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Abstract: We prove a theorem in 3-dimensional topological field theory: a Reshetikhin—
Turaev theory admits a nonzero boundary theory iff it is a Turaev—Viro theory. The proof
immediately implies a characterization of fusion categories in terms of dualizability. Our
results rely on a (special case of) the cobordism hypothesis with singularities. The main
theorem applies to physics, where it implies an obstruction to a gapped 3-dimensional
quantum system admitting a gapped boundary theory. Appendices on bordism multi-
categories, on 2-dualizable categories, and on internal duals may be of independent
interest.
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Quantum mechanical theories bifurcate into gapped and gapless theories. The classical
notion of a local boundary condition for a partial differential equation has a quantum
analog—a boundary theory. There is a basic question: Does a gapped quantum system S
admit a gapped boundary theory? We formulate and prove a mathematical theorem
(Theorem A in Sect. 1.4) which addresses this question for a large class of (2+1)-
dimensional systems. The route from a gapped quantum system to the theorem goes
via a low energy effective extended topological field theory, whose existence we merely
assume. The absence of a gapped boundary theory implies the presence of gapless edge
modes—conduction on the boundary—an important feature of quantum Hall systems,
for example.

Let F: Bordgr — € be a 3-dimensional topological field theory: a homomor-
phism from a bordism multicategory of framed manifolds to a symmetric monoidal
3-category C. We impose hypotheses on C, F' to model Reshetikhin—Turaev theories
[RT1,RT2,T], whose key invariant is a modular fusion category C, the value of F on the
bounding framed circle. Theorem A asserts that if F' admits a nonzero boundary theory,
then C is the Drinfeld center of a fusion' category ®. With extra assumptions on the
codomain €, we conclude (Theorem A’ in Sect. 1.4) that the entire theory F is isomor-
phic to the Turaev—Viro theory T¢ based on ®. Conversely, given a fusion category &,
the Turaev—Viro theory T has a nonzero boundary theory built from the (regular) left
®-module ®. The class of C in the Witt group [DMNOY], which is nonzero when C is not

1 We do not assume that a fusion category has a simple unit: our ‘fusion’ is [EGNO]’s ‘multifusion’.
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the Drinfeld center of a fusion category, is almost a complete obstruction to the existence
of a nonzero boundary theory; see Remark 1.24(4).
A corollary of our proof is a characterization of fusion categories (Theorem B

in Sect. 1.5). Let Cat be the symmetric monoidal 2-category of finitely cocomplete

C-linear categories and right exact C-linear functors, and let Alg; (Cat) be the Morita
3-category of tensor categories. (In this paper ‘tensor category’ means ‘algebra object
inCat’.) Then W € Alg, (Caty) is a fusion category iff W is 3-dualizable and the regular
left W-module is 2-dualizable. The forward direction (‘only if”) is proved in [DSS].

A key feature of our approach is the use of fully extended field theories. Naive analogs
of Theorem A fail in the traditional context of (1, 2, 3)-theories; see Remark 1.27.

Here is a brief outline of the paper. Section 1 contains background and the statements
of the main theorems. In Sect. 2 we discuss preliminaries about bordism multicategories
and algebras in multicategories. The proofs of the main theorems are deferred to Sect. 3.
The application to gapped quantum systems is the subject of Sect. 4. We provide sev-
eral appendices with background material of interest independent of our main theorems.
“Appendix A” contains a detailed definition of objects and morphisms in bordism mul-
ticategories. In “Appendix B” we prove a characterization of finite semisimple abelian

categories in the 2-category Cat . “Appendix C” proves a criterion for internal duals in
tensor categories, developed in a more general context. “Appendix D proves the com-
plete reducibility of fusion categories, which is implicit in [EGNO]: a fusion category
is Morita equivalent to a direct sum of fusion categories with simple unit.

Papers related to the problems considered here include [KK,KS,FSV,Le,KZ].

We warmly thank Pavel Etingof, Theo Johnson-Freyd, Victor Ostrik, Sam Raskin,
Emily Riehl, Claudia Scheimbauer, Chris Schommer-Pries, Noah Snyder, Will Stewart,
and Kevin Walker for discussions related to this work. We also thank the referees for
their careful readings and detailed suggestions; they catalyzed many improvements.

1. Mathematical Background and Statement of Main Theorem

1.1. RT theories and TV theories. Inthelate 1980s Witten [W 1] and Reshetikhin—-Turaev
[RT1,RT2] introduced new invariants of closed 3-manifolds and generalizations of the
Jones invariants of knots. Witten’s starting point is the classical Chern—Simons invariant,
which he feeds into the physicists’ path integral, whereas Reshetikhin—Turaev begin with
an intricate algebraic structure: a quantum group. Later, quantum groups were replaced
by modular fusion categories [T], which were originally introduced? in the context of
2-dimensional conformal field theory [MS]. These disparate approaches are reconciled
in extended topological field theory [F1]. In modern terms [L1] this extended field theory
is a symmetric monoidal functor

. f
F|1 53y Bord(] 5 5, — Catg (1.1

with domain the 2—category3 of 3-framed* 1-, 2-, and 3-dimensional bordisms; the
codomain is a certain 2-category of complex linear categories; see Definition 1.7. The

2 The version in [MS] uses a central charge in Q/247Z, whereas the version standard in mathematics, which
we use, only has a central charge in Q/8Z.

3 In this paper we use discrete categories: for example Cat is a (2, 2)-category (as opposed to a more
general (0o, 2)-category). Some of our exposition in this section applies to (oo, n)-categories though we just
write ‘n-categories’.

4 A3 -framing of a 3-manifold is a global parallelism, a trivialization of its tangent bundle. For a manifold M
of dimension k < 3 it is a trivialization of the inflated tangent bundle M STM — M.
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value of Fj > 3y on the bounding 3-framed circle S; is the modular fusion category that
defines the theory. We call (1.1) a Reshetikhin—Turaev (RT) theory.

Remark 1.2. The RT theories in the original references factor through the bordism 2-
category of manifolds equipped with a (w1, p1)-structure [BHMV], that is, an orienta-
tion and a trivialization of the first Pontrjagin class p;. There is a unique isomorphism
class of (wy, py)-structures on a circle, so no distinction between bounding and non-
bounding circles. “Spin Chern—Simons theories” require a trivialization of the second
Stiefel-Whitney class w; as well. For those theories the codomain should include Z /27Z.-
gradings; see Remark 1.28.

A fully extended topological field theory has domain Bordgr = Bordlz{)’l,zﬁ), the 3-
category of 3-framed bordisms of dimension < 3. There is no canonical codomain for
these theories, so for now we posit an arbitrary symmetric monoidal 3-category C. The
cobordism hypothesis—conjectured by Baez—Dolan [BD], proved by Hopkins—Lurie in
2 dimensions and by Lurie [L1] in all dimensions; see also [AF]—asserts that a fully
extended theory

F: BordT — @ (1.3)

is determined by its value F (+) on a positively oriented 3-framed point. Furthermore, a
3-dualizable object of C determines a unique theory (1.3), up to a contractible space of
choices. A symmetric monoidal 3-category € has a fully dualizable part €4 C @ whose
objects are 3-dualizable and whose morphisms have all adjoints. We say C has duals
if @ = €M, A functor (1.3) factors through C™. Given a general RT theory (1.1) it is
still an open problem to construct € and an extension (1.3), or even better to construct
a single € which works for all RT theories. (However, see [He] for a special case in the
framework of bicommutant categories.)

There is a subclass of RT theories, the Turaev—Viro (TV) theories [TV], which are
fully extended. Let Fus be the symmetric monoidal 3-category whose objects are fusion
categories; see Definition 1.10. We remark that throughout this paper we take C as the
ground field.

Theorem 1.4 (Douglas—Schommer—Pries—Snyder [DSS]). Fus has duals, i.e., Fus =

Fusfd.

In particular, a fusion category ® is 3-dualizable in Fus. The cobordism hypothesis
implies that there is a fully extended topological field theory

To: Bord! — Fus, (1.5)

unique up to equivalence, whose value on a chosen framed point +is Tgp(+) = . ATV
theory is a fully extended theory with codomain Fus; its truncation to Bordfrlym) is an
RT theory. Examples include 3-dimensional gauge theory for a finite group G, in which
case @ is the fusion category of finite rank complex vector bundles over G with convo-
lution product; there is also a version twisted by a cocycle for a class in H3(G; Q/7Z),
as in [DW]. Special toral Chern—Simons theories are also TV theories.

Remark 1.6. The original state sum construction [TV] is quite different from the con-
struction with the cobordism hypothesis, but nevertheless we use ‘Turaev—Viro theory’
to identify this class of topological field theories. Also, the construction in [TV] is for
unoriented manifolds and a (2, 3)-theory, whereas we use framed manifolds and a fully
extended (0, 1, 2, 3)-theory.
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1.2. Definitions and terminology. The definitions and terminology for abelian categories
are standard; see [EGNO, §1] for example. For tensor categories there is tremendous
variation in the literature, so we spell out our usage here. The term ‘modular fusion
category’ is standard; see [EGNO, §8.13], for example.

Definition 1.7. (i) Cat. is the symmetric monoidal 2-category defined as follows. Its

objects are finitely cocomplete C-linear categories. 1-morphisms in Cat are right
exact C-linear functors—functors that preserve finite colimits—and 2-morphisms
are natural transformations. The symmetric monoidal structure is the Deligne—Kelly
tensor product X; see [K,D,Fr].

(ii) A tensor category is an algebra object in Cat.

(iii) Alg(Cat) is the symmetric monoidal 3-category defined as follows. Its objects

are tensor categories. A 1-morphism M: A — B is an object M € Cat equipped
with the structure of a (B, A)-bimodule category. A 2-morphism M’ — M is a I-
morphism in Cat which respects the bimodule structure. A 3-morphism is a natural
transformation of functors.

(iv) Alg,(Cat) is the symmetric monoidal 4-category defined as follows. Its objects are

braided tensor categories, a 1-morphism M: A — B is an object M € Alg,(Cat)

equipped with the compatible structure of a (B, A)-bimodule category, etc. (See
[BJS, Definition-Proposition 1.2].)

Remark 1.8.(1) We do not assume that a tensor category has internal duals (rigidity).
See “Appendix C” for a discussion of internal duals in tensor categories. Also, we
do not assume that the tensor unit of a tensor category is a simple object.

(2) The algebraic theory of tensor categories is exposited in the text Etingof et
al. [EGNO] (where rigidity and simple unit are included in the definition of
‘tensor category’). The theory of Morita higher categories, such as Alg;(Cat)
and Alg,(Cat), is developed by Haugseng [H], Johnson et al. [JS], Gwilliam and
Scheimbauer [GS], among others. Douglas et al. [DSS] define a 3-category of tensor
categories which is a subcategory of Alg, (Cat); in particular, they assume rigidity.
Tensor categories and braided tensor categories in an infinite setting are explored
in [BJS], and in an co-setting in [L2].

(3) The symmetric monoidal structure on Alg; (Cat) is Deligne—Kelly tensor product,
as in Cat. Composition of 1-morphisms in Alg;(Cat) is the relative Deligne—
Kelly tensor product: tensor product of module categories over a tensor category.
Its existence is discussed in [BZBJ, Remark 3.2.1] and [JS, Example 8.10].

(4) For a 3-category C set Q€ = Ende (1), the endomorphism 2-category of the tensor
unit object. There is a canonical identification

Q Alg, (Caty) = Cat. . (1.9)
(5) A modular fusion category is invertible as an object of Alg, (Cat); see [BJSS].
The 3-category Fus of fusion categories is introduced in [DSS].

Definition 1.10. (i) FSCat is the full subcategory of Cat whose objects are finite
semisimple abelian categories.

5 The symbol ‘Rex” is sometimes used in place of ‘Cat’; it emphasizes the right exactness of 1-morphisms.
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(i1) A fusion category is a finite semisimple rigid tensor category.

(iii) Fus is the symmetric monoidal 3-category subcategory of Alg, (Cat) whose objects
are fusion categories and whose 1-morphisms are finite semisimple abelian bimod-
ule categories.

Remark 1.11.(1) FSCat C Cat is closed under Deligne-Kelly tensor product [Fr, §5].

(2) We do not assume that a fusion category has simple unit. ((EGNO] use ‘multifusion’
for Definition 1.10(ii) and reserve ‘fusion’ for the case of a simple unit.)

(3) The loop category of Fus is

Q2 Fus = FSCat . (1.12)

A companion result to Theorem 1.4 asserts that the symmetric monoidal 2-category
FSCat has duals. We also need the following result, which we prove in “Appendix B”.

Theorem 1.13. If C € Cat. is 2-dualizable, then C is finite semisimple abelian.

There are many variations of this theorem, such as [Se, Ti]; see [BDSV, Appendix] for
a survey.

1.3. Relations between RT and TV theories. Let

T: BordT — Fus (1.14)

be a TV theory. Then the associated modular fusion category T(Sg), the value of T on
the bounding 3-framed circle, is the Drinfeld center of T (+). It is the modular fusion
category of the associated RT theory, which is the truncation

T(1,2,3): Bord] 5 3 —> Catg . (1.15)

Also, the value T(S,i) on the nonbounding 3-framed circle is the Drinfeld cocenter®
of T(+), a module category over T(Sg). (Notice that T(S,ll) is equivalent to T(S;) if
T (+) is spherical.) See [DSS, §3.2.2] for an exposition. For a general RT theory (1.1)
there does not exist a fusion category whose Drinfeld double is the modular fusion
category F<1,2,3>(S,l).

Remark 1.16. The double |F|> = FFY of an RT theory F is the truncation of a TV
theory, as we now explain. (F" is the dual theory to F in the symmetric monoidal
category of theories.) Let B be a modular fusion category. Suppose F': Bord‘;r — Cis

an extension of an RT theory (1.1) with F (S,;) = B, where we assume the hypotheses
on C in Theorem A below. Use the cobordism hypothesis to define theories

FY,|F|% BordT — @ (1.17)
which are characterized by
F'(+) =F(#)"
5 v 0 (1.18)
[FI"(H) = F#) ®@ F(+)" = F(S).

6 Objects of the Drinfeld cocenter of a fusion category & are pairs (x, y) in which x is an object of ® and
the functor y: x ® — - — ® x** is a twisted half-braiding.
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Here F(+)V is the dual object to F(+) € €. The theory F¥ may be defined as the
composition of F with the involution Bordgr — Bordgr which reverses the first “arrow of
time”; see Sect. 2.1.5. Using this description identify the braided fusion category F (Sll)
with B™, which is the same underlying fusion category B equipped with the inverse
braiding. It follows that |F |2(Sg) = B X B™, which by [EGNO, Proposition 8.20.12]
is braided tensor equivalent to the Drinfeld center of B.

1.4. Existence of boundary theories. Let
F: BordT — @ (1.19)

be a 3-dimensional 3-framed topological field theory, as in (1.3). Lurie [L1, Exam-
ple 4.3.22] defines an extended bordism 3-category Bordgr!a and an inclusion Bordgr —

Bordg‘: Py (Sc?e Sect. A.3 for a definition of objects in Bordgf 49-) A boundary theory for F
is an extension

F: Bordgr)a — C (1.20)

of F to a symmetric monoidal functor. The cobordism hypothesis with singularities
implies that ' is determined by a 3-dualizable object F(+) € C together with a 2-
dualizable 1-morphism 1 — F(+). To isolate the data of the boundary theory, let

1_,F: Bord] — € (1.21)

be the truncation of F to 2-framed 0-, 1-, and 2-dimensional bordisms. It is a once
categorified topological field theory. Then the data of a boundary theory for F is a
natural transformation’

Bl —> T F (1.22)

of symmetric monoidal functors on Bordg. More precisely, B is an oplax natural transfor-
mation in the sense of Johnson-Freyd and Scheimbauer [JS]. They apply the cobordism
hypothesis with singularities [L1, §4.3] to prove that the data of an extended theory (1.20)
is equivalent to the data of the pair consisting of (1.19) and (1.22); see [JS, Theorem 7.15].
Furthermore, that data is determined by the values F(+) and 8(+): 1 — F(+) onapoint,
which satisfy maximal dualizability constraints. We discuss natural transformations in
pictorial terms in Sect. 2.1.7.
Our main result is the following.

Theorem A. Let C be a symmetric monoidal 3-category whose fully dualizable part ™
contains the 3-category Fus of fusion categories as a full subcategory. Let F: Bordlgr - C
be a 3-framed topological field theory such that

(a) F(S°) is isomorphic in @ to a fusion category, and
(b) F (Sg) is invertible as an object in the 4-category Alg,(Q2C) of braided tensor
categories.

Assume F extends to F- Bordgr’ 9 — Csuch that the associated boundary theory f: 1 —

T_, F is nonzero. Then F(Sg) is braided tensor equivalent to the Drinfeld center of a
fusion category ®, which may be taken to be End et (,B (+)).

7 There are also boundary theories ~» F — 1. They are extension of F' to a variation of Bordgr e
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The hypothesis that Fus is a full subcategory of C' ensures that Theorem A applies to
TV theories. That hypothesis implies that

Qe[ = FSCat; (1.23)

see (1.9). Since FSCat C Cat, the (1, 2, 3) truncation Fyj 2 3y of F has the form (1.1).
Hypotheses (a) and (b) express that F; > 3y is an RT theory. A modular fusion category
is invertible as an object in the 4-category of braided tensor categories [S-P,BJSS];
hypothesis (b) captures this central feature of RT theories. It remains to explain what
it means that 8 is nonzero. Observe that the value of 8 on a closed 1-manifold is an
object in a finite semisimple complex linear abelian category, and the value of 8 on a
closed 2-manifold is a vector in a finite dimensional complex vector space. We require
that B take a nonzero value on some nonempty closed 1- or 2-manifold.

Remark 1.24.(1) The unit in our fusion category & may not be simple. We prove
(Corollary D.2) that & is Morita equivalent to a fusion category ®( with simple
unit. The category @ is canonical in terms of F = (F, B), whereas ®¢ is only
determined up to Morita equivalence.

(2) The relationship between F(S°) and ® is explained in Lemma 3.23 (in which Z is
a fusion category isomorphic to F(S°)).

(3) Theorem A gives an obstruction to a nonzero topological boundary theory: the
modular fusion category F (S,;) must be the Drinfeld center of a fusion category.
There is a simpler obstruction, even if we only assume F is a (2,3)-theory: the central
charge c—which is defined modulo 24—must vanish. To see this, let ¥ be a closed
3-framed surface of genus g > 3. Then mp of the automorphism group of Y is a
central extension of the mapping class group by Z, and the central Z acts® on the
state space F(Y) by the character ¢>71¢/12_If B is a nonzero boundary theory, then
B(Y) € F(Y) is an invariant vector, which we may suppose is nonzero for some g,
and so the center must act trivially.

(4) The modular fusion category F (S,l) does not determine the theory F completely
[BK]. For example, the Eg Chern—Simons theory at level 1 is invertible and the mod-
ular fusion category is trivial, whereas the theory is nontrivial—its central charge
is 8 mod 24—and it is not a Turaev—Viro theory. Therefore, by Theorem A’ below,
it does not admit a nonzero boundary theory.

(5) Atfirst glance it might seem that the hypotheses of Theorem A, which lead to (1.23),
are too restrictive: we might rather have nonsemisimple categories be possible values
of F(1,3). However, this is ruled out by Theorem 1.13 and a dimensional reduction
argument, such as in the proof of Lemma 3.4.

(6) A converse to Theorem A follows from the cobordism hypothesis. Namely, if @ is
a fusion category, then the Turaev-Viro theory T defined in (1.5) has a canonical
boundary theory built from the regular left ®-module ®, as in Theorem A’ below.

(7) In forthcoming work with Claudia Scheimbauer [FST], we construct an extension
of any RT theory which satisfies the hypotheses of Theorem A.

We prove Theorem A in Sect. 3.2.
Following a suggestion of Theo Johnson-Freyd, we can improve Theorem A by
making a slightly stronger assumption on C. We spell out that assumption in the following

8 See [MR] for the case of (wy, p1)-theories (as in Remark 1.2), where the generator of the appropriate
centrally extended mapping class group acts as e2mic/24 A framing trivializes (w1, w2, p1/2); the extra factor
of 2 explains the discrepancy between e271¢/24 here and ¢271¢/12 in the text.
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definition, which expresses the co-completeness of € under very special finite colimits
coming from tensor products.

Definition 1.25. Let C be a symmetric monoidal 3-category whose fully dualizable
part € contains the 3-category Fus of fusion categories as a full subcategory. Then
C is fusion tensor cocomplete if the following holds for all objects x, y, z € C:

(a) for every triple (¥, M, N) consisting of a fusion category ®, viewed as an algebra
object in Ende(1); a left ®-module M in C(x, y); and a right ®-module N in
Ende (1), the relative tensor product N X¢ M exists as a colimit of the bar resolution;

(b) for all H € C(y, z) the natural map (H o M) Xo N — H o (M Kg N) is an
equivalence;

(c) for all K € C(z, x) the natural map M Xgp (N o K) — (M Xg N) o K is an
equivalence.

Theorem A'. In the context of Theorem A assume in addition that C is fusion tensor
cocomplete. Then F is isomorphic to the Turaev-Viro theory Tg, and the boundary theory
is determined by the regular left module category ®.

We prove Theorem A’ in Sect. 3.3.

Remark 1.26. A more obvious hypothesis on C—namely that (i) for all x, y € C the
2-category C(x, y) of 1-morphisms is finitely cocomplete, and (ii) composition of 1-
morphisms in C is finitely cocontinuous—is too strong for many applications. (We thank
Sam Raskin for this observation.)

Remark 1.27. If F is isomorphic to the tensor unit theory, then for any Turaev—Viro rep-
resentative T the fusion category @ is endomorphisms of a finite semisimple abelian

category M. Under the isomorphism Tg —> 1, executed via the Morita trivialization
of End(M), the regular left ®-module goes over to the finite semisimple abelian cate-
gory M. Note that the (1, 2) part of the (0, 1, 2)-theory based on M assigns a semisimple
commutative algebra to S,}.

If from the beginning we work with (1, 2, 3)-theories (1.1), then the conclusion of
Theorem A’ can fail. For example, consider a (1, 2)-theory with ﬂ(Sé) = C[x]/ (x?), a
nonsemisimple commutative algebra. This theory is not extendable to a (0,1,2)-theory
with values in Q2 Fus = FSCat, so does not arise as in previous paragraph.

Remark 1.28. There is a generalization of RT theories (1.1) with codomain a 2-category
of “super” complex linear categories. Some developments in the theory of these
categories—which are either enriched over the category sVect -~ of super vector spaces or

are amodule category over sVect—especially for fusion supercategories, may be found
in [GK,BE, U]. Our main theorems generalize to allow supercategories in the codomain
[FT].

1.5. A characterization of fusion categories. En route to proving Theorem A, we prove
the following characterization of fusion categories.

Theorem B. Let W € Alg,(Catr) be a tensor category. Then \V is a fusion category iff

(i) W is 3-dualizable in Alg, (Caty), and
(i) ¥ as a left V-module is 2-dualizable as a 1-morphism in Alg, (Cat).
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Co Cy

Fig. 1. A 2-morphism Cp LI C L) ¢! in Bord,

The forward direction, proved in [DSS], is stated as Theorem 1.4. We prove the converse
in Sect. 3.1.

Remark 1.29. [BJS]Let A = C[x]/ (xz) be the non-semisimple algebra of dual numbers.
The tensor category W of finite dimensional A-A bimodules is Morita equivalent to
Vectg, so is 3-dualizable, but it is not a fusion category: for example, it does not have
internal duals. This example illustrates that ‘fusion’ is not a Morita invariant notion.
The dualizability in Theorem B(i) is Morita invariant, whereas the regular module in

Theorem B(ii) is not. For example, under the Morita equivalence which sends W to Vect -,
the regular left module g\ is sent to the linear category of A-modules, which is not the

regular left module over Vect. We regard Theorem A as a Morita invariant variant of
Theorem B.

2. Preliminaries

2.1. Bordism n-categories. As a preliminary, we recall features of bordism multicat-
egories and explain how they are encoded in the pictures we draw. In “Appendix A”
we give a formal and precise account valid in all dimensions; the heuristic exposition
here is focused on the low dimensional cases of interest. See [BM, CS, AF] for complete
constructions of the bordism multicategory.

2.1.1. Arrows of time Begin with Bord;, the 2-category of unoriented bordisms of

dimension < 2. An endomorphism ¢° < #° of the empty O-manifold is a closed
I-manifold. In the bordism 2-category its tangent bundle is stabilized to the rank 2
vector bundle R @ TC — C, where R — C is the trivial bundle of rank 1 with its
canonical orientation. This orientation is called an “arrow of time”. In a 1-morphism

ColIC; — @1, such as the one depicted in Fig. 1, the arrows of time distinguish incom-
ing and outgoing boundary components. An object P in Bord; is a finite set of points

with inflated tangent bundle R @& R — P. Figure 2 is a 1-morphism Py LI P; < 7.
Note that the manifolds Py, P; have two ordered arrows of time; the ordering is depicted
in our figures by the number of arrowheads. (In our conventions the indexing is by
codimension, so the single-headed arrow has index —1 and the double-headed arrow
has index —2.) The single-headed arrow of time is constrained to be compatible with
the single arrow of time of C; that is, corresponding trivial summands augmenting the
tangent bundle are identified at dC. The single-headed arrow of time in Fig. 2 carries no
information—it evokes the standard orientation of the trivial real line bundle over C—
whereas the double-headed arrows of time in Fig. 2 distinguish incoming and outgoing
boundary components. By contrast, the arrows of time in Fig. 5 do carry information;
they depict the standard basis of R @ R, so give meaning to the depicted framings.
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Fig. 2. A I-morphism Py I P, <> #° in Bord,

Pye—>% ] e P By | P,
Lo 4
s :
Rt I e e P
(@ (b)

Fig. 3. a A legal 2-morphism and b not a 2-morphism

N ¢ ~ fi
R L,

Fig. 4. A 2-framed 1-morphism

2.1.2. Constancy data A 2-morphism in Bord; is a compact 2-manifold ¥ with corners
and arrows of time together with constancy data [CS, Definition 5.1]. Namely, if ¥ =
10/0 I 1%_1 LI Io/_g is the partition into boundaries and corners, so dim )?_k =2 —k, then
there is a free involution specified on Y_, with quotient P and an embedding

[0,1]x P Y_; (2.1

such that the arrows of time are constant along the image of [0, 1] x {p} forall p € P.
Thus Fig. 3a is legal: the dashed vertical edges comprise the image of the constancy
embedding (2.1). The constancy gives rise to an interpretation of Fig. 3a as a 2-morphism

Co
/—'—\
PP Ay 70, (2.2)
\____/
CiUC,

essentially by collapsing the dashed edges. On the other hand, Fig. 3b is not allowed
because there is no embedding [0, 1] x {P;} — Y_; for which the specified arrows of
time are constant.

A formal specification of constancy data is (A.10), a consequence of Definition A.6.

2.1.3. Tangential structures The main point to emphasize is that in a bordism n-category
of manifolds of dimension < n, the tangential structure is on the stabilized rank n tangent
bundle. In particular, Fig. 4 is a valid 1-morphism in Bordfzr, the bordism 2-category
of 2-framed manifolds. In the figure the arrows of time are notated as earlier. The 2-
frame f1, f> is depicted as a long line segment (/1) followed by a short line segment ( f>).
There is no relationship imposed between the arrows of time and the tangential structure
(2-framing).

Remark 2.3. The relative positions of the framing and the arrows of time does have
significance, for example in Fig. 5.
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Lol

Fig. 5. The standard points

L $_l )

. Lo fi
Fig. 6. A 1-morphism in Bordzrqa

2.1.4. Two conventions We depict objects and morphisms in Bordgr as manifolds with
corners embedded in the Euclidean plane—the plane of the paper/screen—together with
arrows of time, constancy data, and orthonormal 2-framings. The first convention is that
we identify two such which are related by either a translation or a translation composed
with a reflection about either a horizontal or a vertical line. (If any such identification
exists it is unique, since it preserves the 2-framings.) Take the standard points +, — to be
those depicted in Fig. 5. Although our pictures lie in Bord, our arguments in the proof are

for Bordgr. (Only in the proof of Lemma 3.6 do we use truly 3-dimensional pictures.) The

second convention, then, is that we embed Bordgr in Bordgr by adding a trivial line bundle’

to the (inflated) rank 2 tangent bundle of each k-morphism in Bordgr. Furthermore, we

inflate orthonormal 2-framings to orthonormal 3-framings by prepending the standard
basis fj of the trivial line bundle to the 2-framing fi, f>. In the pictures we regard fy
and the aligned arrow of time as pointing into the paper/screen. (One should then slide
the indices fo, f1, f2 ~> f1, f2, f3 to normal positions, but we will not do so in the
text or figures.)

2.1.5. Duals and adjoints A topological bordism n-category or (0o, n)-category has all
duals and adjoints. Duals are formed by reversing an arrow of time. This can be done
at any depth, which reflects the O (1)*"-action discussed in [L1, Remark 4.4.10] and
[BS-P, §4]. For example, the two standard points in Bordgr , depicted in Fig. 5, are dual
by reversing the double-headed arrow of time. Right and left adjoints of morphisms are
constructed by a more complicated prescription which we specify in Sect. A.2.5.

2.1.6. Coloring with a boundary theory We now briefly describe a bordism 2-category
Bordgr 5 into which Bordgr embeds. (Use the second convention of Sect. 2.1.4 to extend

objects, 1-morphisms, and 2-morphisms to the 3-category Bordgr, 5-) A sketch of this

construction appears in [L1, Example 4.3.22]; details for Bordir’ 4:1 € 71 are provided
in Sect. A.3.

The 0-morphisms in Bordgr 5 are the same as 0-morphisms in B01rd£r a finite set of
2-framed points equipped with arrows of time. There are new 1-morphisms, such as
the one depicted in Fig. 6. The two boundary points are colored and the extra arrow of
time at colored boundary points is replaced by the conditions that the frame vector fj
be tangent to the colored boundary and that f> be an inward normal.'? Effectively, we

have a 1-framing at those points. There are, of course, new 2-morphisms, such as the one

9 For remarks on conventions, see Remark A.l. We index by codimension, so for Bordlgr the indices
are —1, —2. — 3. We might have used ‘ f_1, f_2, f—3’ for the framings, but that would have been a step too
far.

10 This is appropriate for a boundary theory 1 — 7_, F; for a boundary theory T_, F — 1 we require that
> be an outward normal. B B
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L 1

2 Y 4
LT—=1 L =711
. A fi
Fig. 7. A 2-morphism in Bordi 9

~

<«

Fig. 8. The new picture /

depicted in Fig. 7. In terms of the partition ¥ = Yo LI Y_ LI Y_,, there is a submanifold
with boundary é_ i é_2 C )0’_1 A )o’_z that is colored with the boundary condition;

in Fig. 7 we have l§72 = 10/72, and Ioffl\éfl consists of three open line segments.
There are no arrows of time on é_l. The constancy data (2.1), vacuous for Fig. 7, is as

in Sect. 2.1.2 with l;_z\é_z replacing ?_2. (Fig. 14 illustrates the constancy data.)

Remark 2.4. A boundary theory (1.22) for an n-dimensional theory is essentially an
(n — 1)-dimensional theory. This explains why at a boundary component “colored” with
a boundary theory there is one fewer arrow of time and a constraint on the tangential
structure.

Remark 2.5. There does not exist a 2-morphism in Bordgr from which Fig. 7 is obtained
by coloring a subset of the boundary (with inward arrow of time).

Remark 2.6. Intuitively, the colored boundary components include a time direction—
they are timelike—which motivates our convention about which frame vector is con-
strained; see Remark A.1.

2.1.7. Natural transformations A boundary theory 8 of a topological field theory F'is
a natural transformation of functors out of a bordism category; see (1.22). The pair F =
(F, B) is best encoded as a functor out of Bord,, 5, as in Sect. 2.1.6. In this section we
introduce new “pictures” which encode the idea of a natural transformation, and then
too an algorithm for converting them to morphisms in Bord,, 5. We do not use these new
pictures in the sequel, which justifies the sparse provisional account here of a single
example.

Remark 2.7. We leave open the question of whether there is a single bordism category
which includes Bord,, 5 as well as the new pictures.

Introduce the manifold 7 = [0, 1], embellished as in Fig. 8. We view it as 1-framed,
with framing vector aligned with the arrow of time. Let X be a k-morphism in Bord®,
k € {0, 1, 2}, and consider the Cartesian product / x X. For example, in Fig. 9a we
have the 1-morphism X = id,, the identity map on the + point. Using our numbering
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(p) /O/fo c(q)
LC 3 <
pPe p —_<fh 4 ® q fo
—> X —> f
2

(2) (b)

(€))

. .. . . . . f
Fig. 10. Two maneuvers: Fig. 9b ~~~> a 2-morphism in Bord;’ 5

convention 0, 1, 2 in Bordgr—which replaces the more uniform convention —1, —2, —3
used in “Appendix A”—we choose to number the directions in Bordgr as 0, 2 and the
direction in / as 1. Thus in Fig. 9a the frame vector f{ and 0-arrow of time point into the
paper/screen. The frame vector f> and 2-arrow of time point to the right. The Cartesian
product I x X is Fig. 8b, with arrows of time and constant 3-framing as indicated.

ey

@

3)

We now proceed in three steps to convert Fig. 8b to a 2-morphism in Bordgr 9

Rotate the frame through angle /2 in the fi—f> plane: send f, — f] and f; —
— f2. Use our standard pictorial representation of the frame vectors f1, f> and omit
the pictorial representation of fj; it points into the paper/screen everywhere in
subsequent pictures.

Now convert to a 2-morphism in Bordgi - Let c(3X) = c(p) U c(q) be a collar
neighborhood of the boundary, as in Fig. 9a. For the incoming boundary point p,
“pull” the colored boundary in Fig. 9b “down” through c(p) x I and rotate the
framing accordingly, as depicted in Fig. 10a. Let I’ = [1,2], viewed as glued
“above” I = [0, 1]. For the outgoing boundary point g, “pull” the colored boundary
in Fig. 9b “up” through c(g) x I’ and rotate the framing accordingly, as depicted in
Fig. 10b. There is a new edge which connects to the dotted edge. The arrows of time
on the new edge and on the new vertex are fixed by the constancy condition along
the dotted edge. The result can be redrawn in a more standard form; see Fig. 11.
Finally, in a tubular neighborhood of the outgoing dotted boundary, rotate the frame
through angle /2 in the fi- f> plane by the inverse of the rotation in step (1): send
f1 — f>» and f, — — f1. The result is depicted in Fig. 12.
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| —=>
[-/\_I\l/_l_li
i
]
]
]
I'/\—ll—l—l!
T 5

Fig. 11. The 2-morphism in Fig. 10b redrawn

| g | g
T~ VA~ T rr rovr r
'~ |
T i
r~ = ~ T rrr rori
U Ua—

(@) (b)

Fig. 12. a The third maneuver, b the 2-morphism idj, in Bordgr P

The 2-morphism represented by Fig. 9b is derived from the diagram

g g0 2.8)
1

which is a map b, oidgp = id, ob,, namely the identity map idy, : by = b,. This is
precisely the 2-morphism depicted in Fig. 11.

Remark 2.9. 1t is instructive to carry this out for the coevaluation ¢ and the evaluation e.

2.2. A higher categorical preliminary.

2.2.1. Internal homs Let ./\/l be a (weak) 2-category. A 1-morphism x i) y in M

defines a functor M (z, x) —> M(z, y) for any z € M. We call its right adjoint, if it
exists, the right internal hom functor:

fo-

M(z, x) Mz, y) . (2.10)

Hom®(f.-)
The left internal hom is defined as a right adjoint for right composition for any w € M:

7Of

M(y, w) M(x, w) . (2.11)

Hom"(f,-)
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See [W] and [MaSi, §16] for discussions.!!
If M is a symmetric monoidal 2-category, and the 1-morphism f has right and left
adjoints f R f L in M, then there are natural isomorphisms

Hom®(f,g) = fRog e M(z.x), gz, o1
HomL(f,h) EhofL € M(y, w), h:ix — w. .
If h =g = f,hence z = x and w = y, then we use the notations
End”(f) := Hom"(f, /) = ff o f € M(x, ), o

End”(f) := Hom"(f, ) = fo fX e M@, y).

The 1-morphism End®(f) is an algebra object in the I-category M (x, x), and
End”(f) is an algebra object in M(y, y). The unit of End®(f) is the unit 1 — f%o f
of the adjunction, and the multiplication uses the counit f o fX — 1 of the adjunction:

End®(f) o End®(f) = f¥o (fo fF)o f — fFof=End"(f). (214
The formulas for End” (f) are similar.

Remark 2.15. This discussion applies to n-categories, n > 3, by taking 2-categorical
slices.

Remark 2.16. A symmetric monoidal functor preserves internal homs, internal endo-
morphisms, and the composition laws.

2.2.2. Internal homs in Fus and Alg;(Cat:) Recall from Definition 1.7 that Fus is a
symmetric monoidal 3-category whose objects are fusion categories. Our convention,
different than some references, is that a (B, A)-module category M is a 1-morphism
M: A — B in Fus. This convention renders tensor products and compositions in the
same order. The following results are generalized in [BJS, §5.1].

Proposition 2.17 [DSS, §3.2.1]. Let A, B € Fus and M: A — B a finite semisimple
(B, A)-bimodule category. Then M has right and left adjoints, and we can take them to
be

MR = Hompg (M, B),
M"Y =Homu (M, A).

Corollary 2.19. If also C, D € Fus and N:C — B, P: A — D are finite semisimple
bimodule categories, then

(2.18)

Hom® (M, N) = Homg (M, N),
. (2.20)
Hom™ (M, P) = Hom (M, P).

In particular,
End® (M) = End (M),

. (2.21)
End™ (M) = End s (M).
11 We thank Emily Riehl for correspondence and for pointing us to [W]. The nonstandard terminology and
notation are our responsibility. The name ‘right internal hom’ is apt if z = x, and ‘left internal hom’ is apt
ifw=y.
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Furthermore, the algebra structure on End® (M) (and End:(M)) is composition of
module functor endomorphisms.

Proof. All but the final assertion follow from Proposition 2.17 and [DSS, Proposition
2.4.10]. For the algebra structure on E_ndR(M), the unit 1 — MR o M is the (A, A)-
bimodule map

A —s Homg(M, B) X M = Endg(M) (2.22)

which maps a € A to right multiplication by a; in particular I € A maps to the
identity endomorphism of M. Since the counit M o MR — 1 is the evaluation map, the
multiplication (2.14) on End® (M)
Endg (M) X4 Endg (M) = Hompg (M, B) KXp (M X4 Homp (M, B)) Xp M
— Hompg (M, B) Xg BXpg M = Endg(M)
(2.23)

is the usual composition of endomorphisms of M. O

We prove a partial converse to Proposition 2.17 in Alg, (Cat), which for convenience
we state for right adjoints only.

Proposition 2.24. Suppose A, B € Alg|(Cat.) and M: A — B has a right adjoint N.
Then N = Homp (M, B) as (A, B)-bimodule categories.

Proof. The adjunction can be expressed as isomorphisms
Hom4 (X, N Xp Y) —> Homp(M K, X, Y) (2.25)

which are functorial in left A-module categories X and right A-module categories Y.

Choose X = A and Y = B to obtain the desired isomorphism N —> Homgpg (M, B).
The isomorphism intertwines the right A-action on X and the right B-actionon Y. 0O

3. Proofs

3.1. Proof of Theorem B. To begin, assume given a symmetric monoidal 3-category C
such that QCM Cat; and a symmetric monoidal functor F: Bordgr,a — C. The
restriction of F to Bordgr is denoted F', and we define § as in (1.22).

Diagrams for the extended theory F: Bord‘;r’8 — C, are drawn according to the rules

of Sect. 2.1.6; see Sect. A.3 for more detail. Figure 13 depicts a 1-morphism b,: #° — +
in Bordg’8 C Bord:f{3 and its right adjoint b¥: + — @0, the latter constructed according
to Sect. A.2.5. The F -image of by is B(+): 1 — F(+). The cobordism hypothesis with
singularities [L1, §4.3] implies that the right adjoint boundary theory gX: T, F — lis
determined by F(+) and 8% (+) := F(bX), hence the verification that S is right adjoint
to B proceeds by producing a unit and counit (Fig. 14) for an adjunction between b,
and bf in Bordga, and then using their F-images to exhibit % (+) as the right adjoint
of B(+)in C.

Definition 3.1. Set
® = F(End®(b,)) € Q€™ c Cat,. (3.2)
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.—T—.Z” = ﬁq—-bﬁ
L L L L — 1

Fig. 13. The 1-morphisms whose F -images are 8(+) and /3R (+)

id,
L oL L o 1 Lk L o L -
T o R | =

L _ L

- oy AL ;O\ 273

Lo L LTL

Fig. 14. The unit I — b¥ o by and counit by o bR — 1

End"(b,)
L — 1
Fig. 15. The category ® is the F-image of End® (by) = bR o by

L o
[ Bud®(ey)

¢m”<b+/\m"<b+w
Ll =1 L = N

Fig. 16. The monoidal structure of ® is the F -image of this 2-morphism

See Fig. 15 for a depiction of End® (b.). Also, note we can write ® = End®(B(+)).
By virtue of being End® of a 1-morphism, ® is an algebra object in Catg,ie., Pisa
tensor category. The composition law (2.14) is the F-image of the 2-morphism depicted
in Fig. 16.

Proposition 3.3. © is a fusion category.

The proof of Proposition 3.3 is broken up into Lemmas 3.4 and 3.6.

Lemma 3.4. & is a finite semisimple abelian category.

The stronger hypothesis of Theorem A, that Fus C € is a full subcategory, immediately
implies Lemma 3.4 in view of (1.23). Under the hypotheses of Theorem B we use the
following argument.

Proof. The 1-morphism in Bordga depicted in Fig. 17 has left boundary colored with

and right boundary colored with BR. It evaluates under (F, 8, %) to ®. Define the
dimensional reduction

F: Bordgr — FSCat (3.5)

of F as the theory whose value on any object or morphism in Bordgr is the value of F
on its Cartesian product with the 1-morphism #° — @ in Fig. 17. Since the 2-framing
of the latter is induced from a 1-framing, the Cartesian product is naturally equipped
with a 3-framing. The lemma now follows since F (+) is a 2-dualizable category, hence
is finite semisimple abelian by Theorem 1.13. O
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L_AI_L L

Fig. 17. A 1-framed bordism with boundary theories 8 on the left and 8 R on the right

—

s s L1 L.
L g
L 1 ’
r 1 L J
A i ) 2 2
L= 1 L=" L =T L ="

Fig. 19. Multiplication followed by the counit and its duals

Lemma 3.6. ® is a rigid monoidal category.

That is, ® has internal left and right duals [EGNO, §2.10]. See “Appendix C” for a
discussion and generalization of rigidity.

Proof. As acorollary of Lemma 3.4, the dual ®" to @ in FSCat is its opposite category.
We prove rigidity by verifying the hypotheses of Theorem C.1.

_ The unit of ® is the F-image of the first 2-morphism in Fig. 14. Its right adjoint has
F-image the counit ¢ of (C.3). We implement the prescription of Sect. A.2.5 to compute
it. The main concern is the 3-framing which results on the boundary of the hemidisk;
it necessarily extends to the interior, and since 7.5 O3 = 0 that extension is unique up
to isotopy. The result is illustrated in Fig. 18. Recall (Sect. 2.1.6) that the frame vectors
are labeled!? fos f1, f2; that f is depicted as long, f> as short; and that in all previous
pictures, such as Fig. 14, the vectors f1, f» lie in the plane of the paper/screen and
fo is perpendicular to that plane and points into the paper/screen. Now, in Fig. 18, the
vectors fp, f1 rotate in the plane perpendicular to f, as we descend from the incoming

—

s
S
S

boundary. The dashed line in indicates that f points into the paper/screen; the solid

wedge in 4 indicates that f] points out of the paper/screen. Compose this right adjoint
with the multiplication depicted in Fig. 16 to compute the 2-morphism in Bordgr whose
F -image is the pairing B of “Appendix C”. It and the 2-morphisms obtained from it
by duality (C.5) are depicted in Fig. 19. The Frobenius condition of Definition C.7 is
satisfied since the latter two 2-morphisms are invertible in Bordgr.

The right adjoint bordism to Fig. 16, computed following Sect. A.2.5, is depicted
in Fig. 20; its F-image is the comultiplication A on ®. Again it suffices to compute
the framing on the boundary. Notice that the half-turns in the framing cancel on the
vertical colored edges, whereas they cohere into a full turn on the colored half-circle.

12 The numbering 0, 1,2 corresponds to the numbering —1, —2, —3 by codimension utilized in
“Appendix A”.
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rv- 4 r=vl

Fig. 20. The right adjoint to Fig. 16

v \/ 12 v v 12 v

| /\ | | | | |

13 ¥ 12 v v v

Fig. 21. Comultiplication is a bimodule map

L L L L L L
+o+o— —._T—.+
—> € <« <« ¢ —>

Fig. 22. Duality of + and —: evaluation and coevaluation

The second condition in Theorem C.1, that the comultiplication is a bimodule map,
follows immediately from Fig. 21. O

Remark 3.7. In the context of Theorem A, identify the category & with its collection of
objects Hompy (1, ) = Homera (1, @). By duality,

Homeu (1, ®) = Homen (1, 8% (+) 0 B(+)) = Homeu(B(+), B(+)),  (3.8)
which explains the last statement in Theorem A.
Proof of Theorem B. As pointed out earlier, the forward direction follows from Theo-
rem 1.4. For the converse, first apply the cobordism hypothesis to construct F': Bordgr —
Alg; (Cat) with F(+) = W, and then apply the cobordism hypothesis with singular-
ities to construct an extension F: Bordgr 5 — Alg;(Cat) whose associated boundary

theory B:1 — t_, F has B(+) = w¥, the regular left W-module. The category defined

in Definition 3.1 is ® = End®(y¥). By Proposition 2.24 the right adjoint to W is
Homy (W, W), which may be identified with Wy, the regular right W-module. Hence
o = MR(WW) = ¥ Xy ¥ = W. Conclude using Proposition 3.3. O

3.2. Proof of Theorem A. The + point and — point (Fig. 5) are duals in Bordgr. Choose

duality data as the evaluation e: + LI— — ¢° and coevaluation ¢: ¢ — — II + 1-
morphisms depicted in Fig. 22. One of the “S-diagrams”

(+%+H—H+&m>+)%(+i+) (3.9)

that proves that (—, ¢, ¢) are duality data for + is the 2-morphism of Fig. 23.
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Fig. 23. The S-diagram (3.9)
[

iy P NS B
«— et —> <« ol —>

Fig. 24. The right and left adjoints to e

-+

€

EL

Fig. 25. The isomorphism S} = ¢ o el in Bord{f

The 1-morphism e has right and left adjoints R, e%: #° — — L1+ depicted in Fig. 24.
Their construction follows the general prescription in Sect. A.2.5; see especially Fig. 30.

In Bordgr they are distinct and distinct from coevaluation: e® # ¢ # ¢l In Bordgr we

have e& = R since 11 SOz = Z /27 with generator a full rotation of the frame fo, f1, f2

in the fi-f> plane. In Bordgr we have an isomorphism
S} =eoel =End"(e) (3.10)
illustrated in Fig. 25.

Remark 3.11. In Bordgr the nonbounding 3-framed circle S,% satisfies the isomorphism
Sl=eoc. (3.12)
Define the 2-framed 0-sphere as S° = + LI —. Note e: S© — ¢°.

Proposition 3.13. Let F satisfy the hypotheses of Theorem A. Let E be a fusion category
which is isomorphic to F (S°). Then E is Morita equivalent to F (S }1) as fusion categories.

Recall that a fusion category is indecomposable if it is not a nontrivial direct sum.
As a preliminary we prove the following.

Lemma 3.14. E is an indecomposable fusion category.
Proof. As in Remark 1.16 introduce the double theory
|F|*: BordT — Fus (3.15)

characterized by |F|>(+) = E = F(S) = F(+) ® F(—=) = F(+) ® F(+)". Then by
Hypothesis (b) of Theorem A, deduce that |[F|*(S}) = F(S}) K F(S})™ is invertible
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b_ by

Fig. 26. The bordisms b_ and b4

as a braided tensor category. (Recall that the reverse of a braided tensor category is the
same underlying tensor category equipped with the inverse braiding.) On the other hand,
|F |2(S,1) is the Drinfeld center of |F|*(+) = E. Since the Drinfeld center of the direct
sum of tensor categories is the direct sum of the Drinfeld centers, and a nontrivial direct
sum is not invertible, it follows that E is indecomposable. O

Proof of Proposition 3.13. Define

M= = F(s% 9, (3.16)

where 1 = F(#) = Vecty € Fus C Cis the tensor unit. Since Fus C € is a full
subcategory, M is a 1-morphism in Fus. By (3.10) and (2.21) we have the categorical
equivalences
F(S)) ~eu F(End"(e))
~ca End" (F (o))
~cq End g (M). (3.17)
The last assertion of Corollary 2.19 implies that (3.17) is an equivalence of tensor
categories.
To conclude the proof of Proposition 3.13 we must show that M is a faithful right
E-module. According to the remark after [EGNO, Definition 7.12.9], this follows from

Lemma 3.14 since F(e) is nonzero by virtue of being part of the duality data between
F(+)and F(—). O

Since @ is a fusion category, as in (1.5) the cobordism hypothesis produces
To: Bordgr — Fus, (3.18)
a theory of Turaev—Viro type with T¢(+) = . Then Tq;(S,l) is the Drinfeld center
Z(®) = Endg, 50, (D), (3.19)

where T (S?) = To(+) K Top(—) ~ & X &, (Here ®™° is the monoidal opposite to
the monoidal category @, which is its dual in Fus.) We identify

To = End® () (3.20)

as algebra objects in the 2-category of symmetric monoidal functors Bordgr — QC =
FSCat.

Let b_:¢) — — be the morphism dual to bR in Bordgr’ 4> obtained by reversing the
double-headed arrow; see Sect. 2.1.5 and Fig. 26. Let b+ = by L1 b_. Then the proof of
[JS, Proposition 7.10] implies that 8(—) = F(b_). Define the composition

Fb ~
N:1 22 B9 z. 3.21)
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Fig. 27. The equivalence (3.25)

Notice F(bi) = B(SY). As in the proof of Proposition 3.13, N is a 1-morphism in Fus.
Apply (3.20) and (2.21) to deduce an equivalence of tensor categories

To(S) = End®(N) = Endg(N). (3.22)
Lemma 3.23. The left B-module category N provides a Morita equivalence & =
T (S9).

Proof. As in the proof of Proposition 3.13, it suffices to show that N is nonzero. But
B(SY) = B(+) ® B(—), so if N = 0 then so too B(+) = 0, and then the cobordism
hypothesis would imply 8 = 0, which contradicts the hypothesis in Theorem A that § is
nonzero. O

Lemma 3.24. There is an equivalence of categories
D~ MX g N. (3.25)

Proof. The 1-morphisms bf and e o b_ are equivalent in Bordgf 4, as follows from
Sect. A.2.5 or directly by inspection of Figs. 13 and 27. Hence bR o b, is equivalent to
e o (b_ 1 by); compare Figs. 15 and 27. Apply F to deduce (3.25). O

Since the (E , Tep (S O))-bimodule N isinvertible—by Lemma 3.23 it induces a Morita
equivalence—from Lemma 3.24 we deduce that tensoring with idy induces a tensor
equivalence

o
o: Endg (M) — > Endy, 50, (). (3.26)

By (3.17) and (3.19) this is a tensor equivalence
a: F(S}) — To(S)), (3.27)

since T (S g) is the Drinfeld center of ®. To complete the proof of Theorem A we need
the following.

Lemma 3.28. « is a braided equivalence.

Proof. We have already proved that « is a tensor equivalence; it remains to verify the con-
dition that o preserve the braiding. Lemma 3.23 states that the (E, To (S 0))-bimodule N

—~

induces an isomorphism'> & — T¢(S°) in Fus. By the cobordism hypothesis this
induces an isomorphism

0: F4 — T¢ (3.29)

—~

13 Our conventions are that N is a 1-morphism Tq;(SO) — &, but in this proof we use categories of right
modules rather than left modules, and so the convention applies oppositely.
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of topological field theories BordT — Fus, where F¢(+) = E and 7§ (+) = To(5%) =
R P, (F9 s essentially the double theory of Remark 1.16.) Let F¢: Bordgi 5 — Fus
be the extension of F¢ with boundary theory 8¢ characterized by

gl+):1 5 F(sY = E. (3.30)
Repeat the arguments above for F9: introduce 29 = E X E™°, the right 24-module

M9 = Fi(e), the left 2¢-module N? = ,Bd(SO), and the tensor equivalence

Xid
ad: FA(sh) — 20, Td(sh). (3.31)

Wehave M? = MM’ and N¢ = NXIN’, where the primed £™°-modules are computed
in the theory whose value on + is F'(—). Hence in the doubled theories (3.25) becomes

q) |X| @mo :C}it (M & M/) |X| = X gmo (N @ N/), (332)

and o tensors with id Since tensoring with N is the isomorphism (3.29) of

NKIN’*
theories, it follows that the induced map on Drinfeld centers is (3.31), i.e., o = G(Sg).

Therefore, a¢ is a braided tensor functor, and then so too is its restriction to
F(SH=F(SHR1 c F(SHRFSH < Fi(S)). (3.33)

This completes the proof of Lemma 3.28, and so too of Theorem A. O

3.3. Proof of Theorem A’. For the remainder of this section we put in force the stronger
hypotheses that € is fusion tensor cocomplete. This allows the following relative com-
position in terms of the notation of Definition 1.25. If H € C(y, z) is a right ®-module,
then define

H Op M = (HOM) |Z|q)|g<pmo o. (334)

Proof of Theorem A'. By the preceding it suffices to prove that F is isomorphic to T,
and by the cobordism hypothesis it suffices to construct an isomorphism F(+) — &
in C. Consider

o221 P9 r, (3.35)

where ®¢ is the regular right ®-module. The fusion category ® = B(+)% o B(+) acts
on ®¢ on the left and on B(+) on the right. Define g: ® — F(+) and h: F(+) — P as

g =pBH) op Do (3.36)
h=o® oy BHX. (3.37)

We claim that g and 4 are inverse isomorphisms. First,

hog=o® oy BHF o B(+) of @

(3.38)
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is the (@, ®)-bimodule which represents ide. In the other direction,
goh=p() op Po 0 0P op BB
=B(+) o BB
as an endomorphism of F(+). Dualize B(+)* to transpose g o i to a 1-morphism
(gom':1 — F(+) ® F(—) = F(S), (3.40)

and since the dual to ,3(+)R is B(—) we find

(3.39)

(gohT =B(SHK ®. (3.41)

PRI Ppmo

Now g o h = idfp(4) if and only if (g o )T is the coevaluation of a duality pairing
between F(+) and F(—). Recall the coevaluation 1-morphism c in Bordgr (Fig. 22)

which in the theory T evaluates to Tgp(c) = ®:1 — &K O™, Also, B(50) = F(bi)
is essentially the module N in (3.21). Thus rewrite (g o T as the composition

(gom)T:1 229, 75059 s 8 = F(sY). (3.42)

I

Note Lemma 3.23 implies that N: Tp(S%) — Zisan isomorphism. Therefore, (3.41) is
the desired coevaluation map and so g o h = idp(y). O

4. Application to Physics

A quantum mechanical system S is gapped if its minimum energy is an eigenvalue of
finite multiplicity of the Hamiltonian, assumed bounded below, and is an isolated point
of the spectrum. This notion generalizes to a relativistic quantum field theory if we
understand ‘spectrum’ to mean the spectrum of representations of the translation group
of Minkowski spacetime. A basic question:

Does a gapped system S admit a gapped boundary theory? “.1n

We argue heuristically that Theorems A and A’ gives an obstruction for certain (2 + 1)-
dimensional systems. We remark that the chiral WZW model is a gapless boundary
theory for Chern-Simons theory [W2], so at least for these systems a gapless boundary
theory exists.

We reduce (4.1) to a question in topological field theory by application of the follow-
ing two heuristic physics principles:

(1) the phase of a quantum system is determined by its low energy behavior;
(2) the low energy physics of a gapped quantum system is well-approximated by a
topological™* field theory.

For now we ignore the “*” in ‘topological®’. Principle (1) seems incontrovertible, though

unproved, whereas (2) is more problematic. For example, certain “fracton” lattice sys-
tems seem to have no continuum limit as a standard field theory. Nonetheless, (2) appears
to hold in many important cases; we simply assume it here. Applying these principles
to both the bulk and boundary systems, the general problem (4.1) reduces to a question
in topological field theory: Does a topological field theory F admit a nonzero boundary
theory 8? If not, then the answer to (4.1) is ‘no’. If the topological field theory F does
admit a nonzero boundary theory , then we need a converse to (2) to construct a gapped
boundary theory.
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Remark 4.2. We suspect that the answer to (4.1) depends only on the phase of S, that is,
its path component in a putative moduli stack of gapped systems.

We now explain the “*” in ‘topological*’ by means of an example that is a main

focus of interest. The starting point is a quantum field theory, though one can imagine a
lattice model in its place. Namely, let S be (2+ 1)-dimensional Yang—Mills theory with a
nondegenerate Chern—Simons term. The latter gives the gauge field a mass, which means
that the system is gapped. Its low energy physics is thought to be well-approximated by
a pure Chern—Simons theory I". Observe that S in its Wick-rotated form is a theory of
manifolds equipped with an orientation and Riemannian metric. In other words, it is a
functor on a geometric bordism category of oriented Riemannian manifolds. The naive
expectation is that I" is a functor on the same bordism category, and this is the case.
In fact, as discussed by Witten [W1, §2], the dependence on the Riemannian metric is
mild: “locally” I is the tensor product of a fopological field theory F and an invertible
non-topological field theory «,., where ¢ € R is the central charge. More precisely,
the pullback of I" to the bordism category of 3-framed Riemannian manifolds splits as
I' = F ® .. The theory F is topological—it does not depend on a Riemannian metric.
It is an example of an RT theory as described in Sect. 1. The invertible dependence of I"
on the metric through o is the “*’ in ‘topological*’.

The invertible theory o descends to a theory a1 5© with domain the bordism category
of oriented Riemannian manifolds. Its partition function on a closed oriented Riemannian
3-manifold X is the exponentiated n-invariant exp(2winy/2), where ny € R/27Z is the
secondary invariant associated to the signature operator [APS]. The deformation class
of a1 59 is a generator of the abelian group [M T SO, £*I7Z] of invertible theories, and at
least conjecturally it can be constructed using generalized differential cohomology. (We
refer to [FH,F2] for notation and details.) The deformation class of the lift o of a15°
to 3-framed manifolds vanishes, since

[MTSO, x*17] — [S°, 2*17] (4.3)

is the zero map. In terms of the differential cohomology construction, the equivalence
class of 1 belongs to the subgroup of topologically trivial theories, so is defined by a
universal 3-form: one-third the “gravitational Chern—Simons term”. Then for any ¢ € R,
the family o, 0 < t < 1, is an explicit deformation of the trivial theory to «.. Put

differently, it is a “nonflat trivialization” B: 1 —> 7_,0 of the truncation T_,ct.'*

In other words, «. is equipped with a boundary theory; compare (1.22). Therefore,
topological® boundary theories for I' correspond to topological boundary theories for F.

Theorems A and A’ give an obstruction to the existence of a nonzero topological
boundary theory for F: the theory F must be of Turaev—Viro type. If not, then the
heuristics in this section suggest that there are no gapped boundary theories for Yang—
Mills plus Chern—Simons, nor for a lattice system meant to represent the same phase. It
would be interesting to construct a gapped boundary theory for Yang—Mills plus Chern—
Simons in case F is of Turaev—Viro type.

Remark 4.4. One implicit assumption in Principle (2) is that a gapped quantum system
exhibits relativistic invariance in the long-range approximation. The Wick-rotated man-
ifestation is the fact that the domain bordism category is made from manifolds whose
tangential structure does not break O3 further than the subgroup S Os. In particular, a

14 An example of a nonflat trivialization is a not-necessarily-flat section of a circle bundle with connection.
The notion of nonflat trivialization should be part of an axiomatization of families of field theories.
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3-framing breaks relativistic invariance. Here the 3-framing is introduced to isolate the
metric dependence of I" to the invertible theory «.; the physically relevant theory has
SOs3-invariance.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Appendix A. Bordism Multicategories

In this appendix we give the precise definitions behind the descriptions in Sect. 2.1 and the
pictures throughout Sects. 2 and 3. Complete constructions of the bordism multicategory
appear in [CS, AF] among other references. In these approaches an object or morphism
is equipped with a global map to a cube or stratified ball, and this data is used to define
composition laws. Our limited goal here is to define objects and morphisms in Bord,,
with minimal data localized at the boundary; they too lead to composition laws, though
we do not pursue the latter.!> Underlying a bordism is a manifold with corners, so we
begin with a quick review in Sect. A.1. Then in Sect. A.2 we specify the additional
data required for a morphism in the bordism multicategory. A similar discussion is in
[CS, §8.1], based in part on [La]. We incorporate “colored boundaries”—morphisms
in Bord,, 5—in Sect. A.3.

Remark A.1 (Some conventions). In this paper we use fopological bordism multicate-
gories, but we take inspiration from geometric bordism multicategories. In a geometric
bordism category—the domain of a non-topological field theory—a k-morphism is a
k-dimensional compact manifold X with corners which comes equipped with embed-
dings

XO 5 xM 5. 5 xeh _x (A2)

where dim X® = n —i and X©@, ... . X (n—k=1) are germs of smooth manifolds. The
successive normal line bundles are oriented: these orientations are “arrows of time”.
The trivial line bundles in the stabilization (A.14) are what remains of this structure
in the topological bordism category, and their standard orientations are the remnants
of the arrows of time into the germs.'® Our indexing of these trivial line bundles is
—1,—-2,..., —(n — k), reading from left to right in (A.14) and use the standard orien-
tations.

A word about ‘time’ and ‘space’. In topological field theory, which is modeled on
Wick-rotated field theory, there is no notion of time versus space: the passage from
Lorentz geometry to Euclidean geometry discards the unique time dimension in favor
of an additional space dimension. Still, the codimension 1 boundary of an n-manifold
in Bord,, plays the role of a spatial slice, hence its normal bundle can reasonably be said
to represent time, for example as depicted by the arrows in Fig. 1. In higher codimension,
for example the double-headed arrows in Fig. 2, the interpretation as a “time” is only
figurative.

Our convention is to order line decompositions of the inflated tangent bundle by
codimension from the top dimension of the theory, in order of increasing codimension,

15 Nor do we specify collaring data which would give a smooth structure on compositions.

16 We could instead specify a completion of 7X to a flag: TX C E®=k+D < ... < E(M and orient the
successive quotient line bundles, but we opt for the simpler stabilization (A.14).
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and we use the labels —1, —2, ..., —n for the summands. (See Sects. A.2.2, A.2.3))
Heuristically, the first direction is “temporal” and the remaining n — 1 directions are
“spatial”.

In the main text we embed Bordgr — Bordgr, which facilitates the pictures;
see Sect. A.2.6. As far as we know, this does not correspond to anything in physics; itis a
convenient mathematical device. The direction we add is “temporal” in our conventions,
but again that choice has no physical meaning. By contrast, dimensional reduction—say,

1
along a circle—is effected via a map Bord,, x5, QBord,,, and this Cartesian product
map is easily checked to be compatible with our labeling conventions.
In Sect. A.3 we bring in “colored” boundaries. They model boundaries in space, not
boundaries in time, and so the transverse direction is “spatial”’; see (A.35).

A.l. Manifolds with corners. There are several definitions and a long history of the
subject of manifolds with corners, both of which are reviewed in Joyce [J]. He develops
the theory in detail, and we defer to his paper and the references therein for details.

Fix k € Z=°. A neighborhood of a point in a smooth k-manifold is modeled by an
open set in real affine space A¥. Similarly, a neighborhood of a point in a k-manifold
with corners is modeled by an open set in

A"Soz[(xl,...,xk)eAk:xifO]. (A3)

The usual notions of chart and atlas generalize accordingly. A point x = (x!, ..., x%) €
Akso has depth j € 770 if precisely j of its coordinates vanish. The depth is invariant

under diffeomorphism of open sets in A’;O, so is a well-defined function
depth: M —> 7=° (A.4)

on a manifold M with corners. For j € {0, ..., k}, let M_j C M denote the (k — j)-

manifold of points in M of depth j, and let M_; C M be the closure of M_ j- If the
maximum value of (A4)isd € {0,...,k}, we say M is a manifold with corners of
depth < d and we call d the depth of M. If d = 1, then M is a manifold with boundary.
There is a canonical filtering and partition

M=My>DM_1D>--D>M_y

o o o (A5)
=My UM_; I.---UM_,
A face of M is the closure of a component of M_;.

The tangent space T;, M to M atm € M is a k-dimensional real vector space. If m has
depth j, then there are j transverse hyperplanes H, ..., H; C T, M and orientations
of the lines 7,, M/ H;: the positively oriented direction leads out of M.

Variant definitions of ‘manifold with corners’ include global constraints and/or data
in addition to the local normal form. For example, one might require that every point
of depth j lie in j distinct faces. The bigon in Fig. 28 satisfies this condition, whereas
the teardrop does not. There are more stringent possible global specifications; see [J,
Remark 2.11] and the references therein. The extra data we introduce in Sect. A.2 to
define a morphism in a bordism multicategory endows the underlying manifold with
corners with the data/constraints to be of these more restricted types.
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< > =

(a) (b)
Fig. 28. A bigon (a) and a teardrop (b)

x4 | I_» «_I X,

A,_______M
2
5

Fig. 29. A 2-morphism of depth 2

There are two distinct notions of the boundary of a manifold with corners. For our
purposes we define dM = M_ as the closed subset of points of positive depth. This is
not generally a manifold with corners, as Fig. 28 illustrates. However, there is a “blow
up” which surjects onto d M and which is a manifold with corners; see [J, Definition 2.6].

A.2. k-morphisms in Bord,,.

A.2.1. The definition Fix n € 70 For k € {0, ..., n} we specify the data of a k-
morphism in Bord,. (For k = 0 it is an object in Bord,,.) Tangential structures are
introduced in Sect. A.2.4.

Definition A.6. Fix n, k as above and suppose d € {0, ..., k}. Let X be a compact k-
dimensional manifold with corners of depth < d. The data of a k-morphism of depth d
on X are:

(1) ifd > 1, closed (k — d)-manifolds ng, Xl_d, not both empty;
(i1) if d > 2, recursively for j = d — 1,d — 2,...,1 compact (k — j)-manifolds
X0 X L j with corners of depth < d — j equipped with diffeomorphisms

§ . yO0 0 1 1 S
o2 X0 U [0,1]x{xf(j+2)uxf(j+2)} U X! — 9X0)),

8 €{0,1}, (A7)
; 0 1 0 1
where t.he unions are along {0} x {X_(j+2) I_IX_(J.+2)} and {1} x {X_(j+2) LIX_(].+2)},
respectively;
(iii) if d > 1, a diffeomorphism
0o: X°, U [0,1] x |X92LIX‘_2} U x!, — ax, (A8)

where the unions are along {0} x {X(l2 | Xl_z} and {1} x {X(l2 A X1_2}, respectively.

Remark A.9.(1) See Fig. 29 for an example of a 2-morphism of depth 2. In that example
X 92 consists of two points, X 1_2 = #¥ is the empty O-manifold, and X 91 ~ X ]_1 are
closed intervals.
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(2) To interpret (A.7) for j =d — 1,set X° , =, € {0, 1}.

(3) In the categorical interpretation, X is a k-morphism with source and target the
empty i-manifold ¢, i € {0,...,k —d — 1}; and source and target i-morphisms
X(l(k_l.), Xl_(k_,-), respectively, i € {k —d, ..., k —1}.

(4)If d = 1, the embeddings <p5_j,<p0, jef{l,...,d —1}, § € {0, 1}, combine to
embeddings

wij:[o, 177! xxij—>ax, jefl,....d}, §€{0,1}. (A.10)

Forj e{l,...,d—1}let wfj denote the restriction ofl//fj to [0, 177 x )O(‘s_j, and
set 1//3 = I/fg. Then 0X is the disjoint union of the images of fhfj, jef{l,...,d},
6 € {0, 1}. Heuristically, the bordism is “constant” on @Zij ([0, l]j_l x{x}),x e )0(5_]..
(5) The pictures in Sects. 2 and 3 are of 1- and 2-morphisms of various depths. The

images of the embeddings (A.10) for j = 2 are depicted as dashed edges, as described
in Sect. 2.1.2.

A.2.2. The tangent filtration The structure described in Definition A.6 has a tangential
implication. Namely, let X be a k-morphism of depth d, and suppose x € 9X. Choose

the unique j, 8 and ¢!, ..., /71 €[0,1],% € f(‘S_J. such that x = 1/°ffj(tl, Lot R,
Then Ty X has a decreasing filtration

TX =Ty 0X DT 1XD- DTy _;jX = T;Cf(_j (A.11)
in which
T X=dy’,(0"eR O X ), iefl,....j—1L (A2

The associated graded is a sum of real lines, which we number by codimension in the
theory,17 i.e., count down from 7:

Ly, —(n—k+1) ® -+ @ Ly —(n—k+j)- (A.13)

Orient Ly _(4—k+j) so that the positive direction leads into X if § = 0 (incoming/source
morphism) and leads out of X if § = 1 (outgoing/target morphism). Orient Ly _(;—+i),
i € {l,...,j — 1}, so that the positive direction points towards increasing /. The
orientations are constant over the image of wf j Moreover, Definition A.6(ii) and (iii)
ensure that the orientations are consistent as we move among the images of the vari-
ous /® j

A.2.3. Theinflated tangent bundle of a k-morphism Define the “inflated tangent bundle”

TX=R®---®R O TX — X, (A.14)
N— ———’
n — k times

where R — X is the constant line bundle with fiber R. The orientations of the line
bundles in (A.13) and the standard orientations on the n — k trivial line bundles in (A.14)
are the “arrows of time” discussed in Sect. 2.1.1. We label them by codimension:
—1,-2,...,—(n —k).

17 By contrast, subscripts in X‘S_j and T, _, X are codimensions in X, so count down from k = dim X.
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Remark A.15.(1) For the 2-morphisms of various depths depicted in Fig. 29 and
in Sects. 2, 3, in Bord; the single-headed arrows correspond to codimension i = 1
and the double-headed arrows correspond to codimension i = 2. In Bords the codi-
mensions should be shifted toi = 2 and i = 3.

(2) Fixi € {1, ..., n}. Then the i™ duality of the O(I)X”—actlon discussed in Sect. 2.1.5
acts tr1V1a11y 1fz < n — k and exchanges X _—; and X _j; ifi > n — k. If there
is a tangential structure (Sect. A.2.4), then for i <n-— k the tangential structure is
pulled back under the reflection in the inflated tangent bundle (A.14) which reverses
the sign on the summand R _;

(3) In Fig. 29 the arrows of time on X (12, drawn on the upper right of the figure, carry
no meaning; they merely embed the trivial lines in (A.14) in the plane of the figure.
Similarly for the single-headed arrow of time in X ‘3_1, 8 € {0, 1} on the right hand
side of Fig. 29.

(4) Each X‘S_j, jell,...,d},§ €{0, 1}, has the structure of a (k — j)-morphism Y of

depth d — j with Y€ ._xew),z ef{l,....d—j},eeio1}.

A.2.4. Tangential structures Let p,: X,, — BGL,R be a continuous map. The choice
of classifying map X — BGL,R for the inflated tangent bundle TX — X of ak-
dimensional manifold X with corners, k < n, is a contractible choice we assume given.
Then a tangential structure of type p, on X is a lift of that classifying map to X,,. We
can use rigid models instead, such as for orientations, spin structures, or n-framings.
An isomorphism X" — X of manifolds with corners is a diffeomorphism ®: X’ — X
together with a linear isomorphism TX — ®*TX and a homotopy of the tangential
structure on X’ to the pullback of the tangential structure on X. If rigid models are
employed, the homotopy may be replaced by a more rigid alternative, which may be a
combination of conditions and data.

There is a variant of Definition A.6 for tangential structures of type p,: each mani-
fold X® W1th corners is equipped with a tangential structure of type p, and the diffeo-

morphlsms @ @ are lifted to isomorphisms in the sense of the previous paragraph.
The tangential structure on [0, 1] x Y is taken to be that on Y, extended to be constant
along the [0, 1]-direction. An isomorphism ®: X’ — X of k-morphisms of depth d is
an isomorphism X’ — X of manifolds with corners and tangential structures, and a
collection of isomorphisms (X’)® ;X2 8 j of manifolds with corners and tangential

structures, compatible with (¢")% I @ i and Po Po-

A.2.5. Duals and adjoints An object in Bord,, is a finite set of points X; the tangen-
tial structure, if present, is on the trivial vector bundle X x R". The dual object XV
consists of the same data, but with tangential structure pulled back via reflection
€Y, .. e ey s (g), ..., "1 —£) on R™. Evaluation and coevaluation mor-
phisms are constructed from [0, 1] x X; see Fig. 22. The dual of a k-morphism is
constructed by exchanging X° . and X r ¢ More generally, a closed k-manifold X is
an object in Q¥ Bord,,. Its dual has tangential structure pulled back along reflection
inR_,_ in the inflated tangent bundle.

If 1 <k <n—1, then a k-morphism X in Bord,, has both a right adjoint X®and a
left adjoint X’ For our purposes in this paper, we restrict to k-morphisms of depth 1:
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manifold with boundary (no corners). We now specify data!® for these objects X4,
where A = R for the right adjoint and A = L for the left adjoint. Let X4 = X as a
manifold with boundary. Reverse the arrows of time on the codimension one strata: set
(X A)‘S_l =x" _15 for§ € {0, 1}. Construct a diffeomorphisms goé* from the corresponding
diffeomorphism in the data of X. For unoriented bordisms that is a complete specification
of X*; in particular, right and left adjoints agree. If a tangential structure is present,
define a tangential structure on X according to the following procedure. Choose collar
neighborhoods

c(XMH% ~ [0,1) x (xH?,

(A.16)
c(XMH & (=101 x (XML

and let 7 be the coordinate in the intervals [0, 1), (—1, O]. In the collar the tangent bundle

splits off a trivial line bundle:

T(e(XH2) ZR ) ® TXH,. (A.17)
Orient the summand R, ;) according to the opposite of the orientation of L _(,—k+1)
in (A.13), with which it is identified at t = 0. In other words, orient it according to the
arrow of time in X4. Let R_(,_k denote the trivial summand in the inflated tangent

bundle of (X A)‘5_l that corresponds to codimension n — k. Let
V=R _p & R (44 (A.18)

with its direct sum orientation; V' is a direct summand of the inflated tangent bundle
T(c(X A)‘S_l) in the collar. Transport the tangential structure from X to X4 as follows.
At t = 0 transport via the hyperplane reflection id & — id on (A.17): flip the sign
on K_(n_kﬂ). Moving in the collars (A.16) in XA fromt =0tor = (—1)3/2 transport

via a path of rotations in V which begins at idy and ends at —idy and turns'®

clockwise } . _ { R ]
{counterclockwise according as A = L]’ (A.19)

For |t| > 1/2 in the collar and also outside the collar, transport the tangential structure
from X to X4 via the hyperplane reflection in the extended tangent bundle which flips
the signon R_,_j).

Figure 30, a reworking of Fig. 22, illustrates the right and left adjoints of the evalua-
tion map e: +11— — @ in Bordg. In these figures the single-headed red arrows indicate
the positive direction in the summand R_,, which is necessary for the framing to have
meaning in the figure; the double-headed red arrows indicate the orientation of L_»,
determined by whether a boundary component is incoming or outgoing. The counter-
clockwise versus clockwise specification (A.19) can be checked in four adjunctions:
e as an adjoint of ¢ and e as an adjoint of e?, each for A = R, L.

Remark A.20. A useful isomorphic representative of X4 is obtained via the identity
diffeomorphism of X4, lifted to the inflated tangent bundle 7 X4 as the hyperplane
reflection whichis —idonR_,_,. This is illustrated by the diffeomorphisms in Fig. 30,
under which both the framings and arrows of time have been transported.
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Fig. 30. Right and left adjoints of evaluation in Bordgr

N drL L o

< LLLL

Fig. 31. The first move towards a counit X o X R id

The units and counits of the adjunctions may be constructed in two stages, which
we now sketch. The first step for the counit X o XX — id is illustrated in Fig. 31.
Glue (XR )1_l to X (11 = (XR )1_1 by adjoining a cylinder; then the tangential structures
are such that we can push along a 2-disk in the direction of the vector space V in (A.18)
to construct a (k+1)-dimensional bordism which eliminates the cylinder and the collared
neighborhoods of those boundary components. For the second stage, choose a Morse
function f: X®\ c(X®)L | — [0, 1) with £~1(0) = (X®)° |, and use 2 — f as a Morse
function on X \c(X(ll). Do surgeries to cancel corresponding critical points and so
produce the desired (k + 1)-dimensional bordism to the identity k-morphism (cylinder)
on (XR )(11. See Fig. 14 for an example of a unit and counit, though with trivial second
stage.

A.2.6. The inclusion Bord,,_; — Bord,, Ifk € {0,...,n—1}andd € {0, ..., k}, then
a k-morphism of depth d in Bord,_ is also a k-morphism of depth d in Bord,; see
Definition A.6. The inflated tangent bundle (A.14) in Bord, has an extra direction, of
course. Note that the inclusion Bord,,_; — Bord, increases codimensions in the theory
(from the top dimension) by 1. We can define general maps of tangential structures
from Bord,_; to Bord,, as in Sect. A.3.3 below. For the map Bordf{f1 — Bordflr
of framed bordism relevant to this paper, if X is an (n — 1)-framed k-morphism in
Bord,,_1, then the induced n-framing on X regarded as a k-morphism in Bord,, appends
the standard basis vector on the additional summand R in (A.14). It has label —1.

Remark A.21. The + point in Bord!, ¢ € {n — 1, n}, is the manifold X = pt with the
standard framing on

TX=Ro®---®R. (A.22)
—
Ltimes

18 The triple consisting of X A3 unit, and a counit, is unique up to unique isomorphism in an appropriate
2-category truncation of Bord,,. Here we define X A and only give an indication of the construction of the unit
and counit of the adjunctions.

19 Counterclockwise rotation turns the positive direction in the first summand of (A.18) towards the positive
direction in the second summand.
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The — point, defined to be dual to the + point in Bordfér , has the opposite framing on the
last summand in (A.22). (The summands are ordered by increasing codimension, so are

labeled —1, —2, ..., —£.) Then under the inclusion Bordflr_1 — Bordflr we have + — +

and — — —: since the extra direction has label —1, so is prepended to (A.22), the last
of the n — 1 directions in Bordfff1 maps to the last of the n directions in Bordf{.

Remark A.23. More generally, our conventions about duals and adjoints are preserved
under the map Bord,_; — Bord,. This justifies computing adjoints in Bordgr, as in

Fig. 13, and using the result as the adjoint in Bordgr. (In these pictures we work in the
bordism categories with colored boundaries, where the same holds.)

A.3. k-morphisms in Bord, .

A.3.1. The definition The bordism multicategory with boundary theory Bord, 5 is an
extension of Bord,,. The boundary 9 X of a k-morphism of depth d has a distinguished
subset B_1, the “colored” subset of Sect. 2.1.6. There are many variations of this con-
struction, which for example allow for multiple boundary theories and domain walls.
(We use two boundary theories in the proof of Lemma 3.4.)

Definition A.24. Fixn € Z79 k € {0,...,n}and d € {0, ..., k}. Let X be a compact
k-dimensional manifold with corners of depth < d. The data of a k-morphism of depth d
in Bord, 5 on X are:

(i) if d > 2, closed (k — d)-manifolds X° ;, X! ,, B ,, B! ,, not all empty;
(ii) if d > 3, recursively for j = d — 1,d — 2,...,2 compact (k — j)-manifolds
x° X I I B° ;B ! j with corners of depth < d — j equipped with diffeomorphisms

ol X2y U0, 1] % {Xgum o X1—<j+2>} U XL U B — a(x2)),
Bl B jyy U 10,11 {ngz) o Bl<,+2)} U Bl — 9(BL)),
(A.25)
for 6§ € {0, 1};
(iii) if d > 1, compact (k — 1)-manifolds X 9 X 1_1, B_, with corners of depth < d — 1
equipped with diffeomorphisms

X0 U0 x X0 uxth U xhu B, — e

B_i: BY, U [0, 1]><{BS LIBL3} U B, — a(B_)).
(A.26)

for§ € {0, 1};
(iv) if d > 1, a diffeomorphism

0o: X°, U 0, 1]><{X921_1X£2} U X', U B —dX. (A27)

Examples are depicted in Fig. 32.
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Fig. 32. A 2-morphism of depth 2 and a 3-morphism of depth 3

Remark A.28. As in Remark A.9(2), set X ;v =B’ | | = B® ., =0,8¢€{0,1}.
The categorical interpretation of the bordism described in Remark A.9(3) is still valid.
The embeddings (A.10) still exist, but now the embeddings 1/ff j do not cover 0 X. Rather,

the embeddings ,351-, B_1,Jj€f2,...,d—1},8 € {0, 1}, combine to embeddings
y 001V 2 x B, — B_,  je{2.....d}), §€{0,1}).  (A29)

Let ﬁfj be the restriction of yfj to [0, 1]/'_2 X Bf] Then 0X is the disjoint union of
three sets: (i) the images of @fj, jef{l,...,d}, § € {0, 1}; (ii) the images of ﬁj,
je{2,...,d —1},6§ € {0, 1}; and (iii) the (k — 1)-manifold I§71.

A.3.2. The tangent filtration For points x € dX in the image of one of the Ul i the
filtration (A.11) and orientation of the lines (A.13) apply. If x € 90X lies in the image of
some ?fj, choose 1, ...,tj_2 e [0, 1], be éfj such that x = ﬁfj(tl, ...,tj_z; l;).
Then T, X has a decreasing filtration

X =T oX DT XD DT X DT ;X=TB_; (A30)
in which

Ty, 1 X =T:B_,,

T X=dy’ (0 oR/ " @ T:B_;), ief2.... )}

(A.31)

The associated graded is a sum of real lines
Ly —(n—is1) ® - ® Ly —(n—k+j)- (A.32)
Orient Ly, (u—k+j) so that the positive direction leads into X. (This is for a boundary
theory 1 — 7_, F; for boundary theories 7_, F — 1 choose the opposite orientation.)
Orient L, _(4—k+—1) so that the positive direction leads into B_, if § = 0 and leads out
of B_;if § = 1. Orient Ly, (4—k+j), i € {1,..., j — 2}, so that the positive direction
points towards increasing #/~! . These orientations—arrows of time—can be omitted

(as in Sects. 2 and 3) since they can be deduced from the arrows of time on the rest
of 0X.
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A.3.3. Tangential structures, duals, and adjoints The distinguished boundary B_; C X
has a tangential structure of rank n — 1 whereas the “bulk” X\ B_; has a tangential
structure of rank n. The former is allowed to be “different” than the latter—for example,
we may have a spin boundary theory of an oriented theory. Following Sect. A.2.4,
let p,,: X;, = BGL,R be the bulk tangential structure. A boundary tangential structure
consists of (i) arank n— 1 tangential structure p,,—1: X,,—1 — BGL,_1R; (ii) aninclusion
GL,-1 R — GL, R; and (iii) a map ¢: X,,—; — X, such that the diagram

¢

Xn—) —— xn

Pn—1 J{ \Lpn (A33)
BGL, R — BGL,R

commutes. Up to homotopy, (ii) is an element of O, /O,_; &~ S"~!, a choice of unit
vector in R”.

Remark A.34. In this paper p, represents n-framings and p,_; represents (n — 1)-
framings. Concretely, fix a separable infinite dimensional real Hilbert space J{(, define
the contractible Stiefel manifold St, = {isometric embeddings R” — X}, and let the
Grassmannian Gr, = St,, /O, be the quotient of the Stiefel manifold by the natural
right O, -action. Then Gr,, >~ BGL,R. Our convention in Sect. 2.1.6 uses the embed-
ding O,_; < O, induced from the inclusion?®

Rn—l _)Rn
G e @ e o)

Let (?r,,,l = St,, / O,—1. A point of (E}n,l is an (n — 1)-dimensional subspace W C H
together with a unit vector v € W+; the map to the usual Grassmannian Gr,_; which
forgets v is a homotopy equivalence. Let p,_;: St, — Gr,_; be the quotient map and
¢: St, — St,, the identity map.

(A.35)

The constructions of duals and adjoints in Sect. A.2.5 carry over without modification;
the colored boundary components are unchanged when forming duals and adjoints.

Appendix B. Semisimplicity of 2-Dualizable Categories

In this appendix we write a proof of the following folk result, stated in the body of
the paper as Theorem 1.13 and stated here as Theorem B.1. The theorem concerns
2-dualizable objects in Catc; see [BDSV,BJSS] for related variants.

Theorem B.1. If C is 2-dualizable in Catc, then C is finite semisimple abelian, and CV
may be identified with C°P in such a way that the duality pairing {|) : C¥Y x C — Vect
is identified with Hom:

(x°Ply) = Homc (x, y).

The proof is broken up into three lemmas, which we state after introducing the
following.

20 The extra direction at a colored boundary point is “spatial” in the sense of Remark A.1. The choice (A.35)
is made so as to be stable under the inclusion Bord;r_l — Bordf{.
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Definition B.2. A C-linear category C is Hom-finite if all of its Hom spaces are finite
dimensional.

Lemma B.3. Ler C be I-dualizable in Catc, with C and CV both Hom-finite. There is
then an equivalence of linear categories C¥ = CP with the duality pairing being

xP? x y = Homc¢ (v, x)V.

Remark B.4. We do not know ab initio that C°P has cokernels; this is a consequence of
the Lemma. Thus the proof is executed in the world of all C-linear categories and not
within Catc, whose objects are finitely cocomplete. In particular, C and C°P have kernels
and cokernels (i.e. are pre-abelian). One can also show that they must be balanced (all
monic epimorphisms are isomorphisms), but we do not know if they must be abelian.

Lemma B.S. Let C be 2-dualizable in Cat. Then C and CY are Hom-finite.

Lemma B.6. Under the assumptions of Theorem B.1, the functor Hom¢: CP x C —
Vect is bi-exact.

In particular, all epimorphisms and monomorphisms are split.
We briefly defer the proofs of Lemmas B.3, B.5, and B.6 in favor of the following.

Proof of Theorem B.1. Lemmata B.3 and B.5 imply that C has kernels and cokernels,
and their splitting, from Lemma B.6, implies that C is abelian. Semisimplicity follows
from Hom-finiteness and Lemma B.6. Decompose objects using nonzero noninvertible
endomorphisms until their endomorphism algebras become division rings. Finiteness of
the number of simple isomorphism classes is enforced by 2-dualizability: for example,
isomorphism classes of simple objects label a basis of the Hochschild homology space,
and the latter is finite dimensional. The remainder of Theorem B.1 requires an identifi-
cation of the Hom pairing with the vector space dual of its opposite, which is immediate
from semisimplicity. O
Now to the lemmas.
Proof of Lemma B.3. We construct a left/right adjoint pair of linear functors
L:CP=C":R

which we prove to be inverse equivalences. In fact, R is the opposite of the C"-
counterpart of L, so that (R°P, L°P) is the corresponding pair of functors if we start
with the category C" instead of C.

Define L as the functor x°® — X, where given x € C, we define X € C" by

(X|y) =Homc(y,x)", yeC.
Note that X is a right exact functional on C, so it defines an object of CV =
Hom, (C, Vectr). (Moreover, the assignment x°P + X is right exact, although this
C

does not mean much before C°P is shown to have cokernels.)
As advertised, R sends n € C" to the object 77°P of C°P, where 17} € C is defined by

(1) =Homev(§,m)Y, &eC.
Now for x € C, n € CV we have the desired adjunction
) = Homev (X, n) = Homev (LxP, n).
(B.7)

Homcop (x°P, Rn) = Homc (17, x) = (X7
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The Yoneda embedding asserts that L is fully faithful; a formal consequence is that
the adjunction unit Idcop — R o L is an isomorphism. Similarly, R°P, and therefore R,
is also fully faithful, so the evaluation L o R — Id¢v is an isomorphism as well. O

Proof of Lemma B.5. Denote by A:Vect — CY K C the coevaluation of the duality,
and let S¢ be the Serre automorphism. The second of the adjunctions
AF = (])o(dXSc), AR={(])o@dR S, (B.8)
combined with the right exactness of ( | ), shows that the functor
Homevge (A); ) : CY R C — Vect (B.9)

is also right exact. Since A(1) is the quotient of a product E X X € CY X C—as is any
object in CY X C—the right exactness of (B.9) implies that A(1) must therefore be a
direct summand of EX X, i.e., the image of a projector P in End(EX X). Forall§ € CV
and x € C, this P induces finite-rank projectors on all spaces Hom(E X X; & X x) and
Hom (¢ X x; E X X), because the respective images are the finite-dimensional spaces

Hom(A(1); £ B x) = (£|S¢'x), Hom(§ ®x; A(L) = (§]Scx)”.

Given now x, y € C, let’s compute Homc¢ (x; y) via the Zorro diagram, where we
denote by #r the transposition in the two variables:

Home (x; y) = Homc<[( )" XId][x XA ]; y)
= Homme s (Sc v B AM): A" R )

In the last step, we have used the first adjunction in (B.8). The last Hom space is the
common image of the two commuting projectors acting by pre- and post-composition
with P on the space

Homcgcvgc(x XEX X; X XEX y)
= Homc (x; X) ® Homev (E; E) ® Home (X y)
=UQVReW.
Post-composition with P acts on U ® V (and as the identity on W), and its finite rank
implies that the image is contained in F ® V ® W, for some finite-dimensional ¥ C U.
But pre-composition by P now acts with finite rank on V ® W, which proves that

Homc¢ (x, y) is finite dimensional.
The Hom-finiteness of C" is proved by a similar argument. O

Proof of Lemma B.6. Let A: Vect — CY X C be the unit for duality. Its right adjoint
AR satisfies

AR(X) =Hom, (A1), X), XeC'KC,

which implies A* is left exact. Itis also right exact, being a 1-morphism internal to Catc.
Recall too the formula (B.8) for AX. Now the structural functor C¥ x C — CY X C,
£ x x > & M x, is bi-exact. Following it with A leads to the bi-exact functor from
C°P x C — Vect

X% x y — (¥1Sz'y) = Hom(S:'y, x)Y,

which proves the bi-exactness of Hom. O
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Appendix C. Internal Duals

We describe here an abstract notion of internal duals, generalizing from a tensor category
(Definition C.14) to an algebra object in a 2-category (Theorem C.18). In particular,
we show that our TFT F with nonzero boundary condition 8 leads to a fusion category
& = EndR (ﬂ (+)) (Definition 3.1). Since our knowledge of ® comes from TFT calculus,
we must avoid unpictorial internal structures (for example, the use of contravariant
functors such as x — x™*) in describing internal duality. The main application is

Theorem C.1. A tensor category whose underlying category is dual to its opposite cat-
egory and which satisfies the Frobenius condition of Definition C.7 and the bimodule
property of Proposition C.13, has internal left and right duals.

For our @, these conditions are checked in Lemma 3.6.
We refer to [BJS] for another discussion of rigidity and dualizability.

Remark C.2. In the setting of TFT, the conditions separate neatly into a Frobenius-
bimodule condition and an adjunction condition, reflecting two different geometric prop-
erties of a TFT with boundary generated by an algebra object and its regular boundary
conditions. The logic of our application to ® compels a different path; we will return to
the more natural statements in a future paper.

Let @, ® be a dual pair of objects in a symmetric monoidal 2-category (M, X).
We are mostly interested in the categorical case when ®, ®¥ are an opposite couple
of linear categories paired by Hom, and can even restrict to semisimple categories, but
the algebra below is agnostic about that, unless we explicitly flag it. It is convenient to
denote the duality pairing @' X ® — 1 by writing (£ | y), as in the categorical case, when
y € ®,& € ®¥ = O (the opposite category). This convention is symmetric under
simultaneous swapping of the arguments and of ® with ®”. When checking identities,
conversion to the formalism of arrows is straightforward.?! Equalities stand for canonical
isomorphisms of 1-morphisms.

Assume given an Ej structure on @, with strict unit n: 1 — & and multiplication
V:do X & — &. When P is a category and when no confusion ensues, we also write
x -y for V(x, y) and 1 for the tensor unit. The dual object ®" is a ®-® bimodule. This
bimodule is invertible, if ® is 2-dualizable as an algebra object, and represents then the
Serre autofunctor of the (category of modules over the) E object ®.

We shall not adopt the a priori assumption of 2-dualizability here; however, we will
require that  and V have right adjoints e: ® — 1 and A: ® — & X ®. This condition is
always met in the categorical case, with explicit formulas for ¢ and for the dual functor
A VK PV — DY

e(z) = Homg(1,2); AY(PXyP) =V(x,y)?, forx,y,ze€ ®. (C3)
With this structure, ® becomes a tensor category with unit 1°° = ¢V (1). More generally,
the dual object ®" is an E object with the same features as ®: the dual arrow VY defines

a comultiplication which is right adjoint to the multiplication AY, and the latter has unit
¢V, with right adjoint n".

Remark C.4. This interpretation of the dual right adjoint of V holds for any functor
¢ : X — Y between categories which are in duality with their opposites: namely,

@oP: XOP — YOP j5 9P = (¢pR)V = ((pV)L. In particular, adjoints exist. Recall also that,

21 At any rate, we can reduce to the categorical case by passing to the functors on M represented by ®, V.
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when X, Y are 2-dualizable, with (additive) Serre automorphisms S%, S;, the left and

right adjoints of ¢ are related by S o ol = pRo S%. Commuting duals with adjoints
will therefore bring out additive Serre functors.

Define now the pairing B: ® X & — 1 as B = ¢ o V. When @ is a category,
B(x,y) = Homg (1, x - y), for two general objects x, y. From B, we define a dual pair
of functors, by dualizing separately with respect to each variable:

ffY =, f(x):=Bx,-), f'():=B(—Y) (C.5)

Proposition C.6. f is a right, and [ a left ®-module morphism.

Proof. (f(x-y)|lz) = B(x-y,z) =¢e(x-y-2) = Bx,y-2) = (fx)|y-z) =
(f(x).y|z),sothat f(x-y) = f(x).y, and similarly for f/¥. O

Definition C.7. We say that ® satisfies the (non-symmetric) adjoint Frobenius condition
when B is a perfect pairing: that is, f and f" are isomorphisms. If so, we define the
Serre automorphism of ® as € = (f¥)"!o f.

Proposition C.8. Assume that @ satisfies the Frobenius condition. The following natural
isomorphisms apply:
() B(x,y) = B(y, S®x). In particular, symmetry of B is equivalent to a trivialization

of S®.

(ii) fon= fYon=¢". Foracategory, f(1)= f¥(1) = 1°P.

(iii) As functors ® — ®V, we have €V .() = S®().e". In the categorical case, 1°P .x =
S (x).1°P.

(iv) S® is naturally atensor automorphism of ®, and twisting the ®-action by S® induces
the Serre autofunctor M +— ® Kq M on the 2-category of left ®-modules.

Remark C.9. Promoting S® to a tensor functor means equipping it with isomorphisms,
compatible with the associativity and unit laws on &,

S0V =Vo(s®xS5®), SPon=yp;
while not evident from the expression ( f )~1o f, they do follow from Parts (i)—(iii), as
in the proof below. On the other hand, reduction of ®¥ K¢ _to a tensor automorphism
of @ is a formal consequence of the isomorphy of fV.
Proof. Parts (1)—(iii) are immediate from the properties of f, f, B; thus,
B(x,y) = (f)y) = ("o SP() [y) = (f(M|S¥(x)  for (D),

(f(D)|x) =B(1,x) =¢e(x)=Bx,1)=(f"(1)]x) for (ii),
S%(x).1%7 = £V (S®¥(x)) = f(x) =17 .x for (iii).

Multiplicativity of S® now follows:

FY(8%(xy)) = S%(xy). 17 = 1P.xy = S®(x).17P.y = $€(x) - $¥(y).17
=Y (5%x) - S®().
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using categorical notation for simplicity. To complete (iv), consider the following dia-
gram of right ®-modules, with left multiplication in the bottom row:

PRD V>

oo s

OXPY ——= @V

We claim this commutes naturally. Assuming this, let us interpret the diagram: the right
vertical arrow f gives an isomorphism of the identity with the Serre autofunctor on
®-modules, while the left arrow exhibits the necessary intertwining twist by S© in the

left ®-action.
Exploiting the right ®-module structure, it suffices to check commutativity on ® X,
when this becomes the isomorphism S®(x). (1) = f(1).x = f(x), from (ii) and (iii).
O

Remark C.10. The Serre functor S® above need not agree with the additive Serre auto-
morphism S of Remark C.4, which is independently defined whenever the object
® e M is 2-dualizable. However, the two will agree for a fusion category ®, because of
its 3-dualizability. See also Remark C.19 below for a general relation between the two.

The isomorphisms f, £V allow us to transport the structure tensors 7, V, A, ¢ to a
matching structure on ®V, denoted by overbars. Choosing either f or f results in
isomorphic structures on ®", because all structure tensors commute with S®. Dualizing
them gives a new structure ¥, AY, VY, 7V on ®. We get the following diagram, in
which the bottom row maps are related to the top row maps by duality and adjunction
using uniform rules, ¢ = nR, A=VR z = ﬁR, A = VR and all ensuing relations:

oxe T el ™1

DR D PN /WVNI
S pe e e

Vv
! \'Vv/ gV e

v - _
\ oA ) ey \ D G N e
R T e T 2 PR T 2

(C.11)

The dual corners are related by the morphism f . Because 77 = f o, etc., we find from
Proposition C.8.ii that

Proposition C.12. In the diagram above, units and traces match in each row: 7j = ¢”,
P \
g=mn"'. O

Proposition C.13. Under the Frobenius assumption, the following conditions are equiv-
alent:

(1) The coproduct A is a ®-® bimodule map (for the outer ®-actions on the two
-factors).
(i) The multiplication AV is a ®-® bimodule map (for the inner ®-actions on the two
®Y-factors).
(iii) The two structures on ® in the top row of (C.11) are transpose-isomorphic.
(iv) The two structures on ®" in the bottom row of (C.11) are transpose-isomorphic.
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Proof. Parts (i) and (ii) are equivalent by duality, (iii) and (iv) are so via the isomorphisms
induced by f. Note further that the diagonal arrow is compatible with the ®-® bimodule
structures: on the right, because f is a right module map, an on the left, because we could
equally well have used the left module isomorphism f instead. In light of the matching
units, which are free generators of ®V over ®, the bimodule condition determines the
multiplication maps and forces the agreement of the remaining structure maps on each
row. 0O

Definition C.14. When @ is a category, the internal right and left duals *x, x* of an
object x € ® are the objects characterized (up to unique isomorphism, if they exist) by
the functorial (in y, z) identities

Hom(x - y, z) = Hom(y, x* - z), Hom(y - x,z) = Hom(y, z- *x). (C.15)

It turns out that the conditions in (C.13) force the existence of internal duals and their
expression in terms of fV and f. To see this, we first give an abstract formulation.

Dualizing the product V in the second argument gives the left multiplication map X :
® — ®X V. In the categorical case, A(x) represents the left multiplication by x € ®.
Similarly, for the first argument we get the right multiplication map p: ® — & X &V,
Repeating this for A" leads to the two maps 1/, p’: ®¥ — &Y X ®. In the abusive but
readable argument notation, with Greek arguments living in ®V,

WED Iy RE) = (AYELE)y), (0/(E) |y HE) = (AY(E, &) |y). (C.16)
The maps 1/, p’ will be the abstract versions of the ‘tensoring with duals’
x””l—>(z|—>x*'z), x"”r—)(zi—>z‘*x).

Remark C.17. )/, p’ are related to the op-conjugates AP, p% : &V — ®V X @ as
follows:

NEAARSE Hor?, p AR SE ) o p”
The source of the additive Serre correction S:rp is described in Remark C.4.
Denote by 7 the symmetry ® X &V — &V X ©.

Theorem C.18. The equivalent conditions of Proposition C.13 are also equivalent to:

AN Ztoro f L
(i) o' Ztopo(f) "
(iii) In the categorical case: ® has internal left and right duals.
Proof. We check the two sides by pairing against a triple of arguments (&1, y, &) €
®Y x ® x Y, leaving to the reader the unenviable task of convert this to identities

between morphisms, duals and adjoints. Having written out the left sides in (C.16) above,
we start with the right side of (i):

(toro fTlENIYRE) = (o fEDIERY) =& 7 ED - y)
= (& ED )

where the middle line is the definition of A, while dot represents the right multiplication
action of f~'£; upon & € ®V. Agreement with A’ is then equivalent to

£.171E) = AV (&), &);
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but using the right module property of f, we have

o e =rre e

thus reaching Condition (iv) in Proposition C.13.
Similarly, for the right side of (ii),

(topo(fN &) IYRE) = (po(f) &) IENRY) =E |y (f)E))
= (@& 1y

and identity (ii) is equivalent to

(7N E) .8 = AV (EL &),

which follows as before, this time from the left-module property of fV.

Finally, for Part (iii) we must convert the identities into the recognizable form (C.14).
For this, we let &) 5 be opposites of objects x| » € ®@; then, A (§1, &) is the opposite
object to x1 - x2, and we can rewrite

(&1 /7€) - y) = Homo (x2, /7€) - v).

€1y ()7 &) =Homo (x1,y- (/)7 @),
(AY(&1,&) | y) = Homo (x1 - x2, y)

exhibiting f~!(£1) as x{ and (V)" 1(&) as *x, in Definition C.14. O

Remark C.19. Under the assumptions of (C.13), and if, in addition, ® is 2-dualizable,
one can prove [FT] that the additive Serre functor SE is related to S®:

S*x-y) = S2(x) - S*(y) = S*(x) - S2 (y). (C.20)

In particular, we have
S*H(x) = SB(x) - ST(1) = §7(1) - $2 7 (x),

and, as the functor S* is invertible, S* (1) must be a unit. In the categorical case, S® (x) =
x**, and the relations follow by applying Serre duality to the adjunction relations in
Definition C.14.

One instance of (C.20) is when S* = S® = S®_1, which happens in the case of
fusion categories [DSS], but that is not the only option. Thus, if ® is the derived category
of bounded complexes of coherent sheaves on a projective manifold with the obvious
internal duals, the multiplicative Serre functor S® is the identity, while the functor S*
is tensoring with the canonical line bundle of X in degree (— dim X).



D. S. Freed, C. Teleman

Appendix D. Complete Reducibility of Fusion Categories

A fusion category whose unit is simple cannot be decomposed as a direct sum, even after
passing to a Morita equivalent model: otherwise, we would split the unit. The following
converse follows easily from several statements in [EGNO], but we give a complete
proof, at the price of rehashing some basic facts. Throughout, & will denote a fusion
category.

Theorem D.1 (Complete Reducibility). ® is Morita equivalent to a direct sum of fusion
categories with simple unit.

Corollary D.2. © is Morita equivalent to a fusion category ®g with simple unit if and
only if the Drinfeld center of ® is invertible.

We prove Corollary D.2 at the end of the “Appendix”.

Remark D.3. A closely related statement is used in [DMNO, Remark 5.2]: if @ is an
indecomposable fusion category, then there exists a fusion category ®" with simple unit

and a braided equivalence Z(®’) —> Z(®) of the Drinfeld centers. The proof is based
on Lemma 3.24 and Corollary 3.35 in [EO].

We break up the proof of Theorem D.1 into small steps. Let 1 = >, p; be the
decomposition of the unit of ® into simple objects. Call an object x self-adjoint if it is
isomorphic with x*.

~

Lemma D.4. Each p; is a self-adjoint projector: p} = p;, pi2 = p;, End(p;) =C. In

addition, pipj = 0ifi # j.
Proof. We have p; = p; -1 = Zj pipj,so p;pj = 0 except for a single j, when it
equals p;. On the other hand, p; =1-p; = ", pip;, but the sum contains p; p; = p;,

so p; = pj, proving the multiplicative claims. Further, 1* = 1, and p} p; # 0 because
Hom(1, p} p;) = End(p;) # 0, so we must have p/ = p;. O

Lemma D.4 gives a “matrix decomposition” of ® as

o= @i»j pi-®-pj=: @i)j 5,

with fusion categories ®;; having simple units p; on the diagonal, ®;;-® ;; bimodule
categories ®;; (identified with <I>(;1; under internal duality), and multiplication compatible
with matrix calculus:

Djj x Pj; — Py, ;- Py =0if j #k.

The equivalence classes of indices generated by the condition ®;; # 0 gives a direct
sum decomposition of &, matching the block-decomposition of the matrix. Call ®
indecomposable if a single block is present. We claim that an indecomposable @ is
Morita equivalent to any of its diagonal entries, selecting ®1; for our argument.

The equivalence is induced by the first row and the first column of ®: the ®1-P
bimodule R := €P; ®; and the ®-P(; bimodule C := @j ® 1. We check it in the
following two lemmata.

Lemma D.5. The multiplication map R Ko C — P11 is an equivalence of ®11-P1;
bimodule categories.
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Proof. We have ® K¢ ® = &, and splitting the left factor ® into its rows R; and the
right factor into its columns C; gives a direct sum decomposition of ® as R; Mg C;.
Examining the action of the projectors py, on R; on the left and on C; on the right,
identifies this with the ®;; decomposition of ®. O

Lemma D.6. The multiplication map w:C Xg¢,, R — @ is an equivalence of ®-d
bimodule categories.

Lemma D.6 concludes the proof of Theorem D.1.
The proof of this direction requires some preliminary facts.

Lemma D.7 (Linearity of adjoints). The adjoints ¢, o® of an ®-linear map ¢ : M —
N between right or left finite semisimple** ®-module categories have a natural ®-linear
structure.

Proof. Choosing left modules and the right adjoint, we write a functorial isomorphism
Hom, (m, (pR(x.n)) = Homy, (m, x.ng(n))
by rewriting the left side as
Homy (¢(m), x.n) = Homy (*x.¢(m), n) = Homy (¢ (*x.m), n)
= Homy, (*x.m, <pR(n))

and finish by moving x back to the right. The other cases are similar. O
Lemma D.8. If N = ® above, then ¢ o o™ (1) is self-adjoint in .

Proof. Let h(x, y) := dim Hom(x, y). In our semisimple case, h(x,y) = h(y, x), as
we are only counting multiplicities of simple objects. Moreover, x is determined up to
isomorphism by its multiplicities, so x is self-adjoint iff 4(x, y) = h(x™*, y) for all y;
the latter is also A (x, y*). We show this forx = ¢ o <pL(1):

h(x,y*) = h(y-x,1) = h(p o p*(y), 1) = h(1, ¢ 0 p*(¥))
= h(p" (1), o= () = h(e" (), X (1)) = h(y, 9 0 L (1)) = h(x, y).
O

Lemma D.9. Every self-adjoint projector @ is isomorphic to a sum of distinct p; from
Lemma D.4, i.e., is a direct summand of the unit 1.

Proof. Letw = p +x, where p collects all the p; appearing in @ . Writing the relation
w2 X w as
~ 2 2

P+HXEp +p-x+x-p+x7,
we see that each p; appears at most once, otherwise its multiplicity in p? exceeds the
one in p. Moreover, an isomorphism x = x* gives an identification Hom(1, x?) =
End(x), while Hom(1, x) = 0 by assumption; comparing left and right sides shows that
End(x) = 0 and therefore x = 0. O

22 we only use semisimplicity here to ensure the existence of adjoints.
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Proof of Lemma D.6. Writing B for the ®—® bimodule category C X¢,, R, LemmaD.5
gives an equivalence B KXo B = B, which is pu-compatible with the identification
® Xg ® = . The left adjoint 1~ is also a bimodule map, by Lemma D.7, and because
™o pu = pand Xg is composition of 1-morphisms in the 3-category Fus, we obtain an
equivalence u’ Mg ul = ul. Then, p o ul is an idempotent bimodule endomorphism
of ®, since o and g, commute. It is the multiplication by the object p := pou® (1)—on
the left, or on the right—which must then be a projector in ®. Moreover, p is self-adjoint
by Lemma D.8. Lemma D.9 identifies it as a sum of p;. If p Z 1, it would split the
image ® - p = p - ® as a block of ®, contradicting indecomposability.

It follows that i o u’ = Ide, splitting B into ® and a complementary bimodule.
But the relation B X B = B can only hold if this complement is zero, so u is an
equivalence. O

Proof of Corollary D.2. First, Morita equivalent fusion categories have braided tensor
equivalent Drinfeld centers [EGNO, §8.12]. If ®¢ is a fusion category with simple
unit, then its Drinfeld center Z(®q) is nondegenerate [EGNO, §8.20]. Therefore, by
[S-P,BJSS] the Drinfeld center is invertible. Conversely, by Theorem D.1 any fusion
category is Morita equivalent to a finite direct sum of fusion categories with simple unit.
Then, as in the proof of Lemma 3.14, the Drinfeld center of a direct sum is the direct
sum of the Drinfeld centers, and if the Drinfeld center is invertible, it follows that the
direct sum has a single summand. O
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