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Abstract 16 

We introduce three new Empirical Seawater Property Estimation Routines (ESPERs) capable of 17 

predicting seawater phosphate, nitrate, silicate, oxygen, total titration seawater alkalinity (TA), 18 

total hydrogen scale pH (pHT), and total dissolved inorganic carbon (DIC) from up to 16 19 

combinations of seawater property measurements.  The routines generate estimates from neural 20 

networks (ESPER_NN), locally-interpolated regressions (ESPER_LIR), or both 21 

(ESPER_Mixed).  They require a salinity value and coordinate information, and benefit from 22 

additional seawater measurements if available.  These routines are intended for seawater 23 

property measurement quality control and quality assessment, generating estimates for 24 

calculations that require approximate values, original science, and producing biogeochemical 25 

property context from a data set.  Relative to earlier LIR routines, the updates expand their 26 

functionality, including new estimated properties and combinations of predictors, a larger 27 

training data product including new cruises from the 2020 Global Data Analysis Project data 28 

product release, and the implementation of a first-principles approach for quantifying the impacts 29 

of anthropogenic carbon on DIC and pHT.  We show that the new routines perform at least as 30 

well as existing routines, and, in some cases, outperform existing approaches, even when limited 31 

to the same training data.  Given that additional training data has been incorporated into these 32 

updated routines, these updates should be considered an improvement over earlier versions.  The 33 

routines are intended for all ocean depths for the interval from 1980 to ~2030 c.e., and we 34 

caution against using the routines to directly quantify surface ocean seasonality or make more 35 

distant predictions of DIC or pHT.   36 

 37 
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 39 

 40 

 41 
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1. Introduction 43 

Anthropogenic impacts on the environment are changing the physical and chemical state of the 44 

ocean.  The accumulation of excess ocean heat (Roemmich et al. 2012; Purkey and Johnson 45 

2013) and carbon (Sabine et al. 2004; Khatiwala et al. 2013; Carter et al. 2017, 2019a; Gruber et 46 

al. 2019) and the redistribution of freshwater between regions of the ocean (Durack et al. 2012) 47 

and geological reservoirs are modifying ocean circulation pathways and causing sea level rise 48 

(Nerem et al. 2018), ocean acidification (Feely et al. 2004, 2009; Doney et al. 2009; Jiang et al. 49 

2019), and ocean deoxygenation (Sasano et al. 2018).  These changes are fundamentally shifting 50 

the physical and chemical environments of marine organisms and threatening ocean ecosystems 51 

and services (Gattuso et al. 2015; Doney et al. 2020). 52 

Global climate change poses a challenge for ocean monitoring, necessitating sustained high-53 

quality measurements across timescales and across the vast and remote global ocean.  A variety 54 

of approaches and platforms have been developed for ocean monitoring (e.g., autonomous 55 

surface vehicles, profiling floats, and fixed moorings), each of which has a niche for examining a 56 

range of temporal and spatial scales (Bushinsky et al. 2019) and each of which has strengths and 57 

weaknesses for addressing aspects of global change (Carter et al. 2019b).  The cost and difficulty 58 

of measurements is a limiting factor for all approaches, so it is impossible as of today to have 59 

extensive high-quality and high-frequency measurements everywhere they are desired.  Given 60 

this limitation, an emerging approach involves using algorithms that have been trained to 61 

reproduce measurements of seawater properties from co-located measurements of other seawater 62 

properties.  These algorithms take advantage of strong regional correlations between seawater 63 

properties that result from oceanographic processes that shape the distributions of many different 64 

seawater properties in similar ways (e.g., organic matter cycling with nearly constant 65 

stoichiometric ratios between macronutrients, and freshwater cycling that linearly dilutes or 66 

concentrates most chemical concentrations in seawater).  Once trained, the algorithms can be 67 

used to predict the desired properties from other properties that are more routinely measured 68 

either remotely by satellite or using available in situ sensors.  This strategy has seen use for more 69 

than two decades (e.g., Goyet et al. 2000; Lee et al. 2006), though recent advances in skill, 70 

flexibility, and diversity of the algorithms available (Carter et al. 2016, 2018; Sauzède et al. 71 

2017; Bittig et al. 2018; Landschützer et al. 2019; Gregor and Gruber 2021) have made it 72 

possible to create climatologies (Broullón et al. 2019, 2020; Jiang et al. 2019), calibrate and 73 

monitor drift-adjustments for sensors on autonomous sensor platforms (Johnson et al. 2017; 74 

Takeshita et al. 2018), create novel global data products (Carter et al. 2021), and fill holes in data 75 

sets when the final analysis is not strongly sensitive to estimate errors, e.g., when silicate and 76 

phosphate are estimated for use in seawater carbonate chemistry calculations (e.g., van Hueven 77 

et al. 2011) or when total alkalinity (TA) is needed to convert pHT between temperatures (Carter 78 

et al. 2019a; Jiang et al. 2019). 79 

The growing number of use cases for seawater property estimation algorithms means it is 80 

important to refine the algorithms to the extent possible, especially given that some observing 81 
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approaches depend on these algorithms for sensor calibration and validation.  As a notable 82 

example, biogeochemical Argo floats calibrate pHT and nitrate sensors using algorithm estimates 83 

in the comparatively stable mid-depths of the ocean (Johnson et al. 2017), and additionally rely 84 

on estimated seawater alkalinity at all depths to calculate dissolved inorganic carbon (DIC) and 85 

the partial pressure of CO2 (pCO2) (Williams et al. 2018; Gray et al. 2018).   86 

Increasing ocean DIC content from anthropogenic carbon (Cant) storage and decreasing pHT 87 

values from ocean acidification (OA) provide an ongoing challenge to the accuracy of these 88 

algorithms: the algorithms are trained, or fit, to data collected over the last three decades, but will 89 

be used primarily to estimate seawater properties specific to recent years and the coming years 90 

until improved algorithms become available.  How then should we deal with the changes from, 91 

for example, ocean acidification?  Three notable existing algorithms for pHT have simplistic and 92 

empirical treatments of the effects of ocean acidification.  One has no parameterization for OA, 93 

but instead provides a suggested time-span for the algorithm (Williams et al. 2016); another uses 94 

a simple density interpolation of empirically-derived global changes that, for example, does not 95 

distinguish the rapidly changing intermediate North Atlantic from the comparatively-static 96 

intermediate subpolar North Pacific (Carter et al. 2018); and the one last uses a regional 97 

empirical approach that risks mis-attributing long term change and natural variability in pHT 98 

(Bittig et al. 2018).  Broullón et al. (2020) also use an empirical relationship to capture the 99 

effects of OA for their DIC algorithm.  These algorithms are expected to become increasingly 100 

biased under future OA conditions. 101 

In this paper we improve upon existing algorithms with new methods and new observational data 102 

products and encode them into a package of software routines in the MATLAB language.  We 103 

also introduce a new neural-network approach that can return estimates from more diverse 104 

combinations of predictors than previous efforts.  We also improve how the algorithms handle 105 

Cant impacts on DIC and pHT, and the new approach should allow future projections of these 106 

properties to be useful over longer time horizons while avoiding bias from empirical fits to 107 

interannual variability. 108 

2. Methods 109 

2.1 Basics, updates, new methods, and new features 110 

The first of two products in this effort is an improvement upon the Locally-Interpolated 111 

Regression (LIR) strategy for global and full-water column seawater alkalinity estimation that 112 

was implemented by Carter et al. (2016) and is similar to a method described by Velo et al. 113 

(2013).  This approach was later updated and extended to estimating seawater pHT and nitrate 114 

(Carter et al., 2018: LIRv2) and was most recently expanded to oxygen, phosphate, and silicate 115 

estimates (Carter et al. 2021).  The new improvements in LIR-based empirical seawater property 116 

estimation routines (called here: ESPER_LIR, equivalent to LIRv3), relative to LIRv2, include:  117 
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1. use of the 2020 release of the GLObal Data Analysis Project data product 118 

(GLODAPv2.2020: Olsen et al. 2020), for predictor variables with many thousands of 119 

new measurements, particularly in the North Pacific, relative to the GLODAPv2 version 120 

used for earlier versions of the global algorithms;  121 

2. numerous additional data sets from the Gulf of Mexico and the Mediterranean Sea as 122 

training data, fixing large and important data gaps in LIRv2; 123 

3. the ability to return estimates of DIC;  124 

4. simple and improved estimation of anthropogenic perturbations to pHT and DIC based on 125 

first principles, allowing better predictions of future changes in seawater carbonate 126 

chemistry;  127 

5. implementation of a distance weighting for the fit in ESPER_LIR, allowing more data to 128 

be used for each of the many regressions;  129 

6. and ease-of-use changes that allow the insights from the LIR routines to be more easily 130 

adapted for regional applications.   131 

In addition to LIR updates, we introduce new neural-network-based routines (ESPER_NN) to 132 

take advantage of the strengths of neural networks including the ability to model non-linear 133 

relationships between predictors and estimated quantities (Tu 1996).  In several important ways 134 

this new algorithm imitates the design of the “Carbonate system and Nutrients concentration 135 

from hYdrological properties and Oxygen using a Neural-network version B” (CANYON) 136 

algorithms designed by Sauzède et al. (2017) and updated by Bittig et al. (2018).  The significant 137 

differences between ESPER_NN and the existing algorithms are: 138 

1. inclusion of new data from the GLODAPv2.2020 data product (as with the LIR updates). 139 

2. Like ESPER_LIR, ESPER_NN uses a new first-principles-based approach to estimate the 140 

impacts of long-term trends for pHT and DIC. 141 

3. ESPER_NN can function with 16 combinations of seawater properties requiring at 142 

minimum salinity and coordinate information, while alternative neural network 143 

approaches also require oxygen and temperature.  While the temperature, salinity, and 144 

oxygen are often available and are frequently an ideal predictor combination, there 145 

remain applications where oxygen measurements are not available (due to absent, failed, 146 

or fouled sensors) or not desired as predictors (such as when estimating preformed 147 

properties from only conservative seawater properties, e.g., Carter et al. 2021). 148 

By most validation metrics the ESPER_NN routines perform comparably to ESPER_LIR 149 

routines and, in some places, they perform better (see: section 3. Assessment).  Nevertheless, we 150 

contend there are reasons to maintain both approaches.  First, the LIR routines offer a degree of 151 

simplicity and estimate explicability that lends them additional value.  To highlight the 152 

explicability of the LIR estimates, we have added the ability to return the coefficients of the 153 

equations that were used to produce each estimate as an additional optional routine output.  This 154 

may be useful when querying the LIR routines for an equation that could be used for a regional 155 

study in another application.  Similarly, regional coefficients could be added into the 156 
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ESPER_LIR coefficient files to produce a modified routine that seamlessly transitions to using 157 

regional relationships within a specific area such as a marginal sea, while still using the 158 

relationships derived for the open ocean outside of that region.  Also, as we discuss later, there is 159 

merit to having and using multiple routines when the errors in the estimates appear to be partially 160 

independent, as appears to be the case with ESPER_LIR and ESPER_NN. 161 

Both new routines are freely available as MATLAB functions at Zenodo (Carter 2021) and 162 

updates will be made available at the GitHub repository (see: Section 8).  Several changes have 163 

been made to the LIR function behavior that are noted alongside the reasoning behind the 164 

changes in Supplementary Materials S2: Readme. 165 

2.2 Data products, training data, and test data 166 

The primary data product used to train these algorithms is the GLODAPv2.2020 data product 167 

update (Olsen et al. 2020).  In addition, we added data sets that will be included in the CARbon, 168 

tracer and ancillary data In the MEDiterranean Sea (CARIMED) and that are included in the 169 

Coastal Ocean Data Analysis Project for North America (CODAP-NA; Jiang et al. 2021) data 170 

products. These data from the Mediterranean Sea (46 cruises spanning from 1976 to 2018 and 171 

covering all the sub-basins in the Mediterranean Sea) and the Gulf of Mexico (3 cruises spanning 172 

2007 to 2012) are included to ensure these important regions are well-constrained and the cruise 173 

information is provided in Supplementary Materials S1.1.  These data products are focused on 174 

internal consistency and are inclusive for carbonate system measurements.  We do not make a 175 

special effort in this study to incorporate high resolution data from profiling sensors (e.g., 1 m 176 

oxygen values) or measurements from data products that focus on macronutrients or oxygen, but 177 

note that this could be an area of focus for future development.   178 

As with previous versions of LIRs, we excluded data from GLODAPv2 that has not had 179 

secondary quality control checks (QC), and further omitted several sets of cruises that had large 180 

adjustments or appeared to have noisy measurements at depth (detailed in Supplementary 181 

Materials S1: Data).  We also excluded measurements from any bottle that lacked measurements 182 

for temperature, salinity, oxygen, and macronutrients (phosphate, silicate, and nitrate).   183 

Homogenization of the variety of pH measurement types and calculations in GLODAPv2.2020 184 

remains a challenge (see: Supplementary Materials S1.2).  As with LIRv2, the ESPERs return in 185 

situ pHT estimates that are intended to be consistent by default with pHT measured 186 

spectrophotometrically with purified m-cresol purple indicator dye and converted to in situ 187 

conditions, but can be made to return values that are intended to be consistent with pHT 188 

calculated from DIC and TA at in situ conditions (as CANYON-B does by default) using an 189 

optional flag.  These approaches for arriving at pHT values have a documented disagreement 190 

(Carter et al. 2013, 2018; Williams et al. 2017; Fong and Dickson 2019; Álvarez et al. 2020), and 191 

we rely on the relationships developed by Carter et al. (2018) to interconvert between these pHT 192 

estimates.  New observations are challenging the assumptions inherent to this approach 193 
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(Takeshita et al. 2021), but currently there is insufficient data or mechanistic understanding to 194 

refine the relationships we use for interconversion. 195 

For assessment purposes we must separate validation data from training data and withhold the 196 

validation data from the versions of the algorithms used for assessment.  It is better to withhold 197 

data from entire cruises to avoid obtaining unrealistically high skill estimates when 198 

reconstructing data from a synoptic cruise based on algorithms trained with other data from the 199 

same cruise.  In past versions of LIRs, this assessment was conducted by creating algorithms that 200 

iteratively omitted each cruise while reconstructing data from the omitted cruises.  However, this 201 

strategy would be too computationally intensive to employ with the ESPER_NN and would not 202 

provide a clear comparison to the CANYON-B neural network, which was trained with the 203 

original GLODAPv2 release.  Instead, all data in GLODAPv2.2020 that were added following 204 

the original GLODAPv2 release (i.e., all cruises with GLODAPv2 cruise numbers >=1000 and 205 

those incorporated from the Gulf of Mexico and the Mediterranean Sea) are used as test data for 206 

the validation versions of the algorithms that were trained only with the data in the original 207 

GLODAPv2 release.  For general use, a release version of the ESPER_LIR and ESPER_NN 208 

algorithms were trained with the total data set to benefit from the recent data, and this release 209 

version is the only version provided at Zenodo.  Data within several marginal seas (the Gulf of 210 

Mexico, the Sea of Japan/East Sea, and the Mediterranean Sea) are omitted from the bulk global 211 

open-ocean assessment statistics because these are regions where the validation versions of the 212 

algorithms have insufficient training data (i.e., none) to produce estimates.  Similarly, data from 213 

the Arctic (here: north of 67.5°N) are withheld from the global assessment step because the 214 

Arctic is a problematic region for algorithms (see Sect. 3.6).  Instead, algorithm performance is 215 

separately assessed in these regions to explore the limitations of the approaches used (Section 216 

3.6).  The numbers of valid, quality-controlled measurements available for each algorithm 217 

version in each subset of the data are given in Table 1. 218 

2.3 Anthropogenic impacts on carbonate chemistry 219 

The LIPHR (i.e., LIRv2 for pHT) and CANYON-B algorithms use “estimate year” (i.e., for 220 

LIPHR this is the calendar year expressed as a decimal, where the midpoint of the year 2020 221 

would be given as 2020.5) as a predictor for seawater properties (or their reconstruction errors in 222 

the case of LIPHRv2) to capture the impacts of long-term trends on pHT estimates and the 223 

training data.  However, recent research suggests that decadal variability in seawater property 224 

trends can rival, regionally, the magnitudes of the secular trends.  This is true even for Cant which 225 

exhibits a large secular trend (Woosley et al. 2016; DeVries et al. 2017; Carter et al. 2019a).  226 

This finding implies that empirical fits risk projecting trends from cyclical natural variability into 227 

the future.  LIPHR avoids some biases from regional natural variability by using global empirical 228 

fits over density intervals, but, as a result, the routine is unable to distinguish between regions 229 

with rapid (e.g., the North Atlantic) versus slow (e.g., the North Pacific) Cant accumulation.  In 230 

addition, LIPHR assumes a fixed OA rate over time, but OA rates might be expected to 231 

accelerate due to the approximately exponential increase in atmospheric CO2. Therefore, while 232 
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algorithms like LIPHR seem to accurately predict contemporaneous deep pHT, it is likely that 233 

biases will emerge over the coming years, particularly in regions where Cant penetration is large 234 

such as the North Atlantic (Gruber et al. 2019).  The risks of natural variability biasing empirical 235 

trend projections are perhaps more acute for the properties that have weaker secular trends than 236 

DIC and pHT, such as nutrients and oxygen, although the empirical trends in these properties are 237 

usually smaller components of the overall variability in their estimates. 238 

Given the challenges associated with accurately quantifying secular changes with short-term, 239 

empirical information, ESPER_LIR and _NN rely on a first-principles-based estimate of Cant and 240 

its impacts on pHT.  This approach assumes that exponential increases in atmospheric 241 

anthropogenic CO2 should eventually result in marine Cant concentrations that increase at rates 242 

proportional to atmospheric anthropogenic CO2 concentrations.  In other words, this approach 243 

relies on the assumption that Cant is in transient steady state (Gammon et al. 1982; Tanhua et al. 244 

2007); this is an assumption used to adjust data to reference years in the most recent global Cant 245 

distribution change estimates for the 1994 to 2007 period (Gruber et al. 2019).  This implies that, 246 

locally, the ‘shape’ of the Cant vertical profile (or Cant vertical gradient) should remain constant 247 

over time while atmospheric CO2 and ocean Cant values are increasing exponentially according 248 

to: 249 

Cant_year_location = Cant_2002_location𝑒
0.018989(year−2002)   (1) 250 

Therefore, if a Cant value is known for a location in a reference year (e.g., Cant_2002_location in 251 

2002 c.e.), then Cant can be estimated for that location in a desired year (Cant_year_location).  The 252 

coefficient within the exponent is derived by solving equation (1) to match Gruber et al. (2019)’s 253 

assumption of a ~28% Cant increase over the 13 years from 1994 to 2007 (see: their methods 254 

supplement).  We note that this approach is not able or intended to resolve non-steady state 255 

variations in Cant (Gruber et al. 2019), and the errors in the estimates that result from this 256 

deficiency are included implicitly in the assessed overall uncertainty estimates. 257 

For the ESPERs, we utilize a gridded Cant product referenced to the year 2002 (Lauvset et al. 258 

2016).  This product was created using the Transit Time Distribution (TTD) method (Waugh et 259 

al. 2006), and gridded to the same 1°x1° latitude/longitude resolution with 33 depth surfaces as 260 

the Global Data Analysis Project (GLODAPv2) gridded data product.  This reference 2002 field 261 

can be used with Eqn. 1 to estimate the difference between Cant in 2002 and Cant in the year in 262 

which a measurement was made, or an estimate is desired.  Therefore, rather than having a time 263 

dependent prediction of pHT or DIC, we take the following steps to address anthropogenic trends 264 

(Fig. 1): 265 

1. start with the unmodified training data set, 266 

2. transform all training data to the year 2002 by adding/removing the missing/excess Cant if 267 

they are measured before/after 2002, 268 

3. train the pHT or DIC algorithms on this modified training data, 269 

4. predict pHT or DIC without a time dependence for 2002,  270 
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5. and transform the Cant to the desired year (if other than 2002), recalculating DIC and pHT 271 

with the new Cant total accordingly. 272 

Steps 1 through 3 were performed before training the routines, while steps 4 and 5 are performed 273 

by the ESPER code each time it is called.  Supplementary Materials S1.3 provides more detail 274 

for the pHT recalculations noted in step 5. 275 

There are uncertainties associated with the assumptions underlying both the 2002 gridded Cant 276 

data product and the transient steady state approach—particularly in regions where there are 277 

limited measurements of chlorofluorocarbons and other tracers used to calibrate the TTD 278 

approach.  We therefore assert that Eqn. 1 should not be used to estimate Cant distributions for 279 

any application where Cant is of primary interest.  However, uncertainties in the adjustments that 280 

come from changes in these Cant estimates over time should be modest for a window of time 281 

around the year 2002 c.e., the year in which the adjustments are zero by definition.  Equation (1) 282 

implies that adjustment errors will be smaller than errors in the underlying 2002 Cant distributions 283 

for any estimate before 2039 (i.e., the Cant doubling time after 2002).  As the training data are 284 

also adjusted in step 2, the effective magnitudes of the adjustments are related to the difference 285 

between the years of the estimates and the average measurement years of the training data used 286 

for those algorithms (which for most regions and algorithms is close to 2002 c.e.).  These 287 

ESPERs should therefore be used with increasing caution for DIC and pHT after ~2030.  288 

Regardless of these challenges, this parameterization of OA rates should be more accurate 289 

moving forwards than that used by LIPHR, and any improvements in the Cant estimates should 290 

directly reduce estimate bias in the modern era and the near future. Notably, implementing this 291 

approach decreased overall training data reconstruction root mean squared error for DIC by 292 

>10%, and decreased the trend in the DIC reconstruction error from ~0.49 µmol kg₋1 yr₋1 to less 293 

than 0.03 µmol kg₋1 yr₋1.  We caution that these assumptions do not explicitly consider declines 294 

in ocean carbon uptake efficiency and the assumption of exponential growth can lead to very 295 

large DIC accumulations when used for distant projections.  Future atmospheric CO2 296 

concentrations are highly uncertain, and user discretion is advised for any projections. 297 

There is no time-variance for ESPER estimates of quantities other than pHT and DIC. 298 

2.4 ESPER_LIR construction 299 

ESPER_LIR broadly functions similarly to LIRv2, which is described in detail by Carter et al. 300 

(2018).  As with LIRv2, the ESPER_LIR algorithms use regression coefficients (C) that are 301 

specific to each of 16 equations and 44,957 locations on a 5° latitude x 5° longitude x 33 depth 302 

ocean interior grid subsampled from the World Ocean Atlas gridded product grid.  These 303 

coefficients are interpolated in 3D space to the locations where regression coefficients are 304 

desired.  The algorithm then uses the coefficients with user-provided seawater property predictor 305 

information (P) to produce property estimates. 306 
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The LIR algorithms are constructed by fitting 16 different regressions that relate the properties of 307 

interest, X (silicate, nitrate, phosphate, oxygen, TA, DIC, and pHT), to combinations of up to 5 308 

predictor properties, P (including: salinity, potential temperature, nitrate, phosphate, oxygen, and 309 

silicate), which are specific to each property of interest (Table 2).  Each equation uses between 1 310 

and 5 predictor properties and the generalized predictor equation is: 311 

𝑋 = 𝐶0 + ∑ 𝐶𝑖𝑃𝑖
𝑛
𝑖=1   (2) 312 

Unlike LIRv2, depth is never used as a predictor for ESPER_LIR and is only used as a 313 

coordinate for regression coefficient interpolation.  Versions with depth included as a predictor 314 

performed similarly or worse than versions with depth omitted during early testing. 315 

The regression coefficients Ci and C0 are fit 44,957 times for each of the 7 estimated properties 316 

and each of the 16 equations.  At each grid location, “local” data are selected from the subset of 317 

all data that are within 15° in latitude, 30°/cosine(latitude) in longitude, and within either (100 + 318 

z/10) meters depth or 0.1 kg m-3 of the estimated density of seawater at that coordinate location.  319 

Here z is the coordinate depth in meters.  As with LIRv2, these window dimensions are 320 

iteratively doubled when fewer than 100 measurements fall within the windows.  These data 321 

selection windows are initially twice as wide as the windows used in LIRv2 in all dimensions.  322 

Doubling the baseline size of these windows is intended to include more data on average for the 323 

regression fits, introduce more modes of oceanographic variability into the fitting data, and 324 

thereby reduce multicollinearity.  The average absolute values of regression coefficients in 325 

ESPER_LIR are only 80% of the average absolute values of the coefficients in LIRv2, 326 

suggesting ESPER_LIR is subject to less multicollinearity than LIRv2.  However, widening the 327 

windows risks making the regressions less appropriate locally, so a weighting term is used that is 328 

equal to: 329 

𝑊 = max⁡(5, (
10(𝛥𝑧)

100+𝑧
)
2

+ (cos⁡(lat)(𝛥lon))2 + 4(𝛥lat)2)
−2

  (3) 330 

The weighting term W reduces the cost of regression misfits to data that are distant or at 331 

significantly different depths from the regression coordinate location, and the maximum function 332 

caps the weights (at a value equivalent to the weight found when 5° latitude away) to ensure the 333 

regressions are not overly fit to data very near the coordinate where the denominator approaches 334 

0.  The Δz term is the difference between the regression coordinate depth (z) and the depth of the 335 

measurements.  The Δlon is the minimum difference in the measurement and coordinate 336 

longitudes when using either the -180° to 180° or 0° to 360° conventions, and Δlat is the 337 

difference between the measurement and coordinate latitudes.  The regression coefficients 338 

(𝐶0⁡and 𝐶𝑃𝑖) are then fit using a regression of the form: 339 

𝑋𝑊 = (𝐶0 + ∑ 𝐶𝑃𝑖𝑃𝑖
𝑛
𝑖=1 )𝑊  (4) 340 

As with LIRv2, data outside of the Atlantic, Mediterranean, and Arctic are excluded when fitting 341 

Northern Hemisphere regression coordinates within the Atlantic, Mediterranean, or Arctic—and 342 
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vice versa—in order to prevent use of data from across Central America or the Bering Strait.  343 

The widths of the data inclusion windows and the coefficients in the weighting function were 344 

optimized by selecting the variant of 8 combinations that had the best validation statistics.  345 

However, some of the combinations yielded comparable results for some predictors, so this 346 

parameter tuning process should not be considered exhaustive. 347 

2.5 ESPER_NN Construction 348 

ESPER_NN relies upon a collection of feed-forward neural-networks to estimate seawater 349 

properties with a similar operation to the LIR algorithm and a similar structure to the CANYON-350 

B algorithm: ESPER_NN uses the same combination of predictor measurements as ESPER_LIR 351 

to produce estimates of the same properties, and does so with a function call that has similar 352 

syntax.  Unlike ESPER_LIR, in addition to the predictors noted in Table 2, the ESPER_NN 353 

algorithm uses latitude, depth, cos(longitude-20°E), and cos(longitude-110°E) as predictors in 354 

each equation, making the estimates somewhat more analogous to a mapping approach than the 355 

ESPER_LIR estimates.  Similar, but not identical, parameters are used in CANYON (Sauzède et 356 

al. 2017) and CANYON-B (Bittig et al. 2018): unlike the original CANYON, ESPER_NN 357 

offsets the 0 longitude for the reasons noted by Bittig et al. (2018), specifically that cos(lon) 358 

loses explanatory power at the prime meridian, which is a region of oceanographic significance.  359 

Offsetting longitudes to 20°E (and 110°E) puts these regions of minimum explanatory power 360 

over land masses to the extent possible.   361 

ESPER_NN uses 896 neural networks in total: eight neural networks (four in each of two large 362 

ocean regions: see below) are used for each of the 16 combinations of predictors used for each of 363 

the 7 property estimates.  ESPER_NN averages estimates from a “committee” or ensemble of 4 364 

neural networks with different combinations of neurons and hidden layers to minimize the 365 

impact of errors from any one neural network.  These four neural networks include a single one-366 

hidden-layer network with 40 neurons, and three two-hidden-layer networks with 30/10, 25/15, 367 

and 20/20 neurons in the 1st/2nd hidden layers.  One committee of neural networks is used in the 368 

Indo-Pacific-Southern Ocean regions and an additional committee used in the Atlantic Ocean, 369 

Arctic Ocean, and Mediterranean Sea.  The ESPER_NN algorithm linearly interpolates between 370 

the outputs of these two committees of neural networks by latitude across the Southern Atlantic 371 

and the Bering Sea, being fully in the Indo-Pacific-Southern Ocean network by 44°S in the 372 

Southern Atlantic and fully in the Atlantic, Arctic, and Mediterranean network by 34°S.  373 

Similarly, the North-Pacific-to-Arctic transition occurs between 62.5°N and 70°N along Pacific 374 

longitudes.  After this meridional blending step, there is a zonal transition implemented in the 375 

Southern Atlantic between these blended values and the Indo-Pacific-Southern Ocean network 376 

starting at 19°E and being completely transitioned at 27°E. 377 

Techniques exist for illuminating the relative importance of predictor variables in machine 378 

learning approaches (e.g., Olden and Jackson 2002), but the exact equations used by the 379 

ESPER_NN algorithm are nevertheless more opaque and less explainable than the LIR 380 
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equations.  The networks are fit using the MATLAB r2017 Machine Learning Toolbox 381 

“feedforwardnet” and “train” function defaults, which include Levenberg Marquardt 382 

optimization with 15% of input data reserved for assessment during iterative fitting steps.  383 

However, the neural networks have been encoded as functions, so users do not require the 384 

Machine Learning Toolbox to operate ESPER_NN. 385 

2.6 Mixed Estimates 386 

Bittig et al. (2018) showed that linear regression and neural network estimates frequently have 387 

independent error fields.  From this observation, they proposed that it might be advantageous to 388 

combine estimates from both approaches.  We test this idea and find that it has merits in many 389 

circumstances.  We therefore also release a wrapper function “ESPER_Mixed.m” that calls both 390 

routines, ESPER_LIR and ESPER_NN, and averages the estimates.  We do not provide a similar 391 

wrapper function for CANYON-B, but we note that our assessment suggests the findings for the 392 

mixed approach could also apply to a mixed version of CANYON-B and ESPER_LIR equation 393 

7.  The ESPER_Mixed routine is assessed alongside the other algorithms in Section 3. 394 

2.7 Uncertainty estimation 395 

The routines can return uncertainties for every property estimate, and the uncertainty values vary 396 

with input depth and salinity.  These uncertainties are estimated at the 1σ (i.e., 1 standard 397 

uncertainty) level, so we would expect ~95% of new measurements that have been through the 398 

GLODAPv2 QC process to fall within windows of ± twice the ESPER estimated uncertainties.  399 

The LIRv2 uncertainty estimation strategy for TA (Carter et al. 2018) is slightly modified and 400 

then implemented for all properties estimated by the two ESPERs.  As before, this approach 401 

interpolates baseline error estimates (𝐸𝑋_Est) in depth and salinity space.  The interpolated values 402 

are based on the root-mean-squared errors (RMSEs) of all predictions from the validation 403 

versions of the routines within bins of salinity and depth.  As with LIRv2, ESPER_LIR also 404 

scales these methodological uncertainties using user-provided predictor uncertainty estimates.  405 

The following equation is used when the user provides uncertainties for the predictors 406 

(𝐸𝑃𝑖_Provided) that exceed the default assumed input uncertainties (Table 3). 407 

𝐸𝑋_Output = √𝐸𝑋_Est
2 − ∑ (

𝜕𝑋

𝜕𝑃𝑖
𝐸𝑃𝑖_Default)

2
𝑛
𝑖=1 + ∑ (

𝜕𝑋

𝜕𝑃𝑖
𝐸𝑃𝑖_Provided)

2
𝑛
𝑖=1   (5) 408 

If the optional 𝐸𝑃𝑖_Provided input is omitted then it is assumed that 𝐸𝑃𝑖_Provided equals 𝐸𝑃_Default 409 

(Table 3), and the two summed terms in this equation cancel.  Here 
𝜕𝑋

𝜕𝑃𝑖
 is the sensitivity of the 410 

property estimate X to the ith predictor Pi and the 𝐸𝑃𝑖 terms are the default and the user-provided 411 

predictor uncertainties.  For the ESPER_LIRs, the 
𝜕𝑋

𝜕𝑃𝑖
 values equal the 𝐶𝑃𝑖 terms.  For 412 

ESPER_NN calculations, the algorithm determines the sensitivities by iteratively perturbing the 413 

input predictors if and only if the user specifies larger-than-default predictor uncertainties.  The 414 

uncertainties in Table 3 are the minimum uncertainties allowed by the calculations because these 415 



13 
 

are the assumed uncertainties in the best open ocean training data available, so these 416 

uncertainties reflect one of the upper limits on the quality of estimates achievable with the 417 

algorithms regardless of the quality of the predictor measurements.  The sole difference from the 418 

approach used for LIRv2 TA estimates is that the interpolated uncertainties now include the 419 

component of uncertainty that originates from potential errors in the training data.  This saves a 420 

step in the calculations while providing numerically equivalent results. 421 

The uncertainty for an ESPER_Mixed estimate is assessed simplistically as the minimum 422 

uncertainty assessed for the two component ESPER_LIR and ESPER_NN estimates (Sect. 3.7). 423 

3 Assessment 424 

Routines are validated using versions of the algorithms trained only with the data that were 425 

present in the original GLODAPv2 release (Table 1).  This cutoff was chosen to make the 426 

validation algorithms for ESPER_LIR and ESPER_NN comparable to the LIRv2 and 427 

CANYON-B routines to the degree possible.  These “validation” versions of the algorithms are 428 

then used to recreate the “validation data set,” or the newly added data in the GLODAPv2.2019 429 

and GLODAPv2.2020 updates plus the other cruises from the Mediterranean Sea and the Gulf of 430 

Mexico.  The reconstruction errors for these new measurements are used to derive error statistics 431 

for the five routines that we assess (LIRv2, ESPER_LIR, ESPER_NN, CANYON-B, and 432 

ESPER_Mixed).  The validation data set is in some ways not ideal, in that it is not evenly 433 

distributed globally and there is spatial overlap between the test and the training data sets (Fig. 434 

2).  An alternate approach to assessing prediction errors involves omitting all training data from 435 

regions of the ocean representative of data gaps between cruises, and then estimating the errors 436 

within these gaps.  This approach has been used previously by Sauzède et al. (2017) and Carter 437 

et al. (2018), but was found to generally yield smaller uncertainty estimates in the open ocean 438 

than approaches that omit entire cruises (Carter et al. 2018), so we conservatively rely on the 439 

cruise-omission assessments.  The additional data sets from the Gulf of Mexico and the 440 

Mediterranean Sea that were incorporated into this paper were omitted from the global-average 441 

validation data set because neither had undergone secondary QC and because a small subset of 442 

the Mediterranean Sea data from GLODAPv2 had been previously incorporated into the training 443 

data product for some algorithms but not others.  New measurements from the Sea of Japan/East 444 

Sea, a biogeochemically distinct region where no previous measurements existed in the original 445 

GLODAPv2 product, are also omitted from bulk validation statistics.  However, validation 446 

statistics for these regions are given separately (Sect. 3.6).  447 

The reported validation statistics are bias (average reconstruction error), root mean squared error 448 

(RMSE), and the number of new measurements used for each assessment (N).  The 10th, 50th, 449 

and 90th error percentiles were examined as potential additional statistics, but these statistics 450 

were within expectations when assuming normally distributed errors with the given RMSE and 451 

bias statistics.   452 
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3.1 Macronutrients 453 

The routines work well for macronutrients (i.e., phosphate, nitrate, and silicate) when given at 454 

least two predictors, reproducing the validation data with low average bias and a RMSE that is 455 

comparable to the measurement uncertainties (Tables 4 through 6).  Phosphate and nitrate have a 456 

strong and well-documented covariance in the ocean (Redfield et al. 1963).  This covariance 457 

results in low RMSE statistics for the equations relating these properties to one another (e.g., 458 

Eqns. 1 and 2 in Table 2), but reduces the value of adding the other as a predictor when one is 459 

already included.  This covariance is less strong between silicate and either phosphate or nitrate, 460 

and oxygen is comparably useful to the macronutrients when predicting silicate.  Unsurprisingly, 461 

the equations with more fitting parameters tended to perform better, and the RMSE ranged from 462 

being comparable to nominal ~2% measurement uncertainty at best (or ±0.04 µmol kg₋1
 for a 463 

phosphate measurement of 2 µmol kg₋1
, A. Olsen et al., 2016) to 3-4 times worse when only S 464 

and coordinate information is used in the prediction.  All algorithms assessed perform 465 

comparably for the equations using T, S, and oxygen as predictors (i.e., ESPER Eqn. 7), but 466 

LIRv2 performs slightly worse for silicate.  LIRv2 performs comparably to alternatives for many 467 

macronutrient estimates, but alternatives outperform LIRv2 for the equations with the largest 468 

RMSE values and fewest predictors (e.g., equations 12 and 16), suggesting that the modifications 469 

in ESPER_LIR have resulted in an improvement in the least-accurate estimates.  Likely, this is 470 

due to the larger number of measurements available for each regression in ESPER_LIR relative 471 

to LIRv2.  Unlike the ESPER_LIR_validation routine assessed here, the released version of 472 

ESPER_LIR benefits from including the newly added data in the recent updates to GLODAP, 473 

and is therefore preferred to LIRv2 even when the validation statistics are comparable. 474 

3.2 Oxygen 475 

Validation statistics are reasonable for oxygen though persistently greater than the nominal 1%  476 

measurement uncertainty (i.e., 3 µmol kg₋1
 for a 300 µmol kg₋1 measurement, Olsen et al. 2016), 477 

ranging from 4.5 to 13.2 µmol kg₋1 in the global ocean for ESPER_NN_validation and 478 

ESPER_LIR_validation (Table 7).  LIRv2 is also comparable, but again shows worse validation 479 

statistics for equations with fewer predictors and larger RMSE values.  The statistics are 480 

markedly better at intermediate depths, and range from 2.7 to 6.0 µmol kg₋1 between 1000 and 481 

1500 m depth for ESPER_NN_validation.  Below the well-lit surface ocean there is no gas 482 

exchange and essentially no primary production of organic matter, and the algorithms are 483 

therefore better able to capture the fewer processes controlling oxygen distributions.  As a result, 484 

the oxygen algorithms perform less well at higher oxygen concentrations, which is evident in the 485 

larger error statistics globally than in the intermediate depth statistics, as well as in the 486 

comparatively diffuse cloud of estimates in the upper right of the oxygen histograms in Fig. 2.  487 

Interestingly, the neural network estimates in Fig. 2 appear less diffuse than the LIR-based 488 

estimates: the RMSE for eqn. 1 for only the top 200 m is 8.6, 7.6, and 8.0 µmol kg₋1 for the LIR, 489 

NN, and Mixed validation ESPER variants, respectively.  This suggests that the neural network 490 

framework is more skillful at capturing the non-linear relationships between properties that can 491 
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result in the presence of gas exchange and primary production in the surface ocean.  Oxygen 492 

estimates show a non-negligible bias, overestimating oxygen by an average 0.9 µmol kg₋1 for all 493 

3 algorithms across equations.  It should be noted that a large amount of the validation data used 494 

for this assessment are located within the North Pacific where oxygen concentrations are low, so 495 

this could reflect a small regional bias in the algorithms, a tendency to overestimate lower 496 

oxygen concentrations, or differences between the test and the training data products.  497 

Supporting this idea, the released versions of the algorithms—which use all data as training 498 

data—still have a 0.6 µmol kg₋1 bias for the ESPER_Mixed_validation test data reconstructions 499 

while having a ₋0.1 µmol kg₋1 bias for the ESPER_Mixed_validation training data 500 

reconstructions (i.e., GLODAPv2) and no significant bias for both data subsets combined. 501 

3.3 Total Titration Seawater Alkalinity 502 

Seawater alkalinity continues to show strong predictability even with comparatively few 503 

predictors (Table 8), and has the smallest relative range in RMSE values with the least precise 504 

estimates having a RMSE that is less than double the RMSE of the most precise estimates 505 

(ranging from 3.7 to 5.2 µmol kg₋1 for TA for ESPER_NN_validation estimates).  The small 506 

range in assessed RMSE values is expected because all equations use S, and freshwater cycling is 507 

a major driver explaining variability in both S and TA.  The excellent validation metrics for new 508 

and existing algorithms for TA likely reflect particularly precise TA measurements in the newly 509 

added cruises in GLODAPv2.2020, in part due to increased use of certified reference materials 510 

for TA (Dickson et al. 2003).   511 

Interestingly, there is an estimate bias averaging 0.5 to 1 µmol kg₋1 across equations for the 512 

various routines.  It is difficult to identify the cause of these average mismatches when 513 

considering that the GLODAP secondary QC effort already adjusted several cruises to be in line 514 

with the existing GLODAPv2 data product.  However, Olsen et al. (2019) note that many of the 515 

newly-added cruises in the North Pacific show a negative bias against earlier cruises, consistent 516 

with this observation.  Also, many of these cruises use single-point spectrophotometric TA 517 

titration endpoint detections, which Bockmon & Dickson (2015) previously noted could be a 518 

source of disagreement with TA values from full-pH-range titration fits.  Interestingly, Sharp & 519 

Byrne (2020) have provided a mechanistic explanation that would account for these analytical 520 

disagreements if alkaline organic molecules were present in open-ocean seawater.  While this 521 

discussion highlights the challenges of creating a consistent data product across research groups, 522 

the high precision and modest bias of this TA reconstruction nevertheless demonstrates the high 523 

quality of the underlying measurements and the importance of the GLODAPv2 secondary QC 524 

process.   525 

3.4 In situ pH on the Total Scale  526 

There is some difficulty comparing across pHT algorithms because the training data for earlier 527 

pHT algorithms were supplemented with several additional cruises (Carter et al. 2018; Bittig et 528 

al. 2018), many of which were since added to the GLODAPv2 data product in annual updates.  529 

This means that some algorithms would benefit from overlap between the training and validation 530 
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data products in this comparison.  The comparison cannot simply be limited to the truly new 531 

cruises because there are not many additional cruises where purified spectrophotometric dye 532 

measurements were made that were not used to train earlier algorithms; we limit our comparison 533 

to cruises with these spectrophotometric measurements because it has been shown that there are 534 

consistent disagreements between measured and calculated pHT (Carter et al. 2018; Álvarez et al. 535 

2020).  Moreover, measurements made with purified dyes are consistent with measurements 536 

made by sensors that have been shown to have the expected Nernstian response to pHT changes 537 

(Takeshita et al. 2020) lending support to the use of spectrophotometric pHT values over the 538 

disagreeing calculated values.  Complicating the comparison further, the three new cruises that 539 

were not included in LIRv2 or CANYON-B pHT training data that do meet our criteria had large 540 

adjustments applied during the GLODAP secondary QC.  Therefore, for this study we do not re-541 

assess LIRv2 or CANYON-B, and instead show that the ESPERs have similar validation 542 

statistics (Table 9) to those published by earlier validation efforts for these algorithms (Carter et 543 

al. 2018; Bittig et al. 2018).  We do note however, that the statistics obtained when we assess all 544 

four algorithms using T, S, and oxygen with the same data (not shown) are quite close to each 545 

other despite the partial overlap between training and validation data sets.  This suggests all four 546 

algorithms are valid for pHT. 547 

It is difficult to read into pHT validation statistics too much given the comparatively small 548 

number of valid assessment data points.  However, one pattern in pHT assessment statistics that 549 

is apparent is that pH reconstructions benefit significantly from the use of either nitrate or 550 

oxygen as predictors, as these predictors provide information regarding organic matter 551 

remineralization.  The equations with neither quantity have higher RMSE values, even when 552 

silicate is included as a predictor.   553 

3.5 Total Dissolved Inorganic Carbon 554 

The routines reproduce DIC measurements with good skill and a small positive average bias, 555 

with RMSE values ranging from 4.8 to 16.7 µmol kg₋1 globally and 3.2 to 7.0 µmol kg₋1 at 556 

intermediate depths for the various validation versions (Table 10).  Assessment statistics are 557 

comparable across the three routines that estimate DIC (LIRv2 does not).  We caution that DIC 558 

does not have seasonal resolution in the surface ocean in most regions of its training data 559 

product.  Therefore, estimates within the surface ocean should be treated with caution, and we 560 

recommend avoiding interpreting seasonality in the ESPER estimates.  This caution applies to all 561 

property estimates, but is important to note for DIC specifically because of the high sensitivity of 562 

DIC to most modes of seasonal variability and the large scientific interest in seasonal DIC 563 

cycling.  DIC calculations from measured pH or pCO2 and estimated TA are expected to be less 564 

challenged by the lack of seasonal resolution than direct DIC estimates, as TA seasonality is 565 

usually less pronounced than DIC seasonality.  These two approaches to DIC seasonality 566 

reconstruction can return quite different results in the surface ocean (Supplementary Materials 567 

S1.4).  There are empirical routines for global DIC estimation (Broullón et al. 2020) and surface 568 

DIC estimation (Gregor and Gruber 2021) that are also trained with the surface pCO2 569 
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measurements.  In the many regions where surface pCO2 has better seasonal data coverage than 570 

GLODAPv2, these routines are likely to better resolve DIC surface seasonality than ESPER or 571 

other DIC algorithms trained primarily with discrete DIC measurements. 572 

3.6 Regional Tests 573 

We assess the performance of the algorithms in 8 regions independently (Fig. 3).  Some of these 574 

regions are where biogeochemical Argo floats are currently being deployed (i.e., the North 575 

Atlantic, California Current, Equatorial Pacific, and the Southern Ocean) and therefore where 576 

there is additional interest in the performance of the algorithms.  Other regions are 577 

biogeochemically distinct places where there were no training data used for the CANYON-B 578 

and/or LIRv2 algorithms (i.e., Sea of Japan/East Sea, Gulf of Mexico, and the Mediterranean).  579 

These regions therefore allow tests of the likely errors one can expect when applying global 580 

algorithms to biogeochemically distinct regions where there were no available training data.  581 

Finally, the Arctic is a problematic region for the algorithms that warrants special attention.   582 

We first consider the Southern Ocean, the Equatorial Pacific, the California Current, and the 583 

Northern Atlantic.  The validation statistics in these regions where there are active ongoing 584 

biogeochemical float deployment efforts are, for the most part, consistent with the global average 585 

statistics.  The Northern Atlantic shows validation statistics that are somewhat worse than global 586 

averages for macronutrients and oxygen and the California Current shows oxygen RMSE values 587 

that are equally elevated.  Given the active physical processes and biogeochemical cycling in 588 

these regions of interest (and the comparatively small validation data set in the California 589 

Current), none of these sets of validation statistics are unexpected.  We therefore conclude that 590 

the algorithms should function within expectations in these important regions and suggest Table 591 

11 can be used to get a sense for how the global validation statistics might vary on a regional 592 

level. 593 

The Sea of Japan/East Sea provides an excellent case study to assess the use of algorithms in 594 

regions without training data for three reasons: (1) this region had no data in the first 595 

GLODAPv2 release, and thus is a region where neither LIRv2 nor CANYON-B had training 596 

data; (2) a large quantity of high-quality data from the Sea of Japan/East Sea were included with 597 

the GLODAPv2.2020 release; and (3) the Sea of Japan/East Sea is biogeochemically distinct 598 

from the open ocean to the east of Japan, providing a challenge for the predictive capabilities of 599 

the approaches.  Neither of the earlier generation of algorithms work well there with large 600 

average biases and RMSE values that are ~9 times greater on average than in the first set of 601 

regions considered, but with significant variance between properties and routines (Table 11).  602 

LIRv2 is especially problematic in this region, and the marked improvement in 603 

ESPER_LIR_validation relative to LIRv2 suggests the wider data inclusion windows did indeed 604 

reduce variance inflation in this region.  The release versions of the ESPERs that do include data 605 

from the Sea of Japan/East Sea as training data indeed reproduce these data with comparable 606 

fidelity to the global statistics (Supplementary Materials S1.4).  We conclude this region is not a 607 
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special challenge for algorithms when training data are included.  The release versions of these 608 

algorithms updated with the new data should therefore work in the now-measured portions of the 609 

Sea of Japan/East Sea.   610 

Two additional marginal seas deserve mention.  GLODAPv2 does not yet include data from the 611 

Gulf of Mexico or the Mediterranean Sea that have been subjected to the GLODAPv2 a 612 

completed secondary quality control process (some data from the Mediterranean Sea are 613 

included, but with QC flags of 0).  However, due to the large errors expected within marginal 614 

seas (and now demonstrated for the Sea of Japan) when training data are absent or omitted, data 615 

from two cruises to the Mediterranean were included in the training data for CANYON-B despite 616 

the lack of secondary QC.  We now do similarly in the ESPERs and include additional data 617 

gathered as part of the CODAP-NA (Jiang et al. 2021) and ongoing CARIMED efforts 618 

(Supplementary Materials S1.1).  The same lessons from the Sea of Japan/East Sea analysis 619 

apply to the reconstruction of measurements from the Gulf of Mexico and the Mediterranean Sea 620 

(Table 11).  We caution that ESPER_LIR is challenged by the lack of data below 2000 m depth 621 

in the Mediterranean, and increases its window sizes large enough to incorporate data at depth 622 

from the deep North Atlantic.  This results in poor RMSE statistics even when the test data is 623 

included with the training data (Supplementary Materials S1.4).  Until this is addressed, it is 624 

recommended that users interested in this area use ESPER_NN or CANYON_MED (Fourrier et 625 

al. 2020) in place of ESPER_LIR or ESPER_Mixed.  Such regional algorithms can be 626 

meaningfully better for regional efforts, and work in progress on a regional algorithm for the 627 

Gulf of Mexico shows promise for reducing the RMS misfit to the observations from this region.  628 

The Gulf of Mexico challenges the ESPERs because this is a region where the underlying TTD-629 

based Cant data product does not contain estimates, so Cant is crudely triangulated between the 630 

Pacific and Atlantic in this region.  A regional algorithm could address this limitation with a 631 

more sophisticated approach.   632 

Finally, with intense seasonality, strong freshwater cycling and riverine inputs, seasonal ice 633 

cover, and broad continental shelves, the Arctic is an interesting “worst case scenario” for the 634 

algorithms, even when training data are available.  The validation statistics in this region are 635 

significantly worse than the global statistics (RMSEs average ~2.3 times greater, though again 636 

with variance between properties and routines, Table 11).  These larger uncertainties found in the 637 

Arctic could perhaps be generalized to other problematic regions such as shallow coastal areas, 638 

small marginal seas, areas with significant riverine inputs, or other areas with seasonal ice cover. 639 

3.7 Mixed ESPER 640 

As proposed by Bittig et al. (2018), averaging the estimates from ESPER_LIR_validation and 641 

_NN_validation indeed seems to improve the global average prediction statistics, though the 642 

improvement is sometimes small and often the individual residuals are greater with the 643 

ESPER_Mixed estimate than for the better of the two estimates.  For equations with few 644 

predictors (e.g., equation 16, using S as the only seawater property predictor) the improvement in 645 
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the global open-ocean average RMSE is pronounced for all 7 properties estimated by the 646 

routines.  We therefore recommend using ESPER_Mixed over ESPER_LIR or ESPER_NN 647 

unless there is reason to prefer one approach over another due to, for example, the results of a 648 

regional validation exercise in the region of interest. 649 

4. Discussion and summary statements 650 

Several patterns hold across the various properties.  For example, including more predictors 651 

leads to better estimates on average (Fig. 4, showing an average across all properties for both 652 

ESPERs) when the predictor measurements are high quality (i.e., comparable to the 653 

measurements in GLODAPv2).  However, estimate improvements are marginal beyond 4 654 

predictors.  Also, equations 6 and 7 do nearly as well as any equation despite having only 3 655 

predictors (i.e., temperature; salinity; and either oxygen, nitrate, or phosphate, depending on the 656 

predicted property).  This observation shows the predictive power of including at least one 657 

macronutrient or oxygen as a predictor for biogeochemical properties.   658 

A second important generalization is that all predictions do better at depth (>1000 m) though this 659 

is especially the case for gas distribution reconstructions: the intermediate-depth RMSE values 660 

average 55% of the global RMSE values for oxygen, pHT, and DIC (Tables 7, 9, and 10, 661 

respectively) whereas they average ~70% of the global RMSE values for phosphate, nitrate, 662 

silicate, and TA (Tables 4, 5, 6, and 8, respectively).  The larger, near surface estimate errors for 663 

parameters influenced by air-sea gas exchange (e.g., pHT, DIC, and oxygen) are likely the result 664 

of their decoupling with predictor variables that are not gases (or are gases with different 665 

equilibration and residence times).  These changes in parameter relationships near the surface 666 

due to air-sea exchange are also sensitive to dynamic processes (e.g., wind speed), which are not 667 

well captured by the predictor parameters, and are thus difficult to parameterize in static 668 

algorithm relationships. 669 

Finally, regional errors are sometimes significantly larger than global open-ocean errors, and 670 

regional biases are almost always larger than the global biases.  This highlights an important 671 

caution for users of these routines: the global statistics may not be appropriate for estimates over 672 

a more limited area.  For this we note both that it is important to validate the algorithm estimates 673 

for a given region/application and to consider how large of an average estimate bias is likely for 674 

a region of a given size.  As an example, we have assessed how the bias decreases as the size of 675 

the latitude and longitude window considered increases for ESPER_NN_validation nitrate 676 

estimates (Fig. 5).  These average regional biases are computed by iteratively averaging all 677 

estimate errors inside windows of a given size around each of the grid points used by the LIR 678 

routines.  Then, for each window size considered we compute an area-weighted average of the 679 

absolute values of the bias estimates for the grid points.  In the example presented, the average 680 

estimate bias is approximately half of the global RMSE when estimates are averaged over a 681 

10°x10° window, and as expected the bias becomes smaller as the averaging window grows.  682 

This shows that the estimates retain significant regional bias, implying nearby algorithm 683 

estimates cannot be treated as statistically independent.  For a float or mooring that stays within a 684 
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small spatial region, this algorithm bias could be somewhat worse still than shown in Fig. 5.  For 685 

pCO2 calculations based on pHT measurements that are adjusted to algorithm values, even a 686 

small average bias could lead to a meaningful change in calculated air-sea CO2 flux.  687 

5. Comments and recommendations 688 

We have updated global algorithms for seawater biogeochemical property estimation and their 689 

associated MATLAB routines with new functionality using new methods and new data.  We 690 

show that our new methods are mechanistically at least as skillful as earlier methods and are in 691 

some cases better.  They also have the advantages of being trained with the latest quality-692 

controlled data products, easy to implement in MATLAB, capable of estimating a variety of 693 

seawater properties, flexible with the choice of input parameters, and capable of adapting several 694 

aspects of their outputs to user needs (e.g., calculated-like or measured-like pHT).  Where 695 

possible, our validation statistics provide comparisons using validation versions of the algorithms 696 

with identical training and validation data sets for all versions of the routines assessed.  We 697 

therefore recommend these updates even when validation metrics are comparable to those of 698 

earlier routines because the newer routines are trained from a larger data set with better temporal 699 

and spatial coverage.  Two important features of our new routines are (1) the flexibility to predict 700 

many seawater properties from 16 combinations of seawater properties using either a regression 701 

approach or a neural network approach and (2) the implementation of a simple estimate of the 702 

impacts of Cant on pHT and DIC based on first principles.  While the new Cant estimation strategy 703 

is an improvement over the LIRv2 approach for estimating the impacts of OA on pH, it 704 

nevertheless is quite simplistic and should not be relied upon when Cant distributions are 705 

themselves of interest. 706 

We test the practice of averaging estimates from multiple algorithms and find that it frequently 707 

improves estimates (in a global open-ocean RMSE sense).  This practice is therefore 708 

recommended for most applications, and we suggest further improvements might be obtained by 709 

averaging estimates from still more algorithms such as CANYON-B or its updates.  A wrapper 710 

function for averaging CANYON-B values is under development and may eventually be 711 

included at the same GitHub repository as the ESPER functions.  712 

Our assessment also revealed/reinforced several important ideas to consider when using 713 

algorithm estimates:  First it is critical to have measurements in the training data set that are near 714 

to the region in which estimates are desired.  Poor reconstructions of the properties of seawater 715 

in the Sea of Japan/East Sea from the versions of the routines that did not include measurements 716 

in this Sea highlight the importance of this caution.  Writeups of earlier algorithm assessment 717 

efforts also cautioned against the use of the algorithms in coastal environments and marginal seas 718 

where the algorithms did not have training data, but this case study helps quantify the large likely 719 

errors when proceeding despite this caution, as many data-poor marginal seas remain.  Second, 720 

global oxygen, DIC, and pH estimation routine validation statistics are not as strong as the 721 

equivalent statistics when limited to intermediate depths.  This is likely because the current 722 
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generation of algorithms lacks data with sufficient temporal resolution to capture seasonal or 723 

shorter patterns of variability associated with gas exchanges.  It is possible that the algorithms 724 

could be improved by incorporating measurements from the biogeochemical Argo array or other 725 

data products that are more seasonally resolved than GLODAPv2, though care would have to be 726 

taken to avoid reinforcing the algorithms with float data that is calibrated against earlier versions 727 

of the algorithms.  This could perhaps be accomplished by removing float measurements that 728 

reside below the depths that experience seasonal variability from the data products used to train 729 

these future algorithms.  At least until such an improvement is made seasonal variability in the 730 

estimated fields should be treated with caution. 731 

At intermediate depths, ESPER_LIR_validation equation 8 reproduces oxygen with an RMSE of 732 

4.8 µmol kg₋1 using only T and S as predictors (and 3.7 µmol kg₋1 for 733 

ESPER_Mixed_validation), raising the possibility that estimates could be used to check oxygen 734 

sensor performance on in situ platforms.  Currently, most float oxygen sensors are subjected to a 735 

1-point gain calibration against air-oxygen readings or climatological values at high oxygen 736 

concentrations, and a deep algorithm estimate could allow a 2-point check that would assess 737 

sensor performance at low oxygen saturation.  Comparisons at park depths could circumvent 738 

potential issues associated with slow sensor response times. 739 

Our use of a smaller committee of neural networks with somewhat fewer nodes/neurons than is 740 

used by CANYON-B is a pragmatic decision based on the computational costs associated with 741 

training neural networks for many combinations of predictors and regions, and we have only 742 

done a small amount of neural network structure optimization.  However, it should be noted that 743 

our use of separate network committees for the Indo-Pacific and Arctic-Atlantic regions 744 

effectively doubles the complexity of our networks, and that increasing the complexity further 745 

did not seem to meaningfully improve our predictions in limited trials.  It is nevertheless likely 746 

that further improvements in fit and predictive power could be obtained with additional tuning.   747 

While the neural networks are powerful, we demonstrate that the regression-based approach of 748 

the ESPER_LIR routines can nevertheless yield comparably skillful estimates in the open ocean 749 

or under the right conditions.  We contend that the LIR machinery has an advantage of being 750 

more explainable than a neural network, and therefore that the LIRs serve a valuable role among 751 

seawater prediction routines.  An example of where that could prove useful would be in adapting 752 

the LIRs to work in an inland sea.  A user could append their own grid of regression coefficients 753 

determined for a marginal sea such as the Baltic or Mediterranean Seas or an inland waterway 754 

such as the Puget Sound, and the routine would transition seamlessly between global estimates 755 

and regionally appropriate estimates.  This is a future direction for LIR development that would 756 

require partnerships with researchers investigating such bodies of water.   757 

The ESPER_LIR routine lacks predictors derived from coordinate information—rather, this 758 

information is used in the interpolation of regression coefficients only.  As a result, the LIR 759 

routines struggle more than the neural networks when applied in regions that are dissimilar from 760 
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the training data in property space but are nearby in physical space.  This can be seen clearly as 761 

larger reconstruction errors in the Mediterranean, the Gulf of Mexico, and the Sea of Japan/East 762 

Sea.  This was doubly true for the LIRv2 routines which tended to also be less well-constrained 763 

than the ESPER_LIR (i.e., LIRv3) routines.  By contrast, the neural networks also struggle, but 764 

tend to have better RMSE statistics for these regions.  We reiterate that the release versions of 765 

the ESPERs should substantially outperform the bleak assessment statistics given for such 766 

regions because the release versions of these routines are trained with data in these regions 767 

(unlike the _validation versions, which are used to highlight the dangers of using algorithms in 768 

regions where they were not trained). 769 
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12. Figures and Tables 993 

 
Figure 1.  A schematic showing the approach for adjusting training data and estimates for 

effects of anthropogenic carbon accumulation.  The “common year” is 2002. 

 994 
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Figure 2. The first column contains maps of the measurement locations used to train the 

ESPER_LIR_validation and ESPER_NN_validation algorithms.  The second column maps the 

validation data used to assess these versions of the algorithms.  The final ESPER_NN and 

ESPER_LIR algorithms are trained with data shown in both rows of maps.  Panels in the right 

two columns are two-dimensional histograms showing the number of measurements that fall 

within bins of measured (x-axes) and estimated (with Eqn. 1 from Table 2, y-axes) values of the 

indicated properties for ESPER_LIR.  Color indicates the number of measurements in each bin 

(bins are small enough as to appear to be pixels), with darker colors indicating more 

measurements.  The rightmost column is the same as the 3rd column from the left, but for 

ESPER_NN property estimates.  An ideal algorithm would have darker colored boxes along the 

1:1 lines in the first two rows.   

995 
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Figure 3.  A map showing the regions considered independently in Sect. 3.6.  
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Figure 4.  The average global RMSE across all property estimates for both ESPER variants 

normalized to the RMSE of the equation with the lowest average global RMSE (equation 1) 

and plotted against the number of predictors required for each estimate (x-axis).  The point 

labels correspond to the equation numbers in Table 2.  RMSE generally decreases as the 

number of predictors increases, but not all predictors have the same predictive power and the 

incremental increase in predictive power diminishes when more than 3 predictors are used. 
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Figure 5. Average absolute bias in ESPER_NN_validation equation-7 nitrate estimates (y-

axis) vs. the size of the latitude and longitude windows (x-axis) over which the average of the 

absolute biases was computed.  The three lines correspond to bias estimates that were 

averaged over a narrow 100 m depth window (blue line), over all depths (orange), and over the 

1000 to 1500 m depth range commonly used for float calibration (red).  Biases are area-

weighted average estimates for each of the grid locations used by the ESPER_NN routine.  

Nitrate eqn. 7 is chosen as this is one of the equations that is used to calibrate and validate 

nitrate sensors on biogeochemical Argo floats. 
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Table 1. Numbers of viable measurement combinations available for each property 

within the indicated data product subsets.  The “total” column reflects the training 

data for the released routines, whereas the “GLODAPv2” column reflects the 

training data for the validation routines used to assess the algorithms against 

New/Assessment data. 

Property GLODAPv2  New/Assessment  Total 

Phosphate 540511 146263 711347 

Nitrate 540511 146263 711347 

Silicate 540511 146263 711347 

Oxygen 540511 146263 711347 

TA 203502 71832 286080 

pH 162783 53615 222822 

DIC 244062 71326 323328 
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Table 2. The combinations of predictors used to estimate each property for each of the 

16 equations.  Rows with a checkmark indicate the predictors (listed above by property) 

are included in that equation for that property. 

Property  Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 

Phosphate S θ Nitrate Oxygen Silicate 

Nitrate S θ Phosphate Oxygen Silicate 

Silicate S θ Phosphate Oxygen Nitrate 

Oxygen S θ Phosphate Nitrate Silicate 

TA S θ Nitrate Oxygen Silicate 

pH S θ Nitrate Oxygen Silicate 

DIC S θ Nitrate Oxygen Silicate 

Equation #  

1 ✓ ✓ ✓ ✓ ✓ 

2 ✓ ✓ ✓  ✓ 

3 ✓ ✓  ✓ ✓ 

4 ✓ ✓   ✓ 

5 ✓ ✓ ✓ ✓  

6 ✓ ✓ ✓   

7 ✓ ✓  ✓  

8 ✓ ✓    

9 ✓  ✓ ✓ ✓ 

10 ✓  ✓  ✓ 

11 ✓   ✓ ✓ 

12 ✓    ✓ 

13 ✓  ✓ ✓  

14 ✓  ✓   

15 ✓   ✓  

16 ✓     
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Table 3.  Assumed default measurement 

uncertainties, or  𝐸𝑃𝑖_Default or 𝐸𝑋_Default as 

defined in the text. 

Property Uncertainty Units  

S 0.003  

θ 0.003 °C 

Phosphate 2% µmol kg-1 

Nitrate 2% µmol kg-1 

Silicate 2% µmol kg-1 

Oxygen 1% µmol kg-1 
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Table 4. Assessment statistics, reported as bias (± RMSE) in µmol kg₋1, for various phosphate estimation routines 

presented both globally (top rows) and for intermediate ocean depths (bottom rows, provided for comparison only 

as there are no float-based phosphate sensors calibrated using algorithms).  The equation numbers are specific to the 

LIR approach, but the equivalent seawater property predictors are used for the other algorithms in the same row. 

Global LIRv2 ESPER_LIR ESPER_NN CANYON-B Mixed 

N 146263 146263 146263 146263 146263 

Eqn. 1 0.002 (± 0.035) 0.001 (± 0.036) 0.001 (± 0.036) - 0.003 (± 0.039) 

Eqn. 2 0.001 (± 0.039) 0.000 (± 0.038) 0.001 (± 0.037) - 0.002 (± 0.039) 

Eqn. 3 0.003 (± 0.044) 0.001 (± 0.044) 0.001 (± 0.040) - 0.003 (± 0.042) 

Eqn. 4 -0.001 (± 0.061) -0.006 (± 0.060) -0.003 (± 0.053) - 0.000 (± 0.045) 

Eqn. 5 0.002 (± 0.036) 0.001 (± 0.037) 0.002 (± 0.036) - 0.003 (± 0.039) 

Eqn. 6 0.001 (± 0.041) -0.001 (± 0.039) 0.001 (± 0.038) - 0.002 (± 0.039) 

Eqn. 7 0.005 (± 0.052) 0.004 (± 0.051) 0.003 (± 0.043) 0.004 (± 0.043) 0.004 (± 0.045) 

Eqn. 8 -0.003 (± 0.089) -0.003 (± 0.086) -0.002 (± 0.075) - 0.001 (± 0.053) 

Eqn. 9 0.003 (± 0.036) 0.002 (± 0.037) 0.002 (± 0.036) - 0.003 (± 0.039) 

Eqn. 10 0.002 (± 0.040) 0.000 (± 0.039) 0.001 (± 0.039) - 0.002 (± 0.038) 

Eqn. 11 0.005 (± 0.048) 0.002 (± 0.049) 0.002 (± 0.044) - 0.003 (± 0.043) 

Eqn. 12 -0.003 (± 0.079) -0.006 (± 0.065) -0.003 (± 0.057) - 0.001 (± 0.046) 

Eqn. 13 0.004 (± 0.037) 0.002 (± 0.038) 0.003 (± 0.037) - 0.003 (± 0.039) 

Eqn. 14 0.002 (± 0.043) 0.000 (± 0.040) 0.002 (± 0.040) - 0.003 (± 0.039) 

Eqn. 15 0.011 (± 0.069) 0.008 (± 0.067) 0.007 (± 0.059) - 0.005 (± 0.051) 

Eqn. 16 0.008 (± 0.152) 0.005 (± 0.141) 0.004 (± 0.129) - 0.004 (± 0.078) 

Intermediate depth only (i.e., >1000 m and <1500 m depth) 

N 14397 14397 14397 14397 14397 

Eqn. 1 0.009 (± 0.030) 0.007 (± 0.030) 0.007 (± 0.028) - 0.007 (± 0.029) 

Eqn. 2 0.009 (± 0.031) 0.006 (± 0.030) 0.008 (± 0.030) - 0.008 (± 0.029) 

Eqn. 3 0.011 (± 0.032) 0.008 (± 0.032) 0.009 (± 0.030) - 0.008 (± 0.030) 

Eqn. 4 0.012 (± 0.040) 0.007 (± 0.038) 0.006 (± 0.036) - 0.007 (± 0.031) 

Eqn. 5 0.010 (± 0.029) 0.007 (± 0.029) 0.008 (± 0.029) - 0.008 (± 0.029) 

Eqn. 6 0.009 (± 0.030) 0.006 (± 0.030) 0.008 (± 0.030) - 0.008 (± 0.029) 

Eqn. 7 0.011 (± 0.031) 0.008 (± 0.031) 0.010 (± 0.030) 0.011 (± 0.031) 0.009 (± 0.030) 

Eqn. 8 0.012 (± 0.044) 0.003 (± 0.041) 0.005 (± 0.046) - 0.007 (± 0.034) 

Eqn. 9 0.009 (± 0.030) 0.007 (± 0.030) 0.007 (± 0.029) - 0.008 (± 0.029) 

Eqn. 10 0.009 (± 0.031) 0.006 (± 0.030) 0.005 (± 0.029) - 0.006 (± 0.028) 

Eqn. 11 0.011 (± 0.032) 0.008 (± 0.032) 0.009 (± 0.031) - 0.008 (± 0.030) 

Eqn. 12 0.012 (± 0.046) 0.005 (± 0.038) 0.005 (± 0.038) - 0.007 (± 0.032) 

Eqn. 13 0.010 (± 0.030) 0.007 (± 0.029) 0.007 (± 0.029) - 0.007 (± 0.029) 

Eqn. 14 0.009 (± 0.031) 0.006 (± 0.030) 0.007 (± 0.030) - 0.007 (± 0.028) 

Eqn. 15 0.012 (± 0.033) 0.008 (± 0.031) 0.010 (± 0.032) - 0.009 (± 0.031) 

Eqn. 16 0.013 (± 0.056) 0.000 (± 0.049) 0.002 (± 0.053) - 0.005 (± 0.037) 
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Table 5. Assessment statistics, reported as bias ± (RMSE) in µmol kg₋1, for various nitrate estimation routines 

presented both globally (top rows) and for the intermediate ocean where float-based sensor measurements are often 

checked against algorithm-based estimates (bottom rows). 

Global LIRv2 ESPER_LIR ESPER_NN CANYON-B Mixed 

N 146263 146263 146263 146263 146263 

Eqn. 1 0.03 (± 0.52) 0.02 (± 0.48) 0.00 (± 0.42) - 0.03 (± 0.49) 

Eqn. 2 0.01 (± 0.56) 0.00 (± 0.52) -0.01 (± 0.47) - 0.03 (± 0.49) 

Eqn. 3 0.04 (± 0.61) 0.01 (± 0.59) 0.00 (± 0.50) - 0.03 (± 0.55) 

Eqn. 4 -0.02 (± 0.86) -0.09 (± 0.82) -0.07 (± 0.72) - 0.00 (± 0.59) 

Eqn. 5 0.03 (± 0.54) 0.03 (± 0.49) 0.02 (± 0.43) - 0.04 (± 0.50) 

Eqn. 6 0.00 (± 0.58) -0.01 (± 0.55) -0.01 (± 0.50) - 0.03 (± 0.50) 

Eqn. 7 0.06 (± 0.72) 0.06 (± 0.70) 0.03 (± 0.56) 0.03 (± 0.56) 0.04 (± 0.59) 

Eqn. 8 -0.06 (± 1.26) -0.04 (± 1.21) -0.05 (± 1.04) - 0.01 (± 0.73) 

Eqn. 9 0.03 (± 0.54) 0.02 (± 0.50) 0.01 (± 0.44) - 0.04 (± 0.50) 

Eqn. 10 0.00 (± 0.58) -0.01 (± 0.54) -0.01 (± 0.49) - 0.03 (± 0.50) 

Eqn. 11 0.05 (± 0.67) 0.02 (± 0.65) 0.00 (± 0.57) - 0.03 (± 0.56) 

Eqn. 12 -0.08 (± 1.21) -0.10 (± 0.89) -0.06 (± 0.77) - 0.00 (± 0.60) 

Eqn. 13 0.05 (± 0.57) 0.04 (± 0.52) 0.03 (± 0.48) - 0.05 (± 0.52) 

Eqn. 14 0.00 (± 0.62) 0.00 (± 0.57) -0.01 (± 0.53) - 0.03 (± 0.51) 

Eqn. 15 0.12 (± 0.96) 0.11 (± 0.91) 0.08 (± 0.81) - 0.07 (± 0.69) 

Eqn. 16 0.06 (± 2.22) 0.06 (± 2.00) 0.02 (± 1.83) - 0.04 (± 1.08) 

Intermediate depth only (i.e., >1000 m and <1500 m depth) 

N 14397 14397 14397 14397 14397 

Eqn. 1 -0.01 (± 0.32) -0.01 (± 0.31) -0.01 (± 0.29) - 0.01 (± 0.30) 

Eqn. 2 -0.04 (± 0.36) -0.05 (± 0.34) -0.04 (± 0.34) - -0.01 (± 0.30) 

Eqn. 3 0.03 (± 0.33) 0.02 (± 0.32) 0.02 (± 0.31) - 0.02 (± 0.31) 

Eqn. 4 0.05 (± 0.45) 0.01 (± 0.40) -0.01 (± 0.44) - 0.00 (± 0.34) 

Eqn. 5 -0.01 (± 0.33) -0.02 (± 0.32) 0.00 (± 0.30) - 0.01 (± 0.30) 

Eqn. 6 -0.05 (± 0.38) -0.08 (± 0.38) -0.07 (± 0.38) - -0.02 (± 0.31) 

Eqn. 7 0.04 (± 0.34) 0.02 (± 0.33) 0.04 (± 0.33) 0.04 (± 0.33) 0.03 (± 0.32) 

Eqn. 8 0.05 (± 0.54) -0.05 (± 0.53) -0.01 (± 0.58) - 0.01 (± 0.40) 

Eqn. 9 -0.01 (± 0.32) -0.02 (± 0.32) 0.00 (± 0.30) - 0.01 (± 0.30) 

Eqn. 10 -0.05 (± 0.37) -0.07 (± 0.37) -0.07 (± 0.34) - -0.02 (± 0.30) 

Eqn. 11 0.03 (± 0.34) 0.02 (± 0.32) 0.03 (± 0.32) - 0.02 (± 0.31) 

Eqn. 12 0.04 (± 0.55) -0.03 (± 0.45) -0.02 (± 0.46) - 0.00 (± 0.35) 

Eqn. 13 -0.01 (± 0.34) -0.02 (± 0.33) -0.01 (± 0.32) - 0.01 (± 0.31) 

Eqn. 14 -0.06 (± 0.40) -0.10 (± 0.39) -0.07 (± 0.40) - -0.03 (± 0.32) 

Eqn. 15 0.05 (± 0.37) 0.02 (± 0.34) 0.03 (± 0.36) - 0.03 (± 0.33) 

Eqn. 16 0.06 (± 0.73) -0.09 (± 0.65) -0.06 (± 0.71) - -0.02 (± 0.45) 

 

  



38 
 

 

Table 6. Assessment statistics, reported as bias ± (RMSE) in µmol kg₋1, for various silicate estimation routines 

presented both globally (top rows) and for the intermediate ocean (bottom rows, provided for comparison only as 

there are no float-based sensors for phosphate that are calibrated using algorithms). 

Global LIRv2 ESPER_LIR ESPER_NN CANYON-B Mixed 

N 146263 146263 146263 146263 146263 

Eqn. 1 -0.3 (± 2.4) 0.0 (± 2.2) 0.0 (± 1.8) - 0.1 (± 1.9) 

Eqn. 2 -0.3 (± 2.5) -0.1 (± 2.5) -0.1 (± 2.1) - 0.0 (± 2.0) 

Eqn. 3 -0.2 (± 2.4) 0.0 (± 2.2) 0.1 (± 2.0) - 0.1 (± 2.0) 

Eqn. 4 -0.3 (± 2.6) -0.1 (± 2.5) 0.0 (± 2.0) - 0.1 (± 2.0) 

Eqn. 5 -0.2 (± 2.4) 0.0 (± 2.3) 0.1 (± 1.8) - 0.1 (± 1.9) 

Eqn. 6 -0.3 (± 2.7) -0.2 (± 2.6) -0.1 (± 2.1) - 0.0 (± 2.0) 

Eqn. 7 -0.2 (± 2.7) 0.1 (± 2.3) 0.1 (± 2.0) 0.1 (± 1.9) 0.1 (± 2.0) 

Eqn. 8 -0.3 (± 3.6) -0.1 (± 3.3) -0.1 (± 2.7) - 0.0 (± 2.2) 

Eqn. 9 0.0 (± 4.1) 0.1 (± 3.0) 0.1 (± 2.6) - 0.1 (± 2.2) 

Eqn. 10 -0.1 (± 5.0) 0.1 (± 3.1) 0.0 (± 2.6) - 0.0 (± 2.2) 

Eqn. 11 0.0 (± 4.3) 0.1 (± 3.0) 0.1 (± 2.6) - 0.1 (± 2.1) 

Eqn. 12 0.0 (± 4.9) 0.1 (± 3.1) 0.0 (± 2.7) - 0.1 (± 2.2) 

Eqn. 13 0.1 (± 4.6) 0.1 (± 3.2) 0.1 (± 2.7) - 0.1 (± 2.2) 

Eqn. 14 -0.1 (± 5.2) 0.0 (± 3.3) -0.1 (± 2.8) - 0.0 (± 2.2) 

Eqn. 15 0.3 (± 5.5) 0.3 (± 3.4) 0.2 (± 3.2) - 0.2 (± 2.4) 

Eqn. 16 0.4 (± 6.9) 0.1 (± 5.4) -0.1 (± 5.3) - 0.0 (± 3.2) 

Intermediate depth only (i.e., >1000 m and <1500 m depth) 

N 14397 14397 14397 14397 14397 

Eqn. 1 -0.3 (± 2.0) -0.2 (± 1.7) -0.1 (± 1.6) - -0.1 (± 1.5) 

Eqn. 2 -0.3 (± 2.1) -0.3 (± 2.1) -0.2 (± 2.0) - -0.2 (± 1.6) 

Eqn. 3 -0.3 (± 2.0) -0.1 (± 1.6) -0.1 (± 1.7) - -0.1 (± 1.5) 

Eqn. 4 -0.3 (± 2.1) -0.2 (± 1.9) -0.1 (± 1.9) - -0.1 (± 1.6) 

Eqn. 5 -0.3 (± 2.1) -0.2 (± 1.8) -0.1 (± 1.6) - -0.1 (± 1.5) 

Eqn. 6 -0.3 (± 2.3) -0.5 (± 2.4) -0.3 (± 2.0) - -0.2 (± 1.6) 

Eqn. 7 -0.3 (± 2.1) -0.1 (± 1.6) -0.2 (± 1.7) 0.0 (± 1.5) -0.2 (± 1.5) 

Eqn. 8 -0.1 (± 2.7) -0.3 (± 2.6) -0.1 (± 2.4) - -0.1 (± 1.7) 

Eqn. 9 0.0 (± 3.4) -0.1 (± 3.3) -0.2 (± 3.3) - -0.2 (± 2.2) 

Eqn. 10 0.0 (± 5.7) -0.1 (± 3.2) -0.2 (± 3.3) - -0.2 (± 2.1) 

Eqn. 11 0.0 (± 3.7) -0.1 (± 2.9) -0.1 (± 3.4) - -0.1 (± 2.2) 

Eqn. 12 0.1 (± 5.5) 0.0 (± 3.0) 0.0 (± 3.3) - -0.1 (± 2.1) 

Eqn. 13 0.0 (± 4.1) -0.1 (± 3.7) -0.3 (± 3.4) - -0.2 (± 2.2) 

Eqn. 14 -0.1 (± 6.4) -0.4 (± 3.4) -0.4 (± 3.6) - -0.3 (± 2.3) 

Eqn. 15 0.1 (± 5.3) 0.0 (± 3.2) -0.1 (± 3.8) - -0.1 (± 2.3) 

Eqn. 16 0.2 (± 6.1) -0.4 (± 4.0) -0.1 (± 4.7) - -0.1 (± 2.7) 
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Table 7. Assessment statistics, reported as bias ± (RMSE) in µmol kg₋1, for various oxygen estimation routines 

presented both globally (top rows) and for the intermediate ocean (bottom rows, provided for comparison only as 

float-based oxygen sensors are not commonly quality controlled against algorithms). 

Global LIRv2 ESPER_LIR ESPER_NN CANYON-B† Mixed 

N 146263 146263 146263 † 146263 

Eqn. 1 0.5 (± 5.3) 0.6 (± 5.2) 0.5 (± 4.5) - 0.6 (± 4.7) 

Eqn. 2 0.4 (± 5.7) 0.5 (± 5.6) 0.5 (± 5.0) - 0.6 (± 4.8) 

Eqn. 3 0.5 (± 5.8) 0.6 (± 5.5) 0.6 (± 4.8) - 0.6 (± 4.9) 

Eqn. 4 0.7 (± 8.0) 1.3 (± 7.6) 1.0 (± 7.1) - 0.8 (± 5.6) 

Eqn. 5 0.6 (± 5.5) 0.8 (± 5.4) 0.7 (± 4.7) - 0.7 (± 4.8) 

Eqn. 6 0.7 (± 5.9) 0.8 (± 5.8) 0.6 (± 5.3) - 0.7 (± 4.8) 

Eqn. 7 0.6 (± 6.2) 0.7 (± 5.6) 0.5 (± 5.0) - 0.6 (± 5.0) 

Eqn. 8 1.1 (± 10.8) 1.2 (± 10.0) 1.1 (± 9.7) - 0.9 (± 6.6) 

Eqn. 9 1.1 (± 8.1) 1.0 (± 7.9) 1.1 (± 7.0) - 0.9 (± 5.6) 

Eqn. 10 1.1 (± 8.8) 1.0 (± 8.3) 1.1 (± 7.6) - 0.9 (± 5.7) 

Eqn. 11 1.1 (± 8.4) 1.0 (± 8.0) 1.0 (± 7.4) - 0.9 (± 5.8) 

Eqn. 12 2.0 (± 14.2) 1.7 (± 9.9) 1.4 (± 9.5) - 1.1 (± 6.5) 

Eqn. 13 1.4 (± 9.8) 1.3 (± 8.2) 1.1 (± 7.3) - 0.9 (± 5.7) 

Eqn. 14 1.5 (± 10.4) 1.3 (± 8.4) 1.2 (± 7.7) - 1.0 (± 5.8) 

Eqn. 15 1.4 (± 9.8) 1.2 (± 8.2) 1.0 (± 7.6) - 0.9 (± 5.9) 

Eqn. 16 1.6 (± 18.6) 1.2 (± 13.7) 0.8 (± 13.1) - 0.8 (± 7.9) 

Intermediate depth only (i.e., >1000 m and <1500 m depth) 

N 14397 14397 14397 † 14397 

Eqn. 1 0.2 (± 2.8) 0.4 (± 2.6) 0.6 (± 2.7) - 0.5 (± 2.6) 

Eqn. 2 0.4 (± 3.4) 0.7 (± 2.9) 0.8 (± 3.1) - 0.6 (± 2.6) 

Eqn. 3 0.0 (± 3.0) 0.2 (± 2.6) 0.1 (± 2.8) - 0.3 (± 2.6) 

Eqn. 4 -0.4 (± 4.3) 0.2 (± 3.3) 0.1 (± 4.2) - 0.3 (± 2.9) 

Eqn. 5 0.4 (± 3.0) 0.6 (± 2.9) 0.8 (± 3.1) - 0.6 (± 2.8) 

Eqn. 6 0.6 (± 3.8) 1.1 (± 3.5) 1.1 (± 3.9) - 0.8 (± 3.0) 

Eqn. 7 0.0 (± 3.2) 0.4 (± 2.9) 0.4 (± 3.1) - 0.4 (± 2.8) 

Eqn. 8 -0.3 (± 5.1) 0.8 (± 4.8) 0.2 (± 5.9) - 0.3 (± 3.7) 

Eqn. 9 0.4 (± 3.8) 0.8 (± 3.9) 1.0 (± 3.6) - 0.7 (± 3.0) 

Eqn. 10 0.7 (± 4.2) 1.2 (± 4.7) 1.2 (± 4.1) - 0.8 (± 3.0) 

Eqn. 11 0.2 (± 3.9) 0.6 (± 3.8) 0.7 (± 4.0) - 0.6 (± 3.1) 

Eqn. 12 -0.2 (± 6.1) 0.7 (± 4.8) 0.4 (± 5.4) - 0.4 (± 3.4) 

Eqn. 13 0.7 (± 5.4) 1.0 (± 4.0) 0.8 (± 4.0) - 0.6 (± 3.1) 

Eqn. 14 1.1 (± 5.7) 1.5 (± 4.5) 1.2 (± 4.4) - 0.8 (± 3.1) 

Eqn. 15 0.4 (± 5.5) 0.8 (± 4.0) 0.6 (± 4.3) - 0.5 (± 3.2) 

Eqn. 16 0.0 (± 7.6) 1.4 (± 6.2) 0.2 (± 6.0) - 0.3 (± 3.7) 
†This routine does not estimate this quantity 
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Table 8. Assessment statistics, reported as bias ± (RMSE) in µmol kg₋1, for various TA estimation routines 

presented both globally (top rows) and for the intermediate ocean (bottom rows, provided for comparison only as 

TA sensors have yet to be widely deployed on floats). 

Global LIRv2 ESPER_LIR ESPER_NN CANYON-B Mixed 

N 71832 71832 71832 71832 71832 

Eqn. 1 0.8 (± 3.6) 0.8 (± 3.6) 0.8 (± 3.7) - 0.8 (± 3.5) 

Eqn. 2 0.7 (± 3.6) 0.8 (± 3.6) 0.8 (± 3.7) - 0.8 (± 3.5) 

Eqn. 3 0.7 (± 3.7) 0.8 (± 3.6) 0.8 (± 3.7) - 0.7 (± 3.5) 

Eqn. 4 0.7 (± 3.7) 0.9 (± 3.6) 0.9 (± 3.8) - 0.8 (± 3.6) 

Eqn. 5 0.5 (± 3.9) 0.6 (± 3.7) 0.7 (± 3.7) - 0.7 (± 3.6) 

Eqn. 6 0.4 (± 4.0) 0.5 (± 3.8) 0.7 (± 3.9) - 0.7 (± 3.6) 

Eqn. 7 0.5 (± 4.0) 0.7 (± 3.7) 0.8 (± 3.8) 0.4 (± 4.2) 0.7 (± 3.6) 

Eqn. 8 0.5 (± 4.3) 0.6 (± 4.0) 0.8 (± 4.1) - 0.7 (± 3.7) 

Eqn. 9 0.7 (± 3.7) 0.8 (± 3.7) 0.9 (± 3.7) - 0.8 (± 3.5) 

Eqn. 10 0.7 (± 3.7) 0.9 (± 3.7) 0.9 (± 3.7) - 0.8 (± 3.5) 

Eqn. 11 0.7 (± 3.7) 0.9 (± 3.7) 0.9 (± 3.6) - 0.8 (± 3.5) 

Eqn. 12 0.8 (± 3.9) 1.0 (± 3.7) 0.9 (± 3.7) - 0.8 (± 3.5) 

Eqn. 13 0.7 (± 4.4) 0.8 (± 3.9) 0.8 (± 4.0) - 0.7 (± 3.6) 

Eqn. 14 0.7 (± 4.9) 0.7 (± 4.1) 0.8 (± 4.0) - 0.7 (± 3.6) 

Eqn. 15 1.0 (± 4.8) 0.9 (± 4.0) 0.9 (± 4.0) - 0.8 (± 3.6) 

Eqn. 16 1.2 (± 6.5) 0.9 (± 5.0) 0.7 (± 5.2) - 0.7 (± 4.0) 

Intermediate depth only (i.e., >1000 m and <1500 m depth) 

N 6797 6797 6797 6797 6797 

Eqn. 1 0.9 (± 3.0) 0.8 (± 2.9) 1.0 (± 3.0) - 0.8 (± 2.8) 

Eqn. 2 0.9 (± 2.9) 0.8 (± 2.9) 0.9 (± 2.9) - 0.8 (± 2.8) 

Eqn. 3 0.9 (± 2.9) 0.8 (± 2.9) 0.9 (± 3.0) - 0.8 (± 2.8) 

Eqn. 4 0.8 (± 3.0) 0.8 (± 2.9) 0.9 (± 3.0) - 0.8 (± 2.9) 

Eqn. 5 0.6 (± 3.2) 0.6 (± 2.9) 0.7 (± 3.1) - 0.7 (± 2.9) 

Eqn. 6 0.6 (± 3.2) 0.5 (± 2.9) 0.8 (± 3.2) - 0.7 (± 2.9) 

Eqn. 7 0.6 (± 3.2) 0.6 (± 2.9) 0.7 (± 3.1) 0.5 (± 3.2) 0.7 (± 2.9) 

Eqn. 8 0.7 (± 3.2) 0.6 (± 2.9) 0.8 (± 3.3) - 0.7 (± 3.0) 

Eqn. 9 0.9 (± 3.0) 0.9 (± 2.9) 0.9 (± 3.0) - 0.8 (± 2.9) 

Eqn. 10 0.8 (± 3.0) 0.8 (± 2.9) 1.0 (± 3.1) - 0.8 (± 2.9) 

Eqn. 11 0.9 (± 3.0) 0.9 (± 2.9) 1.0 (± 3.0) - 0.8 (± 2.9) 

Eqn. 12 0.8 (± 3.0) 0.9 (± 2.9) 1.0 (± 3.1) - 0.8 (± 2.9) 

Eqn. 13 0.7 (± 3.8) 0.6 (± 3.2) 0.6 (± 3.6) - 0.6 (± 3.1) 

Eqn. 14 0.7 (± 4.1) 0.5 (± 3.2) 0.6 (± 3.6) - 0.6 (± 3.1) 

Eqn. 15 0.8 (± 3.8) 0.6 (± 3.2) 0.8 (± 3.7) - 0.7 (± 3.1) 

Eqn. 16 0.9 (± 4.4) 0.6 (± 3.4) 0.7 (± 4.5) - 0.6 (± 3.3) 
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Table 9. Assessment statistics, reported as bias ± (RMSE), for various pH estimation routines presented both globally 

(top rows) and for the intermediate ocean where float-based sensor measurements are often checked against 

algorithm-based estimates (bottom rows).  Only measurements made with purified dyes were used in these 

assessments to ensure the validation data had no adjustments beyond those applied in the GLODAPv2.2020 

secondary quality control process. 

Global LIRv2 ESPER_LIR ESPER_NN CANYON-B Mixed 

N 20181 20181 20181 20181 20181 

Eqn. 1 -0.007 (± 0.012) -0.004 (± 0.013) -0.004 (± 0.011) - -0.004 (± 0.011) 

Eqn. 2 -0.006 (± 0.015) -0.002 (± 0.014) -0.002 (± 0.013) - -0.003 (± 0.011) 

Eqn. 3 -0.007 (± 0.013) -0.004 (± 0.013) -0.004 (± 0.011) - -0.004 (± 0.011) 

Eqn. 4 -0.005 (± 0.022) -0.001 (± 0.017) -0.002 (± 0.016) - -0.003 (± 0.012) 

Eqn. 5 -0.007 (± 0.012) -0.004 (± 0.012) -0.004 (± 0.011) - -0.004 (± 0.011) 

Eqn. 6 -0.005 (± 0.015) -0.001 (± 0.014) -0.002 (± 0.014) - -0.003 (± 0.011) 

Eqn. 7 -0.007 (± 0.013) -0.004 (± 0.013) -0.004 (± 0.011) * -0.004 (± 0.011) 

Eqn. 8 -0.005 (± 0.026) 0.000 (± 0.020) 0.000 (± 0.021) - -0.002 (± 0.014) 

Eqn. 9 -0.007 (± 0.013) -0.004 (± 0.014) -0.003 (± 0.012) - -0.004 (± 0.011) 

Eqn. 10 -0.005 (± 0.016) -0.002 (± 0.015) -0.001 (± 0.014) - -0.003 (± 0.012) 

Eqn. 11 -0.007 (± 0.013) -0.004 (± 0.014) -0.003 (± 0.012) - -0.004 (± 0.011) 

Eqn. 12 -0.004 (± 0.023) -0.001 (± 0.018) -0.001 (± 0.018) - -0.003 (± 0.013) 

Eqn. 13 -0.006 (± 0.013) -0.004 (± 0.013) -0.003 (± 0.012) - -0.004 (± 0.011) 

Eqn. 14 -0.004 (± 0.017) -0.001 (± 0.015) -0.001 (± 0.014) - -0.003 (± 0.012) 

Eqn. 15 -0.006 (± 0.013) -0.004 (± 0.014) -0.004 (± 0.012) - -0.004 (± 0.012) 

Eqn. 16 -0.005 (± 0.033) -0.001 (± 0.026) -0.002 (± 0.027) - -0.003 (± 0.017) 

Intermediate depth only (i.e., >1000 m and <1500 m depth) 

N 2352 2352 2352 2352 2352 

Eqn. 1 -0.008 (± 0.011) -0.002 (± 0.008) -0.002 (± 0.007) - -0.002 (± 0.006) 

Eqn. 2 -0.007 (± 0.013) -0.001 (± 0.008) -0.001 (± 0.008) - -0.001 (± 0.006) 

Eqn. 3 -0.008 (± 0.011) -0.002 (± 0.007) -0.001 (± 0.006) - -0.001 (± 0.006) 

Eqn. 4 -0.008 (± 0.024) -0.001 (± 0.009) -0.002 (± 0.011) - -0.002 (± 0.008) 

Eqn. 5 -0.008 (± 0.011) -0.002 (± 0.007) -0.002 (± 0.007) - -0.002 (± 0.006) 

Eqn. 6 -0.007 (± 0.013) 0.001 (± 0.008) 0.000 (± 0.007) - -0.001 (± 0.006) 

Eqn. 7 -0.008 (± 0.011) -0.002 (± 0.007) -0.002 (± 0.007) * -0.002 (± 0.006) 

Eqn. 8 -0.008 (± 0.024) 0.001 (± 0.009) 0.000 (± 0.014) - -0.001 (± 0.008) 

Eqn. 9 -0.007 (± 0.011) -0.002 (± 0.008) -0.001 (± 0.006) - -0.002 (± 0.006) 

Eqn. 10 -0.007 (± 0.013) 0.001 (± 0.008) 0.000 (± 0.008) - -0.001 (± 0.006) 

Eqn. 11 -0.007 (± 0.011) -0.002 (± 0.007) -0.001 (± 0.007) - -0.002 (± 0.006) 

Eqn. 12 -0.008 (± 0.024) 0.000 (± 0.010) 0.000 (± 0.013) - -0.001 (± 0.008) 

Eqn. 13 -0.007 (± 0.011) -0.002 (± 0.007) -0.002 (± 0.007) - -0.002 (± 0.007) 

Eqn. 14 -0.007 (± 0.014) 0.001 (± 0.007) 0.000 (± 0.008) - -0.001 (± 0.006) 

Eqn. 15 -0.007 (± 0.011) -0.001 (± 0.007) -0.001 (± 0.007) - -0.001 (± 0.006) 

Eqn. 16 -0.008 (± 0.028) 0.002 (± 0.010) 0.001 (± 0.015) - -0.001 (± 0.009) 

*No viable comparison in this effort due to overlap between training and validation data subsets 
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Table 10. Assessment statistics, reported as bias (± RMSE) in µmol kg₋1, for various DIC estimation routines 

presented both globally (top rows) and for the intermediate ocean (bottom rows, provided for comparison only as 

DIC sensors have yet to be widely deployed on floats). 

Global LIRv2† ESPER_LIR ESPER_NN CANYON-B Mixed 

N † 71326 71326 71326 71326 

Eqn. 1 - 0.4 (± 5.1) 0.4 (± 4.9) - 0.4 (± 4.8) 

Eqn. 2 - 0.2 (± 5.8) 0.4 (± 5.7) - 0.4 (± 4.9) 

Eqn. 3 - 0.3 (± 4.9) 0.4 (± 4.8) - 0.4 (± 4.8) 

Eqn. 4 - -0.2 (± 6.6) 0.0 (± 6.6) - 0.2 (± 5.2) 

Eqn. 5 - 0.3 (± 5.1) 0.4 (± 5.1) - 0.4 (± 4.9) 

Eqn. 6 - 0.0 (± 6.1) 0.3 (± 6.4) - 0.3 (± 5.2) 

Eqn. 7 - 0.4 (± 5.3) 0.4 (± 5.1) -1.3 (± 5.8) 0.4 (± 5.0) 

Eqn. 8 - -0.4 (± 8.7) -0.1 (± 8.6) - 0.1 (± 6.0) 

Eqn. 9 - 0.6 (± 8.2) 0.6 (± 6.9) - 0.5 (± 5.3) 

Eqn. 10 - 0.3 (± 9.0) 0.4 (± 7.3) - 0.4 (± 5.3) 

Eqn. 11 - 0.5 (± 7.4) 0.6 (± 6.7) - 0.5 (± 5.3) 

Eqn. 12 - -0.2 (± 9.3) 0.1 (± 8.5) - 0.3 (± 5.7) 

Eqn. 13 - 0.6 (± 7.9) 0.7 (± 7.3) - 0.5 (± 5.5) 

Eqn. 14 - 0.1 (± 8.7) 0.3 (± 8.0) - 0.3 (± 5.6) 

Eqn. 15 - 0.8 (± 8.9) 0.8 (± 8.4) - 0.6 (± 6.1) 

Eqn. 16 - 0.6 (± 16.7) 0.3 (± 15.7) - 0.4 (± 8.9) 

Intermediate depth only (i.e., >1000 m and <1500 m depth) 

N † 6740 6740 6740 ESPER & LIR 

Eqn. 1 - -0.2 (± 3.3) -0.1 (± 3.3) - -0.2 (± 3.3) 

Eqn. 2 - -0.3 (± 3.5) 0.0 (± 3.7) - -0.1 (± 3.3) 

Eqn. 3 - -0.2 (± 3.3) 0.1 (± 3.2) - -0.1 (± 3.2) 

Eqn. 4 - -0.1 (± 3.8) 0.0 (± 4.3) - -0.1 (± 3.5) 

Eqn. 5 - -0.2 (± 3.3) -0.1 (± 3.4) - -0.2 (± 3.3) 

Eqn. 6 - -0.5 (± 3.7) -0.2 (± 4.1) - -0.2 (± 3.5) 

Eqn. 7 - -0.2 (± 3.3) -0.2 (± 3.5) -0.8 (± 3.4) -0.2 (± 3.3) 

Eqn. 8 - -0.5 (± 4.5) -0.4 (± 5.4) - -0.3 (± 3.9) 

Eqn. 9 - 0.0 (± 3.4) 0.1 (± 3.3) - -0.1 (± 3.2) 

Eqn. 10 - -0.2 (± 3.5) -0.1 (± 3.7) - -0.2 (± 3.3) 

Eqn. 11 - -0.1 (± 3.4) 0.1 (± 3.3) - -0.1 (± 3.2) 

Eqn. 12 - -0.2 (± 3.8) 0.0 (± 4.4) - -0.1 (± 3.5) 

Eqn. 13 - -0.2 (± 3.7) -0.1 (± 4.0) - -0.2 (± 3.5) 

Eqn. 14 - -0.4 (± 4.0) -0.5 (± 4.5) - -0.4 (± 3.6) 

Eqn. 15 - -0.1 (± 3.8) 0.0 (± 4.2) - -0.1 (± 3.5) 

Eqn. 16 - -0.7 (± 5.7) -0.3 (± 6.8) - -0.3 (± 4.4) 
†This routine does not estimate this quantity. 
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Table 11. Regional assessment statistics for equation 7 of the validation versions of the algorithms and for CANYON-B.  These statistics are obtained without 

including any training data from the new data added in the 2019 and 2020 GLODAPv2 data product updates; without the supplemental data in the Gulf of 

Mexico; and, in the case of LIRv2, ESPER_LIR, and ESPER_NN, without any measurements in the Mediterranean.  The released ESPER_LIR and ESPER_NN 

routines should perform significantly better in the Sea of Japan/East Sea, the Gulf of Mexico, and the Mediterranean.  Statistics obtained when these data are 

included are provided as supplementary materials. 

Southern Ocean phosphate nitrate silicate oxygen TA pH DIC 

N 20294 20294 20294 20294 11088 4094 11945 

LIRv2 0.000 (± 0.059) -0.03 (± 0.77) -0.4 (± 5.1) 0.0 (± 6.3) -0.3 (± 3.3) -0.001 (± 0.011) - 

ESPER_LIR -0.004 (± 0.062) -0.07 (± 0.76) 0.1 (± 4.8) 0.0 (± 6.3) 0.3 (± 3.0) -0.001 (± 0.013) 1.4 (± 4.7) 

ESPER -0.003 (± 0.054) -0.03 (± 0.69) 0.0 (± 3.9) 0.6 (± 6.1) 0.7 (± 3.1) -0.002 (± 0.010) 1.6 (± 4.6) 

CANYON-B -0.001 (± 0.055) -0.04 (± 0.65) 0.1 (± 3.7) † -0.4 (± 3.1) -0.002 (± 0.009) -0.8 (± 4.3) 

ESPER_Mixed -0.003 (± 0.057) -0.05 (± 0.71) 0.1 (± 4.1) 0.3 (± 5.8) 0.5 (± 2.9) -0.001 (± 0.011) 1.5 (± 4.6) 

Equatorial Pacific phosphate nitrate silicate oxygen TA pH DIC 

N 23169 23169 23169 23169 8661 1739 8969 

LIRv2 -0.003 (± 0.038) 0.04 (± 0.54) 0.1 (± 1.2) 0.7 (± 4.6) 0.8 (± 3.5) -0.012 (± 0.016) - 

ESPER_LIR -0.002 (± 0.041) 0.09 (± 0.56) 0.3 (± 1.4) 1.0 (± 4.7) 0.9 (± 3.3) -0.007 (± 0.017) -0.8 (± 5.1) 

ESPER -0.003 (± 0.033) 0.05 (± 0.37) 0.3 (± 1.3) 0.2 (± 3.9) 1.0 (± 3.4) -0.007 (± 0.014) -0.5 (± 5.2) 

CANYON-B -0.003 (± 0.033) 0.04 (± 0.38) 0.2 (± 1.2) † 0.1 (± 4.4) -0.004 (± 0.011) -1.3 (± 5.1) 

ESPER_Mixed -0.003 (± 0.034) 0.07 (± 0.43) 0.3 (± 1.3) 0.6 (± 3.9) 1.0 (± 3.2) -0.007 (± 0.014) -0.6 (± 5.0) 

California Current  phosphate nitrate silicate oxygen TA pH DIC 

N 466 466 466 466 283 191 276 

LIRv2 -0.012 (± 0.049) 0.02 (± 0.79) -0.8 (± 3.3) 0.4 (± 9.0) 2.2 (± 3.8) -0.008 (± 0.012) - 

ESPER_LIR -0.004 (± 0.046) 0.00 (± 0.75) -0.2 (± 2.4) 0.6 (± 8.2) 2.3 (± 4.9) -0.007 (± 0.015) -0.3 (± 4.5) 

ESPER 0.002 (± 0.044) -0.02 (± 0.55) 0.7 (± 1.7) 0.5 (± 5.6) 3.0 (± 4.3) -0.004 (± 0.011) 1.2 (± 4.6) 

CANYON-B -0.006 (± 0.042) 0.04 (± 0.58) 0.0 (± 1.9) † 3.6 (± 5.2) -0.002 (± 0.010) 1.3 (± 5.1) 

ESPER_Mixed -0.001 (± 0.042) -0.01 (± 0.54) 0.3 (± 1.7) 0.5 (± 5.6) 2.7 (± 4.1) -0.006 (± 0.012) 0.5 (± 4.1) 

Northern Atlantic phosphate nitrate silicate oxygen TA pH DIC 

N 10829 10829 10829 10829 6619 1123 4743 

LIRv2 0.009 (± 0.070) 0.14 (± 1.16) 0.3 (± 2.5) 0.7 (± 9.8) -0.6 (± 6.3) 0.003 (± 0.010) - 

ESPER_LIR 0.006 (± 0.071) 0.05 (± 1.23) 0.3 (± 1.2) 0.6 (± 9.2) -0.7 (± 5.0) -0.003 (± 0.011) 1.0 (± 7.7) 

ESPER 0.009 (± 0.069) 0.12 (± 0.99) 0.3 (± 1.0) 0.1 (± 7.7) -1.0 (± 5.4) -0.004 (± 0.009) 0.9 (± 8.3) 

CANYON-B 0.012 (± 0.067) 0.09 (± 1.02) 0.2 (± 1.1) † -0.3 (± 5.7) -0.004 (± 0.008) -1.0 (± 8.6) 
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ESPER_Mixed 0.008 (± 0.067) 0.09 (± 1.05) 0.3 (± 1.0) 0.4 (± 8.2) -0.8 (± 5.0) -0.003 (± 0.009) 1.0 (± 7.7) 

Sea of Japan/East Sea phosphate nitrate silicate oxygen TA pH DIC 

N 5995 5995 5995 5995 1450 0 1480 

LIRv2 0.431 (± 0.459) 6.20 (± 6.90) 46.2 (± 54.6) -19.1 (± 63.2) -31.7 (± 209.3) * - 

ESPER_LIR 0.101 (± 0.154) 1.63 (± 2.11) 3.0 (± 7.7) 6.6 (± 15.5) 51.4 (± 63.0) * 2.2 (± 17.2) 

ESPER 0.029 (± 0.066) 1.16 (± 1.58) 3.6 (± 4.6) 5.4 (± 10.3) 48.7 (± 55.5) * 16.8 (± 20.0) 

CANYON-B 0.385 (± 0.409) 5.88 (± 6.42) 21.0 (± 23.6) † 28.3 (± 33.8) * 12.3 (± 18.4) 

ESPER_Mixed 0.065 (± 0.094) 1.40 (± 1.66) 3.3 (± 5.3) 6.0 (± 10.8) 50.0 (± 58.8) * 9.5 (± 14.2) 

Gulf of Mexico phosphate nitrate silicate oxygen TA pH DIC 

N 1067 1067 1067 1067 943 0 909 

LIRv2 -0.004 (± 0.123) 0.27 (± 1.71) 0.5 (± 3.8) 8.6 (± 16.1) -0.9 (± 11.4) * - 

ESPER_LIR -0.009 (± 0.110) 0.30 (± 1.58) -0.3 (± 2.1) 6.6 (± 16.6) -16.3 (± 44.5) * -8.7 (± 26.1) 

ESPER 0.002 (± 0.108) 0.35 (± 1.39) 1.0 (± 3.4) 7.3 (± 16.5) -27.5 (± 47.4) * -19.6 (± 41.6) 

CANYON-B 0.056 (± 0.125) 0.68 (± 1.40) 2.5 (± 5.2) † 4.5 (± 13.0) * -5.1 (± 16.8) 

ESPER_Mixed -0.003 (± 0.099) 0.32 (± 1.38) 0.4 (± 2.4) 7.0 (± 15.8) -21.9 (± 45.1) * -14.2 (± 33.4) 

Mediterranean phosphate nitrate silicate oxygen TA pH DIC 

N 11394 11394 11394 11394 5164 0 2604 

LIRv2 0.081 (± 0.254) 1.90 (± 4.85) 0.5 (± 7.3) -10.4 (± 50.0) -37.9 (± 71.2) * - 

ESPER_LIR 0.003 (± 0.585) 2.44 (± 7.72) -4.0 (± 37.5) -25.1 (± 92.5) -43.9 (± 72.1) * -105.9 (± 169.9) 

ESPER 0.095 (± 0.199) -2.40 (± 6.21) -28.6 (± 40.1) 1.8 (± 15.3) -30.0 (± 43.9) * -40.7 (± 48.9) 

CANYON-B * * * † * * -3.0 (± 26.2) 

ESPER_Mixed 0.049 (± 0.325) 0.02 (± 4.82) -16.3 (± 30.2) -11.6 (± 45.7) -37.0 (± 54.3) * -73.3 (± 101.6) 

Arctic phosphate nitrate silicate oxygen TA pH DIC 

N 6117 6117 6117 6117 3189 1634 2947 

LIRv2 0.036 (± 0.122) 0.28 (± 1.20) 0.5 (± 3.4) 2.7 (± 11.8) 1.5 (± 19.4) * - 

ESPER_LIR 0.043 (± 0.121) 0.25 (± 1.22) 0.4 (± 2.9) 3.3 (± 11.4) 0.0 (± 12.7) 0.003 (± 0.032) -1.0 (± 18.7) 

ESPER 0.022 (± 0.104) 0.19 (± 0.95) 0.0 (± 2.3) 1.9 (± 11.1) -2.9 (± 13.3) 0.021 (± 0.054) -2.6 (± 16.0) 

CANYON-B * * * * * * * 

ESPER_Mixed 0.033 (± 0.099) 0.22 (± 1.00) 0.2 (± 2.3) 2.6 (± 10.8) -1.5 (± 11.5) 0.012 (± 0.037) -1.8 (± 16.4) 

*No viable comparison in this effort due to partial or complete overlap between training and validation data subsets or insufficient viable measurements  

†This routine does not estimate this quantity. 
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