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GLOBAL HYPOCOERCIVITY OF KINETIC

FOKKER-PLANCK-ALIGNMENT EQUATIONS

ROMAN SHVYDKOY

Abstract. In this note we establish hypocoercivity and exponential relax-

ation to the Maxwellian for a class of kinetic Fokker-Planck-Alignment equa-

tions arising in the studies of collective behavior. Unlike previously known
results in this direction that focus on convergence near Maxwellian, our result

is global for hydrodynamically dense flocks, which has several consequences. In
particular, if communication is long-range, the convergence is unconditional.

If communication is local then all nearly aligned flocks quantified by small-

ness of the Fisher information relax to the Maxwellian. In the latter case the
class of initial data is stable under the vanishing noise limit, i.e. it reduces

to a non-trivial and natural class of traveling wave solutions to the noiseless

Vlasov-Alignment equation.
The main novelty in our approach is the adaptation of a mollified Favre fil-

tration of the macroscopic momentum into the communication protocol. Such

filtration has been used previously in large eddy simulations of compressible
turbulence and its new variant appeared in the proof of the Onsager conjec-

ture for inhomogeneous Navier-Stokes system. A rigorous treatment of well-

posedness for smooth solutions is provided. Lastly, we prove that in the limit
of strong noise and local alignment solutions to the Fokker-Planck-Alignment

equation Maxwellialize to solutions of the macroscopic hydrodynamic system
with the isothermal pressure.

1. Background and Motivation. One of the most fundamental problems that
arise in studies of collective behavior of large systems is to understand emergence of
global phenomena from purely local interactions. The Hegselmann-Krause model
of opinion dynamics [16] or Vicsek model of swarming [32] provide examples of
such phenomena and are well-studied in the applied literature. In the context of
alignment dynamics a class of environmental averaging models, such as Cucker-
Smale [4, 5], Motsch-Tadmor [25] and their topological counterparts [31, 15, ?]
provide analytical framework for studying emergence in the sense of convergence
to a common state vi → v̄, a “consensus”, see [29, 33, 26, 23] for detailed surveys.

Let us give a brief overview of the problem and most recent known developments.
Every alignment model consist of two core components. Those are some averaging
protocol

v = (v1, . . . , vN ) ∈ RnN → (〈v〉1, . . . , 〈v〉N ) ∈ RnN ,
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where each bracket 〈·〉i encapsulates probing of the environment Ωn in a neighbor-
hood of agent xi, and a communication strength function si(x). Both components
may depend on positions of all agents x = (x1, . . . , xN ). A general alignment system
is then given by

ẋi = vi

v̇i = si(x)(〈v〉i − vi).
(1)

The classical Cucker-Smale model is a well-studied example of such a system given
by

v̇i =
N∑
j=1

mjφ(xi − xj)(vj − vi), (2)

where φ is a radial communication kernel and mj ’s represent communication weights

of agents. In this case the strength si(x) =
∑N
j=1mjφ(xi − xj) is based on metric

proximity of the crowd around. If si(x) = 1, one obtains the Motsch-Tadmor
averaging model

v̇i = 〈v〉i − vi, 〈v〉i =

∑N
j=1mjφ(xi − xj)vj∑N
k=1mkφ(xi − xk)

. (3)

In both cases, exponential alignment is achieved under long range fat-tail condition∫∞
0
φ(r) dr =∞, see [4, 14, 26].

Under local averaging rules it is generally impossible to achieve alignment by
an obvious counterexample: if Ωn = Rn one simply sends two agents in opposite
directions, and if Ωn is periodic Tn one can send two agents along perpendicular
geodesics with relatively rational velocities so that the agents never approach each
other closer than a communication range r0 � 1 resulting in a so called locked state.
Both counterexamples can be ruled out assuming graph-connectivity of the flock at
scale r0. If the flock is nearly aligned and initially connected such an assumption
will propagate in time resulting in exponential alignment, see [29, 24] and references
therein.

In what follows we will restrict ourselves to the periodic environment Ωn = Tn
to focus more on the dynamics in the bulk of a flock, and to avoid technical issues
related to confinement, see however [28, 34]. We will also be interested in large
systems, N →∞, which support kinetic description via a mean-field limit, see [14],

∂tf + v · ∇xf = ∇v · (sρ(v − 〈u〉ρ)f). (4)

Here, 〈·〉ρ is the corresponding macroscopic density-dependent averaging operation,
and sρ is the limiting communication strength. For example, in the CS case,

sρ = φ ∗ ρ := ρφ, and 〈u〉ρ =
(uρ)φ
ρφ

, (5)

where ρ and uρ are the macroscopic density and momentum,

ρ(x) =

∫
Rn
f(x, v) dv, uρ(x) =

∫
Rn
vf(x, v) dv.

The issue of locked states becomes the primary obstacle for global alignment on
the periodic domain. Such states are highly unlikely as they form a negligible set
of data. So, it is conceivable that a deterministic approach can be successful in
proving emergence for generic initial conditions, however this has only been done
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in 1D, [6], where dimensional restrictions are severe. A more natural approach is
to disrupt locked states by incorporating a small properly scaled noise

v̇i = si(〈v〉i − vi) +
√

2σsi(x)Ẇi, (6)

where Wi’s are independent Brownian motions in Rn. The mean-field limit of
solutions satisfies a Fokker-Planck-Alignment equation (although such limit has to
be verified for each particular model, see for example [1, 27] and references therein)

∂tf
σ + v · ∇xfσ = σsρ∆vf

σ +∇v · (sρ(v − 〈uσ〉ρ)fσ). (7)

Since any noise disrupts the occurance of locked states we anticipate that they
would play no role in the long time dynamics of (7). So, the expected behavior
as t → ∞ would be the same as for the linear Fokker-Planck equation which is a
relaxation to the global Maxwellian

fσ → µσ,ū,M =
M

|Ωn|(2πσ)n/2
e−
|v−ū|2

2σ , (8)

where ū is some constant velocity vector, and M is the total mass. If such a
convergence holds true, then the alignment of the original system can be recovered
in the limit of vanishing noise σ → 0:

lim
σ→0

lim
t→∞

fσ(t) =
M

|Ωn|
δv=ū ⊗ dx. (9)

This program has seen partial success. In [8] Duan, Fornasier, and Toscani
proved relaxation (8) in the Cucker-Smale case for the near-Maxwellian initial data
f0 in the strong Sobolev metric,

f = µ1,ū,M + g
√
µ1,ū,M , ‖g0‖Hk(Ωn×Rn) 6 ε, (10)

for some small ε > 0. Although in this case the alignment term sρ〈u〉ρ = (uρ)φ
is smooth, which avoids issues with well-posedness, the system does not have a
globally decaying Lyapunov function – entropy. A similar result was alluded to in
[8] for the Motsch-Tadmor case, which also suffers from the lack of entropy. More
recently, Choi [3] demonstrated the limit (8) for purely local Motsch-Tadmor model
where κ = 1 and φ = δ0, i.e. sρ〈u〉ρ = u. The limit as φ → δ0 was justified in
[18]. In this case the equation has an entropy, but the fully nonlinear nature of
the alignment force requires delicate energy estimates. The result is proved for the
same near-Maxwellian data (10) and convergence holds exponentially fast on the
torus.

Both of these results are largely inspired by techniques developed for collisional
models, [7, 13], where the perturbative analysis is adapted to dealing with the
particular structure of nonlinear averaging. For alignment models, however, such
issues seem to be more of a technical origin rather than related to any specific
phenomenological obstruction mentioned earlier. So, our goal in this present work is
to fulfill the need for a global relaxation result departing from the near-Maxwellian
settings (10) and relying instead on the natural characteristics of the flock such as
connectivity or communication.

Let us assume that φ ∈ C∞(Ωn) is a convolution type communication kernel on
the periodic domain Ωn = Tn satisfying∫

Ωn
φ(x) dx = 1, φ(x) > c01|x|<r0 . (11)

We call φ global if φ is bounded from below on the domain, i.e. r0 = diam Ωn.
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To state the particular kinetic model we will be interested in, we define the
following density-weighted filtration of the macroscopic field u:

uφ,ρ = (uF)φ , uF =
(uρ)φ
ρφ

. (12)

The expression for uF is exactly the macroscopic analogue of the Motsch-Tadmor
averaging. In fact, in the compressible turbulence this is known as the Favre filtra-
tion, see [9], used for large eddy simulations. One of the notable properties of the
Favre filtration is that the mollified density satisfies the continuity equation relative
to uF,

∂tρφ = ∇ · (uFρφ),

which makes it more accessible numerically. The extra mollification that defines our
averaging protocol (12) makes it suitable for a number of applications. First, it was
implemented in the proof of the energy conservation for solutions of inhomogeneous
Navier-Stokes system in the Onsager-critical spaces, see [20] (although defined in
terms of Littlewood-Paley projections). In the context of alignment models it was
instrumental in extending Figalli and Kang’s hydrodynamic limit result, [10], to
flocks with finite support, see [29]. The mean-field limit of the discrete system

v̇i = 〈v〉i − vi, 〈v〉i =

∫
Ωn
φ(xi − y)

∑N
j=1mjφ(y − xj)vj∑N
k=1mkφ(y − xk)

dy (13)

to the corresponding Vlasov-Alignment model

∂tf + v · ∇xf = ∇v · ((v − uφ,ρ)f) (14)

was also justified in [29]. A notable distinction between (13) and the Motsch-
Tadmor model (3) is that the averaged version preserves the total momentum, and
hence, the limiting velocity ū is determined directly from the initial condition.

With the added noise we arrive at the following Fokker-Planck-Alignment equa-
tion which will be the main object of our study

∂tf + v · ∇xf = σ∆vf +∇v · ((v − uφ,ρ)f). (15)

Thanks to the new averaging protocol the model possesses a number of remarkable
properties including global hypocoercivity, which enables us to establish a general
relaxation result. We describe it in the next section.

2. Main results. The Fokker-Planck-Alignment equation (15), FPA for short,
obeys two conservation laws – mass and momentum

ū =
1

M

∫
Ωn×Rn

vf(x, v) dv dx, M =

∫
Ωn×Rn

f(x, v) dv dx. (16)

Thus, the macroscopic limiting parameters of the model are determined by the
initial values. The model also possesses a Lyapunov function – relative entropy
which we address in detail in Section 3. In addition, the model is locally well-posed
in weighted Sobolev classes

Hk
s (Ωn × Rn) =

{
f : ‖f‖2Hks =

∫
Ωn×Rn

(1 + |v|2)s/2|∂kx,vf |2 dv dx <∞
}
,

for hydrodynamically dense flocks, ρφ > 0, where k, s > K(n). We will provide the
proof in the Appendix. The latter is necessary to define the filtration uφ,ρ, and in
fact, implies that uφ,ρ ∈ C∞. Moreover, the solutions will not blowup as long as ρφ
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remains positive. In particular, if φ is global, then ρφ > M minφ, and in the case
the FPA is globally well-posed.

We will need a more quantitative definition of the hydrodynamic density.

Definition 2.1. We say that the flock is uniformly hydrodynamically dense at a
scale r > 0 if there exists an adimensional δ > 0 such that

inf
t>0, x∈Ωn

1

M

∫
|x−ξ|<r

ρ(ξ, t) dξ > δ. (17)

Note that if a flock is dense at scale r′, it is dense at any larger scale r′′ > r′,
and every flock is trivially dense at the global scale r = diam Ωn. It is also clear
that every part of a dense flock can be connected by a graph with legs of size < r.
In fact, dense flocks are also automatically chain connected at scale r in the sense
defined in [24]. If r = r0, where r0 is the communication range (11), then clearly
there exists a c > 0 depending only on δ, c0, r0 such that

ρφ > c. (18)

Our main result states that all that is required for solutions to relax is hydro-
dynamic density at a scale smaller than the communication range r0. Since we
are interested in the limit σ → 0, we can assume that σ < σ0 for some finite but
arbitrary σ0 > 0.

Theorem 2.2. Suppose f ∈ Hk
s is a classical global solution to (15) that is uni-

formly hydrodynamically dense at a scale r < r0. Then f relaxes to the correspond-
ing Maxwellian at an exponential rate

‖f(t)− µσ,ū,M‖L1(Ωn×Rn) 6 c1e
−c2σ1/2t

√
M/σ, (19)

for some c1, c2 > 0 depending only on the parameters δ, r, r0, n, σ0 and φ.

As we noted earlier both hydrodynamic density and global well-posedness follow
automatically for global communication kernels. So, in this case we obtain an
unconditional result.

Corollary 2.3. If communication φ is global on Ωn, then the Fokker-Planck-
Alignment equation (15) is globally well-posed in Hk

s (Ωn × Rn) and any solution
satisfies (19).

Next, we isolate a class of solutions that remain hydrodynamically dense if ini-
tially so. Let us consider the full Fisher information associated with a distribution
f (here ū is given by (16)):

I(f) =

∫
Ωn×Rn

|σ∇vf + (v − ū)f |2 + σ|∇xf |2

f
dv dx. (20)

Theorem 2.4. There are constants ε, c1, c2 > 0 depending only on Ωn and φ such
that if f0 ∈ Hk

s satisfies

I(f0) 6 εσM, (21)

then there exists a unique global solution f ∈ L∞loc(R+;Hk
s ) to (15) with f(0) = f0.

Such solution will relax to the corresponding Maxwellian at an exponential rate (19).
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Let us discuss the meaning of the smallness condition (21). By the classical log-
Sobolev inequality the Fisher information dominates, and scales like, the relative
entropy

I(f0) > σ

∫
Ωn×Rn

f0 log
f0

µσ,ū,M
dv dx, (22)

which in turn by the Csiszár-Kullback inequality dominates, and scales like, the
L1-norm of the difference

>
cσ

M
‖f0 − µσ,ū,M‖2L1 .

So, our condition (21) expresses a weaker form of proximity to Maxwellian than
(10). Additionally, in the limit as σ → 0, the condition (21) does not degenerate
into f0 = M

|Ωn|δv=ū⊗ dx. In fact, for the ansatz f0 = ρ0(x)µσ,ū,M (v), (21) translates

into a σ-independent inequality∫
Ωn
|∇x
√
ρ0|2 dx 6 ε,

which expresses a measure of flatness of the initial density. Thus, in the limit as
σ → 0, condition (21) still holds for a non-trivial class of data f0 = ρ0(x)δv=ū,
which in fact produce the natural traveling wave solutions to the noiseless Vlasov
equation (14), f = ρ0(x − tū)δv=ū, the so called flocking states, see [30]. In fact,
these would be solutions for any profile ρ0, which suggests that there might be a
room for improvement in condition (21).

The proof of Theorem 2.2 and 2.4 is focused on establishing the global hypocoer-
civity property of the FPA in the entropic settings. The general methodology follows
Villani’s treatment of the linear Fokker-Planck equation [34] where the equation
for the distribution h = f/µ is represented as a sum of the degenerate dissipative,
transport and, in our case, alignment components

∂th = −σA∗Ah−Bh+A∗(uφ,ρh),

see Section 4 for notation. The main idea is to modify the Fisher information I to
include a properly scaled cross-product term

Ixv(h) = σ3/2

∫
Ωn×Rn

∇xh · ∇vh
h

µ dv dx,

and let the transport B compensate for the lack of dissipation in A∗A. The new
modified information Ĩ = I + Ixv is comparable to the original one, 1

2I 6 Ĩ 6 3
2I,

and in combination with the relative entropy H forms a global Lyapunov function
satisfying

d

dt

[
c1H+ Ĩ

]
6 −c2σ1/2

[
c1H+ Ĩ

]
. (23)

An application of the Csiszár-Kullback inequality yields the desired result.
It is in the proof of (23) where the special choice of filtration uφ,ρ starts to play

a crucial role. Specifically, the non-linear alignment term A∗(uφ,ρh) interacts in a
particular way with the Fokker-Planck component and the dissipation terms to pro-
duce cancellations necessary for the global rather than near-Maxwellian coercivity.
We will provide full details of this computation although the reader will notice that
the Fokker-Planck part is a more explicit form of Villani’s abstract argument [34],
which also appeared in more general Riemannian settings in [2].
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Finally, in Section 5 we provide a rigorous derivation of the corresponding Euler-
Alignment system with isothermal pressure law

ρt +∇ · (uρ) = 0

(ρu)t +∇ · (ρu⊗ u) +∇ρ = ρ(uφ,ρ − u).
(24)

The values u, ρ come as the limit of the corresponding macroscopic quantities of
solutions to the strong noise/local alignment kinetic FPA given by

∂tf
ε + v · ∇xfε =

1

ε
[∆vf

ε +∇v · ((v − uε)fε)] +∇v · ((v − uεφ,ρ)fε), (25)

where uε = (uρ)ε/ρε is the usual macroscopic velocity field associated with fε.
The classical Cucker-Smale Euler-Alignment system was derived in a similar way
previously by Karper, Mellet, and Trivisa in [19]. Here we take a more direct
approach by accessing the full kinetic relative entropy rather than the macroscopic
one, which makes the argument more economical.

3. Entropy and Energy. Let us make a few assumptions that will simplify to
the notation. By the Galilean invariance

f(t, x, v)→ f(t, x+ tV, v + V ),

we can assume that the total momentum is zero, ū = 0. Since the equation is
0-homogeneous in f , we can assume that the total mass of the flock is given by
M = |Ωn|. So, the corresponding Maxwellian is given by

µ =
1

(2πσ)n/2
e−
|v|2
2σ . (26)

Let us now introduce several key quantities. The central quantity is the relative
entropy

H(f |µ) = σ

∫
Ωn×Rn

f log
f

µ
dv dx, (27)

or more explicitly,

H(f |µ) = σ

∫
Ωn×Rn

f log f dv dx+
1

2

∫
Ωn×Rn

|v|2f dv dx+ σ|Ωn|n
2

log(2πσ).

According to the classical Csiszár-Kullback inequality we have

cσ‖f − µ‖21 6 H(f |µ). (28)

So, to prove Theorem 2.2 it suffices to establish an exponential bound on the entropy
itself.

We will work with a hierarchy of energies1:

E =

∫
Ωn×Rn

|v|2f dv dx,

E =

∫
Ωn
ρ|u|2 dx,

E1 =

∫
Ωn

(uρ)2
φ

ρφ
dx,

E2 =

∫
Ωn
ρ|uφ,ρ|2 dx.

1We intentionally leave out the 1
2

factor in order to simply formulas that follow.
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Claim 3.1. We have

E2 6 E1 6 E 6 E. (29)

The last inequality is the classical maximization principle. The rest follow by
application of the Hölder and Minkowski inequalities.

The difference between the two mollified macroscopic energies will play a special
role in the analysis,

A = E1 − E2.
It represents a quantitative measure for alignment for the Favre filtered field uF as
will be elaborated in Lemma 4.4.

Next, for a macroscopic field u we consider the partial Fisher information cen-
tered at u

Ivv(f, u) =

∫
Ωn×Rn

|σ∇vf + (v − u)f |2

f
dv dx. (30)

Pertaining to the situation when u = uφ,ρ we observe the identity which follows by
a simple expansion of the numerator:

Ivv(f, uφ,ρ) = Ivv(f, 0) + E2 − 2E1. (31)

Lemma 3.2. We have the following two forms of the entropy law:

d

dt
H(f |µ) = −Ivv(f, uφ,ρ)−A, (32)

d

dt
H(f |µ) = −Ivv(f, 0) + E1. (33)

The proof of (32) goes by a direct verification. Then (33) follows from (32) and
(31).

From (32) we can see that the FPA equation has a globally decaying entropy.
One not so obvious consequence of this is that the full energy E by itself remains
uniformly bounded. To see that one has to circumvent the issue of fact that the
Boltzmann functional

∫
f log f dx dv is not sign-definite. This was addressed in [11]

by showing that there is an absolute constant C > 0 such that∫
Ωn×Rn

|f log f | dv dx 6
∫

Ωn×Rn
f log f dv dx+

1

4

∫
Ωn×Rn

|v|2f dv dx+C 6 C ′σH+C ′′σ .

Given that the entropy is non-increasing thanks to (32), the energy also remains
bounded,

E(t) 6 C ′σH0 + C ′′σ , ∀t > 0. (34)

From version (33) of the law, which links the information directly to µ, see next
section, we can identify two major obstacles in establishing coercivity directly – the
traditional lack of dissipation in the x-variable, and an additional macroscopic en-
ergy that comes from the alignment force. The two will be handled simultaneously
in the next section.

4. Hypocoercivity. We now get to the proof of Theorems 2.2 and 2.4.
It is more technically convenient to recast the FPA equation in terms of the

renormalized distribution h = f
µ , which satisfies

ht + v · ∇xh = σ∆vh− v · ∇vh− uφ,ρ · ∇vh+ σ−1(uφ,ρ · v)h. (35)
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The Fokker-Planck part of the equation has the traditional structure of an evolution
semigroup given by the generator

L = σA∗A+B, B = v · ∇x, A = ∇v, A∗ = (σ−1v −∇v) · .

Here the adjoint is understood with respect to the inner product of the weighted
space L2(µ):

〈g1g2〉 =

∫
Ωn×Rn

g1g2 dµ, dµ = µ dv dx.

The nonlinear alignment part can be represented in terms of the action of A∗ :

A∗(uφ,ρh) = −uφ,ρ · ∇vh+ σ−1(uφ,ρ · v)h.

Thus, (35) can be written concisely as

ht = −Lh+A∗(uφ,ρh). (36)

We now rewrite all the entropic quantities in terms of h:

H(h) = σ

∫
Ωn×Rn

h log h dµ, Ivv(h) = Ivv(f, 0) = σ2

∫
Ωn×Rn

|∇vh|2

h
dµ,

and consider two additional information functionals

Ixv(h) = σ3/2

∫
Ωn×Rn

∇xh · ∇vh
h

dµ, Ixx(h) = σ

∫
Ωn×Rn

|∇xh|2

h
dµ.

Recall that the sum I = Ivv + Ixx constitutes the full Fisher information and, by
the classical (rescaled) log-Sobolev inequality, see [12], controls the relative entropy:

I(h) > λH(h), (37)

where λ > 0 is independent of σ.
In the following three lemmas we will calculate evolution laws for each of the

information functionals. As will be seen, the alignment component has some re-
markable cancellations and interacts closely with the Fokker-Planck part. We also
protocol dependence on σ which is essential in proving Theorem 2.4 later.

Lemma 4.1. We have

d

dt
Ivv(h) = −2σ3Dvv − 2Ivv − 2σ1/2Ixv + 2E1,

where

Dvv = 〈h|∇2
vh̄|2〉, h̄ = log h.

Proof. Let us write Ivv = 〈∇vh · ∇vh̄〉. Computing the derivative we obtain

1

σ2

d

dt
Ivv = 2〈∇vht · ∇vh̄〉 − 〈|∇vh̄|2ht〉 = −2σ〈∇vA∗Ah · ∇vh̄〉+ σ〈|∇vh̄|2A∗Ah〉

− 2〈∇vBh · ∇vh̄〉+ 〈|∇vh̄|2Bh〉
+ 2〈∇vA∗(uφ,ρh) · ∇vh̄〉 − 〈|∇vh̄|2A∗(uφ,ρh)〉
= JA + JB + Ju.

Let us start with the A-part. Observe that

∂vi(A
∗Ah) = A∗Ahvi + σ−1hvi .
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Thus, adopting Einstein’s summation convention:

JA = −2σ〈A∗Ahvi h̄vi〉 − 2σ−2Ivv + σ〈|∇vh̄|2A∗Ah〉
= −2σ〈Ahvi ·Ah̄vi〉 − 2σ−2Ivv + σ〈A|∇vh̄|2 ·Ah〉
= −2σ〈hAh̄vi ·Ah̄vi〉 − 2σ〈h̄viAh ·Ah̄vi〉 − 2σ−2Ivv + 2σ〈h̄viAh̄vi ·Ah〉.

The second and last terms cancel, while the first one involves the sum of the squares
of all second order derivatives |∇2

vh̄|2. We arrive at

JA = −2σDvv − 2σ−2Ivv.

Next,

JB = −2〈∇xh · ∇vh̄〉 − 2〈(v · ∇xhvi)h̄vi〉+ 〈|∇vh̄|2v · ∇xh〉.

Let us look into the middle term:

− 2〈v · ∇xhvi h̄vi〉 = −2〈v · ∇xhvihvih−1〉 = −〈v · ∇x|hvi |2h−1〉
= −〈|hvi |2v · ∇xhh−2〉 = −〈|h̄vi |2v · ∇xh〉

which cancels the last term in the previous formula. So,

JB = −2σ−3/2Ixv.

For the last alignment term we prove the following identity:

Ju = 2σ−2E1.

To prove it we manipulate with the formula for Ju as follows

Ju = 2〈∇vA∗(uφ,ρh) · ∇vh̄〉 − 〈|∇vh̄|2A∗(uφ,ρh)〉
= 2〈∇v(σ−1v · uφ,ρh− uφ,ρ · ∇vh) · ∇vh̄〉 − 〈∇v|∇vh̄|2 · uφ,ρh〉
= 2〈[σ−1uφ,ρh+ σ−1(v · uφ,ρ)∇vh−∇2

vh(uφ,ρ)] · ∇vh̄〉 − 2〈∇2
vh̄(∇vh̄) · uφ,ρh〉.

where ∇2
vh is the Hessian matrix of h. Notice that the first part of the first term

produces energy,

2σ−1〈uφ,ρh · ∇vh̄〉 = 2σ−2

∫
Ωn×Rn

uφ,ρ · vh dµ = 2σ−2

∫
Ωn×Rn

uφ,ρ · vf dx dv

= 2σ−2

∫
Ωn
uφ,ρ · (uρ) dx = 2σ−2E1.

We now show that the remaining part of Ju vanishes. Indeed, using that

∇2
vh = h∇2

vh̄+
1

h
∇vh⊗∇vh (38)

we obtain

2〈σ−1(v · uφ,ρ)∇vh− h∇2
vh̄(uφ,ρ)−

1

h
(uφ,ρ · ∇vh)∇vh,∇vh̄〉 − 2〈∇2

vh̄(∇vh̄), uφ,ρh〉

by the symmetry of the Hessian,

= 2〈σ−1(v · uφ,ρ)∇vh−
1

h
(uφ,ρ · ∇vh)∇vh,∇vh̄〉 − 4〈∇2

vh̄(∇vh̄), uφ,ρh〉. (39)
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Looking at the first bracketed term, we can interpret it as an action of A∗:

2〈σ−1(v · uφ,ρ)∇vh−
1

h
(uφ,ρ · ∇vh)∇vh,∇vh̄〉

= 2〈σ−1h(v · uφ,ρ)− h(uφ,ρ · ∇vh), |∇vh̄|2〉
= 2〈A∗(uφ,ρh), |∇vh̄|2〉 = 2〈uφ,ρh,∇v|∇vh̄|2〉 = 4〈∇2

vh̄(∇vh̄), uφ,ρh〉.

which cancels the second bracketed term in (39).

Lemma 4.2. We have

d

dt
Ixv(h) 6 −1

2
σ1/2Ixx − σIxv + Cσ3/2

√
DvvE1 + σ5/2

√
DxvDvv +

1

2
σ3/2E1,

where

Dxv = 〈h|∇v∇xh̄|2〉.

Proof. Let us express the derivative as follows

1

σ3/2

d

dt
Ixv(h) = 〈∇xht · ∇vh̄〉+ 〈∇xh̄ · ∇vht〉 − 〈ht∇vh̄ · ∇xh̄〉 := JA + JB + Ju,

where as before JA, JB , Ju collect contributions from A∗A, B, and alignment com-
ponents, respectively. We start with the easier terms:

JB = −〈∇x(v · ∇xh) · ∇vh̄〉 − 〈∇xh̄ · ∇v(v · ∇xh)〉+ 〈(v · ∇xh)∇vh̄ · ∇xh̄〉. (40)

The middle term can be expanded as follows

−〈∇xh̄ · ∇v(v · ∇xh)〉 = −σ−1Ixx − 〈h̄xivjhxjvi〉,

integrating by parts in xj ,

= −σ−1Ixx + 〈h̄xixjvjhvi〉

using that h̄xixj = h−1hxixj − h−2hxihxj ,

= −σ−1Ixx + 〈hxixjvj h̄vi〉 − 〈h̄xi h̄xjvjhvi〉

and the last two terms cancel with the first and third terms in (40). Thus,

JB = −σ−1Ixx.

Next, we examine the Ju-term:

Ju = 〈∇xA∗(uφ,ρh) · ∇vh̄〉+ 〈∇xh̄ · ∇vA∗(uφ,ρh)〉 − 〈A∗(uφ,ρh)∇vh̄ · ∇xh̄〉
= 〈A∗((uφ,ρ)xih)h̄vi〉+ 〈A∗(uφ,ρhxi)h̄vi〉
+ 〈h̄xiA∗(uφ,ρhvi)〉+ 〈∇xh̄ · uφ,ρh〉
− 〈huφ,ρ · ∇v(∇vh̄ · ∇xh̄)〉
= 〈(uφ,ρ)xih · ∇vh̄vi〉+ 〈uφ,ρhxi · ∇vh̄vi〉+ 〈∇vh̄xi · uφ,ρhvi〉
+ 〈∇xh̄ · uφ,ρh〉 − 〈huφ,ρ · ∇v(∇vh̄ · ∇xh̄)〉.

Note that

〈uφ,ρhxi · ∇vh̄vi〉+ 〈∇vh̄xi · uφ,ρhvi〉 = 〈huφ,ρ · ∇v(∇vh̄ · ∇xh̄)〉,

so, those two terms will cancel with the last one. Thus,

Ju = 〈(uφ,ρ)xih · ∇vh̄vi〉+ 〈∇xh̄ · uφ,ρh〉
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We estimate the first term as follows:

〈(uφ,ρ)xih · ∇vh̄vi〉 6 D1/2
vv 〈|(uφ,ρ)xi |2h〉1/2.

Denoting ψi = |∂xiφ|, and in view of (18), we obtain

〈|(uφ,ρ)xi |2h〉 =

∫
Ωn
|(uφ,ρ)xi |2ρ dx 6

∫
Ωn

(|uF|2)ψiρ dx

=

∫
Ωn
|uF|2ρψi dx 6

|Ωn|
c
‖ψi‖∞E1.

(41)

Thus,

〈(uφ,ρ)xih · ∇vh̄vi〉 6 C
√
DvvE1.

Turning to the remaining term, we obtain

〈∇xh̄ · uφ,ρh〉 6
1

2
〈|∇xh̄|2h〉+

1

2
〈|uφ,ρ|2h〉 6

1

2
σ−1Ixx +

1

2
〈|uF|2hφ〉

=
1

2
σ−1Ixx +

1

2

∫
Ωn
|uF|2ρφ dx =

1

2
σ−1Ixx +

1

2
E1.

In summary,

Ju + JB 6 −1

2
σ−1Ixx + C

√
DvvE1 +

1

2
E1. (42)

Finally let us look into the JA-term:

1

σ
JA = −〈∇xA∗Ah · ∇vh̄〉 − 〈∇xh̄ · ∇vA∗Ah〉+ 〈A∗Ah∇vh̄ · ∇xh̄〉 = I + II + III.

For I we obtain

I = −〈A∗Ahxi h̄vi〉 = −〈∇vhxi · ∇vh̄vi〉 = −〈h∇vh̄xi · ∇vh̄vi〉 − 〈hxi∇vh · ∇vh̄vi〉.
For II we obtain

II = −〈∇xh̄·∇vh〉−〈h̄xiA∗Ahvi〉 = −σ−3/2Ixv−〈h∇vh̄xi ·∇vh̄vi〉−〈∇vh̄xi ·∇vhh̄vi〉.
The two add up to

I + II = −σ−3/2Ixv − 〈h∇vh̄xi · ∇vh̄vi〉 − 〈Ah ·A(∇vh̄ · ∇xh̄)〉

6 −σ−3/2Ixv +
√
DxvDvv − III.

Thus,

JA 6 −σ−1/2Ixv + σ
√
DxvDvv.

Lemma 4.3. We have
d

dt
Ixx(h) 6 −σ2Dxv + CE1.

Proof. We have

1

σ

d

dt
Ixx(h) = 2〈∇xht · ∇xh̄〉 − 〈|∇xh̄|2ht〉.

The contribution from the B-term cancels entirely:

JB = −2〈∇x(v · ∇xh) · ∇xh̄〉+ 〈|∇xh̄|2v · ∇xh〉
= −2〈(v · ∇xhxi)hxih−1〉+ 〈|∇xh̄|2v · ∇xh〉
= −〈(v · ∇x|∇xh|2h−1〉+ 〈|∇xh̄|2v · ∇xh〉
= −〈v · ∇xh|∇xh|2h−2〉+ 〈|∇xh̄|2v · ∇xh〉 = 0.
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Turning, next, to the A-term we obtain

1

σ
JA = −2〈∇xA∗Ah · ∇xh̄〉+ 〈|∇xh̄|2A∗Ah〉

= −2〈Ahxi ·Ah̄xi〉+ 〈A|∇xh̄|2 ·Ah〉
= −2〈∇v(hh̄xi) · ∇vh̄xi〉+ 〈∇v|∇xh̄|2 · ∇vh〉
= −2〈h∇vh̄xi · ∇vh̄xi〉 − 2〈h̄xi∇vh · ∇vh̄xi〉+ 〈∇v|∇xh̄|2 · ∇vh〉
= −2Dxv − 〈∇v|∇xh̄|2 · ∇vh〉+ 〈∇v|∇xh̄|2 · ∇vh〉 = −2Dxv.

Thus,
JA = −2σDxv.

Finally, the alignment term is given by

Ju = 2〈∇xA∗(uφ,ρh) · ∇xh̄〉 − 〈|∇xh̄|2A∗(uφ,ρh)〉.
In the second term we simply swap the operator A∗:

−〈|∇xh̄|2A∗(uφ,ρh)〉 = −〈∇v|∇xh̄|2uφ,ρh〉. (43)

The first term is

2〈∇xA∗(uφ,ρh) · ∇xh̄〉 = 2〈A∗(uφ,ρhxi)h̄xi〉+ 2〈A∗((uφ,ρ)xih)h̄xi〉
= 2〈hh̄xiuφ,ρ · ∇vh̄xi〉+ 2〈(uφ,ρ)xih · ∇vh̄xi〉
= 〈∇v|∇xh̄|2uφ,ρh〉+ 2〈(uφ,ρ)xih · ∇vh̄xi〉.

We can see that the first term cancels with (43). As to the last one we estimate

2〈(uφ,ρ)xih · ∇vh̄xi〉 6 2D1/2
xv 〈|(uφ,ρ)xi |2h〉1/2,

while the term 〈|(uφ,ρ)xi |2h〉 has been estimated previously in (41). Thus,

Ju 6 C
√
DxvE1 6 σDxv + C1σ

−1E1. (44)

Summing up the obtained estimates proves the result.

Denoting
Ĩ = Ivv + Ixv + Ixx

and noticing that

|Ixv| 6
1

2
(Ivv + Ixx),

we can see that Ĩ is comparable to the full Fisher information 1
2I 6 Ĩ 6 3

2I. As
such, by the log-Sobolev inequality (37), we have

Ĩ >
λ

2
H(h). (45)

Let us now add the estimates from all three lemmas:

d

dt
Ĩ 6 −2σ3Dvv − 2Ivv − 2σ1/2Ixv −

1

2
σ1/2Ixx − σIxv + Cσ3/2

√
DvvE1

+ σ5/2
√
DxvDvv − σ2Dxv + CE1.

Using that

σ5/2
√
DxvDvv 6

1

2
(σ2Dxv + σ3Dvv)

and that
Cσ3/2

√
DvvE1 6 σ3Dvv + CE1,
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we can see that all the dissipative terms are in negative, and we further estimate
(with possibly different C)

d

dt
Ĩ 6 −2Ivv − (2σ1/2 + σ)Ixv −

1

2
σ1/2Ixx + CE1.

By generalized Young’s inequality, the mixed information is estimated by

(2σ1/2 + σ)Ixv 6
1

4
σ1/2Ixx + C(σ0)Ivv.

Thus,
d

dt
Ĩ 6 C1(σ0)Ivv −

1

4
σ1/2Ixx + C2(σ0,Ω

n, φ, δ)E1. (46)

To absorb Ivv and the energy E1 we invoke the entropy laws (32) - (33). But
before we do that let us take a closer look at the alignment term A.

Lemma 4.4. We have the following formula:

A =
1

2

∫
Ωn×Ωn

ρφφ(x, y)|uF(x)− uF(y)|2 dx dy,

ρφφ(x, y) =

∫
Ωn
φ(ξ − x)φ(ξ − y)ρ(ξ) dξ.

Proof. The proof consists of the following streak of identities:

A =

∫
Ωn

(ρφ|uF|2 − ρ|(uF)φ|2) dx

=

∫
Ωn

(ρφuF · uF − ρ(uF)φ · (uF)φ) dx

=

∫
Ωn

(ρφuF − (ρ(uF)φ)φ) · uF dx

=

∫
Ωn×Ωn

φ(x− ξ)ρ(ξ)(uF(x)− (uF)φ(ξ)) · uF(x) dξ dx

=

∫
Ωn×Ωn×Ωn

φ(x− ξ)φ(y − ξ)ρ(ξ)(uF(x)− uF(y)) · uF(x) dξ dx dy

=

∫
Ωn×Ωn

ρφφ(x, y)(uF(x)− uF(y)) · uF(x) dx dy

=
1

2

∫
Ωn×Ωn

ρφφ(x, y)|uF(x)− uF(y)|2 dx dy,

where in the last step we performed symmetrization in x, y.

Next, we show that the alignment term controls the mollified energy itself.

Lemma 4.5. Under the assumption (17) there exists a constant c > 0 depending
on δ and parameters of the system such that

A > cE1.

Proof. First, note that if |x− y| < r0 − r, then

ρφφ(x, y) =

∫
Ωn
φ(η)φ(y − x+ η)ρ(x− η) dη > c20

∫
|η|<r

ρ(ξ) dξ > c20δ.

Consequently,
ρφφ(x, y) > c1|x−y|<r0−r.
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Thus,

A > c

∫
|x−y|<r0−r

|uF(x)− uF(y)|2 dx dy.

We now invoke [21, Lemma 2.1], to claim that∫
|x−y|<r0−r

|uF(x)− uF(y)|2 dx dy > c(r0, r)‖uF − uF‖2L2(Ωn),

where uF is the mean value of the Favre-filtered velocity. However, using the
assumed zero momentum, (uρ)φ = 0, we estimate

|Ωn|‖φ‖∞‖uF − uF‖2L2(Ωn) >
∫

Ωn
ρφ|uF − uF|2 dx

=

∫
Ωn
ρφ|uF|2 dx− 2uF · (uρ)φ︸ ︷︷ ︸

=0

+|Ωn||uF|2

= E1 + |Ωn||uF|2 > E1,
and the lemma follows.

Proof of Theorem 2.2. Let us go back to the entropy law (32) where we drop the
information and use the control bound on the alignment:

d

dt
H 6 −cE1.

Combining with (33) we obtain(
1

c
+ 1

)
d

dt
H 6 −Ivv.

Thus, together with (46),

d

dt

[
C3H+ Ĩ

]
6 −C4σ

1/2Ĩ.

Recalling the log-Sobolev inequality (45), we further conclude

d

dt

[
C3H+ Ĩ

]
6 −C5σ

1/2
[
C3H+ Ĩ

]
, (47)

and Theorem 2.2 follows from the Csiszár-Kullback inequality (28).

Proof of Theorem 2.4. Recall that we work under the assumption that M = |Ωn|,
so the uniform distribution 1 has the same mass as our density ρ. Let us also
observe that if a density ρ is sufficiently close to be uniform in L1-metric

‖ρ− 1‖2L1 < ε0, (48)

for some small ε0 > 0, then ρ is hydrodynamically connected at scale r0/2 in the
sense of Definition 2.1 with δ = 1

2 . And in particular ρφ > c, where c depend only
on the parameters of the model.

Let us assume that I(f0) 6 σε, where ε is to be determined later. By the
log-Sobolev inequality (22), the maximization principle, and Csiszár-Kullback in-
equality we obtain

εσ > λσ

∫
Ωn
ρ0 log ρ0 dx > cσ‖ρ0 − 1‖2L1 .

Thus, ‖ρ0−1‖2L1 6 cε, and if cε < ε0/2, the above discussion implies that a solution
will exist on a time interval [0, T ) according to Theorem 6.1. By continuity, we can
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assume that on the same interval inequality (48) still holds. In particular this fulfills
the continuation criterion of Theorem 6.1 and the solution can be continued until
the condition (48) is violated. Let T ∗ be the first such time. This implies bound
(47) on the same interval [0, T ∗) with all C’s dependent only on the parameters of
the model. Hence,

C3H(t) + Ĩ(t) 6 C3H0 + Ĩ0 6 (C3λ
−1 + 1)Ĩ0 6 C4εσ. (49)

By the same streak of inequalities as applied initially, we obtain

‖ρ− 1‖2L1 < C5ε < ε0/2,

if ε is chosen small enough. This implies that T ∗ =∞ and proves the result.

Remark 4.6. Our last remark in this section concerns the rate of decay stated in
(19). First, the prefactor

√
M/σ is simply an artifact of the scaling law between

the L1-norm and the relative entropy, (28). However, the dependence on σ in the
exponential rate is purely the effect of spacial non-homogeneity. Note that for the
homogeneous forceless Fokker-Planck equation,

∂th = σA∗Ah

we would have I = Ivv and testing with σ(1 + log h) in the dµ-sense would lead

directly to d
dt
H = −I 6 −cH. Thus, the relaxation rate in this case is independent

of σ. In fact, it would converge to the natural energy dissipation law as σ → 0 for
the pure continuity equation ∂tf = ∇v · (vf).

5. Hydrodynamic limit. In this section we provide a derivation of the macro-
scopic Euler-alignment system

ρt +∇ · (uρ) = 0

(ρu)t +∇ · (ρu⊗ u) +∇ρ = ρ(uφ,ρ − u).
(50)

We take a similar approach to [19, 22] by considering an equation with penalization
force

∂tf
ε + v · ∇xfε =

1

ε
[∆vf

ε +∇v · ((v − uε)fε)] +∇v · ((v − uεφ,ρ)fε), (51)

where uε is the macroscopic velocity field associated with fε. The issues of well-
posedness for (51) are very similar to the ones encountered in the Cucker-Smale case,
see [17], and will not be addressed here. The local alignment term already contains
all the major issues associated with roughness of the field, which are even less severe
for the filtered field uφ,ρ. Thus, we will work in the settings of weak solutions to
(51) which satisfy the corresponding entropy laws elaborated in Lemma 5.3.

By taking moments of (51) we obtain the hydrodynamic system satisfies by the
macroscopic values uε, ρε:

ρεt +∇ · (uερε) = 0

(ρεuε)t +∇ · (ρεuε ⊗ uε) +∇ρε +∇x · Rε = ρε(uεφ,ρ − uε)

Rε =

∫
Rn

(v ⊗ v − uε ⊗ uε − I)fε dv.

(52)
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Here, I is the identity matrix. We will gauge the distance between uε, ρε and u, ρ
through measuring the relative distance in terms of entropy between the corre-
sponding Maxwellians:

µ =
ρ(x, t)

(2π)n/2
e−
|v−u(x,t)|2

2 , µε =
ρε(x, t)

(2π)n/2
e−
|v−uε(x,t)|2

2 . (53)

The relative entropy is given by

H(fε|µ) =

∫
Ωn×Rn

fε log
fε

µ
dv dx.

A simple identity shows that it controls the entropy of fε relative to its own
Maxwellian distribution µε, and the relative entropy for the macroscopic quantities:

H(fε|µ) = H(fε|µε) +H(µε|µ), (54)

H(µε|µ) =
1

2

∫
Ωn
ρε|uε − u|2 dx+

∫
Ωn
ρε log(ρε/ρ) dx. (55)

So, if H(fε|µ)→ 0, then also H(µε|µ)→ 0. Since the relative entropy controls the
L1-distance by the Csiszár-Kullback inequality, it implies convergence of macro-
quantities as well. Let us state our main result now.

Proposition 5.1. Let (u, ρ) be a smooth non-vacuous solution to (50) on a time
interval [0, T ) and let φ be a global kernel, minΩn φ > 0. Suppose that initial
distributions fε0 converge to µ0 in the sense of entropies as ε→ 0:

H(fε0 |µ0)→ 0,

then for any t ∈ [0, T ),

H(fε|µ)→ 0. (56)

Consequently, the limits

ρε → ρ,

ρεuε → ρu,

ρε|uε|2 → ρ|u|2.
(57)

hold in L1(Ωn).

Remark 5.2. The only purpose of the assumption on the communication kernel
here is to ensure that the mollified densities all enjoy a common lower bound on
the domain in question:

ρεφ(x, t) > ρ, (x, t) ∈ Ωn × [0, T ). (58)

Any family of solutions satisfying (58) would fit into the framework of the proof of
Proposition 5.1 and the convergence result for such a family would still hold.

Proof. Let us note again that the macro-limits are a consequence of the vanishing
relative entropy (56), see for example [19].

We begin by breaking down the relative entropy into kinetic and macroscopic
parts:

H(fε|µ) = Hε + Gε. (59)

The kinetic component

Hε =

∫
Ωn×Rn

(
fε log fε +

1

2
|v|2fε

)
dv dx+

nM

2
log(2π)
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is exactly the same entropy relative to the basic Maxwellian (26) we considered in
the previous section. The macroscopic component is given by

Gε =

∫
Ωn

(
1

2
ρε|u|2 − ρεuε · u− ρε log ρ

)
dx.

We now state the energy bounds for each component.

Lemma 5.3. We have the following entropy laws:

d

dt
Hε 6 nM ; (60)

d

dt
Hε = −1

ε
Iε +

ε

4

∫
Ωn×Rn

|v − uε|2fε dx dv + Eε1 − Eε, (61)

where

Iε =

∫
Ωn×Rn

|∇vfε +
(
1 + ε

2

)
(v − uε)fε|2

fε
dv dx.

Proof. Differentiating,

d

dt
Hε =− 1

ε

∫
Ωn×Rn

[
|∇vfε|2

fε
+ 2∇vfε · (v − uε) + |v − uε|2fε

]
dv dx

−
∫

Ωn×Rn
[∇vfε · (v − uεφ,ρ) + v · (v − uεφ,ρ)fε] dv dx.

(62)

To prove (60) we simply dismiss the information term, and rewrite the filtered term
as follows

−
∫

Ωn×Rn
[∇vfε · (v − uεφ,ρ) + v · (v − uεφ,ρ)fε] dx dv = nM − Eε + Eε1 6 nM,

where the latter is due to (29). This proves (60).
To show (61) we treat the filtered term somewhat differently:∫
Ωn×Rn

[∇vfε · (v − uεφ,ρ) + v · (v − uεφ,ρ)fε] dv dx

=

∫
Ωn×Rn

∇vfε · v dv dx+

∫
Ωn×Rn

|v|2fε dx dv − Eε1

=

∫
Ωn×Rn

∇vfε · (v − uε) dv dx+

∫
Ωn×Rn

|v − uε|2fε dv dx+ Eε − Eε1 .

Coming back to the main equation (62) we obtain

d

dt
Hε =− 1

ε

∫
Ωn×Rn

1

fε

[
|∇vfε|2 + 2

(
1 +

ε

2

)
∇vfε · (v − uε)fε

+
(

1 +
ε

2

)2

|v − uε|2(fε)2

]
dv dx

+
ε

4

∫
Ωn×Rn

|v − uε|2fε dv dx+ Eε1 − Eε,

as desired.

The main consequence of (60) is that the entropy Hε remains bounded on the
time interval [0, T ) uniformly in ε. This in turn implies uniform bound on the total
energy Eε by way of the argument presented in Section 3,

Eε 6 C, (63)
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with C independent of ε.

Lemma 5.4. We have the following inequality

d

dt
Gε 6 CH(fε|µ) + C

√
EεIε + CεEε + Eε − Eε1 , (64)

where C is independent of ε.

Proof. Let us compute the derivative of each component of Gε (we omit the integral
signs on the right hand side for short):

d

dt

1

2

∫
Ωn
ρε|u|2 dx = ρε(uε − u) · ∇u · u− (ρε − ρ)u · ∇ log ρ− u · ∇ρ+ ρεu(uφ,ρ − u)

d

dt

∫
Ωn
ρεuε · u dx = ρε(uε − u) · ∇u · uε + ρε∇ · u− ρεuε · ∇ log ρ−∇u : Rε

+ ρεu(uεφ,ρ − uε) + ρεuε(uφ,ρ − u)

d

dt

∫
Ωn
ρε log ρ dx = ρε(uε − u) · ∇ log ρ− ρε∇ · u.

Thus,
d

dt
Gε = ∇u : Rε + ρε(uε − u) · ∇u · (uε − u) +A,

where A is the alignment component,

A = ρεu(uφ,ρ − u)− ρεu(uεφ,ρ − uε)− ρεuε(uφ,ρ − u).

Given that u is smooth we have

d

dt
Gε 6 C

∫
Ωn
|Rε| dx+ C

∫
Ωn
ρε|uε − u|2 dx+A. (65)

Let us proceed with the alignment term by rewriting it as follows

A = ρε(u− uε)(uφ,ρ − u)− ρε(u− uε)(uεφ,ρ − uε)− ρεuε(uεφ,ρ − uε).

The last term here is given by

−ρεuε(uεφ,ρ − uε) = Eε − Eε1 .

The remaining first two terms combined give

ρε(u− uε)(uφ,ρ − uεφ,ρ)− ρε|u− uε|2 6
1

2
ρε|uφ,ρ − uεφ,ρ|2 −

1

2
ρε|u− uε|2.

It remains to estimate the first term:

ρε|uφ,ρ − uεφ,ρ|2 6 ρεφ|uF − uεF|2.

Let us recall that the filtrations here are performed with respect to their corre-
sponding densities. To reconcile this descrepency we add and subtract the Favre
filtration of u with respect to ρε:

uF =
(uρ)φ
ρφ

− (uρε)φ
ρεφ

+
(uρε)φ
ρεφ

.

Thus,

ρε|uφ,ρ − uεφ,ρ|2 6 2ρεφ

∣∣∣∣∣ (uρε)φρεφ
− (uερε)φ

ρεφ

∣∣∣∣∣
2

+ 2ρεφ

∣∣∣∣∣ (uρ)φ
ρφ

− (uρε)φ
ρεφ

∣∣∣∣∣
2

.
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The first term is estimated by the Hölder inequality treating ρε(y)φ(x−y) dy/ρεφ(x)
as a probability measure,∫

Ωn
ρεφ

∣∣∣∣∣ (uρε)φρεφ
− (uερε)φ

ρεφ

∣∣∣∣∣
2

dx 6
∫

Ωn
ρεφ(x)

∫
Ωn
|u(y)− uε(y)|2ρε(y)φ(x− y) dy

ρεφ(x)
dx

=

∫
Ωn
ρε|u− uε|2 dy 6 H(fε|µ).

The second term can be estimated by∫
Ωn
ρεφ

∣∣∣∣∣ (uρ)φ
ρφ

− (uρε)φ
ρεφ

∣∣∣∣∣
2

dx .
∫

Ωn

|(uρ)φ(ρε − ρ)φ|2

ρ2
φρ
ε
φ

dx+

∫
Ωn

|(u(ρε − ρ))φ|2

ρεφ
dx.

Using the simple pointwise estimates

|(u(ρε − ρ))φ(x)|, |(ρε − ρ)φ(x)| . ‖ρε − ρ‖1,

and the fact that the densities are bounded away from zero on the interval [0, T ),
(58), we obtain∫

Ωn
ρεφ

∣∣∣∣∣ (uρ)φ
ρφ

− (uρε)φ
ρεφ

∣∣∣∣∣
2

dx 6 C‖ρε − ρ‖21 6 CH(ρε|ρ) 6 CH(fε|µ).

Combining the above we obtain

A 6 CH(fε|µ) + Eε − Eε1 .

Thus,

d

dt
Gε 6 C

∫
Ωn
|Rε| dx+ CH(fε|µ) + Eε − Eε1 . (66)

It remains to estimate the Reynolds stress. A well-known inequality of [22] estab-
lishes such a bound in terms of information and energy. Let us rerun this argument
to account for the ε-correction. Using that∫

Rn
uε ⊗∇vfε dv = 0,

∫
Rn
∇vfε ⊗ I dv = −

∫
Rn
fεI dv,

we write

Rε =

∫
Rn
uε
√
fε ⊗ (2∇v

√
fε + (v − uε)

√
fε) + (2∇v

√
fε + (v − uε)

√
fε)⊗ v

√
fε dv

=

∫
Rn
uε
√
fε ⊗ (2∇v

√
fε + (1 + ε/2)(v − uε)

√
fε)

+ (2∇v
√
fε + (1 + ε/2)(v − uε)

√
fε)⊗ v

√
fε dv

− ε

2

∫
Rn

[uε ⊗ (v − uε) + (v − uε)⊗ uε]fε dv.

Thus, ∫
Ωn
|Rε| dx 6 C

√
EεIε + CεEε

and the lemma is proved.
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Combining the kinetic and macroscopic laws (61), (64) we can see that the
residual energy Eε − Eε1 cancels out and we obtain

d

dt
H(fε|µ) 6 CH(fε|µ)− 1

ε
Iε + CεEε + C

√
EεIε 6 CH(fε|µ)− 1

2ε
Iε + CεEε

6 C1H(fε|µ) + C2ε,

where Ci’s are independent of ε. Since initial entropy H(fε0 |µ) vanishes as ε → 0,
the Grönwall’s Lemma finishes the proof.

6. Appendix: Well-posedness and continuation. In this section we collect
and address all the basic issues of well-posedness and continuation of classical so-
lutions of (15).

To set the stage let us fix value σ = 1 as it plays no role in the analysis. Let us
consider first the linear FPA model,

∂tf + v · ∇xf = ∆vf +∇v((v − u)f), (67)

where u ∈ L∞loc([0, T );Ck(Ωn)) is a given macroscopic field. The well-posedness of
solutions on [0, T ) in any class Hk

s for this equation follows by the standard linear
theory, see for example [34] and references therein. Our main existence result holds
in Hk

s (Ωn × Rn), for k, s > K, where K is large and dependent only on n.

Theorem 6.1. Suppose f0 ∈ Hk
s (Ωn × Rn), is such that ρ = inf(ρ0)φ > 0. Then

there exists a unique local solution to (15) on a time interval [0, T ), where T > 0
depends only on E0 and ρ, in the same class

f ∈ L∞([0, T );Hk
s ), inf

[0,T )×Ωn
ρφ > 0. (68)

Moreover, if f ∈ L∞loc([0, T );Hk
s ) is a given solution such that

inf
[0,T )×Ωn

ρφ > 0, (69)

then f can be extended beyond T in the same class.

Proof. The solution will be constructed by an iteration given by f0 ≡ f0, and

∂tf
m+1 + v · ∇xfm+1 = ∆vf

m+1 +∇v((v − um)fm+1),

fm+1
0 = f0.

(70)

where um = umφ,ρm .
Let us show that solutions to the above system exist on a common time interval

[0, T ), where T depends on E0, ρ, and M . In fact it suffices to show that on a
common time interval the solutions will have a common bound on the energy and
density

Em(t) 6 2E0, ρmφ (t) >
1

2
ρ. (71)

For m = 0 this is obviously true with T0 = ∞. Suppose (71) holds for t < Tm.
Then, since um ∈ L∞loc([0, Tm);Ck(Ωn)) the solution fm+1 exists as least on the
same time interval. Estimating pointwise,

|umF | 6 2ρ−1‖φ‖∞
∫

Ωn
|umρm| dx 6 2ρ−1‖φ‖∞M1/2

√
Em

6 23/2ρ−1‖φ‖∞M1/2E
1/2
0 = Cρ−1M1/2E

1/2
0 ,
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where C captures all the dependence on the parameters of the system only. Calcu-
lating the energy for fm+1 from (70) we obtain

1

2

d

dt
Em+1 = nM − Em+1 +

∫
Ωn

(um+1ρm+1)φu
m
F dx

6 nM − Em+1 + Cρ−1M1/2E
1/2
0

∫
Ωn
|um+1ρm+1| dx

6 nM − Em+1 + Cρ−1ME
1/2
0

√
Em+1 6 nM − 1

2
Em+1 + Cρ−2M2E0.

Consequently,

Em+1(t) 6 E0e
−t + (2nM + Cρ−2M2E0)(1− e−t) 6 2E0,

provided t < cE0

2nM+Cρ−2M2E0
:= Tm+1. Hence for t < Tm ∧ Tm+1 we have

∂tρ
m+1
φ = ∇x · (um+1ρm+1)φ = (um+1ρm+1)∇φ > −‖∇φ‖∞

∫
Ωn
|um+1ρm+1| dx

> −CM1/2
√
Em+1 > −C

√
ME0.

So, pointwise,

ρm+1
φ (t) > ρ− tC

√
ME0 >

1

2
ρ, (72)

provided t < Cρ(ME0)−1/2. Resetting

Tm+1 = min

{
Tm, Cρ(ME0)−1/2,

cE0

2nM + Cρ−2M2E0

}
,

we can see that the new restriction on time is independent of m. Since initially
T0 = ∞ the induction proves that the solutions will exist on the common time
interval [0, T ) with

T = min

{
Cρ(ME0)−1/2,

cE0

2nM + Cρ−2M2E0

}
.

We have constructed a sequence of solutions fm satisfying (71) on a common
interval [0, T ). This implies uniform bounds on the family in Hk

s . Indeed, all
the norms ‖um(t)‖Ck for t < T depend only on the bounds (71), while the stan-
dard energy estimates provide an exponential bound on ‖fm‖Hks only in terms of

‖um‖L∞Ck = C(E0, ρ),

‖fm(t)‖Hks 6 ‖fm0 ‖Hks e
C(E0,ρ)t. (73)

Next, let us estimate the time derivative in L2. We have

‖∂tfm‖2 6 ‖v · ∇xfm‖2 + ‖∆vf
m‖2 + n‖fm‖2 + ‖(v − um−1) · ∇vfm‖2

6 C(E0, ρ)‖fm‖Hks ,

which according to (73) is uniformly bounded on [0, T ). Thus,

fm ∈ L∞([0, T );Hk
s ) ∩ Lip([0, T );L2),

uniformly. In view of the fact that Hk
s ⊂ Hk′

s′ , k
′ < k, s′ < s, compactly, and of

course Hk′

s′ ⊂ L2, the Aubin-Lions Lemma implies compactness of the family in any

C([0, T );Hk′

s′ ). Passing to a subsequence we obtain a solution fm → f . It is easy
to show that in this case um → uφ,ρ in any Cl, l ∈ N, which is more than necessary
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to conclude that f solves (15). By weak compactness we also obtain membership
in the top space f ∈ L∞([0, T );Hk

s ).

Let us have two solutions f and f̃ in class (68) starting from the same initial

condition f0. Denote g = f − f̃ . We will estimate evolution of this difference in the
weighted class L2

s = H0
s . Let us take the difference

∂tg + v · ∇xg = ∆vg +∇v(vg − uφ,ρg + (ũφ,ρ̃ − uφ,ρ)f̃).

Testing with 〈v〉sg we obtain

d

dt
‖g‖2L2

s
6 −‖∇vg‖2L2

s
+

∫
Ωn×Rn

〈v〉s−1|∇vg||g| dv dx

−
∫

Ωn×Rn
∇vg(vg − uφ,ρg + (ũφ,ρ̃ − uφ,ρ)f̃)〈v〉s dv dx

+

∫
Ωn×Rn

|g||vg − uφ,ρg + (ũφ,ρ̃ − uφ,ρ)f̃ |〈v〉s−1 dv dx

We have∫
Ωn×Rn

〈v〉s−1|∇vg||g| dv dx 6 ‖∇vg‖L2
s
‖g‖L2

s−2
6

1

4
‖∇vg‖2L2

s
+ c‖g‖2L2

s
.

By a similar estimate and using that uφ,ρ is bounded, we obtain∫
Ωn×Rn

∇vg(vg − uφ,ρg) dv dx 6
1

4
‖∇vg‖2L2

s
+ c‖g‖2L2

s
,∫

Ωn×Rn
|g||vg − uφ,ρg|〈v〉s−1 dv dx 6 c‖g‖2L2

s
.

Next,∫
Ωn×Rn

|∇vg||(ũφ,ρ̃ − uφ,ρ)f̃ |〈v〉s dv dx 6
1

4
‖∇vg‖2L2

s
+ ‖ũφ,ρ̃ − uφ,ρ‖2∞‖f̃‖2L2

s∫
Ωn×Rn

|g||(ũφ,ρ̃ − uφ,ρ)f̃ |〈v〉s−1 dv dx 6 ‖g‖2L2
s

+ ‖ũφ,ρ̃ − uφ,ρ‖2∞‖f̃‖2L2
s
.

Recall that ‖f̃‖2L2
s
6 C on the interval of existence. So, adding the above inequalities

we obtain
d

dt
‖g‖2L2

s
. C‖g‖2L2

s
+ ‖ũφ,ρ̃ − uφ,ρ‖2∞.

Finally,

‖ũφ,ρ̃ − uφ,ρ‖2∞ 6 ‖φ‖∞
∫

Ωn
|uF(y)− ũF(y)|2 dy,

and using the lower bound on the density and the fact that (uρ)φ, (ũρ̃)φ remain
uniformly bounded, we obtain

‖ũφ,ρ̃ − uφ,ρ‖2∞ .
∫

Ωn
|(uρ− ũρ̃)φ|2 dy +

∫
Ωn
|(ρ− ρ̃)φ|2 dy

.
∫

Ωn
|uρ− ũρ̃|2 dy +

∫
Ωn
|ρ− ρ̃|2 dy.
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The differences can be estimated as follows (keeping in mind that s > n+ 2),∫
Ωn
|uρ− ũρ̃|2 dy =

∫
Ωn

(∫
Rn
|v||g| dv

)2

dy =

∫
Ωn

(∫
Rn
〈v〉s/2|g| dv

〈v〉s/2−1

)2

dy

6 C

∫
Ωn

∫
Rn
〈v〉s|g|2 dv dy = C‖g‖2L2

s
.

Similarly, ∫
Ωn
|ρ− ρ̃|2 dy 6 C‖g‖2L2

s
.

We thus obtain
d

dt
‖g‖2L2

s
6 C‖g‖2L2

s
.

Since initially g = 0, the result follows.
The continuation criterion follows readily from the above. Notice that according

to (34) the energy will remain uniformly bounded on the interval of existence:
E(t) 6 C1H0 +C2. Together with the assumption (69) it implies that the solution
will exist on a finite time-span T0 which depends only on E0,M, T , starting from
any time < T . By uniqueness the extended solution will coincide with the original
one on the overlap.
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