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Abstract Mainstream and popular science media are rife with misunderstandings about what a “polar
vortex” is. The term most aptly describes the stratospheric polar vortex, a single feature dominating the cool-
season circulation from ~15-50 km. Regional jet stream variations dominate the tropospheric circulation,
which is not well-described as a polar vortex; indeed, there is no single consistent definition of a tropospheric
polar vortex in the literature. Stratospheric polar vortex disturbances profoundly influence extreme weather
events, including cold air outbreaks (CAOs). How the stratospheric polar vortex affects tropospheric jets,

whose local excursions drive CAOs, is not fully understood. Public-facing parts of publications describing
research on this topic are not always clear about how the “polar vortex” is defined; greater clarity could improve
communications both within the community and with non-specialist audiences.

Plain Language Summary What is a “polar vortex”? The atmospheric science community most
commonly uses this term to describe the stratospheric polar vortex, a band of winds extending from about
15-50 km altitude that flows around the pole of each hemisphere during their respective fall through spring
seasons. However, the term “polar vortex™ has been used in mainstream media and popular science platforms to
instead describe local variations in the upper tropospheric jet streams (winds that blow most strongly between
about 8 and 13 km altitude) and even individual extreme cold weather events. We argue that the term should

be used only in reference to the stratospheric polar vortex, which is a single feature that predominantly controls
dynamical and chemical variability in the winter polar stratosphere. The stratospheric polar vortex is related to
but distinct from more regional jet stream excursions and associated weather extremes; further study is needed
to fully understand these relationships.

1. The Stratospheric Polar Vortex, Tropospheric Jet Streams, and Cold Air
Outbreaks

This commentary appears in the Special Collection focusing on the Arctic stratospheric “polar vortex” in
2019/2020. But how clear are we about what constitutes a “polar vortex”? Confusion persists in the popular press
about what a polar vortex is and how polar vortices relate to extreme weather events. This confusion stems in part
from imprecise descriptions by the scientific community.

In January 2014, a cold air outbreak (CAO) set record-low minimum temperatures throughout the south central
and eastern US (e.g., Screen et al., 2015). Headlines hailed it as “the polar vortex,” and this language became
commonplace in news and popular science media. At the time, the term “polar vortex” in scientific literature
typically described the stratospheric polar vortex (see, e.g., Lillo et al., 2021; Waugh et al., 2017, for discussion
of this), but some studies used the term to describe the “tropospheric polar vortex” (e.g., Wallace et al., 2014; Yu
& Zhang, 2015), in both cases often without further qualification. Waugh et al. (2017) sought to dispel confusion,
describing the stratospheric and tropospheric “circumpolar” vortices as these terms had been commonly used
in scientific literature, highlighting their differences and relationships to extreme weather events, and providing
recommendations for describing them. While this work is widely cited, the two concepts are still often confused,
including on educational websites and in climate change communication studies (e.g., Lyons et al., 2018; Shep-
herd, 2016; UCAR, 2021; UCDavis, 2019). Even recent papers within the atmospheric science community are
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not always clear about which circulation feature(s) they are discussing, and some use the term “polar vortex”
to describe synoptic-scale disturbances associated with CAOs, echoing the inaccurate usage in popular media
(e.g., Bushra & Rohli, 2019, 2021; Dai et al., 2021; Jiang, 2021; Juzbasic et al., 2021; Komiiscii & Oguz, 2021;
Nielsen-Gammon et al., 2021; Overland, 2021; Overland & Wang, 2019; Xiong et al., 2021; Zhang et al., 2021).
Sometimes the most public-facing parts of research papers (abstracts, plain language summaries, key points) do
not clearly define how the term “polar vortex” is used.

Figure 1 shows characteristics of the stratospheric and tropospheric circulation on two occasions the popular
press described CAOs as a polar vortex “outbreak” or “attack,” but which were associated with very different
stratospheric polar vortex conditions. This figure shows the stratospheric polar vortex, upper tropospheric jet
streams, and the circulation that is sometimes described as a “tropospheric polar vortex” (i.e., the 2 and 3PVU
potential vorticity (PV) contours on the 330-K isentropic surface, one possible definition discussed by Waugh
et al., 2017).

The stratospheric polar vortex is bounded by the polar night jet, a band of strong eastward winds throughout the
stratosphere that forms in fall in each hemisphere and vanishes in spring. Different diagnostics of the stratospheric
polar vortex edge (e.g., Lawrence & Manney, 2018) select similar physically meaningful boundaries (Figure 1a,
left, defined using a PV contour coincident with the strongest PV gradients, as in Lawrence et al. (2018)). The
stratospheric polar vortex constitutes a single feature that dominates the circulation and transport throughout the
polar stratosphere from fall through spring.

The so-called “tropospheric polar vortex,” as most often defined, exists year-round, but no single definition
uniquely identifies it or the altitude(s) at which it exists (the characteristics described herein do not depend
substantially on which of numerous definitions is used). We show one common definition (Waugh et al., 2017,
and references therein) whereby its edge follows the axis of an upper tropospheric jet on an isentropic surface in
the middle to upper troposphere. The maximum winds of these jets are very localized in altitude compared to the
stratospheric polar night jet, and they vary strongly with longitude (e.g., Manney, Hegglin, et al., 2011; Manney
et al., 2014, Figure 1a). Because regional variability of discontinuous jet streams governs the extratropical trop-
ospheric circulation, “tropospheric polar vortex” definitions do not describe a single dominant circumpolar
circulation. Further confusion arises from the distinction between tropospheric “polar” (primarily eddy driven)
and “subtropical” (largely radiatively driven) jets. While some recent papers and popular science pieces identify
the “tropospheric polar vortex” with the tropospheric polar jet (e.g., Bushra & Rohli, 2021; UCAR, 2021; Waugh
et al., 2017), numerous studies show that tropospheric jets are not well-represented by this simplified conceptual
division but rather form a seasonally and regionally varying complex with hybrid radiatively and eddy-driven
features that is rarely continuous around the globe (S. Lee & Kim, 2003; Manney et al., 2014; Spensberger &
Spengler, 2020, and references therein).

These differences are reflected in windspeeds (Figures la and 1b), which peak sharply along the stratospheric
polar vortex edge; in contrast, a “tropospheric polar vortex” defined as noted above meanders through regions
of weak and strong winds, leading to a broad, flat distribution of “vortex-edge” windspeeds. Potential vorticity
gradients (indicating polar vortex strength) are consistently strong along the circumference of the stratospheric
polar vortex but have many localized maxima in small portions of the “tropospheric vortex” edge and elsewhere
in the extratropics (Figure 1c). This results in relatively stronger mean PV gradients along the stratospheric
vortex edge, versus weaker mean PV gradients and most frequent values near zero in the troposphere (Figure 1d).
Further, tropospheric windspeeds (Figure 1a) often show a single jet (or no strong jet) because separate tropo-
spheric polar and subtropical jets do not always exist. A “tropospheric polar vortex” might therefore follow the
polar jet in one region but the subtropical jet in another, thus traversing regimes controlled by different dynamical
processes.

The stratospheric polar vortex is critical for transport, chemical processing, confinement of processed air, and
ozone loss. Processes promoting ozone depletion are commonly analyzed from a vortex-centered perspective
because the stratospheric vortex represents a strong transport barrier, isolating air primed for ozone destruction
(e.g., Manney et al., 2020; Manney, Santee, et al., 2011; Schoeber] et al., 1992); the amount of polar ozone loss
in a given spring depends critically on the strength and coldness of the winter/spring stratospheric polar vortex.
In contrast, upper tropospheric ozone variability is dominated by regional variations in stratosphere-troposphere
exchange and the amount of lower stratospheric ozone available for transport into the troposphere (e.g., Albers
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et al., 2018; Breeden et al., 2021; Olsen et al., 2019). Figures le and 1f illustrate these differences: Ozone
gradients change abruptly across the stratospheric polar vortex edge but are quite uniform within it. In contrast,
ozone gradients are strong in many localized regions within the “tropospheric polar vortex,” with highly varia-
ble gradients often appearing well poleward of the “vortex” edge. These characteristics are reflected in sharply
peaked ozone distributions along the stratospheric polar vortex edge and large variability in ozone along the
“tropospheric vortex” edge (Figure 1f). Note that the broad change from uniform gradients to highly variable
gradients across the “tropospheric vortex edge” as defined here is a reflection of vertical ozone gradients and the
tilt of the 330-K isentropic surface in the subtropics.

Stratosphere-troposphere coupling (e.g., Baldwin & Dunkerton, 2001; Kidston et al., 2015) dynamically links
variability of the polar vortex to extremes at the surface (e.g., Domeisen & Butler, 2020). For example, extreme
stratospheric polar vortex disruptions (sudden stratospheric warmings, SSWs) are associated with increased risk
of mid-latitude CAOs (e.g., Baldwin et al., 2021; Butler et al., 2017; Huang et al., 2021; King et al., 2019), and
unusually strong stratospheric polar vortices are associated with anomalously high extratropical surface tempera-
tures (including heat waves and destructive wildfires) (Lawrence et al., 2020; Limpasuvan et al., 2005; Overland
& Wang, 2021). Because radiative timescales are longer in the lower stratosphere, disruptions to the circulation
can persist there for weeks to months, potentially providing subseasonal-to-seasonal forecast skill for extremes
like CAOs (e.g., Domeisen et al., 2019). Using information about the stratospheric polar vortex to predict CAOs
is, however, complicated because the timing and location of individual CAOs varies significantly following
polar vortex disruptions, perhaps related to details of the stratospheric polar vortex characteristics and evolution.
Recent work suggests that Eurasian CAOs are more closely linked to SSWs, while North American CAOs are
more strongly associated with stratospheric polar vortex elongation that might or might not accompany an SSW
(e.g., Cohen, Agel, Barlow, Garfinkel, & White, 2021; Kretschmer et al., 2018; S. H. Lee et al., 2019). It is worth
emphasizing that CAOs can occur during both strong and weak stratospheric polar vortex conditions (e.g., Cohen,
Agel, Barlow, Furtado, et al., 2021; S. H. Lee et al., 2019): Figure 1 shows a CAO (January 2014) linked to a
strong (but distorted) stratospheric vortex and one (February 2021) following an SSW.

CAO s are often termed “polar vortex events” in the news, popular science media, and less specialized peer-re-
viewed papers (e.g., Lyons et al., 2018, on communication of climate change risks), but the dynamical processes
involved argue that they are best described as equatorward excursions of the tropospheric jets and southward
advection of cold Arctic air. These features are not generally correlated with the strength of any globally defined
“tropospheric polar vortex” (e.g., Bushra & Rohli, 2021; Cellitti et al., 2006; Waugh et al., 2017), so the utility
of the latter concept in relation to CAOs is questionable. CAOs in some regions are indeed more likely, and more
likely to be severe, following SSWs (e.g., Huang et al., 2021; King et al., 2019; S. H. Lee et al., 2019), explaining
why the media often hails reports of an SSW with “the polar vortex is coming” even though an SSW actually
represents a rapid deceleration, or disappearance, of the stratospheric polar vortex winds. While the relationship
to stratospheric polar vortex disturbances can improve lead times for probabilistic forecasts of CAO occurrence,
more extensive mechanistic understanding of how stratospheric polar vortex anomalies affect regional excursions
of tropospheric jet streams is needed to further improve prediction of when and where CAOs will occur.

The term “polar vortex” is used in another way that is not directly related to any planetary-scale circumpolar
vortex, but is related to many CAOs (e.g., Lillo et al., 2021). A “tropopause polar vortex” (TPV) is a sub-synop-
tic-scale feature characterized by a deep depression of the tropopause (sometimes to near the surface) bounded by
an “Arctic jet stream” poleward of and below the tropospheric polar jet (Shapiro et al., 1987). Lillo et al. (2021)
showed that the North American CAO in late January 2019 resulted directly from a TPV moving southward from
its high-latitude origins; TPVs play a role in many (but by no means all) CAOs (e.g., Biernat et al., 2021; Papritz
et al., 2019). While the existence of yet another feature termed a “polar vortex” may engender confusion, the
direct link of these localized vortices to CAOs emphasizes the importance of local/regional circulation anomalies
(and associated jet stream excursions) to extreme weather events.

Figure 1. Characteristics of (left to right) 6 January 2014 and 16 February 2021 stratospheric and upper tropospheric circulations: (a) Windspeeds (colorfill) and two
potential vorticity (PV) contours representing the stratospheric polar vortex edge (green) and boundary of tropospheric “global” circulation (orange). (b) Windspeed
histograms along the “vortex edge” (most equatorward PV contour shown in panel (a)); vertical lines show mean around that PV contour. (c) Normalized PV gradient
magnitudes. (d) Normalized PV gradient magnitude along the “vortex edge” (hemispheric mean is 1 by definition; vertical lines as in panel (b)). (¢) Normalized ozone
gradient magnitudes. (f) Normalized ozone mixing ratios along the “vortex edge” (vertical lines as in panel (b)). Cyan contours in panels (c and e) show “vortex edge”
PV. 600-K (330-K) fields are shown for stratosphere (troposphere), except windspeeds are at 345 K (near level of maximum tropospheric jet stream winds). Data are

from MERRA-2 (Gelaro et al., 2017).
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Points such as those above regarding the stratospheric polar vortex have been highlighted in studies using theoret-
ical fluid-dynamical or dynamical systems approaches (e.g., Mester & Esler, 2020; Scott & Dritschel, 2006; Serra
etal., 2017). It is not clear that similar approaches could usefully describe what some have termed a “tropospheric
polar vortex.”

2. Best Practices for Describing the Polar Vortex

It is clearly appropriate and useful to describe the stratospheric polar vortex as dominating stratospheric cool-sea-
son variability and exerting influence on the surface on sub-seasonal to seasonal timescales, including prob-
abilistic links to extreme weather events. Jet stream excursions and related troughs and ridges are suitable for
describing the genesis and evolution of CAOs, whereas the concept of a “tropospheric polar vortex™ is typically
not helpful in describing extreme weather events or elucidating their causes. We conclude:

1. The term “polar vortex” is most appropriate for describing the stratospheric polar vortex, but given its broad
use and misuse, “stratospheric” should be specified explicitly.

2. The stratospheric polar vortex is a climatological feature that exists throughout the cool seasons (though
sometimes temporarily disrupted) and thus should not be described as an “event” with a sub-seasonal time
scale.

3. The tropospheric circulation, especially in relation to extreme weather events, can most clearly be described in
relation to the tropospheric jet streams, without invoking the term “tropospheric polar vortex.” More accurate
and appropriate terminology for referring to such events would be “Arctic CAO” (or more simply a CAO) or
a “polar front.”

4. While the term “tropopause polar vortex” has been used to describe sub-synoptic scale vortices that are
sometimes linked to CAOs, local features might be more clearly described in relation to their provenance, for
example, a “Canadian tropopause vortex.”

5. Scientists should be careful in the public-facing parts of our communications (e.g., titles, abstracts, plain
language summaries, web sites) to be clear and precise about what we mean by the term “polar vortex.”

6. In communications with the media, atmospheric scientists should emphasize that stratospheric polar vortex
variability is indeed helpful in predicting CAOs and other extreme weather events, but stratospheric influence
is exerted via regional jet stream variations that cannot in themselves be called a “polar vortex.”

Further study is needed to elucidate the relationship of stratospheric polar vortex variations to underlying regional
tropospheric jet stream variations and ultimately to extreme weather events. The stratospheric polar vortex and
tropospheric jet streams play important, but distinct, roles in understanding and forecasting extreme weather
events. Accurate description of these features is thus critical to improving communication, both within the scien-
tific community and with the public, regarding events that can have profound human impacts.

Data Availability Statement

The MERRA-2 data set used here is publicly available: https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
(Global Modeling and Assimilation Office (GMAO), 2015).
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