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Abstract: Weprove a theorem in 3-dimensional topological field theory: aReshetikhin–
Turaev theory admits a nonzero boundary theory iff it is a Turaev–Viro theory. The proof
immediately implies a characterization of fusion categories in terms of dualizability. Our
results rely on a (special case of) the cobordism hypothesis with singularities. The main
theorem applies to physics, where it implies an obstruction to a gapped 3-dimensional
quantum system admitting a gapped boundary theory. Appendices on bordism multi-
categories, on 2-dualizable categories, and on internal duals may be of independent
interest.
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Quantum mechanical theories bifurcate into gapped and gapless theories. The classical
notion of a local boundary condition for a partial differential equation has a quantum
analog—a boundary theory. There is a basic question: Does a gapped quantum system S
admit a gapped boundary theory? We formulate and prove a mathematical theorem
(Theorem A in Sect. 1.4) which addresses this question for a large class of (2+1)-
dimensional systems. The route from a gapped quantum system to the theorem goes
via a low energy effective extended topological field theory, whose existence we merely
assume. The absence of a gapped boundary theory implies the presence of gapless edge
modes—conduction on the boundary—an important feature of quantum Hall systems,
for example.

Let F : Bordfr3 → C be a 3-dimensional topological field theory: a homomor-
phism from a bordism multicategory of framed manifolds to a symmetric monoidal
3-category C. We impose hypotheses on C, F to model Reshetikhin–Turaev theories
[RT1,RT2,T], whose key invariant is a modular fusion category C , the value of F on the
bounding framed circle. Theorem A asserts that if F admits a nonzero boundary theory,
then C is the Drinfeld center of a fusion1 category �. With extra assumptions on the
codomain C, we conclude (Theorem A′ in Sect. 1.4) that the entire theory F is isomor-
phic to the Turaev–Viro theory T� based on �. Conversely, given a fusion category �,
the Turaev–Viro theory T� has a nonzero boundary theory built from the (regular) left
�-module�. The class ofC in theWitt group [DMNO], which is nonzero whenC is not

1 We do not assume that a fusion category has a simple unit: our ‘fusion’ is [EGNO]’s ‘multifusion’.
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the Drinfeld center of a fusion category, is almost a complete obstruction to the existence
of a nonzero boundary theory; see Remark 1.24(4).

A corollary of our proof is a characterization of fusion categories (Theorem B
in Sect. 1.5). Let Cat

C
be the symmetric monoidal 2-category of finitely cocomplete

C-linear categories and right exact C-linear functors, and let Alg1(CatC) be the Morita
3-category of tensor categories. (In this paper ‘tensor category’ means ‘algebra object
in Cat

C
’.) Then� ∈ Alg1(CatC) is a fusion category iff� is 3-dualizable and the regular

left �-module is 2-dualizable. The forward direction (‘only if’) is proved in [DSS].
A key feature of our approach is the use of fully extended field theories. Naive analogs

of Theorem A fail in the traditional context of (1, 2, 3)-theories; see Remark 1.27.
Here is a brief outline of the paper. Section 1 contains background and the statements

of the main theorems. In Sect. 2 we discuss preliminaries about bordism multicategories
and algebras in multicategories. The proofs of the main theorems are deferred to Sect. 3.
The application to gapped quantum systems is the subject of Sect. 4. We provide sev-
eral appendices with background material of interest independent of our main theorems.
“Appendix A” contains a detailed definition of objects and morphisms in bordism mul-
ticategories. In “Appendix B” we prove a characterization of finite semisimple abelian
categories in the 2-category Cat

C
. “Appendix C” proves a criterion for internal duals in

tensor categories, developed in a more general context. “Appendix D” proves the com-
plete reducibility of fusion categories, which is implicit in [EGNO]: a fusion category
is Morita equivalent to a direct sum of fusion categories with simple unit.

Papers related to the problems considered here include [KK,KS,FSV,Le,KZ].
We warmly thank Pavel Etingof, Theo Johnson-Freyd, Victor Ostrik, Sam Raskin,

Emily Riehl, Claudia Scheimbauer, Chris Schommer-Pries, Noah Snyder, Will Stewart,
and Kevin Walker for discussions related to this work. We also thank the referees for
their careful readings and detailed suggestions; they catalyzed many improvements.

1. Mathematical Background and Statement of Main Theorem

1.1. RT theories and TV theories. In the late 1980sWitten [W1] andReshetikhin–Turaev
[RT1,RT2] introduced new invariants of closed 3-manifolds and generalizations of the
Jones invariants of knots.Witten’s starting point is the classical Chern–Simons invariant,
which he feeds into the physicists’ path integral, whereas Reshetikhin–Turaev beginwith
an intricate algebraic structure: a quantum group. Later, quantum groups were replaced
by modular fusion categories [T], which were originally introduced2 in the context of
2-dimensional conformal field theory [MS]. These disparate approaches are reconciled
in extended topological field theory [F1]. Inmodern terms [L1] this extended field theory
is a symmetric monoidal functor

F〈1,2,3〉: Bordfr〈1,2,3〉 −→ Cat
C

(1.1)

with domain the 2-category3 of 3-framed4 1-, 2-, and 3-dimensional bordisms; the
codomain is a certain 2-category of complex linear categories; see Definition 1.7. The

2 The version in [MS] uses a central charge inQ/24Z, whereas the version standard in mathematics, which
we use, only has a central charge in Q/8Z.

3 In this paper we use discrete categories: for example Cat
C

is a (2, 2)-category (as opposed to a more
general (∞, 2)-category). Some of our exposition in this section applies to (∞, n)-categories though we just
write ‘n-categories’.

4 A 3-framing of a 3-manifold is a global parallelism, a trivialization of its tangent bundle. For amanifold M
of dimension k < 3 it is a trivialization of the inflated tangent bundle R3−k ⊕ T M → M .
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value of F〈1,2,3〉 on the bounding 3-framed circle S1
b is the modular fusion category that

defines the theory. We call (1.1) a Reshetikhin–Turaev (RT) theory.

Remark 1.2. The RT theories in the original references factor through the bordism 2-
category of manifolds equipped with a (w1, p1)-structure [BHMV], that is, an orienta-
tion and a trivialization of the first Pontrjagin class p1. There is a unique isomorphism
class of (w1, p1)-structures on a circle, so no distinction between bounding and non-
bounding circles. “Spin Chern–Simons theories” require a trivialization of the second
Stiefel–Whitney classw2 as well. For those theories the codomain should includeZ/2Z-
gradings; see Remark 1.28.

A fully extended topological field theory has domain Bordfr3 = Bordfr〈0,1,2,3〉, the 3-
category of 3-framed bordisms of dimension ≤ 3. There is no canonical codomain for
these theories, so for now we posit an arbitrary symmetric monoidal 3-category C. The
cobordism hypothesis—conjectured by Baez–Dolan [BD], proved by Hopkins–Lurie in
2 dimensions and by Lurie [L1] in all dimensions; see also [AF]—asserts that a fully
extended theory

F : Bordfr3 −→ C (1.3)

is determined by its value F(+) on a positively oriented 3-framed point. Furthermore, a
3-dualizable object of C determines a unique theory (1.3), up to a contractible space of
choices. A symmetric monoidal 3-category C has a fully dualizable part Cfd ⊂ C whose
objects are 3-dualizable and whose morphisms have all adjoints. We say C has duals
if C = Cfd. A functor (1.3) factors through Cfd. Given a general RT theory (1.1) it is
still an open problem to construct C and an extension (1.3), or even better to construct
a single C which works for all RT theories. (However, see [He] for a special case in the
framework of bicommutant categories.)

There is a subclass of RT theories, the Turaev–Viro (TV) theories [TV], which are
fully extended. Let Fus be the symmetric monoidal 3-category whose objects are fusion
categories; see Definition 1.10. We remark that throughout this paper we take C as the
ground field.

Theorem 1.4 (Douglas–Schommer–Pries–Snyder [DSS]). Fus has duals, i.e., Fus =
Fusfd.

In particular, a fusion category � is 3-dualizable in Fus. The cobordism hypothesis
implies that there is a fully extended topological field theory

T�: Bordfr3 −→ Fus, (1.5)

unique up to equivalence, whose value on a chosen framed point + is T�(+) = �. A TV
theory is a fully extended theory with codomain Fus; its truncation to Bordfr〈1,2,3〉 is an
RT theory. Examples include 3-dimensional gauge theory for a finite group G, in which
case � is the fusion category of finite rank complex vector bundles over G with convo-
lution product; there is also a version twisted by a cocycle for a class in H3(G;Q/Z),
as in [DW]. Special toral Chern–Simons theories are also TV theories.

Remark 1.6. The original state sum construction [TV] is quite different from the con-
struction with the cobordism hypothesis, but nevertheless we use ‘Turaev–Viro theory’
to identify this class of topological field theories. Also, the construction in [TV] is for
unoriented manifolds and a (2, 3)-theory, whereas we use framed manifolds and a fully
extended (0, 1, 2, 3)-theory.
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1.2. Definitions and terminology. Thedefinitions and terminology for abelian categories
are standard; see [EGNO, §1] for example. For tensor categories there is tremendous
variation in the literature, so we spell out our usage here. The term ‘modular fusion
category’ is standard; see [EGNO, §8.13], for example.

Definition 1.7. (i) Cat
C
is the symmetric monoidal 2-category defined as follows.5 Its

objects are finitely cocomplete C-linear categories. 1-morphisms in Cat
C
are right

exact C-linear functors—functors that preserve finite colimits—and 2-morphisms
are natural transformations. The symmetric monoidal structure is the Deligne–Kelly
tensor product �; see [K,D,Fr].

(ii) A tensor category is an algebra object in Cat
C
.

(iii) Alg1(CatC) is the symmetric monoidal 3-category defined as follows. Its objects

are tensor categories. A 1-morphism M : A → B is an object M ∈ Cat
C
equipped

with the structure of a (B, A)-bimodule category. A 2-morphism M ′ → M is a 1-
morphism in Cat

C
which respects the bimodule structure. A 3-morphism is a natural

transformation of functors.
(iv) Alg2(CatC) is the symmetric monoidal 4-category defined as follows. Its objects are

braided tensor categories, a 1-morphism M : A → B is an object M ∈ Alg1(CatC)

equipped with the compatible structure of a (B, A)-bimodule category, etc. (See
[BJS, Definition-Proposition 1.2].)

Remark 1.8. (1) We do not assume that a tensor category has internal duals (rigidity).
See “Appendix C” for a discussion of internal duals in tensor categories. Also, we
do not assume that the tensor unit of a tensor category is a simple object.

(2) The algebraic theory of tensor categories is exposited in the text Etingof et
al. [EGNO] (where rigidity and simple unit are included in the definition of
‘tensor category’). The theory of Morita higher categories, such as Alg1(CatC)

and Alg2(CatC), is developed by Haugseng [H], Johnson et al. [JS], Gwilliam and
Scheimbauer [GS], among others. Douglas et al. [DSS] define a 3-category of tensor
categories which is a subcategory of Alg1(CatC); in particular, they assume rigidity.
Tensor categories and braided tensor categories in an infinite setting are explored
in [BJS], and in an∞-setting in [L2].

(3) The symmetric monoidal structure on Alg1(CatC) is Deligne–Kelly tensor product,

as in Cat
C
. Composition of 1-morphisms in Alg1(CatC) is the relative Deligne–

Kelly tensor product: tensor product of module categories over a tensor category.
Its existence is discussed in [BZBJ, Remark 3.2.1] and [JS, Example 8.10].

(4) For a 3-category C set �C = EndC(1), the endomorphism 2-category of the tensor
unit object. There is a canonical identification

�Alg1(CatC) = Cat
C

. (1.9)

(5) A modular fusion category is invertible as an object of Alg2(CatC); see [BJSS].

The 3-category Fus of fusion categories is introduced in [DSS].

Definition 1.10. (i) FSCat is the full subcategory of Cat
C
whose objects are finite

semisimple abelian categories.

5 The symbol ‘Rex’ is sometimes used in place of ‘Cat
C
’; it emphasizes the right exactness of 1-morphisms.
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(ii) A fusion category is a finite semisimple rigid tensor category.
(iii) Fus is the symmetricmonoidal 3-category subcategory ofAlg1(CatC)whose objects

are fusion categories and whose 1-morphisms are finite semisimple abelian bimod-
ule categories.

Remark 1.11. (1) FSCat ⊂ Cat
C
is closed under Deligne–Kelly tensor product [Fr, §5].

(2) We do not assume that a fusion category has simple unit. ([EGNO] use ‘multifusion’
for Definition 1.10(ii) and reserve ‘fusion’ for the case of a simple unit.)

(3) The loop category of Fus is

�Fus = FSCat . (1.12)

A companion result to Theorem 1.4 asserts that the symmetric monoidal 2-category
FSCat has duals. We also need the following result, which we prove in “Appendix B”.

Theorem 1.13. If C ∈ Cat
C

is 2-dualizable, then C is finite semisimple abelian.

There are many variations of this theorem, such as [Se,Ti]; see [BDSV, Appendix] for
a survey.

1.3. Relations between RT and TV theories. Let

T : Bordfr3 −→ Fus (1.14)

be a TV theory. Then the associated modular fusion category T (S1
b), the value of T on

the bounding 3-framed circle, is the Drinfeld center of T (+). It is the modular fusion
category of the associated RT theory, which is the truncation

T〈1,2,3〉: Bordfr〈1,2,3〉 −→ Cat
C

. (1.15)

Also, the value T (S1
n) on the nonbounding 3-framed circle is the Drinfeld cocenter6

of T (+), a module category over T (S1
b). (Notice that T (S1

n) is equivalent to T (S1
b) if

T (+) is spherical.) See [DSS, §3.2.2] for an exposition. For a general RT theory (1.1)
there does not exist a fusion category whose Drinfeld double is the modular fusion
category F〈1,2,3〉(S1

b).

Remark 1.16. The double |F |2 = F F∨ of an RT theory F is the truncation of a TV
theory, as we now explain. (F∨ is the dual theory to F in the symmetric monoidal
category of theories.) Let B be a modular fusion category. Suppose F : Bordfr3 → C is
an extension of an RT theory (1.1) with F(S1

b) = B, where we assume the hypotheses
on C in Theorem A below. Use the cobordism hypothesis to define theories

F∨, |F |2: Bordfr3 −→ C (1.17)

which are characterized by

F∨(+) = F(+)∨

|F |2(+) = F(+)⊗ F(+)∨ = F(S0).
(1.18)

6 Objects of the Drinfeld cocenter of a fusion category � are pairs (x, γ ) in which x is an object of � and
the functor γ : x ⊗−→ −⊗ x∗∗ is a twisted half-braiding.
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Here F(+)∨ is the dual object to F(+) ∈ C. The theory F∨ may be defined as the
composition of F with the involution Bordfr3 → Bordfr3 which reverses the first “arrow of
time”; see Sect. 2.1.5. Using this description identify the braided fusion category F∨(S1

b)

with Brev, which is the same underlying fusion category B equipped with the inverse
braiding. It follows that |F |2(S1

b) ∼= B � Brev, which by [EGNO, Proposition 8.20.12]
is braided tensor equivalent to the Drinfeld center of B.

1.4. Existence of boundary theories. Let

F : Bordfr3 −→ C (1.19)

be a 3-dimensional 3-framed topological field theory, as in (1.3). Lurie [L1, Exam-
ple 4.3.22] defines an extended bordism 3-category Bordfr3,∂ and an inclusion Bordfr3 →
Bordfr3,∂ . (See Sect. A.3 for a definition of objects in Bord

fr
3,∂ .) A boundary theory for F

is an extension

˜F : Bordfr3,∂ → C (1.20)

of F to a symmetric monoidal functor. The cobordism hypothesis with singularities
implies that ˜F is determined by a 3-dualizable object F(+) ∈ C together with a 2-
dualizable 1-morphism 1→ F(+). To isolate the data of the boundary theory, let

τ≤2F : Bordfr2 −→ C (1.21)

be the truncation of F to 2-framed 0-, 1-, and 2-dimensional bordisms. It is a once
categorified topological field theory. Then the data of a boundary theory for F is a
natural transformation7

β: 1 −→ τ≤2F (1.22)

of symmetricmonoidal functors onBordfr2 .More precisely,β is an oplax natural transfor-
mation in the sense of Johnson-Freyd and Scheimbauer [JS]. They apply the cobordism
hypothesiswith singularities [L1, §4.3] to prove that the data of an extended theory (1.20)
is equivalent to the data of the pair consisting of (1.19) and (1.22); see [JS, Theorem7.15].
Furthermore, that data is determined by the values F(+) and β(+): 1→ F(+) on a point,
which satisfy maximal dualizability constraints. We discuss natural transformations in
pictorial terms in Sect. 2.1.7.

Our main result is the following.

Theorem A. Let C be a symmetric monoidal 3-category whose fully dualizable part Cfd

contains the 3-categoryFus of fusion categories as a full subcategory. Let F : Bordfr3 → C
be a 3-framed topological field theory such that

(a) F(S0) is isomorphic in C to a fusion category, and
(b) F(S1

b) is invertible as an object in the 4-category Alg2(�C) of braided tensor
categories.

Assume F extends to ˜F : Bordfr3,∂ → C such that the associated boundary theory β: 1→
τ≤2F is nonzero. Then F(S1

b) is braided tensor equivalent to the Drinfeld center of a
fusion category �, which may be taken to be EndCfd

(

β(+)
)

.

7 There are also boundary theories τ≤2F → 1. They are extension of F to a variation of Bordfr3,∂ .
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The hypothesis that Fus is a full subcategory of Cfd ensures that Theorem A applies to
TV theories. That hypothesis implies that

�Cfd = FSCat; (1.23)

see (1.9). Since FSCat ⊂ Cat
C
, the 〈1, 2, 3〉 truncation F〈1,2,3〉 of F has the form (1.1).

Hypotheses (a) and (b) express that F〈1,2,3〉 is an RT theory. A modular fusion category
is invertible as an object in the 4-category of braided tensor categories [S-P,BJSS];
hypothesis (b) captures this central feature of RT theories. It remains to explain what
it means that β is nonzero. Observe that the value of β on a closed 1-manifold is an
object in a finite semisimple complex linear abelian category, and the value of β on a
closed 2-manifold is a vector in a finite dimensional complex vector space. We require
that β take a nonzero value on some nonempty closed 1- or 2-manifold.

Remark 1.24. (1) The unit in our fusion category � may not be simple. We prove
(Corollary D.2) that � is Morita equivalent to a fusion category �0 with simple
unit. The category � is canonical in terms of ˜F = (F, β), whereas �0 is only
determined up to Morita equivalence.

(2) The relationship between F(S0) and � is explained in Lemma 3.23 (in which 	 is
a fusion category isomorphic to F(S0)).

(3) Theorem A gives an obstruction to a nonzero topological boundary theory: the
modular fusion category F(S1

b) must be the Drinfeld center of a fusion category.
There is a simpler obstruction, even if we only assume F is a (2,3)-theory: the central
charge c—which is defined modulo 24—must vanish. To see this, let Y be a closed
3-framed surface of genus g ≥ 3. Then π0 of the automorphism group of Y is a
central extension of the mapping class group by Z, and the central Z acts8 on the
state space F(Y ) by the character e2π ic/12. If β is a nonzero boundary theory, then
β(Y ) ∈ F(Y ) is an invariant vector, which we may suppose is nonzero for some g,
and so the center must act trivially.

(4) The modular fusion category F(S1
b) does not determine the theory F completely

[BK]. For example, the E8 Chern–Simons theory at level 1 is invertible and themod-
ular fusion category is trivial, whereas the theory is nontrivial—its central charge
is 8 mod 24—and it is not a Turaev–Viro theory. Therefore, by Theorem A′ below,
it does not admit a nonzero boundary theory.

(5) At first glance it might seem that the hypotheses of TheoremA, which lead to (1.23),
are too restrictive:wemight rather have nonsemisimple categories be possible values
of F〈1,2,3〉. However, this is ruled out by Theorem 1.13 and a dimensional reduction
argument, such as in the proof of Lemma 3.4.

(6) A converse to Theorem A follows from the cobordism hypothesis. Namely, if � is
a fusion category, then the Turaev-Viro theory T� defined in (1.5) has a canonical
boundary theory built from the regular left �-module �, as in Theorem A′ below.

(7) In forthcoming work with Claudia Scheimbauer [FST], we construct an extension
of any RT theory which satisfies the hypotheses of Theorem A.

We prove Theorem A in Sect. 3.2.
Following a suggestion of Theo Johnson-Freyd, we can improve Theorem A by

making a slightly stronger assumption onC.We spell out that assumption in the following

8 See [MR] for the case of (w1, p1)-theories (as in Remark 1.2), where the generator of the appropriate
centrally extendedmapping class group acts as e2π ic/24. A framing trivializes (w1, w2, p1/2); the extra factor
of 2 explains the discrepancy between e2π ic/24 here and e2π ic/12 in the text.
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definition, which expresses the co-completeness of C under very special finite colimits
coming from tensor products.

Definition 1.25. Let C be a symmetric monoidal 3-category whose fully dualizable
part Cfd contains the 3-category Fus of fusion categories as a full subcategory. Then
C is fusion tensor cocomplete if the following holds for all objects x, y, z ∈ C:

(a) for every triple (�, M, N ) consisting of a fusion category �, viewed as an algebra
object in EndC(1); a left �-module M in C(x, y); and a right �-module N in
EndC(1), the relative tensor product N �� M exists as a colimit of the bar resolution;

(b) for all H ∈ C(y, z) the natural map (H ◦ M) �� N → H ◦ (M �� N ) is an
equivalence;

(c) for all K ∈ C(z, x) the natural map M �� (N ◦ K ) → (M �� N ) ◦ K is an
equivalence.

Theorem A′. In the context of Theorem A assume in addition that C is fusion tensor
cocomplete. Then F is isomorphic to the Turaev-Viro theory T�, and the boundary theory
is determined by the regular left module category �.

We prove Theorem A′ in Sect. 3.3.

Remark 1.26. A more obvious hypothesis on C—namely that (i) for all x, y ∈ C the
2-category C(x, y) of 1-morphisms is finitely cocomplete, and (ii) composition of 1-
morphisms in C is finitely cocontinuous—is too strong for many applications. (We thank
Sam Raskin for this observation.)

Remark 1.27. If F is isomorphic to the tensor unit theory, then for any Turaev–Viro rep-
resentative T� the fusion category � is endomorphisms of a finite semisimple abelian
category M . Under the isomorphism T�

∼−→ 1, executed via the Morita trivialization
of End(M), the regular left �-module goes over to the finite semisimple abelian cate-
gory M . Note that the (1, 2) part of the (0, 1, 2)-theory based on M assigns a semisimple
commutative algebra to S1

b .
If from the beginning we work with (1, 2, 3)-theories (1.1), then the conclusion of

Theorem A′ can fail. For example, consider a (1, 2)-theory with β(S1
b) = C[x]/(x2), a

nonsemisimple commutative algebra. This theory is not extendable to a (0,1,2)-theory
with values in �Fus = FSCat, so does not arise as in previous paragraph.

Remark 1.28. There is a generalization of RT theories (1.1) with codomain a 2-category
of “super” complex linear categories. Some developments in the theory of these
categories—which are either enriched over the category sVect

C
of super vector spaces or

are amodule category over sVect
C
—especially for fusion supercategories, may be found

in [GK,BE,U]. Our main theorems generalize to allow supercategories in the codomain
[FT].

1.5. A characterization of fusion categories. En route to proving Theorem A, we prove
the following characterization of fusion categories.

Theorem B. Let � ∈ Alg1(CatC) be a tensor category. Then � is a fusion category iff

(i) � is 3-dualizable in Alg1(CatC), and

(ii) � as a left �-module is 2-dualizable as a 1-morphism in Alg1(CatC).
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Fig. 1. A 2-morphism C0 � C1
Y−−→ ∅1 in Bord2

The forward direction, proved in [DSS], is stated as Theorem 1.4.We prove the converse
in Sect. 3.1.

Remark 1.29. [BJS] Let A = C[x]/(x2) be the non-semisimple algebra of dual numbers.
The tensor category � of finite dimensional A-A bimodules is Morita equivalent to
Vect

C
, so is 3-dualizable, but it is not a fusion category: for example, it does not have

internal duals. This example illustrates that ‘fusion’ is not a Morita invariant notion.
The dualizability in Theorem B(i) is Morita invariant, whereas the regular module in
TheoremB(ii) is not. For example, under theMorita equivalencewhich sends� toVect

C
,

the regular left module �� is sent to the linear category of A-modules, which is not the
regular left module over Vect

C
. We regard Theorem A as a Morita invariant variant of

Theorem B.

2. Preliminaries

2.1. Bordism n-categories. As a preliminary, we recall features of bordism multicat-
egories and explain how they are encoded in the pictures we draw. In “Appendix A”
we give a formal and precise account valid in all dimensions; the heuristic exposition
here is focused on the low dimensional cases of interest. See [BM,CS,AF] for complete
constructions of the bordism multicategory.

2.1.1. Arrows of time Begin with Bord2, the 2-category of unoriented bordisms of

dimension ≤ 2. An endomorphism ∅0 C−→ ∅0 of the empty 0-manifold is a closed
1-manifold. In the bordism 2-category its tangent bundle is stabilized to the rank 2
vector bundle R ⊕ T C → C , where R → C is the trivial bundle of rank 1 with its
canonical orientation. This orientation is called an “arrow of time”. In a 1-morphism

C0�C1
Y−→ ∅1, such as the one depicted in Fig. 1, the arrows of time distinguish incom-

ing and outgoing boundary components. An object P in Bord2 is a finite set of points

with inflated tangent bundle R ⊕ R → P . Figure 2 is a 1-morphism P0 � P1
C−→ ∅0.

Note that the manifolds P0, P1 have two ordered arrows of time; the ordering is depicted
in our figures by the number of arrowheads. (In our conventions the indexing is by
codimension, so the single-headed arrow has index −1 and the double-headed arrow
has index −2.) The single-headed arrow of time is constrained to be compatible with
the single arrow of time of C ; that is, corresponding trivial summands augmenting the
tangent bundle are identified at ∂C . The single-headed arrow of time in Fig. 2 carries no
information—it evokes the standard orientation of the trivial real line bundle over C—
whereas the double-headed arrows of time in Fig. 2 distinguish incoming and outgoing
boundary components. By contrast, the arrows of time in Fig. 5 do carry information;
they depict the standard basis of R⊕ R, so give meaning to the depicted framings.
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Fig. 2. A 1-morphism P0 � P1
C−−→ ∅0 in Bord2

(a) (b)

Fig. 3. a A legal 2-morphism and b not a 2-morphism

Fig. 4. A 2-framed 1-morphism

2.1.2. Constancy data A 2-morphism in Bord2 is a compact 2-manifold Y with corners
and arrows of time together with constancy data [CS, Definition 5.1]. Namely, if Y =
Y̊0 � Y̊−1 � Y̊−2 is the partition into boundaries and corners, so dim Y̊−k = 2− k, then
there is a free involution specified on Y̊−2 with quotient P and an embedding

[0, 1] × P ↪→ Y−1 (2.1)

such that the arrows of time are constant along the image of [0, 1] × {p} for all p ∈ P .
Thus Fig. 3a is legal: the dashed vertical edges comprise the image of the constancy
embedding (2.1). The constancy gives rise to an interpretation of Fig. 3a as a 2-morphism

P0 � P1

C0

��

C1�C2

��� �� ��� Y ∅0 , (2.2)

essentially by collapsing the dashed edges. On the other hand, Fig. 3b is not allowed
because there is no embedding [0, 1] × {Pi } ↪→ Y−1 for which the specified arrows of
time are constant.

A formal specification of constancy data is (A.10), a consequence of Definition A.6.

2.1.3. Tangential structures Themain point to emphasize is that in a bordism n-category
ofmanifolds of dimension≤ n, the tangential structure is on the stabilized rank n tangent
bundle. In particular, Fig. 4 is a valid 1-morphism in Bordfr2 , the bordism 2-category
of 2-framed manifolds. In the figure the arrows of time are notated as earlier. The 2-
frame f1, f2 is depicted as a long line segment ( f1) followed by a short line segment ( f2).
There is no relationship imposed between the arrows of time and the tangential structure
(2-framing).

Remark 2.3. The relative positions of the framing and the arrows of time does have
significance, for example in Fig. 5.
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Fig. 5. The standard points

Fig. 6. A 1-morphism in Bordfr2,∂

2.1.4. Two conventions We depict objects and morphisms in Bordfr2 as manifolds with
corners embedded in the Euclidean plane—the plane of the paper/screen—together with
arrows of time, constancy data, and orthonormal 2-framings. The first convention is that
we identify two such which are related by either a translation or a translation composed
with a reflection about either a horizontal or a vertical line. (If any such identification
exists it is unique, since it preserves the 2-framings.) Take the standard points +,− to be
those depicted inFig. 5.Althoughour pictures lie inBordfr2 , our arguments in the proof are
for Bordfr3 . (Only in the proof of Lemma 3.6 dowe use truly 3-dimensional pictures.) The
second convention, then, is thatwe embedBordfr2 inBord

fr
3 by adding a trivial line bundle

9

to the (inflated) rank 2 tangent bundle of each k-morphism in Bordfr2 . Furthermore, we
inflate orthonormal 2-framings to orthonormal 3-framings by prepending the standard
basis f0 of the trivial line bundle to the 2-framing f1, f2. In the pictures we regard f0
and the aligned arrow of time as pointing into the paper/screen. (One should then slide
the indices f0, f1, f2 ∼∼∼� f1, f2, f3 to normal positions, but we will not do so in the
text or figures.)

2.1.5. Duals and adjoints A topological bordism n-category or (∞, n)-category has all
duals and adjoints. Duals are formed by reversing an arrow of time. This can be done
at any depth, which reflects the O(1)×n-action discussed in [L1, Remark 4.4.10] and
[BS-P, §4]. For example, the two standard points in Bordfr2 , depicted in Fig. 5, are dual
by reversing the double-headed arrow of time. Right and left adjoints of morphisms are
constructed by a more complicated prescription which we specify in Sect. A.2.5.

2.1.6. Coloring with a boundary theory We now briefly describe a bordism 2-category
Bordfr2,∂ into which Bordfr2 embeds. (Use the second convention of Sect. 2.1.4 to extend

objects, 1-morphisms, and 2-morphisms to the 3-category Bordfr3,∂ .) A sketch of this

construction appears in [L1, Example 4.3.22]; details for Bordfrn,∂ , n ∈ Z
≥1, are provided

in Sect. A.3.
The 0-morphisms in Bordfr2,∂ are the same as 0-morphisms in Bordfr2 : a finite set of

2-framed points equipped with arrows of time. There are new 1-morphisms, such as
the one depicted in Fig. 6. The two boundary points are colored and the extra arrow of
time at colored boundary points is replaced by the conditions that the frame vector f1
be tangent to the colored boundary and that f2 be an inward normal.10 Effectively, we
have a 1-framing at those points. There are, of course, new 2-morphisms, such as the one

9 For remarks on conventions, see Remark A.1. We index by codimension, so for Bordfr3 the indices
are −1,−2.− 3. We might have used ‘ f−1, f−2, f−3’ for the framings, but that would have been a step too
far.
10 This is appropriate for a boundary theory 1→ τ≤2F ; for a boundary theory τ≤2F → 1 we require that

f2 be an outward normal.
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Fig. 7. A 2-morphism in Bordfr2,∂

Fig. 8. The new picture I

depicted in Fig. 7. In terms of the partition Y = Y̊0� Y̊−1� Y̊−2, there is a submanifold
with boundary B̊−1 � B̊−2 ⊂ Y̊−1 � Y̊−2 that is colored with the boundary condition;

in Fig. 7 we have B̊−2 = Y̊−2, and Y̊−1\B̊−1 consists of three open line segments.

There are no arrows of time on B̊−1. The constancy data (2.1), vacuous for Fig. 7, is as

in Sect. 2.1.2 with Y̊−2\B̊−2 replacing Y̊−2. (Fig. 14 illustrates the constancy data.)

Remark 2.4. A boundary theory (1.22) for an n-dimensional theory is essentially an
(n−1)-dimensional theory. This explains why at a boundary component “colored” with
a boundary theory there is one fewer arrow of time and a constraint on the tangential
structure.

Remark 2.5. There does not exist a 2-morphism in Bordfr2 from which Fig. 7 is obtained
by coloring a subset of the boundary (with inward arrow of time).

Remark 2.6. Intuitively, the colored boundary components include a time direction—
they are timelike—which motivates our convention about which frame vector is con-
strained; see Remark A.1.

2.1.7. Natural transformations A boundary theory β of a topological field theory F is
a natural transformation of functors out of a bordism category; see (1.22). The pair ˜F =
(F, β) is best encoded as a functor out of Bordn,∂ , as in Sect. 2.1.6. In this section we
introduce new “pictures” which encode the idea of a natural transformation, and then
too an algorithm for converting them to morphisms in Bordn,∂ . We do not use these new
pictures in the sequel, which justifies the sparse provisional account here of a single
example.

Remark 2.7. We leave open the question of whether there is a single bordism category
which includes Bordn,∂ as well as the new pictures.

Introduce the manifold I = [0, 1], embellished as in Fig. 8. We view it as 1-framed,
with framing vector aligned with the arrow of time. Let X be a k-morphism in Bordfr2 ,
k ∈ {0, 1, 2}, and consider the Cartesian product I × X . For example, in Fig. 9a we
have the 1-morphism X = id+, the identity map on the + point. Using our numbering
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(a) (b)

Fig. 9. a id+, b I × X

(a) (b)

Fig. 10. Two maneuvers: Fig. 9b ∼∼∼� a 2-morphism in Bordfr3,∂

convention 0, 1, 2 in Bordfr3—which replaces the more uniform convention−1,−2,−3
used in “Appendix A”—we choose to number the directions in Bordfr2 as 0, 2 and the
direction in I as 1. Thus in Fig. 9a the frame vector f0 and 0-arrow of time point into the
paper/screen. The frame vector f2 and 2-arrow of time point to the right. The Cartesian
product I × X is Fig. 8b, with arrows of time and constant 3-framing as indicated.

We now proceed in three steps to convert Fig. 8b to a 2-morphism in Bordfr3,∂ .

(1) Rotate the frame through angle π/2 in the f1– f2 plane: send f2 → f1 and f1 →
− f2. Use our standard pictorial representation of the frame vectors f1, f2 and omit
the pictorial representation of f0; it points into the paper/screen everywhere in
subsequent pictures.

(2) Now convert to a 2-morphism in Bordfr3,∂ . Let c(∂ X) = c(p) � c(q) be a collar
neighborhood of the boundary, as in Fig. 9a. For the incoming boundary point p,
“pull” the colored boundary in Fig. 9b “down” through c(p) × I and rotate the
framing accordingly, as depicted in Fig. 10a. Let I ′ = [1, 2], viewed as glued
“above” I = [0, 1]. For the outgoing boundary point q, “pull” the colored boundary
in Fig. 9b “up” through c(q)× I ′ and rotate the framing accordingly, as depicted in
Fig. 10b. There is a new edge which connects to the dotted edge. The arrows of time
on the new edge and on the new vertex are fixed by the constancy condition along
the dotted edge. The result can be redrawn in a more standard form; see Fig. 11.

(3) Finally, in a tubular neighborhood of the outgoing dotted boundary, rotate the frame
through angle π/2 in the f1- f2 plane by the inverse of the rotation in step (1): send
f1 → f2 and f2 →− f1. The result is depicted in Fig. 12.
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Fig. 11. The 2-morphism in Fig. 10b redrawn

(a) (b)

Fig. 12. a The third maneuver, b the 2-morphism idb+ in Bordfr3,∂

The 2-morphism represented by Fig. 9b is derived from the diagram

∅0 id∅0 ��

b+

��

∅0

b+

���� ��
��
��
��
��

��
��
��
��
��

+
id+

�� +

(2.8)

which is a map b+ ◦ id∅0 �⇒ id+ ◦b+, namely the identity map idb+ : b+ �⇒ b+. This is
precisely the 2-morphism depicted in Fig. 11.

Remark 2.9. It is instructive to carry this out for the coevaluation c and the evaluation e.

2.2. A higher categorical preliminary.

2.2.1. Internal homs Let M be a (weak) 2-category. A 1-morphism x
f−→ y in M

defines a functorM(z, x)
f ◦−−−−→M(z, y) for any z ∈M. We call its right adjoint, if it

exists, the right internal hom functor:

M(z, x)
f ◦− �� M(z, y)

HomR( f,−)

�� . (2.10)

The left internal hom is defined as a right adjoint for right composition for any w ∈M:

M(y, w)
−◦ f �� M(x, w)

HomL ( f,−)

�� . (2.11)
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See [W] and [MaSi, §16] for discussions.11

If M is a symmetric monoidal 2-category, and the 1-morphism f has right and left
adjoints f R, f L inM, then there are natural isomorphisms

HomR( f, g) ∼= f R ◦ g ∈M(z, x), g: z → y,

HomL( f, h) ∼= h ◦ f L ∈M(y, w), h: x → w.
(2.12)

If h = g = f , hence z = x and w = y, then we use the notations

EndR( f ) := HomR( f, f ) ∼= f R ◦ f ∈M(x, x),

EndL( f ) := HomL( f, f ) ∼= f ◦ f L ∈M(y, y).
(2.13)

The 1-morphism EndR( f ) is an algebra object in the 1-category M(x, x), and
EndL( f ) is an algebra object inM(y, y). The unit of EndR( f ) is the unit 1→ f R ◦ f
of the adjunction, and the multiplication uses the counit f ◦ f R → 1 of the adjunction:

EndR( f ) ◦ EndR( f ) = f R ◦ ( f ◦ f R) ◦ f −→ f R ◦ f = EndR( f ). (2.14)

The formulas for EndL( f ) are similar.

Remark 2.15. This discussion applies to n-categories, n ≥ 3, by taking 2-categorical
slices.

Remark 2.16. A symmetric monoidal functor preserves internal homs, internal endo-
morphisms, and the composition laws.

2.2.2. Internal homs in Fus and Alg1(CatC) Recall from Definition 1.7 that Fus is a
symmetric monoidal 3-category whose objects are fusion categories. Our convention,
different than some references, is that a (B, A)-module category M is a 1-morphism
M : A → B in Fus. This convention renders tensor products and compositions in the
same order. The following results are generalized in [BJS, §5.1].

Proposition 2.17 [DSS, §3.2.1]. Let A, B ∈ Fus and M : A → B a finite semisimple
(B, A)-bimodule category. Then M has right and left adjoints, and we can take them to
be

M R = HomB(M, B),

M L = HomA(M, A).
(2.18)

Corollary 2.19. If also C, D ∈ Fus and N :C → B, P: A → D are finite semisimple
bimodule categories, then

HomR(M, N ) = HomB(M, N ),

HomL(M, P) = HomA(M, P).
(2.20)

In particular,

EndR(M) = EndB(M),

EndL(M) = EndA(M).
(2.21)

11 We thank Emily Riehl for correspondence and for pointing us to [W]. The nonstandard terminology and
notation are our responsibility. The name ‘right internal hom’ is apt if z = x , and ‘left internal hom’ is apt
if w = y.
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Furthermore, the algebra structure on EndR(M) (and EndL(M)) is composition of
module functor endomorphisms.

Proof. All but the final assertion follow from Proposition 2.17 and [DSS, Proposition
2.4.10]. For the algebra structure on EndR(M), the unit 1 → M R ◦ M is the (A, A)-
bimodule map

A −→ HomB(M, B) �B M ∼= EndB(M) (2.22)

which maps a ∈ A to right multiplication by a; in particular 1 ∈ A maps to the
identity endomorphism of M . Since the counit M ◦ M R → 1 is the evaluation map, the
multiplication (2.14) on EndR(M)

EndB(M) �A EndB(M) ∼= HomB(M, B) �B
(

M �A HomB(M, B)
)

�B M

−→ HomB(M, B) �B B �B M ∼= EndB(M)

(2.23)

is the usual composition of endomorphisms of M . ��
Weprove a partial converse to Proposition 2.17 inAlg1(CatC), which for convenience

we state for right adjoints only.

Proposition 2.24. Suppose A, B ∈ Alg1(CatC) and M : A → B has a right adjoint N .
Then N ∼= HomB(M, B) as (A, B)-bimodule categories.

Proof. The adjunction can be expressed as isomorphisms

HomA(X, N �B Y )
∼−−→ HomB(M �A X, Y ) (2.25)

which are functorial in left A-module categories X and right A-module categories Y .
Choose X = A and Y = B to obtain the desired isomorphism N

∼−→ HomB(M, B).
The isomorphism intertwines the right A-action on X and the right B-action on Y . ��

3. Proofs

3.1. Proof of Theorem B. To begin, assume given a symmetric monoidal 3-category C

such that �Cfd ⊂ Cat
C
and a symmetric monoidal functor ˜F : Bordfr3,∂ → C. The

restriction of ˜F to Bordfr3 is denoted F , and we define β as in (1.22).
Diagrams for the extended theory ˜F : Bordfr3,∂ → C, are drawn according to the rules

of Sect. 2.1.6; see Sect. A.3 for more detail. Figure 13 depicts a 1-morphism b+: ∅0 → +
in Bordfr2,∂ ⊂ Bordfr3,∂ and its right adjoint bR

+ :+→ ∅0, the latter constructed according
to Sect. A.2.5. The ˜F-image of b+ is β(+): 1→ F(+). The cobordism hypothesis with
singularities [L1, §4.3] implies that the right adjoint boundary theory βR : τ≤2F → 1 is
determined by F(+) and βR(+) := ˜F(bR

+ ), hence the verification that βR is right adjoint
to β proceeds by producing a unit and counit (Fig. 14) for an adjunction between b+
and bR

+ in Bordfr2,∂ , and then using their ˜F-images to exhibit βR(+) as the right adjoint
of β(+) in C.

Definition 3.1. Set

� = ˜F
(

EndR(b+)
) ∈ �Cfd ⊂ Cat

C
. (3.2)
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Fig. 13. The 1-morphisms whose ˜F-images are β(+) and β R(+)

Fig. 14. The unit 1→ bR
+ ◦ b+ and counit b+ ◦ bR

+ → 1

Fig. 15. The category � is the ˜F-image of EndR(b+) = bR
+ ◦ b+

Fig. 16. The monoidal structure of � is the ˜F-image of this 2-morphism

See Fig. 15 for a depiction of EndR(b+). Also, note we can write � = EndR
(

β(+)
)

.

By virtue of being EndR of a 1-morphism, � is an algebra object in Cat
C
, i.e., � is a

tensor category. The composition law (2.14) is the ˜F-image of the 2-morphism depicted
in Fig. 16.

Proposition 3.3. � is a fusion category.

The proof of Proposition 3.3 is broken up into Lemmas 3.4 and 3.6.

Lemma 3.4. � is a finite semisimple abelian category.

The stronger hypothesis of TheoremA, that Fus ⊂ Cfd is a full subcategory, immediately
implies Lemma 3.4 in view of (1.23). Under the hypotheses of Theorem B we use the
following argument.

Proof. The 1-morphism in Bordfr2,∂ depicted in Fig. 17 has left boundary colored with β

and right boundary colored with βR . It evaluates under (F, β, βR) to �. Define the
dimensional reduction

F : Bordfr2 −→ FSCat (3.5)

of F as the theory whose value on any object or morphism in Bordfr2 is the value of F
on its Cartesian product with the 1-morphism ∅0 → ∅0 in Fig. 17. Since the 2-framing
of the latter is induced from a 1-framing, the Cartesian product is naturally equipped
with a 3-framing. The lemma now follows since F(+) is a 2-dualizable category, hence
is finite semisimple abelian by Theorem 1.13. ��
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Fig. 17. A 1-framed bordism with boundary theories β on the left and β R on the right

Fig. 18. The right adjoint to the unit in Fig. 14

Fig. 19. Multiplication followed by the counit and its duals

Lemma 3.6. � is a rigid monoidal category.

That is, � has internal left and right duals [EGNO, §2.10]. See “Appendix C” for a
discussion and generalization of rigidity.

Proof. As a corollary of Lemma 3.4, the dual�∨ to � in FSCat is its opposite category.
We prove rigidity by verifying the hypotheses of Theorem C.1.

The unit of � is the ˜F-image of the first 2-morphism in Fig. 14. Its right adjoint has
˜F-image the counit ε of (C.3). We implement the prescription of Sect. A.2.5 to compute
it. The main concern is the 3-framing which results on the boundary of the hemidisk;
it necessarily extends to the interior, and since π2SO3 = 0 that extension is unique up
to isotopy. The result is illustrated in Fig. 18. Recall (Sect. 2.1.6) that the frame vectors
are labeled12 f0, f1, f2; that f1 is depicted as long, f2 as short; and that in all previous
pictures, such as Fig. 14, the vectors f1, f2 lie in the plane of the paper/screen and
f0 is perpendicular to that plane and points into the paper/screen. Now, in Fig. 18, the
vectors f0, f1 rotate in the plane perpendicular to f2 as we descend from the incoming

boundary. The dashed line in indicates that f1 points into the paper/screen; the solid

wedge in indicates that f1 points out of the paper/screen. Compose this right adjoint
with the multiplication depicted in Fig. 16 to compute the 2-morphism in Bordfr3 whose
˜F-image is the pairing B of “Appendix C”. It and the 2-morphisms obtained from it
by duality (C.5) are depicted in Fig. 19. The Frobenius condition of Definition C.7 is
satisfied since the latter two 2-morphisms are invertible in Bordfr3 .

The right adjoint bordism to Fig. 16, computed following Sect. A.2.5, is depicted
in Fig. 20; its ˜F-image is the comultiplication 
 on �. Again it suffices to compute
the framing on the boundary. Notice that the half-turns in the framing cancel on the
vertical colored edges, whereas they cohere into a full turn on the colored half-circle.

12 The numbering 0, 1, 2 corresponds to the numbering −1,−2,−3 by codimension utilized in
“Appendix A”.
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Fig. 20. The right adjoint to Fig. 16

Fig. 21. Comultiplication is a bimodule map

Fig. 22. Duality of + and −: evaluation and coevaluation

The second condition in Theorem C.1, that the comultiplication is a bimodule map,
follows immediately from Fig. 21. ��

Remark 3.7. In the context of Theorem A, identify the category � with its collection of
objects HomFus(1,�) = HomCfd(1,�). By duality,

HomCfd(1,�) ∼= HomCfd
(

1, βR(+) ◦ β(+)
) ∼= HomCfd

(

β(+), β(+)
)

, (3.8)

which explains the last statement in Theorem A.

Proof of Theorem B. As pointed out earlier, the forward direction follows from Theo-
rem 1.4. For the converse, first apply the cobordism hypothesis to construct F : Bordfr3 →
Alg1(CatC) with F(+) = �, and then apply the cobordism hypothesis with singular-

ities to construct an extension ˜F : Bordfr3,∂ → Alg1(CatC) whose associated boundary

theory β: 1 → τ≤2F has β(+) = ��, the regular left �-module. The category defined

in Definition 3.1 is � = EndR(��). By Proposition 2.24 the right adjoint to �� is
Hom�(�,�), which may be identified with �� , the regular right �-module. Hence
� = EndR(��) ∼= � �� � ∼= �. Conclude using Proposition 3.3. ��

3.2. Proof of Theorem A. The + point and − point (Fig. 5) are duals in Bordfr2 . Choose
duality data as the evaluation e: + �− → ∅0 and coevaluation c: ∅0 → − � + 1-
morphisms depicted in Fig. 22. One of the “S-diagrams”

(

+
id⊗c−−−→ +�−� +

e⊗id−−−→ +
) ∼−−→

(

+
id−→ +

)

(3.9)

that proves that (−, c, e) are duality data for + is the 2-morphism of Fig. 23.



Gapped Boundary Theories in 3d

Fig. 23. The S-diagram (3.9)

Fig. 24. The right and left adjoints to e

Fig. 25. The isomorphism S1b
∼= e ◦ eL in Bordfr2

The 1-morphism e has right and left adjoints eR, eL : ∅0 →−�+ depicted in Fig. 24.
Their construction follows the general prescription in Sect. A.2.5; see especially Fig. 30.
In Bordfr2 they are distinct and distinct from coevaluation: eR �= c �= eL . In Bordfr3 we
have eL ∼= eR sinceπ1 SO3 ∼= Z/2Zwith generator a full rotation of the frame f0, f1, f2
in the f1- f2 plane. In Bordfr3 we have an isomorphism

S1
b
∼= e ◦ eL = EndL(e) (3.10)

illustrated in Fig. 25.

Remark 3.11. In Bordfr3 the nonbounding 3-framed circle S1
n satisfies the isomorphism

S1
n
∼= e ◦ c. (3.12)

Define the 2-framed 0-sphere as S0 = +�−. Note e: S0 → ∅0.
Proposition 3.13. Let F satisfy the hypotheses of TheoremA. Let 	 be a fusion category
which is isomorphic to F(S0). Then	 is Morita equivalent to F(S1

b)as fusion categories.

Recall that a fusion category is indecomposable if it is not a nontrivial direct sum.
As a preliminary we prove the following.

Lemma 3.14. 	 is an indecomposable fusion category.

Proof. As in Remark 1.16 introduce the double theory

|F |2: Bordfr3 −→ Fus (3.15)

characterized by |F |2(+) = 	 ∼= F(S0) = F(+) ⊗ F(−) ∼= F(+) ⊗ F(+)∨. Then by
Hypothesis (b) of Theorem A, deduce that |F |2(S1

b) ∼= F(S1
b) � F(S1

b)rev is invertible



D. S. Freed, C. Teleman

Fig. 26. The bordisms b− and b±

as a braided tensor category. (Recall that the reverse of a braided tensor category is the
same underlying tensor category equipped with the inverse braiding.) On the other hand,
|F |2(S1

b) is the Drinfeld center of |F |2(+) ∼= 	. Since the Drinfeld center of the direct
sum of tensor categories is the direct sum of the Drinfeld centers, and a nontrivial direct
sum is not invertible, it follows that 	 is indecomposable. ��
Proof of Proposition 3.13. Define

M := 	
∼−−→ F(S0)

F(e)−−−−→ 1, (3.16)

where 1 = F(∅) = Vect
C
∈ Fus ⊂ C is the tensor unit. Since Fus ⊂ C is a full

subcategory, M is a 1-morphism in Fus. By (3.10) and (2.21) we have the categorical
equivalences

F(S1
b) �cat F

(

EndL(e)
)

�cat End
L(

F(e)
)

�cat End	(M). (3.17)

The last assertion of Corollary 2.19 implies that (3.17) is an equivalence of tensor
categories.

To conclude the proof of Proposition 3.13 we must show that M is a faithful right
	-module. According to the remark after [EGNO, Definition 7.12.9], this follows from
Lemma 3.14 since F(e) is nonzero by virtue of being part of the duality data between
F(+) and F(−). ��

Since � is a fusion category, as in (1.5) the cobordism hypothesis produces

T�: Bordfr3 −→ Fus, (3.18)

a theory of Turaev–Viro type with T�(+) = �. Then T�(S1
b) is the Drinfeld center

Z
(

�
) = EndT�(S0)

(

�
)

, (3.19)

where T�(S0) = T�(+) � T�(−) � � � �mo. (Here �mo is the monoidal opposite to
the monoidal category �, which is its dual in Fus.) We identify

T�
∼= EndR(β) (3.20)

as algebra objects in the 2-category of symmetric monoidal functors Bordfr2 → �C =
FSCat.

Let b−: ∅ → − be the morphism dual to bR
+ in Bordfr3,∂ , obtained by reversing the

double-headed arrow; see Sect. 2.1.5 and Fig. 26. Let b± = b+ � b−. Then the proof of
[JS, Proposition 7.10] implies that β(−) ∼= ˜F(b−). Define the composition

N : 1 ˜F(b±)−−−−−→ F(S0)
∼−−→ 	. (3.21)
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Fig. 27. The equivalence (3.25)

Notice ˜F(b±) = β(S0). As in the proof of Proposition 3.13, N is a 1-morphism in Fus.
Apply (3.20) and (2.21) to deduce an equivalence of tensor categories

T�(S0) ∼= EndR(N ) ∼= End	(N ). (3.22)

Lemma 3.23. The left 	-module category N provides a Morita equivalence 	
∼−→

T�(S0).

Proof. As in the proof of Proposition 3.13, it suffices to show that N is nonzero. But
β(S0) = β(+) ⊗ β(−), so if N = 0 then so too β(+) = 0, and then the cobordism
hypothesis would imply β = 0, which contradicts the hypothesis in Theorem A that β is
nonzero. ��

Lemma 3.24. There is an equivalence of categories

� �cat M �	 N . (3.25)

Proof. The 1-morphisms bR
+ and e ◦ b− are equivalent in Bordfr3,∂ , as follows from

Sect. A.2.5 or directly by inspection of Figs. 13 and 27. Hence bR
+ ◦ b+ is equivalent to

e ◦ (b− � b+); compare Figs. 15 and 27. Apply ˜F to deduce (3.25). ��
Since the

(

	, T�(S0)
)

-bimodule N is invertible—by Lemma 3.23 it induces aMorita
equivalence—from Lemma 3.24 we deduce that tensoring with idN induces a tensor
equivalence

α: End	(M)
� idN−−−−−→ EndT�(S0)

(

�
)

. (3.26)

By (3.17) and (3.19) this is a tensor equivalence

α: F(S1
b) −→ T�(S1

b), (3.27)

since T�(S1
b) is the Drinfeld center of �. To complete the proof of Theorem A we need

the following.

Lemma 3.28. α is a braided equivalence.

Proof. Wehave already proved thatα is a tensor equivalence; it remains to verify the con-
dition that α preserve the braiding. Lemma 3.23 states that the

(

	, T�(S0)
)

-bimodule N
induces an isomorphism13 	 → T�(S0) in Fus. By the cobordism hypothesis this
induces an isomorphism

θ : Fd ∼−−→ T d
� (3.29)

13 Our conventions are that N is a 1-morphism T�(S0) → 	, but in this proof we use categories of right
modules rather than left modules, and so the convention applies oppositely.
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of topological field theories Bordfr3 → Fus, where Fd(+) = 	 and T d
�(+) = T�(S0) ∼=

���mo. (Fd is essentially the double theory of Remark 1.16.) Let ˜Fd : Bordfr3,∂ → Fus

be the extension of Fd with boundary theory βd characterized by

βd(+): 1 β(S0)−−−−→ F(S0)
∼−−→ 	. (3.30)

Repeat the arguments above for ˜Fd : introduce 	d = 	 � 	mo, the right 	d -module
Md = Fd(e), the left 	d -module N d = βd(S0), and the tensor equivalence

αd : Fd(S1
b)

� idNd−−−−−→ T d
�(S1

b). (3.31)

Wehave Md = M�M ′ and N d = N�N ′,where the primed	mo-modules are computed
in the theory whose value on + is F(−). Hence in the doubled theories (3.25) becomes

� � �mo �cat (M � M ′) �	�	mo (N � N ′), (3.32)

and αd tensors with idN�N ′ . Since tensoring with N is the isomorphism (3.29) of
theories, it follows that the induced map on Drinfeld centers is (3.31), i.e., αd = θ(S1

b).
Therefore, αd is a braided tensor functor, and then so too is its restriction to

F(S1
b) = F(S1

b) � 1 ⊂ F(S1
b) � F(S1

b)rev ⊂ Fd(S1
b). (3.33)

This completes the proof of Lemma 3.28, and so too of Theorem A. ��

3.3. Proof of Theorem A′. For the remainder of this section we put in force the stronger
hypotheses that C is fusion tensor cocomplete. This allows the following relative com-
position in terms of the notation of Definition 1.25. If H ∈ C(y, z) is a right �-module,
then define

H ◦� M := (H ◦ M) ����mo �. (3.34)

Proof of Theorem A′. By the preceding it suffices to prove that F is isomorphic to T�,
and by the cobordism hypothesis it suffices to construct an isomorphism F(+) → �

in C. Consider

�
��−−−→ 1

β(+)−−−−→ F(+), (3.35)

where �� is the regular right �-module. The fusion category � = β(+)R ◦ β(+) acts
on �� on the left and on β(+) on the right. Define g:� → F(+) and h: F(+) → � as

g = β(+) ◦� �� (3.36)

h = � � ◦� β(+)R . (3.37)

We claim that g and h are inverse isomorphisms. First,

h ◦ g = � � ◦� β(+)R ◦ β(+) ◦� ��

= � � ◦� � ◦� ��

= � ��

(3.38)
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is the (�,�)-bimodule which represents id�. In the other direction,

g ◦ h = β(+) ◦� �� ◦ � � ◦� β(+)R

= β(+) ◦� β(+)R
(3.39)

as an endomorphism of F(+). Dualize β(+)R to transpose g ◦ h to a 1-morphism

(g ◦ h)T: 1 −→ F(+)⊗ F(−) = F(S0), (3.40)

and since the dual to β(+)R is β(−) we find

(g ◦ h)T = β(S0) �
���mo �. (3.41)

Now g ◦ h = idF(+) if and only if (g ◦ h)T is the coevaluation of a duality pairing
between F(+) and F(−). Recall the coevaluation 1-morphism c in Bordfr3 (Fig. 22)
which in the theory T� evaluates to T�(c) = �: 1→ � � �mo. Also, β(S0) = ˜F(b±)

is essentially the module N in (3.21). Thus rewrite (g ◦ h)T as the composition

(g ◦ h)T: 1 T�(c)−−−−→ T�(S0)
N−−−→ 	

∼−−→ F(S0). (3.42)

Note Lemma 3.23 implies that N : T�(S0) → 	 is an isomorphism. Therefore, (3.41) is
the desired coevaluation map and so g ◦ h = idF(+). ��

4. Application to Physics

A quantum mechanical system S is gapped if its minimum energy is an eigenvalue of
finite multiplicity of the Hamiltonian, assumed bounded below, and is an isolated point
of the spectrum. This notion generalizes to a relativistic quantum field theory if we
understand ‘spectrum’ to mean the spectrum of representations of the translation group
of Minkowski spacetime. A basic question:

Does a gapped system S admit a gapped boundary theory? (4.1)

We argue heuristically that Theorems A and A′ gives an obstruction for certain (2 + 1)-
dimensional systems. We remark that the chiral WZW model is a gapless boundary
theory for Chern-Simons theory [W2], so at least for these systems a gapless boundary
theory exists.

We reduce (4.1) to a question in topological field theory by application of the follow-
ing two heuristic physics principles:

(1) the phase of a quantum system is determined by its low energy behavior;
(2) the low energy physics of a gapped quantum system is well-approximated by a

topological∗ field theory.

For nowwe ignore the ‘∗’ in ‘topological∗’. Principle (1) seems incontrovertible, though
unproved, whereas (2) is more problematic. For example, certain “fracton” lattice sys-
tems seem to have no continuum limit as a standard field theory. Nonetheless, (2) appears
to hold in many important cases; we simply assume it here. Applying these principles
to both the bulk and boundary systems, the general problem (4.1) reduces to a question
in topological field theory: Does a topological field theory F admit a nonzero boundary
theory β? If not, then the answer to (4.1) is ‘no’. If the topological field theory F does
admit a nonzero boundary theory β, then we need a converse to (2) to construct a gapped
boundary theory.
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Remark 4.2. We suspect that the answer to (4.1) depends only on the phase of S, that is,
its path component in a putative moduli stack of gapped systems.

We now explain the ‘∗’ in ‘topological∗’ by means of an example that is a main
focus of interest. The starting point is a quantum field theory, though one can imagine a
lattice model in its place. Namely, let S be (2+1)-dimensional Yang–Mills theory with a
nondegenerate Chern–Simons term. The latter gives the gauge field amass, whichmeans
that the system is gapped. Its low energy physics is thought to be well-approximated by
a pure Chern–Simons theory �. Observe that S in its Wick-rotated form is a theory of
manifolds equipped with an orientation and Riemannian metric. In other words, it is a
functor on a geometric bordism category of oriented Riemannian manifolds. The naive
expectation is that � is a functor on the same bordism category, and this is the case.
In fact, as discussed by Witten [W1, §2], the dependence on the Riemannian metric is
mild: “locally” � is the tensor product of a topological field theory F and an invertible
non-topological field theory αc, where c ∈ R is the central charge. More precisely,
the pullback of � to the bordism category of 3-framed Riemannian manifolds splits as
� ∼= F ⊗ αc. The theory F is topological—it does not depend on a Riemannian metric.
It is an example of an RT theory as described in Sect. 1. The invertible dependence of �

on the metric through αc is the ‘∗’ in ‘topological∗’.
The invertible theory α1 descends to a theory α1

SO with domain the bordism category
oforiented Riemannianmanifolds. Its partition functionon a closedorientedRiemannian
3-manifold X is the exponentiated η-invariant exp(2π iηX/2), where ηX ∈ R/2Z is the
secondary invariant associated to the signature operator [APS]. The deformation class
of α1

SO is a generator of the abelian group [MT SO, �4 IZ] of invertible theories, and at
least conjecturally it can be constructed using generalized differential cohomology. (We
refer to [FH,F2] for notation and details.) The deformation class of the lift α1 of α1

SO

to 3-framed manifolds vanishes, since

[MT SO, �4 IZ] −→ [S0, �4 IZ] (4.3)

is the zero map. In terms of the differential cohomology construction, the equivalence
class of α1 belongs to the subgroup of topologically trivial theories, so is defined by a
universal 3-form: one-third the “gravitational Chern–Simons term”. Then for any c ∈ R,
the family αtc, 0 ≤ t ≤ 1, is an explicit deformation of the trivial theory to αc. Put

differently, it is a “nonflat trivialization” β: 1 ∼=−→ τ≤2αc of the truncation τ≤2αc.14

In other words, αc is equipped with a boundary theory; compare (1.22). Therefore,
topological∗ boundary theories for� correspond to topological boundary theories for F .

Theorems A and A′ give an obstruction to the existence of a nonzero topological
boundary theory for F : the theory F must be of Turaev–Viro type. If not, then the
heuristics in this section suggest that there are no gapped boundary theories for Yang–
Mills plus Chern–Simons, nor for a lattice system meant to represent the same phase. It
would be interesting to construct a gapped boundary theory for Yang–Mills plus Chern–
Simons in case F is of Turaev–Viro type.

Remark 4.4. One implicit assumption in Principle (2) is that a gapped quantum system
exhibits relativistic invariance in the long-range approximation. The Wick-rotated man-
ifestation is the fact that the domain bordism category is made from manifolds whose
tangential structure does not break O3 further than the subgroup SO3. In particular, a

14 An example of a nonflat trivialization is a not-necessarily-flat section of a circle bundle with connection.
The notion of nonflat trivialization should be part of an axiomatization of families of field theories.
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3-framing breaks relativistic invariance. Here the 3-framing is introduced to isolate the
metric dependence of � to the invertible theory αc; the physically relevant theory has
SO3-invariance.
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Appendix A. Bordism Multicategories

In this appendixwegive the precise definitions behind the descriptions inSect. 2.1 and the
pictures throughout Sects. 2 and 3. Complete constructions of the bordismmulticategory
appear in [CS,AF] among other references. In these approaches an object or morphism
is equipped with a global map to a cube or stratified ball, and this data is used to define
composition laws. Our limited goal here is to define objects and morphisms in Bordn
with minimal data localized at the boundary; they too lead to composition laws, though
we do not pursue the latter.15 Underlying a bordism is a manifold with corners, so we
begin with a quick review in Sect. A.1. Then in Sect. A.2 we specify the additional
data required for a morphism in the bordism multicategory. A similar discussion is in
[CS, §8.1], based in part on [La]. We incorporate “colored boundaries”—morphisms
in Bordn,∂—in Sect. A.3.

Remark A.1 (Some conventions). In this paper we use topological bordism multicate-
gories, but we take inspiration from geometric bordism multicategories. In a geometric
bordism category—the domain of a non-topological field theory—a k-morphism is a
k-dimensional compact manifold X with corners which comes equipped with embed-
dings

X (0) ⊃ X (1) ⊃ · · · ⊃ X (n−k) = X, (A.2)

where dim X (i) = n − i and X (0), . . . , X (n−k−1) are germs of smooth manifolds. The
successive normal line bundles are oriented: these orientations are “arrows of time”.
The trivial line bundles in the stabilization (A.14) are what remains of this structure
in the topological bordism category, and their standard orientations are the remnants
of the arrows of time into the germs.16 Our indexing of these trivial line bundles is
−1,−2, . . . ,−(n − k), reading from left to right in (A.14) and use the standard orien-
tations.

A word about ‘time’ and ‘space’. In topological field theory, which is modeled on
Wick-rotated field theory, there is no notion of time versus space: the passage from
Lorentz geometry to Euclidean geometry discards the unique time dimension in favor
of an additional space dimension. Still, the codimension 1 boundary of an n-manifold
in Bordn plays the role of a spatial slice, hence its normal bundle can reasonably be said
to represent time, for example as depicted by the arrows in Fig. 1. In higher codimension,
for example the double-headed arrows in Fig. 2, the interpretation as a “time” is only
figurative.

Our convention is to order line decompositions of the inflated tangent bundle by
codimension from the top dimension of the theory, in order of increasing codimension,

15 Nor do we specify collaring data which would give a smooth structure on compositions.
16 We could instead specify a completion of T X to a flag: T X ⊂ E(n−k+1) ⊂ · · · ⊂ E(n) and orient the

successive quotient line bundles, but we opt for the simpler stabilization (A.14).
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and we use the labels −1,−2, . . . ,−n for the summands. (See Sects. A.2.2, A.2.3.)
Heuristically, the first direction is “temporal” and the remaining n − 1 directions are
“spatial”.

In the main text we embed Bordfr2 → Bordfr3 , which facilitates the pictures;
see Sect. A.2.6. As far as we know, this does not correspond to anything in physics; it is a
convenient mathematical device. The direction we add is “temporal” in our conventions,
but again that choice has no physical meaning. By contrast, dimensional reduction—say,

along a circle—is effected via amapBordn−1
×S1−−−→ �Bordn , and this Cartesian product

map is easily checked to be compatible with our labeling conventions.
In Sect. A.3 we bring in “colored” boundaries. They model boundaries in space, not

boundaries in time, and so the transverse direction is “spatial”; see (A.35).

A.1. Manifolds with corners. There are several definitions and a long history of the
subject of manifolds with corners, both of which are reviewed in Joyce [J]. He develops
the theory in detail, and we defer to his paper and the references therein for details.

Fix k ∈ Z
≥0. A neighborhood of a point in a smooth k-manifold is modeled by an

open set in real affine space Ak . Similarly, a neighborhood of a point in a k-manifold
with corners is modeled by an open set in

A
k≤0 =

{

(x1, . . . , xk) ∈ A
k : xi ≤ 0

}

. (A.3)

The usual notions of chart and atlas generalize accordingly. A point x = (x1, . . . , xk) ∈
A

k≤0 has depth j ∈ Z
≥0 if precisely j of its coordinates vanish. The depth is invariant

under diffeomorphism of open sets in Ak≤0, so is a well-defined function

depth:M −→ Z
≥0 (A.4)

on a manifold M with corners. For j ∈ {0, . . . , k}, let M̊− j ⊂ M denote the (k − j)-
manifold of points in M of depth j , and let M− j ⊂ M be the closure of M̊− j . If the
maximum value of (A.4) is d ∈ {0, . . . , k}, we say M is a manifold with corners of
depth ≤ d and we call d the depth of M . If d = 1, then M is a manifold with boundary.
There is a canonical filtering and partition

M = M0 ⊃ M−1 ⊃ · · · ⊃ M−d

= M̊0 � M̊−1 � · · · � M̊−d
(A.5)

A face of M is the closure of a component of M̊−1.
The tangent space Tm M to M at m ∈ M is a k-dimensional real vector space. If m has

depth j , then there are j transverse hyperplanes H1, . . . , Hj ⊂ Tm M and orientations
of the lines Tm M/Hi : the positively oriented direction leads out of M .

Variant definitions of ‘manifold with corners’ include global constraints and/or data
in addition to the local normal form. For example, one might require that every point
of depth j lie in j distinct faces. The bigon in Fig. 28 satisfies this condition, whereas
the teardrop does not. There are more stringent possible global specifications; see [J,
Remark 2.11] and the references therein. The extra data we introduce in Sect. A.2 to
define a morphism in a bordism multicategory endows the underlying manifold with
corners with the data/constraints to be of these more restricted types.
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(a) (b)

Fig. 28. A bigon (a) and a teardrop (b)

Fig. 29. A 2-morphism of depth 2

There are two distinct notions of the boundary of a manifold with corners. For our
purposes we define ∂ M = M−1 as the closed subset of points of positive depth. This is
not generally a manifold with corners, as Fig. 28 illustrates. However, there is a “blow
up” which surjects onto ∂ M andwhich is a manifold with corners; see [J, Definition 2.6].

A.2. k-morphisms in Bordn.

A.2.1. The definition Fix n ∈ Z
>0. For k ∈ {0, . . . , n} we specify the data of a k-

morphism in Bordn . (For k = 0 it is an object in Bordn .) Tangential structures are
introduced in Sect. A.2.4.

Definition A.6. Fix n, k as above and suppose d ∈ {0, . . . , k}. Let X be a compact k-
dimensional manifold with corners of depth ≤ d. The data of a k-morphism of depth d
on X are:

(i) if d ≥ 1, closed (k − d)-manifolds X0−d , X1−d , not both empty;
(ii) if d ≥ 2, recursively for j = d − 1, d − 2, . . . , 1 compact (k − j)-manifolds

X0− j , X1− j with corners of depth ≤ d − j equipped with diffeomorphisms

ϕδ− j : X0
−( j+1) ∪ [0, 1] ×

{

X0
−( j+2) � X1

−( j+2)

}

∪ X1
−( j+1) −→ ∂(X δ− j ),

δ ∈ {0, 1}, (A.7)

where the unions are along {0}×{X0
−( j+2)�X1

−( j+2)} and {1}×{X0
−( j+2)�X1

−( j+2)},
respectively;

(iii) if d ≥ 1, a diffeomorphism

ϕ0: X0−1 ∪ [0, 1] ×
{

X0−2 � X1−2
}

∪ X1−1 −→ ∂ X, (A.8)

where the unions are along {0}×{X0−2�X1−2} and {1}×{X0−2�X1−2}, respectively.

Remark A.9. (1) See Fig. 29 for an example of a 2-morphism of depth 2. In that example
X0−2 consists of two points, X1−2 = ∅0 is the empty 0-manifold, and X0−1 ≈ X1−1 are
closed intervals.
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(2) To interpret (A.7) for j = d − 1, set X δ
−(d+1) = ∅, δ ∈ {0, 1}.

(3) In the categorical interpretation, X is a k-morphism with source and target the
empty i-manifold ∅i , i ∈ {0, . . . , k − d − 1}; and source and target i-morphisms
X0
−(k−i), X1

−(k−i), respectively, i ∈ {k − d, . . . , k − 1}.
(4) If d ≥ 1, the embeddings ϕδ− j , ϕ0, j ∈ {1, . . . , d − 1}, δ ∈ {0, 1}, combine to

embeddings

ψδ− j : [0, 1] j−1 × X δ− j −→ ∂ X, j ∈ {1, . . . , d}, δ ∈ {0, 1}. (A.10)

For j ∈ {1, . . . , d−1} let ψ̊δ− j denote the restriction of ψδ− j to [0, 1] j−1× X̊ δ− j , and

set ψ̊δ
d = ψδ

d . Then ∂ X is the disjoint union of the images of ψ̊δ− j , j ∈ {1, . . . , d},
δ ∈ {0, 1}. Heuristically, the bordism is “constant” on ψ̊δ− j

([0, 1] j−1×{x}), x ∈ X̊ δ− j .
(5) The pictures in Sects. 2 and 3 are of 1- and 2-morphisms of various depths. The

images of the embeddings (A.10) for j = 2 are depicted as dashed edges, as described
in Sect. 2.1.2.

A.2.2. The tangent filtration The structure described in Definition A.6 has a tangential
implication. Namely, let X be a k-morphism of depth d, and suppose x ∈ ∂ X . Choose
the unique j, δ and t1, . . . , t j−1 ∈ [0, 1], x̊ ∈ X̊ δ− j such that x = ψ̊δ− j (t

1, . . . , t j−1; x̊).
Then Tx X has a decreasing filtration

Tx X = Tx,0X ⊃ Tx,−1X ⊃ · · · ⊃ Tx,− j X = Tx̊ X̊− j (A.11)

in which

Tx,−i X = dψ̊δ− j

(

0i−1 ⊕ R
j−i ⊕ Tx̊ X̊− j

)

, i ∈ {1, . . . , j − 1}. (A.12)

The associated graded is a sum of real lines, which we number by codimension in the
theory,17 i.e., count down from n:

Lx,−(n−k+1) ⊕ · · · ⊕ Lx,−(n−k+ j). (A.13)

Orient Lx,−(n−k+ j) so that the positive direction leads into X if δ = 0 (incoming/source
morphism) and leads out of X if δ = 1 (outgoing/target morphism). Orient Lx,−(n−k+i),
i ∈ {1, . . . , j − 1}, so that the positive direction points towards increasing t j−i . The
orientations are constant over the image of ψ̊δ− j . Moreover, Definition A.6(ii) and (iii)
ensure that the orientations are consistent as we move among the images of the vari-
ous ψ̊δ− j .

A.2.3. The inflated tangent bundle of a k-morphism Define the “inflated tangent bundle”

˜T X = R⊕ · · · ⊕ R
︸ ︷︷ ︸

n − k times

⊕ T X −→ X, (A.14)

where R → X is the constant line bundle with fiber R. The orientations of the line
bundles in (A.13) and the standard orientations on the n−k trivial line bundles in (A.14)
are the “arrows of time” discussed in Sect. 2.1.1. We label them by codimension:
−1,−2, . . . ,−(n − k).

17 By contrast, subscripts in Xδ− j and Tx,−i X are codimensions in X , so count down from k = dim X .
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Remark A.15. (1) For the 2-morphisms of various depths depicted in Fig. 29 and
in Sects. 2, 3, in Bord2 the single-headed arrows correspond to codimension i = 1
and the double-headed arrows correspond to codimension i = 2. In Bord3 the codi-
mensions should be shifted to i = 2 and i = 3.

(2) Fix i ∈ {1, . . . , n}. Then the i th duality of the O(1)×n-action discussed in Sect. 2.1.5
acts trivially if i ≤ n − k and exchanges X0

n−k−i and X1
n−k−i if i > n − k. If there

is a tangential structure (Sect. A.2.4), then for i ≤ n − k the tangential structure is
pulled back under the reflection in the inflated tangent bundle (A.14) which reverses
the sign on the summand R−i .

(3) In Fig. 29 the arrows of time on X0−2, drawn on the upper right of the figure, carry
no meaning; they merely embed the trivial lines in (A.14) in the plane of the figure.
Similarly for the single-headed arrow of time in X δ−1, δ ∈ {0, 1} on the right hand
side of Fig. 29.

(4) Each X δ− j , j ∈ {1, . . . , d}, δ ∈ {0, 1}, has the structure of a (k − j)-morphism Y of
depth d − j with Y ε−i = X ε

−( j+i), i ∈ {1, . . . , d − j}, ε ∈ {0, 1}.

A.2.4. Tangential structures Let ρn :Xn → BGLnR be a continuous map. The choice
of classifying map X → BGLnR for the inflated tangent bundle ˜T X → X of a k-
dimensional manifold X with corners, k ≤ n, is a contractible choice we assume given.
Then a tangential structure of type ρn on X is a lift of that classifying map to Xn . We
can use rigid models instead, such as for orientations, spin structures, or n-framings.
An isomorphism X ′ → X of manifolds with corners is a diffeomorphism �: X ′ → X
together with a linear isomorphism ˜T X ′ → �∗

˜T X and a homotopy of the tangential
structure on X ′ to the pullback of the tangential structure on X . If rigid models are
employed, the homotopy may be replaced by a more rigid alternative, which may be a
combination of conditions and data.

There is a variant of Definition A.6 for tangential structures of type ρn : each mani-
fold X δ− j with corners is equipped with a tangential structure of type ρn and the diffeo-

morphisms ϕδ− j , ϕ0 are lifted to isomorphisms in the sense of the previous paragraph.
The tangential structure on [0, 1] × Y is taken to be that on Y , extended to be constant
along the [0, 1]-direction. An isomorphism �: X ′ → X of k-morphisms of depth d is
an isomorphism X ′ → X of manifolds with corners and tangential structures, and a
collection of isomorphisms (X ′)δ− j → X δ− j of manifolds with corners and tangential

structures, compatible with (ϕ′)δ− j , ϕ
δ− j and ϕ′0, ϕ0.

A.2.5. Duals and adjoints An object in Bordn is a finite set of points X ; the tangen-
tial structure, if present, is on the trivial vector bundle X × R

n . The dual object X∨
consists of the same data, but with tangential structure pulled back via reflection
(ξ1, . . . , ξn−1, ξn) �→ (ξ1, . . . , ξn−1,−ξn) on R

n . Evaluation and coevaluation mor-
phisms are constructed from [0, 1] × X ; see Fig. 22. The dual of a k-morphism is
constructed by exchanging X0−k and X1−k . More generally, a closed k-manifold X is
an object in �k Bordn . Its dual has tangential structure pulled back along reflection
in R−(n−k) in the inflated tangent bundle.

If 1 ≤ k ≤ n − 1, then a k-morphism X in Bordn has both a right adjoint X R and a
left adjoint X L . For our purposes in this paper, we restrict to k-morphisms of depth 1:
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manifold with boundary (no corners). We now specify data18 for these objects X A,
where A = R for the right adjoint and A = L for the left adjoint. Let X A = X as a
manifold with boundary. Reverse the arrows of time on the codimension one strata: set
(X A)δ−1 = X1−δ

−1 for δ ∈ {0, 1}. Construct a diffeomorphismsϕA
0 from the corresponding

diffeomorphism in the data of X . For unoriented bordisms that is a complete specification
of X A; in particular, right and left adjoints agree. If a tangential structure is present,
define a tangential structure on X A according to the following procedure. Choose collar
neighborhoods

c(X A)0−1 ≈ [0, 1) × (X A)0−1
c(X A)1−1 ≈ (−1, 0] × (X A)1−1

(A.16)

and let t be the coordinate in the intervals [0, 1), (−1, 0]. In the collar the tangent bundle
splits off a trivial line bundle:

T
(

c(X A)δ−1
) ∼= R−(n−k+1) ⊕ T (X A)δ−1. (A.17)

Orient the summandR−(n−k+1) according to the opposite of the orientation of L−(n−k+1)
in (A.13), with which it is identified at t = 0. In other words, orient it according to the
arrow of time in X A. Let R−(n−k) denote the trivial summand in the inflated tangent
bundle of (X A)δ−1 that corresponds to codimension n − k. Let

V = R−(n−k) ⊕ R−(n−k+1) (A.18)

with its direct sum orientation; V is a direct summand of the inflated tangent bundle
˜T

(

c(X A)δ−1
)

in the collar. Transport the tangential structure from X to X A as follows.
At t = 0 transport via the hyperplane reflection id⊕ − id on (A.17): flip the sign
on R−(n−k+1). Moving in the collars (A.16) in X A from t = 0 to t = (−1)δ/2 transport
via a path of rotations in V which begins at idV and ends at − idV and turns19

{

clockwise
counterclockwise

}

according as A =
{

R
L

}

. (A.19)

For |t | ≥ 1/2 in the collar and also outside the collar, transport the tangential structure
from X to X A via the hyperplane reflection in the extended tangent bundle which flips
the sign on R−(n−k).

Figure 30, a reworking of Fig. 22, illustrates the right and left adjoints of the evalua-
tion map e: +�−→ ∅0 in Bordfr2 . In these figures the single-headed red arrows indicate
the positive direction in the summand R−2, which is necessary for the framing to have
meaning in the figure; the double-headed red arrows indicate the orientation of L−2,
determined by whether a boundary component is incoming or outgoing. The counter-
clockwise versus clockwise specification (A.19) can be checked in four adjunctions:
eA as an adjoint of e and e as an adjoint of eA, each for A = R, L .

Remark A.20. A useful isomorphic representative of X A is obtained via the identity
diffeomorphism of X A, lifted to the inflated tangent bundle ˜T X A as the hyperplane
reflectionwhich is− id onR−(n−k). This is illustrated by the diffeomorphisms in Fig. 30,
under which both the framings and arrows of time have been transported.
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Fig. 30. Right and left adjoints of evaluation in Bordfr2

Fig. 31. The first move towards a counit X ◦ X R → id

The units and counits of the adjunctions may be constructed in two stages, which
we now sketch. The first step for the counit X ◦ X R → id is illustrated in Fig. 31.
Glue (X R)1−1 to X0−1 = (X R)1−1 by adjoining a cylinder; then the tangential structures
are such that we can push along a 2-disk in the direction of the vector space V in (A.18)
to construct a (k+1)-dimensional bordismwhich eliminates the cylinder and the collared
neighborhoods of those boundary components. For the second stage, choose a Morse
function f : X R \ c(X R)1−1 → [0, 1) with f −1(0) = (X R)0−1, and use 2− f as a Morse
function on X\c(X0−1). Do surgeries to cancel corresponding critical points and so
produce the desired (k + 1)-dimensional bordism to the identity k-morphism (cylinder)
on (X R)0−1. See Fig. 14 for an example of a unit and counit, though with trivial second
stage.

A.2.6. The inclusion Bordn−1 → Bordn If k ∈ {0, . . . , n− 1} and d ∈ {0, . . . , k}, then
a k-morphism of depth d in Bordn−1 is also a k-morphism of depth d in Bordn ; see
Definition A.6. The inflated tangent bundle (A.14) in Bordn has an extra direction, of
course. Note that the inclusion Bordn−1 → Bordn increases codimensions in the theory
(from the top dimension) by 1. We can define general maps of tangential structures
from Bordn−1 to Bordn , as in Sect. A.3.3 below. For the map Bordfrn−1 → Bordfrn
of framed bordism relevant to this paper, if X is an (n − 1)-framed k-morphism in
Bordn−1, then the induced n-framing on X regarded as a k-morphism in Bordn appends
the standard basis vector on the additional summand R in (A.14). It has label −1.
Remark A.21. The + point in Bordfr� , � ∈ {n − 1, n}, is the manifold X = pt with the
standard framing on

˜T X = R⊕ · · · ⊕ R
︸ ︷︷ ︸

�times

. (A.22)

18 The triple consisting of X A , a unit, and a counit, is unique up to unique isomorphism in an appropriate
2-category truncation of Bordn . Here we define X A and only give an indication of the construction of the unit
and counit of the adjunctions.
19 Counterclockwise rotation turns the positive direction in the first summand of (A.18) towards the positive

direction in the second summand.
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The− point, defined to be dual to the + point in Bordfr� , has the opposite framing on the
last summand in (A.22). (The summands are ordered by increasing codimension, so are
labeled−1,−2, . . . ,−�.) Then under the inclusion Bordfrn−1 → Bordfrn we have + �→ +
and − �→ −: since the extra direction has label −1, so is prepended to (A.22), the last
of the n − 1 directions in Bordfrn−1 maps to the last of the n directions in Bordfrn .

Remark A.23. More generally, our conventions about duals and adjoints are preserved
under the map Bordn−1 → Bordn . This justifies computing adjoints in Bordfr2 , as in
Fig. 13, and using the result as the adjoint in Bordfr3 . (In these pictures we work in the
bordism categories with colored boundaries, where the same holds.)

A.3. k-morphisms in Bordn,∂ .

A.3.1. The definition The bordism multicategory with boundary theory Bordn,∂ is an
extension of Bordn . The boundary ∂ X of a k-morphism of depth d has a distinguished
subset B−1, the “colored” subset of Sect. 2.1.6. There are many variations of this con-
struction, which for example allow for multiple boundary theories and domain walls.
(We use two boundary theories in the proof of Lemma 3.4.)

Definition A.24. Fix n ∈ Z
>0, k ∈ {0, . . . , n} and d ∈ {0, . . . , k}. Let X be a compact

k-dimensional manifold with corners of depth≤ d. The data of a k-morphism of depth d
in Bordn,∂ on X are:

(i) if d ≥ 2, closed (k − d)-manifolds X0−d , X1−d , B0−d , B1−d , not all empty;
(ii) if d ≥ 3, recursively for j = d − 1, d − 2, . . . , 2 compact (k − j)-manifolds

X0− j , X1− j , B0− j , B1− j with corners of depth≤ d− j equippedwith diffeomorphisms

ϕδ− j : X0
−( j+1) ∪ [0, 1] ×

{

X0
−( j+2) � X1

−( j+2)

}

∪ X1
−( j+1) ∪ Bδ

−( j+1) −→ ∂(X δ− j ),

βδ− j : B0
−( j+1) ∪ [0, 1] ×

{

B0
−( j+2) � B1

−( j+2)

}

∪ B1
−( j+1) −→ ∂(Bδ− j ),

(A.25)

for δ ∈ {0, 1};
(iii) if d ≥ 1, compact (k−1)-manifolds X0−1, X1−1, B−1 with corners of depth≤ d−1

equipped with diffeomorphisms

ϕδ−1: X0−2 ∪ [0, 1] ×
{

X0−3 � X1−3
}

∪ X1−2 ∪ Bδ−2 −→ ∂(X δ−1)

β−1: B0−2 ∪ [0, 1] ×
{

B0−3 � B1−3
}

∪ B1−2 −→ ∂(B−1),
(A.26)

for δ ∈ {0, 1};
(iv) if d ≥ 1, a diffeomorphism

ϕ0: X0−1 ∪ [0, 1] ×
{

X0−2 � X1−2
}

∪ X1−1 ∪ B−1 −→ ∂ X. (A.27)

Examples are depicted in Fig. 32.
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Fig. 32. A 2-morphism of depth 2 and a 3-morphism of depth 3

Remark A.28. As in Remark A.9(2), set X δ
−(d+1) = Bδ

−(d+1) = Bδ
−(d+2) = ∅, δ ∈ {0, 1}.

The categorical interpretation of the bordism described in Remark A.9(3) is still valid.
The embeddings (A.10) still exist, but now the embeddings ψ̊δ− j do not cover ∂ X . Rather,

the embeddings βδ− j , β−1, j ∈ {2, . . . , d − 1}, δ ∈ {0, 1}, combine to embeddings

γ δ− j : [0, 1] j−2 × Bδ− j −→ B−1, j ∈ {2, . . . , d}, δ ∈ {0, 1}. (A.29)

Let γ̊ δ− j be the restriction of γ δ− j to [0, 1] j−2 × B̊δ− j . Then ∂ X is the disjoint union of

three sets: (i) the images of ψ̊δ− j , j ∈ {1, . . . , d}, δ ∈ {0, 1}; (ii) the images of γ̊ δ− j ,

j ∈ {2, . . . , d − 1}, δ ∈ {0, 1}; and (iii) the (k − 1)-manifold B̊−1.

A.3.2. The tangent filtration For points x ∈ ∂ X in the image of one of the ψ̊δ− j , the
filtration (A.11) and orientation of the lines (A.13) apply. If x ∈ ∂ X lies in the image of
some γ̊ δ− j , choose t1, . . . , t j−2 ∈ [0, 1], b̊ ∈ B̊δ− j such that x = γ̊ δ− j (t

1, . . . , t j−2; b̊).
Then Tx X has a decreasing filtration

Tx X = Tx,0X ⊃ Tx,−1X ⊃ · · · ⊃ Tx,−( j−1) X ⊃ Tx,− j X = Tx̊ B̊− j (A.30)

in which

Tx,−1X = Tx B−1,

Tx,−i X = dγ̊ δ− j

(

0i−2 ⊕ R
j−i ⊕ Tx̊ B̊− j

)

, i ∈ {2, . . . , j}.
(A.31)

The associated graded is a sum of real lines

Lx,−(n−k+1) ⊕ · · · ⊕ Lx,−(n−k+ j). (A.32)

Orient Lx,−(n−k+ j) so that the positive direction leads into X . (This is for a boundary

theory 1 → τ≤2F ; for boundary theories τ≤2F → 1 choose the opposite orientation.)

Orient Lx,−(n−k+ j−1) so that the positive direction leads into B−1 if δ = 0 and leads out

of B−1 if δ = 1. Orient Lx,−(n−k+ j), i ∈ {1, . . . , j − 2}, so that the positive direction
points towards increasing t j−1−i . These orientations—arrows of time—can be omitted
(as in Sects. 2 and 3) since they can be deduced from the arrows of time on the rest
of ∂ X .
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A.3.3. Tangential structures, duals, and adjoints The distinguished boundary B−1 ⊂ X
has a tangential structure of rank n − 1 whereas the “bulk” X\B−1 has a tangential
structure of rank n. The former is allowed to be “different” than the latter—for example,
we may have a spin boundary theory of an oriented theory. Following Sect. A.2.4,
let ρn :Xn → BGLnR be the bulk tangential structure. A boundary tangential structure
consists of (i) a rankn−1 tangential structureρn−1:Xn−1 → BGLn−1R; (ii) an inclusion
GLn−1R ↪→ GLn R; and (iii) a map φ:Xn−1 → Xn such that the diagram

Xn−1
φ ��

ρn−1
��

Xn

ρn

��
BGLn−1R �� BGLnR

(A.33)

commutes. Up to homotopy, (ii) is an element of On /On−1 ≈ Sn−1, a choice of unit
vector in Rn .

Remark A.34. In this paper ρn represents n-framings and ρn−1 represents (n − 1)-
framings. Concretely, fix a separable infinite dimensional real Hilbert space H, define
the contractible Stiefel manifold Stn = {isometric embeddings Rn → H}, and let the
Grassmannian Grn = Stn /On be the quotient of the Stiefel manifold by the natural
right On-action. Then Grn � BGLnR. Our convention in Sect. 2.1.6 uses the embed-
ding On−1 ↪→ On induced from the inclusion20

R
n−1 −→ R

n

(ξ1, . . . , ξn−1) �−→ (ξ1, . . . , ξn−1, 0)
(A.35)

Let ˜Grn−1 = Stn /On−1. A point of ˜Grn−1 is an (n− 1)-dimensional subspace W ⊂ H
together with a unit vector ν ∈ W⊥; the map to the usual Grassmannian Grn−1 which
forgets ν is a homotopy equivalence. Let ρn−1: Stn → ˜Grn−1 be the quotient map and
φ: Stn → Stn the identity map.

The constructions of duals and adjoints in Sect.A.2.5 carry overwithoutmodification;
the colored boundary components are unchanged when forming duals and adjoints.

Appendix B. Semisimplicity of 2-Dualizable Categories

In this appendix we write a proof of the following folk result, stated in the body of
the paper as Theorem 1.13 and stated here as Theorem B.1. The theorem concerns
2-dualizable objects in CatC; see [BDSV,BJSS] for related variants.

Theorem B.1. If C is 2-dualizable in CatC, then C is finite semisimple abelian, and C∨
may be identified with Cop in such a way that the duality pairing 〈 | 〉 : C∨ ×C → Vect
is identified with Hom:

〈xop|y〉 = HomC (x, y).

The proof is broken up into three lemmas, which we state after introducing the
following.

20 The extra direction at a colored boundary point is “spatial” in the sense of Remark A.1. The choice (A.35)
is made so as to be stable under the inclusion Bordfrn−1 → Bordfrn .
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Definition B.2. A C-linear category C is Hom-finite if all of its Hom spaces are finite
dimensional.

Lemma B.3. Let C be 1-dualizable in CatC, with C and C∨ both Hom-finite. There is
then an equivalence of linear categories C∨ ≡ Cop with the duality pairing being

xop × y �→ HomC (y, x)∨.

Remark B.4. We do not know ab initio that Cop has cokernels; this is a consequence of
the Lemma. Thus the proof is executed in the world of all C-linear categories and not
within CatC, whose objects are finitely cocomplete. In particular,C andCop have kernels
and cokernels (i.e. are pre-abelian). One can also show that they must be balanced (all
monic epimorphisms are isomorphisms), but we do not know if they must be abelian.

Lemma B.5. Let C be 2-dualizable in Cat
C

. Then C and C∨ are Hom-finite.

Lemma B.6. Under the assumptions of Theorem B.1, the functor HomC :Cop × C →
Vect is bi-exact.

In particular, all epimorphisms and monomorphisms are split.
We briefly defer the proofs of Lemmas B.3, B.5, and B.6 in favor of the following.

Proof of Theorem B.1. Lemmata B.3 and B.5 imply that C has kernels and cokernels,
and their splitting, from Lemma B.6, implies that C is abelian. Semisimplicity follows
from Hom-finiteness and Lemma B.6. Decompose objects using nonzero noninvertible
endomorphisms until their endomorphism algebras become division rings. Finiteness of
the number of simple isomorphism classes is enforced by 2-dualizability: for example,
isomorphism classes of simple objects label a basis of the Hochschild homology space,
and the latter is finite dimensional. The remainder of Theorem B.1 requires an identifi-
cation of the Hom pairing with the vector space dual of its opposite, which is immediate
from semisimplicity. ��

Now to the lemmas.

Proof of Lemma B.3. We construct a left/right adjoint pair of linear functors

L : Cop � C∨: R

which we prove to be inverse equivalences. In fact, R is the opposite of the C∨-
counterpart of L , so that (Rop, Lop) is the corresponding pair of functors if we start
with the category C∨ instead of C .

Define L as the functor xop → x̌ , where given x ∈ C , we define x̌ ∈ C∨ by

〈x̌ |y〉 = HomC (y, x)∨, y ∈ C.

Note that x̌ is a right exact functional on C , so it defines an object of C∨ =
Hom

Cat
C

(C,Vect
C
). (Moreover, the assignment xop �→ x̌ is right exact, although this

does not mean much before Cop is shown to have cokernels.)
As advertised, R sends η ∈ C∨ to the object η̌op of Cop, where η̌ ∈ C is defined by

〈ξ |η̌〉 = HomC∨(ξ, η)∨, ξ ∈ C∨.

Now for x ∈ C, η ∈ C∨ we have the desired adjunction

HomCop(xop, Rη) = HomC (η̌, x) = 〈x̌ |η̌〉∨ = HomC∨(x̌, η) = HomC∨(Lxop, η).

(B.7)
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The Yoneda embedding asserts that L is fully faithful; a formal consequence is that
the adjunction unit IdCop → R ◦ L is an isomorphism. Similarly, Rop, and therefore R,
is also fully faithful, so the evaluation L ◦ R → IdC∨ is an isomorphism as well. ��
Proof of Lemma B.5. Denote by 
:Vect → C∨ � C the coevaluation of the duality,
and let SC be the Serre automorphism. The second of the adjunctions


L = 〈 | 〉 ◦ (Id � SC ), 
R = 〈 | 〉 ◦ (Id � S−1C ), (B.8)

combined with the right exactness of 〈 | 〉, shows that the functor
HomC∨�C (
(1); ) : C∨ � C → Vect (B.9)

is also right exact. Since 
(1) is the quotient of a product 	 � X ∈ C∨ � C—as is any
object in C∨ � C—the right exactness of (B.9) implies that 
(1) must therefore be a
direct summand of	� X , i.e., the image of a projector P in End(	� X). For all ξ ∈ C∨
and x ∈ C , this P induces finite-rank projectors on all spaces Hom(	 � X; ξ � x) and
Hom(ξ � x;	 � X), because the respective images are the finite-dimensional spaces

Hom(
(1); ξ � x) = 〈ξ |S−1C x〉, Hom(ξ � x;
(1)) = 〈ξ |SC x〉∨.

Given now x, y ∈ C , let’s compute HomC (x; y) via the Zorro diagram, where we
denote by tr the transposition in the two variables:

HomC (x; y) = HomC

(

[ 〈 | 〉tr � Id
][

x � 
(1)
]; y

)

= HomC�C∨�C

(

S−1C x � 
(1);
(1)tr � y
)

In the last step, we have used the first adjunction in (B.8). The last Hom space is the
common image of the two commuting projectors acting by pre- and post-composition
with P on the space

HomC�C∨�C (x � 	 � X; X � 	 � y)

= HomC (x; X)⊗ HomC∨(	;	)⊗ HomC (X; y)

:= U ⊗ V ⊗ W.

Post-composition with P acts on U ⊗ V (and as the identity on W ), and its finite rank
implies that the image is contained in F ⊗ V ⊗W , for some finite-dimensional F ⊂ U .
But pre-composition by P now acts with finite rank on V ⊗ W , which proves that
HomC (x, y) is finite dimensional.

The Hom-finiteness of C∨ is proved by a similar argument. ��
Proof of Lemma B.6. Let 
:Vect → C∨ � C be the unit for duality. Its right adjoint

R satisfies


R(X) = HomC∨�C

(


(1), X
)

, X ∈ C∨ � C,

which implies
R is left exact. It is also right exact, being a 1-morphism internal to CatC.
Recall too the formula (B.8) for 
R . Now the structural functor C∨ × C → C∨ � C ,
ξ × x �→ ξ � x , is bi-exact. Following it with 
R leads to the bi-exact functor from
Cop × C → Vect

xop × y → 〈x̌ |S−1C y〉 = Hom(S−1C y, x)∨,

which proves the bi-exactness of Hom. ��
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Appendix C. Internal Duals

Wedescribe here an abstract notion of internal duals, generalizing from a tensor category
(Definition C.14) to an algebra object in a 2-category (Theorem C.18). In particular,
we show that our TFT F with nonzero boundary condition β leads to a fusion category
� = EndR

(

β(+)
)

(Definition 3.1). Since our knowledge of� comes fromTFT calculus,
we must avoid unpictorial internal structures (for example, the use of contravariant
functors such as x �→ x∗) in describing internal duality. The main application is

Theorem C.1. A tensor category whose underlying category is dual to its opposite cat-
egory and which satisfies the Frobenius condition of Definition C.7 and the bimodule
property of Proposition C.13, has internal left and right duals.

For our �, these conditions are checked in Lemma 3.6.
We refer to [BJS] for another discussion of rigidity and dualizability.

Remark C.2. In the setting of TFT, the conditions separate neatly into a Frobenius-
bimodule condition and an adjunction condition, reflecting two different geometric prop-
erties of a TFT with boundary generated by an algebra object and its regular boundary
conditions. The logic of our application to � compels a different path; we will return to
the more natural statements in a future paper.

Let �,�∨ be a dual pair of objects in a symmetric monoidal 2-category (M,�).
We are mostly interested in the categorical case when �,�∨ are an opposite couple
of linear categories paired by Hom, and can even restrict to semisimple categories, but
the algebra below is agnostic about that, unless we explicitly flag it. It is convenient to
denote the duality pairing�∨�� → 1 bywriting 〈ξ | y〉, as in the categorical case, when
y ∈ �, ξ ∈ �∨ = �op (the opposite category). This convention is symmetric under
simultaneous swapping of the arguments and of � with �∨. When checking identities,
conversion to the formalismof arrows is straightforward.21 Equalities stand for canonical
isomorphisms of 1-morphisms.

Assume given an E1 structure on �, with strict unit η: 1 → � and multiplication
∇:� � � → �. When � is a category and when no confusion ensues, we also write
x · y for ∇(x, y) and 1 for the tensor unit. The dual object �∨ is a �-� bimodule. This
bimodule is invertible, if � is 2-dualizable as an algebra object, and represents then the
Serre autofunctor of the (category of modules over the) E1 object �.

We shall not adopt the a priori assumption of 2-dualizability here; however, we will
require that η and∇ have right adjoints ε:� → 1 and
:� → ���. This condition is
always met in the categorical case, with explicit formulas for ε and for the dual functor

∨:�∨ � �∨ → �∨:

ε(z) = Hom�(1, z); 
∨(xop � yop) = ∇(x, y)op, for x, y, z ∈ �. (C.3)

With this structure,�∨ becomes a tensor categorywith unit 1op = ε∨(1).More generally,
the dual object�∨ is an E1 object with the same features as�: the dual arrow∇∨ defines
a comultiplication which is right adjoint to the multiplication 
∨, and the latter has unit
ε∨, with right adjoint η∨.
Remark C.4. This interpretation of the dual right adjoint of ∇ holds for any functor
ϕ : X → Y between categories which are in duality with their opposites: namely,
ϕop: Xop → Y op is ϕop = (ϕR)∨ = (

ϕ∨
)L . In particular, adjoints exist. Recall also that,

21 At any rate, we can reduce to the categorical case by passing to the functors onM represented by �,�∨.
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when X, Y are 2-dualizable, with (additive) Serre automorphisms S+
X , S+

Y , the left and
right adjoints of ϕ are related by S+

Y ◦ ϕL = ϕR ◦ S+
X . Commuting duals with adjoints

will therefore bring out additive Serre functors.

Define now the pairing B:� � � → 1 as B = ε ◦ ∇. When � is a category,
B(x, y) = Hom�(1, x · y), for two general objects x, y. From B, we define a dual pair
of functors, by dualizing separately with respect to each variable:

f, f ∨ : � → �∨, f (x) := B(x,−), f ∨(y) := B(−, y) (C.5)

Proposition C.6. f is a right, and f ∨ a left �-module morphism.

Proof. 〈 f (x · y) | z〉 = B (x · y, z) = ε(x · y · z) = B(x, y · z) = 〈 f (x) | y · z〉 =
〈 f (x).y | z〉, so that f (x · y) = f (x).y, and similarly for f ∨. ��
Definition C.7. We say that� satisfies the (non-symmetric) adjoint Frobenius condition
when B is a perfect pairing: that is, f and f ∨ are isomorphisms. If so, we define the
Serre automorphism of � as S⊗ = ( f ∨)−1 ◦ f.

Proposition C.8. Assume that � satisfies the Frobenius condition. The following natural
isomorphisms apply:

(i) B(x, y) = B(y, S⊗x). In particular, symmetry of B is equivalent to a trivialization
of S⊗.

(ii) f ◦ η = f ∨ ◦ η = ε∨. For a category, f (1) = f ∨(1) = 1op.
(iii) As functors � → �∨, we have ε∨.( ) = S⊗( ).ε∨. In the categorical case, 1op.x =

S⊗(x).1op.
(iv) S⊗ is naturally a tensor automorphism of�, and twisting the�-action by S⊗ induces

the Serre autofunctor M �→ �∨ �� M on the 2-category of left �-modules.

Remark C.9. Promoting S⊗ to a tensor functor means equipping it with isomorphisms,
compatible with the associativity and unit laws on �,

S⊗ ◦ ∇ ∼= ∇ ◦ (S⊗ × S⊗), S⊗ ◦ η ∼= η;

while not evident from the expression ( f ∨)−1 ◦ f , they do follow from Parts (i)–(iii), as
in the proof below. On the other hand, reduction of �∨ �� to a tensor automorphism
of � is a formal consequence of the isomorphy of f ∨.

Proof. Parts (i)–(iii) are immediate from the properties of f, f ∨, B; thus,

B(x, y) = 〈 f (x) | y〉 = 〈 f ∨ ◦ S⊗(x) | y〉 = 〈 f (y) | S⊗(x)〉 for (i),

〈 f (1) | x〉 = B(1, x) = ε(x) = B(x, 1) = 〈 f ∨(1) | x〉 for (ii),

S⊗(x).1op = f ∨
(

S⊗(x)
) = f (x) = 1op.x for (iii).

Multiplicativity of S⊗ now follows:

f ∨
(

S⊗(xy)
) = S⊗(xy).1op = 1op.xy = S⊗(x).1op.y = S⊗(x) · S⊗(y).1op

= f ∨
(

S⊗(x) · S⊗(y)
)

,
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using categorical notation for simplicity. To complete (iv), consider the following dia-
gram of right �-modules, with left multiplication in the bottom row:

� � �
∇ ��

S⊗� f
��

�

f
��

� � �∨ �� �∨

We claim this commutes naturally. Assuming this, let us interpret the diagram: the right
vertical arrow f gives an isomorphism of the identity with the Serre autofunctor on
�-modules, while the left arrow exhibits the necessary intertwining twist by S⊗ in the
left �-action.

Exploiting the right�-module structure, it suffices to check commutativity on��η,
when this becomes the isomorphism S⊗(x). f (1) = f (1).x = f (x), from (ii) and (iii).

��
Remark C.10. The Serre functor S⊗ above need not agree with the additive Serre auto-
morphism S+

� of Remark C.4, which is independently defined whenever the object
� ∈M is 2-dualizable. However, the two will agree for a fusion category�, because of
its 3-dualizability. See also Remark C.19 below for a general relation between the two.

The isomorphisms f, f ∨ allow us to transport the structure tensors η,∇,
, ε to a
matching structure on �∨, denoted by overbars. Choosing either f or f ∨ results in
isomorphic structures on�∨, because all structure tensors commute with S⊗. Dualizing
them gives a new structure ε̄∨, 
̄∨, ∇̄∨, η̄∨ on �. We get the following diagram, in
which the bottom row maps are related to the top row maps by duality and adjunction
using uniform rules, ε = ηR,
 = ∇R , ε̄ = η̄R, 
̄ = ∇̄R and all ensuing relations:

� � �
∇ 		

�






ε 		 1
η



 f

		����
����

����
����

����
���� f ∨

�� ��
�� ��

�� ��
�� ��

�� ��
�� ��

� � �


∨ 		

�
∇∨

��
η∨ 		 1
ε∨





�∨ � �∨ 
∨ 


�∨

∇∨




η∨ 		 1
ε∨

�� �∨ � �∨ ∇ 


�∨



��

ε 		 1
η

��

(C.11)

The dual corners are related by the morphism f ∨. Because η̄ = f ◦η, etc., we find from
Proposition C.8.ii that

Proposition C.12. In the diagram above, units and traces match in each row: η̄ = ε∨,
ε̄ = η∨. ��
Proposition C.13. Under the Frobenius assumption, the following conditions are equiv-
alent:

(i) The coproduct 
 is a �-� bimodule map (for the outer �-actions on the two
�-factors).

(ii) The multiplication 
∨ is a �-� bimodule map (for the inner �-actions on the two
�∨-factors).

(iii) The two structures on � in the top row of (C.11) are transpose-isomorphic.
(iv) The two structures on �∨ in the bottom row of (C.11) are transpose-isomorphic.
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Proof. Parts (i) and (ii) are equivalent by duality, (iii) and (iv) are so via the isomorphisms
induced by f . Note further that the diagonal arrow is compatible with the�-� bimodule
structures: on the right, because f is a right modulemap, an on the left, because we could
equally well have used the left module isomorphism f ∨ instead. In light of the matching
units, which are free generators of �∨ over �, the bimodule condition determines the
multiplication maps and forces the agreement of the remaining structure maps on each
row. ��
Definition C.14. When � is a category, the internal right and left duals ∗x, x∗ of an
object x ∈ � are the objects characterized (up to unique isomorphism, if they exist) by
the functorial (in y, z) identities

Hom(x · y, z) = Hom(y, x∗ · z), Hom(y · x, z) = Hom(y, z · ∗x). (C.15)

It turns out that the conditions in (C.13) force the existence of internal duals and their
expression in terms of f ∨ and f . To see this, we first give an abstract formulation.

Dualizing the product ∇ in the second argument gives the left multiplication map λ :
� → � � �∨. In the categorical case, λ(x) represents the left multiplication by x ∈ �.
Similarly, for the first argument we get the right multiplication map ρ:� → � � �∨.
Repeating this for 
∨ leads to the two maps λ′, ρ′:�∨ → �∨ � �. In the abusive but
readable argument notation, with Greek arguments living in �∨,

〈λ′(ξ1) | y � ξ2〉 = 〈
∨(ξ1, ξ2) | y〉, 〈ρ′(ξ2) | y � ξ1〉 = 〈
∨(ξ1, ξ2) | y〉. (C.16)
The maps λ′, ρ′ will be the abstract versions of the ‘tensoring with duals’

xop �→ (

z �→ x∗ · z
)

, xop �→ (

z �→ z · ∗x
)

.

Remark C.17. λ′, ρ′ are related to the op-conjugates λop, ρop : �∨ → �∨ � � as
follows:

λ′ ∼= (Id � S+
�
−1

) ◦ λop, ρ′ ∼= (Id � S+
�
−1

) ◦ ρop

The source of the additive Serre correction S+
� is described in Remark C.4.

Denote by τ the symmetry � � �∨ → �∨ � �.

Theorem C.18. The equivalent conditions of Proposition C.13 are also equivalent to:

(i) λ′ ∼= τ ◦ λ ◦ f −1.
(ii) ρ′ ∼= τ ◦ ρ ◦ ( f ∨)−1.
(iii) In the categorical case: � has internal left and right duals.

Proof. We check the two sides by pairing against a triple of arguments (ξ1, y, ξ2) ∈
�∨ × � × �∨, leaving to the reader the unenviable task of convert this to identities
betweenmorphisms, duals and adjoints. Havingwritten out the left sides in (C.16) above,
we start with the right side of (i):

〈τ ◦ λ ◦ f −1(ξ1) | y � ξ2〉 = 〈λ ◦ f −1(ξ1) | ξ2 � y〉 = 〈ξ2 | f −1(ξ1) · y〉
= 〈ξ2. f −1(ξ1) | y〉

where the middle line is the definition of λ, while dot represents the right multiplication
action of f −1ξ1 upon ξ2 ∈ �∨. Agreement with λ′ is then equivalent to

ξ2. f −1(ξ1) = 
∨(ξ1, ξ2);
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but using the right module property of f , we have

ξ2. f −1(ξ1) = f
[

f −1(ξ2) · f −1(ξ1)
]

,

thus reaching Condition (iv) in Proposition C.13.
Similarly, for the right side of (ii),

〈τ ◦ ρ ◦ ( f ∨)−1(ξ2) | y � ξ1〉 = 〈ρ ◦ ( f ∨)−1(ξ2) | ξ1 � y〉 = 〈ξ1 | y · ( f ∨)−1(ξ2)〉
= 〈( f ∨)−1(ξ2).ξ1 | y〉

and identity (ii) is equivalent to

( f ∨)−1(ξ2).ξ1 = 
∨(ξ1, ξ2),

which follows as before, this time from the left-module property of f ∨.
Finally, for Part (iii) we must convert the identities into the recognizable form (C.14).

For this, we let ξ1,2 be opposites of objects x1,2 ∈ �; then, 
∨(ξ1, ξ2) is the opposite
object to x1 · x2, and we can rewrite

〈ξ2 | f −1(ξ1) · y〉 = Hom�

(

x2, f −1(ξ1) · y
)

,

〈ξ1 | y · ( f ∨)−1(ξ2)〉 = Hom�

(

x1, y · ( f ∨)−1(ξ2)
)

,

〈
∨(ξ1, ξ2) | y〉 = Hom� (x1 · x2, y)

exhibiting f −1(ξ1) as x∗1 and ( f ∨)−1(ξ2) as ∗x2 in Definition C.14. ��
Remark C.19. Under the assumptions of (C.13), and if, in addition, � is 2-dualizable,
one can prove [FT] that the additive Serre functor S+

� is related to S⊗:

S+(x · y) = S⊗(x) · S+(y) = S+(x) · S⊗−1(y). (C.20)

In particular, we have

S+(x) = S⊗(x) · S+(1) = S+(1) · S⊗−1(x),

and, as the functor S+ is invertible, S+(1)must be a unit. In the categorical case, S⊗(x) =
x∗∗, and the relations follow by applying Serre duality to the adjunction relations in
Definition C.14.

One instance of (C.20) is when S+ = S⊗ = S⊗−1, which happens in the case of
fusion categories [DSS], but that is not the only option. Thus, if� is the derived category
of bounded complexes of coherent sheaves on a projective manifold with the obvious
internal duals, the multiplicative Serre functor S⊗ is the identity, while the functor S+

is tensoring with the canonical line bundle of X in degree (− dim X).
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Appendix D. Complete Reducibility of Fusion Categories

A fusion category whose unit is simple cannot be decomposed as a direct sum, even after
passing to a Morita equivalent model: otherwise, we would split the unit. The following
converse follows easily from several statements in [EGNO], but we give a complete
proof, at the price of rehashing some basic facts. Throughout, � will denote a fusion
category.

Theorem D.1 (Complete Reducibility). � is Morita equivalent to a direct sum of fusion
categories with simple unit.

Corollary D.2. � is Morita equivalent to a fusion category �0 with simple unit if and
only if the Drinfeld center of � is invertible.

We prove Corollary D.2 at the end of the “Appendix”.

Remark D.3. A closely related statement is used in [DMNO, Remark 5.2]: if � is an
indecomposable fusion category, then there exists a fusion category �′ with simple unit

and a braided equivalence Z(�′) �−→ Z(�) of the Drinfeld centers. The proof is based
on Lemma 3.24 and Corollary 3.35 in [EO].

We break up the proof of Theorem D.1 into small steps. Let 1 = ∑

i pi be the
decomposition of the unit of � into simple objects. Call an object x self-adjoint if it is
isomorphic with x∗.

Lemma D.4. Each pi is a self-adjoint projector: p∗i ∼= pi , p2i = pi , End(pi ) = C. In
addition, pi p j = 0 if i �= j .

Proof. We have pi = pi · 1 = ∑

j pi p j , so pi p j = 0 except for a single j , when it
equals pi . On the other hand, p j = 1 · p j = ∑

k pk p j , but the sum contains pi p j = pi ,
so pi = p j , proving the multiplicative claims. Further, 1∗ = 1, and p∗i pi �= 0 because
Hom(1, p∗i pi ) ∼= End(pi ) �= 0, so we must have p∗i ∼= pi . ��

Lemma D.4 gives a “matrix decomposition” of � as

� ∼=
⊕

i, j
pi ·� · p j =:

⊕

i, j
�i j ,

with fusion categories �i i having simple units pi on the diagonal, �i i -� j j bimodule
categories�i j (identifiedwith�

op
ji under internal duality), andmultiplication compatible

with matrix calculus:

�i j ×� jl → �il , �i j ·�kl = 0 if j �= k.

The equivalence classes of indices generated by the condition �i j �= 0 gives a direct
sum decomposition of �, matching the block-decomposition of the matrix. Call �

indecomposable if a single block is present. We claim that an indecomposable � is
Morita equivalent to any of its diagonal entries, selecting �11 for our argument.

The equivalence is induced by the first row and the first column of �: the �11-�
bimodule R := ⊕

i �1i and the �-�11 bimodule C := ⊕

j � j1. We check it in the
following two lemmata.

Lemma D.5. The multiplication map R �� C → �11 is an equivalence of �11-�11
bimodule categories.
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Proof. We have � �� � = �, and splitting the left factor � into its rows Ri and the
right factor into its columns C j gives a direct sum decomposition of � as Ri �� C j .
Examining the action of the projectors pk , on Ri on the left and on C j on the right,
identifies this with the �i j decomposition of �. ��
Lemma D.6. The multiplication map μ:C ��11 R → � is an equivalence of �-�
bimodule categories.

Lemma D.6 concludes the proof of Theorem D.1.
The proof of this direction requires some preliminary facts.

Lemma D.7 (Linearity of adjoints). The adjoints ϕL , ϕR of an �-linear map ϕ : M →
N between right or left finite semisimple22 �-module categories have a natural �-linear
structure.

Proof. Choosing left modules and the right adjoint, we write a functorial isomorphism

HomM

(

m, ϕR(x .n)
)

= HomM

(

m, x .ϕR(n)
)

by rewriting the left side as

HomN (ϕ(m), x .n) = HomN
(∗x .ϕ(m), n

) = HomM
(

ϕ(∗x .m), n
)

= HomM

(∗x .m, ϕR(n)
)

and finish by moving x back to the right. The other cases are similar. ��
Lemma D.8. If N = � above, then ϕ ◦ ϕL(1) is self-adjoint in �.

Proof. Let h(x, y) := dimHom(x, y). In our semisimple case, h(x, y) = h(y, x), as
we are only counting multiplicities of simple objects. Moreover, x is determined up to
isomorphism by its multiplicities, so x is self-adjoint iff h(x, y) = h(x∗, y) for all y;
the latter is also h(x, y∗). We show this for x = ϕ ◦ ϕL(1):

h(x, y∗) = h(y · x, 1) = h(ϕ ◦ ϕL(y), 1) = h(1, ϕ ◦ ϕL(y))

= h(ϕL(1), ϕL(y)) = h(ϕL(y), ϕL(1)) = h(y, ϕ ◦ ϕL(1)) = h(x, y).

��
Lemma D.9. Every self-adjoint projector � is isomorphic to a sum of distinct pi from
Lemma D.4, i.e., is a direct summand of the unit 1.

Proof. Let � = p + x , where p collects all the pi appearing in � . Writing the relation
� 2 ∼= � as

p + x ∼= p2 + p · x + x · p + x2,

we see that each pi appears at most once, otherwise its multiplicity in p2 exceeds the
one in p. Moreover, an isomorphism x ∼= x∗ gives an identification Hom(1, x2) =
End(x), while Hom(1, x) = 0 by assumption; comparing left and right sides shows that
End(x) = 0 and therefore x = 0. ��
22 We only use semisimplicity here to ensure the existence of adjoints.
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Proof of Lemma D.6. Writing B for the�–� bimodule categoryC ��11 R, LemmaD.5
gives an equivalence B �� B ∼= B, which is μ-compatible with the identification
� �� � = �. The left adjoint μL is also a bimodule map, by Lemma D.7, and because
μ�� μ ∼= μ and�� is composition of 1-morphisms in the 3-category Fus, we obtain an
equivalence μL �� μL ∼= μL . Then, μ ◦μL is an idempotent bimodule endomorphism
of�, since ◦ and�� commute. It is the multiplication by the object p := μ◦μL(1)—on
the left, or on the right—which must then be a projector in�. Moreover, p is self-adjoint
by Lemma D.8. Lemma D.9 identifies it as a sum of pi . If p �∼= 1, it would split the
image � · p ∼= p ·� as a block of �, contradicting indecomposability.

It follows that μ ◦ μL ∼= Id�, splitting B into � and a complementary bimodule.
But the relation B �� B ∼= B can only hold if this complement is zero, so μ is an
equivalence. ��
Proof of Corollary D.2. First, Morita equivalent fusion categories have braided tensor
equivalent Drinfeld centers [EGNO, §8.12]. If �0 is a fusion category with simple
unit, then its Drinfeld center Z(�0) is nondegenerate [EGNO, §8.20]. Therefore, by
[S-P,BJSS] the Drinfeld center is invertible. Conversely, by Theorem D.1 any fusion
category is Morita equivalent to a finite direct sum of fusion categories with simple unit.
Then, as in the proof of Lemma 3.14, the Drinfeld center of a direct sum is the direct
sum of the Drinfeld centers, and if the Drinfeld center is invertible, it follows that the
direct sum has a single summand. ��
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