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We present two new classes of orthogonal functions, log orthogonal functions and generalized log
orthogonal functions, which are constructed by applying a log mapping to Laguerre polynomials. We
develop basic approximation theory for these new orthogonal functions, and apply them to solve several
typical fractional differential equations whose solutions exhibit weak singularities. Our error analysis and
numerical results show that our methods based on the new orthogonal functions are particularly suitable
for functions that have weak singularities at one endpoint and can lead to exponential convergence rate,
as opposed to low algebraic rates if usual orthogonal polynomials are used.
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1. Introduction

It is well known that classical spectral methods can provide high accuracy for problems with smooth
solutions Gottlieb & Orszag (1977); Boyd (2001); Canuto et al. (2006); Shen et al. (2011), but may
not have any advantage for problems with non-smooth solutions. On the other hand, solutions of
many practical applications involve weakly singular solutions, such as in non-smooth domains, with
non-matching boundary conditions, in integral equations with singular/weakly singular kernels, and
in fractional differential equations (FDEs). One effective strategy in finite differences/finite elements
is to employ a local adaptive procedure (Morin et al., 2002), but this strategy cannot be effectively
extended to the global spectral method. Hence, in order to develop accurate spectral methods for
problems with non-smooth solutions, one has to choose suitable basis functions that can effectively
approximate the underlying non-smooth solutions. A popular strategy in this regard is to enrich the
usual polynomial-based approximation space by adding special functions that capture the singular
behavior of the underlying problem, for example, the so-called singular functions method (Strang &
Fix, 1973), extended or generalized finite element method (GFEM/XFEM) (cf. Fries & Belytschko,
2010; Babuska & Banerjee, 2012, and the references therein), and in the context of spectral methods,
the enriched spectral-tau method (Schumack et al., 1991) and the enriched spectral-Galerkin method
(Chen & Shen, 2018, 2020; Chen, 2020). Another effective strategy in the context of spectral method is
to construct special orthogonal functions that are suitable for a certain class of problems with singular
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behaviors. In addition to classical orthogonal polynomials one can use suitable mappings to classical
orthogonal polynomials to construct orthogonal functions in weighted Sobolev spaces, leading to the
so-called mapped spectral methods (cf. Boyd, 2001, for an extensive discussion). In Boyd (1987a,b);
Shen & Wang (2004); Wang & Shen (2005) the mapped spectral methods have been successfully used
in constructing efficient spectral methods for problems in unbounded domains, and in Miintz Galerkin
method (Shen & Wang, 2016) for a special class of singular problems. On the other hand, Boyd (1986)
briefly discussed several possible alternatives to deal with weak singularities at both endpoints through
different mappings.

In this paper we are concerned with problems that exhibit weakly singular behaviors at the initial
time for initial value problems (IVPs), or at one endpoint for boundary value problems (BVPs). We
construct special classes of orthogonal functions, through a suitable log mapping to Laguerre functions,
which are capable of resolving weak singularities. We shall develop basic approximation results for two
new classes of orthogonal functions, log orthogonal functions (LOFs) and generalized log orthogonal
functions (GLOFs). In particular, these results indicate that approximation by the LOFs and GLOFs to
functions behaving like 7" (— log /)¥ near t = 0 will converge exponentially for any real r > 0, k € Np.
In fact, we believe that this is the first set of basis functions that can approximate regular polynomials
*k e Ny) and weakly singular functions like ¢ (—log DKO <r <1, ke Ny) with exponential
accuracy. Thus, LOFs and GLOFs are particularly suitable for problems whose solutions exhibit weak
singularities behaving like D ; ¢, (— log Hki near ¢ = 0 for small r; > 0. In particular, solutions of time
FDEs and BVPs with one-sided fractional derivatives fall into this category. Hence, the spectral methods
using GLOFs that we propose in this paper can be used to deal with a large class of FDEs having weak
singularities at the initial time or at one endpoint.

Numerical solution of FDEs has been a subject of intensive investigation in recent years, cf. for
instance Meerschaert & Tadjeran (2004); Sun & Wu (2006); Ervin et al. (2007); Ervin & Roop (2007);
Jin et al. (2013) (and the references therein) for finite-difference and finite-element methods, and Li
& Xu (2009, 2010); Li et al. (2012); Zayernouri & Karniadakis (2013); Chen et al. (2016) (and the
references therein) for spectral methods. However, most of the error analysis are derived in the context
of usual Sobolev spaces that are not quite suitable for FDEs. In our previous works (Chen et al., 2016;
Mao et al., 2016) we developed an error analysis using the generalized Jacobi functions (GJFs) based
on the non-uniformly weighted spaces that showed that, for some model FDEs whose solutions behave
as (t — a)" (b — H)*h(t) with known r, s > 0 and smooth A(f), the error may converge exponentially
as long as the data function is smooth in the usual sense. However, for more general FDEs such as
those with variable coefficients or nonlinearity, the singular behavior of their solutions is unknown
a priori, so approximations by GJFs cannot achieve desired accuracy. However, GLOFs can handle
functions with unknown endpoint singularity since they can approximate singular functions of the form

;¢it''(—log ki with exponential accuracy. In fact, we show in Corollary 3.1 that GLOFs can achieve
exponential convergence for typical singular functions 7" (— log £)¥ for any » > 0, k € N, . To the best of
our knowledge this is the first set of basis functions that can approximate the singular solutions of the
form in (4.6) with exponential accuracy.

The rest of the paper is organized as follows. In the next section we introduce the LOFs, derive
optimal projection and interpolation errors in weighted pseudo-derivatives that are adapted to the
involved mapping. In Section 3 we introduce the GLOFs that involve an additional parameter, so are
more flexible than LOFs, and derive the corresponding optimal projection and interpolation errors. In
Section 4 we apply GLOFs to solve several typical classes of FDEs, and derive optimal error estimates
that indicate, in particular, that for solutions and data functions having weak singularities at # = 0 or one
endpoint, errors of the proposed GLOF-Galerkin methods will converge exponentially. In each of the
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sections 2, 3 and 4 we also present numerical results to validate the theoretical estimates and to show
the effectiveness of our new method. Some concluding remarks are given in the last section.

2. Log orthogonal functions

In this section we introduce the LOFs, derive the corresponding approximation theory, and present
numerical results to validate the theoretical estimates and to show their effectiveness.
To fix the idea we consider the canonical time interval I = (0, 1). Throughout the paper we use the

mapping

y(@) :=—B+1)logt, tel, 2.1

to map / to R". We shall make use of f,,(a)(y), a > —1, which is the Laguerre polynomial of y € RT,
satisfying

o IF'n+oa+1)
L) L) ye dy = P8, Y = ——— 2.2
/0 n L Y e dy =y, vy CESD (2.2)

Some additional properties of Laguerre polynomials are listed in Appendix A, see also Szego (1975);
Shen et al. (2011).

2.1 Definition and properties
DEerFINITION 2.1 (LOFS). Let o, 8 > —1. We define the LOFs by

SR 1) = L 0@0) = L (=B + Dlogn), n=0,1,.... (2.3)
From the properties of Laguerre polynomials listed in Appendix A and the following relations
y=—(B+Dlogt, dy=—-B+Dr'de, 9,=—(B+Dr', 2.4)

we can easily derive the following lemma:

LemMA 2.2 The LOFs satisfy the following properties:

P1. Three-term recurrence relation:

SPwy=1, 8P =@+ logt+a+]1,

2.5)
, 2n+a+1+(B+1)logt nta (
Sl 0 = s - s ),
P2. Derivative relations:
n—1
B+ D700 =S TP => 8P, n=1 (2.6)

=0
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LOG ORTHOGONAL FUNCTIONS 715

P3. Orthogonality:

1
/ SR SR @) (~logn® i di = y,©Ps,,. @7
0
where
@f) ._ I'n+a+1)
T BHDIT e+

P4. Sturm-Liouville problem:
(—logn)~*r Py, ((— log t)“+ltﬁ+28,8,§“’ﬁ)(t)) +n(B+ DSP (1) = 0. (2.8)

P5. Gauss-LOFs quadrature: Let {y}“), a);“) }j_v: , be the Gauss-node and -weight of .Zn(i)] (). Denote

N

—1.(x)
[tz BT D = g @) (29)
J ] J j=0
Then,
1 N .
/ p()(—logn*Pdr =" p(t*P) P, vpe Py, (2.10)
0 ;
j=0
where
P}?gt := span{1,logt, (log n2,...,(log t)K}. 2.11)

Proof. The three-term recurrence relation (2.5) is a straightforward result from (A.1) with the variable
transform (2.4).
(2.6) can be obtained from the relations (A.5) and (2.4). Indeed,

CE)

_ o o L5 o a+1,
B+ D705 P ) E —a,. 290 2 2TV 5y =8P .

We derive fromy = —(8 4 1) log ¢ that

1
/ SP) (1) S©P) (1) (— log n)%tP dr =

oo
0 B+ et /0 L) L0 0)y e dy.

Hence, we have (2.7).
(2.8) is valid since

y=—(B+Dlogt, o,=—B+D""1d, L0 =5"P®
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716 S. CHEN AND J. SHEN
lead to

(—logt)y—@r=#

- 1,y (@ ) —
y e, (y“ e 9,2, (y)) = %11

9, ((—1ogn 1P +2y,5@P)

Finally, setting t = e~ +D7ly , we can obtain (2.9) from the Laguerre—Gauss quadrature:

1 «p ae—y
/0 p)(—log H)“t dt:/R P(X(Y))W

N (a)

= p(x(y‘”))

dy
o 1)a+1 zp(t(a ﬂ))X<a )
O

REMARK 2.3 We used two parameters o and S to provide better flexibility, e.g., they allow us to
effectively deal with problems with weight (—log7)%##. In the applications considered in this paper
the log term does not appear so we can take « = 0. On the other hand, taking 8 = 0 offers good
approximation properties for problems with weight (— log#)*, which cannot be well approximated by
classical orthogonal polynomials.

2.2 Projection estimate
Leta,B > —1, and X""ﬂ @) := (—log N8 . For any u € Liaﬁ (1) we denote nﬁ,’ﬁu the projection from

L? s 1O Plogt

1
7y u,v) pup = / {u—72Pul ) ve) xP()d1 =0, VvePRE. (2.12)
0

Thanks to the orthogonality of the basis {S, (.p )}n - We have

1
Ty u—ZaaﬁSW) WP = (P! /0 u(®) 8P (1) x*P (rdt. (2.13)

To better describe the projection error nﬁ,’ﬂ

u we define a pseudo-derivative
By = 1du (2.14)

and a non-uniformly weighted Sobolev space

Al gD ={ve Liw 0 : ¥ve Lf(wﬁ D, j=12,....k}), keN, (2.15)
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equipped with semi-norm and norm

m 12
. |am o 2
gz, = 18V s g '—(Zllegﬁ) .

k=0

717

THEOREM 2.4 Letm, N, k €e Nand «, 8 > —1. Forany u € Agl’ﬁ(l) and 0 < k < m := min{m, N + 1},

we have

N s ~ (N — 771 + 1)' o~~~
118, (u — ﬂ]‘i‘;ﬂu)||xa+k,ﬂ < \/(,3 + 1)k_mm 19, ull g

In particular, fixingw = f =k =0and m < N + 1, it holds that
e — myull < eN=F 13" ull om,

where 7y = n]?,’o and x" = x"0 = (- log )™ for notational simplicity.

Proof. Foranyu € AZ’ 8 (1), via relations (2.6) and (2.14), we have

S8« 1y = B+ 1S Py, 1<n.

Then, it can be easily detected from the orthogonality P3 that

o0

o0
~ A LB) ~
u) = > @ PSEP @), 0/ u 0y = DB+ Dy PGP, 1> 1.

n=0 n=lI

Therefore,

o0
~ , k.B)
10— g P s = D, (B + DFy P a2

n=N+1
J/(oz+l’c,,3) 00
n—k 2k (a+impB) ~a,B2
SmaX[ (ot+r7l,ﬁ)] Z B+ n—im ity " |
n—m n=N+1
y(a+k,/3)
_in) YN+1—k o
< (B + DX s 10 s
YN+1-m
S(N—m+ D! ~n
< lk mx_ - am i -
< B+ D o e

(2.16)

(2.17)

(2.18)
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718 S. CHEN AND J. SHEN

Finally, the proof of the special case can be proved by the following useful result: for any constant
a,beR,neN,n+a>1landn+ b > 1 (see Zhao et al., 2013, Lemma 2.1),

F(n+a) < ab_a—b

bpa—b, 2.19
Tntby - " (2.19)
where
a,b a—b 1 (Cl—b)2
b— . 2.20
K eXp(2(n+b—1)+12(n+a—1)+ 7 ) (2.20)
O

REMARK 2.5 The essential difference between approximations by LOFs and traditional polynomials
can be explained by the estimate (2.17). In fact, since 8 t" = rt’, it’s easy to check that ||8mt’|| m < 00
for all » > 0 and any positive integer m. So the LOFs can approximate a function whose smgulanty
behave as >, ¢;1" with exponential convergence.

On the contrary, the polynomial approximation error depends on the regularity defined by the usual
derivative. Specifically, for the classical polynomial projection [Ty: L — P}, := spanf{l,1,..., N}, it
holds that

lu— Myull < N3] ul.

Hence, functions behaving as >, ¢;#" with several small r;, > 0 cannot be well approximated by
polynomials.

2.3 Interpolation estimate

Let {t]@’ﬁ ) }f.V: o be the mapped Gauss points defined in (2.9). We define the mapped Lagrange functions

10w - ) E[log(r,f“’ﬁ)/t)
L(y@®) = —22 ik (2.21)
J(y ) H (y(t(a ,3)) y(t<a ,B))) H log(t(a ﬁ)/t(a ,B))
i#j i#j
and the interpolation operator IX,”S 1 C() — P}f,’gt by
N
v =S v (t;“’ﬂ))zj (1)) (2.22)

J=0

Obviously, we have Iﬁ’ﬁv(t;“’ﬂ)) = v(zj”"ﬂ)),j =0,1,---,N.
We first establish a stability result.

THEOREM 2.6 For any v € C(I) ﬂAé’ﬁ(I) and/a\lv € L?("‘*ﬂ (I), we have

IZy Vs = e/ B+ D (N2 1Bl s+ Viog NIl ). (2:23)
where cf = (B+ 1)72, o =2/max(T, B+ 1J.
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Proof Lett(y) = e~#+D™"Y and #(y) = v(#(y)). Via relations (2.22) and (2.9), we have
N
IPv() = %) = D v\ L0), v e RY.

J=0

Thanks to (Guo et al., 2006, (3.12) with 8 = 1), we have
I les < (N2 /MY +2,/log N /M),
where
_ o _ o0
M) = /0 @700 e dy, M) = /O (92 + y(ayfz)z) ye™ dy.
On the other hand, we have

o
1
t/fH'l ﬂ%dt

00 1 t
/0 (0,77 e dy = /0 (m@v(r))z (—(ﬂ+1)10gt))

1
=B+ D! /0 @v(0)? (=logn*Pdt = (B + D* v

and
s ~ ) ! —logt) ~
/ (V2 +y(3yV>2) YWe ¥ dy=(B+ D! / (v2 + ﬁ(amz) (—logn)*Pd1
0 0 B+1
= (B+ D max{1, (8 + DIIVIG, .
We can then derive (2.23) by combing the above relations. (]

With the above stability result in hand we can now establish an estimate for the interpolation error.
THEOREM 2.7 Let m and N be positive integers, and «, 8 > —1. For any v € C(I) N Ag” P (1) and

’B\IV € Ag’/_gl (I), we have

(N+1—m)!

B
128" = Vil = e\

{107V o1 + SR NIB Wl jaomn | (224)

where c’f =B+ 1)_%, czﬁ = 24/max{1, 8 + 1} and m = min{m, N + 1}.
Proof. By the triangle inequality, we have

IZ v = il gas < IZy"v = vl o + 17y = vl s (2.25)
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720 S. CHEN AND J. SHEN

We only need to estimate the first term since the estimate for the second term is already available in
Theorem 2.4. Thanks to (2.23),

NZy v — g ol s = Ny 0 — 70 P 0) s

1o~
<cy(B+ 1 (ch 218,(v — nl?,”gv)llxa,,s + ch/logNHv — JT:/’/BVHA(LJS) .

(2.26)

The term ||v — n]‘\)‘,’ﬁ V| ALy (u = 0,1) can be estimated through Theorem 2.4. For the first term in the
last inequality, we have 7

18,0 = PV s < 19, — 7P @l s + NIy P (B0} = Byl Pl s (227)

We now follow a classical procedure as in Bernardi & Maday (1997); Guo (1998) to derive the desired
estimate. The starting point is the relation

e’} n—1 00
Gy =" pergsen O Z e ((ﬂ +1) >S5 ﬁ)) Z((ﬁ +1) > ﬁg»f‘)s,(“’ﬂ).
n=0 n=1 =0 =0 n=I[+1
The above equation implies that
N
oy @0 =D s P @, 17 =B+ Z i

n=0 k=n+1

Similarly, we have

By vy = Z ((ﬂ +1) Z A“‘ﬂ)sw Py = Z(v1 » =S ).

n=0 k=n+1 n=0
Hence,
2.27) N
I 1 B P 2 3 G = P G A
n=0 n=0
N
<118y — 752 G2 D 1P P, 2.28)
n=0

It remains to estimate sy := Zilv 0 y,,a ﬂ)( . ﬁ)) ! For any o > 0, in view of the expression of y( 5),

it’s obvious that sy < N+ 1.For -1 < o < 0 we use Stirling formula to deduce that for a large integer

220z Aenuer g, uo 1senb Aq $581+09/Z 1 2/1/Zp/orRie eulewl/woo"dno-oILape.//:SARY WOl Papeojumod



LOG ORTHOGONAL FUNCTIONS 721

P rW+DFktatl)

— 1,0
yeP TN+ a+ DI (k+1)
Therefore, there exists a constant ¢, such that
N N
Sy = Z yn(a,ﬂ)(yl\(]mﬂ))fl <N“ (CM +c Z ko‘) <cN. (2.29)
n=0 k=M
Finally, combing (2.25)—(2.29) and Theorem 2.4 leads to (2.24). Il

* o and {a)]@l”3 )}jv: o be the same as (2.9). Then, we have the following estimate

(Ot,ﬁ)}
J

REMARK 2.8 Let {tj
for the quadrature error:

! y @h | F@+1
‘/0 V() x P (Hdt — Zv(t; ’ﬂ))w; A < (;3(4(:—1)“)‘ IZg Py = Vil yap. (2.30)
=0

Indeed, the above estimate can be derived from

N
J
=0

1
o) ) / Iy v x*F (d,
0

J

and

1 1 o F'ae+1
e P 2_/ 0yygy— L@+D
/0( oAl = e Jy YOS pyrnen

To understand better why the singular function #°, s > 0 can be well approximated by LOFs, we plot
distribution of the Gauss-LOFs quadrature nodes {t;a’ﬁ ) }jN: o With various N and «, 8 in Figs 1 and 2.
We observe from Fig. 1 that the nodes cluster near zero, with significant more points near zero than
the usual Gauss—Radau points. Figure 2 exhibits the influence of the parameters (¢, ) on the nodes
distribution. In particular, as « increases with 8 fixed, the quadrature nodes move towards zero; on the

other hand, as § increases with « fixed, the quadrature nodes move away from zero.

2.4 Numerical examples

We first demonstrate the accuracy of Gauss-LOFs quadrature for computing

1
/f(r)(—logr)“:ﬂdt, a, B> —1, (2.31)
0

with the following functions f(f) = sint, ¢, /3 and 1'/19, respectively. The quadrature errors are

shown to the left of Fig. 3. We observe that the errors decay exponentially in all cases. We note that
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F1G. 2. Nodes distribution of S,(la’ﬂ ) (t): N = 80 with different o, S.

f() = t~1/3 is singular and cannot be computed efficiently by the classical Gauss quadrature. However,
~1/3 is smooth with the norm defined through the pseudo-derivative (2.14), so we achieve exponential
convergence for this case as well.

Next, we compute the projection error for f(r) = t'/1°, which is not smooth in the usual Sobolev
space, but it is smooth with the norm defined through the pseudo-derivative. To the right of Fig. 3 we
plot the projection errors by using the shifted Legendre polynomial L, (2t — 1), ¢ € I and LOFs for
function f(r) = r'/10 with the fixed degree of basis N = 40. We observe that the projection error by
using LOFs is uniformly small across the interval [0,1], while the error by using the shifted Legendre
polynomial is very large.

3. Generalized Log orthogonal functions

The LOFs introduced in the last section is capable of resolving certain type of singularities at r = 0, but
LOFs S,(,a”g )(t) consist of {(— log t)k}Z:O, so grow very fast near t+ = 0 (cf. Fig. 4). This behavior may
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0 " .
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=113
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= —e— Shifted Legendre polynomials
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i i)
iE] 2
£ g
-10|
-12f
-14 : : : :
0 10 20 30 40 50
N t
FI1G. 3. Left: Gauss-LOFs quadrature errors. Right: projection errors.
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051 1 06}
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-0.5 1 0.2
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FI1G. 4. Left: graphsof y = S,(la’ﬂ)(t). Right: graphs of y = S,(La’ﬂ’)")(t).

severely affect the accuracy in many situations. In addition, derivatives of LOFs involve the singular
term £~ !, so they are not suitable to serve as basis functions to represent solutions of partial differential
equations (PDEs) or fractional PDEs.

Therefore, we shall introduce below the GLOFs, which are more suitable for numerical approxima-
tions of functions with weak singularities at one endpoint.

3.1 Definition and properties

REMARK 3.1 As depicted to the left of Fig. 4 values of LOFs near ¢+ = 0 vary in a very large range.
However, as shown to the right of Fig. 4, GLOFs are much better behaved.
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DEFINITION 3.2 (GLOFs). Let o, B > —1, A € R. We define the GLOFs by
ﬂ7
S@hN (1) i= 1T S@B (1), n >0, G.1)

In particular, S\*? (1) = P (1).

GLOFs enjoy similar properties as those listed in Lemma 2.2 for LOFs. Owing to the relation (2.7)
it is obvious that

1
/ SPP (1) SEPM (1) (—logn)® i dt = y P, (3.2)
0

where yn(a’ﬂ ) is the same as the definition in 2.7).

The derivative relation can be derived from the relation (2.6) and Definition 3.2. Indeed,

B—2 =
3,S\ P (1) = 7 1S@ Py 177 9,8 P ()

B—A
2
— A B2 B=2-2

= 'BTt T SEP @)+ B+ i 2 SEHP 1y

- A o
- ’375,9’&“2) () + (B + DS () (33)

The pseudo-derivative with respect to GLOFs should be defined as

A, =194 u). (3.4)

Then, thanks to the definition of S,(la’ﬂ ) and (2.6), we have the following important derivative relation:

n—1
1 1,8, B,

B+ D", S @) = SR =3 5@, n=1. (3.5)

=0

Let
tjg‘xaﬁa)\) = l‘;a’ﬁ), Xj(a»ﬁ»)t) = (éaaﬁ))l—ﬂxj(asﬂ)’ J — O, 1’ . ,N, (36)
and denote

PI = (7 p(r) : p e PRE'). (3.7)

Then, we have the following Gauss-GLOFs quadrature:

1 N
/O f(=logn®ide =D f(r*P) x PP v e piotie! (3.8)
=0
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In addition, we derive from Definition 2.1 and the closed form of the Laguerre polynomial that

k
s;“’f”“m:Z(kl') (Zfi) T+ Dlogdh, 1el1:=(0.1).
k=0 :

3.2 Projection estimate

logt

Letw,B > —1 and A € R. We define the projection operator nlf‘,”g *, Li‘” =~ Py 5 by
)»
A
=y ) 0 =0, Yuell,,, ve Py (3.9)
where x%* (1) := (—log H)%t*.
Thanks to the orthogonality of the basis {S, (b, A)}n o> We have
N 1
P =" AP SR with 1P = ()~ /0 u(t) 8PP (1) x** (d . (3.10)

n=0

Bk

To better describe the approximability of JTID\; we define non-uniformly weighted Sobolev spaces

AL g, (D = [v €12, (D) Bhy ve L2, (D, j=12,. .. k} keN, 3.11)
2 9

with the corresponding semi-norm and norm defined by

m 3
~m o 2
|V|A:y”,ﬂ = || ﬁT, ||Xat+m,)u ”V“AZZ,,‘J,A = ( ; |VIA1‘;’/3’A) .

THEOREM 3.3 Letm, N,k € N,A € Rand o,8 > —1. For any u eAaﬁA(I)andO <k<m=
min{m, N + 1}, we have

(N—m+ 1!

. )
N_k+D! Ilaﬂ%,tullxwm,x, (3.12)

5 B
(B t(u—n]‘j‘,ﬂ Wl i 5\/(54 1)k=in
2

where ,s . s the pseudo-derivative defined in (3.4).

7 Sl

Proof. Forany u € A}} 4, (I) we can expand it as u = 3.2 o iiy’ B2 8P Due to

35)

—~ l’ S
O, S W= B+ VS0, 1<,
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and (3.2), we have
o0
LB) ~
135 #lusis = DB + Dy ST P P42, 1> 1.

Then, by following the same procedure as in the proof of Theorem 2.4, we can obtain the desired
result (3.12). O

3.3 Interpolation estimate

Let {tO’”8 }N be the same set of collocation points as for the LOFs. We define the interpolation operator

logt

Ia’“ C(I)—)PN by

@G = v ). =01 N

It is easy to see that

N
V@ = 2 v I hm). y® = =8+ Dlog G139

Jj=0

where {l}9 ’k} are the Lagrange ‘polynomials’ defined by

i [] log (tf“"g)/t)
1P (y(0)) = sl (3.14)
] o, o, o,
( »)= l;Ilog(( 1 »)
i#]

In view of (2.22) and (2.21), we have

logt

Il‘f,’ﬂ’kv(t) = tﬁ%I‘”ﬁ{t 7 v(t)) € PN

Hence, we can derive the following result from Theorem 2.7.

THEOREM 3.4 Let m and N be positive integers, «, 8 > —1 and A € R. For any v € C(I) N Ag{"’ﬂ’k(l)
andé\,sz;x’tv € Ag’ﬁlk(l), we have

B [(N+1—m)! i
||I:/ﬂ V=Vler <c B+ 1N 1|| EL VIl yatm-14 +02v10gNII3,s x Vlyam
2 ’

where c1 B+ 2 cg = 2/max{1, 8 + 1} and m = min{m, N + 1}.
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Proof. Since

and
~ A= A—B o~ ~n APy
0,{t }=t72 ,\v=>8{t2v}= 28L?tv.
We can then derive the desired result from the above relation and Theorem 2.8. O

3.4 Explicit error estimate for a class of weakly singular functions

The result in Theorem 3.4 is not easy to interpret for general functions, so we consider the following
typical weakly singular functions

f =1(=logn*, r=0,keN,

We first present a very useful relation of the Laguerre polynomials fn(a) ), ¢ > —1.

LemmA 3.5 Lets > 0,a > —1.Fork,n € N and n > k, there exists

o _ n I'h—j+k+a+1),/ s \J
atk —sy cp(a) _
/0 YW e ™ LM (ydy = ( ) Sa+k+1 ;0 GH2T(n—j+1) (1 _ S) : (.15

Proof. The case k = 0 is a direct result of Gradshteyn & Ryzhik (2007, 7.414: 8), i.e.,

o0 F(a+n+1) ue
S)O[ (o) _ n,—a—1
/0 2Oy = = (=9

For k > 0, owing to Rodrigues’ formula (see Szego, 1975, (5.1.5)), we have that

1
/0 yke—vy afn(a)(y)dy — ;/0 yke(l s)y an(y""'ae_y)dy

(=D" * ne k  (I—=s)yy . nta  —y
= dy (e )y e dy

n! 0

(—1)" < (n Y I
= > (1—s>'”/ =Tyt dy

n! Py o J!

. R T—jtk+at1) (1—s)"
=(=D Z (]'!)2[*(” —j+1) sh—jFatk+1"

(3.16)
Jj=0

One can easily check the equivalence of the relations (3.15) and (3.16), which completes the proof. [

With the above lemma in hand we have the following error estimate:
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THEOREM 3.6 Given f(f) = t'(— logt)k, r>0,keNyLetA >—-1-2r,a,8>—1and > A.

Then, we have

2r+1—pB
2 _ | T AmPp
fELX(M andRa’ﬂ,)L = ST Sy <1,
and
2k +a +2
f —= f|| aA<C(k+l)'N +k(R YW whenN > —————— =
A 2l0g(R, 4,)
where

2ot+1+k(13 4 1)2a+27k
TN B at2r 2t

Proof. Since 1 > —1 — 2r itis easy to check that f € Li“ and R, g, =

2r+2+A+B
the orthogonality of the basis {S,(,“’ﬂ A) }oo o We can write

0 N
A 5 ’)\' A
AP A N D W

n=0 n=0

with coefficients
fob = (e /f(r>s<““><r>x“<r)dr n=0.1,....N.

Let y(f) = —(B + 1) logt and dy = —(8 + 1)r~'d r. It holds that

rapa B+ DI+ 1)

1
F(—log f)k {B=P2 @) o aa
g Fontatr D J, ! Cloen i igo0w) (—lognrdr
(ﬁ+1)_kr(”+1)/ ( ,3+)»+2r+2) o+ gp(@)
B dy.
Fn+a+1) 26+ 1) YL (y)dy

Taking s = (B + A 4+ 2r + 2) /(28 + 2) into (3.15), we have

fa,ﬂ,kz(s—l)" Cn+ DK B+~ kzr(n jrk+a+1) (s—l)_f
" s IF'(n4+ o+ 1) setktl G2 Ir(n—j+1) s

Owing to Zhao et al. (2013, Lemma 2.1), we have

I'(n+

(3.17)

2r+2=B | _ 1. Thanks to

(3.18)

(3.19)
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where

ab a—b 1 (a — b)?
b . 3.20
K eXp(Z(n+b—1)+12(n+a—1)+ n (3-20)

Combing (3.18)—(3.20) and the fact that R, g <1l we have

(o8] o0
ook e 2 Za,BA2, @, AT 0,2k 2n—2k
If = 78" s = DL UP PP < €l D v O R, )
N+1 N+1

0
2; o / R,y Y22k 2t

a+1+k 2a+2—k
where Ca B= m% ((k + 1)! )2_ Finally, as (Rr’ﬁ’A)ZX—ka2k+a+2 is a decreasing function of
xwhen N > —%, we conclude that
Bix e S N—k 2k+a+2
If = 7n” Il jen </ C NT (R, p;)" " when N > ——— .
N o“p 210g(R, 4;)
The proof is complete. (]

The above theorem provides an accurate estimate for the GLOFs to a large class of singular
functions. In particular, by setting @ = A = 0, we have an estimate in L>-norm.

COROLLARY 3.7 For f(f) = t"(— log t)k, r > 0, k € N, it holds that

N—k
IF =20 f = V2B + DTHIN/2GB + DN \2 5 + 5 (3:21)
In particular, for f = ¢, r > 0, we have
Ir =1 < 2+ 0N [ 2] (3.22)

In order to verify the above theoretical results we plot the error curves for the GLOFs approximation
to f(#) = ¢ with various r in Fig. 5, left with r € (0, 1) and right with r being integers. We observe
exponential convergence for all » > 0. We also plot the error curves for the GLOFs approximation to
f@® = t(—log HF and f(1) = (- log Hk in Fig. 6. We also observe exponential convergence in all
cases. All these numerical results are consistent with the approximation results in Corollary 3.7.

4. Application to fractional differential equations

In this section we shall use GLOFs as the basis functions to solve some typical FDEs.
We first review the definitions of Riemann-Liouville and Caputo fractional integrals and fractional
derivatives (see e.g., Samko et al., 1993; Podlubny, 1999).
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FiG. 5. GLOFs Approximation: S,(la’ﬂ ’}‘), a=1=0.
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Fi1G. 6. GLOFs Approximation: S,(,a’ﬁ ’k), a=A1=0.

DEFINITION 4.1 (Fractional integrals and derivatives). For t € I = (0,1) and p € R™ the left and
right fractional integrals are respectively defined as

1 f pon @)
I'(p) o(r—rﬂ*pd“ A0 = pr)/‘<r—¢ﬂ p

o f (1) = 4.1)

For real s € [k — 1, k) with k € N the Riemann—Liouville fractional derivatives are defined by

dk dk
Mmzﬁmﬁm,mmzmﬁﬂﬁw» 4.2)
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The Caputo fractional derivative of order s is defined by
k dk k 1k dk
DI () =l @1, (DO = (DL 0 4.3)

4.1 Aninitial value problem

Given g, g € L2(I) we consider the following Caputo FDE of order v € (0, 1):
§D u() + q(ut) =g, 1€l u0) = uy. (4.4)

We shall first homogenize the initial condition. Setting u = v 4 1, into the above equation we find that
the problem (4.4) is equivalent to

§DYv(r) + q(v(r) = g(1) — upg(t),  v(0) = 0. @.5)

A main difficulty in obtaining accurate approximate solution of (4.5) is that the solution of this problem
is weakly singular at = 0 even if ¢ and g are smooth. To design an effective approach to deal with this
difficulty we need to understand the nature of this singularity.

Applying (1! into both sides of (4.5) and using the fact that (I{,I} = (II*"

, we find

1

t
o0+ s /0 (1 =" g(mv(md T = o'{g — o) (0.

We then find from Cao et al. (2003, Theorem 2.1) that the solution near = 0 behaves like
oo o0 o
() =D > T . (4.6)
i=0 j=1
This is why usual approximations based on global or piece-wise polynomials cannot approximate v(z)

well. On the other hand, based on the analysis from the last section, the GLOFs are particularly suitable
for this problem.

Let us define XI(\)] = {t% p:pE P}\;’g', B > A}. Then, the GLOF-Galerkin method for (4.5) is as
follows: find vy € XI% such that

(SDYvy, w) + (quy,w) = (T2 (g — ugqhw), Yw e XY (4.7)

Writing

N

~a,B% o(a,B,h - ~a.B.h ~a.B.r ~o, B0\t

Vszv(erﬂ Slgaﬂ ), V=(V0 Vi sV )
n=0

220z Aenuer g, uo 1senb Aq $581+09/Z 1 2/1/Zp/orRie eulewl/woo"dno-oILape.//:SARY WOl Papeojumod



732 S. CHEN AND J. SHEN

and setting

Sy = (§DISEPH SN 5= (5p),
My = (@S, 5000), M = oy, @)

B B 7
f= (T e = u0a §). = Gonfroeofi
then (4.7) reduces to the following linear system
S+M)v=f. (4.9)

The entries of M and f can be computed accurately by using the Gauss-LOFs quadrature formula, but
the computation of the stiffness matrix S needs special care.
Indeed, for any v, w € XO,

1 1 LV (s) s=tt V(1 )
Cpyv 1—v
(ODIV’W)_/O ra—v Jo t—sy wids = I (l—V)/ /0 (= =gy drvrde

Note that the integrand in the above is weakly singular as + — 0 and v — 1. In order to compute
accurately the inner integral, we split it into two terms

1 V/(tf) % , B 1 , 3
/ —dr:/ Vir) (1 —1) ”dr+[ Vi) (1 —1) "dr
0 0 3

(-0
LY (1= 5)  qe s [ (1643 o
ZE/OV(5) (1‘5) df+4l_v/_IV(T)<1—s) dt.

Hence,

(SDYv,w) =m/l/lv’ (%’) (1- %)_ dr w(nr' dr

1E +3) B .
e vr(1_v)// ( )(1—5) dg w(nr —"d1. (4.10)

The first term has weak singularity as ¢, 7 — 0 while the second term has weak singularities as t — 0
and & — 1. Therefore, the first term can be computed by using the tensor product of Gauss-GLOF
quadratures (in ¢ and ), which is effective with weak singularities as t,7 — 0, and the second term
can be computed by using the tensor product of Gauss-GLOF quadrature in ¢ and of Gauss—Jacobi
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a=0,$=5,A=0 g=cost, a=0,$=5,A=0
0 T T 0 " .
-2t -2t
-4+t 4}
5 o 5 o
T} i}
2 2
_8) -8t _87 -8r
-10f -10
-12} -12}
-14 : : : -14 : : :
0 10 20 30 40 0 10 20 30 40
N N

FiG. 7. Left: (4.11) with I = 1. Right: g = cost.

quadrature in & with weight function (1 — £)™". More precisely,

Nr Np

1 1 1 AN
Goimem ~gri 2200 (3) (123) ot g
AL (6 +3) )
Fara 2 2 () et

i=0 j=0

where N; > N is a suitable number, {¢;, Xi}i'\ZO are the Gauss-LOFs nodes with weight function x° = 1,

and {§;, ni}go are the Gauss—Jacobi nodes with weight function (1 — 7)™,
We present below some numerical results. We consider

SDYu(t) + Ku@) =0,  u(0) =1, 4.11)

whose solution is Diethelm (2010, Theorem 4.3) u(t) = E, (—Kt"), where E, (z) is the Mittag—Leffler
function

o0 Zj
E = _ 4.12
L (@) ,:Zo oD (4.12)

We fix the parameters « = 0,8 = 5,A = 0, and plot to the left of Fig. 7 the convergence rates for
various values of v with JC = 1. It is clear that the solution is not smooth in the classical Sobolev space,
but it is smooth in the space defined through the pseudo-derivative, so we still obtain an exponential
convergence rate.
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Next, we consider
§DYu(r) + (1 + sin Hu(r) = cost, u(0) =1,

for which the exact solution is unknown. Although the coefficients are smooth, the exact solution is
expected to be weakly singular near zero, but smooth in the space defined through the pseudo-derivative.
We fix the parameters « = 0,8 = 5,A = 0, and plot to the right of Fig. 7 the convergence rates for
various values of v. We obtain again exponential convergence rates.

4.2 A boundary value problem

We consider

(4.13)

—oDfu(®) + q(Ou(t) = g(1), tel,
u(0) = 0, u(l) =0,

where u € (1,2) and g, g are given functions.

Similar to the initial problem (4.4) the solution of the above problem is usually weakly singular,
even with smooth g and g. However, it can be approximated accurately by GLOFs since the solution is
smooth in the space defined through the pseudo-derivative (3.4).

Let us denote

00 ,_ _ " @B @pr . _
Xy ._span[d)n_msno"S -8, 0" n=12,...,N, B>xry.

Note that we have ¢,(0) = ¢,(1) = 0 for n > 1. Our GLOF Galerkin method is as follows: find
uy € Xl(\),’0 such that

— (Dl uy. w) + (quy. w) = @y g.w), Vwexy. 4.14)

The stiffness and mass matrices of the above problem can be formulated as in the case of the IVP
considered above.

We now present some numerical results. We first take g(f) = e and the exact solution to be
u@®) = 32(1 —1). The convergence rate is shown to the left of the Fig. 8. We then take g(t) = ¢’
and g(r) = rsint. In this case the exact solution is not known explicitly, so we used a very fine mesh to
compute a reference solution. The convergence rate is shown to the right of the Fig. 8. We observe that
the error converges exponentially in both cases despite the fact that the solutions are weakly singular
near t = 0.

4.3 Error analysis

We carry out below error analysis for the GLOF Galerkin schemes for both the initial and boundary
value problems.
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g=tsint, 0=0,p=4,A=-2

u=t*3(1-t), a=0,p=5,A=0

Iogm(Error)
|
[o2)
Iogm(Error)

FiG. 8. Left: ¢(r) = ' and u = 3/2(1 — 1). Right: ¢(f) = ¢’ and g = rsint.

We define

° f0r05s<%,

HY(I) = {f € L*(I) : (Df, Dif € L*()};
. for% <s<l1,

Hy(I) := {f € L*(I) : (Djf, Dif € L*(), f(0) = f(1) = 0;

equipped with norm and semi-norm

1y = IFIZ + F13 - with [f] = \/IIOD‘ffII2 + Il DyfII%.

It can be shown that the above definitions coincide with the usual definitions by space interpolation.
To avoid repetition we use the following weak formulation for both problems (4.5) and (4.13): find
P € Hy(I) such that

a(P,w) := (=) (,DSP, Diw) + (gP,w) = (Q,w), Vw € HI), (4.15)

where
o for (4.5):s=v/2,0(s) =0, P(t) = v(t), Q) = {g — upq}(®);
o for(4.13): s =pn/2,0(s) =1, P(t) = u(®), Q(t) = g(1).

The error analysis follows similar procedures used in Ervin & Roop (2006) and Li & Xu (2009,
2010). We first recall some useful results.
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LEMMA 4.2 Lets,r € [0, 1]/{%} ands < r.Forany f,h € H(’)(I), there exists

e (Ervin & Roop, 2006, Corollary 2.15)
IfIl < eilfls = e lfl,- (4.16)
e (Li & Xu, 2010, Lemma 2.8)
(oD7*f,h) = (,Dif, D}h). (4.17)
e (Li& Xu, 2010, Lemma 2.6)

2 _ GDifs Dy

2
c] lfls = COS(ST[) E czlfls’ (418)

where ¢, ¢, are two positive constants independent of function f.

Thanks to relation (4.17) and the identity below
(oD u,w) = (,Diu, Diw), pn=2s, s€(1/2,1),
we can rewrite (4.7) and (4.14) as follows: find Py € X, such that
a(Py,w) = @0 0,w), VweXy, (4.19)

where X, = X9 for (4.7), and X, = X% for (4.14).
LeEmma 4.3 If ¢(7) is bounded and rr[lgrh q(t) > 0, then there exist c(s), c(q) > 0 such that for any
tel0,

P,i’ € HS(I), we have
c@IPI} < a(P.P), a(P.P) < c()|| PP, (4.20)
Proof. Due to the fact (—1)?® cos(sm) > 0 and the relation (4.18), it is easy to derive that
¢ (=1)°® cos(sm)|P|? < (—1)°W(,DSP, DSP) < a(P, P),

where ¢ is a constant independent of the function P. Then, we can then derive the first inequality
in (4.20) from the generalized Poincare inequality (4.16). The second inequality in (4.20) is a direct
consequence of Cauchy—Schwarz inequality. O

Thanks to (4.20) the existence uniqueness of the weak formulation (4.15) and the schemes (4.19)
follows immediately from the Lax—Milgram Lemma.
As for the error estimate, we have the following result.
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THEOREM 4.4 Let —1 <o <0,A <0Oand 8 > 1. Let P and Py be respectively the solution of (4.15)
and (4.19) with n[lél}]q(t) > 0. Then, we have
1€[0,

_(N—m+1)!
1P — Pyl SC\/(ﬂ - 1)_’"W ”3;114)\-12 Pl yain

[N+1—m)! [ g~ P ~
+c m { || ;;nT, Q||X¢x+m—l,A + C2 vV 10gN||8g"%,\,tQIIXa+m,x . (421)

where f = (B+1)72, b =2/max{T, B+ 1} and i = min{m, N + 1}.
Proof. For any wy, € X, we derive from (4.15) and (4.19) that

a(P — Py, wy) = (Q — T2 0, wy). (4.22)

Let ey = Py — wy, we have

c(s)||eN||§ <a(ey,ey) =a(lP —wy,ey) +a(Py — P,ey). 4.23)
Take wy = ey in (4.22), we find

a(Py — P,ey) = (Iy""0 = 0,e) < 1Ty 0 — Qlllleyll. (4.24)
We then derive from (4.23) and (4.20) that

c®lwy — Pylly < c(IP = wyll + 173" 0 — QI

which, along with (4.24), implies that

. ,B.A
1P =Pyl = IP=wyllg + lIwy = Pylly < Cw;gm 1P —wylls + I Zy"" 0 - Qll. (4.25)

Next, we set

1
Wy (0) =—/ e W TN b

o,f—2,)1

Obviously, wy (1) = 0. Writing 7, {0.P}(z) =< SR Zk o ¢x(log )X, and integrating by parts,

we find

1 ! al S o
/ iy’ Mo, Py (n)d T =/ TS flogntdr =17 Y dllog o,
t
k=0

k=0
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which implies wy (0) = 0. Hence, wy, € Xy. On the other hand, we have

0,P — dwy = (I — P>, P,

We can then derive from the above relations and Poincare inequality (4.16) that

B2
1P —wylly < clld,P — dwyll < clld,P — dwyll yar = cl8,P — my" " 8,P]l s

Finally, combing the above and (4.25), and applying Theorems 3.3 and 3.4, we obtain the desired
result. O

REMARK 4.5 As in Corollaries 2.1 and 3.1, we can show that for P = ¢" and Q = ¢4, the estimate (4.21)
leads to exponential convergence rate if r and g are within certain range.

4.4 Time-fractional diffusion equations
As a final application we consider the time-fractional diffusion equation

gD})u(x, 1) — Au(x,t) =f(x, 1), xe€8,te(0,7), (4.26)

where £2 be a bounded domain in R? (d = 1,2,3) with suitable initial and boundary conditions. It is
clear that the solution of the above equation will exhibit weak singularities at = O so it is appropriate
to use GLOFs for the time variable. As for the space variables, any consistent approximation can be
used. The resulting linear system can be efficiently solved by using a matrix-diagonalization method
Shen (1994); Shen et al. (2011).

As a specific example we consider £2 = (—1, 1)? with the following initial and boundary conditions:

u(x,) =0, xe€0d8,te(0,7), 4.27)
u(x,00=0, xe4f2, (4.28)

and we use a Legendre—Galerkin method (Shen, 1994) for the space variables.

Let N,, N, be respectively the degree of freedom of GLOFs in time and Legendre polynomials in
each spatial direction.

In the first test we choose the exact solution to be u = (t* + 124) sin(x;) sin(;x,), which is smooth
in space, but has typical weak singularity in time. The errors in L>-norm with different v are plotted in
Fig. 9. We observe that the errors converge exponentially w.r.t. N, and N,.

In the second test we take f = ¢“1*2. The explicit form of the exact solution is unknown, but is
expected to be weakly singular at t = 0. We used a fine mesh to compute a reference solution and
plotted the convergence rate in Fig. 10. Again, exponential convergence rates are observed for both N,
and N, .

REMARK 4.6 In recent years numerous methods using the GJFs are developed for solving some model
FDEs Lu = f, t € (—1,1), with £ = lef, or _Dj, or (—A)* and suitable boundary conditions,
whose solutions behave like u(f) = (1 + t)"(1 — 1)*h(¢) with known r, s > 0 and smooth A(t), see
Zayernouri & Karniadakis (2013); Chen ef al. (2016); Mao et al. (2016); Acosta et al. (2018); Hao &
Zhang (2020) and the references therein. Specifically, one can define GJFs wP, such that

L(wP,) =c,P,, L="CDi or_,Di, or (—A), (4.29)
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FIG. 9. u = (t* + 121) sin(mrxy) sin(wxy), u =0.6, T = 1.
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where Jacobi weight @ = (1 + H%(1 — 1)” and P, is the related Jacobi polynomials. Obviously, the
GJFs with a = r, b = s can approximate the solution of the model problems Lu = f very well.
However, as is shown in (4.6), the singularity of the solution becomes much more complicated with just
an additional zeroth-order term. In addition, the approximation results proved in Liu et al. (2019, 2020);
Hao & Zhang (2020) show that the regularity is very limited when the weight function w of the GJFs is
different with the singularity of the solution. Therefore, methods using the GJFs can only lead to very
limited accuracy for more general FDEs. On the other hand, GLOFs can handle functions with unknown
endpoint singularity since they can approximate singular functions of the form >, ¢;1"(— log nki with
exponential accuracy. This implies that the GLOFs can be used to obtain accurate solutions for a large
class of fractional problems, such as equations with multiple different fractional derivatives.
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5. Concluding remarks

We constructed in this paper two new classes of orthogonal functions, the LOFs and the GLOFs,
by applying a log mapping to the Laguerre functions. We developed basic approximation theory for
these new orthogonal functions. The approximate results reveal that the new orthogonal functions
are particularly suitable for functions that have weak singularities at one endpoint. In particular, for
functions involving one or multiple terms of /* with « in an adjustable range, its approximation by
the new orthogonal functions will converge exponentially, as opposed to a low algebraic rate if usual
orthogonal polynomials are used.

As applications, we considered several typical FDEs whose solutions usually exhibit weak singu-
larities at one endpoint. By using the GLOFs as basis functions, we constructed Galerkin methods for
solving these FDEs and derived corresponding error analysis, which reveals the fact that exponential
convergence rate can be achieved even if the solution is weakly singular at one endpoint. We provided
ample numerical results to show that our methods based on GLOFs are very effective for problems with
solutions having weak singularities at one endpoint, such as the cases in many FDEs. In particular, a
special case of the GLOFs introduced in this paper has been used in Chen et al. (2020) to develop a very
efficient and accurate spectral-Galerkin method (in the time direction) for solving the time-fractional
subdiffusion equations.

The methods presented in this paper are limited to problems with singularities at one endpoint. To
deal with problems having singularities at both endpoints, one can use a two-domain approach with
GLOFs on each subdomain, or to construct new classes of orthogonal functions that are suitable for
problems having singularities at both endpoints. This topic will be the subject of a future study.

Funding

Postdoctoral Science Foundation of China (BX20180032, 2019M650459 to S.C.); Natural Science
Foundation of China (11801235 to S.C.); Natural Science Foundation of the Jiangsu Higher Education
Institutions of China (BK20181002 to S.C.); IN 47907-1957, USA; Natural Science Foundation (DMS-
2012585 to J.S.); Air Force Office of Scientific Research (FA9550-20-1-0309 to J.S.).

Acknowledgements

S.C. would like to thank Professor Lilian Wang for many useful suggestions and enlightening
discussions on the subject of 3.4 during his visit at Nanyang Technological University.

REFERENCES

Aco0sTA, G., BORTHAGARAY, J. P., BRuNO, O. & Maas, M. (2018) Regularity theory and high order numerical
methods for the (1d)-fractional Laplacian. Math. Comput., 87, 1821-1857.

BABUSKA, I. & BANERJEE, U. (2012) Stable generalized finite element method (SGFEM). Comput. Methods Appl.
Mech. Enger., 201, 91-111.

BERNARDI, C. & MADAY, Y. (1997) Spectral methods. Handbook Numer. Anal., 5, 209-485.

Boyp, J. P. (1986) Polynomial series versus sinc expansions for functions with corner or endpoint singularities.
J. Comput. Phys., 64, 266-270.

Boyp, J. P. (1987a) Exponentially convergent Fourier—Chebyshev quadrature schemes on bounded and infinite
intervals. J. Sci. Comput., 2, 99-109.

Boyp, J. P. (1987b) Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys., 69,
112-142.

220z Aenuer g, uo 1senb Aq $581+09/Z 1 2/1/Zp/orRie eulewl/woo"dno-oILape.//:SARY WOl Papeojumod



LOG ORTHOGONAL FUNCTIONS 741

Boyp, J. P. (2001) Chebyshev and Fourier Spectral Methods. New York: Dover.

CaNuTO, C., HUSSAINI, M. Y., QUARTERONI, A. & ZANG, T. A. (2006) Spectral Methods: Fundamentals in Single
Domains. Berlin-Heidelberg: Springer.

Cao, Y., HErDMAN, T. & XU, Y. (2003) A hybrid collocation method for Volterra integral equations with weakly
singular kernels. SIAM J. Numer. Anal., 41, 364-381.

CHEN, S. (2020) High-accuracy numerical approximations to several singularly perturbed problems and singular
integral equations by enriched spectral Galerkin methods. J. Math. Study., 53, 143-158.

CHEN, S. & SHEN, J. (2018) Enriched spectral methods and applications to problems with weakly singular solutions.
J. Sci. Comput., 77, 1468-1489.

CHEN, S. & SHEN, J. (2020) An efficient and accurate numerical method for the spectral fractional Laplacian
equation. J. Sci. Comput., 82, 1-25.

CHEN, S., SHEN, J. & WANG, L. L. (2016) Generalized Jacobi functions and their applications to fractional
differential equations. Math. Comput., 85, 1603—-1638.

CHEN, S., SHEN, J., ZHANG, Z. M. & ZHou, Z. (2020) A spectrally accurate approximation to subdiffusion
equations using the log orthogonal functions. SIAM J. Sci. Comput., 42, A849-A877.

DIETHELM, K. (2010) The Analysis of Fractional Differential Equations. Lecture Notes in Math., vol. 2004. Berlin:
Springer.

ErviN, V. J., HEUER, N. & Roop, J. P. (2007) Numerical approximation of a time dependent, nonlinear, space-
fractional diffusion equation. SIAM J. Numer. Anal., 45, 572-591.

ERVIN, V.J. & Roop, J. P. (2006) Variational formulation for the stationary fractional advection dispersion equation.
Numer. Meth. Part. Diff. Eqn., 22, 558-576.

ErviNn, V. J. & Roop, J. P. (2007) Variational solution of fractional advection dispersion equations on bounded
domains in RY. Numer. Meth. Part. Diff. Egn., 23, 256-281.

Fries, T. P. & BELYTSCHKO, T. (2010) The extended/generalized finite element method: an overview of the method
and its applications. Int. J. Numer. Meth. Eng., 84, 253-304.

GOTTLIEB, D. & ORSZAG, S. A. (1977) Numerical Analysis of Spectral Methods: Theory and Applications. Number
26 in CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia: STAM.

GRADSHTEYN, L. S. & RyzHIK, I. M. (2007) In table of integrals, series, and products. Math. Comp., 20.

Guo, B. Y. (1998) Spectral Methods and Their Applications. Singapore: World Scientific.

Guo, B. Y., WANG, L. L. & WANG, Z. Q. (2006) Generalized Laguerre interpolation and pseudospectral method for
unbounded domains. SIAM J. Numer. Anal., 43, 2567-2589.

Hao, Z. P. & ZHANG, Z. Q. (2020) Optimal regularity and error estimates of a spectral Galerkin method for
fractional advection—diffusion-reaction equations. SIAM J. Numer. Anal., 58, 211-233.

JiN, B. T., LazARrov, R. & ZHou, Z. (2013) Error estimates for a semidiscrete finite element method for fractional
order parabolic equations. SIAM J. Numer. Anal., 51, 445-466.

L1, C. P, ZeNG, F. H. & L1u, F. W. (2012) Spectral approximations to the fractional integral and derivative. Fract.
Calc. Appl. Anal., 15, 383-406.

L1, X. & Xu, C. (2009) A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer.
Anal., 47, 2108-2131.

L1, X. & Xu, C. (2010) Existence and uniqueness of the weak solution of the space-time fractional diffusion
equation and a spectral method approximation. Commun. Comput. Phys., 8, 1016.

Liu, W. J., WANG, L. L. & L1, H. Y. (2019) Optimal error estimates for Chebyshev approximations of functions
with limited regularity in fractional Sobolev-type spaces. Math. Comput., 88, 2857-2895.

Liu, W. J., WaNG, L. L. & Wu, B. Y. (2020) Optimal error estimates for Legendre approximation of singular
functions with limited regularity. arXiv preprint arXiv:2006.00667.

Mao, Z. P., CHEN, S. & SHEN, J. (2016) Efficient and accurate spectral method using generalized Jacobi functions
for solving Riesz fractional differential equations. Appl. Numer. Math., 106, 165-181.

MEERSCHAERT, M. M. & TADJERAN, C. (2004) Finite difference approximations for fractional advection—dispersion
flow equations. J. Comput. Appl. Math., 172, 65-77.

220z Aenuer g, uo 1senb Aq $581+09/Z 1 2/1/Zp/orRie eulewl/woo"dno-oILape.//:SARY WOl Papeojumod



742 S. CHEN AND J. SHEN

MorIN, P, NocHETTO, R. & SIEBERT, K. G. (2002) Convergence of adaptive finite element methods. SIAM Rev.,
44, 631-658.

PobLusny, 1. (1999) Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional
Differential Equations to Methods of Their Solution and Some of Their Applications. USA: Academic Press.

SAMKoO, S. G., KiLBAS, A. A. & MARICEV, O. L. (1993) Fractional Integrals and Derivatives. Yverdon: Gordon and
Breach Science Publ.

ScHUMACK, M. R., ScHuLTZ, W. W. & BoyD, J. P. (1991) Spectral method solution of the Stokes equations on
nonstaggered grids. J. Comput. Phys, 94, 30-58.

SHEN, J. (1994) Efficient spectral-Galerkin method i. Direct solvers of second-and fourth-order equations using
Legendre polynomials. SIAM J. Sci. Comput., 15, 1489-1505.

SHEN, J., TANG, T. & WANG, L. L. (2011) Spectral Methods: Algorithms, Analysis and Applications. vol. 41 of
Series in Computational Mathematics. Berlin: Heidelberg.

SHEN, J. & WANG, L. L. (2004) Error analysis for mapped Legendre spectral and pseudospectral methods. SIAM J.
Numer. Anal., 42, 326-349.

SHEN, J. & WANG, Y. (2016) Miintz—Galerkin methods and applications to mixed Dirichlet-Neumann boundary
value problems. SIAM J. Sci. Comput., 38, A2357-A2381.

STRANG, G. & Fix, G. J. (1973) An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic
Computation. Englewood Cliffs, N. J: Prentice-Hall, Inc.

SuN,Z.Z. & Wu, X. N. (2006) A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math.,
56, 193-2009.

SzeGo, G. (1975) Orthogonal Polynomials, Math. Soc. Collog. Publ. Series. Math. Soc., vol. 23, 2nd edn.,
Providence, RI: Amer. Math. Soc.

WANG, L. L. & SHEN, J. (2005) Error analysis for mapped Jacobi spectral methods. J. Sci. Comput., 24, 183-218.

ZAYERNOURIL, M. & KARNIADAKIS, G. E. (2013) Fractional Sturm-Liouville eigen-problems: theory and numerical
approximation. J. Comput. Phys., 252, 495-517.

ZHAO0, X. D., WANG, L. L. & XIE, Z. Q. (2013) Sharp error bounds for Jacobi expansions and Gegenbauer—Gauss
quadrature of analytic functions. SIAM J. Numer. Anal., 51, 1443-1469.

A. Some properties of Laguerre polynomials
The three-term recurrence

L0 =1, L =—y+a+l,
n+o

2n+a+1—y
L0y =L ) - = 2 ). Al

0 ) " 0 AN (A1)

Sturm—Liouville problem
y e, (y““e—«Vay.,zﬂ,f“)(y)) + 0L (y) = 0. (A2)

Derivative relations
LD (y) = 0,20 () — 3,29 (), (A3)
YLD () = nZL ) — (n+ ) L ), (Ad)
n—1

0,20 =-2TV 0 =-> L9 ). (A.5)

k=0
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Laguerre—Gauss quadrature Let {y;a)}}\’: o be the zeros of 92”1\(,02

(cr)
(a)_F(N+a+1) y]

T (N+a+ DN [g]\(,a)(yj(a))]z,

<j<N,

the quadrature formula is

N
/R L PONTe dy = > P,V pe Py,

J=0

743

1 (), then the associated weights are

(A.6)

(A7)
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