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SUMMARY
In chemical sensation, multiple models have been proposed to explain how odors are represented in the ol-
factory cortex. One hypothesis is that the combinatorial identity of active neurons within sniff-related time
windows is critical, whereas another model proposes that it is the temporal structure of neural activity that
is essential for encoding odor information. We find that top-down feedback to the main olfactory bulb dic-
tates the information transmitted to the piriform cortex and switches between these coding strategies. Using
a detailed network model, we demonstrate that feedback control of inhibition influences the excitation-inhi-
bition balance in mitral cells, restructuring the dynamics of piriform cortical cells. This results in performance
improvement in odor discrimination tasks. These findings present a framework for early olfactory computa-
tion, where top-down feedback to the bulb flexibly shapes the temporal structure of neural activity in the piri-
form cortex, allowing the early olfactory system to dynamically switch between two distinct coding models.
INTRODUCTION

An open question in neuroscience is which aspects of neural ac-

tivity convey stimulus information and how neurons at later pro-

cessing stages read out this information. In olfaction, one model

of neural coding posits that temporal patterns of activity in prin-

cipal neurons in the main olfactory bulb (MOB) are relayed to the

olfactory cortex, and this timing is critical for odor representation

(Chong and Rinberg, 2018; Haddad et al., 2013; Laurent, 2002).

Another model proposes that these temporal patterns from the

MOB are transformed into combinatorial patterns of activity in

the cortex (Bolding and Franks, 2017; Stern et al., 2018; Stettler

and Axel, 2009). Each model has experimental support and

draws on theoretical frameworks, but it remains unclear how

these models relate to different behaviors and the extent to

which they are instantiations of a single framework of computing.

Olfactory coding is most often studied in early olfactory cir-

cuits. Volatile molecules bind to olfactory receptor neurons

(ORNs) in the nasal epithelium. ORNs encode the identity and

concentration of monomolecular odorants (Buck and Axel,

1991; Malnic et al., 1999). ORN axons converge onto one to

two neuropil structures, called glomeruli, in the MOB (Mom-

baerts et al., 1996). Mitral/tufted (M/T) cells in the MOB receive

direct excitatory input from ORNs and relay odor information to

cortical regions. Each odorant activates a subset of glomeruli

with different onset latencies, which, in turn, gives rise to odor-

specific patterns of M/T cells (Bathellier et al., 2008; Cury and

Uchida, 2010; Paoli et al., 2018; Spors and Grinvald, 2002).
This is an open access article under the CC BY-N
Thus, ensembles of M/T cells vary in the identity (which cells

fire) and timing (when they fire) of their activity (Gire et al.,

2013a; Uchida et al., 2014).

Sniffing acts as a metronome organizing the timing of these

M/T responses (Bathellier et al., 2008; Shusterman et al.,

2011). Although M/T cell activity can occur throughout the sniff

cycle, studies have shown that piriform cortical cells respond

within narrower windows of activity after onset of inhalation

(Bolding and Franks, 2017; Miura et al., 2012). This timing is

controlled by intracortical inhibition, which suppresses the activ-

ity of piriform cortical cells following activation of the earliest

glomeruli. Consequently, studies suggest that piriform cortical

cells are less sensitive to M/T cell input from glomeruli activated

later in the sniff (Bolding and Franks, 2017; Miura et al., 2012;

Stern et al., 2018). The pattern of activated piriform cells is suffi-

cient to represent odor identity (Bolding and Franks, 2017; Gire

et al., 2013b), suggesting that odor information encoded in the

temporal structure of M/T cell activity is transformed into a

combinatorial code.

Physiological and behavioral studies show that animals have

access to the temporal information in glomerular patterns that

would be lost if only a combinatorial code was used. In mice ex-

pressing channelrhodopsin-2 in ORNs, varying the stimulation

timing of two spots corresponding to different glomeruli triggers

different responses in the identity and timing of piriform cortical

cells (Haddad et al., 2013). Mice can report these differences in

the relative timing of glomerular activation (Ackels et al., 2021;

Chong et al., 2020; Rebello et al., 2014; Smear et al., 2011).
Cell Reports 38, 110545, March 22, 2022 ª 2022 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:krishnan_padmanabhan@urmc.rochester.edu
https://doi.org/10.1016/j.celrep.2022.110545
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2022.110545&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article
ll

OPEN ACCESS
Thus, information encoded in the temporal structure of glomer-

ular activity is available to guide behaviors, but it is unclear

how olfactory circuits access this information.

One clue is that studies on olfactory coding focus largely on

the feedforward projections from theMOB to the piriform cortex.

However, cells in the bulb receive major centrifugal or feedback

inputs from the piriform cortex (Boyd et al., 2012; Otazu et al.,

2015; Padmanabhan et al., 2019; Shipley and Adamek, 1984).

Could different findings regarding how the piriform cortex codes

for odor information be reconciled by examining the role of feed-

back from the piriform cortex to the bulb? We tested this in a

spiking network model that recapitulated the circuit structure

within and between the MOB and piriform cortex. Differences

in feedback activity determined how much odor information

was conveyed by the temporal patterns of MOB input.

Our results show that feedback allows differences in the timing

and identity of glomerular activation to be encoded in the tempo-

ral patterns of piriform cortical cells. This information improved

behavioral performance in an odor discrimination task. We pro-

pose that feedback serves to flexibly sculpt the temporal organi-

zation of piriform cell activity, changing between combinatorial

and temporal codes, and hypothesize that the amount of feed-

back arises from differences in the animal’s internal state

(arousal, attention, etc.), learning, and memory.

RESULTS

Odors activate distinct spatiotemporal patterns of
glomeruli
To understand the functional role of feedback from the piriform

cortex (PCx) to the MOB in olfactory coding, we built a spiking

neuronal network model that recapitulated the circuit architec-

ture of the MOB and PCx (Figure 1A; STARMethods). Our model

captured essential features of the olfactory system’s architec-

ture and the biophysical properties of all cells throughout the

circuit. A schematic of the network architecture is shown in Fig-

ure 1A (STAR Methods; Figure S1 network parameters are sum-

marized in Tables S1 and S2).

Next, we defined an ethologically and behaviorally relevant

time window corresponding to a single sniff to study the dy-

namics of our network (Rinberg et al., 2006; Uchida and Mainen,

2003;Wesson et al., 2008). Model odors presented during a 250-

ms window (4-Hz sniff) were designed to match the activation

patterns of glomeruli by odorants in terms of identity (5%–20%

of all glomeruli) and timing (different onset latencies and dura-

tions) (Fantana et al., 2008; Gschwend et al., 2016; Vincis

et al., 2012). All M/T cells associated with a stimulated glomer-

ulus received correlated ORN input that decayed over time (Fig-

ures 1B and S2). The earliest glomerulus was the strongest at

driving M/T cells, consistent with previous studies (Johnson

and Leon, 2007; Soucy et al., 2009; Wachowiak and Cohen,

2001). Odors were thus defined by the pattern of the activated

glomeruli (identity) and their onset latencies (timing) (Figures

1C1 and 1D1), recapitulating the glomerular responses to natural

odors (Meister and Bonhoeffer, 2001; Rubin and Katz, 1999). For

example, the two odors in Figure 1B differed in the identity of the

earliest glomerulus as well as the timing of the third glomerulus.

We generated 300 model odors, and although most odor pairs
2 Cell Reports 38, 110545, March 22, 2022
(>80%) were weakly anti-correlated because of the sparseness

of glomerular activation, we had numerous examples of strongly

correlated odor pairs (Figures 1C2 and 1D2) spanned a range of

�0:1 to 0:9 (Figures 1C3 and 1D3; n = 44,850).

Feedback modulates the output of the MOB via granule
cells
Studies have shown that feedback can affect olfactory bulb ac-

tivity via the granule cell population (Boyd et al., 2012; Marko-

poulos et al., 2012). To study the functional role of feedback,

we modeled an inactivation experiment by simulating the dy-

namics of MOB neurons when the centrifugal synaptic weights

to granule cells (GCs) were set to zero (feedback OFF) versus

when feedback from the PCx corresponded to weights

measured in experiments (feedback ON). Because only the

top-down connections from the PCx to the MOB were silenced,

all other network connectivity was preserved.

In response to a model odor (odor 1; Figure 1B), the M/T cell

population firing rate increased transiently after activation of

the earliest glomerulus (Figure 2A1, bottom) and then decayed

because of firing of inhibitory GCs (Figure 2A2) when feedback

was OFF. With feedback ON, however, the M/T cell population

fired persistently (Figure 2B1, bottom; Figure S2) despite the

overall increase in GC activity (Figure 2B2). Because our results

reflected the activity of the entire M/T cell population in the

network, we randomly sampled M/T cells (n= 9 cells per sam-

pling; STAR Methods) to relate our finding to experimental re-

sults from single-unit studies. Consistent with previous work

(Bolding and Franks, 2018), the kinetics of single-unit M/T cells

were similar for feedback OFF and ON (Figure 2E). An exponen-

tial function (STAR Methods) fit to the decay of the sampled M/T

cell firing rates from the peak to the end of the sniff showed that

the time constants for feedback OFF were not significantly

different from that for feedback ON (n= 300 odors; Figure 2E3).

Some M/T cells were enhanced by feedback throughout a sniff

cycle, whereas other M/T cells were largely suppressed (Figures

2A1 and 2B1, top). M/T cells driven by odor-activated glomeruli

were mostly enhanced by feedback (Figure S3). When glomer-

ular activation was sparse and feedback was OFF, a large

number of M/T cells fired spontaneously, laterally inhibiting

odor-drivenM/T cells via GCs. Turning feedbackON suppressed

these spontaneously active M/T cells, leading to disinhibition of

odor-driven M/T cells. When more glomeruli were activated by

the model odors (Figure 2F), we found suppression and

enhancement of odor-driven M/T cells (Figures 2G1–2G3). Cells

with a firing rate of less than 20 spikes (spks)/s were largely sup-

pressed by feedback (p < 0.001, Wilcoxon signed-rank test),

consistent with previous findings (Boyd et al., 2012). However,

for M/T cells with higher firing rates (not reported in Boyd et al.,

2012), our model predicted that their responses would be

enhanced by feedback. The effect of feedback on M/T activity

thus depended on the number of activated glomeruli; this was

not surprising because differences in glomerular activation pat-

terns vary depending on odor identity and concentration.

Next, to dissect the synaptic input contributing to the dy-

namics of the network (Nelson and Valakh, 2015), we plotted

the voltages and various synaptic inputs for two M/T cells (Fig-

ures 3A1 and 3B1). The example cell receiving glomerular input
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Figure 1. Spiking network schematics and odor definition

(A) Schematics of the MOB-PCx network. In the main olfactory bulb (MOB), glomeruli (G) in the glomerular layer (GL) relay sensory information to mitral/tufted

(M/T) cells in the mitral cell layer (mcl). M/T cells receive inhibition from granule cells (GCs) in GC layer (GCL). In the piriform cortex (PCx), piriform cortical (PC)

neurons in layer 2 (l.2) and feedforward inhibitory (FFI) neurons in superficial layer (l.1) receive direct feedforward excitation from theMOB. Local inhibitory neurons

(FBI) in the deeper layer (l.3) provide feedback inhibition of PC cells. Excitatory synapses are shown in green and inhibitory synapses in red. Recurrent connections

between cells of the same type are omitted for clarity. The thick connecting lines from PC cells to GCs correspond to feedback from the PCx to the MOB.

(B) Glomerular input patterns for two odors. The color bar indicates the magnitude of glomerular input. The triangles on top indicate activation of the three

glomeruli. Left, odor 1: G1, 52 ms; G2, 74 ms; G3, 101 ms. Right, odor 2: G1, 52 ms; G2, 74 ms; G3, 110 ms.

(C) Magnitude of glomerular input for 30 example odors across 50 glomeruli.

(C1) Each column corresponds to an odor, and the two highlighted ones correspond to the two odors shown in (B).

(C2) Pairwise correlation of magnitude between different odors.

(C3) Histogram of the pairwise correlation of magnitude across all odor pairs (n = 44,850 pairs).

(D) Similar to (C) but for glomerular timing of each odor.
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(M/T 1) only fired transiently in the early phase of the glomerular

input for feedback OFF but fired throughout glomerular activa-

tion when feedback was ON. In contrast, the cell not receiving

glomerular input (M/T 2) fired spontaneously when feedback

was OFF but was silenced when feedback was ON. A different

model odor would activate a different subset of glomeruli, with

different subsets of M/T cells enhanced and suppressed by

feedback. To understand the effect of feedback on M/T cells

across all odors, we compared the odor-evoked responses of

each cell between feedback ON and OFF (Figures 2C and S3).
The feedback-induced changes in M/T firing rates were bimo-

dally distributed. Feedback increased the signal-to-noise ratio

of theMOB output by selectively enhancing the firing of M/T cells

driven by odor-activated glomeruli and suppressing the activity

of M/T cells not connected to stimulated glomeruli.

We found that, similar to M/T cells, feedback resulted in

enhancement and suppression of firing rates in GCs (Figures

2D and S3) even though all centrifugal inputs were excitatory.

Suppression of GCs by feedback arose from disynaptic inhibi-

tion between GCs (Figures 3A2 and 3B2). One major source of
Cell Reports 38, 110545, March 22, 2022 3
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Figure 2. Feedback modulates M/T cell firing by controlling the GC population

(A) MOB cell responses to an odor with feedback OFF.

(A1) Raster plot of M/T cells in one trial (top). Each row corresponds to the spike train of one M/T cell. Each tick mark represents a spike. The blue dashed line

indicates activation of the earliest glomerulus for the odor. Bottom: population firing rate of all M/T cells (mean ± SD, n=10 trials).

(A2) Similar to (A1) but for GCs.

(B) Similar to (A) but for feedback ON. Three groups of M/T cells driven by odor-activated glomeruli fire persistently throughout a sniff, whereas others only fire

sparsely.

(C) Histogram of the feedback-induced changes in the firing rates of M/T cells (n = 1250) across all model odors (n = 300). Positive values of the firing rate change

signify enhancement by feedback, and negative values signify suppression.

(D) Similar to (C) but for GCs. GCs are enhanced and suppressed by changes in feedback.

(E) Firing rate kinetics of randomly sampled M/T cells (n= 9 cells per sampling repeat) from the entire M/T cell population for feedback OFF and ON.

(E1andE2)Population firing rateof randomlysampledM/T cells to two exampleodors. Thick lines are exponential fits todecay frompeak to endof a sniff (mean±SD,

n = 20 repeats). The time constants of exponential decay are indicated.

(legend continued on next page)
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this disynaptic inhibition could be deep short-axon cells (dSACs)

which, compared with GCs, receive a higher convergence and

stronger excitatory drive from the PCx (Boyd et al., 2012). dSACs

also receive inputs from M/T cells and provide feedforward inhi-

bition to GCs (Burton and Urban, 2015). In our network, the

heterogeneous parameters used for GCs covered a diversity of

biophysical properties (STAR Methods), including GCs and

dSACs in the GC layer (GCL). For example, GC-1, receiving

stronger top-down feedback, was more like a dSAC and, thus,

enhanced by feedback, whereas GC-2, receiving less top-

down feedback, was more like a GC and, thus, suppressed

(Figures 3A2 and 3B2), consistent with the heterogeneity in

the feedback among GC population observed previously (Otazu

et al., 2015).

Balance between excitatory and inhibitory inputs is essential

for stabilizing the dynamics of a network (Chen and Padmanab-

han, 2020; Ozeki et al., 2009). We found that feedback played a

role in stabilizing this balance. To quantify this, we calculated the

ratio of excitatory and inhibitory synaptic inputs for each cell (Fig-

ures 3C and 3D). Positive values indicated that a cell’s sub-

threshold membrane dynamics were dominated by excitation,

whereas negative values corresponded to a net inhibitory drive,

with zero corresponding to a balance of the two. When feedback

was OFF, weak inhibition dominated M/T cells and excitation

dominated GCs (Figure 3C). However, when feedback was

ON, the synaptic drive to M/T cells and GCs became bimodally

distributed (Figure 3D). A large proportion of M/T cells became

dominated by strong inhibition, with a small population slightly

excited (Figure S3). Similarly, one subpopulation of GCs was

dominated by excitation and the other by inhibition, illustrating

the subdivision of functionally distinct GC subpopulations on

which top-down feedback had a different net effect. Feedback

therefore balanced excitatory and inhibitory drive across the

network. As a result, although M/T cells formed distributive con-

nections with GCs, feedback from the PCx revealed functionally

distinct subpopulations of local inhibitory interneurons differen-

tially sensitive to the ratio of excitatory to inhibitory inputs (E/I).

Feedback controls the temporal dynamics of the PCx,
leading to a circuit that is critical for pattern separation
The PCx has been shown to be essential for integrating odor in-

formation from individual glomeruli to form odor percepts (Gott-

fried, 2010; Miura et al., 2012; Stettler and Axel, 2009) and has a

critical role in guiding behaviors (Choi et al., 2011). We next

wanted to know how restructuring the dynamics of M/T cells

by changing feedback affects the dynamics of the PCx.

First, when feedback was OFF, piriform cortical (PC) cells

increased their population firing rates, peaking�16ms after acti-
(E3) Time constants of exponential decay for all odors (n = 300 odors, p > 0.05,

(F) M/T cell responses vary with the number of glomeruli that are activated.

(F1) The odor sequentially activates 5 glomeruli. Top: raster plot of M/T cells in on

(F2) Same as (F1) but for an odor activating 10 glomeruli.

(G) Feedback ON has diverse effects on M/T cell responses to odors.

(G1–G3) Odor-evoked responseswhen 10 glomeruli are activated for three examp

2, neutral; M/T 3, enhanced. Top: raster plot of spikes across 100 trials for feedbac

trial-averaged firing rate of the cell.

(G4) Scatterplot of the meanM/T firing rate averaged across trials for the duration

spks/s shows that M/T cell responses are largely suppressed when feedback is
vation of the earliest glomerulus (Figure 4A). This activity was

sharply truncated by local feedback inhibitory (FBI) cells, which

were recruited within the PCx (Stern et al., 2018), and consistent

with the model where temporal to combinatorial remapping of

the neural representations of odors occurs from the MOB to

the PCx. When feedback was ON, however, PC cells fired

throughout the sniff cycle, including over activation of multiple,

temporally staggered glomeruli (Figure 4B). When the centrifugal

input to the bulb was ON, FBI cells in the PCxwere recruited only

sparsely, no longer truncating the activity of PC cells (Figure S4).

This was due to the sparser M/T cell input that drove sparser

populations of PC cells (Figure 4A, center, purple dashed curve).

Across activation of 3, 5, or 10 glomeruli, feedback to the MOB

resulted in persistent and prolonged firing in PC cells (Figures 4C

and D1; n= 300 odors). These results suggested that feedback

gated the temporal structure of neural activity in the PCx, across

different levels of M/T sparsity. The temporal structure of PC

cells was abolished when we activated all glomeruli in our model

(Figure S5), consistent with experiments that use wide-field op-

togenetic stimulations to drive all glomeruli on the dorsal surface

(Bolding and Franks, 2018). Stimulating all glomeruli resulted in

recruitment of a large population of FBIs, which truncated the

firing of PC cells even when feedback was ON. Finally, the tem-

poral structure of M/T cell activity was driven by differences in

the number, identity, and timing of glomerular activation. These

dynamics were due to complex network-level interactions

because simply increasing the spontaneous activity of GCs un-

der the feedback OFF condition did not result in the persistent

dynamics of PC cells as feedback (Figure S5).

We next studied the dynamics of PCx activity for each odor

with three quantities that captured the overall temporal structure

of the population: the peak firing rate, the delay between the

peak and the activation time of the earliest glomerulus, and the

decay rate from the peak to the baseline firing rate (Figure 4D2).

With feedback ON, the peak firing rate of PC cells decreased

significantly (Figure 4E1) because of a smaller subset of cells re-

sponding to odor presentation. However, activity across this

sparser population persisted longer with smaller decay rates

(Figure 4E2) and a reduced response latency relative to the

earliest glomerulus that was activated (Figure 4E3, bottom).

These effects arose from the information relayed from the bulb

to the PCx because feedback had no significant effect on the

response latency of M/T cells receiving input from the glomeruli

(Figure 4E3, top).

These resultsonly tell us that feedbackcanalter thedynamicsof

activity in the PCx, leaving open whether such differences are

actually relevant for the coding of odor information. To address

this question, we used an odor discrimination task where an
Wilcoxon signed-rank test). Lines correspond to 50 example odors pairs.

e trial. Bottom: population firing rate of all M/T cells (mean ± SD, n = 10 trials).

le M/T cells that aremodulated differently by feedback.M/T 1, suppressed;M/T

k OFF. Center: raster plot of spikes across 100 trials for feedback ON. Bottom:

of glomerular activation. Inset: magnification of the shaded area of less than 20

ON. The red dashed line is the identity line.

Cell Reports 38, 110545, March 22, 2022 5
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Figure 3. Feedback modulates the interaction between excitatory and inhibitory (E/I) synaptic inputs in MOB cells

(A) Voltage trace (top black) and synaptic inputs (bottom) for two M/T cells and GCs when feedback is OFF.

(A1) M/T 1 receives glomerular input (cyan trace) from an odor-activated glomerulus. M/T 2 is connected to a non-activated glomerulus.

(A2) similar to (A1) but for two GCs when feedback (purple trace) is OFF.

(B) Similar to (A) but for feedback ON.

(B1) The same M/T cells as in (A1), but M/T 1 fires persistently throughout glomerular activation, and M/T 2 remains silenced when feedback is ON.

(B2) The same two GCs as in (A2).

(C) Histogram of excitatory and inhibitory synaptic inputs during a sniff for M/T cells (left) andGCs (right) when feedback is OFF. Glomerular input is not included in

excitation for M/T cells. Positive values mean that a cell receives more excitation, and a negative value means that the net synaptic input is inhibition.

(D) Similar to (C) but for feedback ON. Excitatory feedback to GCs is included in excitation for GCs.
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animal ispresentedwith twoodorsof varying similarity and trained

to respond to one of these stimuli. Themore similar the two odors,

the more overlapping their neural representations. A measure of

computation would be how network activity renders the patterns

of PCx activity for these two representations more distinct.

We first presented two model odors (Figure 1B) to the network

and studied the responses of PC cells. When feedback wasOFF,

both odors evoked a transient burst of spikes followed by a sharp

truncation and persistent suppression in the PCx. As a conse-

quence, the PC population firing rates were largely overlapping

(Figure 5A). When feedback was ON, however, the PC popula-

tion firing rates to different odors deviated significantly across

time (Figure 5B). To visualize these differences in the activity of

large ensembles of PC cells, we performed principal-component

analysis (PCA; STARMethods) and displayed the population dy-

namics in a low-dimensional space defined by the first three

components (Figures 5C and 5D). PC activity to a given odor

was a trajectory that began at the origin and extended outward
6 Cell Reports 38, 110545, March 22, 2022
as different glomeruli were activated, returning to baseline at

the conclusion of the sniff cycle. Each odor produced a different

trajectory. The farther apart the trajectories, the more separable

the neural representations of the two odors would be. First,

ensemble trajectories for the two odors (Figure 5D) became

more separable when feedback was ON compared with when

feedback was OFF. This was consistent across a number of

odors (Figures 5E and 5F) revealing that the dynamics of PC cells

were shaped by the centrifugal inputs to the MOB. Temporal de-

correlation in the activity patterns of M/T cells has long been

known to be a feature of olfactory coding and odor discrimination

(Friedrich, 2001; Gschwend et al., 2015; Kato et al., 2012).

Turning feedback ON increased the temporal decorrelation (Fig-

ures 5E1 and 5F1), suggesting that one role of feedback may be

to enhance the existing mechanisms for odor discrimination by

making the population representations of odors more distinct

in the PCx (Figure 5E2 and 5F2; Braganza et al., 2020; Chen

and Padmanabhan, 2020).
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Figure 4. Feedback unravels the temporal structure in firing of piriform cells

(A) Piriform cortical (PC) cell responses to an odor with feedback OFF. Top: spiking activity of individual FFI neurons (raster) andmean firing rate for the population

of FFI cells. Center: spiking activity for individual PC cells and mean firing rate for the PC cell population. Bottom: spiking activity for individual FBI neurons and

mean firing rate for the population of FBI cells. PC cells fire with a transient burst of spikes that are sharply truncated by local FBIs and followed by persistent

suppression. Population firing rates: mean ± SD, n= 10 trials. The purple dashed line (center) indicates the average PC cell firing rate for feedback ON. The blue

dashed line indicates activation of the earliest glomerulus for the odor.

(B) Similar to (A) but for feedback ON.

(C) Similar to (A) for two odors that activate 5 (C1) or 10 (C2) glomeruli.

(D) Comparison of PC cell population firing rates between feedback OFF and ON.

(D1) PC population firing rate in response to all model odors (mean ± SD, n= 300 odors). The traces of feedback OFF and ON are normalized to have the same

peak amplitude.

(D2) Schematic to quantify the dynamics of PC population firing rate in response to a single odor. Peak, the first peak in the trial-averaged population firing rate;

slope, the slope of a linear function (oblique dashed line) fitted to the mean firing rate between the peak and the first time when it drops below baseline; delay, the

latency between the peak and the activation time of the earliest glomerulus defined by the odor (vertical dashed line with a triangle on top).

(E) Comparison of PC dynamics between feedback OFF versus ON.

(E1) Peak firing rate. Connecting lines for 30 example odors are shown (mean ± SD, n= 300 odors, *** p<0:001, Wilcoxon signed-rank test).

(E2) Similar to E1 but for slope.

(E3) Histogram of the delay across 300 odors. Left: M/T cells. Right: PC cells.
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Figure 5. Feedback increases the separation between PC cell responses to different odors

(A) PC cell responses to odor 1 and odor 2 (Figure 1B) with feedback OFF. Top and center: raster plot of PC cell responses to odor 1 and odor 2 in a trial. Bottom:

population firing rates of PC cells responding to two odors (mean ± SD, n=10 trials). The firing rate separations between odor 1 and odor 2 are nonsignificant (ns;

p>0:05, Wilcoxon rank-sum test).

(B) Similar to (A) but for feedback ON (mean ± SD, n= 10 trials). PC cells fire persistently to both odors. The firing rate between odor 1 and odor 2 are significantly

different during 70� 90ms and 120� 140ms (**p<0:01, Wilcoxon rank-sum test).

(C) Low-dimensional projections of ensemble trajectories of PC cells onto the first three principal components when feedback is OFF. Each trace corresponds to

a single-trial PC cell response to one of the odors (color coded).

(D) Similar to (C) but for feedback ON.

(E) The low-dimensional projected ensemble activity pattern of M/T cells (E1) and PC cells (E2) for feedback OFF. Each dot corresponds to a single-trial ensemble

activity, and each color corresponds to a different odor (n= 7 odors). The M/T cell ensemble patterns are selected at t = 0ms (left) and t = 55ms (right). The PC cell

ensemble patterns are selected at t = 10ms (left) and t = 65ms (right).

(F) Similar to (E) but for feedback ON.
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Figure 6. Feedback enhances odor information gain in the PCx

(A) Schematic for quantifying the odor information encoded by PC cell population responses.

(A1) Odor-evoked PC cell responses in low-dimensional space (thick trace, trial-averaged responses; thin trace, single-trial responses). PC cell responses at a

single time step t are clusters of points visualized for simplicity on a 2D plane (gray). gt is the optimal linear decoder at each time.

(A2) PC responses for two different odors are projected onto gt and form two probability distributions.

(B) Symmetrized Kullback-Leibler divergence (DKL) for odor pairs that differ only by the identity of the first glomerulus (G1).

(B1) Schematic of glomerular activation patterns for a pair of model odors (color coded). Glomerular identity is denoted by the vertical position of boxes. G1 boxes

are non-overlapping and thus have different identities. G2 boxes (and G3) are overlapping and thus have the same identity. Staggered rectangles indicate

glomerular activation.

(legend continued on next page)
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Information gain in odor perception achieved by
feedback
The previous example highlighted the ways in which changing

glomerular identity resulted in differences in encoding in the

PCx and would be predicted regardless of whether the system

used a combinatorial or temporal code. We next studied how

neural representation of an odor in the PCx varied when the iden-

tity or timing of later-activated glomeruli was changed. Small

changes in concentration or chemical structure could result in

changes in the identity or timing of different glomeruli. By

defining odors not in terms of their chemical structures but in

terms of their glomerular activation patterns, we explored how

differences between two odors that activate different glomerular

patterns affect coding in the PCx (Carey et al., 2009; Chong et al.,

2020; Gire et al., 2013b; Smear et al., 2011; Soucy et al., 2009;

Spors and Grinvald, 2002).

First, we systematically varied the identity, timing, or both of

activated glomeruli across a total of 192 different model odors.

The PC population responses to repeated presentations of one

odorwere visualized as low-dimensional trajectories (Figure 6A1,

thin curves). At any time during a sniff, responses were a cluster

of points distributed within the space, reflecting the variability

across trials for a given odor (points) and the variability across

different odors (color). At each moment in time, we assessed

the differences between the two distributions of odors by projec-

ting the points onto a time-varying optimal linear decoder (Fig-

ures 6A2 and S6; STAR Methods). The more separable the two

distributions were, the more accurately the odor could be de-

coded from the PC responses and, thus, the more information

was encoded in the PCx.Wemeasured the amount of odor infor-

mation in the PCx by calculating the symmetrized Kullback-Lei-

bler divergence (DKL) (STAR Methods). The more distinct two

odor representations, the larger the DKL. For example, at a given

time (t = 31ms), the PC responses to odor 1 and odor 2 were

more easily distinguishable when the feedback switched ON,
(B2) Top: DKL for one odor pair when feedback is ON or OFF (mean ± SD, n= 10 t

differing in G1 identity (mean ± SD, n = 19 odor pairs).

(B3) Decoding accuracy for the odor pair in (B2), top, using the K nearest neighbor

are used for training. Mean ± SD, n= 30 trials.

(C) Similar to (B1) but for glomerular identity difference only in G2 (C1) or G3 (C2

(D) Similar to (C) but for timing differences in G2 (D1) or G3 (D2) by Dt = 15 ms. In th

rectangles are shifted by Dt.

(E) DKL and DDKL for glomerular identity difference only in G2 (E1) or G3 (E2). Top:

odor pairs (mean ± SD, n = 11 odor pairs for E1, n = 18 odor pairs for E2).

(F) Similar to (E) but for glomerular timing difference in G2 (F1) or G3 (F2).

(G) Cumulative DKL over a sniff cycle to quantify the total amount of information

(G1) For odor pairs differing in the identity of a single glomerulus (same data as in

Dotted line, unity.

(G2) Similar to (G1) but for odor pairs differing in activation timing of a single glom

(G3) Similar to (G1) and (G2) but for odor pairs with a combination of identity and ti

and the color represents pairwise correlation between two odors and, thus, simi

(H) Decoding accuracy for the odor pairs in (E), top, using the K nearest neighbo

training.

(H1) The odor pair differs in the identity of G2. Error bars: mean ± SD, n = 30 tria

(H2) The odor pair differs in the identity of G3. Error bars: mean ± SD, n= 30 tria

(I) Similar to (H) but for the odor pairs in (F), top. The odor pair differs in the timin

(J) Maximum decoding accuracy for multiple odor pairs with glomerular identity

nearest neighbors are used, and 30% of data are used for training. Mean ± SD,

(K) Similar to (J) but for multiple odor pairs with a glomerular timing difference in
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giving rise to more separable distributions of the PC responses

(Figure S6).

We first considered odor pairs that differed only in the identity

of a single glomerulus. When the identity of the earliest activated

glomerulus (first glomerulus [G1]) was different (Figure 6B1), the

DKL increased rapidly regardless of whether feedback was ON or

OFF (Figure 6B2, left). In these examples, the information in the

spiking activity to the different representations of the two odors

was sufficient to distinguish them, independent of whether feed-

back was ON or OFF. This was consistent with the previous

finding that G1 carried the bulk of information about each of

the odors (Wesson et al., 2008; Bolding and Franks, 2017; Chong

et al., 2020). Interestingly, when feedback was ON, theDKL had a

larger magnitude and remained high even after G1 was no longer

active (Figure 6B2, right), suggesting that feedback enhanced

and maintained odor information gains across the sniff cycle,

even after the differences in glomerular activation had already

happened. For odor pairs differing in the identity of the second

or third activated glomerulus (G2 in Figures 6C1 and 6E1; G3

in Figures 6C2 and 6E2), we observed a significant increase in

DKL for feedback ON compared with feedback OFF. These re-

sults remained valid even when we used a fixed readout dimen-

sion g obtained from averaging across time and conditions (OFF

and ON; Figure S6). As a result, small differences between the

two odors being discriminated that would result in small differ-

ences in activation of the second or third glomerulus could be

informative to the PCx when feedback was ON (Schaefer and

Margrie, 2007). If the PCx could represent differences in glomer-

ular identity as differences in the timing of piriform activity

patterns, then could feedback also enable the PCx to encode dif-

ferences in the activation timing of glomeruli? When we pre-

sented model odors that activated the same subset of glomeruli

but with different onset latencies (Dt = 15 ms), turning feedback

ON significantly increased theDKL for odors differing in activation

timing of the second or third glomerulus (Figures 6D and 6F).
rials). Bottom: difference of DKL (DDKL = ON� OFF) across different odor pairs

algorithm. Three nearest neighbors are used, and different percentages of data

).

is schematic, the boxes for G1, G2, and G3 are overlapping, but the staggered

DKL for one odor pair (mean ± SD, n= 10 trials). Bottom: DDKL across different

in the PCx.

B2 and E). Identity difference in G1, G2, or G3 is denoted by different shapes.

erulus; same data as in (F).

ming difference in one or multiple glomeruli. Each circle denotes one odor pair,

larity.

r algorithm. Three nearest neighbors are used, and 30% of data are used for

ls.

ls.

g of G2 (I1) and G3 (I2). Mean ± SD, n= 30 trials.

difference in G2 (J1, n = 11 odor pairs) or G3 (J2, n = 18 odor pairs). Three

n= 30 trials.

G2 (K1) or G3 (K2).
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To ensure that our result was not due to features of the DKL

analysis, we also implemented a linear decoder analysis using

the K nearest neighbor algorithm (STAR Methods). Consistent

with our DKL analysis, turning feedback ON increased the accu-

racy of the linear decoder for identity and timing differences in

glomerular activation (Figures 6B3 and 6H–6K). The numbers

of nearest neighbors and proportion of training data did not

affect the results (Figure S7), demonstrating that feedback

increased the odor information and decoding accuracy in the

PCx across different metrics of coding efficiency.

We summarized the differences in coding across all odors us-

ing the cumulative DKL, which served as a measurement of the

total amount of information gained from the differential activation

of glomeruli between odor pairs. When feedback was ON, a sig-

nificant increase occurred in the information in spiking patterns

across odors that differed in identity or timing over the three acti-

vated glomeruli (Figures 6G1 and 6G2). Activating feedback

increased the information gain between two different odors

regardless of their similarity, as measured by the input correla-

tion (range, 0.1–0.9; Figure 6G3). Our results revealed a func-

tional role for feedback: effective encoding of glomerular identity

and timing using the temporal structure and combinatorial pat-

terns of cell activity in the PCx.

Feedback improves behavioral performance in odor
discrimination
Our analysis left open the question of whether this information

could be utilized by animals in decision-making. For example,

what, if any, effect would controlling feedback have on an ani-

mal’s behavioral performance when asked to distinguish be-

tween two odors? Did the feedback circuit affect the accuracy

(how often mistakes are made) or reaction time (how long a

response takes) in an odor discrimination task? Such behavioral

measurements are performed in animal experiments and can act

as a proxy for the information in the PCx to which animals actu-

ally have access (Abraham et al., 2010; Uchida and Mainen,

2003).

We bridged the gap between neural coding and behaviors us-

ing a two-alternative forced choice (2AFC) task (STAR Methods)

and then applying the sequential probability ratio test (SPRT) (Bo-

gacz et al., 2006; Gold and Shadlen, 2007) to model behavioral

performance. On each trial, a randomly chosen odor (odor 1 or

odor 2) was presented, with the odor onset aligning to the start

of a sniff. During a sniff cycle, noisy momentary evidence was

gained from observing the PC responses sampled from the

odor-evoked probability distribution (Figures 7A1 and 7A2). A

choice was made when the accumulated evidence reached one

of the decision boundaries (Figure 7A3), and the reaction time

was recorded toaccount thedecisionandamotordelay (normally

distributedwithmean = 50ms andSD = 5ms). Because only one

sniff has been shown to be sufficient for the animal to make deci-

sions (Uchida andMainen, 2003; Wesson et al., 2008), the model

was constructed to report which odor was presented by the end

of a single sniff (odor 1 or odor 2). If neither decisionboundarywas

reached before the end of the sniff, the choice was made by

chance (PðOdor � 1Þ = PðOdor � 2Þ = 0:5), equivalent to a

randomguess the animalmightmake because it could not distin-

guish between the two odors.
To examine how accuracy and reaction time of discrimination

were influenced by odor similarity, we varied the glomerular

timingbetween twoodorsby5ms increments in eachglomerulus.

The larger the difference in glomerular timing, the more different

the two odors were. Such differences corresponded to differ-

ences in odor concentration or odor identity (Meister and Bon-

hoeffer, 2001; Schaefer and Margrie, 2007) in a discrimination

task requiring the animal to discriminate between two similar

odors or between different concentrations of a single odor. The

differences the animal perceives would be due to differences in

the timing of the activated glomeruli. First, whenwe simulateddif-

ferences in timing of G1 between the two odors (Figure 7B1), the

accuracy increased and the reaction time was reduced, regard-

less of whether feedback was OFF or ON (Figure 7C1), a result

consistent with previous studies (Palmer et al., 2005; Uchida

and Mainen, 2003). However, for any given difference in glomer-

ular timing associated with two different odors, switching feed-

back ON increased the accuracy and reduced the reaction

time, corresponding to an improvement in the animal’s behav-

ioral performance. For subsequent glomeruli, differences in the

timing of glomerular activity could occur bidirectionally; i.e.,

glomerulus 2 (G2) activated by odor 1 could occur earlier (nega-

tive values) or later (positive values) than G2 for odor 2 (Figures

7B2 and 7B3). For both timing shifts associated with G2 or G3,

the discrimination performance was improved when the feed-

back was ON (Figures 7C2 and 7C3). Interestingly, shifting the

G2 or G3 latencies earlier resulted in larger changes in accuracy

and reaction time compared with shifting them later, providing

further support for the importance of the earliest activated

glomeruli in guiding odor discrimination behaviors (Chong et al.,

2020;Wilson et al., 2017). A temporal shift of�45ms inG2 latency

for one odorwouldmean thatG2becomes the first one activated,

making it G1. The resultant alternation in the order of glomerular

activation would render the differences between the two odors

differences in glomerular identity rather than timing. As a conse-

quence, we observed a steep rise in accuracy (a more than 10%

increase from�40ms to � 45ms) as well as a decline in the reac-

tion time (a more than 50ms reduction from �40ms to � 45ms),

echoing the important role of the earliest activated glomerulus

in odor perception.Our results revealed the essential role of feed-

back in shaping how odor information could guide animal

behavior in this example of an odor discrimination task.

DISCUSSION

Using a spiking neuronal network model that recapitulated the

details of circuit architecture within and between the MOB and

PCx, we identified a role of feedback. The PCx was able to

extract information about odors from the identity and timing of

activation patterns across M/T cells. When the feedback was

OFF, PC cells responded transiently to the earliest activated

glomerulus, consistent with the models of olfactory coding,

where the combinatorial pattern of activated cells is used to

represent odors (Stern et al., 2018). When the feedback weights

to the local inhibitory interneurons (GCs) in the MOB were ON,

PC cells fired persistently throughout odor presentation. The

temporal structure of PC cells reflected the successive activation

of the M/T cell population by different glomeruli and was
Cell Reports 38, 110545, March 22, 2022 11
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Figure 7. Feedback improves behavioral performance in odor discrimination

(A) Decision-making modeled as an evidence accumulation process according to sequential probability ratio test (SPRT).

(A1) The time-varying probability distribution of the projected PC cell responses along gt to two odors differing only in activation timing of G1 by 35ms. The

triangles at the bottom indicate the activation timing of the earliest glomerulus (G1). The gray vertical lines indicate the slice at t = 70ms.

(A2) The distributions sliced at t = 70ms in (A1). A sample y� is generated by the distribution of odor 1 (assuming odor 1 is presented). The momentary evidence at

this time step is calculated by the log likelihood ratio of the sample.

(A3) Traces of the accumulated evidence over time for feedback ON or OFF. A decision is made when the boundary ±B is reached. Otherwise, a choice is made

by chance at the end of the sniff.

(B) Schematic of temporally shifting the activation timing of each glomerulus.

(B1) Temporal shift in G1.

(B2) Bidirectional temporal shift in G2.

(B3) Bidirectional temporal shift in G3.

(C) The accuracy and reaction time as a function of the timing differences in glomerular activation (mean ± SD, n = 10 agents).

(C1) Timing differences in G1 activation (odor 1: G1, 40ms; G2, 86ms; G3, 177ms; odor-2: G1, 40ms + Dt; G2/G3: the same as odor 1).

(C2) Timing differences in G2 activation (odor 1: G1, 40ms; G2, 78ms; G3, 113ms; odor 2: G2, 78ms±Dt; G1/G3: the same as odor 1).

(C3) Timing differences in G3 activation (odor 1: G1, 54ms; G2, 81ms; G3, 120ms; odor-2: G3, 120ms±Dt; G1/G2: the same as odor 1).
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informative about odors. Activity patterns across the PC popula-

tion to different odors were consequently more separable with

feedback ON. This effect was robust to differences in identity

or timing of the earliest or later-activated glomeruli over the

course of a sniff. In an odor discrimination task, increased infor-

mation in PCx activity patterns resulted in improved behavioral

performance regarding accuracy and reaction time. Our findings

align with experimental results summarized in Table S4.
12 Cell Reports 38, 110545, March 22, 2022
Many coding strategies have been proposed based on the

structure of neural circuits and the activity patterns in the early

olfactory system. Features of odors, including their identity and

concentration, are represented in the temporal patterns of

glomerular activation (Baker et al., 2019; Rubin and Katz, 1999;

Spors and Grinvald, 2002; Vincis et al., 2012) and result in differ-

ences in the identity and timing of activated M/T cells (Bathellier

et al., 2008; Cury and Uchida, 2010; Kay and Laurent, 1999). In
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the PCx, this temporal information from the bulb is remapped

onto a combinatorial pattern of activity across piriform cells

(Bolding and Franks, 2017; Stern et al., 2018; Stettler and Axel,

2009). Such a coding strategy is attractive for a number of rea-

sons. First, the random connectivity of M/T cells to individual

PC neurons provides an anatomical underpinning for a combina-

torial code (Sosulski et al., 2011). Second, such an architecture

may be one biological implementation of compressed sensing

(Babadi and Sompolinsky, 2014; Ganguli and Sompolinsky,

2012; Stevens, 2015). Finally, neurophysiological studies show

that local inhibition within the cortex (Bekkers and Suzuki,

2013) truncates the activity of PC neurons, restricting patterns

of neuronal firing to narrow windows of opportunity (Bolding

and Franks, 2017; Miura et al., 2012), analogous to network

packets in digital communication.

However, results fromrecentstudies suggest that refinementof

this model may be appropriate. First, laboratory studies often

control the odor onset and offset experimentally, but natural

odorplumesfluctuateacrossmultiple spatial and temporal scales

(Ackels et al., 2021; Lewis et al., 2021; Celani et al., 2014; Moore

and Atema, 1991; Riffell et al., 2014; Schmuker et al., 2016;

Szyszka et al., 2014), making a single window corresponding to

odor onset and offset difficult to define. Second, a number of

studies have shown that animals use information in the timing of

glomerular activation to guide behavior (Chong et al., 2020; Re-

bello et al., 2014; Smear et al., 2011). Rodents can be trained to

discriminate between highly similar odors, and their accuracy is

strongly correlatedwith reaction time (Rinberget al., 2006;Uchida

and Mainen, 2003). Accuracy increases significantly when the

mice sample the odor stimulus for longer periods of time (Ackels

et al., 2021), suggesting that information is gained throughout

odor presentation rather thanonly at the onset of an odor orwithin

a narrow sniff-locked time window. To maintain the same level of

accuracy, mice require more time to discriminate odor pairs with

highly overlapping spatial temporal patterns of glomerular activa-

tion than odor pairs with dissimilar glomerular patterns (Abraham

etal., 2004), suggesting that temporal integration isneeded for the

olfactory system to discriminate highly similar odors. These data

point to a framework in which temporally rich neural codes in the

bulb are relayed into the PCx, encoding information about odors

in a continuous way. We found that this information is gated by a

singleflexiblecircuit,where feedback fromthePCx to thebulbde-

termineswhich critical features of activity are relayed to the olfac-

tory cortex.

If two odors aremarkedly different, a combinatorial code in the

PCx would be sufficient for olfactory discrimination. However, in

cases where an odor discrimination task is complex because the

two odors activate highly overlapping populations of glomeruli, a

change in the top-down weight of feedback would provide ac-

cess to temporal information in the olfactory code (Chen and

Padmanabhan, 2020; Hiratani and Latham, 2020; Schaefer and

Margrie, 2007). First, feedback would enhance the signal-to-

noise ratio of MOB output. Second, by encoding later-activated

glomeruli in the firing of PC cells, feedback would allow time to

be an additional dimension with which an animal can gain infor-

mation about odors. Such a strategy would support encoding of

fast fluctuations that occur in odor plumes. The computational

benefits of feedback in our model also capture the sparsity of
FBI recruitment in the PCx. When FBIs in the olfactory cortex

are sparsely recruited under the feedback ON condition, PC cells

fire persistently, preserving their temporal coding. Consistent

with this idea, performance in odor discrimination degrades

quickly as local inhibition in the PCx becomes stronger (Hiratani

and Latham, 2020).

We remain agnostic about the mechanisms that flexibly turn

centrifugal feedback ON and OFF. Changes in top-down control

may correspond to an array of behavioral state changes,

including anesthesia (Kato et al., 2012; Rinberg et al., 2006). State

differences would affect not only feedback from the PCx but also

other signals, including neuromodulators (Brill et al., 2016). Neu-

romodulators such as serotonin act on short axon cells (via 5HT

2C receptors) (Brill et al., 2016; Petzold et al., 2009) andM/T cells

(Kapoor et al., 2016). Differences in performance observed

across trials in animal studies (Chong et al., 2020; Gill et al.,

2020) may thus reflect differences in neuromodulatory state

across those trials. Feedback weights could also change

because of synaptic plasticity. Several studies have shown that

the PCx is involved in olfactory learning (Cohen et al., 2008; Has-

selmo and Bower, 1990; Litaudon et al., 1997), and long-term

potentiation (LTP) and plasticity in the PCx can regulate activity

in the bulb (Cauthron and Stripling, 2014). Here, switching be-

tween feedback ON andOFFwould be akin to changing synaptic

weights over the course of learning. Finally, changes in the

weights of feedback may be due to adult neurogenesis (Lledo

et al., 2005; Arenkiel et al., 2011; Deshpande et al., 2013). The

integration and response properties of these adult-born GCs

are dependent on sensory experience (Alonso et al., 2006; Lep-

ousez et al., 2014; Livneh et al., 2009; Rochefort et al., 2002),

which may require piriform feedback (Wu et al., 2020). As a

consequence, the structure of connections from the PCx to

GCs are likely not randombut contain information about olfactory

learning (Livneh and Mizrahi, 2012; Sailor et al., 2016).

Limitations of the study
First, our computational model isolates top-down feedback from

the PCx, but there are multiple sources of feedback to the bulb

(Padmanabhan et al., 2019). Second, our model does not

consider the influence of neuromodulators that affect network

dynamics throughout the early olfactory system. Despite these

limitations, our results identify a framework for how feedback

could influence animal behavior on diverse time scales.

The PCx affects the temporal structure of activity patterns it re-

ceives. This modulation likely depends on how different behav-

iors in the lab or in the wild engage feedback circuits (Ackels

et al., 2021; Bolding and Franks, 2018; Boyd et al., 2012; Chong

et al., 2020; Gill et al., 2020; Otazu et al., 2015; Wu et al., 2020).

We propose that these differences in the temporal activity pat-

terns of the PCx reveal a mode for sensory processing, where in-

formation about odor identity and concentration is flexibly

shifted, depending on the different ethological demands that

are placed on the animal.
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METHOD DETAILS

Organization and architecture of the model
The MOB consisted of 50 glomeruli (G) corresponding to the olfactory receptor neuron (ORN) inputs (Mombaerts et al., 1996).

Each glomerulus was connected to 25 mitral/tufted (M/T) cells for a total 1250 M/T cells. Within the MOB, a local population of

12,500 inhibitory granule cells (GCs) formed reciprocal and lateral inhibitory connections with M/T cells. Individual M/T cell

‘‘projections’’ formed random excitatory connections with 10,000 piriform cortical cells (PCs) in PCx. These PCs in turn

‘‘projected’’ back to the olfactory bulb, providing excitatory feedback (thick lines in Figure 1A) onto the inhibitory granule cells

in the bulb. Within PCx, two types of inhibitory interneurons were included: a population of 1,250 feedforward inhibitory neurons

(FFIs) that received excitatory input from M/T cells and inhibited both PCs and other FFIs, and a population of 1,250 local

feedback inhibitory neurons (FBIs) that received input from a random subset of PCs and subsequently inhibited PCs and other

FBIs.

Our model including the predominance of inhibitory granule cells (GCs) in the bulb (outnumbering M/T cells 10 to 1), the

distributed connections between M/T cells and GCs (Urban and Sakmann, 2002; Willhite et al., 2006), the random projections

of M/T cells to the piriform cortex (Ghosh et al., 2011; Miyamichi et al., 2011; Sosulski et al., 2011), the local inhibitory popu-

lations in the cortex (Bekkers and Suzuki, 2013; Bolding and Franks, 2018; Oswald and Urban, 2012) and the structure of feed-

back from the piriform cortex to the bulb (Choi et al., 2011; Padmanabhan et al., 2016; Price and Powell, 1970). Furthermore the

model includes including such features as M/T biophysical diversity (STAR Methods) and glomerulus-specific long latency in-

hibition of granule cells (Figure S1) were matched to experimental data (Kapoor and Urban, 2006; Padmanabhan and Urban,

2014; Soucy et al., 2009).

Voltage dynamics of individual neurons
The voltage dynamics of individual cells in the network were modeled as spiking neurons (Izhikevich, 2003) described by a two-

dimensional (2D) system of ordinary differential equations of the form,
Cell Reports 38, 110545, March 22, 2022 e1

mailto:krishnan_padmanabhan@urmc.rochester.edu
https://doi.org/10.5281/zenodo.6143717
https://doi.org/10.5281/zenodo.6143717
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html


Article
ll

OPEN ACCESS
dv

dt
= 0:04v2 + 5v + 140� u+ I

du

dt
= aðbv � uÞ

(Equation 1)

with the after-spiking resetting

if vR30mV ; then v)c; u)u+d (Equation 2)

Here v represented the voltage (mV) of the neuron and u represented a dimensionless membrane recovery variable accounting for

the activation or inactivation of ionic currents; t is time and has unit ofms; a,b,c and d are parameters that were be adjusted to gener-

ated diverse firing patterns; I represented synaptic currents or injected dc-currents to the neuron.

We choose to use this neuronmodel to simulate the voltage dynamics of individual neurons because: 1). It combined the biological

plausibility of the Hodgkin–Huxley neuron model and the computational efficiency of leaky integrate-and-fire neuron model, allowing

us to simulate tens of thousands of spiking neurons simultaneously in our network; 2). Different combinations of the parameter values

a,b,c and d could reproduce a diversity of firing patterns of neurons of known types, so we could capture the biophysical diversity in

the firing properties for different types of neurons in olfactory system, such as themitral/tufted (M/T) cells and granule cells in themain

olfactory bulb (MOB), and piriform cortical cells and other local inhibitory interneurons in piriform cortex (PCx). In order to achieve

heterogeneity such that different cells within the same type exhibited different dynamics, we introduced randomness in the param-

eter assignment (see Table S1). The ri was a random variable uniformly distributed on the interval ½0;1� and i denoted the neuron in-

dex. For example, the parameter a was distributed on the interval ½0:02; 0:1� within which various firing patterns could emerge. We

also used r2i or r4i to bias the distribution to different extents for different cell types. Overall, based on our choice of parameters in the

Izhikevich model, the spiking patterns of PCs and M/T cells largely fell into the category of regular spiking, intrinsically bursting or

chattering neurons (Connors and Gutnick, 1990; Davison and Ehlers, 2011; Padmanabhan and Urban, 2014). Inhibitory neurons

including GCs and FFIs/FBIs in the network generated spiking patterns as fast spiking neurons and low-threshold spiking neurons

(Burton and Urban, 2015; Egger, 2005; Gibson et al., 1999; Suzuki and Bekkers, 2012).

Within the same cell type, the parameters spanned a wide range of values to achieve heterogeneity in cell dynamics. Especially for

GCs, our model did not distinguish granule cells and dSACs, and therefore GCs in our model consisted of both granule cells and

dSACs.

Synaptic input I to each neuron depended on the neuron type. For a cell i in MOB, Ii was a linear superposition of various sources

Ii = Imc�ex
i + Igc�in

i + Iosni + Ifeedbacki + xi (Equation 3)

Here, Imc�ex
i represented excitation from M/T cells and existed for both M/T cells and GCs. For GCs, when an M/T cell fired, the

excitatory postsynaptic current (EPSC) Imc�ex
i into different GCs were delayed by different latencies, resulting in different spiking la-

tencies of GCs (Figure S1), consistent with previous experimental findings in the olfactory bulb granule cell network (Kapoor and Ur-

ban, 2006). The Igc�in
i represented inhibition from GCs and existed for both M/T cells and GCs. Iosni represented glomerular input and

only existed for M/T cells. When a glomerulus was activated by a model odor, it provided correlated inputs Iosni to the M/T cells driven

by that glomerulus. When a glomerulus was activated, the input current Iosni that an associated M/T cell received was modeled as a

step function with Gaussian noise added (Figure S2). Since each glomerulus received inputs from a set of receptor neurons express-

ing the same olfactory gene type, the inputs to individual glomerulus from receptor neurons were correlated (Dhawale et al., 2010;

Koulakov and Rinberg, 2011; Lledo et al., 2005; Wachowiak et al., 2004). Therefore, we assumed that the glomerular inputs to the

apical dendrites received by theM/T cells associatedwith the same glomerulus were correlated, and the values in Figure S2 indicated

the average correlation coefficient among them. No input correlation between M/T cells associated with different glomeruli was

assumed. Ifeedbacki represented excitatory centrifugal input from piriform cells and was non-zero only for GCs when feedback is

ON. We set it to zero for all GCs when feedback was OFF. The xi represents Gaussian white noise input with zero mean and standard

deviation s= 1:75 for M/T cells and s= 0:8 for GCs.

Similarly, for a cell i in PCx, Ii was composed of

Ii = Imob
i + Ipc�ex

i + Iini + hi (Equation 4)

where Imob
i represented input from M/T cells in MOB and only existed for piriform cortical cells (PCs) and feedforward inhibitory neu-

rons (FFIs); Ipc�ex
i represented excitation from PCs and existed for both PCs and feedback inhibitory neurons (FBIs); Iini represented

inhibition from local inhibitory neurons including FFIs and FBIs; hi represented Gaussian white noise input (zero mean and standard

deviation s = 0:9) and only existed for PCs.

Each action potential fired by a presynaptic neuron evoked a jump in the corresponding synaptic inputs of all its postsynaptic tar-

gets by an amount equal to the appropriate synaptic strength. For example, action potentials of an M/T cell induced jumps in the

excitatory currents of their postsynaptic target neurons, including Imc�ex
i in M/T cells and GCs in MOB, and Imob

i in FFIs and PCs

in PCx. These synaptic inputs then decayed to zero with time constant 10ms. The height of the jump was determined by the pairwise

synaptic strength between any two neurons and their values were given in the synaptic weight matrix described in the next section.
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SYNAPTIC STRENGTH AND MODEL NETWORK ARCHITECTURE

TheMOB consists of 50 glomeruli, each of which drives 25M/T cells, thus a total 1250M/T cells in MOB. A local population of 12,500

inhibitory GCs formed reciprocal and lateral inhibitory connections with M/T cells. Thus, within the MOB, we generated a weight ma-

trixWmob of 13; 750 by 13;750 with entryWij
mob representing the synaptic strength from presynaptic neuron j to postsynaptic neuron i.

Depending on the cell type, thismatrixWmob was partitioned into four sub-matrices, i.e., fromM/T cell toM/T cell, fromM/T cell to GC,

from GC to M/T cell and from GC to GC. The specific value of each entry in Wmob was assigned randomly according to two param-

eters we chose for each sub-matrix. Onewas the connection density (the percentage of non-zero synaptic weights) and the other was

the average synaptic strength (mean of a uniform distribution fromwhich individual synaptic weights were sampled). Each sub-matrix

had its own value of the connection density and average synaptic strength. In particular, the connection density and average synaptic

strength between M/T cells driven by the same glomerulus were higher than between M/T cells driven by different glomeruli.

Individual M/T cell ‘‘projections’’ formed random excitatory connections with 10,000 PCs and 1,250 FFIs in PCx, giving rise to a

feedforward weight matrix Wff of 11; 250 by 1250. Within PCx, PCs formed recurrent excitations with each other. The FFIs inhibited

both PCs and other FFIs, and another population of 1,250 FBIs that received input from a random subset of PCs inhibited PCs and

other FBIs. Therefore, we generated a matrixWpcx of 12;500 by 12; 500 that identified all synaptic weights between cells in PCx. PCs

‘‘projected’’ back to theMOB, providing excitatory feedback toGCs, giving rise to a feedbackweight matrixWfb of 12;500 by 10;000.

Under the condition of feedback OFF, thisWfb was set to be a zero matrix. The connection density and average synaptic strength for

all sub-matrices can be found in Table S2. The parameters are all chosen heuristically based on previous theoretical and experimental

studies listed in Table S2.

Feedback projections from piriform cortex to the bulbmay be structured. Retrograde rabies tracing has demonstrated that piriform

cells projecting to GC populations in the bulb tend to be spatially clustered (Padmanabhan et al., 2016). Furthermore, a number of

studies suggest that GC synapses are especially sensitive to plasticity (Livneh and Mizrahi, 2012; Sailor et al., 2016), either through

adult neurogenesis or more traditional mechanisms of synaptic reorganization. To implement all of these features, we structure the

feedback projections to GCs such that the PCs receiving feedforward inputs from the M/T cells of certain glomeruli project back to

the GCs which were reciprocally connected with M/T cells associated with other glomeruli. Reciprocal connectivity between M/T

cells and GCs was defined as: M/T-1 excites GC-1 and GC-1 inhibits M/T-1, as observed by many studies (Wanner and Friedrich,

2020;Willhite et al., 2006). Across theM/T population, there were 291± 9 (mean ± SD, n= 1250 M/T cells) GCs that were reciprocally

connected with each M/T cell. As a result, each PC projected to 7368± 64 GCs (mean ± SD, n= 10000 PCs) with weight magnitude

larger than 0.01. All feedback synaptic weights were randomly generatedwith small magnitude less than 0:05, and this structure gave

rise to a dense but weak connectivity matrix Wfb. Due to the sparsity of the PC firing when feedback was ON, this dense and weak

top-down connectivity ensured robust influence of PCs on GC activity and thus the contribution of PCx on odor processing in MOB.

Model odor definition
Model odors were defined by the combinatorial patterns of glomeruli which were activated successively with different glomerular

timing, a pattern recapitulating the spatiotemporal structure of odor inputs (Rubin and Katz, 1999; Meister and Bonhoeffer, 2001).

Specifically, when a model odor was presented, three glomeruli were activated (6% of all glomeruli) and all the M/T cells associated

with those glomeruli received correlated glomerular input Iosn which lasted for 90 ms (Figures 1B and S1). We also activated 5, or 10

glomeruli, reflecting not only the combinatorics of timing and identity, but also different number of glomeruli activated by natural

odors. A table of 300 model odors were defined as the odor inputs to our network Figure S1).

Model odors with denser glomerular activation
To ensure our results remain valid formodels odorswith denser glomerular activation and higher degree of overlap, we also generated

different model odors which activated 5 or 10 glomeruli respectively (see Figures 2F and 4C), which gave rise to 10%–20%of glomer-

ular activation, similar to the level evoked by natural odors in awake mice (Vincis et al., 2012). We also did linear decoder analysis for

these model odors with higher degree of overlap. The odor pair in Figure S7F were overlapped in the first 3 glomeruli and thus highly

correlated (corr = 0:90) and theodor pair in FigureS7Gwereoverlapped in the first 7 glomeruli andalsohighly correlated (corr = 0:91).

Network dynamics simulation
The network dynamicswere governed by a large set of differential equations of the form Equation (1) coupled by the pairwise synaptic

weights between different neurons. These equations were numerically solved using the first-order Euler’s methodwith a uniform step

size Dt = 1ms. The initial conditions were obtained by first running the network without glomerular input (Iosni = 0) but only with noisy

input (xi and hi) for 600ms. This allowed the network to reach a steady state determined by its intrinsic dynamics. Afterward we simu-

lated the network using model odors for 250mswhich was roughly the duration of one sniff cycle. The network spiking activity within

this period were used for later analysis.

Randomly sampled ‘‘single units’’ from the network
For each odor, we randomly sampled 9 cells from the entireM/T cell population, with at least 1 odor-drivenM/T cell included.We then

computed the population firing rate for these sampled M/T cells. This process of random sampling was repeated 20 times, with each
Cell Reports 38, 110545, March 22, 2022 e3
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repeat reflecting a different random subset of 9 M/T cells to ensure that the kinetics was not a result of artifacts of selecting a single

subset. The mean population firing rate of sampled M/T cells across all 20 repeats was then used to fit the exponential function for

that odor (Figure 2E3). To obtain error bar for a single odor, as shown in Figures 2E1 and 2E2, the entire process was repeated 20

times so that we obtained 20 mean population firing rates, each of which was generated by 20 times of random sampling. This sam-

pling strategy allowed us to compare our model results where we had access to every cell in the network, with experiments where a

subset of neurons are recorded from using either tungsten or silicone probes (Bolding and Franks, 2018; Chockanathan et al., 2021;

Rinberg et al., 2006).

Exponential fit of the kinetics of randomly sampled M/T units
Wefit a single-term exponential function y = a,expð�txÞ using theMatlab code fit(x,y,’exp10), where the coefficient t denoted the time

constant of the kinetics decay. For each odor, we fit the function from the peak of the mean firing rate to the end of the sniff and ob-

tained time constant t.

Balance between excitatory and inhibitory synaptic inputs
To understand the balance between excitatory and inhibitory synaptic inputs forMOBcells, we computed the overall amount of excit-

atory and all inhibitory inputs to each cell. The excitatory sources for M/T cells included the recurrent MC excitation Imc�ex
i ; for GCs

they included excitation fromM/T cells Imc�ex
i and excitatory feedback Ifeedbacki when feedback was ON. The inhibitory source for both

M/T cells and GCs was the Igc�in
i : For each MOB cell, the areas under the excitatory and inhibitory synaptic inputs averaged over 10

trials were computed respectively and an algebraic sum of the two. This value, as referred to E/I balance in Figures 3C and 3D, was a

measurement of the overall driving effect of the excitatory and inhibitory inputs on each cell during a sniff. Positive (negative) values

for a cell indicated that it was dominated by excitation (inhibition) and a zero simply corresponded to a balance.

Principal component analysis (PCA)
Spiking activity of piriform cells (PCs) was binned into a 5ms sliding time window and averaged across trials (each model odor was

presented in 10 trials). We then concatenated the trial-averaged responses of all piriform cell (PCs) to all 300 model odors under both

conditions of feedback OFF and ON, resulting in a matrix of 10;000 PCs by 247 time bins3 300 odors3 2 conditions. Response

covariance matrices (10;000 by 10; 000) were computed for this concatenated matrix (after subtracting the mean responses aver-

aged across time bins, odors, and conditions). This gave us a single set of eigenvectors, thus the same eigenspace into which

PC responses for both feedback OFF and ON were projected and compared. Each 10; 000-dimensional PC response vector was

then projected onto the first 3 principal eigenvectors for visualization (Figure 5) and the first 50 principal eigenvectors for computa-

tions (Figures 6 and S6).

Symmetrized Kullback–Leibler divergence DKL

To quantitatively assess the effect of feedback on odor processing in the PCx, we computed the instantaneous symmetrized

Kullback–Leibler divergence DKL of the two distributions PtðyjOdor�1Þ and PtðyjOdor�2Þ which were built from the single-trial

PC responses to the two odors at each time step t. We used three types of odor pairs: 1). odor pairs with identity differences in a

single glomerulus (19 pairs for glomerular-1, 11 pairs for glomerular-2 and 18 pairs for glomerular-3); 2). odor pairs with timing

differences in a single glomerulus (19 pairs in G1, 11 pairs in G2 and 18 pairs in G3); 3). odor pairs with both identity and timing dif-

ferences in multiple glomeruli (192 pairs in total with different correlations in latency).

For a given odor pair, each of the odors was presented for 100 trials and the responses of PCswere recorded and then projected to

the first 50 principal eigenvectors. At each time step, the PC responses to each odor gave rise to a cluster of points in the 50-dimen-

sional space, with each point in the cluster corresponding to a single-trial response. The separation between the two clusters at time t

were computed using the Kullback–Leibler divergenceDKLðtÞ between the distributions of the two clusters along the optimal readout

dimension gt (Figure 6A), which was computed frommultiplying the inverse covariance matrix S�1
t (50 by 50) of the two clusters with

the vector connecting the cluster means Dmt (50 by 1). We exploited the Kullback–Leibler divergence since it was a direct measure-

ment of how one distribution was different from another and also a measurement of information gain. Note that since the PC re-

sponses evolved over time, the clusters of points and thus the optimal readout dimension gt (as well as S�1
t and Dmt) also varied

with time. Therefore the DKLðtÞ was a function of time (Figure 6).

Standard Kullback–Leibler divergence is not symmetric and therefore depends on the order of the two distributions. To correct

that, we therefore symmetrized it by computing (Masuda and Doiron, 2007)

DKLðtÞ = KLtðO1kO2Þ KLtðO2kO1Þ
KLtðO1kO2Þ+KLtðO2kO1Þ (Equation 5)

where O1 and O2 represent Odor-1 and Odor-2, and

KLtðO1kO2Þ =
X

y

PtðyjOdor� 1ÞlogPtðyjOdor� 1Þ
PtðyjOdor� 2Þ (Equation 6)
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is the standard Kullback–Leibler divergence between the distribution PtðyjOdor�1Þ and PtðyjOdor � 2Þ, which were built from those

single-trial PC responses to the two odors at time step t. We computed the DKLðtÞ for feedback OFF and ON using the same proced-

ure described above. Accumulated DKL (Figures 6E–6G) was computed as the area under mean DKLðtÞ over a sniff cycle.

Time-fixed readout dimension was computed by averaging the time-varying readout dimension gt across time and conditions

(feedback OFF and ON).

Linear decoder analysis: K nearest neighbor algorithm
The K nearest neighbor approach was used to decode odor identity from the projected ensemble responses of PCs to any given odor

pair (Padmanabhan and Urban, 2010). Consistent with the computation of symmetrized Kullback–Leibler divergence DKL, analysis

was performed in the space of the first 50 principal components. The original data were broken up into testing and training sets.

The training sets established the location of PC responses to known odors (i.e., known PC responses) in the principal component

space and the testing sets were probed with respect to these known PC responses. The Euclidian distance of the unknown odors

to all PC responses was then calculated and the K nearest neighbors were used to determine to which odor the unknown PC activity

was responding to. This process of generating testing and training sets was repeated 30 times, with each repeat reflecting a different

random population of testing and training to ensure that the decoding accuracy was not a result of artifacts of selecting a single

testing/training population. Free parameters in the K nearest neighbor algorithm included the ratio of testing to training data and

the number of nearest neighbors used in the calculation. For training/testing, we used ratios of 50%, 70% and 90%. We examined

the algorithm’s accuracy when 3, 5 and 7 nearest neighbors were used.

Sequential probability ratio test (SPRT)
To make predictions on animal’s behavioral performance under the condition of feedback OFF or ON, we applied the sequential

probability ratio test (Gold and Shadlen, 2007) and simulated the decision-making process of a model agent in a two-alternative

forced-choice (2AFC) task. In such a task, on each trial, the model agent was presented with a randomly chosen odor (Odor-1

or Odor-2) and was required to report which odor was presented by the end of a single sniff. We chose three different

model odors as the original odor (Odor-1) from the table of 300 model odors we defined. We then shifted the activation

timing of a single glomerulus by 5ms increment/decrement in the three original odors. Therefore, the odor pairs here were

composed of one original odor and its counterpart which had the timing of a single glomerulus shifted by different amount

of time (Figure 7).

First, similar to the computation of DKLðtÞ, for a given odor pair, each of the odors was presented for 100 trials and at each time

step, the two distributions PtðyjOdor�1Þ and PtðyjOdor�2Þ were obtained from the single-trial PC responses along the optimal

readout dimension. We then fit a normal distribution to the two distributions respectively and we used the same standard devi-

ation s in the normal distribution for both odors, which allowed us to generate samples more efficiently. According to SPRT, the

agent’s decision process was depicted as the accumulation of noisy momentary evidence over time until a threshold was

reached, or the stimulus was extinguished. Supposing we generated a sample y� at time step t, the momentary evidence was

then computed as

evðtÞ = log
~Ptðy�jOdor� 1Þ
~Ptðy�jOdor� 2Þ (Equation 7)

Here, ~Pt denoted the fitted normal distribution. A choice was made when the accumulated evidence
P
t

evðtÞ reached one of the

decision boundaries ±Bd (Figure 7A3) and the reaction time was recorded by adding a residual motor delay, which was normally

distributed with mean = 50ms and SD = 5ms. We generated 1000 samples y� at each time step for each model agent (10 agents

in total). Therefore, each agent performed 1000 trials for the same pair of odors. For each agent, we computed the accuracy as

the proportion of correct choices among the 1000 trials. The average reaction time across the 1000 trials was reported as the reaction

time for that agent. Parameter values used in SPRT analysis were listed in Table S3.

We set the widths of the two Gaussians in SPRT to be equal as this was the normal formalism for the SPRT. Our approach was to

use the behavior model to find the upper bound of performance. Beyond this technical constraint, we also approached the problem

from two empirically motivated constraints:

1) We assumed that the PCx encoded odor information, whichwas quantified by the KL-divergence, and the decision-making pro-

cess was performed in some downstream areas, which received and accumulated evidence from PCx. The information trans-

mission fromPCx to the downstreamdecision-making areamay have involved other sources of noise. Aswe could not know the

structure of this noise, nor was it likely to be from a single source, i) we assumed it would have a Gaussian distribution to draw

samples and ii). we assumed it to be unbiased such that noise only increased the uncertainty/width of the distribution.

2) Equal width of the distributions result in the decision-making being harder than unequal width, becausewhenwe computed the

momentarya evidence, the log likelihood of a sample drawn from two Gaussian distributions with equal mean but different

widths could still be large, while it would be zero if we used equal width.
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These two factors allowed us to incorporate all the uncertainty between information processing in piriform cortex and decision

making that likely included both sensory andmotor areas; assumptions that were necessarily multiparametric and thereforemodeled

as Gaussian so as not to include any biases.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests for significance were performed with a two-sided Wilcoxon rank-sum test (ranksum function in MATLAB) when sam-

ples were independent (Figures 5A and 5B) and with a two-sidedWilcoxon signed rank test (signrank function in MATLAB) for paired

samples (Figure 2E3, 4E1, and 4E2). Correlation coefficients between two variables were computed as the Pearson correlation

coefficient (corrcoef function in MATLAB). Statistical significance was defined by a p value <0.05. The statistical details (correlation

coefficient, p value, sample size n) are provided in the figures, figure legends, or the text of the Results section. The specific meaning

of the sample size n is clarified when used.
e6 Cell Reports 38, 110545, March 22, 2022
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