
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 27 - October 1, 2021. Prague, Czech Republic

Learning to Control an Unstable System with One Minute of Data:
Leveraging Gaussian Process Differentiation in Predictive Control

20
21

 IE
E

E
/R

SJ
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
te

lli
ge

nt
 R

ob
ot

s
an

d
Sy

st
em

s
(I

R
O

S)
 |

97
8-

1-
66

54
-1

71
4-

3/
21

/$
31

.0
0

©
20

21
 IE

E
E

 |
D

O
I:

 1
0.

11
09

/I
R

O
S5

11
68

.2
02

1.
96

36
78

6

Ivan D. Jimenez Rodriguez, Ugo Rosolia, Aaron D. Ames, Yisong Yue

Fig. 1: Stabilizing a segway with an unmodelled weight against a force disturbance. Top: Our method is able to stabilize using a fully learned dynamics
model that uses only 100 data points collected from one minute of data. Bottom: A state-of-the-art model predictive control policy using the nominal
dynamics is unable to stabilize.

Abstract— We present a straightforward and efficient way to
control unstable robotic systems using an estimated dynamics
model. Specifically, we show how to exploit the differentiability
of Gaussian Processes to create a state-dependent linearized
approximation of the true continuous dynamics that can be
integrated with model predictive control. Our approach is
compatible with most Gaussian process approaches for sys-
tem identification, and can learn an accurate model using
modest amounts of training data. We validate our approach
by learning the dynamics of an unstable system such as a
segway with a 7-D state space and 2-D input space (using
only one minute of data), and we show that the resulting
controller is robust to unmodelled dynamics and disturbances,
while state-of-the-art control methods based on nominal models
can fail under small perturbations. Code is open sourced at
https://github.com/learning-and-control/core.

I. INTRODUCTION

System identification is frequently used in robotics to
mitigate model imperfections using measured input-output
data [1]–[5]. Managing these modeling errors can be critical
to achieving desired performance or guaranteeing safety. This
problem is particularly challenging in systems with unstable
dynamics since even small modeling errors can integrate over
time without control inputs that can directly dampen them.
For instance, we experimentally show that running state-of-

the-art model predictive control [6] on a 7-D state space
and 2-D input space segway system using a misidentified
model can lead to unsafe and unstable behavior, as depicted
in Figure 1.

 This work was supported by NSF awards 1637598, 1645832, 1932091,
1924526, and 1923239, and funding from AeroVironment, JPL and BMW.

1
I. D. Jimenez Rodriguez, U. Rosolia, A. D. Ames and Yisong Yue

are at the California Institute of Technology, Pasadena, USA. E-mails:
{ivan.jimenez, urosolia, ames, yyue}@caltech.edu .

A useful system identification framework must balance
computation time, accuracy and data efficiency. Furthermore,
since data often cannot be collected for the entire state space
of a real system, an estimate of model uncertainty is also
useful to plan around gaps in the knowledge of the learned
model. Because of these challenges, much of contemporary
research has focused on learning residuals of an already well-
developed nominal dynamics model [7]–[19].

In this paper, we aim to learn the full dynamics models of
unstable robotic systems. Our goal is to develop a straightfor-
ward and data efficient method for system identification that
can be easily integrated with state-of-the-art control methods.
We ground our approach in Gaussian processes (GPs), which
are a popular method for learning dynamics models [9],
[11]–[13], [18], [20]–[23]. We leverage the differentiability
of GPs [24], [25] to train a discrete-time dynamics model
from training data of the form (xt , ut , xt+Δt), while still
recovering a state-dependent linearization of the dynamics
that exploits the underlying continuous dynamics structure.

Learning a discrete-time linearizable dynamics has three
key benefits. First, the approach can be very data efficient,
as the differentiated GP model automatically infers the state-
dependent linearization at every state. This differs from other
approaches where the continuous dynamics model is learned
directly and then used with collocation for approximation
[26]. As shown in [27], learning the continuous dynam-
ics rather than the discrete flow-map often requires higher
sampling frequencies where measurement noise can become
significant in practice. Second, one can use the estimated
model with state-of-the-art model predictive control (MPC)
methods [6] for effective and computationally efficient con-
trol synthesis that can handle state and input constraints.

978-1-6654-1714-3/21/$31.00 ©2021 IEEE 3896

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 31,2022 at 23:36:06 UTC from IEEE Xplore. Restrictions apply.

https://github.com/learning-and-control/core.

∂f(x¯, u¯) ∂f(x¯, u¯)
C(x¯, u¯) = f (x¯, u¯) − ¯ − ¯

∂ ∂
x u .

x u

The final benefit is that the approach is generic and can be
applied to many GP-based modeling approaches as a drop-in
subroutine.

The idea of using GPs for MPC is not new, but prior work
either required using computationally expensive procedures
[23], or limited themselves to learning only residual models
[11]–[13], [18]. Other prior work use of GPs with Dynamic
Programming frameworks that do not take into account
state and input constraints [28]. Also, unlike reinforcement
learning approaches that use Policy Gradient [29] or Value
Iteration [30] with GPs, this method uses MPC to infer a
policy. Learning the dynamics in MPC separates the policy
from the dynamics and allows for using the same dynamics
for different objectives.

We validate our approach by controlling unstable robotic
systems, both in simulation and on a segway with 7-D state
space and 2-D input space. Whereas state-of-the-art control
methods can fail to stabilize the segway under small model
mismatch, we show that one can robustly stabilize using
our model trained on only one minute of data (see Figure
1 above). These results showcase the practical potential of
our approach to significantly reduce the effort required for
accurate system identification in unstable robotic systems.

II. A DIFFERENTIATION-BASED GAUSSIAN PROCESS

MODEL FOR DYNAMICS ESTIMATION

In this section, we outline our approach for system identifi-
cation using a differentiation-based Gaussian process model.
We first describe and motivate learning a state-dependent
linearized model in Section II-A. We then discuss Gaussian
process preliminaries in Section II-B, and how to differen-
tiate a GP to obtain a state-dependent linearized dynamics
model in Section II-C.

A. State-Dependent Linearized Dynamics Modeling

We consider the following dynamical system:

ẋ(t) = f (x(t), u(t)), (1)

with states x R
n

, control inputs u R
m

, and where f is
unknown (not even the functional form). The above system
is subject to the the following state and input constraints:

x(t) X and u(t) U , t ≥ 0. (2)

Our goal is to design a control policy π : R
n

 → R
d

which
maps states to actions. In order to compute such a policy we
will use historical data to estimate the full system dynamics
f , which will be leveraged in a predictive control scheme.
We are particularly interested in systems that are passively
unstable (e.g., a segway).

We assume access to a dataset of M state-input pairs
{ x̂(iT), u(iT) }Mi=0, where T is the sampling period. Visually,
on the pendulum, this would correspond to the left-most plot
in Figure 2. Furthermore, we assume the control action is
applied using a sampling-and-hold strategy meaning that:

Z (i+1)T

x̂((i + 1)T) = f (x(τ), u(t))dτ + x(t) + w, (3)
iT

where the noise w a zero-mean Gaussian, i.e, w N (0, σ
2
).

Rather than performing motion planning directly on these
discrete-time dynamics (as is common in the literature [20],
[31]), we instead use (3) and a state-dependent linear approx-
imation of the dynamics around the state-input pair (x¯, u¯):

f (x, u) ≈ A(x¯, u¯)x + B (x¯, u¯)u + C(x¯, u¯),
∂f (x¯, u¯)

A(x¯, u¯) =
 ∂x

,

∂ f (x¯, u¯)
B (x¯, u¯) =

 ∂u
,

This linearization of the dynamics can be related to a
linearization of the discrete flow map in (3) as follows:

x̂(t + δt) ≈ A(x¯, u¯)x(t) + B(x¯, u¯)ut + C(x¯, u¯),

A(x¯, u¯) = eA(x¯,u¯)δt,

B(x¯, u¯) = A(x¯, u¯)−1(eA(x¯,u¯)δt − I)B (x¯, u¯),

C(x¯, u¯) = A(x¯, u¯)−1(eA(x¯,u¯)δ t − I)C(x¯, ū).

Although these matrices alone are sufficient for use in our
MPC controller, through the use of matrix logarithms, the
local linear approximation of the dynamics can be computed:

1
A(x¯, u¯) ≈ log(A(x¯, u¯)),

δt
B (x¯, u¯) ≈ A(x¯, u¯)

−1
A(x¯, u¯)B(x¯, u¯),

C(x¯, u¯) ≈ A(x¯, u¯)
−1

A(x¯, u¯)C(x¯, u¯).

As we shall see in Section III, having a state-dependent
linearization is crucial for efficient integration with predictive
control. In general, computing a state-dependent linearization
with GPs in real-time can be challenging which is why most
prior work resorts to approximating the GP using inducing
inputs [31], [32], a time-varying state-input independent
model [13] or learning the residual [11]–[13]. We will show
in Section Section II-C how to solve for the matrices of the
state-dependent linear dynamical approximation, (A, B, C),
by taking derivatives of a Gaussian process dynamics model.

B. Gaussian Process Preliminaries

A Gaussian process (GP) is the defined by a mean function
µ(s) and positive semidefinite covariance function k(s, s

'
).

In this work we will primarily use two kernels: the Radial
Basis Function (RBF) Kernel:

()

−
IIs − s

'
II
2

krbf (s, s

'
) = exp

2
 , (7)

2σ
2

and the Periodic Kernel:

−
2 sin

2
 (π|s−s' |

)

kp(s, s
'
) = exp ω2)

`2) , (8)

where σ, ω and ` are tunable parameters. We will also
construct composite kernels by exploiting the fact that the
product of kernels is a valid kernel, in order to encode
geometric properties of the dynamical system. In particular,

(4)

(5)

(6)

3897

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 31,2022 at 23:36:06 UTC from IEEE Xplore. Restrictions apply.

f (x(τ), u(τ))dτ. (10) Zt

t+δt

Fig. 2: System identification results for a simulated pendulum. Left-to-Right: The dataset collected (selecting 30 initial points uniformly at random and
integrating forward for 0.01s); Phase plot of estimated dynamics with dataset overlaid; Point-wise error between true and estimated dynamics. Phase plots
are computed on a 100 × 100 grid. We see that the error is small and captures the behavior of the system even in regions with few data points.

the Periodic Kernel is useful for modeling angular coordi-
nates, whereas the RBF kernel is more suitable for Euclidean
coordinates.

Samples of a GP take the form:

x x

x '

h GP µ , k , ,
u u u'

where function samples approximate the integral of the
dynamics as follows:

x(t)

h ≈
u(t)

Multi-dimensional outputs are predicted with an independent
GP for each output. For a test input s = x˜ u˜

T

, the mean
and variance are computed as:

µ (s) = Eh [h (s)] = k (s, X) (k(X , X) + σ6I)
−1

Y ,

σ
2

h
 = Vf [h (s)]
= k (s, s) − k (s, X) (k(X , X) + σ6I)

−1
k (X , s) .

C. Differentiating a Gaussian Process

From [24], [25], we know that the derivative of a GP is
another GP. For the following derivation it is sufficient for
the kernel function to be differentiable with respect to the
both of its parameters (which is true for both the RBF and
Periodic kernels). For an input s we define the derivative of
a GP as follows:

h' GP(µ
'
, k

'
(s, s

'
)), (11)

where h
'

 : R
n+m

 → R
n+m

 is the gradient of sampled
function h. We derive the mean of the GP derivative as
follows:

 ∂

µ' (S) =E
∂sh

=
∂∂s

E [h] =
∂

∂

s
µ(s), (12)

This GP in (9) is related to the linear approximation in
(5) as follows:

∂h(x¯, u¯)
A(x¯, u¯) ≈ + I,

∂x
∂h(x¯, u¯)

B(x¯, u¯) ≈
∂u

,

C(x¯, u¯) ≈ h(x¯, u¯) + x¯ − A(x¯, u¯)x¯ − B(x¯, u¯)u¯,

(13)

These approximates are derived by noting that the GP ap-
proximates the integral in (3) which concludes the derivation.

Graphically, this relationship can be seen in the center
plot of Figure 2 where the data points are overlapped
with the state-dependent continuous linear approximation we
computed using Equation (6). Note that since we are training
on M, a dataset of state input pairs, we are still learning the
discrete time flow map shown in (3). A key aspect of our
contribution is to re-interpret the learned dynamics in the
context of (1) to directly infer a local linear approximation
that is amenable to MPC. This allows our method to be
retroactively applied to previous GP-based modeling work
that learns a discrete transition model.

III. CONTROL DESIGN

We now describe our control strategy, which is based
on state-of-the-art methods for model predictive control
(MPC) [6]. This approach works generically with the state-
dependent linearized model described in (5). First, we intro-
duce a Finite Time Optimal Control Problem (FTOCP) which
is based on a simplified Affine Time-Varying (ATV) model.
We then present the proposed algorithm that at each time t
solves an FTOCP where the ATV model is updated lever-
aging the state-dependent linearized model from (5). Our
algorithm applies the first action of the planned trajectory
to the system and the entire process is repeated at the next
time step t + 1, yielding to a receding horizon strategy also
referred to as model predictive control.

(9)

3898

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 31,2022 at 23:36:06 UTC from IEEE Xplore. Restrictions apply.

J (x(t)) = min
ut

t+N −1
X

k=t

A. Finite Time Optimal Control

At time t and for system’s state x(t), we define the
following finite time optimal control problem (FTOCP):

l (xk|t, uk|t) + V (xt+N|t),

s.t. xk+1|t = Akxk|t + Bkuk|t + Ck, (14)

xk|t X , uk|t U , k {t,... , t + N }
xt|t = x(t)

where ut = [ut|t, . . . , ut+N|t] is a sequence of open-loop
control actions, the stage cost l :]I8

n
 ×]I8

d
 →]I8, the terminal

cost V :]I8
n

 →]I8 and the sets X]I8
n

 and U]I8
d

represent the state and input constraints, respectively. In
the above problem, the time varying matrices Ak, Bk and
Ck define a discrete time ATV approximation of the true
system (1) and we will compute them using the differentiable
GP from Section II-C.

We denote the optimal state-input sequences to the
FTOCP (14) as:

~~ ~ ~ ~ J1
(x

t
 , u

t) = x
t|t

, u
t|t , ... , x

t+N|t
, u

t+N−1|t (15)

which minimize the predicted cost while satisfying state and
input constraints from (2). When the above optimal predicted
trajectory is computed at time t, we have that xk|t denotes the
predicted state of at time k. This notation will be useful later
on when we are going to differentiate between the optimal
state xk|t at time k predicted at time t and the optimal state
xk|t+1 at time k predicted at time t + 1. In what follows,
we use the optimal state-input sequences (15) to synthesize
a control policy for the dynamical system (1).

B. Policy Synthesis

This section describes the control synthesis strategy. At
each time t, we solve the FTOCP (14), where the time

Algorithm 1 Control Policy
1: Init Parameters: xt−1

, ut−1
, G P(µ

0
(s), k

0
(s, s

0
))

2: Input: xt
3: if t > 0 then . Update Candidate Trajectory
4: Set x¯ k|t = xk|t−1, k{ t, ... , t + N − 1 }
5: Set u¯ k|t = uk|t−1, k{ t, ... , t + N − 2 }
6: Set x¯ t+N|t = xt+N−1|t−1
7: Set u¯ t+N−1|t = ut+N−2|t−1
8: end if
9: for k {t, ... , t + N − 1 } do . Update Model

10: Set Ak = A(x̄k|t, u¯ k|t) from expectation of (13)
11: Set Bk = B(x̄k|t, u¯ k|t) from expectation of (13)
12: Set Ck = C (x̄k|t, u

¯
k|t) from expectation of (13)

13: end for
14: Solve the FTOCP (14) with { Ak , Bk, Ck }t+N−1

k=t
15: Store xt = [xt|t,... , xt+N|t]
16: Store ut = [ut|t,..., ut+N−1|t]
17: Set ut = ut|t
18: Outputs ut

varying matrices {Ak , Bk, Ck }t+N−1
k=t are computed using

the differentiable GP evaluated along the candidate state
input sequences:

(x̄t, ūt) =
[(

x̄t|t, u¯ t|t) , ...
(
x¯ t+N|t, u¯ t+N−1|t

)J

At time t = 0, we initialize the candidate trajectory with an
initial guess and afterwards we update the candidate solution
using the optimal trajectory from (15), as shown in Algo-
rithm 1. In particular, in Algorithm 1 we update the candidate
trajectory by shifting the optimal solution computed as the
previous time time (Lines 3-8). Afterwards, we update ATV
matrices used to define the FTOCP problem (14). Finally,
we solve problem (14) and we store the optimal state-input
trajectories. The strategy described in Algorithm 1 is repeated
at each time t based on the new measurement xt.

It is clear that the prediction model defined by the ATV
matrices { Ak , Bk, Ck }t+N−1

k=t plays a crucial role in deter-

mining the success of the MPC. If the prediction model is
inaccurate, then the closed-loop system will deviate from the
planned trajectory. This deviation may result in poor closed-
loop performance and safety constraint violation. We validate
this point in our experiments showing that controlling using
an inaccurate model can be unsafe, thus highlighting the need
to quickly learn accurate dynamics models.

IV. SIMULATION RESULTS

In this section, we validate our approach in simulation on
two unstable systems: the inverted pendulum and the segway.
The goal of this evaluation is to provide both an intuition
as well as a demonstration of the theoretical limits for our
approach. Specifically, we aim to address:

• Can we learn an accurate dynamics model with few
training examples?

• Can we integrate our dynamics model with control for
steering and motion planning?

A. Pendulum Simulation

We first test on a continuous time inverted pendulum. The
state of the system is x = [θ,

˙
θ] with torque input u. The

system has a point mass of 0.25kg and a length of 0.5m.
1) Data Collection & System Identification: First, we

estimate the discrete flow map for the unactuated system
using 37 samples collected uniformly at random so that
θ(ti) U(−π, π) and

˙
θ(ti) U(−5, 5). We capture the

(a) (b)

Fig. 3: Figure 3a shows the closed-loop trajectory of the pendulum. MPC
with both the true model and the GP produce near identical trajectories.
Figure 3b shows the one-step prediction error of the MPC policy for both
models.

3899

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 31,2022 at 23:36:06 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 4: Control results on simulated segway. Figure 4a, we plot the position of the segway as it reaches a sequence of target goals. Figure 4b shows :
the angle of the segway with respect to the upright position. Notice that the segway must deviate from its equilibrium in order to accelerate forwards or
backwards. Figure 4c shows the one-step prediction error of the MPC policy using GP dynamics.

geometric structure of the pendulum’s sate-space by using
the following kernel:

k(x, x
'
) = kp (θ, θ

'
)krbf (

˙
θ,

˙
θ

'
), (16)

since x E S
1

 x R. Next, we use a local linear approximation
to compute a point-wise estimate of the continuous dynamics
as shown in (13). The entire dataset of state transitions is
shown in the left plot of Figure 2.

2) Evaluating Model Accuracy: We divide the state-space
of the pendulum into a 100 x 100 grid. For each point in
the grid we compute the true value of ẋ using (1) and an
estimated value using the linear approximation in (4) where
A, B and C are computed using the derivative of the GP
as in (13). The phase plot in Figure 2 correspond to the
direction of the estimated ẋ. For each point in the grid we
can compute the 2-norm of the error which is shown in the
heat map on the right. Overall, we can see that our approach
can recover an accurate state-dependent linearization of the
true continuous time dynamics.

3) Evaluating Motion Planning: Next, we consider the
task of steering the pendulum to the upright position starting
from x(0) = (−π, 0) with the input constraint set U =
{u | − .6 < u < .6}. Notice that with these constraints
the pendulum is unable to reach the goal in a single swing.
For this task, we collect a new dataset of 34 uniformly
distributed samples where states are sampled as before and
u(ti) U(−.6, .6). Finally, we run the control policy from
Algorithm 1. Both our strategy and an MPC using true
dynamics are able to swing up the pendulum reaching the
unstable equilibrium state as shown in Figure 3a.

To evaluate the performance of the GP model for motion
planning, we compute the difference between the first state
predicted by the MPC policy and the actual state observed by
the system. Figure 3b shows the errors for the true model and
the learned model at each time step of the pendulum’s swing-
up. We see that throughout the pendulum swing up the MPC
model has a higher prediction error than the GP. Towards
the end, as the pendulum stabilizes, the error of the MPC
policy with the true model falls to 0 while the GP controller
maintains a low but stable error. We expect the MPC with
continuous time dynamics to have a slightly higher error
than the GP as the continuous time dynamics are linearized
and discretized to compute the predicted trajectory, while GP
provides an estimate of the discrete-time map which is used

to compute the next step.

B. High-Fidelity Segway Simulation

We next evaluate our strategy on a high-fidelity simulated
segway based on the 6-D state space and 2-D input space
system shown in Figure 5. The state of a segway is x =
[X, Y, θ, v,

˙
θ, ψ,

˙
ψ], where (X, Y) represents the position of

the center of mass, (θ,
˙
θ) the heading angle and yaw rate, v

the velocity and (ψ,
˙

ψ) the rod’s angle and angular velocity.
The control input u = [Tl , Tr], where Tl and Tr are the
torques to the left and right wheel motors, respectively. For
all experiments, we limit |Tl | < 6 and |Tr | < 6.

1) Data Collection & System Identification: Recall that
we are learning the mapping shown in (5). As a prior, we
know that X and Y have no effect on the dynamics of the
system. Therefore we only need to learn a mapping from
the state excluding X and Y at the current time step to the
change in state at the next time step. We encode the property
of θ being an angle via the following kernel:

k(x, x
'
) = kp (θ, θ')krbf (s, s

'
), (17)

where s = [v,
˙
θ, ψ,

˙
ψ]. Although ψ is also an angle, since

the system cannot rotate about that axis without catastrophic
failure, we use a regular RBF kernel for it.

In simulation, we record the segway performing a task
consisting of 1000 state-transitions at a frequency T = 0.05
which is approximately one minute of data. We then find 180
clusters using a hierarchical clustering algorithm and select
the nearest neighbor for each cluster as the data-point for the
training set. We test the ability of the our strategy to perform
the same task that was used to collect the data but with the
GP dynamics model.

2) Evaluating Motion Planning: Figure 4a shows the path
that the segway takes while reaching the targets. Once the
segway is within 1m of a goal the next one is provided.
Notice that peaks and troughs in Figure 4b correspond to
moments of forwards and backwards acceleration (since the
segway must tilt to move forward). Those same moments of
high acceleration also match with the peaks of high one-step
prediction error observed in Figure 4c.

V. EXPERIMENTAL RESULTS ON SEGWAY

We finally evaluate our approach experimentally on the
segway system (see Figure 5). The state representation is
the same as in Section IV-B.

3900

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 31,2022 at 23:36:06 UTC from IEEE Xplore. Restrictions apply.

We aim to demonstrate that:
• Our method can control a physical open-loop unstable

system to perform a simple move-forward task.
• Our method is able to overcome perturbations with

unmodelled dynamics in a physical open-loop unstable
system where a state-of-the art MPC controller fails.

1) Data Collection & System Identification: We record
the trajectory of the segway performing a task that takes
1000 measurements recorded every T = 0.05s to complete.
The data is then preprocessed using the same procedure
as for the simulated system. We evaluate on two tasks:
the first is a standard moving forward task while staying
upright, and the second is stabilizing task under a external
force disturbance. We note that since this a real system an
estimation is performed online with on-board sensors there
is significant estimation error as well. Although our method
is capable of running at 20Hz with up to 300 data-points,
we required less data than this for the experiments.

2) Simple Move-Forward Task: We start by considering
the move-forward task. For this we only require 130 data
points. As can be observed in Figure 7, the system is able to
stabilize at a point, move forward and stabilize close to the
new location with some minor oscillations around the target
point, as highlighted in Figure 6. The first and second peaks
in Figure 6b correspond to the acceleration and deceleration
respectively. Notice that due to a combination of modeling
and estimation estimation error, the segway balances slightly
off the equilibrium point. Finally, from Figure 6c we see that
the model error spikes at the moments of high acceleration.

3) Robustness To Perturbations: We now evaluate the per-
formance of the learned model under perturbations. To test
the robustness of the learned model, we start by collecting
100 data points from a dataset of the MPC policy with
nominal dynamics completing the task with an unmodelled
weight of 2kg. Although this results in slightly different
behavior, the amount of data collected is the same as in
previous experiments. Next, we attach 4kg of unmodelled
weight as shown in Figure 1. Notice that the weight is not
perfectly centered and that it is allowed to sway back and
forth from its point of contact.

In Figure 8 and Figure 9, we can see the result of applying
force perpendicular to the axis of the wheels to the MPC
policy with the nominal and GP dynamics, respectively. Both
controllers have a spike in input following each disturbance,
and in both cases the control action is saturated. Notice that
because of the symmetry of the nominal model, the MPC
policy applies the same force on each input as shown in
Figure 9a. Meanwhile the learned dynamics captures some
of the asymmetry resulting from the weights which causes
uneven outputs and a more robust system. In Figure 8b
and Figure 9b, we can see that even though the initial
disturbances are of similar magnitude, the controller with
nominal dynamics exhibits much larger oscillations and falls
after the third perturbation. Although both models have sharp
increases in one-step prediction error after a disturbance, the
MPC model reaches much higher one-step prediction errors
than with the GP, as shown in Figure 8c and Figure 9c.

Fig. 5: Experimental platform.

VI. DISCUSSION AND FUTURE WORK

We presented a methodology for full dynamics learning
that has been validated on an open-loop unstable robotic
system. Using one minute of highly correlated data we are
able estimate an accurate enough model for motion planning
that is resilient to perturbations. Furthermore, the results
presented in this paper are for a worst-case scenario where
no useful prior is provided. Finally, our approach is generic
and can be applied to many Gaussian process modeling
approaches as a drop-in subroutine.

There are many directions for future work. A natural
one is to study even higher-dimensional systems where
one would likely need to combine learning with a prior
nominal model. Another direction is dealing with noise in
the state estimation as well as delays, which are significant
issues for unstable dynamical systems. Using techniques to
correct noisy estimation data would significantly improve the
performance of our method in real systems. This would be
true when dealing with outlying measurements that strongly
violate the Gaussian assumption implicit in the GP. One
could also consider integration with perceptual systems [33].

Another direction for future work is how to intelligently
and autonomously collect training data. A relevant line of
work here is the area of safe exploration [9], [34]–[38].
It is also important to understand the fundamental limits
of how much data we need to learn a reliable model, a
concept known as sample complexity in the machine learning
literature [39].

This work exploited the differentiability of Gaussian pro-
cesses, but largely ignored the uncertainty quantification
aspect. In cases where there are more complex constraints to
be satisfied, such as reachability [40] or chance constraints
[35], it would be interesting to develop a more holistic
framework that reasons about uncertainty quantication in
differentiated GP models.

A final direction for future work is scalability. For more
complex systems, it would be beneficial to collected and store
more data points for estimating the GP model. However, it
is known that the computational complexity of GP inference
can scale poorly with the amount of training data. Leveraging
various methods for scaling up GP training and inference
could be beneficial [41], [42].

3901

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 31,2022 at 23:36:06 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 6: The 7-D state space and 2-D input space segway going between two points. In Figure 6a we plot the physical position of the segway. In Figure 6b
we see : the angle between segway’s pole and the upright position. The two peaks correspond to the segway accelerating and decelerating. Figure 6c
shows the MPC policy’s one-step prediction error using the GP dynamics.

Fig. 7: This image sequence shows the segway going to a point using the full order dynamics learned with our GP method.

(a) (b) (c)

Fig. 8: The MPC policy with GP dynamics responding to 5 perturbations. The segway remains stable after each disturbance. Figure 8a shows the inputs
spiking after each disturbance. The difference between inputs suggests the learned dynamics model captures asymmetries induced by the placement and
sway of the unmodelled weights. Figure 9b plots the angle of the segway with respect to the ground. Figure 9c shows the MPC’s one step prediction error
remains low through all disturbances.

(a) (b) (c)

Fig. 9: The MPC policy with nominal dynamics responding three perturbations. The segway remains stable after the first disturbance, oscillates before
stabilizing for the second disturbance and falls down after the third disturbance. Figure 8a shows the input spike on each input after the disturbances.
Notice that for all three perturbations, the both motors act in unison to stabilize the system. Figure 9b shows the angle of the segway with respect to the
ground. Figure 9c shows the MPC’s one-step prediction error using the nominal dynamics. Notice that the oscillations cause the weight to swing which
magnify the prediction error.

3902

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 31,2022 at 23:36:06 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

We would like to thank Andrew Singletary and Ellen
Novoseller for their help in setting up the robotics and the
mathematical derivations, respectively. We would also like to
thank the follwing software packages: PyTorch [43], CVXPY
[44] and Gurobi [45].

REFERENCES

[1] T. L. Lai, C. Z. Wei et al., “Least squares estimates in stochastic
regression models with applications to identification and control of
dynamic systems,” Annals of Statistics, vol. 10, no. 1, pp. 154–166,
1982.

[2] P. K. Khosla and T. Kanade, “Parameter identification of robot
dynamics,” in 1985 24th IEEE Conference on Decision and Control,
pp. 1754–1760.

[3] S. Chen, S. Billings, and P. Grant, “Non-linear system identification
using neural networks,” International journal of control, vol. 51, no. 6,
pp. 1191–1214, 1990.

[4] U. Ç aydaş and S. Ekici, “Support vector machines models for
surface roughness prediction in CNC turning of AISI 304 austenitic
stainless steel,” vol. 23, no. 3, pp. 639–650. [Online]. Available:
https://doi.org/10.1007/s10845-010-0415-2

[5] M. Willis, H. Hiden, M. Hinchliffe, and B. McKAY, “Systems
modelling using genetic programming,” p. 6.

[6] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[7] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[8] D. Papadimitriou, U. Rosolia, and F. Borrelli, “Control of unknown
nonlinear systems with linear time-varying MPC.” [Online]. Available:
http://arxiv.org/abs/2004.03041

[9] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration,” in 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 2018, pp. 6059–
6066.

[10] U. Rosolia and F. Borrelli, “Learning how to autonomously race a car:
a predictive control approach,” IEEE Transactions on Control Systems
Technology, vol. 28, no. 6, pp. 2713–2719, 2019.

[11] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive
control using gaussian process regression,” IEEE Transactions on
Control Systems Technology, vol. 28, no. 6, pp. 2736–2743, 2019.

[12] J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-
based model predictive control for autonomous racing,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.

[13] E. D. Klenske, M. N. Zeilinger, B. Schölkopf, and P. Hennig, “Gaus-
sian process-based predictive control for periodic error correction,”
IEEE Transactions on Control Systems Technology, vol. 24, no. 1, pp.
110–121, 2015.

[14] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anand-
kumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing
control using learned dynamics,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 9784–9790.

[15] G. Shi, W. Hönig, Y. Yue, and S.-J. Chung, “Neural-swarm: Decen-
tralized close-proximity multirotor control using learned interactions,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 3241–3247.

[16] A. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for safety-
critical control with control barrier functions,” in Learning for Dy-
namics and Control. PMLR, 2020, pp. 708–717.

[17] A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and A. D. Ames,
“Episodic learning with control lyapunov functions for uncertain
robotic systems,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 6878–6884.

[18] A. H. Chang, C. M. Hubicki, J. J. Aguilar, D. I. Goldman, A. D. Ames,
and P. A. Vela, “Learning to jump in granular media: Unifying optimal
control synthesis with gaussian process-based regression,” in 2017
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2017, pp. 2154–2160.

[19] M. Bujarbaruah, X. Zhang, U. Rosolia, and F. Borrelli, “Adaptive mpc
for iterative tasks,” in 2018 IEEE Conference on Decision and Control
(CDC). IEEE, 2018, pp. 6322–6327.

[20] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” vol. 37, no. 2,
pp. 408–423. [Online]. Available: http://ieeexplore.ieee.org/document/
6654139/

[21] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model
predictive control using gaussian process regression,” vol. 28,
no. 6, pp. 2736–2743. [Online]. Available: https://ieeexplore.ieee.org/
document/8909368/

[22] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of
quadrotor dynamics using barrier certificates,” in 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 2460–2465.

[23] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard,
“Gaussian process model based predictive control,” in Proceedings
of the 2004 American control conference, vol. 3. IEEE, 2004, pp.
2214–2219.

[24] A. McHutchon, “Differentiating gaussian processes,” 2013. [Online].
Available: http://mlg.eng.cam.ac.uk/mchutchon/DifferentiatingGPs.pdf

[25] E. Solak, R. Murray-smith, W. E. Leithead, D. J. Leith, and C. E.
Rasmussen, “Derivative observations in gaussian process models of
dynamic systems,” p. 8.

[26] G. Lee, S. S. Srinivasa, and M. T. Mason, “GP-ILQG: Data-driven
robust optimal control for uncertain nonlinear dynamical systems.”
[Online]. Available: http://arxiv.org/abs/1705.05344

[27] M. E. Levine and A. M. Stuart, “A framework for machine learning
of model error in dynamical systems,” 2021.

[28] Y. Pan and E. Theodorou, “Probabilistic differential dynamic program-
ming,” p. 9.

[29] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” p. 8.

[30] M. Lutter, S. Mannor, J. Peters, D. Fox, and A. Garg, “Value
iteration in continuous actions, states and time.” [Online]. Available:
http://arxiv.org/abs/2105.04682

[31] L. Hewing, K. P. Wabersich, M. Menner, and M. N.
Zeilinger, “Learning-based model predictive control: To-
ward safe learning in control,” vol. 3, no. 1,
pp. 269–296, eprint: https://doi.org/10.1146/annurev-control-
090419-075625. [Online]. Available: https://doi.org/10.1146/
annurev-control-090419-075625

[32] J. Quinonero-Candela and C. E. Rasmussen, “A unifying view of
sparse approximate gaussian process regression,” The Journal of
Machine Learning Research, vol. 6, pp. 1939–1959, 2005.

[33] S. Dean, N. Matni, B. Recht, and V. Ye, “Robust guarantees for
perception-based control,” in Learning for Dynamics and Control.
PMLR, 2020, pp. 350–360.

[34] A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, and Y. Yue, “Robust
regression for safe exploration in control.” [Online]. Available:
http://arxiv.org/abs/1906.05819

[35] Y. K. Nakka, A. Liu, G. Shi, A. Anandkumar, Y. Yue, and S.-J. Chung,
“Chance-constrained trajectory optimization for safe exploration and
learning of nonlinear systems,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 389–396, 2020.

[36] Y. Sui, A. Gotovos, J. Burdick, and A. Krause, “Safe exploration for
optimization with gaussian processes,” in International Conference on
Machine Learning. PMLR, 2015, pp. 997–1005.

[37] A. Wachi, Y. Sui, Y. Yue, and M. Ono, “Safe exploration and optimiza-
tion of constrained mdps using gaussian processes,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[38] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration for
interactive machine learning,” arXiv preprint arXiv:1910.13726, 2019.

[39] K. P. Wabersich and M. Zeilinger, “Bayesian model predictive con-
trol: Efficient model exploration and regret bounds using posterior
sampling,” in Learning for Dynamics and Control. PMLR, 2020, pp.
455–464.

[40] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N.
Zeilinger, and C. J. Tomlin, “Reachability-based safe learning with
gaussian processes,” in 53rd IEEE Conference on Decision and
Control. IEEE, 2014, pp. 1424–1431.

[41] A. Wilson and H. Nickisch, “Kernel interpolation for scalable struc-
tured gaussian processes (kiss-gp),” in International Conference on
Machine Learning. PMLR, 2015, pp. 1775–1784.

[42] E. Snelson and Z. Ghahramani, “Local and global sparse gaussian pro-
cess approximations,” in Artificial Intelligence and Statistics. PMLR,
2007, pp. 524–531.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alche´-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[44] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting
system for convex optimization problems,” Journal of Control and
Decision, vol. 5, no. 1, pp. 42–60, 2018.

[45] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

3903

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 31,2022 at 23:36:06 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/s10845-010-0415-2
http://arxiv.org/abs/2004.03041
http://arxiv.org/abs/2105.04682
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/
http://arxiv.org/abs/1906.05819

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

