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Abstract—Edge computing allows end-user devices to offload
heavy computation to nearby edge servers for reduced latency,
maximized profit, and/or minimized energy consumption. Data-
dependent tasks that analyze locally-acquired sensing data are
one of the most common candidates for task offloading in edge
computing. As a result, the total latency and network load
are affected by the total amount of data transferred from
end-user devices to the selected edge servers. Most existing
solutions for task allocation in edge computing do not take
into consideration that some user tasks may actually operate
on the same data items. Making the task allocation algorithm
aware of the existing data sharing characteristics of tasks
can help reduce network load at a negligible profit loss by
allocating more tasks sharing data on the same server. In this
paper, we formulate the data sharing-aware task allocation
problem that make decisions on task allocation for maximized
profit and minimized network load by taking into account the
data-sharing characteristics of tasks. In addition, because the
problem is NP-hard, we design the DSTA algorithm, which
finds a solution to the problem in polynomial time. We analyze
the performance of the proposed algorithm against a state-
of-the-art baseline that only maximizes profit. Qur extensive
analysis shows that DSTA leads to about 8 times lower data
load on the network while being within 1.03 times of the total
profit on average compared to the state-of-the-art.

Keywords-Edge Computing, Data sharing, Task Allocation,
Profit Maximization, Network Load Minimization.

I. INTRODUCTION

Edge computing facilitates the operations of nearby
resource-limited mobile devices such as smartphones,
tablets, autonomous mobile robots, drones, and connected
vehicles at lower transmission latency compared to the
cloud. In fact, many data-driven applications running on mo-
bile devices need computational support to analyze locally-
acquired sensor data (e.g., a video or an image from camera,
an audio trace from microphone). Typical tasks include
face recognition [3], image classification [14], and object
tracking [19]. To offload a task, each device must transmit
all the data items to be analyzed (e.g., camera frames) to
one of the nearby available edge servers. On the other hand,
given the possibly large number of end-user devices in the
edge system and the even larger number of requests, it is
important to ensure the scalability of edge resources with
respect to the number of tasks and data being offloaded.

Daniel Grosu
Dept. of Computer Science
Wayne State University
Detroit, USA
dgrosu@wayne.edu

Marco Brocanelli
Dept. of Computer Science
Wayne State University
Detroit, USA
brok@wayne.edu

Task allocation in edge computing has been intensively
studied during recent years. Due to the limited comput-
ing/energy availability of end-user devices, a significant
proportion of related work has focused on offloading task
execution to edge servers for lowering end-user energy
consumption at a maximum latency requirement [5]-[7],
[10], [17], [20]. Other studies have focused on maximizing
the quality of service for end-users via task offloading within
edge resource constraints [1], [2], [11], [15]. In some cases,
edge servers or nearby users may receive some form of profit
to provide edge resources for task offloading. Thus, some
studies have focused on the topic of finding the best task
allocation strategy that maximizes a defined profit in edge
systems [13], [21]-[23]. Most of the above studies simply
consider the transmission time of data items associated with
each offloaded task on the total offloading latency estima-
tion. Some studies provided a more accurate consideration of
network packet scheduling for allocating cooperative tasks
on edge servers [4], [16], [18]. However, to the best of our
knowledge, none of the above solutions have considered the
fact that multiple tasks from the same user may have to
analyze the same data item. For example, the same camera
frame can be used by a task for face recognition and by
another task for object detection. Thus, allocating those tasks
to different servers without considering that they share data
items may lead to the necessity to send the same data item
to both servers. On the other hand, allocating those tasks to
the same server can help reduce the network load since only
one copy of that shared data item needs to be transmitted.

In this paper, we formulate the data sharing-aware task
allocation problem as a bi-objective mixed-integer multilin-
ear program that maximizes the profit derived from exe-
cuting tasks and minimizes the network load by taking into
account the data sharing characteristics of tasks. Because this
problem is NP-hard, we design a greedy algorithm, called
DSTA (Data Sharing-Aware Task Allocation), that finds a
feasible solution in polynomial time. Specifically, DSTA
considers the task data sharing characteristics expressed as a
task-data matrix to decide which tasks to allocate on the edge
servers by iteratively selecting a subset of tasks that share
the highest amounts of data with the already allocated tasks.
In each iteration, DSTA maximizes the profit by prioritizing



high-profit/light-workload tasks for allocation to the most
suitable edge server.
In summary, this paper makes the following contributions:

o To the best of our knowledge, our work is the first to
exploit the key intuition that, in edge systems, multiple
data-driven tasks from each user device may share some
data items. This intuition can be exploited to reduce the
network load in edge computing systems by allocating
high data-sharing tasks to the same servers.

o We formulate the data sharing-aware problem as a bi-
objective mixed-integer multilinear program that jointly
maximizes the task allocation profit and minimizes the
network load. We develop a novel analytical model for
capturing the sharing among tasks and use it to derive
the objective function that corresponds to the second
objective of the problem.

o The formulated data sharing-aware problem is NP-hard.
Thus, in order to provide a feasible solution in polyno-
mial time, we design a greedy algorithm, called DSTA,
that considers the tasks’ data-sharing characteristics and
iteratively allocates them on edge servers to maximize
the profit and minimize the network load.

o We compare our proposed DSTA algorithm with a
state-of-the-art baseline that only maximizes task ex-
ecution profit (i.e., P-Greedy). Our results show that
DSTA can reduce network data load by about 8x on
average at a negligible profit loss compared to P-
Greedy.

The rest of the paper is organized as follows. Section II
formulates the data sharing-aware task allocation problem.
Section II describes the DSTA algorithm. Section IV
presents the experimental results. Section V describes the
limitations of our current design and our future work.
Section VI concludes the paper.

II. DATA SHARING-AWARE TASK ALLOCATION
PROBLEM

We consider an edge computing system composed of a
set S = {S51,52,...,5u} of M distributed servers, where
each server S; has a limited capacity C; of computational
resources (i.e., CPU cycles). These edge servers serve a
set T ={T1,Tz,...,Tn} of N tasks originating from end-
user devices. The set of tasks 7 has an associated set of
data items, D = {D;,Da,..., Dk}, that are needed to
execute the tasks. We denote the size of data item Dy by
di, K = 1,2,..., K. Each task T; is characterized by a
tuple (7, p;, [A]i +), where r; is the amount of computational
resources required by 7T;, p; is the profit for executing 73,
and [A]; . is the i-th row of the task-data matrix, A. The
task-data matrix A is a N x D matrix, where a;, = dy, if
task 7; requires data item Dy, and O, otherwise. The tasks
need to be allocated to the servers such that the total profit
obtained from executing the tasks is maximized and the total
amount of data transferred in the network is minimized.

Table I: Notation

Expression Description

T Set of tasks.

N Number of tasks.

T; Task 3.

75 Requested amount of CPU resource by 7.
i Profit of task T5.

S Set of servers.

M Number of servers.

S Server j.

Cj CPU capacity of server S;.

D Set of data items.

D Number of data items.

Dy Data item k.

dy, Size of data item Dy.

A Task-data matrix (a;; ¢ =1,...,N; k=1,...,D).
o1 Sharing parameter.

TC Set of candidate tasks.

De Set of candidate data which is assigned to servers.
Sk Sum of column k entries of matrix A.

E; Efficiency function for task 7.
supp([A]«,x)  Support of column k in matrix A.

We formulate the data sharing-aware task allocation
problem (DSTAP) as a bi-objective mixed-integer multi-
linear program:

M N
maximize: Z Z DiTij (D
j=11i=1
M
minimize: Z (—1) (12D gy Z H T 2)
ZeP(T) j=1iezT
subject to:

N
Zrimingj, VjE{l,...,M} 3)
=1

M
> my <1, Vie{l,...,N} (4)
j=1

Lij € {071}7 VZ,V_] (5)

The first objective (Equation (1)) is to maximize the
total profit. The decision variable x;; is 1, if task T;
is allocated to server S;, and O, otherwise. The second
objective (Equation (2)) is to minimize the total amount
of data offloaded from user devices to the servers, which
depends on the decision variables x;; and on the data sharing
among tasks. Here, P(7), is the power set of the set of
indices of the tasks in 7, and Z is an element of the power
set. We define the sharing parameter, oz, as the total amount
of data shared among the tasks whose indices are in set Z. In
the next paragraph, we give more details on how the sharing
parameter is computed and explain how the cost function (2)
captures the sharing of data and gives the total amount of
data in the network. Constraint (3) ensures that the total
allocated computational requests to a server does not exceed
the capacity of the server. Constraint (4) ensures that each
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Figure 1: DSTAP instance with three tasks, two data items,
and task-data matrix.

task is allocated to only one server, while Constraint (5)
guarantees the integrality of the decision variables. Table I,
summarizes the notation used in the paper.

To explain how the sharing is captured in equation (2),
we use a small example consisting of a set of three tasks
T = {T1,T>,T5}, a set of two data items D = {D1, Do},
and a set of two servers S = {S1, S2}. For this example,
we consider that 77 needs D, 15 needs D; and D, and
T3 needs Dsy. The task-data matrix A and the associated
bipartite graph capturing the sharing for this example is
given in Figure 1. One partition of the bipartite graph
consists of vertices corresponding to the tasks, while the
other partition consists of vertices corresponding to the data
items. We now show how the sharing parameter o7 used
in Equation (2) is determined. The sharing parameter o7 is
the amount of data shared by the tasks whose indices are in
set Z. For our example, we have o1 = 4, 09 = 10, 03 = 6,
012 = 4, 013 =0, 093 = 6, and o123 = 0. Suppose that 77
and T5 are allocated to S7, and T3 is allocated to Ss, then
we have T11 = X921 = X32 = 1 and T12 = X929 = 31 = 0.

The total amount of data offloaded from users to the
servers (according to the second objective function) is given
by:

(+1) [o1(z11 + 712) + 02(w21 + 222) + 03(231 + T32)] +
(=1) [o12(z11221 + T12T22) + 013(T11231 + T12T32)
+023(T21231 + T22232)] +

(+1) [o123(211721 731 + T12220T32)]

Plugging in the values of x;; and oz in the above equation
we obtain: 01 + 09 + 03 — 0193 =4+ 10+ 6 —4 = 16.
We can easily check that the total amount of data offloaded
to servers is 16. Since 77 and T are assigned to the same
server both D; and D5 need to be offloaded to server S
and the amount of data offloaded to .Sy is 10. 73 is assigned
to server Sy and it needs only Do, thus the total amount of
data offloaded to S5 is 6. Therefore, the total amount of data
offloaded in the system is 16.

The Knapsack problem is a special case of DSTAP, that
is, by removing the second objective from DSTAP, the
problem becomes the Knapsack problem. The Knapsack is
a known NP-hard problem [9] and since it is a special case
of DSTAP, we have that DSTAP is NP-hard. Thus, there

is no polynomial algorithm that obtains an optimal solution
of DSTAP, unless P = NP. Therefore, in the next section,
we design a greedy algorithm that finds a feasible solution
in polynomial time.

III. DSTA ALGORITHM

We design a greedy algorithm, called DSTA, for solving
the problem. DSTA takes into account the sharing charac-
teristics of the tasks when deciding which tasks to allocate
on the edge servers. That is, it iteratively selects a subset of
tasks that share the highest amounts of data with the tasks
that are already allocated. In each iteration, it establishes
a greedy order among these tasks, that is induced by a
function that prioritizes high-profit and light-workload tasks
for allocation to the most suitable edge server. DSTA is given
in Algorithm 1. The input of DSTA consists of the set of
tasks, 7 ; the set of servers, S; and the task-data matrix, A.

Initialization (Lines 1-8). DSTA initializes the set of candi-
date tasks 7¢ and the set of candidate data items D¢ to the
empty set, and the allocation matrix X to zero (Lines 1 to 3).
Here, the allocation matrix has as entries the variables x;;,
where z;; = 1, if task 7T; is allocated to server S;, and
0, otherwise. Next (Line 4), it sorts the servers in non-
increasing order of their capacities. The ordering of the
servers after sorting is given by the permutation 5(j).

DSTA uses an array s, whose entries s, = Zil ik
for kK = 1,...,K. That is, s; is the sum of the entries
of column k of task-data matrix A. Since the column k&
of A corresponds to data item k, s is the total amount of
data item £ needed by the tasks without considering sharing.
DSTA computes the entries of s in Lines 6 to 8.

Allocation Strategy Overview. The while loop in Lines 9
to 39 is executed until the set of tasks 7 becomes empty. In
each iteration of the loop, the algorithm determines which
data item is the most shared and the tasks that share it,
computes the efficiency metric that is used to establish the
greedy order among those tasks, and allocates the tasks
to servers in the order given by the greedy order. In the
following, we described these operations in more details.

Data Sharing Analysis (Lines 10-20). The algorithm uses
an additional array s’ whose entry s, is set to 1 if a task
in the candidate set is using the data item Dj and Dy has
not been assigned to a server yet (Lines 11 to 15). The
algorithm determines the support of the array s’, denoted
here by supp(s’), which is defined as the set of all indices
corresponding to nonzero entries in s’ (Line 16). If the size
of the support of s’ is greater than zero, there are data items
that have not been assigned to servers yet, thus the algorithm
places in set K the indices of the data items that have not
been assigned yet and have the largest value of sy, (Line 17).
If the size of the support of s’ is equal to zero, then no
data item was allocated yet (i.e., this is the first iteration
of the while loop). Thus, DSTA places in set K the indices



Algorithm 1 DSTA Algorithm

Input: 7 set of tasks;
S: set of edge servers;
A: task-data matrix.
LT« 0
2: D¢+
3 X «+[0]
4: Sort servers in non-increasing order of capacity C;
., Sg(ary be the order

Let SB(U,SB(Q),..
5: s+ [0]
6: fork=1,...,D do
7: for:=1,...,N do
8: Sk < Sk + aik
9: while |[7| > 0 do
10: s' «+ (0]
11: fori=1,...,N do

12: if T; € T° then

13: for k=1,...,D do

14: if Dy ¢ D° and a;; # O then

15: sp 1

16: if |supp(s’)| > O then

17: K={klVIie{l,...,D}: sis] < sisi}
18: else

19: K:{k|VZ€{1,...,D}:Sl§Sk}

20: k < argmax, - {|supp([A]..x)|}
21: fori=1,...,N do

22: FE; 0
23: if a,7 # 0 and T; € T then
24: FE; Pia
=M %
25: Sort tasks in non-increasing order of F;

Let Ta(l)aTa(2)7 c.
26: fori=1,...,N do

, Ty be the order

27: if E,@;) > 0 then

28: for j=1,...,M do

29: if Cg(j) —Ta®) = 0 then
30: Csi)  Ca(j) = Tati)
31: Ta(@p() < 1

32: T T U{Toaw}
33: T« T\{Ta(i)}

34: break

35: else

36: if 5 = M then

37: T« T\{Ta(i>}
38: D« DU{D;}

39: Si, 0

40: output: X

of the items that have the largest value of s; (Line 19).
Next, DSTA determines the index k of the items in set
K whose corresponding column in the task-data matrix A
has the largest support, i.e., the item shared by the largest
number of tasks (Line 20).

Efficiency Analysis and Task Selection (Lines 21-24).
In Lines 21 to 24, DSTA computes the efficiency function
which is used to establish the greedy order among the tasks.
The tasks will be considered for allocation in the order
provided by this greedy order. The efficiency function is

computed only for the tasks that share the data item k,
which is shared by the highest number of tasks and that
has the greatest corresponding total amount of data. Thus,
the efficiency function is computed only for the tasks that are
not allocated yet and have a,; # 0 (Line 23). The efficiency
function is defined by

o L — (6)

T4
Ej\/il Cj

The efficiency function for a given task can be viewed as
a density measure, computed as the profit obtained from
executing the task divided by the square root of the relative
size of the request. Here, the relative size of the request is
with respect to the total capacity of the servers in the system.
This efficiency function allows the algorithm to allocate the
tasks in the order of their highest profit density and therefore
obtain high values for the total profit gained from executing
the tasks.

Allocation of the Selected Tasks (Lines 25-39). Once
the efficiency function is determined, DSTA sorts the tasks
in non-increasing order of FE; (Line 25). The ordering of
the tasks after sorting is given by the permutation «(%).
The algorithm goes over the tasks with F; > 0 (i.e., the
tasks with high data sharing for which the efficiency metric
was determined) in the order given by permutation «(%)
and attempts to allocate them to the available servers. In
Lines 28 to 37, the servers are considered for task allocation
in the non-increasing order of their capacities (given by the
permutation /5(j)). DSTA checks if the given server has
enough capacity to handle the request. If it has enough
capacity, the capacity of the server is decreased by the size
of the request, the entry corresponding to task T, and
server S 8(5) in the allocation matrix X is set to 1, the task
is added to the set of candidate tasks 7 and removed from
the set of tasks 7. Once a task is allocated the algorithm
exits from the for loop in Line 34. If the server does not have
enough capacity the algorithm considers for allocation the
next server in the order. If none of the servers have enough
capacity to allocate the task then the task is removed from
the set of tasks 7 (Lines 36 to 37). Finally, at the end of
each while loop iteration (Lines 38 and 39), DSTA adds data
item Dj to the candidate data set and sets s, to 0, to avoid
reconsidering data item Dy, in the next iterations.

Complexity of DSTA. The while loop (Lines 9 to 39)
determines the time complexity of DSTA which is
O(N?(D + M)). This is mainly due to the running time
of the for loop in Lines 26 to 37, which takes O(N M), and
the computation of % in Line 20 which takes O(ND). In
the worst case the while loop is executed O(N) times, and
thus the running time of the while loop is O(N?(D + M)).
Therefore, DSTA has a time complexity of O(N?(D + M)).



Algorithm 2 P-Greedy Algorithm

Input: 7 set of tasks;
S: set of edge servers.
¢ X+ [0]

—_

2: Sort servers in non-increasing order of capacity C);.
Let S3(1), Sp(2), ---» Sy be the order.

3: while [7| > 0 do

4: I={iVie{l,...,N}: p <pi}

5: i+ argmin, {7}

6: for j=1,...,M do

7. if Cg(j) —7; > 0 then

8: T+ T\{T;}

o: Csj) + Cpi) — 13

10: Tig(5) 1

11: breal

12: else

13: if j = M then

14: T+ T\{1;}

15: output: X

IV. EXPERIMENTAL ANALYSIS

In this section, we investigate the performance of the
proposed algorithm, DSTA, and compare it with a baseline
algorithm. We implement the algorithms in Java and run
the simulation experiments on a system with 2 cores Intel
i7-7660U at 2.5GHz, 16GB of memory, and 512GB SSD
of storage. First, we describe the baseline algorithm used
for comparison and how we generate the taskset and data
sharing characteristics, and then analyze the results.

A. Baseline Algorithm

The proposed DSTA algorithm jointly maximizes the total
profit and minimizes the network data load by considering
the data sharing characteristics of the tasks. Therefore, for
comparison purposes, we define the P-Greedy baseline
algorithm that, similarly to existing work [13], [21]-[23],
allocates tasks with the objective of maximizing the profit
without considering the network data load.

Algorithm 2, shows the pseudo-code of P-Greedy. The
algorithm has as input the task set an the set of edge servers.
First, it initializes the allocation matrix X (Line 1), which
is also the output of the algorithm (Line 15). Then, it sorts
the servers in non-increasing order of capacity (Line 2)
and allocates one by one the tasks to the available servers
(Lines 3 to 14). Specifically, in each iteration of allocation
P-Greedy extracts the subset of tasks with the highest profit
(Line 4) and, among them, selects the one with the lowest
computational requirement (Line 5). Then, it finds the server
with the highest available capacity to allocate the selected
task and, accordingly, updates the server capacity and the
allocation matrix entries (Lines 6 to 11). If there is no server
with enough capacity, the selected task is left unallocated
(Lines 12 to 14).

Table II: Distribution of parameters

Parameter Distribution/Value

Server capacity range: [7, 14]

number of servers: 40
Image file size  pixel count: random[100, 400] pixels width and height
bit depth: random([1, 64] bit

frame size: random[5, 1000] byte
frame rate : random[12, 60] fps
time: random([1, 20] seconds

Video file size

bit depth: random([1, 64] bit

sample rate: random(1, 16000] Hz

audio length: random[10, 1000] seconds
channels: random[1, 12] mono, stereo, quad

Audio file size

B. Taskset and Data-sharing Characteristics

Server Capacity and Task Demands. We determine the
capacity of the servers based on the total number of instruc-
tions that can be executed in a certain amount of time. We
define the demand ratio, p, to characterize the relationship
between the total capacity of the servers and the total amount
of requests from users:

- 25\11 Cj
= =5,

D1 T
Based on the demand ratio, we consider three different cases:
low demand (p < 1), when the total requested capacity
is much greater than the total available capacity of the
edge servers; average demand (p =~ 1/2), when the total
requested capacity is about half the total available capacity
of the edge servers; and high demand (p ~ 1) when the
total requested capacity is approximately equal to the total
capacity available on the edge servers. We generate request
sizes according to the random exponential distribution for
three demand ratios 0.3, 0.1, and 0.05, corresponding to
low, average, and high demand cases. The profits for 100
different tasks and 10 different problem instances are drawn
from the random exponential distribution. Note, we have also
tested other distributions such as uniform and noticed similar
results to those described in the next section. However, for
space reasons we omit those results.

p 0<p<l )

Data Items and Data Sharing. For the data items and
their sizes, we consider three typical data types that can be
offloaded to the edge servers for analysis: image files, video
files, and audio files. We use the set of parameters listed in
Table II for each data type to calculate their sizes [12]. The
table also shows the ranges for each of those parameters.
Using those random data sizes, we generate tasksets of 100
tasks and 100 data items to allocate on 40 servers with
capacities within the interval [7,14].

We leverage the Erdos-Rényi random graph model [8] to
generate the bipartite graph characterizing the data sharing
pattern for the generated taskset. In the Erdds-Rényi model,
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Figure 2: Examples of bipartite graphs (10 tasks and 10 data items) generated using the Erdés-Rényi random graph model:
(a) low data sharing, (b) average data sharing, and (c) high data sharing.
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Figure 3: Total profit (a-c) and total amount of data on the network (d-f) for various combinations of workload demand
and data sharing characteristics (exponential distribution) across offloaded tasks. Our proposed DSTA algorithm is able to
achieve a good tradeoff between total profit and total amount of data on the network due to task offloading compared to the

P-Greedy baseline.

for a graph with n vertices and m edges, the probability
of generating each edge is given by: p™(1 — p) (3)=™_ The
parameter p is a real number between 0 and 1, where larger
values corresponds to a higher number of edges in the
graph, i.e., a larger number of tasks share data items with
each other. We implement the Erdés-Rényi model using the
igraph R package. We generate instances for three different
cases: low sharing (0 < p < 0.3) where only a few tasks
share data items, average sharing (0.3 < p < 0.6), and
high sharing (0.6 < p < 1) where a large number of tasks
share data items. Figure 2 shows an example of a randomly
generated bipartite graph for three different cases of 10 tasks
and 10 data items (low sharing with p = 0.2; average sharing
with p = 0.5; and high sharing with p = 0.9).

C. Experimental Results

To analyze the performance of DSTA, we considered nine
different cases according to the demand and sharing ratios:

(low, average, high) demand x (low, average, high) sharing.
We consider instances of the problem with 100 tasks, 40
servers, and 100 data items with various sizes. Figure 3,
shows the results obtained by DSTA and P-Greedy for the
two main performance metrics, total profit and total data size
in the network. Figure 4, shows the execution time of these
two algorithms for the nine different cases considered here.

Profit Analysis. Figure 3a, shows the total profit obtained
by DSTA and P-Greedy for the low demand case. The
algorithms obtain almost the same total profit. The profit
obtained by DSTA is slightly lower than that obtained
by P-Greedy, that is, 0.98%, 0.78%, 0.66% of the profit
of P-Greedy for low, average, and high sharing cases,
respectively. Figure 3b, shows the total profit obtained by
DSTA and P-Greedy for the average demand case. P-
Greedy obtains a higher total profit. P-Greedy obtains a
total profit that is 4.29%, 4.54%, and 1.88% higher than that
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Figure 4: The execution time of the algorithms for: (a) low, (b) average, and (c) high demand and different sharing scenarios.

obtained by DSTA for low sharing, average sharing, and high
sharing cases, respectively. Figure 3c, shows the total profit
obtained by DSTA and P-Greedy for the high demand case.
P-Greedy obtains a total profit that is 5.78%, 2.04%, and
2.9% higher than that obtained by DSTA for low sharing,
average sharing, and high sharing cases, respectively. As one
can notice, the total average profit generally decreases from
low demand to high demand case studies. This is due to the
fact that higher demand cases prevent a higher number of
tasks to be allocated on the available servers. In summary,
P-Greedy achieves an average profit that is only 1.03 times
than that of DSTA, which proves that our algorithm can still
achieve relatively high profit while also considering network
data load.

Network Data Load Analysis. Figures 3d-3f, show the total
data size in the network corresponding to the allocation
obtained by DSTA and P-Greedy. In all three demand
cases, the total size of data corresponding to the allocation
obtained by DSTA is much smaller than that corresponding
to P-Greedy. In Figure 3d, for low demand case, the data
size corresponding to P-Greedy is 4.59, 9.82, 13.32 times
greater than that of DSTA for low sharing, average sharing,
and high sharing scenarios, respectively. In Figure 3e, for
average demand case, the data size corresponding to P-
Greedy is 3.73, 9.16, and 14 times greater than that of
DSTA for low sharing, average sharing, and high sharing
cases, respectively. In Figure 3f, for high demand case, the
data size corresponding to P-Greedy is 2.43, 6.09, and 9.79
times greater than that of DSTA for low sharing, average
sharing, and high sharing cases, respectively. In all the
demand cases, by increasing the sharing ratio we observe an
increase in the total data size for P-Greedy. This highlights
the fact that allocating tasks sharing relatively large amounts
of data without considering their sharing characteristics can
rapidly lead to unnecessarily high network data load. On
the contrary, the proposed DSTA algorithm actually exploits
the higher data sharing characteristics during task allocation,
which leads DSTA to reduce the total network load for
higher data sharing. On average, DSTA allows to reduce
by 8 times the total network load compared to the state-
of-the-art P-Greedy baseline with, as described in previous

paragraph, a minimal loss in average profit.

Execution Time Analysis. Figure 4 shows the execution
time of the two algorithms. Comparing different sharing
scenarios within the same demand case, we can observe that
the amount of data sharing does not affect the execution time
of P-Greedy. This is because the decisions of P-Greedy are
not dependent on this factor. In all cases, as expected, DSTA
has a higher execution time compared to P-Greedy because
it does not take sharing into account, thus saving in total
instructions executed. On the other hand, DSTA’s execution
time is still relatively low considering the relatively large
test cases under consideration (i.e., < 162ms in the worst
case).

As we can observe, DSTA has the largest execution time
for low demand - low sharing cases and lower execution time
for average and high sharing cases. The main reason for this
is that DSTA spends more time to re-calculate the efficiency
function after each task allocation round. For example, for
high sharing cases, DSTA can assign more tasks at each
allocation iteration, thus considerably reducing the number
of total allocation rounds.

V. LIMITATIONS AND FUTURE WORK

In this paper, we study for the first time the problem
of data sharing-aware task allocation in edge computing.
Given that no previous work has studied similar problems,
we have preferred to limit its complexity by considering
only server computational capacity as a constraint without
including other existing constraints such as limited network
bandwidth and limited edge storage. The consideration of
these limitations would make the problem considerably more
complex than the one studied in this paper. In addition, the
proposed DSTA algorithm does not provide any approxima-
tion guarantee of performance.

In our future work, we plan to extend the proposed greedy
algorithm to provide approximation guarantees. In addition,
we plan to generalize the proposed algorithm to consider as
additional constraints network bandwidth and storage, which
make the data sharing-aware allocation problem a bicriteria
version of the multi-dimensional knapsack problem.



VI. CONCLUSION

In this paper, we studied the data sharing-aware problem,
which we defined as a bi-objective mixed-integer multilinear
program that maximizes the profit derived from executing
tasks on edge servers and minimizes the network traffic load
by taking into account the data sharing characteristics of
tasks. We designed DSTA, a greedy algorithm that considers
the task data sharing characteristics to decide which tasks to
allocate on the edge servers by iteratively selecting a subset
of tasks that share the highest amounts of data with the
already allocated tasks. In each iteration, DSTA maximizes
the profit by prioritizing high-profit/light-workload tasks for
allocation to the most suitable edge server. We analyzed the
performance of the proposed algorithm against a state-of-
the-art baseline that only maximizes profit. Our extensive
analysis showed that DSTA leads to about 8 times lower
data load on the network while being within 1.03 times of
the total profit on average compared to the state-of-the-art.
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