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Learning to Control an Unstable System with One Minute of Data: 
Leveraging Gaussian Process Differentiation in Predictive Control 
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Fig. 1: Stabilizing a segway with an unmodelled weight against a force disturbance. Top: Our method is able to stabilize using a fully learned dynamics 
model that uses only 100 data points collected from one minute of data. Bottom: A state-of-the-art model predictive control policy using the nominal 
dynamics is unable to stabilize. 

Abstract— We present a straightforward and efficient way to 
control unstable robotic systems using an estimated dynamics 
model. Specifically, we show how to exploit the differentiability 
of Gaussian Processes to create a state-dependent linearized 
approximation of the true continuous dynamics that can be 
integrated with model predictive control. Our approach is 
compatible with most Gaussian process approaches for sys-
tem identification, and can learn an accurate model using 
modest amounts of training data. We validate our approach 
by learning the dynamics of an unstable system such as a 
segway with a 7-D state space and 2-D input space (using 
only one minute of data), and we show that the resulting 
controller is robust to unmodelled dynamics and disturbances, 
while state-of-the-art control methods based on nominal models 
can fail under small perturbations. Code is open sourced at 
https://github.com/learning-and-control/core. 

I. INTRODUCTION 

System identification is frequently used in robotics to 
mitigate model imperfections using measured input-output 
data [1]–[5]. Managing these modeling errors can be critical 
to achieving desired performance or guaranteeing safety. This 
problem is particularly challenging in systems with unstable 
dynamics since even small modeling errors can integrate over 
time without control inputs that can directly dampen them. 
For instance, we experimentally show that running state-of-

 

the-art model predictive control [6] on a 7-D state space 
and 2-D input space segway system using a misidentified 
model can lead to unsafe and unstable behavior, as depicted 
in Figure 1. 
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A useful system identification framework must balance 
computation time, accuracy and data efficiency. Furthermore, 
since data often cannot be collected for the entire state space 
of a real system, an estimate of model uncertainty is also 
useful to plan around gaps in the knowledge of the learned 
model. Because of these challenges, much of contemporary 
research has focused on learning residuals of an already well-
developed nominal dynamics model [7]–[19]. 

In this paper, we aim to learn the full dynamics models of 
unstable robotic systems. Our goal is to develop a straightfor-
ward and data efficient method for system identification that 
can be easily integrated with state-of-the-art control methods. 
We ground our approach in Gaussian processes (GPs), which 
are a popular method for learning dynamics models [9], 
[11]–[13], [18], [20]–[23]. We leverage the differentiability 
of GPs [24], [25] to train a discrete-time dynamics model 
from training data of the form ( xt , ut , xt+Δt ), while still 
recovering a state-dependent linearization of the dynamics 
that exploits the underlying continuous dynamics structure. 

Learning a discrete-time linearizable dynamics has three 
key benefits. First, the approach can be very data efficient, 
as the differentiated GP model automatically infers the state-
dependent linearization at every state. This differs from other 
approaches where the continuous dynamics model is learned 
directly and then used with collocation for approximation 
[26]. As shown in [27], learning the continuous dynam-
ics rather than the discrete flow-map often requires higher 
sampling frequencies where measurement noise can become 
significant in practice. Second, one can use the estimated 
model with state-of-the-art model predictive control (MPC) 
methods [6] for effective and computationally efficient con-
trol synthesis that can handle state and input constraints. 
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∂ ∂ 
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The final benefit is that the approach is generic and can be 
applied to many GP-based modeling approaches as a drop-in 
subroutine. 

The idea of using GPs for MPC is not new, but prior work 
either required using computationally expensive procedures 
[23], or limited themselves to learning only residual models 
[11]–[13], [18]. Other prior work use of GPs with Dynamic 
Programming frameworks that do not take into account 
state and input constraints [28]. Also, unlike reinforcement 
learning approaches that use Policy Gradient [29] or Value 
Iteration [30] with GPs, this method uses MPC to infer a 
policy. Learning the dynamics in MPC separates the policy 
from the dynamics and allows for using the same dynamics 
for different objectives. 

We validate our approach by controlling unstable robotic 
systems, both in simulation and on a segway with 7-D state 
space and 2-D input space. Whereas state-of-the-art control 
methods can fail to stabilize the segway under small model 
mismatch, we show that one can robustly stabilize using 
our model trained on only one minute of data (see Figure 
1 above). These results showcase the practical potential of 
our approach to significantly reduce the effort required for 
accurate system identification in unstable robotic systems. 

II. A DIFFERENTIATION-BASED GAUSSIAN PROCESS 

MODEL FOR DYNAMICS ESTIMATION 

In this section, we outline our approach for system identifi-
cation using a differentiation-based Gaussian process model. 
We first describe and motivate learning a state-dependent 
linearized model in Section II-A. We then discuss Gaussian 
process preliminaries in Section II-B, and how to differen-
tiate a GP to obtain a state-dependent linearized dynamics 
model in Section II-C. 

A. State-Dependent Linearized Dynamics Modeling 

We consider the following dynamical system: 

ẋ(t) = f (x(t), u(t)), (1) 

with states x  R
n

, control inputs u  R
m

, and where f is 
unknown (not even the functional form). The above system 
is subject to the the following state and input constraints: 

x(t)  X and u(t)  U , t ≥ 0. (2) 

Our goal is to design a control policy π : R
n

 → R
d

which 
maps states to actions. In order to compute such a policy we 
will use historical data to estimate the full system dynamics 
f , which will be leveraged in a predictive control scheme. 
We are particularly interested in systems that are passively 
unstable (e.g., a segway). 

We assume access to a dataset of M state-input pairs 
{ x̂(iT), u(iT) }Mi=0, where T is the sampling period. Visually, 
on the pendulum, this would correspond to the left-most plot 
in Figure 2. Furthermore, we assume the control action is 
applied using a sampling-and-hold strategy meaning that: 

Z (i+1)T 

x̂((i + 1)T) = f (x(τ), u(t))dτ + x(t) + w, (3) 
iT 

where the noise w a zero-mean Gaussian, i.e, w  N (0, σ
2
). 

Rather than performing motion planning directly on these 
discrete-time dynamics (as is common in the literature [20], 
[31]), we instead use (3) and a state-dependent linear approx-
imation of the dynamics around the state-input pair (x¯, u¯): 

f (x, u) ≈ A(x¯, u¯)x + B (x¯, u¯)u + C(x¯, u¯), 
∂f (x¯, u¯) 

A(x¯, u¯) = 
 ∂x 

, 

∂ f (x¯, u¯) 
B (x¯, u¯) = 

 ∂u 
, 

This linearization of the dynamics can be related to a 
linearization of the discrete flow map in (3) as follows: 

x̂(t + δt) ≈ A(x¯, u¯)x(t) + B(x¯, u¯)ut + C(x¯, u¯), 

A(x¯, u¯) = eA(x¯,u¯)δt, 

B(x¯, u¯) = A(x¯, u¯)−1(eA(x¯,u¯)δt − I )B (x¯, u¯), 

C(x¯, u¯) = A(x¯, u¯)−1(eA(x¯,u¯)δ t − I )C(x¯, ū). 

Although these matrices alone are sufficient for use in our 
MPC controller, through the use of matrix logarithms, the 
local linear approximation of the dynamics can be computed: 

1 
A(x¯, u¯) ≈ log(A(x¯, u¯)), 

δt 
B (x¯, u¯) ≈ A(x¯, u¯)

−1
A(x¯, u¯)B(x¯, u¯), 

C(x¯, u¯) ≈ A(x¯, u¯)
−1

A(x¯, u¯)C(x¯, u¯). 

As we shall see in Section III, having a state-dependent 
linearization is crucial for efficient integration with predictive 
control. In general, computing a state-dependent linearization 
with GPs in real-time can be challenging which is why most 
prior work resorts to approximating the GP using inducing 
inputs [31], [32], a time-varying state-input independent 
model [13] or learning the residual [11]–[13]. We will show 
in Section Section II-C how to solve for the matrices of the 
state-dependent linear dynamical approximation, (A, B, C), 
by taking derivatives of a Gaussian process dynamics model. 

B. Gaussian Process Preliminaries 

A Gaussian process (GP) is the defined by a mean function 
µ(s) and positive semidefinite covariance function k(s, s

'
). 

In this work we will primarily use two kernels: the Radial 
Basis Function (RBF) Kernel: 

( ) 

−
IIs −  s

'
II
2

 
krbf (s, s

'
) = exp

2
 , (7) 

2σ
2 

and the Periodic Kernel: 

−
2 sin

2
 ( π|s−s' |

 ) 

kp(s, s
'
) = exp ω2 ) 

`2 ) , (8) 

where σ, ω and ` are tunable parameters. We will also 
construct composite kernels by exploiting the fact that the 
product of kernels is a valid kernel, in order to encode 
geometric properties of the dynamical system. In particular, 

(4) 

(5) 

(6) 
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f (x(τ), u(τ))dτ. (10) Zt 

t+δt 

Fig. 2: System identification results for a simulated pendulum. Left-to-Right: The dataset collected (selecting 30 initial points uniformly at random and 
integrating forward for 0.01s); Phase plot of estimated dynamics with dataset overlaid; Point-wise error between true and estimated dynamics. Phase plots 
are computed on a 100 × 100 grid. We see that the error is small and captures the behavior of the system even in regions with few data points. 

the Periodic Kernel is useful for modeling angular coordi-
nates, whereas the RBF kernel is more suitable for Euclidean 
coordinates. 

Samples of a GP take the form: 

x x  
 

x '
 

h  GP µ , k , , 
u u u' 

where function samples approximate the integral of the 
dynamics as follows: 

x(t)
 

h ≈ 
u(t) 

Multi-dimensional outputs are predicted with an independent 
GP for each output. For a test input s = x˜  u˜

T

, the mean 
and variance are computed as: 

µ (s) = Eh [h (s)] = k (s, X ) (k(X , X ) + σ6I )
−1

Y , 

σ
2

h
 = Vf [h (s)] 
= k (s, s) − k (s, X ) (k(X , X ) + σ6I )

−1
k (X , s) . 

C. Differentiating a Gaussian Process 

From [24], [25], we know that the derivative of a GP is 
another GP. For the following derivation it is sufficient for 
the kernel function to be differentiable with respect to the 
both of its parameters (which is true for both the RBF and 
Periodic kernels). For an input s we define the derivative of 
a GP as follows: 

h'  GP(µ
'
, k

'
(s, s

'
)), (11) 

where h
'

 : R
n+m

 → R
n+m

 is the gradient of sampled 
function h. We derive the mean of the GP derivative as 
follows: 

 ∂ 
 

µ' (S) =E
∂sh

=
∂∂s

E [h] =
∂

∂

s
µ(s), (12) 

This GP in (9) is related to the linear approximation in 
(5) as follows: 

∂h(x¯, u¯)  
A(x¯, u¯) ≈ + I, 

∂x 
∂h(x¯, u¯) 

B(x¯, u¯) ≈ 
∂u 

, 

C(x¯, u¯) ≈ h(x¯, u¯) + x¯ − A(x¯, u¯)x¯ − B(x¯, u¯)u¯, 

(13) 

These approximates are derived by noting that the GP ap-
proximates the integral in (3) which concludes the derivation. 

Graphically, this relationship can be seen in the center 
plot of Figure 2 where the data points are overlapped 
with the state-dependent continuous linear approximation we 
computed using Equation (6). Note that since we are training 
on M, a dataset of state input pairs, we are still learning the 
discrete time flow map shown in (3). A key aspect of our 
contribution is to re-interpret the learned dynamics in the 
context of (1) to directly infer a local linear approximation 
that is amenable to MPC. This allows our method to be 
retroactively applied to previous GP-based modeling work 
that learns a discrete transition model. 

III. CONTROL DESIGN 

We now describe our control strategy, which is based 
on state-of-the-art methods for model predictive control 
(MPC) [6]. This approach works generically with the state-
dependent linearized model described in (5). First, we intro-
duce a Finite Time Optimal Control Problem (FTOCP) which 
is based on a simplified Affine Time-Varying (ATV) model. 
We then present the proposed algorithm that at each time t 
solves an FTOCP where the ATV model is updated lever-
aging the state-dependent linearized model from (5). Our 
algorithm applies the first action of the planned trajectory 
to the system and the entire process is repeated at the next 
time step t + 1, yielding to a receding horizon strategy also 
referred to as model predictive control. 

(9) 
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J ( x( t )) = min 
ut 

t+N −1 
X  

k=t 

A. Finite Time Optimal Control 

At time t and for system’s state x( t ), we define the 
following finite time optimal control problem (FTOCP): 

l ( xk|t, uk|t ) + V ( xt+N|t ), 

s.t. xk+1|t = Akxk|t + Bkuk|t + Ck, (14) 

xk|t  X , uk|t  U , k  {t,... , t + N } 
xt|t = x( t ) 

where ut = [ut|t, . . . , ut+N|t ] is a sequence of open-loop 
control actions, the stage cost l : ]I8

n
 × ]I8

d
 → ]I8, the terminal 

cost V : ]I8
n

 → ]I8 and the sets X  ]I8
n

 and U  ]I8
d 

represent the state and input constraints, respectively. In 
the above problem, the time varying matrices Ak, Bk and 
Ck define a discrete time ATV approximation of the true 
system (1) and we will compute them using the differentiable 
GP from Section II-C. 

We denote the optimal state-input sequences to the 
FTOCP (14) as: 

~~ ~ ~ ~ J1 
( x  

t
 , u  

t ) = x  
t|t

,  u  
t|t , ... , x  

t+N|t
,  u  

t+N−1|t (15) 

which minimize the predicted cost while satisfying state and 
input constraints from (2). When the above optimal predicted 
trajectory is computed at time t, we have that xk|t denotes the 
predicted state of at time k. This notation will be useful later 
on when we are going to differentiate between the optimal 
state xk|t at time k predicted at time t and the optimal state 
xk|t+1 at time k predicted at time t + 1. In what follows, 
we use the optimal state-input sequences (15) to synthesize 
a control policy for the dynamical system (1). 

B. Policy Synthesis 

This section describes the control synthesis strategy. At 
each time t, we solve the FTOCP (14), where the time 

Algorithm 1 Control Policy 
1: Init Parameters: xt−1

,  ut−1
,  G P(µ

0
( s ), k

0
( s, s

0
)) 

2: Input: xt 
3: if t > 0 then . Update Candidate Trajectory 
4: Set x¯ k|t = xk|t−1, k{ t, ... , t + N − 1 } 
5: Set u¯ k|t = uk|t−1, k{ t, ... , t + N − 2 } 
6: Set x¯ t+N|t = xt+N−1|t−1 
7: Set u¯ t+N−1|t = ut+N−2|t−1 
8: end if 
9: for k  {t, ... , t + N − 1 } do . Update Model 

10: Set Ak = A( x̄k|t, u¯ k|t ) from expectation of (13) 
11: Set Bk = B( x̄k|t, u¯ k|t ) from expectation of (13) 
12: Set Ck = C ( x̄k|t, u

¯
k|t ) from expectation of (13) 

13: end for 
14: Solve the FTOCP (14) with { Ak , Bk, Ck }t+N−1 

k=t 
15: Store xt  = [xt|t,... , xt+N|t ] 
16: Store ut  = [ut|t,..., ut+N−1|t ] 
17: Set ut = ut|t 
18: Outputs ut  

varying matrices {Ak , Bk, Ck }t+N−1 
k=t are computed using 

the differentiable GP evaluated along the candidate state 
input sequences: 

( x̄t, ūt ) = 
[(

x̄t|t, u¯ t|t ) , ... 
(
x¯ t+N|t, u¯ t+N−1|t

)J 

At time t = 0, we initialize the candidate trajectory with an 
initial guess and afterwards we update the candidate solution 
using the optimal trajectory from (15), as shown in Algo-
rithm 1. In particular, in Algorithm 1 we update the candidate 
trajectory by shifting the optimal solution computed as the 
previous time time (Lines 3-8). Afterwards, we update ATV 
matrices used to define the FTOCP problem (14). Finally, 
we solve problem (14) and we store the optimal state-input 
trajectories. The strategy described in Algorithm 1 is repeated 
at each time t based on the new measurement xt. 

It is clear that the prediction model defined by the ATV 
matrices { Ak , Bk, Ck }t+N−1 

k=t plays a crucial role in deter-

 

mining the success of the MPC. If the prediction model is 
inaccurate, then the closed-loop system will deviate from the 
planned trajectory. This deviation may result in poor closed-
loop performance and safety constraint violation. We validate 
this point in our experiments showing that controlling using 
an inaccurate model can be unsafe, thus highlighting the need 
to quickly learn accurate dynamics models. 

IV. SIMULATION RESULTS 

In this section, we validate our approach in simulation on 
two unstable systems: the inverted pendulum and the segway. 
The goal of this evaluation is to provide both an intuition 
as well as a demonstration of the theoretical limits for our 
approach. Specifically, we aim to address: 

• Can we learn an accurate dynamics model with few 
training examples? 

• Can we integrate our dynamics model with control for 
steering and motion planning? 

A. Pendulum Simulation 

We first test on a continuous time inverted pendulum. The 
state of the system is x = [θ,

˙
θ ] with torque input u. The 

system has a point mass of 0.25kg and a length of 0.5m. 
1) Data Collection & System Identification: First, we 

estimate the discrete flow map for the unactuated system 
using 37 samples collected uniformly at random so that 
θ( ti )  U( −π, π ) and 

˙
θ(ti )  U( −5, 5). We capture the 

(a) (b) 

Fig. 3: Figure 3a shows the closed-loop trajectory of the pendulum. MPC 
with both the true model and the GP produce near identical trajectories. 
Figure 3b shows the one-step prediction error of the MPC policy for both 
models. 

3899 

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 31,2022 at 23:36:06 UTC from IEEE Xplore. Restrictions apply. 



(a) (b) (c) 

Fig. 4: Control results on simulated segway. Figure 4a, we plot the position of the segway as it reaches a sequence of target goals. Figure 4b shows : 
the angle of the segway with respect to the upright position. Notice that the segway must deviate from its equilibrium in order to accelerate forwards or 
backwards. Figure 4c shows the one-step prediction error of the MPC policy using GP dynamics. 

geometric structure of the pendulum’s sate-space by using 
the following kernel: 

k(x, x
'
) = kp (θ, θ

'
)krbf (

˙
θ, 

˙
θ

'
), (16) 

since x E S
1

 x R. Next, we use a local linear approximation 
to compute a point-wise estimate of the continuous dynamics 
as shown in (13). The entire dataset of state transitions is 
shown in the left plot of Figure 2. 

2) Evaluating Model Accuracy: We divide the state-space 
of the pendulum into a 100 x 100 grid. For each point in 
the grid we compute the true value of ẋ using (1) and an 
estimated value using the linear approximation in (4) where 
A, B and C are computed using the derivative of the GP 
as in (13). The phase plot in Figure 2 correspond to the 
direction of the estimated ẋ. For each point in the grid we 
can compute the 2-norm of the error which is shown in the 
heat map on the right. Overall, we can see that our approach 
can recover an accurate state-dependent linearization of the 
true continuous time dynamics. 

3) Evaluating Motion Planning: Next, we consider the 
task of steering the pendulum to the upright position starting 
from x(0) = (−π, 0) with the input constraint set U = 
{u | − .6 < u < .6}. Notice that with these constraints 
the pendulum is unable to reach the goal in a single swing. 
For this task, we collect a new dataset of 34 uniformly 
distributed samples where states are sampled as before and 
u(ti )  U(−.6, .6). Finally, we run the control policy from 
Algorithm 1. Both our strategy and an MPC using true 
dynamics are able to swing up the pendulum reaching the 
unstable equilibrium state as shown in Figure 3a. 

To evaluate the performance of the GP model for motion 
planning, we compute the difference between the first state 
predicted by the MPC policy and the actual state observed by 
the system. Figure 3b shows the errors for the true model and 
the learned model at each time step of the pendulum’s swing-
up. We see that throughout the pendulum swing up the MPC 
model has a higher prediction error than the GP. Towards 
the end, as the pendulum stabilizes, the error of the MPC 
policy with the true model falls to 0 while the GP controller 
maintains a low but stable error. We expect the MPC with 
continuous time dynamics to have a slightly higher error 
than the GP as the continuous time dynamics are linearized 
and discretized to compute the predicted trajectory, while GP 
provides an estimate of the discrete-time map which is used  

to compute the next step. 

B. High-Fidelity Segway Simulation 

We next evaluate our strategy on a high-fidelity simulated 
segway based on the 6-D state space and 2-D input space 
system shown in Figure 5. The state of a segway is x = 
[X, Y, θ, v, 

˙
θ, ψ, 

˙
ψ], where (X, Y ) represents the position of 

the center of mass, (θ,
˙
θ) the heading angle and yaw rate, v 

the velocity and (ψ, 
˙

ψ) the rod’s angle and angular velocity. 
The control input u = [Tl , Tr ], where Tl and Tr  are the 
torques to the left and right wheel motors, respectively. For 
all experiments, we limit |Tl | < 6 and |Tr | < 6. 

1) Data Collection & System Identification: Recall that 
we are learning the mapping shown in (5). As a prior, we 
know that X and Y have no effect on the dynamics of the 
system. Therefore we only need to learn a mapping from 
the state excluding X and Y at the current time step to the 
change in state at the next time step. We encode the property 
of θ being an angle via the following kernel: 

k(x, x
'
) = kp (θ, θ' )krbf (s, s

'
), (17) 

where s = [v, 
˙
θ, ψ,

˙
ψ ]. Although ψ is also an angle, since 

the system cannot rotate about that axis without catastrophic 
failure, we use a regular RBF kernel for it. 

In simulation, we record the segway performing a task 
consisting of 1000 state-transitions at a frequency T = 0.05 
which is approximately one minute of data. We then find 180 
clusters using a hierarchical clustering algorithm and select 
the nearest neighbor for each cluster as the data-point for the 
training set. We test the ability of the our strategy to perform 
the same task that was used to collect the data but with the 
GP dynamics model. 

2) Evaluating Motion Planning: Figure 4a shows the path 
that the segway takes while reaching the targets. Once the 
segway is within 1m of a goal the next one is provided. 
Notice that peaks and troughs in Figure 4b correspond to 
moments of forwards and backwards acceleration (since the 
segway must tilt to move forward). Those same moments of 
high acceleration also match with the peaks of high one-step 
prediction error observed in Figure 4c. 

V. EXPERIMENTAL RESULTS ON SEGWAY 

We finally evaluate our approach experimentally on the 
segway system (see Figure 5). The state representation is 
the same as in Section IV-B. 
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We aim to demonstrate that: 
• Our method can control a physical open-loop unstable 

system to perform a simple move-forward task. 
• Our method is able to overcome perturbations with 

unmodelled dynamics in a physical open-loop unstable 
system where a state-of-the art MPC controller fails. 

1) Data Collection & System Identification: We record 
the trajectory of the segway performing a task that takes 
1000 measurements recorded every T = 0.05s to complete. 
The data is then preprocessed using the same procedure 
as for the simulated system. We evaluate on two tasks: 
the first is a standard moving forward task while staying 
upright, and the second is stabilizing task under a external 
force disturbance. We note that since this a real system an 
estimation is performed online with on-board sensors there 
is significant estimation error as well. Although our method 
is capable of running at 20Hz with up to 300 data-points, 
we required less data than this for the experiments. 

2) Simple Move-Forward Task: We start by considering 
the move-forward task. For this we only require 130 data 
points. As can be observed in Figure 7, the system is able to 
stabilize at a point, move forward and stabilize close to the 
new location with some minor oscillations around the target 
point, as highlighted in Figure 6. The first and second peaks 
in Figure 6b correspond to the acceleration and deceleration 
respectively. Notice that due to a combination of modeling 
and estimation estimation error, the segway balances slightly 
off the equilibrium point. Finally, from Figure 6c we see that 
the model error spikes at the moments of high acceleration. 

3) Robustness To Perturbations: We now evaluate the per-
formance of the learned model under perturbations. To test 
the robustness of the learned model, we start by collecting 
100 data points from a dataset of the MPC policy with 
nominal dynamics completing the task with an unmodelled 
weight of 2kg. Although this results in slightly different 
behavior, the amount of data collected is the same as in 
previous experiments. Next, we attach 4kg of unmodelled 
weight as shown in Figure 1. Notice that the weight is not 
perfectly centered and that it is allowed to sway back and 
forth from its point of contact. 

In Figure 8 and Figure 9, we can see the result of applying 
force perpendicular to the axis of the wheels to the MPC 
policy with the nominal and GP dynamics, respectively. Both 
controllers have a spike in input following each disturbance, 
and in both cases the control action is saturated. Notice that 
because of the symmetry of the nominal model, the MPC 
policy applies the same force on each input as shown in 
Figure 9a. Meanwhile the learned dynamics captures some 
of the asymmetry resulting from the weights which causes 
uneven outputs and a more robust system. In Figure 8b 
and Figure 9b, we can see that even though the initial 
disturbances are of similar magnitude, the controller with 
nominal dynamics exhibits much larger oscillations and falls 
after the third perturbation. Although both models have sharp 
increases in one-step prediction error after a disturbance, the 
MPC model reaches much higher one-step prediction errors 
than with the GP, as shown in Figure 8c and Figure 9c. 

Fig. 5: Experimental platform. 

VI. DISCUSSION AND FUTURE WORK 

We presented a methodology for full dynamics learning 
that has been validated on an open-loop unstable robotic 
system. Using one minute of highly correlated data we are 
able estimate an accurate enough model for motion planning 
that is resilient to perturbations. Furthermore, the results 
presented in this paper are for a worst-case scenario where 
no useful prior is provided. Finally, our approach is generic 
and can be applied to many Gaussian process modeling 
approaches as a drop-in subroutine. 

There are many directions for future work. A natural 
one is to study even higher-dimensional systems where 
one would likely need to combine learning with a prior 
nominal model. Another direction is dealing with noise in 
the state estimation as well as delays, which are significant 
issues for unstable dynamical systems. Using techniques to 
correct noisy estimation data would significantly improve the 
performance of our method in real systems. This would be 
true when dealing with outlying measurements that strongly 
violate the Gaussian assumption implicit in the GP. One 
could also consider integration with perceptual systems [33]. 

Another direction for future work is how to intelligently 
and autonomously collect training data. A relevant line of 
work here is the area of safe exploration [9], [34]–[38]. 
It is also important to understand the fundamental limits 
of how much data we need to learn a reliable model, a 
concept known as sample complexity in the machine learning 
literature [39]. 

This work exploited the differentiability of Gaussian pro-
cesses, but largely ignored the uncertainty quantification 
aspect. In cases where there are more complex constraints to 
be satisfied, such as reachability [40] or chance constraints 
[35], it would be interesting to develop a more holistic 
framework that reasons about uncertainty quantication in 
differentiated GP models. 

A final direction for future work is scalability. For more 
complex systems, it would be beneficial to collected and store 
more data points for estimating the GP model. However, it 
is known that the computational complexity of GP inference 
can scale poorly with the amount of training data. Leveraging 
various methods for scaling up GP training and inference 
could be beneficial [41], [42]. 
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(a) (b) (c) 

Fig. 6: The 7-D state space and 2-D input space segway going between two points. In Figure 6a we plot the physical position of the segway. In Figure 6b 
we see : the angle between segway’s pole and the upright position. The two peaks correspond to the segway accelerating and decelerating. Figure 6c 
shows the MPC policy’s one-step prediction error using the GP dynamics. 

Fig. 7: This image sequence shows the segway going to a point using the full order dynamics learned with our GP method. 

(a) (b) (c) 

Fig. 8: The MPC policy with GP dynamics responding to 5 perturbations. The segway remains stable after each disturbance. Figure 8a shows the inputs 
spiking after each disturbance. The difference between inputs suggests the learned dynamics model captures asymmetries induced by the placement and 
sway of the unmodelled weights. Figure 9b plots the angle of the segway with respect to the ground. Figure 9c shows the MPC’s one step prediction error 
remains low through all disturbances. 

(a) (b) (c) 

Fig. 9: The MPC policy with nominal dynamics responding three perturbations. The segway remains stable after the first disturbance, oscillates before 
stabilizing for the second disturbance and falls down after the third disturbance. Figure 8a shows the input spike on each input after the disturbances. 
Notice that for all three perturbations, the both motors act in unison to stabilize the system. Figure 9b shows the angle of the segway with respect to the 
ground. Figure 9c shows the MPC’s one-step prediction error using the nominal dynamics. Notice that the oscillations cause the weight to swing which 
magnify the prediction error. 
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