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Compact unary coding for bosonic states as efficient
as conventional binary encoding for fermionic states
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We introduce a unary coding of bosonic occupation states based on the famous balls and walls counting for the
number of configurations of N indistinguishable particles on L distinguishable sites. Each state is represented by
an integer with a human readable bit string that has a compositional structure allowing for the efficient application
of operators that locally modify the number of bosons. By exploiting translational and inversion symmetries, we
identify a speedup factor of order L over current methods when generating the basis states of bosonic lattice
models. The unary coding is applied to a one-dimensional Bose-Hubbard Hamiltonian with up to L = N = 20,
and the time needed to generate the ground-state block is reduced to a fraction of the diagonalization time. For
the ground state symmetry resolved entanglement, we demonstrate that variational approaches restricting the
local bosonic Hilbert space could result in an error that scales with system size.
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Finite lattice models represent an essential simplification
in quantum many-body physics, where a set of discrete
low-energy degrees of freedom are sufficient to capture the
relevant phases and phase transitions of a more complete
high-energy description. The states of these quantum sys-
tems form a finite dimensional Hilbert space H and are thus
amenable to a numerical representation through the exact
diagonalization (ED) of a lattice Hamiltonian [1-14]. This
provides a complete description of the eigenstates; how-
ever, it is limited by the exponentially increasing cardinality
|H| ~ et of H for L lattice sites. This problem has motivated
stochastic and variational approaches, such as quantum Monte
Carlo (QMC) [15-18] and the density matrix renormalization
group (DMRG) [19-22]. These methods are essential to our
understanding of quantum many-body phenomena [23-29],
however, they are stochastic or require an approximate trun-
cation of the local Hilbert space, and thus ED still plays a
crucial role in benchmarking novel methods, as well as in
gaining access to the density matrix. While extremely effi-
cient approaches exist for the Heisenberg model [1] and its
SU(N) generalizations [30] with applications to fermionic
lattice models of up to &40 sites, the expanded Hilbert space
of bosonic systems, allowing multiple occupancy of a single
spatial mode, presents a formidable challenge [9,10,31,32].

In this Letter, we introduce a unary basis (UB) coding
of bosonic occupation (Fock) states using a highly com-
pact and compositional, yet still human-readable bit string
exploiting the famous balls and walls illustration of parti-
cles and sites used in Bose-Einstein counting. For example,
forN =L =11:
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where |n(, ny, ..., ny) is a characteristic basis state with n;
the occupancy of site j. In the UB coding, 1’s denote sites
with the following number of 0’s corresponding to that site’s
occupation, and each basis state can be represented as an in-
teger in base 10. In addition to reducing the memory required
to store the basis by a factor L, this approach provides rapid
access to n; and significantly accelerates the action of local
operators via bitwise operations on Iyg. An implementation
in the presence of lattice symmetries yields a reduction of
computational complexity by a factor of L, reducing the time
needed to generate the basis for a one-dimensional (1D) Bose-
Hubbard (BH) model to a fraction of that needed to obtain
the ground state via iteration. This yields a practical speedup
of over 20x compared to current methods based on unique
integer ordering of permanents [9,10] for system sizes up to
L =N =20.

The utility of the UB is validated by studying entanglement
at the critical point of the 1D BH model for both spatial mode
and particle bipartitions as well as in the presence of a U(1)
symmetry fixing the total number of particles. In the latter
case, we show that the common practice of restricting the
number of bosons per site to a small integer nmax (soft-spin
approach) can lead to large relative errors that scale with the
system size. This finding serves to challenge the conventional
wisdom that an investigation of the nn,x dependence of the
energy alone is enough to justify this approximation. To facil-
itate adoption of the UB in future work, a complete software
implementation is included in Ref. [33].

Background. For both fermionic and bosonic lattice
models, it is natural to diagonalize any local N-particle
Hamiltonian in a basis of spatial modes |ny, ny, ..., n.). For
fermions, the Pauli exclusion principle restricts n; = 0, 1 and
each of the |H /| = (1'\‘,) basis states can be encoded as a binary
word of length L that can be stored as a 2/1°%L1_bit integer as
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implemented in commonly used ED software [11-13,34]. For
bosons, the possibility of multiple occupancy, n; =0, ..., N
on any site enlarges the Hilbert space to |H| = (N%*l) with
basis vectors for the occupation states naturally parameterized
by L|H| integers. The memory required to store the Hamilto-
nian has an upper bound ~|#|? and thus dwarfs that needed to
store the basis states. However, in bosonic lattice models with
limited range hopping, the Hamiltonian is sparse, reducing its
storage cost to ~L|H| and encoding the basis as arrays of site
occupations now composes a leading share of the required
memory. To address this problem, permanent ordering (PO)
schemes [9,10,31,32] have been introduced which assign a
unique contiguous integer label Ipo(ny, ..., n.) to each oc-
cupation state via an iterative procedure of complexity O(L).
To further avoid the memory impact of storing {/pp}, a lookup
table combined with an O(L) inverse function Il;ol [10], can be
implemented to gain access to site occupations numbers 71;.
While this method has proven to be effective, e.g., in studying
many-body localization [35,36] it has yet to be extended to ex-
ploit lattice symmetries (e.g., translation, inversion) where the
maximum number of nonzero Hamiltonian matrix elements is
reduced to ~|H|. Here it is crucially important to suppress the
now leading order memory share (~L|#|) of the basis.

Unary basis. To study the largest possible systems, we
introduce an integer labeling scheme motivated by the formal
equivalence between occupation states of N bosons on L sites,
and those of N fermions on N + L lattice sites [32]. By reinter-
preting bits corresponding to the presence (1) or absence (0)
of a fermion with a site boundary and boson, respectively, the
resulting set of noncontiguous |#| integers {Iyg} can encode
information about the occupation state directly in their bit
string [see Eq. (1)] while remaining as efficient as a binary
encoding for fermions. This can be quantified by defining the
efficiency of the representation as n = log, |H|/log, 2EV,
providing a maximum efficiency at unit filling (v = N/L =
1, with N and L > 1) of n =1 — (1/4L)log, L + O(L™"),
where for L = 20, n >~ 0.925. Comparing with an alternative
approach where N bosons are mapped to a spin model with
S = N/2 [12,13] that uses a sequence of L[log,(N + 1)] bits
coding n; < N on each site, the corresponding efficiency at
unit filling is n =~ 2/[log,(L)] — 1/(2L) + O((Llog, L)Y,
which is smaller by a factor of 2/[log,(L)] compared to the
unary coding, and for L = 20, n =~ 0.37.

In addition to memory compactness, the UB coding can
accelerate the inverse operation I3 to obtain access to oc-
cupation numbers. Given a 64-bit integer Iy representing
|ny, ..., n.), n; can be found by counting the trailing zeros
in the bit string of Iyp (a compiler builtin). Shifting the bits
of Iyg by n; + 1 allows for reading the number of particles
on the next site, and by repeating these bitwise operations L
times, the corresponding occupation vector (OV) |ny, ..., ny)
can be constructed. This procedure can be further sped up by
viewing the 64 bits of Iyp as a sequence of four 16-bit integers
from which the corresponding number of sites and occupation
numbers can be obtained by direct lookup of the 2'® possibil-
ities then recomposed to generate the corresponding OV. We
find that generating OVs for {/yg} is more than 4 x faster than
obtaining them on the fly using PO, at a cost of additional
memory usage corresponding to only 1/L of that needed to

store the system Hamiltonian in the absence of translational
symmetry.

Lattice symmetries. The utility of the unary coding can
be extended to treat systems that preserve Hamiltonian sym-
metries such as translation and inversion (see Supplemental
Material [37]). If the Hamiltonian commutes with the transla-
tion operator T, it has a block diagonal structure where each
of the L blocks has a quasimomentum index g and contains
a maximum number of nonzero elements that scales as ~|H|
(for short-range hopping). The resulting number of transla-
tionally symmetrized basis states (the gth degenerate set of
the eigenstates of T') scales as ~|H|/L. For a given g and
OV, an eigenvector |¢y ) of T can be generated: |¢y,q) =

L2 Y expl—2m jq/La) T/ Iy, o, . .. np), where o is
the index of a cycle with length L, < L [38] generated by
repeatedly acting on a given |nj, ny,...,np) witE T. Each
cycle can be mapped to a set of eigenvectors of 7 with the
same number of elements.

Calculating matrix elements of local operators requires
access to all OVs in |, o), as well as the ability to reconstruct
the state |¢, o) where a given OV appears. The naive storage
cost for direct lookup of this information is at least double
that needed for {Iyg}. Alternatively, one can trade memory
with computational complexity by storing L, for each cycle,
as well as an extremal integer [, that represents one OV
characteristic of the cycle, (i.e., Ipp or its unary coding Iyp).
Thus, when inverting I, to an OV, the rest of the cycle can be
obtained by L, translations. If I, € {Iyg}, the unary coding of
the OVs of the cycle can be obtained by bit shifting ,. As
a single 64-bit instruction can shift a vector of eight bytes
(using parallel intraprocessor bit paths) faster than moving
each byte sequentially (using multiple memory operations),
the UB coding provides a reliable constant speedup.

The inverse process of finding the cycle o where a given
|ni, ...,ny) appears can be done in four steps: (i) cyclic
shifting L times, (ii) converting each of the L OVs to their
integer representation, (iii) finding the characteristic integer,
and (iv) performing a fast search for « in the ordered list
of integers I,. While steps (i) and (iii)—(iv) require at most
O(L) operations, the time complexity of step (ii) is O(L?), as
it consists of repeating the operation of converting an OV to an
integer L times. However, by exploiting the unary coding, the
asymptotically slowest step (ii) is not required, as the shifting
process (i) can be directly applied to Iyp to obtain the targeted
list of integers. This represents a significant opportunity for a
reduction in complexity and speedup over PO methods.

Benchmarking. As a test case, we consider the unary cod-
ing for N bosons on a ring of L = N sites (v = 1) governed
by the BH Hamiltonian,

L L

. . U

H=-Y (b, b +Hc)+ 5 > mini—1). (@)
i=1 i=1

where n; = bib,, [b,,b1=8;; and by, =by. The on-
site interaction U > 0 1s measured in units of the hop-
ping. Equation (2) exhibits a continuous phase transition
from a superfluid (U < 1) to an insulator (U > 1) at
U =~ 3.3 [23,39,40]. Using the unary coding of the basis,

as well as translational (¢ =0,...,L — 1) and inversion

L121116-2



COMPACT UNARY CODING FOR BOSONIC STATES AS ...

PHYSICAL REVIEW B 105, L121116 (2022)

—] 2
20 | A 10
OBDM (PO)
A .
. OBDM (UB) |,
2 4 | 8
s g
& Mo (PO) had
. 100
My (UB)
A
ol . 0t
16 18 2010 15 20
L L

FIG. 1. Computational efficiency of the unary basis (UB) and
permanent ordering (PO) encodings. Left: The ratio #po /typ of wall
clock times needed to construct the ground-state block using the
permanent ordering (PO) and unary basis (UB) codings as a function
of system size L. The line is a linear fit demonstrating the complexity
reduction discussed in the text. Right: The wall clock time ratio ¢ /tp
versus system size L, where 7p is the time consumed in diagonalizing
the ground-state block M, ,—; of the Bose-Hubbard Hamiltonian
and ¢ represents the time spent in constructing M, = (circles) or
calculating the elements of the one body density matrix (OBDM) in
the ground state (squares).

(r = £1) symmetries on a ring, we have obtained the ground
state |Wy) of Eq. (2) via ED for up to N =20 bosons on
L = 20 sites.

To compare the efficiency of the PO and UB methods,
we measure the times fpp and fyp spent in constructing
the ground state block M —o -1 of the sparse matrix rep-
resenting H. We find that the ratio tpo/tus (Fig. 1 left),
scales as O(L), as expected from steps (i)—(iv) above.
For L =N =20, we find a speedup of tpo/tus L 20. The
practicality of this linear in L speedup becomes evident
when measuring in units of 7p, the time required to it-
eratively obtain the ground state |Wy) from Mg ,—i.
Again, for L = N = 20, we find fgy/tp = 0.19 compared to
tpo/tp = 3.96, as illustrated in the right panel of Fig. 1.
Thus, employing the unary coding can practically reduce
computation time by a factor of (tpo + 1p)/(tus + tp) L 4.
A larger computational speed up (L 20 for L =N = 18) is
identified when calculating the elements of the one-body den-
sity matrix (OBDM) (b} b ;) (right panel of Fig. 1).

Application. As a further illustration of the utility of the
unary coding allowing the use of an unrestricted local bosonic
Hilbert space, we investigate several measures of entangle-
ment in |Wy). In all calculations, the required memory was
less than 1.5 terabyte (TB).

By partitioning the spatial modes of the pure state p =
[Wo) (Yo into £ consecutive sites A, and its complement A,
corresponding to the remaining L — £ modes, we obtain the
reduced density matrix ps, = Trg, p by tracing out all degrees
of freedom in A,. The von Neumann entanglement entropy
S(€) = —Trpy, In p4, quantifying the amount of entanglement
that exists between A, and A, [41] is shown as square symbols
in Fig. 2. The results demonstrate the reduction of spatial
mode entanglement as the on-site repulsion U is increased and
the system transitions from a superfluid to localized phase.

| =.S(¢)
° 3 x §2ec()

FIG. 2. Mode entanglement S(¢) and $*°“(£) and particle en-
tanglement entropy S(n) in the ground state of the BH model as
a function of interaction strength U at unit filling (L = N). For
mode entanglement, the partition size is fixed at £ = [L/2], where
f(x) = [x] is the least integer function.

With access to an exact representation of the ground state
|Wy), we can also study particle entanglement for a partition
A, of n particles [42-51]. This is most easily performed
using the first quantized basis |[ij,...,Iy), where i €
{1,...,L} is the lattice coordinate of the particle labeled
k € {1, ..., N}. The familiar n-particle reduced density matrix
of partition A, is then

ATV = SO (s, (il ) (G i),

i

where {it}? = {iz, ig+1, - - -, ip_1, ip}. The n-particle entangle-
ment entropy, S(n) = —Trpy, In py,, is shown as diamonds in
Fig. 2. In contrast to S(£), S(n) is large in the insulating phase,
vanishes as U — 0, and is extremely difficult to calculate via
DMRG for n > 2 [52].

The interplay between fixed particle number and fluc-
tuations between spatial modes, as reflected in symmetry-
resolved entanglement, is a subject of growing inter-
est [53—-80] and can be potentially measured in ultracold
lattice gases [81,82]. Here, the presence of conservation laws
(e.g., fixed N), reduces the amount of entanglement that is
accessible for quantum information processing which can be
quantified using the accessible entanglement entropy S2(£)
(see Supplemental Material) [83-90]. Figure 2 demonstrates
that the accessible entanglement entropy vanishes at the ex-
tremes of the two competing phases and peaks near the critical
point.

Restricting the local Hilbert space by enforcing an upper
limit ny,x on the occupation number per site is a widely
used approximation when performing the ED of a bosonic
Hamiltonian or the DMRG representation of its ground
state [23-25,39,91]. The validity of this approximation is
judged based on the convergence of observables, (e.g., the
ground state energy, the average occupation per site, or its
fluctuations [9]) with 7. While formally, the approxi-
mation is justified only in the insulating phase of the BH
model, where the particle-number fluctuations are suppressed
by repulsive on-site interactions, the resulting error in the
ground-state energy remains small and finite, even in the
superfluid phase down to the noninteracting limit [9]. This
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FIG. 3. The relative error in the accessible entanglement S
(€ = 9) and the energy E of the BH ground state, arising from fixing
the maximum occupancy at all sites to n,,x = 4, as a function of
interaction strength U/t at L = N = 18. Inset: Scaling of the rela-
tive error §5%¢(£)/S*¢(£) with the system size L at U = 0.01 and
Nmax = 6, where ¢ = [L/2].

empirical finding has yielded the conventional wisdom of
utilizing a small n,,x, €ven deep in the superfluid phase, in ex-
tended BH systems [92] and for fermions coupled to bosonic
Hilbert spaces (e.g., the Hubbard-Holstein model [93]).
However, the truncated degrees of freedom could con-
tribute significantly to other observables that crucially depend
on particle-number fluctuations, specifically the spectrum of
the n-particle reduced density matrix and entanglement in the
presence of physical conservation laws. To illustrate, we cal-
culate the error arising from restricting n,,x = 4, in both the
ground-state energy E and S§%°°(¢£). Figure 3 shows that while
the relative error in E is less than 1%, the relative error in
S%¢(€) could be three orders of magnitude larger in the super-
fluid phase. It is expected that such large errors would also be
present in the density-wave phase of the extended BH model
at U/t < 1 [92]. Moreover, the relative error increases with
L, (inset Fig. 3), even for ny,, = 6, indicating that large-scale
DMRG studies that employ 7,,,x may contain logarithmically
growing errors. To intuitively understand the origin of such
scaling with L, we consider the simpler case of the bosonic

density reduced to half filling, where S$%° still vanishes as
U — 0. However, enforcing the extreme hard-core constraint
of nmax = 1, which for an appropriate parity of N possesses
the same S*°(¢ = L/2) for a partition of consecutive sites as
noninteracting fermions. Here, it is known that $%° ~ In L and
thus the error will have a similar scaling [78,90].

Discussion. In this Letter, we have introduced a com-
pact unary coding for bosonic basis states that is both
human and machine readable by enumerating configurations
of indistinguishable particles on distinguishable sites through
combinatorial counting of balls and walls. Having access to
an efficient and compact exact representation of the ground
state allows for the study of large system sizes (achieving
equivalence for bosonic lattice Hamiltonians with state-of-
the-art ED methods for fermions) and information quantities
such as the particle partition or symmetry-resolved entangle-
ment. These are not amenable to measurement via variational
(due to the difficulty in computing n-particle density matrices
or errors imposed by restricting the local Hilbert space) or
stochastic (limited to Rényi entropies [94]) algorithms. Fur-
ther constant speedups could be achieved using union data
types that allow for the simultaneous view of an OV as an
array of smaller integers. This could be useful when studying
dynamics in bosonic systems, where access to asymptotic
steady states requires considerable computational resources.
While we have focused on a 1D BH Hamiltonian, the unary
coding can be applied to any D-dimensional bosonic lattice
model utilizing standard large-memory resources. By flatten-
ing a D-dimensional configuration, it can be represented by
a single integer where translations can be achieved using bit-
wise operations on Iyg. Thus the reduction of time complexity
in the presence of translational symmetry is expected to hold
even for D > 1. We hope that the balls and walls coding will
be rapidly incorporated into ED software, contributing to the
acceleration of future studies of bosonic systems.

All code, scripts, and data used in this Letter are included
in a GitHub repository [33].
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