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Abstract—Edge computing allows end-user devices to offload
heavy computation to nearby edge servers for reduced latency,
maximized profit, and/or minimized energy consumption. Data-
dependent tasks that analyze locally-acquired sensing data are
one of the most common candidates for task offloading in edge
computing. As a result, the total latency and network load
are affected by the total amount of data transferred from
end-user devices to the selected edge servers. Most existing
solutions for task allocation in edge computing do not take
into consideration that some user tasks may actually operate
on the same data items. Making the task allocation algorithm
aware of the existing data sharing characteristics of tasks
can help reduce network load at a negligible profit loss by
allocating more tasks sharing data on the same server. In this
paper, we formulate the data sharing-aware task allocation
problem that make decisions on task allocation for maximized
profit and minimized network load by taking into account the
data-sharing characteristics of tasks. In addition, because the
problem is NP-hard, we design the DSTA algorithm, which
finds a solution to the problem in polynomial time. We analyze
the performance of the proposed algorithm against a state-
of-the-art baseline that only maximizes profit. Our extensive
analysis shows that DSTA leads to about 8 times lower data
load on the network while being within 1.03 times of the total
profit on average compared to the state-of-the-art.

Keywords-Edge Computing, Data sharing, Task Allocation,
Profit Maximization, Network Load Minimization.

I. INTRODUCTION

Edge computing facilitates the operations of nearby

resource-limited mobile devices such as smartphones,

tablets, autonomous mobile robots, drones, and connected

vehicles at lower transmission latency compared to the

cloud. In fact, many data-driven applications running on mo-

bile devices need computational support to analyze locally-

acquired sensor data (e.g., a video or an image from camera,

an audio trace from microphone). Typical tasks include

face recognition [3], image classification [14], and object

tracking [19]. To offload a task, each device must transmit

all the data items to be analyzed (e.g., camera frames) to

one of the nearby available edge servers. On the other hand,

given the possibly large number of end-user devices in the

edge system and the even larger number of requests, it is

important to ensure the scalability of edge resources with

respect to the number of tasks and data being offloaded.

Task allocation in edge computing has been intensively

studied during recent years. Due to the limited comput-

ing/energy availability of end-user devices, a significant

proportion of related work has focused on offloading task

execution to edge servers for lowering end-user energy

consumption at a maximum latency requirement [5]–[7],

[10], [17], [20]. Other studies have focused on maximizing

the quality of service for end-users via task offloading within

edge resource constraints [1], [2], [11], [15]. In some cases,

edge servers or nearby users may receive some form of profit

to provide edge resources for task offloading. Thus, some

studies have focused on the topic of finding the best task

allocation strategy that maximizes a defined profit in edge

systems [13], [21]–[23]. Most of the above studies simply

consider the transmission time of data items associated with

each offloaded task on the total offloading latency estima-

tion. Some studies provided a more accurate consideration of

network packet scheduling for allocating cooperative tasks

on edge servers [4], [16], [18]. However, to the best of our

knowledge, none of the above solutions have considered the

fact that multiple tasks from the same user may have to

analyze the same data item. For example, the same camera

frame can be used by a task for face recognition and by

another task for object detection. Thus, allocating those tasks

to different servers without considering that they share data

items may lead to the necessity to send the same data item

to both servers. On the other hand, allocating those tasks to

the same server can help reduce the network load since only

one copy of that shared data item needs to be transmitted.

In this paper, we formulate the data sharing-aware task

allocation problem as a bi-objective mixed-integer multilin-

ear program that maximizes the profit derived from exe-

cuting tasks and minimizes the network load by taking into

account the data sharing characteristics of tasks. Because this

problem is NP-hard, we design a greedy algorithm, called

DSTA (Data Sharing-Aware Task Allocation), that finds a

feasible solution in polynomial time. Specifically, DSTA

considers the task data sharing characteristics expressed as a

task-data matrix to decide which tasks to allocate on the edge

servers by iteratively selecting a subset of tasks that share

the highest amounts of data with the already allocated tasks.

In each iteration, DSTA maximizes the profit by prioritizing



high-profit/light-workload tasks for allocation to the most

suitable edge server.

In summary, this paper makes the following contributions:

• To the best of our knowledge, our work is the first to

exploit the key intuition that, in edge systems, multiple

data-driven tasks from each user device may share some

data items. This intuition can be exploited to reduce the

network load in edge computing systems by allocating

high data-sharing tasks to the same servers.

• We formulate the data sharing-aware problem as a bi-

objective mixed-integer multilinear program that jointly

maximizes the task allocation profit and minimizes the

network load. We develop a novel analytical model for

capturing the sharing among tasks and use it to derive

the objective function that corresponds to the second

objective of the problem.

• The formulated data sharing-aware problem is NP-hard.

Thus, in order to provide a feasible solution in polyno-

mial time, we design a greedy algorithm, called DSTA,

that considers the tasks’ data-sharing characteristics and

iteratively allocates them on edge servers to maximize

the profit and minimize the network load.

• We compare our proposed DSTA algorithm with a

state-of-the-art baseline that only maximizes task ex-

ecution profit (i.e., P-Greedy). Our results show that

DSTA can reduce network data load by about 8x on

average at a negligible profit loss compared to P-

Greedy.

The rest of the paper is organized as follows. Section II

formulates the data sharing-aware task allocation problem.

Section III describes the DSTA algorithm. Section IV

presents the experimental results. Section V describes the

limitations of our current design and our future work.

Section VI concludes the paper.

II. DATA SHARING-AWARE TASK ALLOCATION

PROBLEM

We consider an edge computing system composed of a

set S = {S1, S2, . . . , SM} of M distributed servers, where

each server Sj has a limited capacity Cj of computational

resources (i.e., CPU cycles). These edge servers serve a

set T = {T1, T2, . . . , TN} of N tasks originating from end-

user devices. The set of tasks T has an associated set of

data items, D = {D1, D2, . . . , DK}, that are needed to

execute the tasks. We denote the size of data item Dk by

dk, k = 1, 2, . . . ,K. Each task Ti is characterized by a

tuple (ri, pi, [A]i,∗), where ri is the amount of computational

resources required by Ti, pi is the profit for executing Ti,

and [A]i,∗ is the i-th row of the task-data matrix, A. The

task-data matrix A is a N ×D matrix, where aik = dk, if

task Ti requires data item Dk, and 0, otherwise. The tasks

need to be allocated to the servers such that the total profit

obtained from executing the tasks is maximized and the total

amount of data transferred in the network is minimized.

Table I: Notation
Expression Description

T Set of tasks.

N Number of tasks.

Ti Task i.

ri Requested amount of CPU resource by Ti.

pi Profit of task Ti.

S Set of servers.

M Number of servers.

Sj Server j.

Cj CPU capacity of server Sj .

D Set of data items.

D Number of data items.

Dk Data item k.

dk Size of data item Dk .

A Task-data matrix (aik; i = 1, . . . , N ; k = 1, . . . , D).

σI Sharing parameter.

T c Set of candidate tasks.

Dc Set of candidate data which is assigned to servers.

sk Sum of column k entries of matrix A.

Ei Efficiency function for task Ti.

supp([A]∗,k) Support of column k in matrix A.

We formulate the data sharing-aware task allocation

problem (DSTAP) as a bi-objective mixed-integer multi-

linear program:

maximize:

M
∑

j=1

N
∑

i=1

pixij (1)

minimize:
∑

I∈P(T )

(−1)(|I|+1)σI

M
∑

j=1

∏

i∈I

xij (2)

subject to:

N
∑

i=1

rixij ≤ Cj , ∀j ∈ {1, . . . ,M} (3)

M
∑

j=1

xij ≤ 1, ∀i ∈ {1, . . . , N} (4)

xij ∈ {0, 1}, ∀i, ∀j (5)

The first objective (Equation (1)) is to maximize the

total profit. The decision variable xij is 1, if task Ti

is allocated to server Sj , and 0, otherwise. The second

objective (Equation (2)) is to minimize the total amount

of data offloaded from user devices to the servers, which

depends on the decision variables xij and on the data sharing

among tasks. Here, P(T ), is the power set of the set of

indices of the tasks in T , and I is an element of the power

set. We define the sharing parameter, σI , as the total amount

of data shared among the tasks whose indices are in set I. In

the next paragraph, we give more details on how the sharing

parameter is computed and explain how the cost function (2)

captures the sharing of data and gives the total amount of

data in the network. Constraint (3) ensures that the total

allocated computational requests to a server does not exceed

the capacity of the server. Constraint (4) ensures that each
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Algorithm 1 DSTA Algorithm

Input: T : set of tasks;
S: set of edge servers;
A: task-data matrix.

1: T c ← ∅
2: Dc ← ∅
3: X ← [0]
4: Sort servers in non-increasing order of capacity Cj

Let Sβ(1), Sβ(2), . . . , Sβ(M) be the order
5: s← [0]
6: for k = 1, . . . , D do
7: for i = 1, . . . , N do
8: sk ← sk + aik

9: while |T | > 0 do
10: s′ ← [0]
11: for i = 1, . . . , N do
12: if Ti ∈ T

c then
13: for k = 1, . . . , D do
14: if Dk /∈ Dc and aik 6= 0 then
15: s′k ← 1

16: if |supp(s′)| > 0 then
17: K = {k| ∀ l ∈ {1, . . . , D} : sls

′
l ≤ sks

′
k}

18: else
19: K = {k| ∀ l ∈ {1, . . . , D} : sl ≤ sk}

20: k̃ ← argmaxk∈K{|supp([A]∗,k)|}
21: for i = 1, . . . , N do
22: Ei ← 0
23: if aik̃ 6= 0 and Ti ∈ T then
24: Ei ←

pi
√

ri
∑M

j=1
Cβ(j)

25: Sort tasks in non-increasing order of Ei

Let Tα(1), Tα(2), . . . , Tα(N) be the order
26: for i = 1, . . . , N do
27: if Eα(i) > 0 then
28: for j = 1, . . . ,M do
29: if Cβ(j) − rα(i) ≥ 0 then
30: Cβ(j) ← Cβ(j) − rα(i)

31: xα(i)β(j) ← 1
32: T c ← T c ∪ {Tα(i)}
33: T ← T \{Tα(i)}
34: break
35: else
36: if j = M then
37: T ← T \{Tα(i)}

38: Dc ← Dc ∪ {Dk̃}
39: sk̃ ← 0

40: output: X

of the items that have the largest value of sk (Line 19).

Next, DSTA determines the index k̃ of the items in set

K whose corresponding column in the task-data matrix A
has the largest support, i.e., the item shared by the largest

number of tasks (Line 20).

Efficiency Analysis and Task Selection (Lines 21-24).

In Lines 21 to 24, DSTA computes the efficiency function

which is used to establish the greedy order among the tasks.

The tasks will be considered for allocation in the order

provided by this greedy order. The efficiency function is

computed only for the tasks that share the data item k̃,

which is shared by the highest number of tasks and that

has the greatest corresponding total amount of data. Thus,

the efficiency function is computed only for the tasks that are

not allocated yet and have aik̃ 6= 0 (Line 23). The efficiency

function is defined by

Ei =
pi

√

ri
∑

M
j=1 Cj

. (6)

The efficiency function for a given task can be viewed as

a density measure, computed as the profit obtained from

executing the task divided by the square root of the relative

size of the request. Here, the relative size of the request is

with respect to the total capacity of the servers in the system.

This efficiency function allows the algorithm to allocate the

tasks in the order of their highest profit density and therefore

obtain high values for the total profit gained from executing

the tasks.

Allocation of the Selected Tasks (Lines 25-39). Once

the efficiency function is determined, DSTA sorts the tasks

in non-increasing order of Ei (Line 25). The ordering of

the tasks after sorting is given by the permutation α(i).
The algorithm goes over the tasks with Ei ≥ 0 (i.e., the

tasks with high data sharing for which the efficiency metric

was determined) in the order given by permutation α(i)
and attempts to allocate them to the available servers. In

Lines 28 to 37, the servers are considered for task allocation

in the non-increasing order of their capacities (given by the

permutation β(j)). DSTA checks if the given server has

enough capacity to handle the request. If it has enough

capacity, the capacity of the server is decreased by the size

of the request, the entry corresponding to task Tα(i) and

server Sβ(j) in the allocation matrix X is set to 1, the task

is added to the set of candidate tasks T c and removed from

the set of tasks T . Once a task is allocated the algorithm

exits from the for loop in Line 34. If the server does not have

enough capacity the algorithm considers for allocation the

next server in the order. If none of the servers have enough

capacity to allocate the task then the task is removed from

the set of tasks T (Lines 36 to 37). Finally, at the end of

each while loop iteration (Lines 38 and 39), DSTA adds data

item Dk̃ to the candidate data set and sets sk̃ to 0, to avoid

reconsidering data item Dk̃ in the next iterations.

Complexity of DSTA. The while loop (Lines 9 to 39)

determines the time complexity of DSTA which is

O(N2(D +M)). This is mainly due to the running time

of the for loop in Lines 26 to 37, which takes O(NM), and

the computation of k̃ in Line 20 which takes O(ND). In

the worst case the while loop is executed O(N) times, and

thus the running time of the while loop is O(N2(D +M)).
Therefore, DSTA has a time complexity of O(N2(D +M)).
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Algorithm 2 P-Greedy Algorithm

Input: T : set of tasks;
S: set of edge servers.

1: X ← [0]
2: Sort servers in non-increasing order of capacity Cj .

Let Sβ(1), Sβ(2), . . ., Sβ(M) be the order.
3: while |T | > 0 do
4: I = {i| ∀ l ∈ {1, . . . , N} : pl ≤ pi}
5: ĩ← argmini∈I{ri}
6: for j = 1, . . . ,M do
7: if Cβ(j) − rĩ ≥ 0 then
8: T ← T \{Tĩ}
9: Cβ(j) ← Cβ(j) − rĩ

10: xĩβ(j) ← 1
11: break
12: else
13: if j = M then
14: T ← T \{Tĩ}

15: output: X

IV. EXPERIMENTAL ANALYSIS

In this section, we investigate the performance of the

proposed algorithm, DSTA, and compare it with a baseline

algorithm. We implement the algorithms in Java and run

the simulation experiments on a system with 2 cores Intel

i7-7660U at 2.5GHz, 16GB of memory, and 512GB SSD

of storage. First, we describe the baseline algorithm used

for comparison and how we generate the taskset and data

sharing characteristics, and then analyze the results.

A. Baseline Algorithm

The proposed DSTA algorithm jointly maximizes the total

profit and minimizes the network data load by considering

the data sharing characteristics of the tasks. Therefore, for

comparison purposes, we define the P-Greedy baseline

algorithm that, similarly to existing work [13], [21]–[23],

allocates tasks with the objective of maximizing the profit

without considering the network data load.

Algorithm 2, shows the pseudo-code of P-Greedy. The

algorithm has as input the task set an the set of edge servers.

First, it initializes the allocation matrix X (Line 1), which

is also the output of the algorithm (Line 15). Then, it sorts

the servers in non-increasing order of capacity (Line 2)

and allocates one by one the tasks to the available servers

(Lines 3 to 14). Specifically, in each iteration of allocation

P-Greedy extracts the subset of tasks with the highest profit

(Line 4) and, among them, selects the one with the lowest

computational requirement (Line 5). Then, it finds the server

with the highest available capacity to allocate the selected

task and, accordingly, updates the server capacity and the

allocation matrix entries (Lines 6 to 11). If there is no server

with enough capacity, the selected task is left unallocated

(Lines 12 to 14).

Table II: Distribution of parameters
Parameter Distribution/Value

Server capacity range: [7, 14]
number of servers: 40

Image file size pixel count: random[100, 400] pixels width and height
bit depth: random[1, 64] bit

frame size: random[5, 1000] byte
Video file size frame rate : random[12, 60] fps

time: random[1, 20] seconds

bit depth: random[1, 64] bit
Audio file size sample rate: random[1, 16000] Hz

audio length: random[10, 1000] seconds
channels: random[1, 12] mono, stereo, quad

B. Taskset and Data-sharing Characteristics

Server Capacity and Task Demands. We determine the

capacity of the servers based on the total number of instruc-

tions that can be executed in a certain amount of time. We

define the demand ratio, ρ, to characterize the relationship

between the total capacity of the servers and the total amount

of requests from users:

ρ =

∑M

j=1 Cj

∑N

i=1 ri
, 0 ≤ ρ ≤ 1 (7)

Based on the demand ratio, we consider three different cases:

low demand (ρ ≪ 1), when the total requested capacity

is much greater than the total available capacity of the

edge servers; average demand (ρ ≈ 1/2), when the total

requested capacity is about half the total available capacity

of the edge servers; and high demand (ρ ≈ 1) when the

total requested capacity is approximately equal to the total

capacity available on the edge servers. We generate request

sizes according to the random exponential distribution for

three demand ratios 0.3, 0.1, and 0.05, corresponding to

low, average, and high demand cases. The profits for 100

different tasks and 10 different problem instances are drawn

from the random exponential distribution. Note, we have also

tested other distributions such as uniform and noticed similar

results to those described in the next section. However, for

space reasons we omit those results.

Data Items and Data Sharing. For the data items and

their sizes, we consider three typical data types that can be

offloaded to the edge servers for analysis: image files, video

files, and audio files. We use the set of parameters listed in

Table II for each data type to calculate their sizes [12]. The

table also shows the ranges for each of those parameters.

Using those random data sizes, we generate tasksets of 100

tasks and 100 data items to allocate on 40 servers with

capacities within the interval [7, 14].
We leverage the Erdös-Rényi random graph model [8] to

generate the bipartite graph characterizing the data sharing

pattern for the generated taskset. In the Erdös-Rényi model,
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VI. CONCLUSION

In this paper, we studied the data sharing-aware problem,

which we defined as a bi-objective mixed-integer multilinear

program that maximizes the profit derived from executing

tasks on edge servers and minimizes the network traffic load

by taking into account the data sharing characteristics of

tasks. We designed DSTA, a greedy algorithm that considers

the task data sharing characteristics to decide which tasks to

allocate on the edge servers by iteratively selecting a subset

of tasks that share the highest amounts of data with the

already allocated tasks. In each iteration, DSTA maximizes

the profit by prioritizing high-profit/light-workload tasks for

allocation to the most suitable edge server. We analyzed the

performance of the proposed algorithm against a state-of-

the-art baseline that only maximizes profit. Our extensive

analysis showed that DSTA leads to about 8 times lower

data load on the network while being within 1.03 times of

the total profit on average compared to the state-of-the-art.
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