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Abstract

We introduce three new Empirical Seawater Property Estimation Routines (ESPERSs) capable of
predicting seawater phosphate, nitrate, silicate, oxygen, total titration seawater alkalinity (TA),
total hydrogen scale pH (pHr), and total dissolved inorganic carbon (DIC) from up to 16
combinations of seawater property measurements. The routines generate estimates from neural
networks (ESPER NN), locally-interpolated regressions (ESPER_LIR), or both
(ESPER_Mixed). They require a salinity value and coordinate information, and benefit from
additional seawater measurements if available. These routines are intended for seawater
property measurement quality control and quality assessment, generating estimates for
calculations that require approximate values, original science, and producing biogeochemical
property context from a data set. Relative to earlier LIR routines, the updates expand their
functionality, including new estimated properties and combinations of predictors, a larger
training data product including new cruises from the 2020 Global Data Analysis Project data
product release, and the implementation of a first-principles approach for quantifying the impacts
of anthropogenic carbon on DIC and pHt. We show that the new routines perform at least as
well as existing routines, and, in some cases, outperform existing approaches, even when limited
to the same training data. Given that additional training data has been incorporated into these
updated routines, these updates should be considered an improvement over earlier versions. The
routines are intended for all ocean depths for the interval from 1980 to ~2030 c.e., and we
caution against using the routines to directly quantify surface ocean seasonality or make more
distant predictions of DIC or pHr.
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1. Introduction

Anthropogenic impacts on the environment are changing the physical and chemical state of the
ocean. The accumulation of excess ocean heat (Roemmich et al. 2012; Purkey and Johnson
2013) and carbon (Sabine et al. 2004; Khatiwala et al. 2013; Carter et al. 2017, 2019a; Gruber et
al. 2019) and the redistribution of freshwater between regions of the ocean (Durack et al. 2012)
and geological reservoirs are modifying ocean circulation pathways and causing sea level rise
(Nerem et al. 2018), ocean acidification (Feely et al. 2004, 2009; Doney et al. 2009; Jiang et al.
2019), and ocean deoxygenation (Sasano et al. 2018). These changes are fundamentally shifting
the physical and chemical environments of marine organisms and threatening ocean ecosystems
and services (Gattuso et al. 2015; Doney et al. 2020).

Global climate change poses a challenge for ocean monitoring, necessitating sustained high-
quality measurements across timescales and across the vast and remote global ocean. A variety
of approaches and platforms have been developed for ocean monitoring (e.g., autonomous
surface vehicles, profiling floats, and fixed moorings), each of which has a niche for examining a
range of temporal and spatial scales (Bushinsky et al. 2019) and each of which has strengths and
weaknesses for addressing aspects of global change (Carter et al. 2019b). The cost and difficulty
of measurements is a limiting factor for all approaches, so it is impossible as of today to have
extensive high-quality and high-frequency measurements everywhere they are desired. Given
this limitation, an emerging approach involves using algorithms that have been trained to
reproduce measurements of seawater properties from co-located measurements of other seawater
properties. These algorithms take advantage of strong regional correlations between seawater
properties that result from oceanographic processes that shape the distributions of many different
seawater properties in similar ways (e.g., organic matter cycling with nearly constant
stoichiometric ratios between macronutrients, and freshwater cycling that linearly dilutes or
concentrates most chemical concentrations in seawater). Once trained, the algorithms can be
used to predict the desired properties from other properties that are more routinely measured
either remotely by satellite or using available in situ sensors. This strategy has seen use for more
than two decades (e.g., Goyet et al. 2000; Lee et al. 2006), though recent advances in skill,
flexibility, and diversity of the algorithms available (Carter et al. 2016, 2018; Sauzede et al.
2017; Bittig et al. 2018; Landschiitzer et al. 2019; Gregor and Gruber 2021) have made it
possible to create climatologies (Broullon et al. 2019, 2020; Jiang et al. 2019), calibrate and
monitor drift-adjustments for sensors on autonomous sensor platforms (Johnson et al. 2017;
Takeshita et al. 2018), create novel global data products (Carter et al. 2021), and fill holes in data
sets when the final analysis is not strongly sensitive to estimate errors, e.g., when silicate and
phosphate are estimated for use in seawater carbonate chemistry calculations (e.g., van Hueven
et al. 2011) or when total alkalinity (TA) is needed to convert pHr between temperatures (Carter
et al. 2019a; Jiang et al. 2019).

The growing number of use cases for seawater property estimation algorithms means it is
important to refine the algorithms to the extent possible, especially given that some observing
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approaches depend on these algorithms for sensor calibration and validation. As a notable
example, biogeochemical Argo floats calibrate pHt and nitrate sensors using algorithm estimates
in the comparatively stable mid-depths of the ocean (Johnson et al. 2017), and additionally rely
on estimated seawater alkalinity at all depths to calculate dissolved inorganic carbon (DIC) and
the partial pressure of CO2 (pCO2) (Williams et al. 2018; Gray et al. 2018).

Increasing ocean DIC content from anthropogenic carbon (Cant) storage and decreasing pHr
values from ocean acidification (OA) provide an ongoing challenge to the accuracy of these
algorithms: the algorithms are trained, or fit, to data collected over the last three decades, but will
be used primarily to estimate seawater properties specific to recent years and the coming years
until improved algorithms become available. How then should we deal with the changes from,
for example, ocean acidification? Three notable existing algorithms for pHt have simplistic and
empirical treatments of the effects of ocean acidification. One has no parameterization for OA,
but instead provides a suggested time-span for the algorithm (Williams et al. 2016); another uses
a simple density interpolation of empirically-derived global changes that, for example, does not
distinguish the rapidly changing intermediate North Atlantic from the comparatively-static
intermediate subpolar North Pacific (Carter et al. 2018); and the one last uses a regional
empirical approach that risks mis-attributing long term change and natural variability in pHt
(Bittig et al. 2018). Broullén et al. (2020) also use an empirical relationship to capture the
effects of OA for their DIC algorithm. These algorithms are expected to become increasingly
biased under future OA conditions.

In this paper we improve upon existing algorithms with new methods and new observational data
products and encode them into a package of software routines in the MATLAB language. We
also introduce a new neural-network approach that can return estimates from more diverse
combinations of predictors than previous efforts. We also improve how the algorithms handle
Cant impacts on DIC and pHr, and the new approach should allow future projections of these
properties to be useful over longer time horizons while avoiding bias from empirical fits to
interannual variability.

2. Methods
2.1 Basics, updates, new methods, and new features

The first of two products in this effort is an improvement upon the Locally-Interpolated
Regression (LIR) strategy for global and full-water column seawater alkalinity estimation that
was implemented by Carter et al. (2016) and is similar to a method described by Velo et al.
(2013). This approach was later updated and extended to estimating seawater pHt and nitrate
(Carter et al., 2018: LIRv2) and was most recently expanded to oxygen, phosphate, and silicate
estimates (Carter et al. 2021). The new improvements in LIR-based empirical seawater property
estimation routines (called here: ESPER _LIR, equivalent to LIRv3), relative to LIRv2, include:



118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156

1. use of the 2020 release of the GLObal Data Analysis Project data product
(GLODAPv2.2020: Olsen et al. 2020), for predictor variables with many thousands of
new measurements, particularly in the North Pacific, relative to the GLODAPv2 version
used for earlier versions of the global algorithms;

2. numerous additional data sets from the Gulf of Mexico and the Mediterranean Sea as
training data, fixing large and important data gaps in LIRv2;

3. the ability to return estimates of DIC;

4. simple and improved estimation of anthropogenic perturbations to pHt and DIC based on
first principles, allowing better predictions of future changes in seawater carbonate
chemistry;

5. implementation of a distance weighting for the fit in ESPER LIR, allowing more data to
be used for each of the many regressions;

6. and ease-of-use changes that allow the insights from the LIR routines to be more easily
adapted for regional applications.

In addition to LIR updates, we introduce new neural-network-based routines (ESPER_NN) to
take advantage of the strengths of neural networks including the ability to model non-linear
relationships between predictors and estimated quantities (Tu 1996). In several important ways
this new algorithm imitates the design of the “Carbonate system and Nutrients concentration
from hYdrological properties and Oxygen using a Neural-network version B” (CANYON)
algorithms designed by Sauzede et al. (2017) and updated by Bittig et al. (2018). The significant
differences between ESPER NN and the existing algorithms are:

1. inclusion of new data from the GLODAPv2.2020 data product (as with the LIR updates).

2. Like ESPER LIR, ESPER NN uses a new first-principles-based approach to estimate the
impacts of long-term trends for pHt and DIC.

3. ESPER NN can function with 16 combinations of seawater properties requiring at
minimum salinity and coordinate information, while alternative neural network
approaches also require oxygen and temperature. While the temperature, salinity, and
oxygen are often available and are frequently an ideal predictor combination, there
remain applications where oxygen measurements are not available (due to absent, failed,
or fouled sensors) or not desired as predictors (such as when estimating preformed
properties from only conservative seawater properties, e.g., Carter et al. 2021).

By most validation metrics the ESPER_NN routines perform comparably to ESPER LIR
routines and, in some places, they perform better (see: section 3. Assessment). Nevertheless, we
contend there are reasons to maintain both approaches. First, the LIR routines offer a degree of
simplicity and estimate explicability that lends them additional value. To highlight the
explicability of the LIR estimates, we have added the ability to return the coefficients of the
equations that were used to produce each estimate as an additional optional routine output. This
may be useful when querying the LIR routines for an equation that could be used for a regional
study in another application. Similarly, regional coefficients could be added into the
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ESPER LIR coefficient files to produce a modified routine that seamlessly transitions to using
regional relationships within a specific area such as a marginal sea, while still using the
relationships derived for the open ocean outside of that region. Also, as we discuss later, there is
merit to having and using multiple routines when the errors in the estimates appear to be partially
independent, as appears to be the case with ESPER LIR and ESPER NN.

Both new routines are freely available as MATLAB functions at Zenodo (Carter 2021) and
updates will be made available at the GitHub repository (see: Section 8). Several changes have
been made to the LIR function behavior that are noted alongside the reasoning behind the
changes in Supplementary Materials S2: Readme.

2.2 Data products, training data, and test data

The primary data product used to train these algorithms is the GLODAPv2.2020 data product
update (Olsen et al. 2020). In addition, we added data sets that will be included in the CARbon,
tracer and ancillary data In the MEDiterranean Sea (CARIMED) and that are included in the
Coastal Ocean Data Analysis Project for North America (CODAP-NA; Jiang et al. 2021) data
products. These data from the Mediterranean Sea (46 cruises spanning from 1976 to 2018 and
covering all the sub-basins in the Mediterranean Sea) and the Gulf of Mexico (3 cruises spanning
2007 to 2012) are included to ensure these important regions are well-constrained and the cruise
information is provided in Supplementary Materials S1.1. These data products are focused on
internal consistency and are inclusive for carbonate system measurements. We do not make a
special effort in this study to incorporate high resolution data from profiling sensors (e.g., | m
oxygen values) or measurements from data products that focus on macronutrients or oxygen, but
note that this could be an area of focus for future development.

As with previous versions of LIRs, we excluded data from GLODAPv?2 that has not had
secondary quality control checks (QC), and further omitted several sets of cruises that had large
adjustments or appeared to have noisy measurements at depth (detailed in Supplementary
Materials S1: Data). We also excluded measurements from any bottle that lacked measurements
for temperature, salinity, oxygen, and macronutrients (phosphate, silicate, and nitrate).

Homogenization of the variety of pH measurement types and calculations in GLODAPv2.2020
remains a challenge (see: Supplementary Materials S1.2). As with LIRv2, the ESPERSs return in
situ pHr estimates that are intended to be consistent by default with pHt measured
spectrophotometrically with purified m-cresol purple indicator dye and converted to in situ
conditions, but can be made to return values that are intended to be consistent with pHr
calculated from DIC and TA at in situ conditions (as CANYON-B does by default) using an
optional flag. These approaches for arriving at pHt values have a documented disagreement
(Carter et al. 2013, 2018; Williams et al. 2017; Fong and Dickson 2019; Alvarez et al. 2020), and
we rely on the relationships developed by Carter et al. (2018) to interconvert between these pHt
estimates. New observations are challenging the assumptions inherent to this approach



194
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219

220
221
222
223
224
225
226
227
228
229
230
231
232

(Takeshita et al. 2021), but currently there is insufficient data or mechanistic understanding to
refine the relationships we use for interconversion.

For assessment purposes we must separate validation data from training data and withhold the
validation data from the versions of the algorithms used for assessment. It is better to withhold
data from entire cruises to avoid obtaining unrealistically high skill estimates when
reconstructing data from a synoptic cruise based on algorithms trained with other data from the
same cruise. In past versions of LIRs, this assessment was conducted by creating algorithms that
iteratively omitted each cruise while reconstructing data from the omitted cruises. However, this
strategy would be too computationally intensive to employ with the ESPER NN and would not
provide a clear comparison to the CANY ON-B neural network, which was trained with the
original GLODAPvV?2 release. Instead, all data in GLODAPv2.2020 that were added following
the original GLODAPV2 release (i.e., all cruises with GLODAPvV2 cruise numbers >=1000 and
those incorporated from the Gulf of Mexico and the Mediterranean Sea) are used as test data for
the validation versions of the algorithms that were trained only with the data in the original
GLODAPV2 release. For general use, a release version of the ESPER LIR and ESPER NN
algorithms were trained with the total data set to benefit from the recent data, and this release
version is the only version provided at Zenodo. Data within several marginal seas (the Gulf of
Mexico, the Sea of Japan/East Sea, and the Mediterranean Sea) are omitted from the bulk global
open-ocean assessment statistics because these are regions where the validation versions of the
algorithms have insufficient training data (i.e., none) to produce estimates. Similarly, data from
the Arctic (here: north of 67.5°N) are withheld from the global assessment step because the
Arctic is a problematic region for algorithms (see Sect. 3.6). Instead, algorithm performance is
separately assessed in these regions to explore the limitations of the approaches used (Section
3.6). The numbers of valid, quality-controlled measurements available for each algorithm
version in each subset of the data are given in Table 1.

2.3 Anthropogenic impacts on carbonate chemistry

The LIPHR (i.e., LIRv2 for pHrt) and CANYON-B algorithms use “estimate year” (i.e., for
LIPHR this is the calendar year expressed as a decimal, where the midpoint of the year 2020
would be given as 2020.5) as a predictor for seawater properties (or their reconstruction errors in
the case of LIPHRV2) to capture the impacts of long-term trends on pHr estimates and the
training data. However, recent research suggests that decadal variability in seawater property
trends can rival, regionally, the magnitudes of the secular trends. This is true even for Cane which
exhibits a large secular trend (Woosley et al. 2016; DeVries et al. 2017; Carter et al. 2019a).

This finding implies that empirical fits risk projecting trends from cyclical natural variability into
the future. LIPHR avoids some biases from regional natural variability by using global empirical
fits over density intervals, but, as a result, the routine is unable to distinguish between regions
with rapid (e.g., the North Atlantic) versus slow (e.g., the North Pacific) Cane accumulation. In
addition, LIPHR assumes a fixed OA rate over time, but OA rates might be expected to
accelerate due to the approximately exponential increase in atmospheric CO,. Therefore, while
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algorithms like LIPHR seem to accurately predict contemporaneous deep pHr, it is likely that
biases will emerge over the coming years, particularly in regions where Cant penetration is large
such as the North Atlantic (Gruber et al. 2019). The risks of natural variability biasing empirical
trend projections are perhaps more acute for the properties that have weaker secular trends than
DIC and pHr, such as nutrients and oxygen, although the empirical trends in these properties are
usually smaller components of the overall variability in their estimates.

Given the challenges associated with accurately quantifying secular changes with short-term,
empirical information, ESPER LIR and NN rely on a first-principles-based estimate of Can and
its impacts on pHr. This approach assumes that exponential increases in atmospheric
anthropogenic CO; should eventually result in marine Cane concentrations that increase at rates
proportional to atmospheric anthropogenic CO> concentrations. In other words, this approach
relies on the assumption that Cay is in transient steady state (Gammon et al. 1982; Tanhua et al.
2007); this is an assumption used to adjust data to reference years in the most recent global Cant
distribution change estimates for the 1994 to 2007 period (Gruber et al. 2019). This implies that,
locally, the ‘shape’ of the Can vertical profile (or Cant vertical gradient) should remain constant
over time while atmospheric CO; and ocean Cant values are increasing exponentially according
to:

— 0.018989(year—2002
Cant_year_location - Cant_2002_locatione v ) (1)

Therefore, if a Cant value is known for a location in a reference year (e.g., Cant 2002 location 10
2002 c.e.), then Cant can be estimated for that location in a desired year (C,nt year 1ocation)- The
coefficient within the exponent is derived by solving equation (1) to match Gruber et al. (2019)’s
assumption of a ~28% Cant increase over the 13 years from 1994 to 2007 (see: their methods
supplement). We note that this approach is not able or intended to resolve non-steady state
variations in Cane (Gruber et al. 2019), and the errors in the estimates that result from this
deficiency are included implicitly in the assessed overall uncertainty estimates.

For the ESPERs, we utilize a gridded Cant product referenced to the year 2002 (Lauvset et al.
2016). This product was created using the Transit Time Distribution (TTD) method (Waugh et
al. 2006), and gridded to the same 1°x1° latitude/longitude resolution with 33 depth surfaces as
the Global Data Analysis Project (GLODAPv2) gridded data product. This reference 2002 field
can be used with Eqn. 1 to estimate the difference between Cant in 2002 and Cane in the year in
which a measurement was made, or an estimate is desired. Therefore, rather than having a time
dependent prediction of pHt or DIC, we take the following steps to address anthropogenic trends

(Fig. 1):

1. start with the unmodified training data set,

2. transform all training data to the year 2002 by adding/removing the missing/excess Cant if
they are measured before/after 2002,

3. train the pHr or DIC algorithms on this modified training data,

4. predict pHt or DIC without a time dependence for 2002,
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5. and transform the Can to the desired year (if other than 2002), recalculating DIC and pHr
with the new Cantotal accordingly.

Steps 1 through 3 were performed before training the routines, while steps 4 and 5 are performed
by the ESPER code each time it is called. Supplementary Materials S1.3 provides more detail
for the pHr recalculations noted in step 5.

There are uncertainties associated with the assumptions underlying both the 2002 gridded Cant
data product and the transient steady state approach—particularly in regions where there are
limited measurements of chlorofluorocarbons and other tracers used to calibrate the TTD
approach. We therefore assert that Eqn. 1 should not be used to estimate Can distributions for
any application where Cay is of primary interest. However, uncertainties in the adjustments that
come from changes in these Cant estimates over time should be modest for a window of time
around the year 2002 c.e., the year in which the adjustments are zero by definition. Equation (1)
implies that adjustment errors will be smaller than errors in the underlying 2002 Cax distributions
for any estimate before 2039 (i.e., the Cant doubling time after 2002). As the training data are
also adjusted in step 2, the effective magnitudes of the adjustments are related to the difference
between the years of the estimates and the average measurement years of the training data used
for those algorithms (which for most regions and algorithms is close to 2002 c.e.). These
ESPERs should therefore be used with increasing caution for DIC and pHr after ~2030.
Regardless of these challenges, this parameterization of OA rates should be more accurate
moving forwards than that used by LIPHR, and any improvements in the Can estimates should
directly reduce estimate bias in the modern era and the near future. Notably, implementing this
approach decreased overall training data reconstruction root mean squared error for DIC by
>10%, and decreased the trend in the DIC reconstruction error from ~0.49 pmol kg ! yr'! to less
than 0.03 umol kg! yr!. We caution that these assumptions do not explicitly consider declines
in ocean carbon uptake efficiency and the assumption of exponential growth can lead to very
large DIC accumulations when used for distant projections. Future atmospheric CO>
concentrations are highly uncertain, and user discretion is advised for any projections.

There is no time-variance for ESPER estimates of quantities other than pHr and DIC.
2.4 ESPER_LIR construction

ESPER_LIR broadly functions similarly to LIRv2, which is described in detail by Carter et al.
(2018). As with LIRv2, the ESPER LIR algorithms use regression coefficients (C) that are
specific to each of 16 equations and 44,957 locations on a 5° latitude x 5° longitude x 33 depth
ocean interior grid subsampled from the World Ocean Atlas gridded product grid. These
coefficients are interpolated in 3D space to the locations where regression coefficients are
desired. The algorithm then uses the coefficients with user-provided seawater property predictor
information (P) to produce property estimates.
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The LIR algorithms are constructed by fitting 16 different regressions that relate the properties of
interest, X (silicate, nitrate, phosphate, oxygen, TA, DIC, and pHr), to combinations of up to 5
predictor properties, P (including: salinity, potential temperature, nitrate, phosphate, oxygen, and
silicate), which are specific to each property of interest (Table 2). Each equation uses between 1
and 5 predictor properties and the generalized predictor equation is:

X =Co+ XL, P, (2)

Unlike LIRv2, depth is never used as a predictor for ESPER LIR and is only used as a
coordinate for regression coefficient interpolation. Versions with depth included as a predictor
performed similarly or worse than versions with depth omitted during early testing.

The regression coefficients C; and Co are fit 44,957 times for each of the 7 estimated properties
and each of the 16 equations. At each grid location, “local” data are selected from the subset of
all data that are within 15° in latitude, 30°/cosine(latitude) in longitude, and within either (100 +
z/10) meters depth or 0.1 kg m™ of the estimated density of seawater at that coordinate location.
Here z is the coordinate depth in meters. As with LIRv2, these window dimensions are
iteratively doubled when fewer than 100 measurements fall within the windows. These data
selection windows are initially twice as wide as the windows used in LIRv2 in all dimensions.
Doubling the baseline size of these windows is intended to include more data on average for the
regression fits, introduce more modes of oceanographic variability into the fitting data, and
thereby reduce multicollinearity. The average absolute values of regression coefficients in
ESPER LIR are only 80% of the average absolute values of the coefficients in LIRv2,
suggesting ESPER_LIR is subject to less multicollinearity than LIRv2. However, widening the
windows risks making the regressions less appropriate locally, so a weighting term is used that is
equal to:

-2

LUV | (cos(lat) (4lon))? + 4(4“302) )

100+z

W = max (5(

The weighting term W reduces the cost of regression misfits to data that are distant or at
significantly different depths from the regression coordinate location, and the maximum function
caps the weights (at a value equivalent to the weight found when 5° latitude away) to ensure the
regressions are not overly fit to data very near the coordinate where the denominator approaches
0. The Az term is the difference between the regression coordinate depth (z) and the depth of the
measurements. The Alon is the minimum difference in the measurement and coordinate
longitudes when using either the -180° to 180° or 0° to 360° conventions, and Alat is the
difference between the measurement and coordinate latitudes. The regression coefficients

(Cy and Cp;) are then fit using a regression of the form:

XW = (Cy+ X7y CpiPHW 4)

As with LIRv2, data outside of the Atlantic, Mediterranean, and Arctic are excluded when fitting
Northern Hemisphere regression coordinates within the Atlantic, Mediterranean, or Arctic—and

10
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vice versa—in order to prevent use of data from across Central America or the Bering Strait.
The widths of the data inclusion windows and the coefficients in the weighting function were
optimized by selecting the variant of § combinations that had the best validation statistics.
However, some of the combinations yielded comparable results for some predictors, so this
parameter tuning process should not be considered exhaustive.

2.5 ESPER NN Construction

ESPER NN relies upon a collection of feed-forward neural-networks to estimate seawater
properties with a similar operation to the LIR algorithm and a similar structure to the CANYON-
B algorithm: ESPER NN uses the same combination of predictor measurements as ESPER LIR
to produce estimates of the same properties, and does so with a function call that has similar
syntax. Unlike ESPER_LIR, in addition to the predictors noted in Table 2, the ESPER_ NN
algorithm uses latitude, depth, cos(longitude-20°E), and cos(longitude-110°E) as predictors in
each equation, making the estimates somewhat more analogous to a mapping approach than the
ESPER_LIR estimates. Similar, but not identical, parameters are used in CANYON (Sauzede et
al. 2017) and CANYON-B (Bittig et al. 2018): unlike the original CANYON, ESPER NN
offsets the 0 longitude for the reasons noted by Bittig et al. (2018), specifically that cos(lon)
loses explanatory power at the prime meridian, which is a region of oceanographic significance.
Offsetting longitudes to 20°E (and 110°E) puts these regions of minimum explanatory power
over land masses to the extent possible.

ESPER NN uses 896 neural networks in total: eight neural networks (four in each of two large
ocean regions: see below) are used for each of the 16 combinations of predictors used for each of
the 7 property estimates. ESPER NN averages estimates from a “committee” or ensemble of 4
neural networks with different combinations of neurons and hidden layers to minimize the
impact of errors from any one neural network. These four neural networks include a single one-
hidden-layer network with 40 neurons, and three two-hidden-layer networks with 30/10, 25/15,
and 20/20 neurons in the 1%/2" hidden layers. One committee of neural networks is used in the
Indo-Pacific-Southern Ocean regions and an additional committee used in the Atlantic Ocean,
Arctic Ocean, and Mediterranean Sea. The ESPER_NN algorithm linearly interpolates between
the outputs of these two committees of neural networks by latitude across the Southern Atlantic
and the Bering Sea, being fully in the Indo-Pacific-Southern Ocean network by 44°S in the
Southern Atlantic and fully in the Atlantic, Arctic, and Mediterranean network by 34°S.
Similarly, the North-Pacific-to-Arctic transition occurs between 62.5°N and 70°N along Pacific
longitudes. After this meridional blending step, there is a zonal transition implemented in the
Southern Atlantic between these blended values and the Indo-Pacific-Southern Ocean network
starting at 19°E and being completely transitioned at 27°E.

Techniques exist for illuminating the relative importance of predictor variables in machine
learning approaches (e.g., Olden and Jackson 2002), but the exact equations used by the
ESPER NN algorithm are nevertheless more opaque and less explainable than the LIR
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equations. The networks are fit using the MATLAB r2017 Machine Learning Toolbox
“feedforwardnet” and “train” function defaults, which include Levenberg Marquardt
optimization with 15% of input data reserved for assessment during iterative fitting steps.
However, the neural networks have been encoded as functions, so users do not require the
Machine Learning Toolbox to operate ESPER _NN.

2.6 Mixed Estimates

Bittig et al. (2018) showed that linear regression and neural network estimates frequently have
independent error fields. From this observation, they proposed that it might be advantageous to
combine estimates from both approaches. We test this idea and find that it has merits in many
circumstances. We therefore also release a wrapper function “ESPER Mixed.m” that calls both
routines, ESPER_LIR and ESPER NN, and averages the estimates. We do not provide a similar
wrapper function for CANYON-B, but we note that our assessment suggests the findings for the
mixed approach could also apply to a mixed version of CANYON-B and ESPER _LIR equation
7. The ESPER Mixed routine is assessed alongside the other algorithms in Section 3.

2.7 Uncertainty estimation

The routines can return uncertainties for every property estimate, and the uncertainty values vary
with input depth and salinity. These uncertainties are estimated at the 1o (i.e., 1 standard
uncertainty) level, so we would expect ~95% of new measurements that have been through the
GLODAPv2 QC process to fall within windows of + twice the ESPER estimated uncertainties.
The LIRv2 uncertainty estimation strategy for TA (Carter et al. 2018) is slightly modified and
then implemented for all properties estimated by the two ESPERs. As before, this approach
interpolates baseline error estimates (Ey gg¢) in depth and salinity space. The interpolated values
are based on the root-mean-squared errors (RMSESs) of all predictions from the validation
versions of the routines within bins of salinity and depth. As with LIRv2, ESPER LIR also
scales these methodological uncertainties using user-provided predictor uncertainty estimates.
The following equation is used when the user provides uncertainties for the predictors

(Epi providea) that exceed the default assumed input uncertainties (Table 3).

)¢ 2 ax 2
— 2 n n
EX_Output - \/Ex_Est T Lj=1 (G_Pl EPi_Default) + Zi=1 (B_Pl EPi_Provided) (5)

If the optional Ep; provigeq Input is omitted then it is assumed that Ep; provided €quals Ep pefault
ax
P,
property estimate X to the ith predictor P; and the Ep; terms are the default and the user-provided

(Table 3), and the two summed terms in this equation cancel. Here — is the sensitivity of the

predictor uncertainties. For the ESPER LIRs, the % values equal the Cp; terms. For

ESPER_NN calculations, the algorithm determines the sensitivities by iteratively perturbing the
input predictors if and only if the user specifies larger-than-default predictor uncertainties. The
uncertainties in Table 3 are the minimum uncertainties allowed by the calculations because these
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are the assumed uncertainties in the best open ocean training data available, so these
uncertainties reflect one of the upper limits on the quality of estimates achievable with the
algorithms regardless of the quality of the predictor measurements. The sole difference from the
approach used for LIRv2 TA estimates is that the interpolated uncertainties now include the
component of uncertainty that originates from potential errors in the training data. This saves a
step in the calculations while providing numerically equivalent results.

The uncertainty for an ESPER Mixed estimate is assessed simplistically as the minimum
uncertainty assessed for the two component ESPER LIR and ESPER NN estimates (Sect. 3.7).

3 Assessment

Routines are validated using versions of the algorithms trained only with the data that were
present in the original GLODAPV2 release (Table 1). This cutoff was chosen to make the
validation algorithms for ESPER LIR and ESPER NN comparable to the LIRv2 and
CANYON-B routines to the degree possible. These “validation” versions of the algorithms are
then used to recreate the “validation data set,” or the newly added data in the GLODAPv2.2019
and GLODAPv2.2020 updates plus the other cruises from the Mediterranean Sea and the Gulf of
Mexico. The reconstruction errors for these new measurements are used to derive error statistics
for the five routines that we assess (LIRv2, ESPER LIR, ESPER NN, CANYON-B, and
ESPER Mixed). The validation data set is in some ways not ideal, in that it is not evenly
distributed globally and there is spatial overlap between the test and the training data sets (Fig.
2). An alternate approach to assessing prediction errors involves omitting all training data from
regions of the ocean representative of data gaps between cruises, and then estimating the errors
within these gaps. This approach has been used previously by Sauzede et al. (2017) and Carter
et al. (2018), but was found to generally yield smaller uncertainty estimates in the open ocean
than approaches that omit entire cruises (Carter et al. 2018), so we conservatively rely on the
cruise-omission assessments. The additional data sets from the Gulf of Mexico and the
Mediterranean Sea that were incorporated into this paper were omitted from the global-average
validation data set because neither had undergone secondary QC and because a small subset of
the Mediterranean Sea data from GLODAPvV2 had been previously incorporated into the training
data product for some algorithms but not others. New measurements from the Sea of Japan/East
Sea, a biogeochemically distinct region where no previous measurements existed in the original
GLODAPvV2 product, are also omitted from bulk validation statistics. However, validation
statistics for these regions are given separately (Sect. 3.6).

The reported validation statistics are bias (average reconstruction error), root mean squared error
(RMSE), and the number of new measurements used for each assessment (N). The 10™, 50,
and 90™ error percentiles were examined as potential additional statistics, but these statistics
were within expectations when assuming normally distributed errors with the given RMSE and
bias statistics.
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3.1 Macronutrients

The routines work well for macronutrients (i.e., phosphate, nitrate, and silicate) when given at
least two predictors, reproducing the validation data with low average bias and a RMSE that is
comparable to the measurement uncertainties (Tables 4 through 6). Phosphate and nitrate have a
strong and well-documented covariance in the ocean (Redfield et al. 1963). This covariance
results in low RMSE statistics for the equations relating these properties to one another (e.g.,
Eqgns. 1 and 2 in Table 2), but reduces the value of adding the other as a predictor when one is
already included. This covariance is less strong between silicate and either phosphate or nitrate,
and oxygen is comparably useful to the macronutrients when predicting silicate. Unsurprisingly,
the equations with more fitting parameters tended to perform better, and the RMSE ranged from
being comparable to nominal ~2% measurement uncertainty at best (or £0.04 umol kg ! for a
phosphate measurement of 2 pmol kg!. A. Olsen et al., 2016) to 3-4 times worse when only S
and coordinate information is used in the prediction. All algorithms assessed perform
comparably for the equations using 7, S, and oxygen as predictors (i.e., ESPER Eqn. 7), but
LIRV2 performs slightly worse for silicate. LIRv2 performs comparably to alternatives for many
macronutrient estimates, but alternatives outperform LIRv2 for the equations with the largest
RMSE values and fewest predictors (e.g., equations 12 and 16), suggesting that the modifications
in ESPER_LIR have resulted in an improvement in the least-accurate estimates. Likely, this is
due to the larger number of measurements available for each regression in ESPER LIR relative
to LIRv2. Unlike the ESPER LIR validation routine assessed here, the released version of
ESPER_LIR benefits from including the newly added data in the recent updates to GLODAP,
and is therefore preferred to LIRv2 even when the validation statistics are comparable.

3.2 Oxygen

Validation statistics are reasonable for oxygen though persistently greater than the nominal 1%
measurement uncertainty (i.e., 3 umol kg ! for a 300 umol kg ! measurement, Olsen et al. 2016),
ranging from 4.5 to 13.2 umol kg! in the global ocean for ESPER_NN_validation and
ESPER LIR validation (Table 7). LIRv2 is also comparable, but again shows worse validation
statistics for equations with fewer predictors and larger RMSE values. The statistics are
markedly better at intermediate depths, and range from 2.7 to 6.0 umol kg ! between 1000 and
1500 m depth for ESPER_NN_validation. Below the well-lit surface ocean there is no gas
exchange and essentially no primary production of organic matter, and the algorithms are
therefore better able to capture the fewer processes controlling oxygen distributions. As a result,
the oxygen algorithms perform less well at higher oxygen concentrations, which is evident in the
larger error statistics globally than in the intermediate depth statistics, as well as in the
comparatively diffuse cloud of estimates in the upper right of the oxygen histograms in Fig. 2.
Interestingly, the neural network estimates in Fig. 2 appear less diffuse than the LIR-based
estimates: the RMSE for eqn. 1 for only the top 200 m is 8.6, 7.6, and 8.0 pmol kg ! for the LIR,
NN, and Mixed validation ESPER variants, respectively. This suggests that the neural network
framework is more skillful at capturing the non-linear relationships between properties that can
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result in the presence of gas exchange and primary production in the surface ocean. Oxygen
estimates show a non-negligible bias, overestimating oxygen by an average 0.9 umol kg ! for all
3 algorithms across equations. It should be noted that a large amount of the validation data used
for this assessment are located within the North Pacific where oxygen concentrations are low, so
this could reflect a small regional bias in the algorithms, a tendency to overestimate lower
oxygen concentrations, or differences between the test and the training data products.
Supporting this idea, the released versions of the algorithms—which use all data as training
data—still have a 0.6 pmol kg ! bias for the ESPER_Mixed validation test data reconstructions
while having a -0.1 umol kg ! bias for the ESPER_Mixed validation training data
reconstructions (i.e., GLODAPv2) and no significant bias for both data subsets combined.

3.3 Total Titration Seawater Alkalinity

Seawater alkalinity continues to show strong predictability even with comparatively few
predictors (Table 8), and has the smallest relative range in RMSE values with the least precise
estimates having a RMSE that is less than double the RMSE of the most precise estimates
(ranging from 3.7 to 5.2 umol kg ! for TA for ESPER_NN_validation estimates). The small
range in assessed RMSE values is expected because all equations use S, and freshwater cycling is
a major driver explaining variability in both S and TA. The excellent validation metrics for new
and existing algorithms for TA likely reflect particularly precise TA measurements in the newly
added cruises in GLODAPv2.2020, in part due to increased use of certified reference materials
for TA (Dickson et al. 2003).

Interestingly, there is an estimate bias averaging 0.5 to 1 pmol kg ! across equations for the
various routines. It is difficult to identify the cause of these average mismatches when
considering that the GLODAP secondary QC effort already adjusted several cruises to be in line
with the existing GLODAPv2 data product. However, Olsen et al. (2019) note that many of the
newly-added cruises in the North Pacific show a negative bias against earlier cruises, consistent
with this observation. Also, many of these cruises use single-point spectrophotometric TA
titration endpoint detections, which Bockmon & Dickson (2015) previously noted could be a
source of disagreement with TA values from full-pH-range titration fits. Interestingly, Sharp &
Byrne (2020) have provided a mechanistic explanation that would account for these analytical
disagreements if alkaline organic molecules were present in open-ocean seawater. While this
discussion highlights the challenges of creating a consistent data product across research groups,
the high precision and modest bias of this TA reconstruction nevertheless demonstrates the high
quality of the underlying measurements and the importance of the GLODAPv2 secondary QC
process.

3.4 In situ pH on the Total Scale

There is some difficulty comparing across pHr algorithms because the training data for earlier
pHr algorithms were supplemented with several additional cruises (Carter et al. 2018; Bittig et
al. 2018), many of which were since added to the GLODAPv2 data product in annual updates.
This means that some algorithms would benefit from overlap between the training and validation
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data products in this comparison. The comparison cannot simply be limited to the truly new
cruises because there are not many additional cruises where purified spectrophotometric dye
measurements were made that were not used to train earlier algorithms; we limit our comparison
to cruises with these spectrophotometric measurements because it has been shown that there are
consistent disagreements between measured and calculated pHr (Carter et al. 2018; Alvarez et al.
2020). Moreover, measurements made with purified dyes are consistent with measurements
made by sensors that have been shown to have the expected Nernstian response to pHr changes
(Takeshita et al. 2020) lending support to the use of spectrophotometric pHr values over the
disagreeing calculated values. Complicating the comparison further, the three new cruises that
were not included in LIRv2 or CANYON-B pHr training data that do meet our criteria had large
adjustments applied during the GLODAP secondary QC. Therefore, for this study we do not re-
assess LIRv2 or CANYON-B, and instead show that the ESPERSs have similar validation
statistics (Table 9) to those published by earlier validation efforts for these algorithms (Carter et
al. 2018; Bittig et al. 2018). We do note however, that the statistics obtained when we assess all
four algorithms using 7, S, and oxygen with the same data (not shown) are quite close to each
other despite the partial overlap between training and validation data sets. This suggests all four
algorithms are valid for pHr.

It is difficult to read into pHrt validation statistics too much given the comparatively small
number of valid assessment data points. However, one pattern in pHt assessment statistics that
is apparent is that pH reconstructions benefit significantly from the use of either nitrate or
oxygen as predictors, as these predictors provide information regarding organic matter
remineralization. The equations with neither quantity have higher RMSE values, even when
silicate is included as a predictor.

3.5 Total Dissolved Inorganic Carbon

The routines reproduce DIC measurements with good skill and a small positive average bias,
with RMSE values ranging from 4.8 to 16.7 pumol kg globally and 3.2 to 7.0 umol kg! at
intermediate depths for the various validation versions (Table 10). Assessment statistics are
comparable across the three routines that estimate DIC (LIRv2 does not). We caution that DIC
does not have seasonal resolution in the surface ocean in most regions of its training data
product. Therefore, estimates within the surface ocean should be treated with caution, and we
recommend avoiding interpreting seasonality in the ESPER estimates. This caution applies to all
property estimates, but is important to note for DIC specifically because of the high sensitivity of
DIC to most modes of seasonal variability and the large scientific interest in seasonal DIC
cycling. DIC calculations from measured pH or pCO; and estimated TA are expected to be less
challenged by the lack of seasonal resolution than direct DIC estimates, as TA seasonality is
usually less pronounced than DIC seasonality. These two approaches to DIC seasonality
reconstruction can return quite different results in the surface ocean (Supplementary Materials
S1.4). There are empirical routines for global DIC estimation (Broullon et al. 2020) and surface
DIC estimation (Gregor and Gruber 2021) that are also trained with the surface pCO-
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measurements. In the many regions where surface pCO- has better seasonal data coverage than
GLODAPv2, these routines are likely to better resolve DIC surface seasonality than ESPER or
other DIC algorithms trained primarily with discrete DIC measurements.

3.6 Regional Tests

We assess the performance of the algorithms in 8 regions independently (Fig. 3). Some of these
regions are where biogeochemical Argo floats are currently being deployed (i.e., the North
Atlantic, California Current, Equatorial Pacific, and the Southern Ocean) and therefore where
there is additional interest in the performance of the algorithms. Other regions are
biogeochemically distinct places where there were no training data used for the CANYON-B
and/or LIRv2 algorithms (i.e., Sea of Japan/East Sea, Gulf of Mexico, and the Mediterranean).
These regions therefore allow tests of the likely errors one can expect when applying global
algorithms to biogeochemically distinct regions where there were no available training data.
Finally, the Arctic is a problematic region for the algorithms that warrants special attention.

We first consider the Southern Ocean, the Equatorial Pacific, the California Current, and the
Northern Atlantic. The validation statistics in these regions where there are active ongoing
biogeochemical float deployment efforts are, for the most part, consistent with the global average
statistics. The Northern Atlantic shows validation statistics that are somewhat worse than global
averages for macronutrients and oxygen and the California Current shows oxygen RMSE values
that are equally elevated. Given the active physical processes and biogeochemical cycling in
these regions of interest (and the comparatively small validation data set in the California
Current), none of these sets of validation statistics are unexpected. We therefore conclude that
the algorithms should function within expectations in these important regions and suggest Table
11 can be used to get a sense for how the global validation statistics might vary on a regional
level.

The Sea of Japan/East Sea provides an excellent case study to assess the use of algorithms in
regions without training data for three reasons: (1) this region had no data in the first
GLODAPvV2 release, and thus is a region where neither LIRv2 nor CANYON-B had training
data; (2) a large quantity of high-quality data from the Sea of Japan/East Sea were included with
the GLODAPv2.2020 release; and (3) the Sea of Japan/East Sea is biogeochemically distinct
from the open ocean to the east of Japan, providing a challenge for the predictive capabilities of
the approaches. Neither of the earlier generation of algorithms work well there with large
average biases and RMSE values that are ~9 times greater on average than in the first set of
regions considered, but with significant variance between properties and routines (Table 11).
LIRvV2 is especially problematic in this region, and the marked improvement in

ESPER_LIR validation relative to LIRv2 suggests the wider data inclusion windows did indeed
reduce variance inflation in this region. The release versions of the ESPERs that do include data
from the Sea of Japan/East Sea as training data indeed reproduce these data with comparable
fidelity to the global statistics (Supplementary Materials S1.4). We conclude this region is not a
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special challenge for algorithms when training data are included. The release versions of these
algorithms updated with the new data should therefore work in the now-measured portions of the
Sea of Japan/East Sea.

Two additional marginal seas deserve mention. GLODAPv2 does not yet include data from the
Gulf of Mexico or the Mediterranean Sea that have been subjected to the GLODAPv2 a
completed secondary quality control process (some data from the Mediterranean Sea are
included, but with QC flags of 0). However, due to the large errors expected within marginal
seas (and now demonstrated for the Sea of Japan) when training data are absent or omitted, data
from two cruises to the Mediterranean were included in the training data for CANYON-B despite
the lack of secondary QC. We now do similarly in the ESPERs and include additional data
gathered as part of the CODAP-NA (Jiang et al. 2021) and ongoing CARIMED efforts
(Supplementary Materials S1.1). The same lessons from the Sea of Japan/East Sea analysis
apply to the reconstruction of measurements from the Gulf of Mexico and the Mediterranean Sea
(Table 11). We caution that ESPER_LIR is challenged by the lack of data below 2000 m depth
in the Mediterranean, and increases its window sizes large enough to incorporate data at depth
from the deep North Atlantic. This results in poor RMSE statistics even when the test data is
included with the training data (Supplementary Materials S1.4). Until this is addressed, it is
recommended that users interested in this area use ESPER_NN or CANYON MED (Fourrier et
al. 2020) in place of ESPER _LIR or ESPER Mixed. Such regional algorithms can be
meaningfully better for regional efforts, and work in progress on a regional algorithm for the
Gulf of Mexico shows promise for reducing the RMS misfit to the observations from this region.
The Gulf of Mexico challenges the ESPERs because this is a region where the underlying TTD-
based Cant data product does not contain estimates, so Cant is crudely triangulated between the
Pacific and Atlantic in this region. A regional algorithm could address this limitation with a
more sophisticated approach.

Finally, with intense seasonality, strong freshwater cycling and riverine inputs, seasonal ice
cover, and broad continental shelves, the Arctic is an interesting “worst case scenario” for the
algorithms, even when training data are available. The validation statistics in this region are
significantly worse than the global statistics (RMSEs average ~2.3 times greater, though again
with variance between properties and routines, Table 11). These larger uncertainties found in the
Arctic could perhaps be generalized to other problematic regions such as shallow coastal areas,
small marginal seas, areas with significant riverine inputs, or other areas with seasonal ice cover.

3.7 Mixed ESPER

As proposed by Bittig et al. (2018), averaging the estimates from ESPER LIR validation and
_NN_validation indeed seems to improve the global average prediction statistics, though the
improvement is sometimes small and often the individual residuals are greater with the
ESPER_Mixed estimate than for the better of the two estimates. For equations with few
predictors (e.g., equation 16, using S as the only seawater property predictor) the improvement in
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the global open-ocean average RMSE is pronounced for all 7 properties estimated by the
routines. We therefore recommend using ESPER Mixed over ESPER LIR or ESPER NN
unless there is reason to prefer one approach over another due to, for example, the results of a
regional validation exercise in the region of interest.

4. Discussion and summary statements

Several patterns hold across the various properties. For example, including more predictors
leads to better estimates on average (Fig. 4, showing an average across all properties for both
ESPERSs) when the predictor measurements are high quality (i.e., comparable to the
measurements in GLODAPv2). However, estimate improvements are marginal beyond 4
predictors. Also, equations 6 and 7 do nearly as well as any equation despite having only 3
predictors (i.e., temperature; salinity; and either oxygen, nitrate, or phosphate, depending on the
predicted property). This observation shows the predictive power of including at least one
macronutrient or oxygen as a predictor for biogeochemical properties.

A second important generalization is that all predictions do better at depth (>1000 m) though this
is especially the case for gas distribution reconstructions: the intermediate-depth RMSE values
average 55% of the global RMSE values for oxygen, pHr, and DIC (Tables 7, 9, and 10,
respectively) whereas they average ~70% of the global RMSE values for phosphate, nitrate,
silicate, and TA (Tables 4, 5, 6, and 8, respectively). The larger, near surface estimate errors for
parameters influenced by air-sea gas exchange (e.g., pHt, DIC, and oxygen) are likely the result
of their decoupling with predictor variables that are not gases (or are gases with different
equilibration and residence times). These changes in parameter relationships near the surface
due to air-sea exchange are also sensitive to dynamic processes (e.g., wind speed), which are not
well captured by the predictor parameters, and are thus difficult to parameterize in static
algorithm relationships.

Finally, regional errors are sometimes significantly larger than global open-ocean errors, and
regional biases are almost always larger than the global biases. This highlights an important
caution for users of these routines: the global statistics may not be appropriate for estimates over
a more limited area. For this we note both that it is important to validate the algorithm estimates
for a given region/application and to consider how large of an average estimate bias is likely for
a region of a given size. As an example, we have assessed how the bias decreases as the size of
the latitude and longitude window considered increases for ESPER_NN validation nitrate
estimates (Fig. 5). These average regional biases are computed by iteratively averaging all
estimate errors inside windows of a given size around each of the grid points used by the LIR
routines. Then, for each window size considered we compute an area-weighted average of the
absolute values of the bias estimates for the grid points. In the example presented, the average
estimate bias is approximately half of the global RMSE when estimates are averaged over a
10°x10° window, and as expected the bias becomes smaller as the averaging window grows.
This shows that the estimates retain significant regional bias, implying nearby algorithm
estimates cannot be treated as statistically independent. For a float or mooring that stays within a
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small spatial region, this algorithm bias could be somewhat worse still than shown in Fig. 5. For
pCO» calculations based on pHTt measurements that are adjusted to algorithm values, even a
small average bias could lead to a meaningful change in calculated air-sea CO» flux.

5. Comments and recommendations

We have updated global algorithms for seawater biogeochemical property estimation and their
associated MATLAB routines with new functionality using new methods and new data. We
show that our new methods are mechanistically at least as skillful as earlier methods and are in
some cases better. They also have the advantages of being trained with the latest quality-
controlled data products, easy to implement in MATLAB, capable of estimating a variety of
seawater properties, flexible with the choice of input parameters, and capable of adapting several
aspects of their outputs to user needs (e.g., calculated-like or measured-like pHt). Where
possible, our validation statistics provide comparisons using validation versions of the algorithms
with identical training and validation data sets for all versions of the routines assessed. We
therefore recommend these updates even when validation metrics are comparable to those of
earlier routines because the newer routines are trained from a larger data set with better temporal
and spatial coverage. Two important features of our new routines are (1) the flexibility to predict
many seawater properties from 16 combinations of seawater properties using either a regression
approach or a neural network approach and (2) the implementation of a simple estimate of the
impacts of Cant on pHt and DIC based on first principles. While the new Cant estimation strategy
is an improvement over the LIRv2 approach for estimating the impacts of OA on pH, it
nevertheless is quite simplistic and should not be relied upon when Can: distributions are
themselves of interest.

We test the practice of averaging estimates from multiple algorithms and find that it frequently
improves estimates (in a global open-ocean RMSE sense). This practice is therefore
recommended for most applications, and we suggest further improvements might be obtained by
averaging estimates from still more algorithms such as CANYON-B or its updates. A wrapper
function for averaging CANYON-B values is under development and may eventually be
included at the same GitHub repository as the ESPER functions.

Our assessment also revealed/reinforced several important ideas to consider when using
algorithm estimates: First it is critical to have measurements in the training data set that are near
to the region in which estimates are desired. Poor reconstructions of the properties of seawater
in the Sea of Japan/East Sea from the versions of the routines that did not include measurements
in this Sea highlight the importance of this caution. Writeups of earlier algorithm assessment
efforts also cautioned against the use of the algorithms in coastal environments and marginal seas
where the algorithms did not have training data, but this case study helps quantify the large likely
errors when proceeding despite this caution, as many data-poor marginal seas remain. Second,
global oxygen, DIC, and pH estimation routine validation statistics are not as strong as the
equivalent statistics when limited to intermediate depths. This is likely because the current
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generation of algorithms lacks data with sufficient temporal resolution to capture seasonal or
shorter patterns of variability associated with gas exchanges. It is possible that the algorithms
could be improved by incorporating measurements from the biogeochemical Argo array or other
data products that are more seasonally resolved than GLODAPv2, though care would have to be
taken to avoid reinforcing the algorithms with float data that is calibrated against earlier versions
of the algorithms. This could perhaps be accomplished by removing float measurements that
reside below the depths that experience seasonal variability from the data products used to train
these future algorithms. At least until such an improvement is made seasonal variability in the
estimated fields should be treated with caution.

At intermediate depths, ESPER _LIR validation equation 8 reproduces oxygen with an RMSE of
4.8 umol kg ! using only T and S as predictors (and 3.7 pmol kg ! for

ESPER_Mixed validation), raising the possibility that estimates could be used to check oxygen
sensor performance on in situ platforms. Currently, most float oxygen sensors are subjected to a
1-point gain calibration against air-oxygen readings or climatological values at high oxygen
concentrations, and a deep algorithm estimate could allow a 2-point check that would assess
sensor performance at low oxygen saturation. Comparisons at park depths could circumvent
potential issues associated with slow sensor response times.

Our use of a smaller committee of neural networks with somewhat fewer nodes/neurons than is
used by CANYON-B is a pragmatic decision based on the computational costs associated with
training neural networks for many combinations of predictors and regions, and we have only
done a small amount of neural network structure optimization. However, it should be noted that
our use of separate network committees for the Indo-Pacific and Arctic-Atlantic regions
effectively doubles the complexity of our networks, and that increasing the complexity further
did not seem to meaningfully improve our predictions in limited trials. It is nevertheless likely
that further improvements in fit and predictive power could be obtained with additional tuning.

While the neural networks are powerful, we demonstrate that the regression-based approach of
the ESPER LIR routines can nevertheless yield comparably skillful estimates in the open ocean
or under the right conditions. We contend that the LIR machinery has an advantage of being
more explainable than a neural network, and therefore that the LIRs serve a valuable role among
seawater prediction routines. An example of where that could prove useful would be in adapting
the LIRs to work in an inland sea. A user could append their own grid of regression coefficients
determined for a marginal sea such as the Baltic or Mediterranean Seas or an inland waterway
such as the Puget Sound, and the routine would transition seamlessly between global estimates
and regionally appropriate estimates. This is a future direction for LIR development that would
require partnerships with researchers investigating such bodies of water.

The ESPER _LIR routine lacks predictors derived from coordinate information—rather, this
information is used in the interpolation of regression coefficients only. As a result, the LIR
routines struggle more than the neural networks when applied in regions that are dissimilar from
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the training data in property space but are nearby in physical space. This can be seen clearly as
larger reconstruction errors in the Mediterranean, the Gulf of Mexico, and the Sea of Japan/East
Sea. This was doubly true for the LIRv2 routines which tended to also be less well-constrained
than the ESPER _LIR (i.e., LIRv3) routines. By contrast, the neural networks also struggle, but
tend to have better RMSE statistics for these regions. We reiterate that the release versions of
the ESPERs should substantially outperform the bleak assessment statistics given for such
regions because the release versions of these routines are trained with data in these regions
(unlike the validation versions, which are used to highlight the dangers of using algorithms in
regions where they were not trained).
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Figure 1. A schematic showing the approach for adjusting training data and estimates for
effects of anthropogenic carbon accumulation. The “common year” is 2002.
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995

Figure 2. The first column contains maps of the measurement locations used to train the
ESPER LIR validation and ESPER NN validation algorithms. The second column maps the
validation data used to assess these versions of the algorithms. The final ESPER NN and
ESPER LIR algorithms are trained with data shown in both rows of maps. Panels in the right
two columns are two-dimensional histograms showing the number of measurements that fall
within bins of measured (x-axes) and estimated (with Eqn. 1 from Table 2, y-axes) values of the
indicated properties for ESPER _LIR. Color indicates the number of measurements in each bin
(bins are small enough as to appear to be pixels), with darker colors indicating more
measurements. The rightmost column is the same as the 3™ column from the left, but for
ESPER NN property estimates. An ideal algorithm would have darker colored boxes along the
1:1 lines in the first two rows.
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normalized to the RMSE of the equation with the lowest average global RMSE (equation 1)
and plotted against the number of predictors required for each estimate (x-axis). The point
labels correspond to the equation numbers in Table 2. RMSE generally decreases as the
number of predictors increases, but not all predictors have the same predictive power and the
incremental increase in predictive power diminishes when more than 3 predictors are used.
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axis) vs. the size of the latitude and longitude windows (x-axis) over which the average of the
absolute biases was computed. The three lines correspond to bias estimates that were
averaged over a narrow 100 m depth window (blue line), over all depths (orange), and over the
1000 to 1500 m depth range commonly used for float calibration (red). Biases are area-
weighted average estimates for each of the grid locations used by the ESPER_NN routine.
Nitrate eqn. 7 is chosen as this is one of the equations that is used to calibrate and validate
nitrate sensors on biogeochemical Argo floats.
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Table 1. Numbers of viable measurement combinations available for each property
within the indicated data product subsets. The “total” column reflects the training
data for the released routines, whereas the “GLODAPvV2” column reflects the
training data for the validation routines used to assess the algorithms against

New/Assessment data.

Property GLODAPv2 New/Assessment Total
Phosphate 540511 146263 711347
Nitrate 540511 146263 711347
Silicate 540511 146263 711347
Oxygen 540511 146263 711347
TA 203502 71832 286080
pH 162783 53615 222822
DIC 244062 71326 323328
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Table 2. The combinations of predictors used to estimate each property for each of the
16 equations. Rows with a checkmark indicate the predictors (listed above by property)
are included in that equation for that property.

Property Predictor 1 Predictor 2 Predictor 3 Predictor4  Predictor 5

Phosphate S 0 Nitrate Oxygen Silicate
Nitrate S 0 Phosphate Oxygen Silicate
Silicate S 0 Phosphate Oxygen Nitrate
Oxygen S 0 Phosphate Nitrate Silicate
TA S 0 Nitrate Oxygen Silicate
pH S 0 Nitrate Oxygen Silicate
DIC S 0 Nitrate Oxygen Silicate
Equation #

1 v v v v v

2 v v v v

3 v v v v

4 v v v

5 v v v v

6 v v v

7 v v v

8 v v

9 v v v v

10 v v v

11 v v v

12 v v

13 v v v

14 v v

15 v v

16 v




Table 3. Assumed default measurement
uncertainties, or Ep; pefault OF Ex pefault @S
defined in the text.

Property Uncertainty Units

S 0.003

% 0.003 °C
Phosphate 2% pmol kg!
Nitrate 2% pumol kg!
Silicate 2% pumol kg!

Oxygen 1% umol kg'!




Table 4. Assessment statistics, reported as bias (+ RMSE) in umol kg !, for various phosphate estimation routines
presented both globally (top rows) and for intermediate ocean depths (bottom rows, provided for comparison only
as there are no float-based phosphate sensors calibrated using algorithms). The equation numbers are specific to the
LIR approach, but the equivalent seawater property predictors are used for the other algorithms in the same row.

Global LIRv2 ESPER LIR ESPER NN CANYON-B Mixed
146263 146263 146263 146263 146263
Eqn. 1 0.002 (£ 0.035) 0.001 (£ 0.036) 0.001 (£ 0.036) - 0.003 (£0.039)
Eqn. 2 0.001 (£ 0.039) 0.000 (+ 0.038) 0.001 (£ 0.037) - 0.002 (£0.039)
Eqn. 3 0.003 (£ 0.044) 0.001 (£ 0.044) 0.001 (& 0.040) - 0.003 (£0.042)
Eqn. 4 -0.001 (£ 0.061) -0.006 (& 0.060) -0.003 (£ 0.053) - 0.000 (+£0.045)
Eqn. 5 0.002 (£ 0.036) 0.001 (£ 0.037) 0.002 (£ 0.036) - 0.003 (£0.039)
Eqn. 6 0.001 (£ 0.041) -0.001 (+0.039) 0.001 (£ 0.038) - 0.002 (£0.039)
Eqn. 7 0.005 (£ 0.052) 0.004 (£ 0.051) 0.003 (£0.043)  0.004 (£0.043)  0.004 (£ 0.045)
Eqn. 8 -0.003 (£ 0.089) -0.003 (+ 0.086) -0.002 (£ 0.075) - 0.001 (£0.053)
Eqn. 9 0.003 (£ 0.036) 0.002 (£ 0.037) 0.002 (£ 0.036) - 0.003 (£0.039)
Eqn. 10 0.002 (£ 0.040) 0.000 (£ 0.039) 0.001 (£ 0.039) - 0.002 (£0.038)
Eqn. 11 0.005 (£ 0.048) 0.002 (+ 0.049) 0.002 (£ 0.044) - 0.003 (£0.043)
Eqn. 12 -0.003 (£ 0.079) -0.006 (£ 0.065) -0.003 (£ 0.057) - 0.001 (£0.046)
Eqn. 13 0.004 (£ 0.037) 0.002 (£ 0.038) 0.003 (£ 0.037) - 0.003 (£0.039)
Eqn. 14 0.002 (+0.043) 0.000 (£ 0.040) 0.002 (£ 0.040) - 0.003 (£0.039)
Eqn. 15 0.011 (£ 0.069) 0.008 (£ 0.067) 0.007 (£ 0.059) - 0.005 (£0.051)
Eqn. 16 0.008 (£ 0.152) 0.005 (£0.141) 0.004 (£0.129) - 0.004 (£0.078)
Intermediate depth only (i.e., >1000 m and <1500 m depth)
N 14397 14397 14397 14397 14397
Eqn. 1 0.009 (£ 0.030) 0.007 (£ 0.030) 0.007 (£ 0.028) - 0.007 (£0.029)
Eqn. 2 0.009 (£ 0.031) 0.006 (£ 0.030) 0.008 (£ 0.030) - 0.008 (£0.029)
Eqn. 3 0.011 (£ 0.032) 0.008 (+0.032) 0.009 (£ 0.030) - 0.008 (+£0.030)
Eqn. 4 0.012 (+ 0.040) 0.007 (£ 0.038) 0.006 (£ 0.036) - 0.007 (£0.031)
Eqn. 5 0.010 (£ 0.029) 0.007 (£ 0.029) 0.008 (£ 0.029) - 0.008 (£0.029)
Eqn. 6 0.009 (+ 0.030) 0.006 (£ 0.030) 0.008 (£ 0.030) - 0.008 (£0.029)
Eqn. 7 0.011 (£ 0.031) 0.008 (+0.031) 0.010 (£0.030)  0.011(£0.031)  0.009 (+0.030)
Eqn. 8 0.012 (£ 0.044) 0.003 (£ 0.041) 0.005 (£ 0.046) - 0.007 (£0.034)
Eqn. 9 0.009 (£ 0.030) 0.007 (£ 0.030) 0.007 (£ 0.029) - 0.008 (£0.029)
Eqn. 10 0.009 (£ 0.031) 0.006 (£ 0.030) 0.005 (£ 0.029) - 0.006 (£0.028)
Eqn. 11 0.011 (£ 0.032) 0.008 (+0.032) 0.009 (+0.031) - 0.008 (£ 0.030)
Eqn. 12 0.012 (£ 0.046) 0.005 (£ 0.038) 0.005 (£ 0.038) - 0.007 (£0.032)
Eqn. 13 0.010 (x 0.030) 0.007 (£ 0.029) 0.007 (£ 0.029) - 0.007 (£0.029)
Eqn. 14 0.009 (£ 0.031) 0.006 (= 0.030) 0.007 (£ 0.030) - 0.007 (£0.028)
Eqn. 15 0.012 (£ 0.033) 0.008 (+0.031) 0.010 (+0.032) - 0.009 (£0.031)
Eqn. 16 0.013 (£ 0.056) 0.000 (= 0.049) 0.002 (£ 0.053) - 0.005(£0.037)
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Table 5. Assessment statistics, reported as bias = (RMSE) in umol kg !, for various nitrate estimation routines
presented both globally (top rows) and for the intermediate ocean where float-based sensor measurements are often

checked against algorithm-based estimates (bottom rows).

Global LIRv2 ESPER LIR ESPER NN CANYON-B Mixed
146263 146263 146263 146263 146263
Eqn. 1 0.03 (£ 0.52) 0.02 (£ 0.48) 0.00 (£ 0.42) - 0.03 (£ 0.49)
Eqn. 2 0.01 (£0.56) 0.00 (£ 0.52) -0.01 (£ 0.47) - 0.03 (£ 0.49)
Eqn. 3 0.04 (£ 0.61) 0.01 (+0.59) 0.00 (+0.50) - 0.03 (£ 0.55)
Eqn. 4 -0.02 (£ 0.86) -0.09 (£ 0.82) -0.07 (£ 0.72) - 0.00 (£ 0.59)
Eqn. 5 0.03 (£ 0.54) 0.03 (£ 0.49) 0.02 (£ 0.43) - 0.04 (+0.50)
Eqn. 6 0.00 (£ 0.58) -0.01 (£ 0.55) -0.01 (£ 0.50) - 0.03 (£ 0.50)
Eqn. 7 0.06 (£ 0.72) 0.06 (+0.70) 0.03 (£ 0.56) 0.03 (£ 0.56) 0.04 (+0.59)
Eqn. 8 -0.06 (£ 1.26) -0.04 (£ 1.21) -0.05 (£ 1.04) - 0.01 (£0.73)
Eqn. 9 0.03 (£ 0.54) 0.02 (+0.50) 0.01 (£ 0.44) - 0.04 (+0.50)
Eqn. 10 0.00 (£ 0.58) -0.01 (£ 0.54) -0.01 (£ 0.49) - 0.03 (£ 0.50)
Eqn. 11 0.05 (£ 0.67) 0.02 (+0.65) 0.00 (£ 0.57) - 0.03 (£ 0.56)
Eqn. 12 -0.08 (£ 1.21) -0.10 (£ 0.89) -0.06 (£ 0.77) - 0.00 (£ 0.60)
Eqn. 13 0.05 (£ 0.57) 0.04 (£ 0.52) 0.03 (£ 0.48) - 0.05 (£ 0.52)
Eqn. 14 0.00 (£ 0.62) 0.00 (£ 0.57) -0.01 (£ 0.53) - 0.03 (£0.51)
Eqn. 15 0.12 (£ 0.96) 0.11 (£ 0.91) 0.08 (£ 0.81) - 0.07 (+0.69)
Eqn. 16 0.06 (£2.22) 0.06 (£ 2.00) 0.02 (+ 1.83) - 0.04 (£ 1.08)
Intermediate depth only (i.e., >1000 m and <1500 m depth)
N 14397 14397 14397 14397 14397
Eqn. 1 -0.01 (£0.32) -0.01 (£ 0.31) -0.01 (£ 0.29) - 0.01 (£0.30)
Eqn. 2 -0.04 (£ 0.36) -0.05 (£ 0.34) -0.04 (£ 0.34) - -0.01 (£ 0.30)
Eqn. 3 0.03 (£ 0.33) 0.02 (£0.32) 0.02 (£ 0.31) - 0.02 (£0.31)
Eqn. 4 0.05 (£ 0.45) 0.01 (£ 0.40) -0.01 (£ 0.44) - 0.00 (+0.34)
Eqn. 5 -0.01 (£0.33) -0.02 (£ 0.32) 0.00 (£ 0.30) - 0.01 (£ 0.30)
Eqn. 6 -0.05 (£ 0.38) -0.08 (£ 0.38) -0.07 (£ 0.38) - -0.02 (£ 0.31)
Eqn. 7 0.04 (£ 0.34) 0.02 (£0.33) 0.04 (£0.33) 0.04 (£0.33) 0.03 (£0.32)
Eqn. 8 0.05 (+ 0.54) -0.05 (£ 0.53) -0.01 (£ 0.58) - 0.01 (+0.40)
Eqn. 9 -0.01 (£0.32) -0.02 (£ 0.32) 0.00 (£ 0.30) - 0.01 (£ 0.30)
Eqn. 10 -0.05 (£ 0.37) -0.07 (£ 0.37) -0.07 (£ 0.34) - -0.02 (£ 0.30)
Eqn. 11 0.03 (£ 0.34) 0.02 (£0.32) 0.03 (£0.32) - 0.02 (£ 0.31)
Eqn. 12 0.04 (+0.55) -0.03 (£ 0.45) -0.02 (+ 0.46) - 0.00 (£ 0.35)
Eqn. 13 -0.01 (£0.34) -0.02 (£ 0.33) -0.01 (£ 0.32) - 0.01 (£0.31)
Eqn. 14 -0.06 (£ 0.40) -0.10 (£ 0.39) -0.07 (+ 0.40) - -0.03 (£ 0.32)
Eqn. 15 0.05 (= 0.37) 0.02 (£ 0.34) 0.03 (= 0.36) - 0.03 (£ 0.33)
Eqn. 16 0.06 (£0.73) -0.09 (£ 0.65) -0.06 (£ 0.71) - -0.02 (£ 0.45)
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Table 6. Assessment statistics, reported as bias = (RMSE) in umol kg !, for various silicate estimation routines
presented both globally (top rows) and for the intermediate ocean (bottom rows, provided for comparison only as

there are no float-based sensors for phosphate that are calibrated using algorithms).

Global LIRv2 ESPER LIR ESPER NN CANYON-B Mixed
N 146263 146263 146263 146263 146263
Eqn. 1 -0.3 (£2.4) 0.0(£2.2) 0.0(*1.8) - 0.1 (1.9
Eqn. 2 -0.3 (£2.5) -0.1 (£2.5) -0.1 (£2.1) - 0.0 (£2.0)
Eqn. 3 -0.2 (£2.4) 0.0(£2.2) 0.1 (£2.0) - 0.1 (£2.0)
Eqn. 4 -0.3 (£2.6) -0.1 (£2.5) 0.0 (£2.0) - 0.1 (£2.0)
Eqn. 5 -0.2 (£2.4) 0.0 (£2.3) 0.1 (£1.8) - 0.1 (1.9
Eqn. 6 -0.3 (£2.7) -0.2 (£2.6) -0.1 (£2.1) - 0.0 (£2.0)
Eqn. 7 -0.2 (£2.7) 0.1 (£2.3) 0.1 (£2.0) 0.1(%=1.9) 0.1 (£2.0)
Eqn. 8 -0.3 (£3.6) -0.1 (£3.3) -0.1(£2.7) - 0.0(x£2.2)
Eqn. 9 0.0 (=4.1) 0.1 (£3.0) 0.1 (£2.6) - 0.1 (£2.2)
Eqn. 10 -0.1 (£5.0) 0.1 (£3.1) 0.0 (£2.6) - 0.0(x£2.2)
Eqn. 11 0.0 (=4.3) 0.1 (£3.0) 0.1 (£2.6) - 0.1 (£2.1)
Eqn. 12 0.0 (+4.9) 0.1 (£3.1) 0.0 (x£2.7) - 0.1(x£2.2)
Eqn. 13 0.1 (£4.6) 0.1(£3.2) 0.1 (x2.7) - 0.1 (£2.2)
Eqn. 14 -0.1(£5.2) 0.0 (£3.3) -0.1 (£2.8) - 0.0(x£2.2)
Eqn. 15 0.3 (£5.5) 03 (£3.4) 02(*£3.2) - 02 (*2.4)
Eqn. 16 0.4 (£6.9) 0.1 (£54 -0.1(£5.3) - 0.0(+3.2)
Intermediate depth only (i.e., >1000 m and <1500 m depth)

N 14397 14397 14397 14397 14397
Eqn. 1 -0.3 (£2.0) -0.2 (£ 1.7) -0.1 (£ 1.6) - -0.1 (£1.5)
Eqn. 2 -0.3(£2.1) -0.3 (£2.1) -0.2 (£2.0) - -0.2 (£1.6)
Eqn. 3 -0.3 (£2.0) -0.1 (£ 1.6) -0.1 (£1.7) - -0.1 (£1.5)
Eqn. 4 -0.3(£2.1) -0.2(£1.9) -0.1(£1.9) - -0.1 (£1.6)
Eqn. 5 -0.3 (£2.1) -0.2 (£ 1.8) -0.1 (£ 1.6) - -0.1 (£1.5)
Eqn. 6 -0.3 (£2.3) -0.5 (+£2.4) -0.3 (£2.0) - -0.2 (£1.6)
Eqn. 7 -0.3 (£2.1) -0.1 (£ 1.6) 0.2 (x1.7) 0.0 (£1.5) -0.2 (£ 1.5)
Eqn. 8 -0.1 (£2.7) -0.3 (£2.6) -0.1 (£2.4) - -0.1(x1.7)
Eqn. 9 0.0 (£3.4) -0.1 (£3.3) -0.2 (£3.3) - -0.2(£2.2)
Eqn. 10 0.0 (£5.7) -0.1 (£3.2) -0.2 (£3.3) - -02(x£2.1)
Eqn. 11 0.0 (£3.7) -0.1(£2.9) -0.1 (£3.4) - -0.1 (£2.2)
Eqn. 12 0.1 (£5.5) 0.0 (£3.0) 0.0 (£3.3) - -0.1 (£2.1)
Eqn. 13 0.0 (+4.1) -0.1 (£3.7) -0.3 (£3.4) - -0.2(£2.2)
Eqn. 14 -0.1 (£6.4) -0.4 (£3.4) -0.4 (£3.6) - -0.3 (£2.3)
Eqn. 15 0.1 (+5.3) 0.0(£3.2) -0.1 (£3.8) - -0.1 (£2.3)
Egn. 16 0.2 (x6.1) -0.4 (£4.0) -0.1 (£4.7) - -0.1 (£2.7)
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Table 7. Assessment statistics, reported as bias = (RMSE) in umol kg !, for various oxygen estimation routines
presented both globally (top rows) and for the intermediate ocean (bottom rows, provided for comparison only as
float-based oxygen sensors are not commonly quality controlled against algorithms).

Global LIRv2 ESPER LIR ESPER NN CANYON-Bf Mixed
N 146263 146263 146263 f 146263
Eqn. 1 0.5 (£5.3) 0.6 (£5.2) 0.5 (£4.5) - 0.6 (£4.7)
Eqn. 2 0.4 (£5.7) 0.5 (5.6) 0.5 (5.0) - 0.6 (+4.8)
Eqn. 3 0.5 (£5.8) 0.6 (£5.5) 0.6 (£4.8) - 0.6 (£4.9)
Eqn. 4 0.7 (= 8.0) 1.3 (£7.6) 1.0(*7.1) - 0.8 (£5.6)
Eqn. 5 0.6 (£5.5) 0.8(£5.4) 0.7 (£4.7) - 0.7 (£4.8)
Eqn. 6 0.7 (£5.9) 0.8 (5.8) 0.6 (+5.3) - 0.7 (+4.8)
Eqn. 7 0.6 (£6.2) 0.7 (£5.6) 0.5(£5.0) - 0.6 (£5.0)
Eqn. 8 1.1 (£10.8) 1.2 (£10.0) 1.1(x£9.7) - 0.9 (£6.6)
Eqn. 9 1.1 (£8.1) 1.0(£7.9) 1.1 (£7.0) - 0.9 (£5.6)
Eqn. 10 1.1 (£8.8) 1.0 (+8.3) 1.1 (x£7.6) - 09 (*5.7)
Eqn. 11 1.1 (£8.4) 1.0 (£8.0) 1.0(x7.4) - 0.9 (£5.8)
Eqn. 12 2.0 (+14.2) 1.7 (£9.9) 1.4 (£9.5) - 1.1 (x£6.5)
Eqn. 13 1.4 (£9.8) 1.3 (£8.2) 1.1 (£7.3) - 0.9 (*5.7)
Eqn. 14 1.5(x£10.4) 1.3 (8.4 1.2&*7.7) - 1.0 (£5.8)
Eqn. 15 1.4 (£9.8) 1.2 (£8.2) 1.0 (£7.6) - 0.9 (£5.9)
Eqn. 16 1.6 (£18.6) 1.2 (£13.7) 0.8 (£13.1) - 0.8(x£7.9)
Intermediate depth only (i.e., >1000 m and <1500 m depth)
N 14397 14397 14397 f 14397
Eqn. 1 0.2 (£2.8) 0.4 (£2.6) 0.6 (£2.7) - 0.5 (£2.6)
Eqn. 2 04 (+3.4) 0.7 (£2.9) 0.8 (£3.1) - 0.6 (£2.6)
Eqn. 3 0.0 (£3.0) 0.2 (£2.6) 0.1 (£2.8) - 0.3 (£2.6)
Eqn. 4 -0.4 (£4.3) 0.2 (£3.3) 0.1 (£4.2) - 03(£2.9)
Eqn. 5 0.4 (£3.0) 0.6 (£2.9) 0.8 (£3.1) - 0.6 (£2.8)
Eqn. 6 0.6 (£3.8) 1.1 (£3.5) 1.1(£3.9) - 0.8 (£3.0)
Eqn. 7 0.0 (£3.2) 0.4 (£2.9) 0.4 (£3.1) - 0.4 (£2.8)
Eqn. 8 -0.3(£5.1) 0.8 (£4.8) 0.2(£5.9) - 0.3 (*3.7)
Eqn. 9 0.4 (£3.8) 0.8 (£3.9) 1.0 (£3.6) - 0.7 (£3.0)
Eqn. 10 0.7 (x4.2) 1.2 (*4.7) 1.2 (*4.1) - 0.8 (£3.0)
Eqn. 11 0.2 (£3.9) 0.6 (£3.8) 0.7 (£ 4.0) - 0.6 (£3.1)
Eqn. 12 -0.2 (£6.1) 0.7 (£4.8) 0454 - 0.4 (£3.4)
Eqn. 13 0.7 (£5.4) 1.0 (£4.0) 0.8 (£4.0) - 0.6 (£3.1)
Eqn. 14 1.1 £5.7) 1.5(x4.5) 1.2 (4.4 - 0.8 (£3.1)
Eqn. 15 0.4 (£5.5) 0.8 (£4.0) 0.6 (£4.3) - 0.5(£3.2)
Egn. 16 0.0 (£7.6) 1.4 (£6.2) 0.2 (£6.0) - 03 (*3.7

This routine does not estimate this quantity
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Table 8. Assessment statistics, reported as bias = (RMSE) in umol kg !, for various TA estimation routines
presented both globally (top rows) and for the intermediate ocean (bottom rows, provided for comparison only as
TA sensors have yet to be widely deployed on floats).

Global LIRv2 ESPER LIR ESPER NN CANYON-B Mixed
71832 71832 71832 71832 71832
Eqn. 1 0.8 (+3.6) 0.8 (£3.6) 0.8 (£3.7) - 0.8 (£3.5)
Eqn. 2 0.7 (£3.6) 0.8 (£3.6) 0.8 (£3.7) - 0.8 (£3.5)
Eqn. 3 0.7 (£3.7) 0.8 (£3.6) 0.8 (£3.7) - 0.7 (£3.5)
Eqn. 4 0.7 (x3.7) 0.9 (£3.6) 0.9 (£3.8) - 0.8 (£3.6)
Eqn. 5 0.5 (=3.9) 0.6 (£3.7) 0.7 (£3.7) - 0.7 (£3.6)
Eqn. 6 0.4 (£4.0) 0.5(£3.8) 0.7 (£3.9) - 0.7 (£3.6)
Eqn. 7 0.5 (=4.0) 0.7 (£3.7) 0.8 (£3.8) 0442 0.7 (£3.6)
Eqn. 8 0.5(x4.3) 0.6 (£4.0) 0.8 (£4.1) - 0.7 (£3.7)
Eqn. 9 0.7 (+£3.7) 0.8 (£3.7) 0.9 (+3.7) - 0.8 (£3.5)
Eqn. 10 0.7 (x3.7) 0.9 (£3.7) 0.9 (£3.7) - 0.8 (£3.5)
Eqn. 11 0.7 (+£3.7) 0.9 (+3.7) 0.9 (+£3.6) - 0.8 (£3.5)
Eqn. 12 0.8(x3.9) 1.0 (£3.7) 0.9 (£3.7) - 0.8 (£3.5)
Eqn. 13 0.7 (x4.4) 0.8 (+£3.9) 0.8 (£4.0) - 0.7 (£3.6)
Eqn. 14 0.7 (£4.9) 0.7 (£4.1) 0.8 (£4.0) - 0.7 (£3.6)
Eqn. 15 1.0 (£4.8) 0.9 (+£4.0) 0.9 (£4.0) - 0.8 (£3.6)
Eqn. 16 1.2 (£6.5) 0.9 (£5.0) 0.7 (£5.2) - 0.7 (£4.0)
Intermediate depth only (i.e., >1000 m and <1500 m depth)
N 6797 6797 6797 6797 6797
Eqn. 1 0.9 (£3.0) 0.8 (£2.9) 1.0 (£3.0) - 0.8 (£2.8)
Eqn. 2 0.9 (=2.9) 0.8 (£2.9) 0.9 (£2.9) - 0.8 (£2.8)
Eqn. 3 09 (x29) 0.8 (£2.9) 0.9 (£3.0) - 0.8 (£2.8)
Eqn. 4 0.8 (+3.0) 0.8 (£2.9) 0.9 (+3.0) - 0.8 (£2.9)
Eqn. 5 0.6 (£3.2) 0.6 (£2.9) 0.7 (£3.1) - 0.7 (£2.9)
Eqn. 6 0.6 (£3.2) 0.5(£2.9) 0.8 (£3.2) - 0.7 (£2.9)
Eqn. 7 0.6 (£3.2) 0.6 (£2.9) 0.7 (£3.1) 0.5(x3.2) 0.7 (£2.9)
Eqn. 8 0.7 (x3.2) 0.6 (£2.9) 0.8 (£3.3) - 0.7 (£3.0)
Eqn. 9 0.9 (£3.0) 0.9 (£2.9) 0.9 (£3.0) - 0.8 (£2.9)
Eqn. 10 0.8 (+3.0) 0.8 (£2.9) 1.0 (£3.1) - 0.8 (£2.9)
Eqn. 11 0.9 (£3.0) 0.9 (£2.9) 1.0 (£3.0) - 0.8 (£2.9)
Eqn. 12 0.8 (+3.0) 0.9 (£2.9) 1.0 (£3.1) - 0.8 (£2.9)
Eqn. 13 0.7 (+3.8) 0.6 (£3.2) 0.6 (£3.6) - 0.6 (£3.1)
Eqn. 14 0.7 (x4.1) 0.5=3.2) 0.6 (£3.6) - 0.6 (£3.1)
Eqn. 15 0.8 (=3.8) 0.6 (£3.2) 0.8 (£3.7) - 0.7 (£3.1)
Eqn. 16 09 (44 0.6 (34 0.7 (£4.5) - 0.6 (£3.3)
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Table 9. Assessment statistics, reported as bias + (RMSE), for various pH estimation routines presented both globally
(top rows) and for the intermediate ocean where float-based sensor measurements are often checked against
algorithm-based estimates (bottom rows). Only measurements made with purified dyes were used in these
assessments to ensure the validation data had no adjustments beyond those applied in the GLODAPv2.2020

secondary quality control process.

Global LIRv2 ESPER LIR ESPER NN CANYON-B Mixed
20181 20181 20181 20181 20181
Eqn. 1 -0.007 (£ 0.012) -0.004 (£ 0.013) -0.004 (£ 0.011) - -0.004 (£ 0.011)
Eqn. 2 -0.006 (£ 0.015) -0.002 (£ 0.014) -0.002 (£ 0.013) - -0.003 (£ 0.011)
Eqn. 3 -0.007 (£ 0.013) -0.004 (£ 0.013) -0.004 (£ 0.011) - -0.004 (£ 0.011)
Eqn. 4 -0.005 (£ 0.022) -0.001 (£ 0.017) -0.002 (£ 0.016) - -0.003 (£ 0.012)
Eqn. 5 -0.007 (£ 0.012) -0.004 (£ 0.012) -0.004 (£ 0.011) - -0.004 (£ 0.011)
Eqn. 6 -0.005 (£ 0.015) -0.001 (£ 0.014) -0.002 (£ 0.014) - -0.003 (£ 0.011)
Eqn. 7 -0.007 (£ 0.013) -0.004 (£ 0.013) -0.004 (£ 0.011) * -0.004 (£ 0.011)
Eqn. 8 -0.005 (£ 0.026) 0.000 (£ 0.020) 0.000 (£ 0.021) - -0.002 (£ 0.014)
Eqn. 9 -0.007 (£ 0.013) -0.004 (£ 0.014) -0.003 (£ 0.012) - -0.004 (£ 0.011)
Eqn. 10 -0.005 (£ 0.016) -0.002 (£ 0.015) -0.001 (£ 0.014) - -0.003 (£ 0.012)
Eqn. 11 -0.007 (£ 0.013) -0.004 (£ 0.014) -0.003 (£ 0.012) - -0.004 (£ 0.011)
Eqn. 12 -0.004 (£ 0.023) -0.001 (£ 0.018) -0.001 (£ 0.018) - -0.003 (£ 0.013)
Eqn. 13 -0.006 (£ 0.013) -0.004 (£ 0.013) -0.003 (£ 0.012) - -0.004 (£ 0.011)
Eqn. 14 -0.004 (£ 0.017) -0.001 (£ 0.015) -0.001 (£ 0.014) - -0.003 (£ 0.012)
Eqn. 15 -0.006 (£ 0.013) -0.004 (£ 0.014) -0.004 (£ 0.012) - -0.004 (£ 0.012)
Eqn. 16 -0.005 (£ 0.033) -0.001 (£ 0.026) -0.002 (£ 0.027) - -0.003 (£ 0.017)
Intermediate depth only (i.e., >1000 m and <1500 m depth)
N 2352 2352 2352 2352 2352
Eqn. 1 -0.008 (£ 0.011) -0.002 (£ 0.008) -0.002 (£ 0.007) - -0.002 (£ 0.006)
Eqn. 2 -0.007 (£ 0.013) -0.001 (£ 0.008) -0.001 (£ 0.008) - -0.001 (£ 0.006)
Eqn. 3 -0.008 (£ 0.011) -0.002 (£ 0.007) -0.001 (£ 0.006) - -0.001 (£ 0.006)
Eqn. 4 -0.008 (+ 0.024) -0.001 (£ 0.009) -0.002 (£ 0.011) - -0.002 (£ 0.008)
Eqn. 5 -0.008 (£ 0.011) -0.002 (£ 0.007) -0.002 (£ 0.007) - -0.002 (£ 0.006)
Eqn. 6 -0.007 (£ 0.013) 0.001 (£ 0.008) 0.000 (+ 0.007) - -0.001 (£ 0.006)
Eqn. 7 -0.008 (£ 0.011) -0.002 (£ 0.007) -0.002 (£ 0.007) * -0.002 (£ 0.006)
Eqn. 8 -0.008 (+ 0.024) 0.001 (+0.009) 0.000 (£ 0.014) - -0.001 (£ 0.008)
Eqn. 9 -0.007 (£ 0.011) -0.002 (£ 0.008) -0.001 (£ 0.006) - -0.002 (£ 0.006)
Eqn. 10 -0.007 (£ 0.013) 0.001 (£ 0.008) 0.000 (+ 0.008) - -0.001 (£ 0.006)
Eqn. 11 -0.007 (£ 0.011) -0.002 (£ 0.007) -0.001 (£ 0.007) - -0.002 (£ 0.006)
Eqn. 12 -0.008 (+ 0.024) 0.000 (£ 0.010) 0.000 (£ 0.013) - -0.001 (£ 0.008)
Eqn. 13 -0.007 (£0.011) -0.002 (£ 0.007) -0.002 (£ 0.007) - -0.002 (£ 0.007)
Eqn. 14 -0.007 (£ 0.014) 0.001 (£ 0.007) 0.000 (£ 0.008) - -0.001 (£ 0.006)
Eqn. 15 -0.007 (£0.011) -0.001 (£ 0.007) -0.001 (£ 0.007) - -0.001 (£ 0.006)
Eqn. 16 -0.008 (£ 0.028) 0.002 (£ 0.010) 0.001 (£0.015) - -0.001 (£ 0.009)

*No viable comparison in this effort due to overlap between training and validation data subsets
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Table 10. Assessment statistics, reported as bias (= RMSE) in umol kg !, for various DIC estimation routines
presented both globally (top rows) and for the intermediate ocean (bottom rows, provided for comparison only as

DIC sensors have yet to be widely deployed on floats).

Global LIRv2f ESPER LIR ESPER NN CANYON-B Mixed
N T 71326 71326 71326 71326
Eqn. 1 - 04 5.1 0.4 (£4.9) - 0.4 (£4.8)
Eqn. 2 - 0.2 (£5.8) 04 5.7 - 04 (4.9
Eqn. 3 - 0.3 (+4.9) 0.4 (£4.8) - 0.4 (£4.8)
Eqn. 4 - -0.2 (£ 6.6) 0.0 (£6.6) - 02(£5.2)
Eqn. 5 - 03 5.1 04 (5.1 - 0.4 (£4.9)
Eqn. 6 - 0.0 (£6.1) 0364 - 03(£5.2)
Eqn. 7 - 04 (£5.3) 04 5.1 -1.3 (£5.8) 0.4 (£5.0)
Eqn. 8 - -0.4 (£8.7) -0.1 (£8.6) - 0.1 (£6.0)
Eqn. 9 - 0.6 (£8.2) 0.6 (£6.9) - 0.5(%5.3)
Eqn. 10 - 0.3 (£9.0) 04 (173) - 04 (£5.3)
Eqn. 11 - 0574 0.6 (£6.7) - 0.5(%5.3)
Eqn. 12 - -0.2 (£9.3) 0.1 (£8.5) - 0.3 (£5.7)
Eqn. 13 - 0.6 (£7.9) 0.7 (£7.3) - 0.5(*5.5)
Eqn. 14 - 0.1 (£8.7) 0.3 (£8.0) - 0.3 (£5.6)
Eqn. 15 - 0.8 (£8.9) 0.8 (£8.4) - 0.6 (£6.1)
Eqn. 16 - 0.6 (£16.7) 0.3 (£15.7) - 0.4 (£8.9)
Intermediate depth only (i.e., >1000 m and <1500 m depth)
N t 6740 6740 6740  ESPER & LIR
Eqn. 1 - -0.2 (£3.3) -0.1 (£3.3) - -0.2 (£3.3)
Eqn. 2 - -0.3 (£3.5) 0.0 (£3.7) - -0.1 (£3.3)
Eqn. 3 - -0.2 (£3.3) 0.1 (£3.2) - -0.1(£3.2)
Eqn. 4 - -0.1 (+3.8) 0.0 (£4.3) - -0.1 (£3.5)
Eqn. 5 - -0.2 (£3.3) -0.1(£3.4) - -0.2 (£3.3)
Eqn. 6 - -0.5 (£3.7) -0.2 (£4.1) - -0.2 (£3.5)
Eqn. 7 - -0.2 (£3.3) -0.2 (£3.5) -0.8 (£3.4) -0.2 (£3.3)
Eqn. 8 - -0.5 (£ 4.5) -0.4 (£5.4) - -0.3 (£3.9)
Eqn. 9 - 0.0 (34 0.1 (£3.3) - -0.1(£3.2)
Eqn. 10 - -0.2 (£3.5) -0.1 (£3.7) - -0.2 (£3.3)
Eqn. 11 - -0.1 (£3.4) 0.1 (£3.3) - -0.1(£3.2)
Eqn. 12 - -0.2 (+£3.8) 0.0(x44 - -0.1 (£3.5)
Eqn. 13 - -0.2 (£3.7) -0.1 (+4.0) - -0.2 (£3.5)
Eqn. 14 - -0.4 (+£4.0) -0.5 (£4.5) - -0.4 (£3.6)
Eqn. 15 - -0.1 (£3.8) 0.0 (x4.2) - -0.1 (£3.5)
Eqn. 16 - -0.7 (£5.7) -0.3 (£6.8) - -0.3(£4.4)

This routine does not estimate this quantity.
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Table 11. Regional assessment statistics for equation 7 of the validation versions of the algorithms and for CANYON-B. These statistics are obtained without
including any training data from the new data added in the 2019 and 2020 GLODAPv2 data product updates; without the supplemental data in the Gulf of
Mexico; and, in the case of LIRv2, ESPER LIR, and ESPER NN, without any measurements in the Mediterranean. The released ESPER_LIR and ESPER NN
routines should perform significantly better in the Sea of Japan/East Sea, the Gulf of Mexico, and the Mediterranean. Statistics obtained when these data are

included are provided as supplementary materials.

Southern Ocean phosphate nitrate silicate oxygen TA pH DIC
N 20294 20294 20294 20294 11088 4094 11945
LIRv2 0.000 (+0.059) -0.03 (£ 0.77) -04 (x£5.1) 0.0 (£6.3) -0.3 (£3.3) -0.001 (£0.011) -
ESPER LIR -0.004 (£ 0.062) -0.07 (£ 0.76) 0.1 (£4.8) 0.0 (£6.3) 0.3 (£3.0) -0.001 (£ 0.013) 1.4 (*4.7)
ESPER -0.003 (£ 0.054) -0.03 (£ 0.69) 0.0 (=3.9) 0.6 (£6.1) 0.7 (£3.1) -0.002 (£ 0.010) 1.6 (£4.6)
CANYON-B -0.001 (£ 0.055) -0.04 (£ 0.65) 0.1 (£3.7) i -0.4 (£3.1) -0.002 (£ 0.009) -0.8 (£4.3)
ESPER Mixed -0.003 (£ 0.057) -0.05 (£ 0.71) 0.1 (x4.1) 0.3 (£5.8) 0.5 (£2.9) -0.001 (£ 0.011) 1.5(£4.6)
Equatorial Pacific phosphate nitrate silicate oxygen TA pH DIC
N 23169 23169 23169 23169 8661 1739 8969
LIRv2 -0.003 (£ 0.038) 0.04 (£ 0.54) 0.1(£1.2) 0.7 (£4.6) 0.8 (£3.5) -0.012 (£ 0.016) -
ESPER _LIR -0.002 (£ 0.041) 0.09 (+0.56) 03(x14) 1.0 (£4.7) 0.9 (+3.3) -0.007 (£ 0.017) -0.8 (£5.1)
ESPER -0.003 (£ 0.033) 0.05 (£ 0.37) 0.3 (£1.3) 0.2 (£3.9) 1.0 (£3.4) -0.007 (£ 0.014) -0.5(£5.2)
CANYON-B -0.003 (£ 0.033) 0.04 (+0.38) 02(x1.2) f 0.1 (x44) -0.004 (£ 0.011) -1.3(*5.1)
ESPER Mixed -0.003 (= 0.034) 0.07 (£ 0.43) 0.3 (x1.3) 0.6 (£3.9) 1.0 (£3.2) -0.007 (£ 0.014) -0.6 (= 5.0)
California Current phosphate nitrate silicate oxygen TA pH DIC
N 466 466 466 466 283 191 276
LIRv2 -0.012 (£ 0.049) 0.02 (£ 0.79) -0.8 (£3.3) 0.4 (£9.0) 2.2 (£3.8) -0.008 (£ 0.012) -
ESPER_LIR -0.004 (£ 0.046) 0.00 (+0.75) -02(x24) 0.6 (+8.2) 2.3 (+4.9) -0.007 (£ 0.015) -0.3 (£4.5)
ESPER 0.002 (£ 0.044) -0.02 (£ 0.55) 0.7 (£1.7) 0.5 (£5.6) 3.0 (£4.3) -0.004 (£ 0.011) 1.2 (£4.6)
CANYON-B -0.006 (£ 0.042) 0.04 (+0.58) 0.0 (=1.9) f 3.6(£5.2) -0.002 (£ 0.010) 1.3(*5.1)
ESPER Mixed -0.001 (£ 0.042) -0.01 (£ 0.54) 03&1.7) 0.5 (£5.6) 2.7 (*4.1) -0.006 (= 0.012) 0.5(x4.1)
Northern Atlantic phosphate nitrate silicate oxygen TA pH DIC
N 10829 10829 10829 10829 6619 1123 4743
LIRv2 0.009 (+0.070) 0.14 (£ 1.16) 0.3 (£2.5) 0.7 (£9.8) -0.6 (£ 6.3) 0.003 (£ 0.010) -
ESPER LIR 0.006 (£ 0.071) 0.05 (£ 1.23) 03(1.2) 0.6 (£9.2) -0.7 (= 5.0) -0.003 (£ 0.011) 1.0 ®£7.7)
ESPER 0.009 (= 0.069) 0.12 (£ 0.99) 0.3 (=1.0) 0.1 (=7.7) -1.0(x5.4) -0.004 (£ 0.009) 0.9 (+£8.3)
CANYON-B 0.012 (£ 0.067) 0.09 (£ 1.02) 0.2 (x1.1) i -0.3(£5.7) -0.004 (+ 0.008) -1.0 (£8.6)
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ESPER Mixed 0.008 (£ 0.067) 0.09 (£ 1.05) 0.3 (£1.0) 0.4 (£8.2) -0.8 (£5.0) -0.003 (£ 0.009) 1.0(£7.7)
Sea of Japan/East Sea phosphate nitrate silicate oxygen TA pH DIC
N 5995 5995 5995 5995 1450 0 1480
LIRv2 0.431 (£ 0.459) 6.20 (£6.90) 46.2(£54.6) -19.1 (£63.2) -31.7(+209.3) * -
ESPER LIR 0.101 (£ 0.154) 1.63 (£2.11) 3.0(=x7.7) 6.6 (£15.5) 51.4 (£ 63.0) * 22 (*17.2)
ESPER 0.029 (£ 0.066) 1.16 (£ 1.58) 3.6 (£4.6) 5.4 (£10.3) 48.7 (£ 55.5) * 16.8 (+20.0)
CANYON-B 0.385 (£ 0.409) 588 (£6.42) 21.0(£23.6) l 28.3 (+33.8) * 12.3 (£ 18.4)
ESPER Mixed 0.065 (£ 0.094) 1.40 (£ 1.66) 3.3(£5.3) 6.0 (£10.8) 50.0 (+58.8) * 9.5(£14.2)
Gulf of Mexico phosphate nitrate silicate oxygen TA pH DIC
N 1067 1067 1067 1067 943 0 909
LIRv2 -0.004 (£ 0.123) 0.27 (£ 1.71) 0.5 (£3.8) 8.6 (£ 16.1) -0.9 (£ 11.4) * -
ESPER _LIR -0.009 (£ 0.110) 0.30 (+1.58) -03(x2.1) 6.6 (£16.6) -16.3 (+44.5) * -8.7 (£26.1)
ESPER 0.002 (£ 0.108) 0.35 (£ 1.39) 1.0 (£3.4) 73 (= 16.5) -27.5(*474) * -19.6 (£ 41.6)
CANYON-B 0.056 (£ 0.125) 0.68 (+ 1.40) 2.5(*5.2) f 4.5(£13.0) * -5.1 (£16.8)
ESPER Mixed -0.003 (£ 0.099) 0.32 (£ 1.38) 0.4 (£2.4) 7.0 (x15.8) -21.9(£45.1) * -14.2 (£33.4)
Mediterranean phosphate nitrate silicate oxygen TA pH DIC
N 11394 11394 11394 11394 5164 0 2604
LIRv2 0.081 (£ 0.254) 1.90 (+ 4.85) 0.5(*73) -104(£50.00 -37.9(=*71.2) * -
ESPER_LIR 0.003 (£ 0.585) 2.44 (+£7.72) -4.0(£37.5) -25.1(£92.5) -439(x72.1) * -105.9 (£ 169.9)
ESPER 0.095 (£ 0.199) -2.40 (£6.21) -28.6 (£40.1) 1.8 (x15.3) -30.0(=43.9) * -40.7 (£ 48.9)
CANYON-B * * * f * * -3.0 (£26.2)
ESPER Mixed 0.049 (+0.325) 0.02 (£4.82) -163(£30.2) -11.6(£45.7) -37.0(x54.3) * -73.3 (£ 101.6)
Arctic phosphate nitrate silicate oxygen TA pH DIC
N 6117 6117 6117 6117 3189 1634 2947
LIRv2 0.036 (= 0.122) 0.28 (+1.20) 0.5(£3.4) 2.7 (£11.8) 1.5(£19.4) * -
ESPER LIR 0.043 (£0.121) 0.25 (£ 1.22) 0.4 (=2.9) 33(x11.4) 0.0 (=12.7) 0.003 (£ 0.032) -1.0 (£ 18.7)
ESPER 0.022 (= 0.104) 0.19 (£ 0.95) 0.0 (£2.3) 1.9 (x11.1) -2.9 (£13.3) 0.021 (£ 0.054) -2.6 (£ 16.0)
ESPER Mixed 0.033 (£ 0.099) 0.22 (+1.00) 0.2 (£2.3) 2.6 (£10.8) -1.5(=11.5) 0.012 (£ 0.037) -1.8 (£ 16.4)

*No viable comparison in this effort due to partial or complete overlap between training and validation data subsets or insufficient viable measurements
TThis routine does not estimate this quantity.
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