 

4.2 Data normalization 

     Note that the FD004 was collected under six (6) different 
operating conditions, which would cause data pattern changes. 
Data normalization is a way to eliminate the effect from 
different operating conditions. First, the data was grouped into 
six regimes using the k-means clustering with the squared 
Euclidean distance metric. The clusters and centroids of the 
operations are illustrated in Fig. 6. 

 
Fig. 6.  Clusters of the trajectory data  

     Then, z-score normalization was performed to normalize the 
acquired sensor data for each engine according to the regime 
that it is clustered to. For the i-th engine, the z-score 
normalization for the sensing data is expressed as equation (8). 

      
  rlxstd

rlxmeanljixljixnormed ,
,,,,, 

 (8) 

where  ljix ,,  represents the j-th data point from the l-th sensor 
in the i-th engine, and the expressions   rlxmean , and   rlxstd ,  
are the mean and standard deviation values on all the data 
points from the l-th sensor in r-th regime (r = 1,2…6), where 
the i-th engine is clustered to.  
      The normalized signal from the selected sensors are shown 
in Fig. 7.  

 

 

 
Fig. 7. Normalized signal from selected sensors 

4.3 RUL prediction with selected normalized signals 

        The normalized selected signals are input to the LSTM 
model for RUL estimation. Parameters used in the LSTM 
model are shown below in Table 2. The LSTM was 
implemented on a laptop with i7 CPU at 2.60 GHz, and 8.00 
GB of memory. The input was randomly divided into 80% vs 
20% for training and validation. The training and validation 
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4.3 RUL prediction with selected normalized signals 

        The normalized selected signals are input to the LSTM 
model for RUL estimation. Parameters used in the LSTM 
model are shown below in Table 2. The LSTM was 
implemented on a laptop with i7 CPU at 2.60 GHz, and 8.00 
GB of memory. The input was randomly divided into 80% vs 
20% for training and validation. The training and validation 
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progress and performance on root mean square error (RMSE, 
as defined in equation (9)) and loss are shown in Fig. 10. The 
error histogram in test samples is shown in Fig. 8. This test case 
has a very low RMSE of 7.17.The RUL estimation on four 
randomly selected test units are illustrated in Fig. 9, which 
shows the RUL estimation closely follow the test data 
degradation. 

Table 2. Parameters used in the LSTM model 
No. of 
feature 

Hidden 
units 

Learning 
rate 

Max 
epochs 

Batch 
size 

Units in fully 
connected 
layer 

8 200 0.01 60 20 50 

 
Fig. 8. RMSE for LSTM modelling of engine RUL 

 

 
Fig. 9. RUL estimation on randomly selected test units 
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Figure 10. LSTM training and validation progress on the RMSE and loss 

4.3 Performance evaluation and comparison 
     Goodness-of-fit statistics for the RUL estimation in 
arithmetic scale were performed using K-fold cross validation 
(specifically 5-fold) on two performance metrics: 1) mean Root 
Mean Square Error (RMSE, as equation 9), 2) mean s-score for 
degradation applications.  
     k-fold cross-validation randomly partition the original 
sample into k equal sized sub-samples. Over the k subsamples, 
a single sub-sample is used as the validation data for testing the 
model, and the remaining (k-1) sub-samples are used for model 
training. The cross-validation process is then repeated k times, 
with each of the k subsamples used exactly once as the 
validation data. The k results can then be averaged to produce 
a single estimation. Usually k takes the values of 5 or 10.  
     Further, for the degradation scenario, an early prediction is 
preferred over late predictions. Therefore, the s-score as 
defined in equation (10), which is asymmetric around the true 

time of failure such that late predictions were more heavily 
penalized than early predictions [20], is selected as the second 
evaluation metric. 
s-score [14]:  
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 (estimated RUL-true RUL). 
     Using the 5-fold cross validation, the proposed LSTM 
model was compared using other approaches including  
similarity based linear regression RUL model and feedforward 
neural network (FFNN). The similarity linear regression RUL 
model was built according to [22] and [23]. The FFNN has a 
structure of 8-15-1 on the input layer, hidden layer, and output 
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layer. The comparison results are summarized in Table 3. The 
LSTM model does show better performance than the other two 
approaches. This is due to LSTM’s specialty in discovering the 
underlying patterns embedded in time sequences. 

Table 3. Performance comparison RUL models on LSTM, similarity based 
linear regression, and FFNN 

 LSTM Similarity based 
linear regression 

FFNN 

Mean RMSE 20.22 190.38 23.30 
Mean s-score 25.27 1.37e12 59.42 

5. Conclusion and future work 

     A dynamic data driven digital twin was proposed to model 
the relationship between engine remaining useful life (RUL) 
with simulation model and sensor signals for engine operation 
status monitoring. This approach starts by deploying various 
sensors to monitor the running condition of both cyber and 
physical domains. Then, with sensor measurements selected 
from linear degradation models, a LSTM neural network is 
presented to dynamically update the digital twin, which is able 
to check the most up-to-date RUL of the physical aircraft 
engine. On the modelling performance, it was seen that LSTM, 
indeed, has better performance than other RUL models 
including similarity based linear regression and FFNN on 
performance metrics of RMSE and s-score. The proposed 
dynamic data driven digital twin framework is promising for 
complex engineering products. This digital twin based RUL 
technique is also potential for manufacturing equipment health 
management. 
     For future research, further investigation of performance 
degradation is suggested. When working conditions change, 
the distribution of the source domain data (on which the model 
is trained) is different from the distribution of the target domain 
data (where the learned model is actually deployed), which 
leads to performance degradation. Adapting the machine 
learning model trained in a source domain for use in a different 
but related target domain also can be addressed in the future.  
     Another future investigation that deserves exploration is the 
implementation of this digital twin framework to replicate 
manufacturing systems such as CNC machines and assembly 
lines etc., when remote operations are preferred. As the impact 
the current COVID-19 pandemic continues to grow globally, 
the proposed digital twin system could be helpful for scenarios 
where direct machine interaction from operators is limited. The 
sensors and IIoT can be deployed to acquire data, visualize 
system operations, extract key information from the data, and 
then make decisions on operation status of manufacturing 
systems. That will be a key enabling technology for smart 
manufacturing with the aim to improve the response and 
resilience of manufacturing systems. 

CrediT author statement 

     ZW: Conceptualization, Methodology, Software, Writing-
draft and revision. JL: Writing-reviewing and editing. 

Acknowledgements 

     The author ZW would like to acknowledge support from 
NASA (award number: 80NSSC20M0015) and NSF (award 
number: 1818655). The author JL would like to acknowledge 

support from ONR (award number: N00014-19-1-2728). Any 
opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the NASA, NSF, and ONR. 

References 

[1] Grieves, M. J. Vickers, Digital twin: mitigating unpredictable, undesirable 
emergent behavior in complex systems, in Trans-Disciplinary Perspectives on 
System Complexity, F.-J. Kahlen, S. Flumerfelt, and A. Alves, Editors. 2016, 
Springer: Switzerland. p. 85-114 
[2] DHL Trend Research, Digital twins in logistics-a DHL perspective on the 
impact of digital twin on the logistics industry, 2019 
[3] Marr, B. (2017). What is digital twin technology–and why is it so important. 
https://www.forbes.com/sites/bernardmarr/2017/03/06/what-is-digital-twin-
technology-and-why-is-it-so-important/?sh=7d7cd7572e2a   
[4] E. J. Tuegel, A. R. Ingraffea, T. G. Eason, S. M. Spottswood, Reengineering 
aircraft structural life prediction using a digital twin, International Journal of 
Aerospace Engineering, Volume 2011, 154798, 14 pages 
[5] E. H. Glaessgen, D.S. Stargel, The digital twin paradigm for future NASA 
and U.S. Air Force vehicles, the 53rd Structures, Structural Dynamics, and 
Materials Conference: Special Session on the Digital Twin, 2012, page 1-14 
[6] F. Darema, InforSymbioticSystems/DDDAS-Large-Scale Dynamic Data 
and Large-Scale Big Computing for Smart Systems, 2015 IEEE 22nd 
International Conference on High Performance Computing Workshops 
[7] S. R. Chhetri, M. A. Al Faruque, Dynamic data-driven digital twin, Chapter 
7 in “ModelingData-Driven Modeling of Cyber-Physical Systems using Side-
Channel Analysis”, Springer, 2020 
[8] Z. Wu, Cutting tool condition monitoring and prediction based on dynamic 
data driven approaches, ASME 10th International Manufacturing Science and 
Engineering Conference, Charlotte, North Carolina, 2015  
[9] R. Fujimoto, N. Celik, Haluk, Damgacioglu, M. Hunter, D. Jin, Y-J Son, J. 
Xu, Dynamic data driven application systems for smart cities and urban 
infrascture, Proceedings of the 2016 Winter Simulation Conference 
[10] Mark Gaynor, Margo Seltzer, Steve Moulton, Jim Freedman, A dynamic 
data driven decision support system for emergency medical services, ICCS 
2005, LNCS 3515, pp. 703 – 711, 2005 
[11] Y. Badr, S. Hariri, Y. AL-Nashif, E. Blasch, Resilient and trustworthy 
dynamic data-driven application systems (DDDAS) services for crisis 
management environments, Procedia Computer Science, 51, 2015, 2623-2637 
[12] R. Fujimoto, J. Barjis, E. Blasch, W. Cai, D. jin, S. Lee, Y-J Son, 
Dynamical data driven application sysytems: research challenges and 
opportunities. Proceedings of the 2018 Winter Simulation Conference 
[13] J. Zhang, P. Wang, R. Yan, R. X. Gao, Long short-term memory for 
machine remaining life prediction, Journal of Manufacturing Systems, 48 
(2018) 78–86 
[14] Z. Li, K. Goebel, D. Wu, Degradation modeling and remaining useful life 
prediction of aircraft engines using ensemble learning, ASME Journal of 
Engineering for Gas Turbines and Power, 2019, Vol. 141 / 041008 1-10 
[15] Y. Fan, S. Nowaczyk, T. Rognvaldsson, Transfer learning for remaining 
useful life prediction based on consensus self-organizing models, Reliability 
Engineering & System Safety, 203, 2020, 107098 
[16] A. Zhang, H. Wang, S. Li, Y. Cui, Z. Liu, G. Yang, and J. Hu, Transfer 
learning with deep recurrent neural networks for remaining useful life 
estimation, Applied Science 2018, 8, 2416; doi:10.3390/app8122416 
[17] Mohamad Danish Anis, Sharareh Taghipour, hi-Guhn Lee, Optimal RUL 
estimation: a state-of-art digital twin application, 2020 Annual Reliability and 
Maintainability Symposium (RAMS) 
[18] A. Parrott, L. Warshaw, Industry 4.0 and the digital twin: manufacturing 
meets its match, Deloitte University Press, May 2017. 
[19] Greff K, Srivastava RK, Koutnik J, Steunebrink BR, Schmidhuber J. 
LSTM: a search space odyssey. IEEE Trans Neural Networks Learn Syst 2017; 
28: 2222–32. 
[20] A. Saxena and K. Goebel (2008). Turbofan engine degradation simulation 
data set, NASA Ames Prognostics Data Repository, 
(https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/), 
NASA Ames Research Center, Moffett Field, CA 
[21] Chakraborty, S., N. Gebraeel, M. Lawley, and H. Wan. Residual-life 
estimation for components with non-symmetric priors. IIE Transactions. Vol. 
41, Number 4, 2009, pp. 372–387 
[22] T. Wang, J. Yu, D. Siegel, and J. Lee, A similarity-based prognostics 
approach for remaining useful life estimation of engineered systems, 2008 
International Conference on Prognostics and Health Management 
[23] https://www.mathworks.com/help/predmaint/ug/similarity-based-
remaining-useful-life-estimation.html

 


