Cell Reports

Top-down feedback enables flexible coding
strategies in the olfactory cortex
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SUMMARY

In chemical sensation, multiple models have been proposed to explain how odors are represented in the ol-
factory cortex. One hypothesis is that the combinatorial identity of active neurons within sniff-related time
windows is critical, whereas another model proposes that it is the temporal structure of neural activity that
is essential for encoding odor information. We find that top-down feedback to the main olfactory bulb dic-
tates the information transmitted to the piriform cortex and switches between these coding strategies. Using
a detailed network model, we demonstrate that feedback control of inhibition influences the excitation-inhi-
bition balance in mitral cells, restructuring the dynamics of piriform cortical cells. This results in performance
improvement in odor discrimination tasks. These findings present a framework for early olfactory computa-
tion, where top-down feedback to the bulb flexibly shapes the temporal structure of neural activity in the piri-
form cortex, allowing the early olfactory system to dynamically switch between two distinct coding models.

INTRODUCTION

An open question in neuroscience is which aspects of neural ac-
tivity convey stimulus information and how neurons at later pro-
cessing stages read out this information. In olfaction, one model
of neural coding posits that temporal patterns of activity in prin-
cipal neurons in the main olfactory bulb (MOB) are relayed to the
olfactory cortex, and this timing is critical for odor representation
(Chong and Rinberg, 2018; Haddad et al., 2013; Laurent, 2002).
Another model proposes that these temporal patterns from the
MOB are transformed into combinatorial patterns of activity in
the cortex (Bolding and Franks, 2017; Stern et al., 2018; Stettler
and Axel, 2009). Each model has experimental support and
draws on theoretical frameworks, but it remains unclear how
these models relate to different behaviors and the extent to
which they are instantiations of a single framework of computing.

Olfactory coding is most often studied in early olfactory cir-
cuits. Volatile molecules bind to olfactory receptor neurons
(ORNSs) in the nasal epithelium. ORNs encode the identity and
concentration of monomolecular odorants (Buck and Axel,
1991; Malnic et al., 1999). ORN axons converge onto one to
two neuropil structures, called glomeruli, in the MOB (Mom-
baerts et al., 1996). Mitral/tufted (M/T) cells in the MOB receive
direct excitatory input from ORNs and relay odor information to
cortical regions. Each odorant activates a subset of glomeruli
with different onset latencies, which, in turn, gives rise to odor-
specific patterns of M/T cells (Bathellier et al., 2008; Cury and
Uchida, 2010; Paoli et al., 2018; Spors and Grinvald, 2002).
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Thus, ensembles of M/T cells vary in the identity (which cells
fire) and timing (when they fire) of their activity (Gire et al,,
2013a; Uchida et al., 2014).

Sniffing acts as a metronome organizing the timing of these
M/T responses (Bathellier et al., 2008; Shusterman et al.,
2011). Although M/T cell activity can occur throughout the sniff
cycle, studies have shown that piriform cortical cells respond
within narrower windows of activity after onset of inhalation
(Bolding and Franks, 2017; Miura et al., 2012). This timing is
controlled by intracortical inhibition, which suppresses the activ-
ity of piriform cortical cells following activation of the earliest
glomeruli. Consequently, studies suggest that piriform cortical
cells are less sensitive to M/T cell input from glomeruli activated
later in the sniff (Bolding and Franks, 2017; Miura et al., 2012;
Stern et al., 2018). The pattern of activated piriform cells is suffi-
cient to represent odor identity (Bolding and Franks, 2017; Gire
et al., 2013b), suggesting that odor information encoded in the
temporal structure of M/T cell activity is transformed into a
combinatorial code.

Physiological and behavioral studies show that animals have
access to the temporal information in glomerular patterns that
would be lost if only a combinatorial code was used. In mice ex-
pressing channelrhodopsin-2 in ORNs, varying the stimulation
timing of two spots corresponding to different glomeruli triggers
different responses in the identity and timing of piriform cortical
cells (Haddad et al., 2013). Mice can report these differences in
the relative timing of glomerular activation (Ackels et al., 2021;
Chong et al., 2020; Rebello et al., 2014; Smear et al., 2011).
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Thus, information encoded in the temporal structure of glomer-
ular activity is available to guide behaviors, but it is unclear
how olfactory circuits access this information.

One clue is that studies on olfactory coding focus largely on
the feedforward projections from the MOB to the piriform cortex.
However, cells in the bulb receive major centrifugal or feedback
inputs from the piriform cortex (Boyd et al., 2012; Otazu et al.,
2015; Padmanabhan et al., 2019; Shipley and Adamek, 1984).
Could different findings regarding how the piriform cortex codes
for odor information be reconciled by examining the role of feed-
back from the piriform cortex to the bulb? We tested this in a
spiking network model that recapitulated the circuit structure
within and between the MOB and piriform cortex. Differences
in feedback activity determined how much odor information
was conveyed by the temporal patterns of MOB input.

Our results show that feedback allows differences in the timing
and identity of glomerular activation to be encoded in the tempo-
ral patterns of piriform cortical cells. This information improved
behavioral performance in an odor discrimination task. We pro-
pose that feedback serves to flexibly sculpt the temporal organi-
zation of piriform cell activity, changing between combinatorial
and temporal codes, and hypothesize that the amount of feed-
back arises from differences in the animal’s internal state
(arousal, attention, etc.), learning, and memory.

RESULTS

Odors activate distinct spatiotemporal patterns of
glomeruli

To understand the functional role of feedback from the piriform
cortex (PCx) to the MOB in olfactory coding, we built a spiking
neuronal network model that recapitulated the circuit architec-
ture of the MOB and PCx (Figure 1A; STAR Methods). Our model
captured essential features of the olfactory system’s architec-
ture and the biophysical properties of all cells throughout the
circuit. A schematic of the network architecture is shown in Fig-
ure 1A (STAR Methods; Figure S1 network parameters are sum-
marized in Tables S1 and S2).

Next, we defined an ethologically and behaviorally relevant
time window corresponding to a single sniff to study the dy-
namics of our network (Rinberg et al., 2006; Uchida and Mainen,
2003; Wesson et al., 2008). Model odors presented during a 250-
ms window (4-Hz sniff) were designed to match the activation
patterns of glomeruli by odorants in terms of identity (5%-20%
of all glomeruli) and timing (different onset latencies and dura-
tions) (Fantana et al., 2008; Gschwend et al., 2016; Vincis
et al., 2012). All M/T cells associated with a stimulated glomer-
ulus received correlated ORN input that decayed over time (Fig-
ures 1B and S2). The earliest glomerulus was the strongest at
driving M/T cells, consistent with previous studies (Johnson
and Leon, 2007; Soucy et al., 2009; Wachowiak and Cohen,
2001). Odors were thus defined by the pattern of the activated
glomeruli (identity) and their onset latencies (timing) (Figures
1C1 and 1D1), recapitulating the glomerular responses to natural
odors (Meister and Bonhoeffer, 2001; Rubin and Katz, 1999). For
example, the two odors in Figure 1B differed in the identity of the
earliest glomerulus as well as the timing of the third glomerulus.
We generated 300 model odors, and although most odor pairs
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(>80%) were weakly anti-correlated because of the sparseness
of glomerular activation, we had numerous examples of strongly
correlated odor pairs (Figures 1C2 and 1D2) spanned a range of
—0.1 t0 0.9 (Figures 1C3 and 1D3; n = 44,850).

Feedback modulates the output of the MOB via granule
cells

Studies have shown that feedback can affect olfactory bulb ac-
tivity via the granule cell population (Boyd et al., 2012; Marko-
poulos et al., 2012). To study the functional role of feedback,
we modeled an inactivation experiment by simulating the dy-
namics of MOB neurons when the centrifugal synaptic weights
to granule cells (GCs) were set to zero (feedback OFF) versus
when feedback from the PCx corresponded to weights
measured in experiments (feedback ON). Because only the
top-down connections from the PCx to the MOB were silenced,
all other network connectivity was preserved.

In response to a model odor (odor 1; Figure 1B), the M/T cell
population firing rate increased transiently after activation of
the earliest glomerulus (Figure 2A1, bottom) and then decayed
because of firing of inhibitory GCs (Figure 2A2) when feedback
was OFF. With feedback ON, however, the M/T cell population
fired persistently (Figure 2B1, bottom; Figure S2) despite the
overall increase in GC activity (Figure 2B2). Because our results
reflected the activity of the entire M/T cell population in the
network, we randomly sampled M/T cells (=9 cells per sam-
pling; STAR Methods) to relate our finding to experimental re-
sults from single-unit studies. Consistent with previous work
(Bolding and Franks, 2018), the kinetics of single-unit M/T cells
were similar for feedback OFF and ON (Figure 2E). An exponen-
tial function (STAR Methods) fit to the decay of the sampled M/T
cell firing rates from the peak to the end of the sniff showed that
the time constants for feedback OFF were not significantly
different from that for feedback ON (n =300 odors; Figure 2E3).
Some M/T cells were enhanced by feedback throughout a sniff
cycle, whereas other M/T cells were largely suppressed (Figures
2A1 and 2B1, top). M/T cells driven by odor-activated glomeruli
were mostly enhanced by feedback (Figure S3). When glomer-
ular activation was sparse and feedback was OFF, a large
number of M/T cells fired spontaneously, laterally inhibiting
odor-driven M/T cells via GCs. Turning feedback ON suppressed
these spontaneously active M/T cells, leading to disinhibition of
odor-driven M/T cells. When more glomeruli were activated by
the model odors (Figure 2F), we found suppression and
enhancement of odor-driven M/T cells (Figures 2G1-2G3). Cells
with a firing rate of less than 20 spikes (spks)/s were largely sup-
pressed by feedback (p < 0.001, Wilcoxon signed-rank test),
consistent with previous findings (Boyd et al., 2012). However,
for M/T cells with higher firing rates (not reported in Boyd et al.,
2012), our model predicted that their responses would be
enhanced by feedback. The effect of feedback on M/T activity
thus depended on the number of activated glomeruli; this was
not surprising because differences in glomerular activation pat-
terns vary depending on odor identity and concentration.

Next, to dissect the synaptic input contributing to the dy-
namics of the network (Nelson and Valakh, 2015), we plotted
the voltages and various synaptic inputs for two M/T cells (Fig-
ures 3A1 and 3B1). The example cell receiving glomerular input
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Figure 1. Spiking network schematics and odor definition

(A) Schematics of the MOB-PCx network. In the main olfactory bulb (MOB), glomeruli (G) in the glomerular layer (GL) relay sensory information to mitral/tufted
(M/T) cells in the mitral cell layer (mcl). M/T cells receive inhibition from granule cells (GCs) in GC layer (GCL). In the piriform cortex (PCx), piriform cortical (PC)
neurons in layer 2 (I.2) and feedforward inhibitory (FFI) neurons in superficial layer (I.1) receive direct feedforward excitation from the MOB. Local inhibitory neurons
(FBI) in the deeper layer (I.3) provide feedback inhibition of PC cells. Excitatory synapses are shown in green and inhibitory synapses in red. Recurrent connections
between cells of the same type are omitted for clarity. The thick connecting lines from PC cells to GCs correspond to feedback from the PCx to the MOB.

(B) Glomerular input patterns for two odors. The color bar indicates the magnitude of glomerular input. The triangles on top indicate activation of the three
glomeruli. Left, odor 1: G1, 52 ms; G2, 74 ms; G3, 101 ms. Right, odor 2: G1, 52 ms; G2, 74 ms; G3, 110 ms.

(C) Magnitude of glomerular input for 30 example odors across 50 glomeruli.

(C1) Each column corresponds to an odor, and the two highlighted ones correspond to the two odors shown in (B).

(C2) Pairwise correlation of magnitude between different odors.

(C3) Histogram of the pairwise correlation of magnitude across all odor pairs (n = 44,850 pairs).

(D) Similar to (C) but for glomerular timing of each odor.

(M/T 1) only fired transiently in the early phase of the glomerular  The feedback-induced changes in M/T firing rates were bimo-
input for feedback OFF but fired throughout glomerular activa-  dally distributed. Feedback increased the signal-to-noise ratio
tion when feedback was ON. In contrast, the cell not receiving  of the MOB output by selectively enhancing the firing of M/T cells
glomerular input (M/T 2) fired spontaneously when feedback driven by odor-activated glomeruli and suppressing the activity
was OFF but was silenced when feedback was ON. A different  of M/T cells not connected to stimulated glomeruli.

model odor would activate a different subset of glomeruli, with We found that, similar to M/T cells, feedback resulted in
different subsets of M/T cells enhanced and suppressed by enhancement and suppression of firing rates in GCs (Figures
feedback. To understand the effect of feedback on M/T cells 2D and S3) even though all centrifugal inputs were excitatory.
across all odors, we compared the odor-evoked responses of  Suppression of GCs by feedback arose from disynaptic inhibi-
each cell between feedback ON and OFF (Figures 2C and S3). tion between GCs (Figures 3A2 and 3B2). One major source of
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Figure 2. Feedback modulates M/T cell firing by controlling the GC population

(A) MOB cell responses to an odor with feedback OFF.

(A1) Raster plot of M/T cells in one trial (top). Each row corresponds to the spike train of one M/T cell. Each tick mark represents a spike. The blue dashed line
indicates activation of the earliest glomerulus for the odor. Bottom: population firing rate of all M/T cells (mean + SD, n=10 trials).

(A2) Similar to (A1) but for GCs.

(B) Similar to (A) but for feedback ON. Three groups of M/T cells driven by odor-activated glomeruli fire persistently throughout a sniff, whereas others only fire
sparsely.

(C) Histogram of the feedback-induced changes in the firing rates of M/T cells (n = 1250) across all model odors (n = 300). Positive values of the firing rate change
signify enhancement by feedback, and negative values signify suppression.

(D) Similar to (C) but for GCs. GCs are enhanced and suppressed by changes in feedback.

(E) Firing rate kinetics of randomly sampled M/T cells (n=9 cells per sampling repeat) from the entire M/T cell population for feedback OFF and ON.

(E1 and E2) Population firing rate of randomly sampled M/T cells to two example odors. Thick lines are exponential fits to decay from peak to end of a sniff (mean + SD,
n = 20 repeats). The time constants of exponential decay are indicated.

(legend continued on next page)

4 Cell Reports 38, 110545, March 22, 2022



Cell Reports

this disynaptic inhibition could be deep short-axon cells (dASACs)
which, compared with GCs, receive a higher convergence and
stronger excitatory drive from the PCx (Boyd et al., 2012). dSACs
also receive inputs from M/T cells and provide feedforward inhi-
bition to GCs (Burton and Urban, 2015). In our network, the
heterogeneous parameters used for GCs covered a diversity of
biophysical properties (STAR Methods), including GCs and
dSACs in the GC layer (GCL). For example, GC-1, receiving
stronger top-down feedback, was more like a dSAC and, thus,
enhanced by feedback, whereas GC-2, receiving less top-
down feedback, was more like a GC and, thus, suppressed
(Figures 3A2 and 3B2), consistent with the heterogeneity in
the feedback among GC population observed previously (Otazu
et al., 2015).

Balance between excitatory and inhibitory inputs is essential
for stabilizing the dynamics of a network (Chen and Padmanab-
han, 2020; Ozeki et al., 2009). We found that feedback played a
role in stabilizing this balance. To quantify this, we calculated the
ratio of excitatory and inhibitory synaptic inputs for each cell (Fig-
ures 3C and 3D). Positive values indicated that a cell’s sub-
threshold membrane dynamics were dominated by excitation,
whereas negative values corresponded to a net inhibitory drive,
with zero corresponding to a balance of the two. When feedback
was OFF, weak inhibition dominated M/T cells and excitation
dominated GCs (Figure 3C). However, when feedback was
ON, the synaptic drive to M/T cells and GCs became bimodally
distributed (Figure 3D). A large proportion of M/T cells became
dominated by strong inhibition, with a small population slightly
excited (Figure S3). Similarly, one subpopulation of GCs was
dominated by excitation and the other by inhibition, illustrating
the subdivision of functionally distinct GC subpopulations on
which top-down feedback had a different net effect. Feedback
therefore balanced excitatory and inhibitory drive across the
network. As a result, although M/T cells formed distributive con-
nections with GCs, feedback from the PCx revealed functionally
distinct subpopulations of local inhibitory interneurons differen-
tially sensitive to the ratio of excitatory to inhibitory inputs (E/I).

Feedback controls the temporal dynamics of the PCx,
leading to a circuit that is critical for pattern separation
The PCx has been shown to be essential for integrating odor in-
formation from individual glomeruli to form odor percepts (Gott-
fried, 2010; Miura et al., 2012; Stettler and Axel, 2009) and has a
critical role in guiding behaviors (Choi et al., 2011). We next
wanted to know how restructuring the dynamics of M/T cells
by changing feedback affects the dynamics of the PCx.

First, when feedback was OFF, piriform cortical (PC) cells
increased their population firing rates, peaking ~16 ms after acti-
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vation of the earliest glomerulus (Figure 4A). This activity was
sharply truncated by local feedback inhibitory (FBI) cells, which
were recruited within the PCx (Stern et al., 2018), and consistent
with the model where temporal to combinatorial remapping of
the neural representations of odors occurs from the MOB to
the PCx. When feedback was ON, however, PC cells fired
throughout the sniff cycle, including over activation of multiple,
temporally staggered glomeruli (Figure 4B). When the centrifugal
input to the bulb was ON, FBI cells in the PCx were recruited only
sparsely, no longer truncating the activity of PC cells (Figure S4).
This was due to the sparser M/T cell input that drove sparser
populations of PC cells (Figure 4A, center, purple dashed curve).
Across activation of 3, 5, or 10 glomeruli, feedback to the MOB
resulted in persistent and prolonged firing in PC cells (Figures 4C
and D1; n=300 odors). These results suggested that feedback
gated the temporal structure of neural activity in the PCx, across
different levels of M/T sparsity. The temporal structure of PC
cells was abolished when we activated all glomeruli in our model
(Figure S5), consistent with experiments that use wide-field op-
togenetic stimulations to drive all glomeruli on the dorsal surface
(Bolding and Franks, 2018). Stimulating all glomeruli resulted in
recruitment of a large population of FBIs, which truncated the
firing of PC cells even when feedback was ON. Finally, the tem-
poral structure of M/T cell activity was driven by differences in
the number, identity, and timing of glomerular activation. These
dynamics were due to complex network-level interactions
because simply increasing the spontaneous activity of GCs un-
der the feedback OFF condition did not result in the persistent
dynamics of PC cells as feedback (Figure S5).

We next studied the dynamics of PCx activity for each odor
with three quantities that captured the overall temporal structure
of the population: the peak firing rate, the delay between the
peak and the activation time of the earliest glomerulus, and the
decay rate from the peak to the baseline firing rate (Figure 4D2).
With feedback ON, the peak firing rate of PC cells decreased
significantly (Figure 4E1) because of a smaller subset of cells re-
sponding to odor presentation. However, activity across this
sparser population persisted longer with smaller decay rates
(Figure 4E2) and a reduced response latency relative to the
earliest glomerulus that was activated (Figure 4ES3, bottom).
These effects arose from the information relayed from the bulb
to the PCx because feedback had no significant effect on the
response latency of M/T cells receiving input from the glomeruli
(Figure 4E3, top).

These results only tell us that feedback can alter the dynamics of
activity in the PCx, leaving open whether such differences are
actually relevant for the coding of odor information. To address
this question, we used an odor discrimination task where an

E3) Time constants of exponential decay for all odors (n = 300 odors, p > 0.05, Wilcoxon signed-rank test). Lines correspond to 50 example odors pairs.

F) M/T cell responses vary with the number of glomeruli that are activated.

1
F2) Same as (F1) but for an odor activating 10 glomeruli.

G) Feedback ON has diverse effects on M/T cell responses to odors.

(G1-G3) Odor-evoked responses when 10 glomeruli are activated for three example M/T cells that are modulated differently by feedback. M/T 1, suppressed; M/T
2, neutral; M/T 3, enhanced. Top: raster plot of spikes across 100 trials for feedback OFF. Center: raster plot of spikes across 100 trials for feedback ON. Bottom:
trial-averaged firing rate of the cell.

(G4) Scatterplot of the mean M/T firing rate averaged across trials for the duration of glomerular activation. Inset: magnification of the shaded area of less than 20
spks/s shows that M/T cell responses are largely suppressed when feedback is ON. The red dashed line is the identity line.

(
(
(F1) The odor sequentially activates 5 glomeruli. Top: raster plot of M/T cells in one trial. Bottom: population firing rate of all M/T cells (mean + SD, n = 10 trials).
(
(
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Figure 3. Feedback modulates the interaction between excitatory and inhibitory (E/I) synaptic inputs in MOB cells
(A) Voltage trace (top black) and synaptic inputs (bottom) for two M/T cells and GCs when feedback is OFF.
(A1) M/T 1 receives glomerular input (cyan trace) from an odor-activated glomerulus. M/T 2 is connected to a non-activated glomerulus.

(A2) similar to (A1) but for two GCs when feedback (purple trace) is OFF.
(B) Similar to (A) but for feedback ON.

(B1) The same M/T cells as in (A1), but M/T 1 fires persistently throughout glomerular activation, and M/T 2 remains silenced when feedback is ON.

(B2) The same two GCs as in (A2).

(C) Histogram of excitatory and inhibitory synaptic inputs during a sniff for M/T cells (left) and GCs (right) when feedback is OFF. Glomerular input is not included in
excitation for M/T cells. Positive values mean that a cell receives more excitation, and a negative value means that the net synaptic input is inhibition.
(D) Similar to (C) but for feedback ON. Excitatory feedback to GCs is included in excitation for GCs.

animal is presented with two odors of varying similarity and trained
to respond to one of these stimuli. The more similar the two odors,
the more overlapping their neural representations. A measure of
computation would be how network activity renders the patterns
of PCx activity for these two representations more distinct.

We first presented two model odors (Figure 1B) to the network
and studied the responses of PC cells. When feedback was OFF,
both odors evoked a transient burst of spikes followed by a sharp
truncation and persistent suppression in the PCx. As a conse-
quence, the PC population firing rates were largely overlapping
(Figure 5A). When feedback was ON, however, the PC popula-
tion firing rates to different odors deviated significantly across
time (Figure 5B). To visualize these differences in the activity of
large ensembles of PC cells, we performed principal-component
analysis (PCA; STAR Methods) and displayed the population dy-
namics in a low-dimensional space defined by the first three
components (Figures 5C and 5D). PC activity to a given odor
was a trajectory that began at the origin and extended outward
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as different glomeruli were activated, returning to baseline at
the conclusion of the sniff cycle. Each odor produced a different
trajectory. The farther apart the trajectories, the more separable
the neural representations of the two odors would be. First,
ensemble trajectories for the two odors (Figure 5D) became
more separable when feedback was ON compared with when
feedback was OFF. This was consistent across a number of
odors (Figures 5E and 5F) revealing that the dynamics of PC cells
were shaped by the centrifugal inputs to the MOB. Temporal de-
correlation in the activity patterns of M/T cells has long been
known to be a feature of olfactory coding and odor discrimination
(Friedrich, 2001; Gschwend et al., 2015; Kato et al., 2012).
Turning feedback ON increased the temporal decorrelation (Fig-
ures 5E1 and 5F1), suggesting that one role of feedback may be
to enhance the existing mechanisms for odor discrimination by
making the population representations of odors more distinct
in the PCx (Figure 5E2 and 5F2; Braganza et al., 2020; Chen
and Padmanabhan, 2020).
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Figure 4. Feedback unravels the temporal structure in firing of piriform cells

(A) Piriform cortical (PC) cell responses to an odor with feedback OFF. Top: spiking activity of individual FFI neurons (raster) and mean firing rate for the population
of FFl cells. Center: spiking activity for individual PC cells and mean firing rate for the PC cell population. Bottom: spiking activity for individual FBI neurons and
mean firing rate for the population of FBI cells. PC cells fire with a transient burst of spikes that are sharply truncated by local FBIs and followed by persistent
suppression. Population firing rates: mean + SD, n= 10 trials. The purple dashed line (center) indicates the average PC cell firing rate for feedback ON. The blue
dashed line indicates activation of the earliest glomerulus for the odor.

(B) Similar to (A) but for feedback ON.

(C) Similar to (A) for two odors that activate 5 (C1) or 10 (C2) glomeruli.

(D) Comparison of PC cell population firing rates between feedback OFF and ON.

(D1) PC population firing rate in response to all model odors (mean + SD, n=300 odors). The traces of feedback OFF and ON are normalized to have the same
peak amplitude.

(D2) Schematic to quantify the dynamics of PC population firing rate in response to a single odor. Peak, the first peak in the trial-averaged population firing rate;
slope, the slope of a linear function (oblique dashed line) fitted to the mean firing rate between the peak and the first time when it drops below baseline; delay, the
latency between the peak and the activation time of the earliest glomerulus defined by the odor (vertical dashed line with a triangle on top).

(E) Comparison of PC dynamics between feedback OFF versus ON.

(E1) Peak firing rate. Connecting lines for 30 example odors are shown (mean + SD, n =300 odors, *** p<0.001, Wilcoxon signed-rank test).

(E2) Similar to E1 but for slope.

(E3) Histogram of the delay across 300 odors. Left: M/T cells. Right: PC cells.

Cell Reports 38, 110545, March 22, 2022 7




¢? CellP’ress Cell Reports

OPEN ACCESS

A B
Feedback OFF | | Feedback ON
Odor-1 ——Odor-2 ———Odor-1 Odor-2
©
o
g ‘|
£
i:f
o
©
o
= .
L
h'_:
i 50 ms -4 50 ms
215 23
[*% [*%
&10 3’12
£ £,
° Ee— 0 — — —_—
c ns ns 50 ms D 50 ms
=
<
%)
(@]
D- .
E1
0
©
(&]
=
=
E2
%)
O
o

Figure 5. Feedback increases the separation between PC cell responses to different odors

(A) PC cell responses to odor 1 and odor 2 (Figure 1B) with feedback OFF. Top and center: raster plot of PC cell responses to odor 1 and odor 2 in a trial. Bottom:
population firing rates of PC cells responding to two odors (mean + SD, n= 10 trials). The firing rate separations between odor 1 and odor 2 are nonsignificant (ns;
p>0.05, Wilcoxon rank-sum test).

(B) Similar to (A) but for feedback ON (mean + SD, n =10 trials). PC cells fire persistently to both odors. The firing rate between odor 1 and odor 2 are significantly
different during 70 — 90ms and 120 — 140ms (**p<0.01, Wilcoxon rank-sum test).

(C) Low-dimensional projections of ensemble trajectories of PC cells onto the first three principal components when feedback is OFF. Each trace corresponds to
a single-trial PC cell response to one of the odors (color coded).

(D) Similar to (C) but for feedback ON.

(E) The low-dimensional projected ensemble activity pattern of M/T cells (E1) and PC cells (E2) for feedback OFF. Each dot corresponds to a single-trial ensemble
activity, and each color corresponds to a different odor (n =7 odors). The M/T cell ensemble patterns are selected at t = 0ms (left) and t = 55ms (right). The PC cell
ensemble patterns are selected at t =10ms (left) and t =65ms (right).

(F) Similar to (E) but for feedback ON.
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Figure 6. Feedback enhances odor information gain in the PCx

(A) Schematic for quantifying the odor information encoded by PC cell population responses.

(A1) Odor-evoked PC cell responses in low-dimensional space (thick trace, trial-averaged responses; thin trace, single-trial responses). PC cell responses at a
single time step t are clusters of points visualized for simplicity on a 2D plane (gray). v; is the optimal linear decoder at each time.

(A2) PC responses for two different odors are projected onto v; and form two probability distributions.

(B) Symmetrized Kullback-Leibler divergence (D, ) for odor pairs that differ only by the identity of the first glomerulus (G1).

(B1) Schematic of glomerular activation patterns for a pair of model odors (color coded). Glomerular identity is denoted by the vertical position of boxes. G1 boxes
are non-overlapping and thus have different identities. G2 boxes (and G3) are overlapping and thus have the same identity. Staggered rectangles indicate
glomerular activation.

(legend continued on next page)
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Information gain in odor perception achieved by
feedback

The previous example highlighted the ways in which changing
glomerular identity resulted in differences in encoding in the
PCx and would be predicted regardless of whether the system
used a combinatorial or temporal code. We next studied how
neural representation of an odor in the PCx varied when the iden-
tity or timing of later-activated glomeruli was changed. Small
changes in concentration or chemical structure could result in
changes in the identity or timing of different glomeruli. By
defining odors not in terms of their chemical structures but in
terms of their glomerular activation patterns, we explored how
differences between two odors that activate different glomerular
patterns affect coding in the PCx (Carey et al., 2009; Chong et al.,
2020; Gire et al., 2013b; Smear et al., 2011; Soucy et al., 2009;
Spors and Grinvald, 2002).

First, we systematically varied the identity, timing, or both of
activated glomeruli across a total of 192 different model odors.
The PC population responses to repeated presentations of one
odor were visualized as low-dimensional trajectories (Figure 6A1,
thin curves). At any time during a sniff, responses were a cluster
of points distributed within the space, reflecting the variability
across trials for a given odor (points) and the variability across
different odors (color). At each moment in time, we assessed
the differences between the two distributions of odors by projec-
ting the points onto a time-varying optimal linear decoder (Fig-
ures 6A2 and S6; STAR Methods). The more separable the two
distributions were, the more accurately the odor could be de-
coded from the PC responses and, thus, the more information
was encoded in the PCx. We measured the amount of odor infor-
mation in the PCx by calculating the symmetrized Kullback-Lei-
bler divergence (D) (STAR Methods). The more distinct two
odor representations, the larger the Dy, . For example, at a given
time (t = 31ms), the PC responses to odor 1 and odor 2 were
more easily distinguishable when the feedback switched ON,

Cell Reports

giving rise to more separable distributions of the PC responses
(Figure S6).

We first considered odor pairs that differed only in the identity
of a single glomerulus. When the identity of the earliest activated
glomerulus (first glomerulus [G1]) was different (Figure 6B1), the
Dy, increased rapidly regardless of whether feedback was ON or
OFF (Figure 6B2, left). In these examples, the information in the
spiking activity to the different representations of the two odors
was sufficient to distinguish them, independent of whether feed-
back was ON or OFF. This was consistent with the previous
finding that G1 carried the bulk of information about each of
the odors (Wesson et al., 2008; Bolding and Franks, 2017; Chong
etal., 2020). Interestingly, when feedback was ON, the Dk; had a
larger magnitude and remained high even after G1 was no longer
active (Figure 6B2, right), suggesting that feedback enhanced
and maintained odor information gains across the sniff cycle,
even after the differences in glomerular activation had already
happened. For odor pairs differing in the identity of the second
or third activated glomerulus (G2 in Figures 6C1 and 6E1; G3
in Figures 6C2 and 6E2), we observed a significant increase in
Dy, for feedback ON compared with feedback OFF. These re-
sults remained valid even when we used a fixed readout dimen-
sion vy obtained from averaging across time and conditions (OFF
and ON; Figure S6). As a result, small differences between the
two odors being discriminated that would result in small differ-
ences in activation of the second or third glomerulus could be
informative to the PCx when feedback was ON (Schaefer and
Margrie, 2007). If the PCx could represent differences in glomer-
ular identity as differences in the timing of piriform activity
patterns, then could feedback also enable the PCx to encode dif-
ferences in the activation timing of glomeruli? When we pre-
sented model odors that activated the same subset of glomeruli
but with different onset latencies (At = 15 ms), turning feedback
ON significantly increased the Dy, for odors differing in activation
timing of the second or third glomerulus (Figures 6D and 6F).

(B2) Top: Dk, for one odor pair when feedback is ON or OFF (mean + SD, n=10 trials). Bottom: difference of Dk, (ADx, = ON-— OFF) across different odor pairs

differing in G1 identity (mean + SD, n = 19 odor pairs).

(B3) Decoding accuracy for the odor pair in (B2), top, using the K nearest neighbor algorithm. Three nearest neighbors are used, and different percentages of data

are used for training. Mean + SD, n=30 trials.

(C) Similar to (B1) but for glomerular identity difference only in G2 (C1) or G3 (C2).
(D) Similar to (C) but for timing differences in G2 (D1) or G3 (D2) by At = 15 ms. In this schematic, the boxes for G1, G2, and G3 are overlapping, but the staggered

rectangles are shifted by At.

(E) Dk and ADy, for glomerular identity difference only in G2 (E1) or G3 (E2). Top: Dk, for one odor pair (mean + SD, n =10 trials). Bottom: ADy; across different

odor pairs (mean + SD, n = 11 odor pairs for E1, n = 18 odor pairs for E2).
(F) Similar to (E) but for glomerular timing difference in G2 (F1) or G3 (F2).

(G) Cumulative Dk, over a sniff cycle to quantify the total amount of information in the PCx.
(G1) For odor pairs differing in the identity of a single glomerulus (same data as in B2 and E). Identity difference in G1, G2, or G3 is denoted by different shapes.

Dotted line, unity.

(G2) Similar to (G1) but for odor pairs differing in activation timing of a single glomerulus; same data as in (F).

(G3) Similar to (G1) and (G2) but for odor pairs with a combination of identity and timing difference in one or multiple glomeruli. Each circle denotes one odor pair,
and the color represents pairwise correlation between two odors and, thus, similarity.

(H) Decoding accuracy for the odor pairs in (E), top, using the K nearest neighbor algorithm. Three nearest neighbors are used, and 30% of data are used for

training.

(H1) The odor pair differs in the identity of G2. Error bars: mean + SD, n = 30 trials.

(H2) The odor pair differs in the identity of G3. Error bars: mean + SD, n=30 trials.

(I) Similar to (H) but for the odor pairs in (F), top. The odor pair differs in the timing of G2 (I1) and G3 (12). Mean + SD, n=30 trials.

(J) Maximum decoding accuracy for multiple odor pairs with glomerular identity difference in G2 (J1, n = 11 odor pairs) or G3 (J2, n = 18 odor pairs). Three
nearest neighbors are used, and 30% of data are used for training. Mean + SD, n=30 trials.

(K) Similar to (J) but for multiple odor pairs with a glomerular timing difference in G2 (K1) or G3 (K2).
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To ensure that our result was not due to features of the Dy,
analysis, we also implemented a linear decoder analysis using
the K nearest neighbor algorithm (STAR Methods). Consistent
with our Dy, analysis, turning feedback ON increased the accu-
racy of the linear decoder for identity and timing differences in
glomerular activation (Figures 6B3 and 6H-6K). The numbers
of nearest neighbors and proportion of training data did not
affect the results (Figure S7), demonstrating that feedback
increased the odor information and decoding accuracy in the
PCx across different metrics of coding efficiency.

We summarized the differences in coding across all odors us-
ing the cumulative Dy, which served as a measurement of the
total amount of information gained from the differential activation
of glomeruli between odor pairs. When feedback was ON, a sig-
nificant increase occurred in the information in spiking patterns
across odors that differed in identity or timing over the three acti-
vated glomeruli (Figures 6G1 and 6G2). Activating feedback
increased the information gain between two different odors
regardless of their similarity, as measured by the input correla-
tion (range, 0.1-0.9; Figure 6G3). Our results revealed a func-
tional role for feedback: effective encoding of glomerular identity
and timing using the temporal structure and combinatorial pat-
terns of cell activity in the PCx.

Feedback improves behavioral performance in odor
discrimination

Our analysis left open the question of whether this information
could be utilized by animals in decision-making. For example,
what, if any, effect would controlling feedback have on an ani-
mal’s behavioral performance when asked to distinguish be-
tween two odors? Did the feedback circuit affect the accuracy
(how often mistakes are made) or reaction time (how long a
response takes) in an odor discrimination task? Such behavioral
measurements are performed in animal experiments and can act
as a proxy for the information in the PCx to which animals actu-
ally have access (Abraham et al., 2010; Uchida and Mainen,
20083).

We bridged the gap between neural coding and behaviors us-
ing a two-alternative forced choice (2AFC) task (STAR Methods)
and then applying the sequential probability ratio test (SPRT) (Bo-
gacz et al., 2006; Gold and Shadlen, 2007) to model behavioral
performance. On each trial, a randomly chosen odor (odor 1 or
odor 2) was presented, with the odor onset aligning to the start
of a sniff. During a sniff cycle, noisy momentary evidence was
gained from observing the PC responses sampled from the
odor-evoked probability distribution (Figures 7A1 and 7A2). A
choice was made when the accumulated evidence reached one
of the decision boundaries (Figure 7A3), and the reaction time
was recorded to account the decision and a motor delay (normally
distributed with mean =50ms and SD = 5ms). Because only one
sniff has been shown to be sufficient for the animal to make deci-
sions (Uchida and Mainen, 2003; Wesson et al., 2008), the model
was constructed to report which odor was presented by the end
of a single sniff (odor 1 or odor 2). If neither decision boundary was
reached before the end of the sniff, the choice was made by
chance (P(Odor — 1) = P(Odor — 2) = 0.5), equivalent to a
random guess the animal might make because it could not distin-
guish between the two odors.

¢? CellPress

To examine how accuracy and reaction time of discrimination
were influenced by odor similarity, we varied the glomerular
timing between two odors by 5ms increments in each glomerulus.
The larger the difference in glomerular timing, the more different
the two odors were. Such differences corresponded to differ-
ences in odor concentration or odor identity (Meister and Bon-
hoeffer, 2001; Schaefer and Margrie, 2007) in a discrimination
task requiring the animal to discriminate between two similar
odors or between different concentrations of a single odor. The
differences the animal perceives would be due to differences in
the timing of the activated glomeruli. First, when we simulated dif-
ferences in timing of G1 between the two odors (Figure 7B1), the
accuracy increased and the reaction time was reduced, regard-
less of whether feedback was OFF or ON (Figure 7C1), a result
consistent with previous studies (Palmer et al., 2005; Uchida
and Mainen, 2003). However, for any given difference in glomer-
ular timing associated with two different odors, switching feed-
back ON increased the accuracy and reduced the reaction
time, corresponding to an improvement in the animal’s behav-
ioral performance. For subsequent glomeruli, differences in the
timing of glomerular activity could occur bidirectionally; i.e.,
glomerulus 2 (G2) activated by odor 1 could occur earlier (nega-
tive values) or later (positive values) than G2 for odor 2 (Figures
7B2 and 7B3). For both timing shifts associated with G2 or G3,
the discrimination performance was improved when the feed-
back was ON (Figures 7C2 and 7C3). Interestingly, shifting the
G2 or G3 latencies earlier resulted in larger changes in accuracy
and reaction time compared with shifting them later, providing
further support for the importance of the earliest activated
glomeruli in guiding odor discrimination behaviors (Chong et al.,
2020; Wilson etal., 2017). Atemporal shift of —45ms in G2 latency
for one odor would mean that G2 becomes the first one activated,
making it G1. The resultant alternation in the order of glomerular
activation would render the differences between the two odors
differences in glomerular identity rather than timing. As a conse-
quence, we observed a steep rise in accuracy (a more than 10%
increase from —40ms to — 45ms) as well as a decline in the reac-
tion time (a more than 50ms reduction from —40ms to — 45ms),
echoing the important role of the earliest activated glomerulus
in odor perception. Our results revealed the essential role of feed-
back in shaping how odor information could guide animal
behavior in this example of an odor discrimination task.

DISCUSSION

Using a spiking neuronal network model that recapitulated the
details of circuit architecture within and between the MOB and
PCx, we identified a role of feedback. The PCx was able to
extract information about odors from the identity and timing of
activation patterns across M/T cells. When the feedback was
OFF, PC cells responded transiently to the earliest activated
glomerulus, consistent with the models of olfactory coding,
where the combinatorial pattern of activated cells is used to
represent odors (Stern et al., 2018). When the feedback weights
to the local inhibitory interneurons (GCs) in the MOB were ON,
PC cells fired persistently throughout odor presentation. The
temporal structure of PC cells reflected the successive activation
of the M/T cell population by different glomeruli and was
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Figure 7. Feedback improves behavioral performance in odor discrimination

(A) Decision-making modeled as an evidence accumulation process according to sequential probability ratio test (SPRT).

(A1) The time-varying probability distribution of the projected PC cell responses along v; to two odors differing only in activation timing of G1 by 35ms. The
triangles at the bottom indicate the activation timing of the earliest glomerulus (G1). The gray vertical lines indicate the slice att = 70ms.

(A2) The distributions sliced at t =70ms in (A1). A sample y* is generated by the distribution of odor 1 (assuming odor 1 is presented). The momentary evidence at

this time step is calculated by the log likelihood ratio of the sample.

(A3) Traces of the accumulated evidence over time for feedback ON or OFF. A decision is made when the boundary + B is reached. Otherwise, a choice is made

by chance at the end of the sniff.

(B) Schematic of temporally shifting the activation timing of each glomerulus.
(B1) Temporal shift in G1.

(B2) Bidirectional temporal shift in G2.

(B3) Bidirectional temporal shift in G3.

(C) The accuracy and reaction time as a function of the timing differences in glomerular activation (mean + SD, n = 10 agents).

(C1) Timing differences in G1 activation (odor 1: G1, 40ms; G2, 86ms; G3, 177ms; odor-2: G1, 40ms + At; G2/G3: the same as odor 1).
(C2) Timing differences in G2 activation (odor 1: G1, 40ms; G2, 78ms; G3, 113ms; odor 2: G2, 78ms + At; G1/G3: the same as odor 1).
(C3) Timing differences in G3 activation (odor 1: G1, 54ms; G2, 81ms; G3, 120ms; odor-2: G3, 120ms + At; G1/G2: the same as odor 1).

informative about odors. Activity patterns across the PC popula-
tion to different odors were consequently more separable with
feedback ON. This effect was robust to differences in identity
or timing of the earliest or later-activated glomeruli over the
course of a sniff. In an odor discrimination task, increased infor-
mation in PCx activity patterns resulted in improved behavioral
performance regarding accuracy and reaction time. Our findings
align with experimental results summarized in Table S4.
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Many coding strategies have been proposed based on the
structure of neural circuits and the activity patterns in the early
olfactory system. Features of odors, including their identity and
concentration, are represented in the temporal patterns of
glomerular activation (Baker et al., 2019; Rubin and Katz, 1999;
Spors and Grinvald, 2002; Vincis et al., 2012) and result in differ-
ences in the identity and timing of activated M/T cells (Bathellier
et al., 2008; Cury and Uchida, 2010; Kay and Laurent, 1999). In
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the PCx, this temporal information from the bulb is remapped
onto a combinatorial pattern of activity across piriform cells
(Bolding and Franks, 2017; Stern et al., 2018; Stettler and Axel,
2009). Such a coding strategy is attractive for a number of rea-
sons. First, the random connectivity of M/T cells to individual
PC neurons provides an anatomical underpinning for a combina-
torial code (Sosulski et al., 2011). Second, such an architecture
may be one biological implementation of compressed sensing
(Babadi and Sompolinsky, 2014; Ganguli and Sompolinsky,
2012; Stevens, 2015). Finally, neurophysiological studies show
that local inhibition within the cortex (Bekkers and Suzuki,
2013) truncates the activity of PC neurons, restricting patterns
of neuronal firing to narrow windows of opportunity (Bolding
and Franks, 2017; Miura et al., 2012), analogous to network
packets in digital communication.

However, results from recent studies suggest that refinement of
this model may be appropriate. First, laboratory studies often
control the odor onset and offset experimentally, but natural
odor plumes fluctuate across multiple spatial and temporal scales
(Ackels et al., 2021; Lewis et al., 2021; Celani et al., 2014; Moore
and Atema, 1991; Riffell et al., 2014; Schmuker et al., 2016;
Szyszka et al., 2014), making a single window corresponding to
odor onset and offset difficult to define. Second, a number of
studies have shown that animals use information in the timing of
glomerular activation to guide behavior (Chong et al., 2020; Re-
bello et al., 2014; Smear et al., 2011). Rodents can be trained to
discriminate between highly similar odors, and their accuracy is
strongly correlated with reaction time (Rinberg et al., 2006; Uchida
and Mainen, 2003). Accuracy increases significantly when the
mice sample the odor stimulus for longer periods of time (Ackels
et al., 2021), suggesting that information is gained throughout
odor presentation rather than only at the onset of an odor or within
a narrow sniff-locked time window. To maintain the same level of
accuracy, mice require more time to discriminate odor pairs with
highly overlapping spatial temporal patterns of glomerular activa-
tion than odor pairs with dissimilar glomerular patterns (Abraham
etal., 2004), suggesting that temporalintegrationis needed for the
olfactory system to discriminate highly similar odors. These data
point to a framework in which temporally rich neural codes in the
bulb are relayed into the PCx, encoding information about odors
in a continuous way. We found that this information is gated by a
single flexible circuit, where feedback from the PCx to the bulb de-
termines which critical features of activity are relayed to the olfac-
tory cortex.

If two odors are markedly different, a combinatorial code in the
PCx would be sufficient for olfactory discrimination. However, in
cases where an odor discrimination task is complex because the
two odors activate highly overlapping populations of glomeruli, a
change in the top-down weight of feedback would provide ac-
cess to temporal information in the olfactory code (Chen and
Padmanabhan, 2020; Hiratani and Latham, 2020; Schaefer and
Margrie, 2007). First, feedback would enhance the signal-to-
noise ratio of MOB output. Second, by encoding later-activated
glomeruli in the firing of PC cells, feedback would allow time to
be an additional dimension with which an animal can gain infor-
mation about odors. Such a strategy would support encoding of
fast fluctuations that occur in odor plumes. The computational
benefits of feedback in our model also capture the sparsity of
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FBI recruitment in the PCx. When FBls in the olfactory cortex
are sparsely recruited under the feedback ON condition, PC cells
fire persistently, preserving their temporal coding. Consistent
with this idea, performance in odor discrimination degrades
quickly as local inhibition in the PCx becomes stronger (Hiratani
and Latham, 2020).

We remain agnostic about the mechanisms that flexibly turn
centrifugal feedback ON and OFF. Changes in top-down control
may correspond to an array of behavioral state changes,
including anesthesia (Kato et al., 2012; Rinberg et al., 2006). State
differences would affect not only feedback from the PCx but also
other signals, including neuromodulators (Brill et al., 2016). Neu-
romodulators such as serotonin act on short axon cells (via 5HT
2C receptors) (Brill et al., 2016; Petzold et al., 2009) and M/T cells
(Kapoor et al., 2016). Differences in performance observed
across trials in animal studies (Chong et al., 2020; Gill et al.,
2020) may thus reflect differences in neuromodulatory state
across those trials. Feedback weights could also change
because of synaptic plasticity. Several studies have shown that
the PCx is involved in olfactory learning (Cohen et al., 2008; Has-
selmo and Bower, 1990; Litaudon et al., 1997), and long-term
potentiation (LTP) and plasticity in the PCx can regulate activity
in the bulb (Cauthron and Stripling, 2014). Here, switching be-
tween feedback ON and OFF would be akin to changing synaptic
weights over the course of learning. Finally, changes in the
weights of feedback may be due to adult neurogenesis (Lledo
et al., 2005; Arenkiel et al., 2011; Deshpande et al., 2013). The
integration and response properties of these adult-born GCs
are dependent on sensory experience (Alonso et al., 2006; Lep-
ousez et al., 2014; Livneh et al., 2009; Rochefort et al., 2002),
which may require piriform feedback (Wu et al., 2020). As a
consequence, the structure of connections from the PCx to
GCs are likely not random but contain information about olfactory
learning (Livneh and Mizrahi, 2012; Sailor et al., 2016).

Limitations of the study

First, our computational model isolates top-down feedback from
the PCx, but there are multiple sources of feedback to the bulb
(Padmanabhan et al., 2019). Second, our model does not
consider the influence of neuromodulators that affect network
dynamics throughout the early olfactory system. Despite these
limitations, our results identify a framework for how feedback
could influence animal behavior on diverse time scales.

The PCx affects the temporal structure of activity patterns it re-
ceives. This modulation likely depends on how different behav-
iors in the lab or in the wild engage feedback circuits (Ackels
et al., 2021; Bolding and Franks, 2018; Boyd et al., 2012; Chong
et al., 2020; Gill et al., 2020; Otazu et al., 2015; Wu et al., 2020).
We propose that these differences in the temporal activity pat-
terns of the PCx reveal a mode for sensory processing, where in-
formation about odor identity and concentration is flexibly
shifted, depending on the different ethological demands that
are placed on the animal.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
Raw and analyzed simulation data This paper https://doi.org/10.5281/zenodo.6143717

Code for simulating and analyzing network This paper https://doi.org/10.5281/zenodo.6143717
responses

Software and algorithms
MATLAB_2021a MathWorks https://www.mathworks.com/products/
matlab.html

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Krishnan
Padmanabhan (krishnan_padmanabhan@urmc.rochester.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
o Simulated data have been deposited at Zenodo and are publicly available as of the date of publication. DOls are listed in the key
resources table.
® All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOlIs are listed in the key
resources table.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Organization and architecture of the model

The MOB consisted of 50 glomeruli (G) corresponding to the olfactory receptor neuron (ORN) inputs (Mombaerts et al., 1996).
Each glomerulus was connected to 25 mitral/tufted (M/T) cells for a total 1250 M/T cells. Within the MOB, a local population of
12,500 inhibitory granule cells (GCs) formed reciprocal and lateral inhibitory connections with M/T cells. Individual M/T cell
“projections” formed random excitatory connections with 10,000 piriform cortical cells (PCs) in PCx. These PCs in turn
“projected” back to the olfactory bulb, providing excitatory feedback (thick lines in Figure 1A) onto the inhibitory granule cells
in the bulb. Within PCx, two types of inhibitory interneurons were included: a population of 1,250 feedforward inhibitory neurons
(FFIs) that received excitatory input from M/T cells and inhibited both PCs and other FFls, and a population of 1,250 local
feedback inhibitory neurons (FBIs) that received input from a random subset of PCs and subsequently inhibited PCs and other
FBIs.

Our model including the predominance of inhibitory granule cells (GCs) in the bulb (outnumbering M/T cells 10 to 1), the
distributed connections between M/T cells and GCs (Urban and Sakmann, 2002; Willhite et al., 2006), the random projections
of M/T cells to the piriform cortex (Ghosh et al., 2011; Miyamichi et al., 2011; Sosulski et al., 2011), the local inhibitory popu-
lations in the cortex (Bekkers and Suzuki, 2013; Bolding and Franks, 2018; Oswald and Urban, 2012) and the structure of feed-
back from the piriform cortex to the bulb (Choi et al., 2011; Padmanabhan et al., 2016; Price and Powell, 1970). Furthermore the
model includes including such features as M/T biophysical diversity (STAR Methods) and glomerulus-specific long latency in-
hibition of granule cells (Figure S1) were matched to experimental data (Kapoor and Urban, 2006; Padmanabhan and Urban,
2014; Soucy et al., 2009).

Voltage dynamics of individual neurons

The voltage dynamics of individual cells in the network were modeled as spiking neurons (Izhikevich, 2003) described by a two-
dimensional (2D) system of ordinary differential equations of the form,
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(Equation 1)
d—u—a(bv —u)
at—
with the after-spiking resetting
ifv>30mV, thenv«c, u—u+d (Equation 2)

Here v represented the voltage (mV) of the neuron and u represented a dimensionless membrane recovery variable accounting for
the activation or inactivation of ionic currents; t is time and has unit of ms; a,b,c and d are parameters that were be adjusted to gener-
ated diverse firing patterns; / represented synaptic currents or injected dc-currents to the neuron.

We choose to use this neuron model to simulate the voltage dynamics of individual neurons because: 1). It combined the biological
plausibility of the Hodgkin-Huxley neuron model and the computational efficiency of leaky integrate-and-fire neuron model, allowing
us to simulate tens of thousands of spiking neurons simultaneously in our network; 2). Different combinations of the parameter values
a,b,c and d could reproduce a diversity of firing patterns of neurons of known types, so we could capture the biophysical diversity in
the firing properties for different types of neurons in olfactory system, such as the mitral/tufted (M/T) cells and granule cells in the main
olfactory bulb (MOB), and piriform cortical cells and other local inhibitory interneurons in piriform cortex (PCx). In order to achieve
heterogeneity such that different cells within the same type exhibited different dynamics, we introduced randomness in the param-
eter assignment (see Table S1). The r; was a random variable uniformly distributed on the interval [0, 1] and i denoted the neuron in-
dex. For example, the parameter a was distributed on the interval [0.02, 0.1] within which various firing patterns could emerge. We
also used r? or r? to bias the distribution to different extents for different cell types. Overall, based on our choice of parameters in the
Izhikevich model, the spiking patterns of PCs and M/T cells largely fell into the category of regular spiking, intrinsically bursting or
chattering neurons (Connors and Gutnick, 1990; Davison and Ehlers, 2011; Padmanabhan and Urban, 2014). Inhibitory neurons
including GCs and FFIs/FBls in the network generated spiking patterns as fast spiking neurons and low-threshold spiking neurons
(Burton and Urban, 2015; Egger, 2005; Gibson et al., 1999; Suzuki and Bekkers, 2012).

Within the same cell type, the parameters spanned a wide range of values to achieve heterogeneity in cell dynamics. Especially for
GCs, our model did not distinguish granule cells and dSACs, and therefore GCs in our model consisted of both granule cells and
dSACs.

Synaptic input / to each neuron depended on the neuron type. For a cell i in MOB, /; was a linear superposition of various sources

[; = me=ex 4 957 josn  fleedback g, (Equation 3)

Here, represented excitation from M/T cells and existed for both M/T cells and GCs. For GCs, when an M/T cell fired, the
excitatory postsynaptic current (EPSC) I~ into different GCs were delayed by different latencies, resulting in different spiking la-
tencies of GCs (Figure S1), consistent with previous experimental findings in the olfactory bulb granule cell network (Kapoor and Ur-
ban, 2006). The #°~" represented inhibition from GCs and existed for both M/T cells and GCs. I°*" represented glomerular input and
only existed for M/T cells. When a glomerulus was activated by a model odor, it provided correlated inputs /757 to the M/T cells driven
by that glomerulus. When a glomerulus was activated, the input current /?°” that an associated M/T cell received was modeled as a
step function with Gaussian noise added (Figure S2). Since each glomerulus received inputs from a set of receptor neurons express-
ing the same olfactory gene type, the inputs to individual glomerulus from receptor neurons were correlated (Dhawale et al., 2010;
Koulakov and Rinberg, 2011; Lledo et al., 2005; Wachowiak et al., 2004). Therefore, we assumed that the glomerular inputs to the
apical dendrites received by the M/T cells associated with the same glomerulus were correlated, and the values in Figure S2 indicated
the average correlation coefficient among them. No input correlation between M/T cells associated with different glomeruli was
assumed. ffeedback represented excitatory centrifugal input from piriform cells and was non-zero only for GCs when feedback is
ON. We set it to zero for all GCs when feedback was OFF. The &, represents Gaussian white noise input with zero mean and standard
deviation ¢ =1.75 for M/T cells and ¢ =0.8 for GCs.

Similarly, for a cell i in PCx, I; was composed of

|mc—ex
i

I Y Y (Equation 4)

where I°? represented input from M/T cells in MOB and only existed for piriform cortical cells (PCs) and feedforward inhibitory neu-
rons (FFls); I7°~® represented excitation from PCs and existed for both PCs and feedback inhibitory neurons (FBls); I represented
inhibition from local inhibitory neurons including FFls and FBls; »; represented Gaussian white noise input (zero mean and standard
deviation ¢ = 0.9) and only existed for PCs.

Each action potential fired by a presynaptic neuron evoked a jump in the corresponding synaptic inputs of all its postsynaptic tar-
gets by an amount equal to the appropriate synaptic strength. For example, action potentials of an M/T cell induced jumps in the
excitatory currents of their postsynaptic target neurons, including /=% in M/T cells and GCs in MOB, and /™" in FFls and PCs
in PCx. These synaptic inputs then decayed to zero with time constant 10ms. The height of the jump was determined by the pairwise
synaptic strength between any two neurons and their values were given in the synaptic weight matrix described in the next section.
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SYNAPTIC STRENGTH AND MODEL NETWORK ARCHITECTURE

The MOB consists of 50 glomeruli, each of which drives 25 M/T cells, thus a total 1250 M/T cells in MOB. A local population of 12,500
inhibitory GCs formed reciprocal and lateral inhibitory connections with M/T cells. Thus, within the MOB, we generated a weight ma-
trix Wnop 0f 13, 750 by 13, 750 with entry Wﬁ’;,ob representing the synaptic strength from presynaptic neuronj to postsynaptic neuroni.
Depending on the cell type, this matrix W, was partitioned into four sub-matrices, i.e., from M/T cell to M/T cell, from M/T cell to GC,
from GC to M/T cell and from GC to GC. The specific value of each entry in W,o,, was assigned randomly according to two param-
eters we chose for each sub-matrix. One was the connection density (the percentage of non-zero synaptic weights) and the other was
the average synaptic strength (mean of a uniform distribution from which individual synaptic weights were sampled). Each sub-matrix
had its own value of the connection density and average synaptic strength. In particular, the connection density and average synaptic
strength between M/T cells driven by the same glomerulus were higher than between M/T cells driven by different glomeruli.

Individual M/T cell “projections” formed random excitatory connections with 10,000 PCs and 1,250 FFls in PCx, giving rise to a
feedforward weight matrix Wy of 11,250 by 1250. Within PCx, PCs formed recurrent excitations with each other. The FFls inhibited
both PCs and other FFls, and another population of 1,250 FBIs that received input from a random subset of PCs inhibited PCs and
other FBIs. Therefore, we generated a matrix W, of 12,500 by 12, 500 that identified all synaptic weights between cells in PCx. PCs
“projected” back to the MOB, providing excitatory feedback to GCs, giving rise to a feedback weight matrix Wy, of 12, 500 by 10, 000.
Under the condition of feedback OFF, this Wy, was set to be a zero matrix. The connection density and average synaptic strength for
all sub-matrices can be found in Table S2. The parameters are all chosen heuristically based on previous theoretical and experimental
studies listed in Table S2.

Feedback projections from piriform cortex to the bulb may be structured. Retrograde rabies tracing has demonstrated that piriform
cells projecting to GC populations in the bulb tend to be spatially clustered (Padmanabhan et al., 2016). Furthermore, a number of
studies suggest that GC synapses are especially sensitive to plasticity (Livneh and Mizrahi, 2012; Sailor et al., 2016), either through
adult neurogenesis or more traditional mechanisms of synaptic reorganization. To implement all of these features, we structure the
feedback projections to GCs such that the PCs receiving feedforward inputs from the M/T cells of certain glomeruli project back to
the GCs which were reciprocally connected with M/T cells associated with other glomeruli. Reciprocal connectivity between M/T
cells and GCs was defined as: M/T-1 excites GC-1 and GC-1 inhibits M/T-1, as observed by many studies (Wanner and Friedrich,
2020; Willhite et al., 2006). Across the M/T population, there were 291 + 9 (mean + SD, n=1250 M/T cells) GCs that were reciprocally
connected with each M/T cell. As a result, each PC projected to 7368 + 64 GCs (mean + SD, n=10000 PCs) with weight magnitude
larger than 0.01. All feedback synaptic weights were randomly generated with small magnitude less than 0.05, and this structure gave
rise to a dense but weak connectivity matrix Wyg,. Due to the sparsity of the PC firing when feedback was ON, this dense and weak
top-down connectivity ensured robust influence of PCs on GC activity and thus the contribution of PCx on odor processing in MOB.

Model odor definition

Model odors were defined by the combinatorial patterns of glomeruli which were activated successively with different glomerular
timing, a pattern recapitulating the spatiotemporal structure of odor inputs (Rubin and Katz, 1999; Meister and Bonhoeffer, 2001).
Specifically, when a model odor was presented, three glomeruli were activated (6% of all glomeruli) and all the M/T cells associated
with those glomeruli received correlated glomerular input /°5" which lasted for 90 ms (Figures 1B and S1). We also activated 5, or 10
glomeruli, reflecting not only the combinatorics of timing and identity, but also different number of glomeruli activated by natural
odors. A table of 300 model odors were defined as the odor inputs to our network Figure S1).

Model odors with denser glomerular activation

To ensure our results remain valid for models odors with denser glomerular activation and higher degree of overlap, we also generated
different model odors which activated 5 or 10 glomeruli respectively (see Figures 2F and 4C), which gave rise to 10%-20% of glomer-
ular activation, similar to the level evoked by natural odors in awake mice (Vincis et al., 2012). We also did linear decoder analysis for
these model odors with higher degree of overlap. The odor pair in Figure S7F were overlapped in the first 3 glomeruli and thus highly
correlated (corr = 0.90) and the odor pairin Figure S7G were overlapped in the first 7 glomeruli and also highly correlated (corr = 0.91).

Network dynamics simulation

The network dynamics were governed by a large set of differential equations of the form Equation (1) coupled by the pairwise synaptic
weights between different neurons. These equations were numerically solved using the first-order Euler’s method with a uniform step
size At = 1ms. The initial conditions were obtained by first running the network without glomerular input (/7" = 0) but only with noisy
input (¢; and n;) for 600ms. This allowed the network to reach a steady state determined by its intrinsic dynamics. Afterward we simu-
lated the network using model odors for 250ms which was roughly the duration of one sniff cycle. The network spiking activity within
this period were used for later analysis.

Randomly sampled “single units” from the network

For each odor, we randomly sampled 9 cells from the entire M/T cell population, with at least 1 odor-driven M/T cell included. We then
computed the population firing rate for these sampled M/T cells. This process of random sampling was repeated 20 times, with each
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repeat reflecting a different random subset of 9 M/T cells to ensure that the kinetics was not a result of artifacts of selecting a single
subset. The mean population firing rate of sampled M/T cells across all 20 repeats was then used to fit the exponential function for
that odor (Figure 2E3). To obtain error bar for a single odor, as shown in Figures 2E1 and 2E2, the entire process was repeated 20
times so that we obtained 20 mean population firing rates, each of which was generated by 20 times of random sampling. This sam-
pling strategy allowed us to compare our model results where we had access to every cell in the network, with experiments where a
subset of neurons are recorded from using either tungsten or silicone probes (Bolding and Franks, 2018; Chockanathan et al., 2021;
Rinberg et al., 2006).

Exponential fit of the kinetics of randomly sampled M/T units

We fit a single-term exponential function y =a-exp(—7x) using the Matlab code fit(x,y,’exp1’), where the coefficient r denoted the time
constant of the kinetics decay. For each odor, we fit the function from the peak of the mean firing rate to the end of the sniff and ob-
tained time constant 7.

Balance between excitatory and inhibitory synaptic inputs

To understand the balance between excitatory and inhibitory synaptic inputs for MOB cells, we computed the overall amount of excit-
atory and all inhibitory inputs to each cell. The excitatory sources for M/T cells included the recurrent MC excitation /°~%; for GCs
they included excitation from M/T cells /™~ and excitatory feedback /¢ when feedback was ON. The inhibitory source for both
M/T cells and GCs was the I?C”". For each MOB cell, the areas under the excitatory and inhibitory synaptic inputs averaged over 10
trials were computed respectively and an algebraic sum of the two. This value, as referred to E/I balance in Figures 3C and 3D, was a
measurement of the overall driving effect of the excitatory and inhibitory inputs on each cell during a sniff. Positive (negative) values
for a cell indicated that it was dominated by excitation (inhibition) and a zero simply corresponded to a balance.

Principal component analysis (PCA)

Spiking activity of piriform cells (PCs) was binned into a 5ms sliding time window and averaged across trials (each model odor was
presented in 10 trials). We then concatenated the trial-averaged responses of all piriform cell (PCs) to all 300 model odors under both
conditions of feedback OFF and ON, resulting in a matrix of 10,000 PCs by 247 time bins x 300 odors X 2 conditions. Response
covariance matrices (10,000 by 10,000) were computed for this concatenated matrix (after subtracting the mean responses aver-
aged across time bins, odors, and conditions). This gave us a single set of eigenvectors, thus the same eigenspace into which
PC responses for both feedback OFF and ON were projected and compared. Each 10, 000-dimensional PC response vector was
then projected onto the first 3 principal eigenvectors for visualization (Figure 5) and the first 50 principal eigenvectors for computa-
tions (Figures 6 and S6).

Symmetrized Kullback-Leibler divergence Dy,

To quantitatively assess the effect of feedback on odor processing in the PCx, we computed the instantaneous symmetrized
Kullback-Leibler divergence Dk, of the two distributions P;(y|Odor —1) and P;(y|Odor —2) which were built from the single-trial
PC responses to the two odors at each time step t. We used three types of odor pairs: 1). odor pairs with identity differences in a
single glomerulus (19 pairs for glomerular-1, 11 pairs for glomerular-2 and 18 pairs for glomerular-3); 2). odor pairs with timing
differences in a single glomerulus (19 pairs in G1, 11 pairs in G2 and 18 pairs in G3); 3). odor pairs with both identity and timing dif-
ferences in multiple glomeruli (192 pairs in total with different correlations in latency).

For a given odor pair, each of the odors was presented for 100 trials and the responses of PCs were recorded and then projected to
the first 50 principal eigenvectors. At each time step, the PC responses to each odor gave rise to a cluster of points in the 50-dimen-
sional space, with each point in the cluster corresponding to a single-trial response. The separation between the two clusters at time t
were computed using the Kullback-Leibler divergence Dk, (t) between the distributions of the two clusters along the optimal readout
dimension v; (Figure 6A), which was computed from multiplying the inverse covariance matrix 2;1 (50 by 50) of the two clusters with
the vector connecting the cluster means Ay; (50 by 1). We exploited the Kullback-Leibler divergence since it was a direct measure-
ment of how one distribution was different from another and also a measurement of information gain. Note that since the PC re-
sponses evolved over time, the clusters of points and thus the optimal readout dimension v; (as well as 2;1 and Ay;) also varied
with time. Therefore the Dk, (t) was a function of time (Figure 6).

Standard Kullback-Leibler divergence is not symmetric and therefore depends on the order of the two distributions. To correct
that, we therefore symmetrized it by computing (Masuda and Doiron, 2007)

KL:(O1||02) KL:(02||01)

Dilt) = 17 (01]02) + KL, (02]07) (Equation 5)

where O1 and O2 represent Odor-1 and Odor-2, and

P:(y|Odor — 1)

P;(y|Odor — 2) (Equation 6)

KL(01[02) = > P(y|Odor — 1)log
y
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is the standard Kullback-Leibler divergence between the distribution P;(y|Odor —1) and P;(y|Odor — 2), which were built from those
single-trial PC responses to the two odors at time step t. We computed the D, (t) for feedback OFF and ON using the same proced-
ure described above. Accumulated Dk, (Figures 6E-6G) was computed as the area under mean Dk (t) over a sniff cycle.

Time-fixed readout dimension was computed by averaging the time-varying readout dimension v; across time and conditions
(feedback OFF and ON).

Linear decoder analysis: K nearest neighbor algorithm

The K nearest neighbor approach was used to decode odor identity from the projected ensemble responses of PCs to any given odor
pair (Padmanabhan and Urban, 2010). Consistent with the computation of symmetrized Kullback-Leibler divergence Dy, , analysis
was performed in the space of the first 50 principal components. The original data were broken up into testing and training sets.
The training sets established the location of PC responses to known odors (i.e., known PC responses) in the principal component
space and the testing sets were probed with respect to these known PC responses. The Euclidian distance of the unknown odors
to all PC responses was then calculated and the K nearest neighbors were used to determine to which odor the unknown PC activity
was responding to. This process of generating testing and training sets was repeated 30 times, with each repeat reflecting a different
random population of testing and training to ensure that the decoding accuracy was not a result of artifacts of selecting a single
testing/training population. Free parameters in the K nearest neighbor algorithm included the ratio of testing to training data and
the number of nearest neighbors used in the calculation. For training/testing, we used ratios of 50%, 70% and 90%. We examined
the algorithm’s accuracy when 3, 5 and 7 nearest neighbors were used.

Sequential probability ratio test (SPRT)

To make predictions on animal’s behavioral performance under the condition of feedback OFF or ON, we applied the sequential
probability ratio test (Gold and Shadlen, 2007) and simulated the decision-making process of a model agent in a two-alternative
forced-choice (2AFC) task. In such a task, on each trial, the model agent was presented with a randomly chosen odor (Odor-1
or Odor-2) and was required to report which odor was presented by the end of a single sniff. We chose three different
model odors as the original odor (Odor-1) from the table of 300 model odors we defined. We then shifted the activation
timing of a single glomerulus by 5ms increment/decrement in the three original odors. Therefore, the odor pairs here were
composed of one original odor and its counterpart which had the timing of a single glomerulus shifted by different amount
of time (Figure 7).

First, similar to the computation of Dk, (t), for a given odor pair, each of the odors was presented for 100 trials and at each time
step, the two distributions P;(y|Odor —1) and P;(y|Odor —2) were obtained from the single-trial PC responses along the optimal
readout dimension. We then fit a normal distribution to the two distributions respectively and we used the same standard devi-
ation ¢ in the normal distribution for both odors, which allowed us to generate samples more efficiently. According to SPRT, the
agent’s decision process was depicted as the accumulation of noisy momentary evidence over time until a threshold was
reached, or the stimulus was extinguished. Supposing we generated a sample y* at time step t, the momentary evidence was
then computed as

P:(y*|Odor — 1)

~ Equation 7
P:(y*|Odor — 2) (Eq )

ev(t) = log

Here, I5t denoted the fitted normal distribution. A choice was made when the accumulated evidence > ev(t) reached one of the
t

decision boundaries +By (Figure 7A3) and the reaction time was recorded by adding a residual motor delay, which was normally
distributed with mean =50ms and SD = 5ms. We generated 1000 samples y* at each time step for each model agent (10 agents
in total). Therefore, each agent performed 1000 trials for the same pair of odors. For each agent, we computed the accuracy as
the proportion of correct choices among the 1000 trials. The average reaction time across the 1000 trials was reported as the reaction
time for that agent. Parameter values used in SPRT analysis were listed in Table S3.

We set the widths of the two Gaussians in SPRT to be equal as this was the normal formalism for the SPRT. Our approach was to
use the behavior model to find the upper bound of performance. Beyond this technical constraint, we also approached the problem
from two empirically motivated constraints:

1) We assumed that the PCx encoded odor information, which was quantified by the KL-divergence, and the decision-making pro-
cess was performed in some downstream areas, which received and accumulated evidence from PCx. The information trans-
mission from PCx to the downstream decision-making area may have involved other sources of noise. As we could not know the
structure of this noise, nor was it likely to be from a single source, i) we assumed it would have a Gaussian distribution to draw
samples and ii). we assumed it to be unbiased such that noise only increased the uncertainty/width of the distribution.

Equal width of the distributions result in the decision-making being harder than unequal width, because when we computed the
momentarya evidence, the log likelihood of a sample drawn from two Gaussian distributions with equal mean but different
widths could still be large, while it would be zero if we used equal width.

L)
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These two factors allowed us to incorporate all the uncertainty between information processing in piriform cortex and decision
making that likely included both sensory and motor areas; assumptions that were necessarily multiparametric and therefore modeled
as Gaussian so as not to include any biases.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests for significance were performed with a two-sided Wilcoxon rank-sum test (ranksum function in MATLAB) when sam-
ples were independent (Figures 5A and 5B) and with a two-sided Wilcoxon signed rank test (signrank function in MATLAB) for paired
samples (Figure 2E3, 4E1, and 4E2). Correlation coefficients between two variables were computed as the Pearson correlation
coefficient (corrcoef function in MATLAB). Statistical significance was defined by a p value <0.05. The statistical details (correlation
coefficient, p value, sample size n) are provided in the figures, figure legends, or the text of the Results section. The specific meaning
of the sample size n is clarified when used.

e6 Cell Reports 38, 110545, March 22, 2022



	Top-down feedback enables flexible coding strategies in the olfactory cortex
	Introduction
	Results
	Odors activate distinct spatiotemporal patterns of glomeruli
	Feedback modulates the output of the MOB via granule cells
	Feedback controls the temporal dynamics of the PCx, leading to a circuit that is critical for pattern separation
	Information gain in odor perception achieved by feedback
	Feedback improves behavioral performance in odor discrimination

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Organization and architecture of the model
	Voltage dynamics of individual neurons

	Synaptic strength and model network architecture
	Model odor definition
	Model odors with denser glomerular activation
	Network dynamics simulation
	Randomly sampled “single units” from the network
	Exponential fit of the kinetics of randomly sampled M/T units
	Balance between excitatory and inhibitory synaptic inputs
	Principal component analysis (PCA)
	Symmetrized Kullback–Leibler divergence DKL
	Linear decoder analysis: K nearest neighbor algorithm
	Sequential probability ratio test (SPRT)

	Quantification and statistical analysis



