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Abstract

We propose a new Lagrange multiplier approach to construct positivity preserving schemes for parabolic type equations.
The new approach introduces a space—time Lagrange multiplier to enforce the positivity with the Karush-Kuhn-Tucker (KKT)
conditions. We then use a predictor—corrector approach to construct a class of positivity schemes: with a generic semi-implicit or
implicit scheme as the prediction step, and the correction step, which enforces the positivity, can be implemented with negligible
cost. We also present a modification which allows us to construct schemes which, in addition to positivity preserving, is also
mass conserving. This new approach is not restricted to any particular spatial discretization and can be combined with various
time discretization schemes. We establish stability results for our first- and second-order schemes under a general setting, and
present ample numerical results to validate the new approach.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Solutions for a large class of partial differential equations (PDEs) arising from sciences and engineering
applications, e.g., solutions for physical variables such as density, concentration, height, population, etc., are required
to be positive. It is of critical importance that their numerical approximations preserve the positivity of these
variables at the discrete level, as violation of the positivity may render the discrete problems ill posed, although the
original problems are well posed.

In recent years, a large effort has been devoted to construct positivity preserving schemes for various problems.
The existing approaches can be roughly classified into the following categories:

e Cut-off approach: an ad-hoc approach which simply cuts off the values outside of the desired range. This
approach is perhaps used in many simulations without being explicitly mentioned, and it is recently analyzed
in [1,2] for certain class of time discretization schemes. The main advantages of the cut-off approach is (i)
simple to implement, and (ii) it is able to preserve the accuracy of the underlying numerical schemes for
problems with smooth solutions (cf. [2]). A disadvantage is that it does not preserve mass.
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e Discrete maximum principle preserving schemes (see, for instance, [3] and the references therein): these
schemes are usually based on second-order finite differences or piecewise linear finite elements so they
are limited in accuracy, see however some recent work on fourth-order finite differences [4,5] applied to
second-order elliptic or parabolic equations.

e Post-processing approach: sophisticated procedures are designed in [6,7] for hyperbolic systems: these are
explicit schemes which are not quite suitable for parabolic systems.

e Convex splitting approach: for examples, see [8] for Cahn—Hilliard equations with logarithmic potential, [9,10]
for Poisson—Nernst—Planck (PNP) and Keller—Segel equations. The drawback of this approach is that a
nonlinear system has to be solved at each time step.

e Reformulation approach: reformulate the problem so that solution of the corresponding discrete problem is
always positive, see, for instance, [9,11].

We observe that there is still a lack of more general and efficient numerical approach which can deal with a large
class of positivity preserving parabolic systems. Recently, an interesting Lagrange multiplier approach was proposed
in [12] and applied to solve positivity preserving parabolic systems. The key idea was to introduce a Lagrange
multiplier and use the well-known Karush—Kuhn—-Tucker (KKT) conditions [13-16] to enforce the positivity. At
each time step, their approach reduces to solving a nonlinear constrained minimization problem. But since these
constrained minimization problems are only semi-smooth, a delicate and costly iterative method has to be used.
The main goal of this paper is to adopt a predictor—corrector approach to develop efficient and accurate schemes
for a large class of positivity preserving parabolic systems without solving a constrained minimization problem at
each time step.

More precisely, we consider in this paper a class of linear or nonlinear parabolic equations with positive solutions
in the following form:

u, + Lu =0, (1.1)

with suitable initial and boundary conditions, where £ could be Lu = Au+ f(u) with A being a linear or nonlinear
positive operator and f(u) a semi-linear or quasi-linear operator. Consider a generic spatial discretization of (1.1):

oup + Lyu, =0, (1.2)

where u, is in certain finite dimensional approximation space X, and £, is a certain approximation of £. In general,
uy, if it exists, may not preserve positivity. Oftentimes, (1.2) may not be well posed if u; cannot preserve positivity,
e.g., a direct finite elements or spectral approximation to the porous media equation [17] u, —mV - (" 'Vu) = 0
with (m > 1) cannot preserve positivity so it is not well posed. Hence, special efforts have to be devoted to construct
spatial discretization such that (1.2) is positivity preserving.

Alternatively, we can introduce a Lagrange multiplier function A,(x, ¢) and solve the following expanded system:

Oy + Lyup = Ap,

(1.3)
A =0, up >0, Ayuy, =0.

Note that the second equation in the above represents the well-known Karush—Kuhn-Tucker (KKT) conditions
[14-16,18] for constrained minimizations. The expanded system (1.3) is equivalent with system (1.2) with positivity
constraint under suitable conditions. In the absence of time variable, the problem (1.3) has been well studied
mathematically and numerically. However, how to efficiently solve the time dependent (1.3) is a completely different
issue which has not received much attention. One can of course use an implicit discretization scheme such as
backward-Euler or Backward Difference Formula (BDF) [19-21] schemes so that at each time step, the nonlinear
system can still be interpreted as a constrained minimization and apply a suitable iterative procedure. But since
these constrained minimization problems are only semi-smooth, a delicate and costly iterative method has to be
used. We refer to [12] for such an attempt with a diagonally implicit Runge—Kutta discretization.

To avoid solving a constrained minimization problem at each time step, we adopt in this paper a predictor—
corrector approach to develop efficient and accurate schemes for (1.3). This approach enjoys the following
advantages:

e It allows us to construct positivity preserving schemes for a large class of linear or nonlinear parabolic
equations with positive solutions, and the schemes can also be made mass conservative if the PDE is mass
conserving;
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e It can be combined with most existing numerical schemes — particularly legacy codes which are not
necessarily positivity preserving;

e It has essentially the same computational cost as the corresponding semi-implicit or implicit scheme with the
same spatial discretization;

e It has good stability property: the first- and second-order versions of our scheme are proven to be uncondi-
tionally stable for a large class of problems.

Moreover, we show that schemes based on the ad-hoc cut-off approach can be interpreted as special cases of our
approach. Thus, this approach allows us to construct mass conserving schemes based on the cut-off approach, and
our analysis leads to new stability results for the cut-off approach. We shall apply our new schemes to a variety of
problems with positive solutions, including the challenging porous media equation [17,22] and the very challenging
Lubrication equation [23].

The rest of the paper is organized as follows. In Section 2, we introduce the positivity and mass preserving
schemes with Lagrange multiplier. In Section 3, we catry out stability analysis for the proposed positivity preserving
schemes. In Section 4, we present numerical results for a variety of problems to validate our schemes. Some
concluding remarks are given in Section 5.

2. Positivity and mass preserving schemes with Lagrange multiplier

We start with a general description of the spatial discretization, followed by the construction of positivity
preserving time discretization schemes without and with mass conservation.

2.1. Spatial discretization

We now give a more precise description on the generic spatial discretization in (1.3). Let {2 be the domain
including boundary and X, be a set of mesh points or collocation points in 2. Note that X, should not include the
points at the part of the boundary where a Dirichlet (or essential) boundary condition is prescribed, while it should
include the points at the part of the boundary where a Neumann or mixed (or non-essential) boundary condition is
prescribed.

We consider a Galerkin type discretization with finite-elements or spectral methods or finite-differences with
summation-by-parts in a subspace X, C X, and define a discrete inner product, i.e. numerical integration, on
Xp ={z}in (2

[, v] = ) wu(2)v(), 2.1

zeXy

where we require that the weights w, > 0. We also denote the induced norm by ||u| = [u, u]%. For finite element
methods, the sum should be understood as >, > .. 2(k) Where T is a given triangulation. We assume that there
is a unique function v,(x) in X, satisfying v,(z") = 8,y for z,z' € X),. Then, (1.3) is interpreted as follows: Find
u, € X; such that

Qun(z, 1) + Lpup(z, t) = An(z, 1), Vz € Xy,
)\'/‘l(za t) Z Oa uh(z7 t) Z Oa )\'h(za t)uh(za t) - Oa VZ G Eh’ (2'2)
un(z, 0) = ull(2),

with the Dirichlet boundary condition to be satisfied pointwise if the original problem includes Dirichlet boundary
condition at part or all of boundary. u2 is the initial condition.

2.2. Time discretization

Let £}, be an approximate operator of L at t,. For examples, if Lu = —V - (f(u)Vu), L}, could be a lagged
linear approximation
Lt = -V - (fuhvipth, (2.3)



Q. Cheng and J. Shen Computer Methods in Applied Mechanics and Engineering 391 (2022) 114585

and for Lu = Au + f(u), L} could be a fully implicit discretization

Crapt = Aay™ + fanth, 2.4)
or an implicit—explicit IMEX) discretization,

Cragth = Aayt + fGi), (2.5)

or some other type of discretization such as the convex splitting [24] or the SAV approach [25,26].

2.2.1. First-order operator splitting scheme
Let )»2 = 0, for n > 0, we proceed as follows.
Step 1: solve 122“ from

i (2) — uj(2)
ot
Step 2: solve (u),

n+1 ~n+1
(2) —uy, " (2) +1
h = , Vzely,
5 ) z h 2.7
M@ =0, up™ @) = 0, 4T @upt @) =0, Vze X,

The above scheme can be viewed as an operator splitting method. The first step is just a usual time stepping scheme
and can be implemented as usual. However, ﬁZ“ may not be positive. In the second step, we use the KKT conditions
to enforce the positivity of u} ™.

A remarkable property of (2 7) is that it can be solved pointwise as follows:
(”"*‘(z) 0 if 0<iat(2)

(z) . , Yz el (2.8)
0, — ) otherwise

n~n+l(z) _ 0 VZ c Eh; (26)

nl A"+1) from

W (2), A (2) = {

Remark 2.1. The second step in the above scheme is equivalent to the simple cut-off approach [1,2]:

,,H()_{”“(z) it @) >0

it 70 <0, vz € 5. (2.9)

Hence, the cut-off approach can also be understood from an operator splitting point of view which opens new
avenue for analysis and further algorithm improvement.

2.2.2. Higher-order schemes

We can construct higher-order schemes by using a predictor—corrector approach. More precisely, a kth-order
IMEX scheme based on Backward Difference Formula (BDF) and Adam—Bashforth [27] can be constructed as
follows:
Step 1 (pred1ct10n) solve u h+' from

akuh — Ar(uj)
8t
Step 2 (correction): solve (u} ™, A7*") from

@) -t @)
5 =M"=) = Bioi(A]), Yz e X, (2.11)

Mt 2) >0, ultl(z) > 0, AT Qui T (z) =0, Vze X,

where oy, the operators Ay and By_; (k = 2, 3, 4) are given by:
First-order:

ap =1, Ai(uy) =u,, Bo(A,) =0; (2.12)

+£n ~n+1 — Bk—l()‘Z); (210)
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Second-order:

3 1
W =3, Aup) =2uj = Juj” LB = (2.13)
Third-order:
11 n n 3 1 n—2 n n—1
@ =" As(uy) = 3uy — E”h "+ 3 Ba(hy) = 20, — X (2.14)
Fourth-order:
25 n—1 4 U~ -2 1 n—3 ny __ n n—1 n—2
=10 As(uy) = 4uy — 3u;, T gt B3(Ay) =34, —3A, 7 + A" (2.15)
The formulae for k = 5,6 can be derived similarly with Taylor expansions. For the sake of simplicity and with
a slight abuse of notations, we used A(u}) and Bi(u}) to denote Ax(uf, ..., u) k+') and Bp(uy, ..., u; k‘“),

respectively. Note that for k = 1, the above scheme is exactly (2.6)—(2.7).
The first-step is a usual kth-order IMEX scheme. The second step (2.11) can be viewed as a correction step in
which )»Z“ is introduced to enforce the pointwise positivity of u”“, and can be efficiently solved as follows:

@ @) = LB, 00 if 0 < it ™(2) = SEBe1 ()

O, Be1 (M) — Skt (2)) otherwise

W (@), (@) = , Yz e X (2.16)

Remark 2.2. Since A is an approximation to A; which tends to zero as 2 — 0, an alternative is to replace By_(A},)
by zero, i.e., leading to the scheme:
Step 1: solve i} ' from

it} — Apult)
3t
Step 2: solve (u),
n+1 ~n+1
ol (@) = ) = A”J’l(z) vz € X,

St : (2.18)
A () >0, ult(z) = 0, A (uit(z) =0, Vze X

Since the second step is once again equivalent to the cut-off approach (2.9), the above scheme can be interpreted
as a kth-order cut-off scheme.

+ Lttt = 0; (2.17)

n+1 )\IH_I) from

2.2.3. Positivity preserving schemes with mass conservation

A drawback of the scheme (2.10)—(2.11) is that it does not preserve mass if the original equation does. For
clarity, we consider first the first-order scheme (2.6)—(2.7).

Let (L., -) (resp. (L}, -)) denote the continuous (resp. discrete) bilinear form after proper integration by parts,
e.g., if EZuh = =V - (f(u;)Vuy), then (Lpup, vy) = [f(u})Vup, Vu,]. Assuming (Lu, 1) = 0, we find from
(1.1) that 9,(u, 1) = 0, i.e., the mass is conserved. But assuming (L}vj, 1) = 0 for any v, € X, we derive from
(2.6)—(2.7) that

[p ™ 1] — ), 1] = 8e[A) T 10
Since )LZ“ > 0, we find that the mass is not conserved, in fact it is increasing with #n.

We present below a simple modification which enables mass conservation. More precisely, we introduce another
Lagrange multiplier E"+], which is independent of spatial variables, to enforce the mass conservation in the
correction step.

Step 1: solve i} "' from

it (2) — ui@)
8t

Step 2: solve (u} ', A7*") from

n+1(z) n+l(z)
ot

n~n+l( ) _ 0 VZ c Eh; (219)

=1+ &, Vze X, (2.20a)
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M) =0, Wl (2) = 0, AT ul T (2) =0, Vze 5, (2.20b)
()™ 1) = [u), 1]. (2.20c)
In order to solve (2.20), we rewrite (2.20a) in the following equivalent form

nJrl(Z) (~ﬂ+1(z) +8t€l‘l+1
ot

n+1

= A (). (2.21)

Hence, assuming &, is known, (2.21) and (2.20b) can be solved pointwise as follows:

~n+1 n+1 hlas! n+1
(W ' (—Z)ﬁ;észﬁh‘”gﬁ?z ;fth:‘;se @+ e, (2.22)
It remains to determine S,’f“. We find from (2.20c) and (2.21) that
[+ 4 8egr 1] = [ul, 1] — se[A0+ 1],
which, thanks to (2.22), can be rewritten as
> @ (2) + 86w, = [ul, 1].

25y s.0.0<itp @) +org) !

Wi (@), 1t (z) =

Hence, ’;‘h is a solution to the nonlinear algebraic equation

F(§) = > @+ (2) + 8t&)w, — [}, 11 = 0. (2.23)

z€Xy s.1. O<uz+l(z)+815

Since F’(§) may not exist and difficult to compute if it exists, instead of the Newton iteration, we can use the
following secant method:

Eeor = £ — F &)k Sk—l)‘ (2.24)
F(&) — F(&§-1)
Since $}'l'+ is an approximation to zero and it will be shown below that £ < 0, we can choose § = 0 and
& = —O((St) In all our experiments, (2.24) converges in a few iterations so that the cost is negligible.
Once SZ’ is known, we can update (u”+1 )L"H) with (2.22).
Similarly, the higher-order scheme (2.10)—(2.11) can be modified to preserve mass as follows:
Step 1 (prediction): solve ﬁZ“ from

n+l1

akﬁz+1 — Ak(uh)
ot
Step 2 (correction): solve (u,

oy (@) — i, @) _ e

+ LEa = B (M) + Bio (&) (2.25)

n+1 )\‘Z+1) from

5 (@) = Beo1(hy) + & = Bioa(§)). Yz € T, (2.262)
M) >0, Uit (2) > 0, AT @u T (2) =0, Vze X, (2.26b)
[up ™, 1] = [uf, 11. (2.26¢)
In order to solve the above system, we denote r;”+l = sl’c (S”H Bi_1(§) — Br—1(A})) and rewrite (2.26a) as
oy (2) — @ (@) + 1, @)

5 = At(2). (2.27)

Assuming 5;’“ is known, we find from (2.26a) and (2.27) that

n+1 n+1 : ~n+1 n+1
nt1 nt1 (u @+mn,",0  if 0<ua @) +n,
A = - ) 2.2
(" (2), A7 (2)) { 0, — "+1(Z) + n"+l(z))) otherwise. (2.28)
Finally, we can determine &, ol by solving the nonlinear algebraic equation
FE = 2 iy @ + iy @) — (], 1] =0, (2.29)
z€X) s.t. 0<u2+|(z)+r}n+l(2)
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Remark 2.3. Replacing Bi_;(A}) in (2.25)—(2.26) by zero, we obtain a mass conserved kth-order cut-off scheme.

3. Stability results

We prove in this section that the first- and second-order positivity preserving schemes with or without mass
conservation are dissipative and unconditionally stable if (L} v, vy) > 0 Vv, € X, for all n.
3.1. First-order schemes

We consider first the scheme (2.6)—(2.7).

Theorem 3.1. For the scheme (2.6)—(2.7), we have
m—1

laey' 11> +Z<||”"+1 wp|® + S + 280 Y (Lpat agtty = gl ¥m = 1 (3.1)
n=0

In particular, lffor all n, (Lyvy,vp) = 0 Vv, € Xy, then the scheme (2.6)—(2.7) with k = 1 is dissipative and
unconditionally stable.

~”+1 , we obtain

Proof. Taking the discrete inner product of (2.6) with 28¢u
N I — N >+ ity — )+ 280 (Chiiy uz+1> 0. (3.2)
We rewrite (2.7) as
uyt (@) = 810t (2) = i (). (3.3)

Taking the discrete inner product of each side of the above equation with itself, thanks to the last KKT condition
in (2.7), we derive

I 2 I ~pt1
(s e T Ve e 77
Summing up the above with (3.2), we obtain
12 2 2 12 ~nt1 2 ~ntl ~nl
ey ™12 = Na 1P 4 S22 1A T2+ Ny ™ — wy |1 + 280 Ly ™, ™) = 0.

Summing up the above for n from 0 to m — 1, we arrive at (3.1). In particular, if (L}v,, vy) > 0 Vv, € X, then
we have

1 1 ~n+1 2 2
ey I 4+ 821 P N =l < upl?.

We derive from above that [|u}™||> < [|u}||? for any n, so that the scheme (2.6)~(2.7) with k = 1 is unconditional
stable and dissipative. [J

Next, we consider the mass conserved scheme (2.19)—(2.20).

Theorem 3.2. For the scheme (2.19)—(2.20), if (Ljvy, 1) = 0 for any v, € X, we have

m—1 m—1

s +Z<||~"+1—u,,|| + At & >+28r2 (Chapt, 'y < Jupl?, ¥m = 1. (3.4)

In particular, tffor all n, (Lo, vp) > 0 Vv, € Xy, then the scheme (2.19)—(2.20) is dissipative and unconditionally
stable.

Proof. The proof follows the same procedure as that of Theorem 3.1. Indeed, we can replace (3.3) by
W @) — 8100 (2) + £ = i1 (2), (3.5)
Taking the inner product of (3.5) with itself on both sides, we obtain
luy ™ @I + 82147 @) + &P — 260y @), 671 = Ny @)l (3.6)

7



Q. Cheng and J. Shen Computer Methods in Applied Mechanics and Engineering 391 (2022) 114585

Summing up (2.19) and (2.20a), we obtain

uit(z) — uZ(z)

8t I’L"‘n+l(z) _ )\’VH»] +En+17 VZ c Ehs (37)
Taking the discrete inner product of (3.7) with 1 on both sides, using the fact that (,CZI/NLZ-H, 1) = 0, we obtain
T+ g 11 =0, (3.8)
bl _ Uyt

which implies that & < 0 since A}™' > 0. Therefore,

12|
—25t[u n+1(z) §n+1] ~0.
Finally, summing up (3.6) with (3.2), we arrive at the following result
R T R P R [/ AT
+ 280 (Cray ity = 28[u ' (2), &' < 0.

Summing up the above for n from 0 to m —1, we arrive at the result (3.4). In particular, if (L} vy, vi) = 0 Vv, € X,
then we have

12 1 1 ~n+1 2 2
[ T o [ o e 1 e 1774 o

We derive from above that ||u”+1||2 < |luj |?> for any n, so that the scheme (2.19)-(2.20) is dissipative and
unconditionally stable. O

3.2. Second-order schemes
We first consider the scheme (2.10)—(2.11) with k = 2.

Theorem 3.3. For the scheme (2.10)—(2.11) with k = 2, we assume that the first step is computed with the
first-order scheme (2.6)—(2.7). Then, we have
m—1
1> 4 120l — w1 + 8t g%+ 48 > (Lhiap™ ity < 12uy —uf|® + 4lluf|*, Vm > 1. (3.9)
n=0
In particular, if for all n, (Ljvy, vy) = 0 VYv, € Xy, then the scheme (2.10)—=(2.11) with k = 2 is dissipative and

unconditionally stable.
Proof. Taking inner product of Eq. (2.10) (with k = 2) with 48tu’”rl we obtain
[31/’224’1 4uh + uz 1 2~n+1] + 48t(£n n+1 ~n+1) _ 451‘[)\" "‘VH*I] (310)

The term on the left can be written as

Bit; ™ — 4wl 4+ w200 = 203uf T — 4wl +up !t up

3.11

+ 203 —duf +u At — w4 et — . G-I
For the first term on the righthand side of (3.11), we have

2[3un+] _ 4“2 + uz—l’ n+l “ n+1 ” ”uh” + ”2un+l MZHZ (3 12)

— 112ufy — w1 A = 2u + '

For the last term in (3.11), we have

6[un+1 _ u;’i+1 ~n+1] _ 3(” ~n+1 || ||un+1 ” + ” ~n+1 n+l || ) (3'13)
And for the second term on the righthand side of (3.11). Similarly, we have

2[3un+1 4”}1 +MZ 1 IZZ+1 n+1] —2[Mn+1 _Zuh _}_uz 1 ﬁ2+1 u;ll+l] (3 14)

n+1 ~n+1 n+1
+ 4w, =y, uy T —uy

8
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By Cauchy-Schwartz inequality, the first term on the righthand side of (3.14) can be bounded by
2[un+1 _ zuh + uz 1 ~Z+1 n+1] < ||Mn+1 _ Zuh + uz 1” + ” "’VH»I H+1|| (315)

Thanks to the KKT conditions in (2.11), we have [uhH, AZH] = [u}, A1 = 0 for all n, so for the second term on
the righthand side of (3.14), we have

4[un+1 _ MZ’ ﬁZJrl Z+1] — [ n+1 _ n )LnJrl _ kn]
(3.16)
{[ n+1 )Ln] + [uh’ )JH*I]} > 0
Next, we rewrite (2.11) with k = 2 as
3upth — 28ttt = 3apt — 2810, (3.17)
Taking the discrete inner product of each side of the above equation with itself, since [)»Z“ ”“] = 0, we derive
4 ~ ~n n n
Bl I+ S8R = 3T — Astl@ T Al + 3 8t 1251, (3.18)
Now, summing up (3.10) with (3.18), and using (3.11) to (3. 16) we obtain that for n > 1,
A0y TP = N 1) + 126t = wpl? — 120y — ™ || +2||~"+1 wy PP
4 bl (3.19)
+ 38R = WA + 4oL ) = {[ ARV R VYA
From (3.19) and using (3.16), we derive easily
Al ™17 = N 1) + ||2u"+‘ wy1* = 1120 — ™
1 1 1 g (3.20)
+ 20— up P+ 33t 22 = 1A 1P + 48 Chiay ', a ™) < 0.

On the other hand, since the first step is computed by using the first-order scheme, we take n = 1 in (3.1) to obtain

luplI* + N, — ulll* + 28 (L0, i) + 82| Apl1* = [lulll>. (3.21)

Finally, summing up (3.20) from n = 1 to n = m — 1 with (3.21) multiplied by 4, we obtain, after dropping some
unnecessary terms,

A 1P+ 112uy — P+ 8t A1 +48tZ (Lhiy ™, ) < 112u), — upI® + 4lup ], (3.22)

which implies the (3.9). In particular, if (£jv,, vs) > 0 Vv, € X}, the above indicates that 4||uf||2 + 112u) —
N2 < 12u) — ud 1>+ 4||ud || for all m, so that the scheme (2.10)~(2.11) with k = 2 is unconditional stable and
dissipative. [

Next, we consider the mass conserved scheme (2.25)—(2.26) with k = 2.

Theorem 3.4. For the scheme (2.25)—(2.26) with k = 2, we assume that the first step is computed with the
first-order scheme (2.19)—(2.20). Then, if (Ljvy, 1) = 0 for any v, € X, we have

m—1

Al |17+ N2y — w1+ ar g+ &7 NP + 488 Y _(Lhiap™, i)

g (3.23)

< 12u), — ufI* + 4uflI>,  ¥m > 1.

In particulay, if for all n, (Lyvy, vy) > 0 Vv, € Xy, then the scheme (2.25)-(2.26) with k = 2 is dissipative and
unconditionally stable.

Proof. The proof is again similar to that of Theorem 3.3 so we just point out the differences below.
9
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First, (3.10) should be replaced by
B ™ —dul +uf ' 200 s (Lt Attty = asea) + &8 . (3.24)
Then (3.16) should be replaced by
~n n 8 n n n
4[un+1 _ uz’ uh+1 h+1] — [I/i +1 Z, )‘fh+1 +§ +1 (}\ +§ )]

3
83t 86t

_ [ n+l _ u” )LnJrl —)»7] _ [ n+l _ u n+1 n]

Ups & ~ Sh

(3.25)
_ 88t[ n+l _ n )LnJrl _ }Ln]

=_{[ n+1 )\'n]+[ n )\'VH-I }20’

where we used the fact that

85t 85t

_T[MZJrl o un n+1 _ Sh] — __(SnJrl — é:}:l) ([Mh+1 1] - [uz, 1])

Next, (3.17) should be replaced by

3uptl(z) — 28t () + &Y = 3 (z) — 28t (M (z) + E). (3.26)
Taking the discrete inner product of (3.26) with itself on both sides, we obtain

3”un+1(z)” + (St ”)LIH*I(Z) + gi’H’l ” 28l[uz+l )Ln+1 + %.nJrl

(3.27)
= 3@t @) +§6r 2an(@) + E711% — 280l A + £,

Summing up (2.25) and (2.26a), we obtain

1
otkuz+ — Ar(u})

ot
Taking the discrete inner product of (3.28) with 1 on both sides, using (2.26¢), we obtain

g 1 = 4 (g 11 =0, (3.29)
which implies £'*' < 0 since A}*' > 0. Therefore,

— 28t [ A g = o8¢l £7H1] > 0. (3.30)
Then, summing up (3.24) with (3.27), and using (3.25) and (3.30), we arrive at

4<||u"“|| — ) + 1205 = w1 = 12, — w1+ 20yt — wy P

4 ﬁ" ~n+1 )Ln+1 +§n+l. (328)

+ - az 2R 4 g2 —||A2+s:||2>+46r<£2ﬁ2*‘ it (3.31)

‘T{[uz“, Ml Lo, 2 o 2800 £,

From (3.31) and using (3.25) and (3.30), we obtain
A0l P = Nyl + ||2u"+1 w1 = 112, — up ="
+ 20yt — R+ 5t2(||)\"+I + &N = In; + &P + 400 Lhapt! aptt) < 0.

(3.32)

For the first step, we take m = 1 in (3.4) to obtain
lup 1> + Ny, — upll® + 286 Ly iiy) + 827 1|A), + E4117 < u > (3.33)
Finally, summing up (3.32) from n = 1 to n = m — 1 with (3.33) multiplied by 4, we obtain,

m—1
- 4 m m n~n ~n
AP+ 2 = P 4 SO I 40t Y LR ) < 2uh — P+ 4P,
n=0
10
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which implies the (3.23). In particular, if (Ljv,, vy) > 0 Vv, € X, the above indicates that 4| uj I? + 12uf’ —
12 < ||2u,11 — 142||2 —|-4||142||2 for all m, so that the scheme (2.25)—(2.26) with k = 2 is unconditional stable and
dissipative. [

Remark 3.1. The results in the previous theorems are derived for a general approximate operator £}. They imply
in particular:

o If £} is non-negative, e.g., as in (2.3) with application to Porous Media equation, then the first- and
second-order positivity preserving schemes with Lagrange multiplier are unconditionally energy stable.

e If one can show, perhaps under certain condition Ar < coh® with a semi-implicit discretization (where o > 0
depending on the problem and discretization), that for the usual schemes, i.e., by setting A} = 0 for all n, we
have

m—1

m—1
St Z ‘CZMZ-H? 'Zn-H > Bt Zah(un-H» ~n+l —Cy, Ym < T/At — 1,

where B is some positive constant in (O, 1] and T is the final time, then we derive from the above and (3.1)
that the solutions of the corresponding schemes (2.10)—(2.11) and (2.25)—(2.26) with k = 1, 2 are bounded in
the sense that

m—1

lmW+w&2ym”““5ﬂmn+a,mswm—L

Remark 3.2.
We are unable to prove similar results for the schemes (2.10)—(2.11) and (2.25)—(2.26) with k > 3. The situation
is similar to the pressure-correction schemes for the Navier—Stokes equations [28].

4. Numerical experiments

In this section, we carry out various numerical experiments to demonstrate the performance of proposed positivity
preserving schemes. We use spectral Galerkin methods with numerical integration for all cases, namely, Fourier-
spectral method [29] is used for problems with periodic boundary conditions, while a Legendre-spectral method [29]
is used for problems with Dirichlet or Neumann boundary conditions. Note that in general it is much more difficult
to preserve positivity with a spectral method than with a lower-order finite element or finite difference method.
Below, i = 1/N where N is the number of collocation points in each direction.

4.1. Convergence rate

We first test the convergence rates in time for the positivity preserving schemes using the Allen—Cahn
equation [30]

1 1
— Au + —u(u —Du—5)=0, “4.1)
€ 2

with periodic boundary condition in {2 = [0, 27)2. 1t is well-known that the solution will remain in [0, 1] if the
values of the initial condition u(x, y, 0) are in [0, 1] [31]. In particular, it is positivity preserving.
We choose the following initial condition

—Ju—nﬁ+@—nﬁn
V2e ’

with €2 = 0.001 and use 322 uniform collocation points in [0, 277)?, i.e., 2, = {xjx = (2n 27r) j,k=0,1,...,31}L
We note that with this coarse mesh, the usual semi-implicit Fourier-collocation method will produce numerical
solutions with negative values, i.e., the spatial discretized problem (2.2) will lead to non zero A,. The spatial
discretized problem is smooth in time so it can be used to test the convergence rates of the positivity preserving time
discretization schemes. On the other hand, the Fourier-spectral method with 32 x 32 uniform collocation points is

u(x,y,0)= 1( 1 + tanh( (4.2)

11
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(a) up at t =0.01 (b) up, at t =0.4

Fig. 1. Numerical solution of Allen-Cahn equation (4.1) with €> = 0.001 at t = 0.01 and ¢ = 0.4 computed with 32 x 32 Fourier modes
but plotted on the 256 x 256 grid.

Table 1
Accuracy test: The L™ errors between uj and the reference solution at ¢ = 0.01 for the Allen-Cahn equation
(4.1) with €2 = 0.001 using (2.10)=(2.11).

8t (2.100—(2.11) k =1 Order (2.100—(2.11) k =2 Order
4 %1073 2.71 x 1074 - 1.20 x 1073 -
2x107° 1.37 x 107 0.98 2.97 x 107° 2.01
1 x 1073 6.85 x 107 1.00 7.31 x 1077 2.02
5%x107° 3.42 %1073 1.00 1.74 x 1077 2.07
2.5 x 107 1.71 x 1073 1.00 3.54 x 10~3 2.30

enough to provide a reasonable approximation to this problem as shown in Fig. 1. As a reference solution, we use
the numerical solution computed by the scheme (2.17)—(2.18) with k = 2 and &t = 107°.

In Table 1, we list the L™ errors of numerical solution between the reference solution u ™" obtained using the
schemes (2.10)—(2.11) with k = 1, 2. We observe from Table 1 that the schemes (2.10)—(2.11) are indeed kth order
accurate.

4.2. Porous medium equation

In this subsection, we consider the porous medium equation (PME) [17]:
pr = Ap" =mV - (p" "'V p), (4.3)

with homogeneous Dirichlet boundary condition in 2 = (-5, 5) (d = 1, 2, 3) where m > 1 is a physical parameter.
The porous medium equation has wide applications in various areas, including fluid dynamics, heater transfer and
image processing. We observe from (4.3) that the PME is degenerate and its solution has to be positive.

We shall use the Legendre—Galerkin method with numerical integration in space. Let Py be the set of polynomials
with degree less than or equal to N in each direction, and let Y, be the set of the interior Legendre—Gauss—Lobatto
points, i.e., in the one dimensional case, X, = {x; : k=1,2,..., N — 1} where {x;} are the roots of L/, (x) with
Ly being the Legendre polynomial of Nth degree, and in the multi-dimensional case, 2, is obtained by the tensor
product of one-dimensional set. We set X;, = {v, € Py : v;lsn=0}, and use the scheme (2.10)—(2.11) with k = 2
and L (vy) = =V - (m(p"1*y"=1vy,). For the reader’s convenience, it is explicitly described below:

Find p}*' € X}, such that

n—1

3'5n+l - 4,0n +p n m— n n

[ o] o T VA V] = D il Yo € X @5
3 n+1 7) — 3~n+1 z

pop )28t o, (2) _ )»ZH(Z) — M), Vze S, 4.5)
MH(z) >0, p(2) >0, AT ()T (z) = 0, (4.6)
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where
-1 . —1
pits | 2Ph—Pn i oy =
h = 1 lf pn < pn—l (47)
2/op =1/ b=
At each time step, we need to solve an elliptic equation with variable coefficients in (4.4), which can be efficiently

solved by a preconditioned conjugate gradient iteration with a constant coefficient problem as the preconditioner.

4.2.1. Comparison with a usual semi-implicit scheme
We now compare the positivity preserving scheme (4.4)—(4.6) with the corresponding usual semi-implicit scheme

3o 4o o
25t
using the exact solution of the porous medium Eq. (4.3) in the Barenblatt form

o)+ ml(ep Y IV et Vel =0, Vu, € X, (4.8)

1 — 1 X2\
p(x,t):—a<C—otm x_) ]

—_ 4.9
18 2m 1@ *9)

+

where fi; = max{f,0}, a = m+r1, C =1 and tp = t + 1. The solution is compactly supported in (0, 1) with the

interface moving outward in a finite speed. The initial condition for the numerical simulations is chosen as p(x, 0).

In Fig. 2, we plot the L? errors by the usual semi-implicit scheme (4.8) and by the positivity preserving (4.4)—(4.6)
with m = 2 and set §t = 1073, We observe that the errors grow rapidly after a short time with N = 128, 256, 512
using (4.8) since the numerical solution becomes negative at some places; while the error appears to be under control
for at least up to 7 = 1 with N = 1024. On the other hand, by using (4.4)—(4.6), the errors remain under control
and accurate solutions are obtained for all N. We observe from Fig. 2(c) that, even at N = 1024, the Lagrange
multiplier A; becomes non-zero in order to maintain positivity. Numerical solutions p, at T = 0.05,0.1, 1 are
plotted in Fig. 2(d).

In Fig. 3, we consider a more challenging case with m = 5 using 8t = 1072 and N = 1024, and plot the
numerical solution at 7 = 0.1 using the usual semi-implicit scheme (4.8) and the positivity preserving (4.4)—(4.6)
in Fig. 3(a) and (b). We observe that the scheme (4.8) produces negative values near the interface while the scheme
(4.4)—(4.6) leads to accurate positive solutions. We also plot the Lagrange multiplier A;, in Fig. 3(c) which indicates
that A, becomes larger near the interface to maintain the positivity of p;,. In Fig. 3(d), we plot the L? errors using
(4.4)—(4.6) with Aj, and without Aj.

Next we consider the 2D case with the exact solution in the Barenblatt form

1 m—1x%+y2\ 5t
IO(‘x? y3t)|t=0= _a(C_a 20 ) la (410)
ty 2m 15 +
where C =1, =t+ 1 and o = L We set N = 200, 8 = 2 x 10~* and consider m = 2, 5. We observe

m+1°
from Fig. 4 that correct solutions are obtained by the positivity preserving scheme and that the values of Lagrange

multiplier A, are quite large near the interface in order to maintain the positivity of p.

4.2.2. Effect of mass conservation

The porous media Eq. (4.3) with homogeneous Dirichlet boundary conditions is mass conserving. So we compare
the second-order positivity conserving schemes without mass conservation and with mass conservation for the porous
medium equation. The results with §¢ = 10™* and N = 128 are plotted in Fig. 5. We observe that the scheme with
mass conservation preserves the mass and is slightly more accurate in terms of L? error than the scheme without
mass conservation whose mass is monotonically increasing. Actually, only a few iterations are needed at each time
step to solve & using secant method. We can also observe Lagrange multiplier £ < 0 in time interval [0, 2].

4.3. Poisson-Nernst—Planck Equations

We consider the following Poisson—Nernst—Planck (PNP) system [10,32] which describes the dynamics of ion
transport in ion channels:

—e?Ap=p—n,in 2 = (0,T] x 0. 4.11)
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" *I 4t 14 4t &
I NN
NI IS ] I
1} #11 §% ti i i H
x | #13Y Pi
S ] it
i} 1ii 0.8
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time Time
(a) L? error by (4.8). (b) L? error by (4.4)-(4.6).
0.09 1
~—T=0.05 ~+-T-0.05
0.08 —--T=0.1 09 - T=01
—T=1 +T=1
0.07 0:8
07
0.06
0.6
0.05
=< 0.5
0.04
0.4
0.03
03
0.02 02l
0.01 0.1
0 0
5 0 5 -5 0 5
Time Time
(c) An by (4.4)-(4.6) with N = 1024. (d) pp by (4.4)-(4.6) with N = 1024.

Fig. 2. The L? error of numerical solution by (4.8) and by (4.4)—(4.6) with 8t = 1073 and m = 2.

pr=V-(Vp+pVg), (4.12)

n, =V -(Vn —nVe), (4.13)
with initial conditions

p(0,x) = po(x) = 0, n(0,x) =ne(x) =0, in 2, (4.14)
and homogeneous Neumann boundary conditions

ad 0 0

W _ 0 _0 _ o on 90 = (0.T] x 802, (4.15)

on 0on  0n

In the above, p and n are concentration of positive and negative ions with valence +1 and —1, respectively, ¢ is
the electrical potential, € is a small positive dimensionless number representing the ratio of the Debye length to
the physical characteristic length. The unknown functions p and n have to be positive for the problem to be well
posed. Below we use the general approach presented in the last section to construct a positivity preserving scheme
for the PNP equations. Since we need to keep both p and n positive, two Lagrange multipliers A and 5 are needed
. Lagrange multipliers & and y are used to preserve mass.

We set X = Py X Py, and X, = {(x;,x;), 1 <i,j < N — 1}, where {xk},ivzo are the roots of (1 — xz)L;V(x)
with Ly being the Legendre polynomial of Nth degree. And we use the Legendre—Galerkin method with numerical

14
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~—Without A ~—With A
——Exact p 0.9 ——Exact p
0.8
0.7
0.6
x
10.5
0.4
0.3
0.2
0.1
0.2 0
-5 0 5 5 0
X X
() pn by (4.8). (b) pr by (4.4)-(4.6).
0.18
8 0.16
== p with A
7r —A 1 0.14
——Exact p
6f 1 0.12
5 S o1
]
— —Positivity
X4 L 008 —Without Positivity
37 0.06
2 0.04
4 0.02
U o ' 4
5 0 5 0 0.1 0.2 0.3 0.4 0.5
x Time
(¢) Lagrange multiplier Ap. (d) L? errors.

Fig. 3. (a) and (b) Numerical solutions p; at T = 0.1 with m = 5, 8t = 1073, N = 1024 by (4.8) and by (4.4)—(4.6). (c) Lagrange multiplier

Ap and pp by (4.4)—(4.6). (d) L? error with A, and without Aj.

integration in space [29]. Then a second-order positivity preserving scheme based on the scheme (2.25)—(2.26c)

with k = 2 is as follows: for Vg, m;, € X,

3ppt —apr 4+ pp! . ntLacs cndla n e
[ mh b g = VP + PV Vgl + A+ E anl
3pn+l _ﬁn-&-l ) .
o h = Al +1 )Ln_i_gﬂ_g;;’
ML >0, pitt = At prtt =0, [ppt = [p} 10
3T —4nt 4 pt! p Ay g
[ 28!” b mpl = (Ve — Ve, Vmg ] + )+ v mal,
3nn+l 3~n+l . il
T_thr _nh+y+_ylf7

nZ+1>0 n >0 nn+1 n+1_0 [nn+1 l]=[nz,l],

Ve, Vgl = [pp —nf Tyl Yy € X
15

(4.16)
4.17)
(4.18)
(4.19)

(4.20)

4.21)
4.22)
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pxy)

py)

oo

(¢) m=5 (d) m=5

Fig. 4. Numerical solution of 2D porous medium equation at 7 = 0.2 with 8t =2 x 10~* and N = 200: (a) p;, with m = 2. (b) Lagrange
multiplier A, with m = 2. (¢) p, with m =5. (d) Lagrange multiplier X, with m = 5.

1, - 1. -
where p; " = 2pt — pi=" and n)*"* = 2n! — n}~'. In the above, p;*' and n}*! are decoupled and can be

determined from (4.16)~(4.18) and (4.19)=(4.21) respectively. Once p}™' and ™" are known, ¢! can be obtained
from (4.22). Hence, the scheme is very efficient.
We set 2 = (—1,1)2, € = 0.1, and use 8t = 1073, N = 256 in the above scheme with the initial conditions:

I, x2+4y?<0.25,
p(x,y,0),n(x,y,0) = ,
0, otherwise.

(4.23)
(x —0.52(y — 0.5)%, x>+ y%><0.25,

¢(x,y,0) = '
0, otherwise.
The numerical solution at different times are plotted in Fig. 6. We observe that p and n are always non-negative.
We also plot the Lagrange multipliers A and 7 in Fig. 7 at time t = 3 x 1073, Since the solutions of the PNP system
are smooth, the Lagrange multipliers are zero at most places, and are non-zero only at some localized boundary
with quite small values.
16
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1.2r +~Mass conservation
0.9243 1 + Without mass conservation| |
1
5 o 0-9242
= 7]
© 0.8 ]
o =
- 0.9241
0.6
0.924
0.4
0.2 0.9239
0 0.9238
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time Time
(a) L? error (b) Evolution of mass

C[[irererrrnrr
-0.002

-0.004
-0.006
-0.008

-0.01

-0.012}
{

-0.014}
1

-0.016%

-0.018
0 0.5 1 1.5 2

Time
(c) €

Fig. 5. (a): L? error by second-order positivity schemes with mass conservation and without mass conservation. (b): Evolution of mass with
respective to time. (c): Lagrange multiplier & for mass conservation.

4.4. Lubrication-type equation

As the last example, we consider the following lubrication equation [23]
P+ V- (f(p)VAp) =0, (4.24)

where f(p) &~ p™ as p — 0 with m depending on the boundary condition at the liquid solid interface: m = 3 for
no-slip boundary condition while 0 < m < 3 for various other boundary condition. The above equation has been
used, e.g., in the study of thin liquid films and fluid interfaces by surface tension [33].

Below, we consider (4.24) in £2 = (=1, 1) and 2 = (—m, 7)> with periodic boundary conditions, and use a
Fourier collocation method in space. Since Eq. (4.24) may develop a singularity in finite time, it is a common
practice to regularize it [23,33]. In [33], the equation is regularized by replacing f(p) with f,(p) = % and it
is shown in [33] that the regularized problem is well posed for all time. On the other hand, one can also regularize
the equation by requiring the solution to be bounded away from zero, namely, p(z) > € for a prescribed €.

Hence, a second-order scheme based on (2.25)—(2.26¢) with k = 2 is as follows:

35 (2) — 40 (2) + o} ' (2)
+
268t

Lrorthz) = Mz)+ &, Yze X, (4.25)

17
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(a) pp : t=0.01

alxy)
“hb b o m s o 0]

“os

D) pn:t=1

() ¢n:t:=0.01 (k) ¢p :t=0.1

Fig. 6. The numerical solution of PNP Egs. (4.11)-(4.13) with time step 1 x 1073 and N = 256 in 2D by using scheme (4.16)—(4.22).

Parameter € = 0.1.

and

3pn+1(z) _ 3ﬁn+1(Z) . . )
: ’ =)"2+1(Z)_ h(z)+€h+1 _Sh’ Vz € M,

268t
opt(z) > €, AT (2) = 0, AT (0" (2) — €) = 0,

(4.26)

Vz € X,

Loyt 11 = o}, 11,

where L] is defined as follows depending on the type of regularization:
18
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(a) A (b) 1n

Fig. 7. The Lagrange multipliers of PNP Egs. (4.11)—(4.13) A and 5 at time r = 3 x 10~ for numerical simulations at Fig. 6.

25 1.5
=0
== at t=0.002
1!
~<

05"

- 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X X

Fig. 8. Numerical solutions p and Lagrange multiplier A of positivity preserving scheme computed with n = 107'2, ¢ = 0 and 8¢ = 2x 1078,

ec=0and £} =V - (f,(pp TV VAR with pf1* defined in (4.7).
ec>0and L5 =V - (f(op T )VAFH) with o defined in (4.7).

The second step (4.26) can be implemented as

I B e O e N B e A R A 10 S
Pp shp )= (e, 1) + & — ;*14_2%(6_,52“)) otherwise. ‘

We consider first the one-dimensional case with f(p) = p% in (—1, 1) with periodic boundary conditions and
the initial condition

po(x) = 0.8 — cos(x) + 0.25 cos(2m x). (4.28)

This example has been well studied in [23], and the original equation f(p) = ,0% will develop a singularity at
t ~ 0.00074. However, with a regularization, the solution can be continued beyond the singularity.

In Fig. 8, numerical solutions p and Lagrange multiplier A are shown at different times computed by regularized
positivity preserving scheme with N = 1000, n = 107!, € = 0 and time step 8¢ = 2 x 10~%. Numerical solutions
in Fig. 8 are indistinguishable from results computed with (4.25).

In Fig. 9(a—d), we plot the numerical solutions at different times computed with (4.25) using 1000 Fourier modes
with various € and §t. We observe that the numerical solutions are indistinguishable with € ranging from 1072 to
10~*. However, as we decrease €, smaller time steps has to be used. The Lagrange multiplier A, at time ¢ = 0.001
and ¢+ = 0.0008 are plotted in Fig. 9(e—f). We observe that A; becomes large near the places where the solution
approaches zero.

19
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Fig. 9. (a)—(d): numerical solution p; of positivity preserving scheme (4.25) for lubrication-type Eq. (4.24) in 1D at various time with
different time steps and €. (e)—(f): Lagrange multiplier A at time r = 0.001 and 7 = 0.0008 using different time steps and e.
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Next, we consider a 2D example with the initial condition

(x —0.52(y — 0.5)%, x>+ y?<0.25,
olx,y)= . 4.29)
0, otherwise,
in the domain [—, n)z.
We first take f(p) = p and use the following usual semi-implicit scheme:

n+1
(2) — 4082 + o} '(2) rn
2§t + Lot (z) =0, Vze X, (4.30)

The scheme failed to converge with §t = 107>, However, by using the 2D version of the scheme (4.25) with € = 0
and 128 x 128 Fourier modes, correct results can be obtained with 6z = 1075, In Fig. 10(a—d), we plot the initial
condition and numerical solutions at ¢+ = 0.001, 0.01, 0.1, while we plot in Fig. 10(e—f) the Lagrange multipliers X,
at t = 0.001, 0.1. We observe that the Lagrange multiplier takes nonzero values at a significant part of the domain
which explains why the usual semi-implicit scheme failed to converge.

4.5. Cahn-Hilliard equation in 3D

For three-dimensional case, we consider the Cahn-Hilliard equation [34] with a logarithmic potential in the
domain [0, 1]°:

1
up =V - (M@)V(p — —Au)),
« (4.31)

= log(5 12001 —2u).
— U

where 8 = % is a dimensionless number which represents the ratio between the critical temperature 7, and the
absolute temperature 7. The mobility function is M(u) = au(l — u). With a given initial condition uy > 0, due
to the singular logarithmic potential, the solution of Cahn-Hilliard equation (4.31) is expected to be u(¢) > 0. We
choose initial condition to be

u(t = 0) = 7ip + 0.05rand(x, y), (4.32)

where rand(x, y) represents random values with uniform distribution in [—1, 1].
We develop the following positivity-preserving scheme

3~"Jrl 4ul + uzfl
25t
1
+Vv. (Mn-H *V( n+lx ;AIZZ-H*)) + )“n’

+A2ﬂz+l —AIZZ-H — A2u2+1,*_Auln1+l,*

n+1,%
n Kk M n *
I’Lh+] log(—H“) +26(1 — 2uh+1, ), (4.33)
up
3”Z+1(Z) _ 3un+1(z)
— )Ln-ﬁ-l _ )\‘n ,
o1 n o (2) (2)

)‘Z+1(Z) > 0’ I/l”+l(z) > ¢, )\'Z+1(Z)(un+l(Z) _ 6) — 0

where u"t'* = 24" — u"! and MZ+1’* = "+1 1 - ”H ™). We develop the linear no-iteration scheme (4.33)
by adding two stabilized terms [21]. For computatlons we 1mplement Fourler spectral method in space [0, 1] with
resolution 1283. We set parameters to be uy = 0.63, 0 = 2, € = 107° and @ = 200 which are same with [34].
InFig. 11, we depict iso-surface of u;, = 0.635 and u;, = 0.63 at time t = 2.5 x 1074, 1.183 x 1073, 1.1514 x 1073,
2.368 x 1073, 5.240 x 1073, 4 x 1072 using positive-preserving scheme (4.33). We obtain similar results with Fig.
27 in [34]. We also show the evolution of minimum value of u;, in Fig. 12 which indicates that u; will be positive
from initial to steady state. Computations are implemented from initial time ¢ = O to steady state t = 0.04 using
time step 8¢ = 107°. CPU time is 16.774 h for 40 000 time steps on the Mac: Intel(R) Core(TM) i5-8279U CPU
@ 2.40 GHz.
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POy)

(b) pp : t:=0.001

0.15

0.1 -

0.08 -

px.y)

0.06 -

P(xy)

]

:.mwm I “““l““l I

A 003
I J'M Ul ! ‘ (( I
i 11 i "'hmml
t i J h J ; &
R )3 il W
g ”,,h'b Jis A A |

(e) Ap :t:=0.01 (f) Ap :t:=0.1
Fig. 10. Numerical solutions p, with positivity preserving scheme at t = 0,0.001,0.01, 0.1, and Lagrange multiplier A5 at + = 0.01, 0.1

5. Concluding remarks

If a PDE requires its solution to be positive, a generic numerical scheme for the PDE usually cannot preserve
the positivity. We presented in this paper a new approach to construct positivity preserving schemes for parabolic
type equations by a simple modification to generic numerical schemes. More precisely, we introduce a space—time
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(€) up : t:=5.240 x 1073 (f) up 1t :=4x 1072

Fig. 11. The iso-surfaces of numerical solutions u, = 0.63 in blue and u, = 0.635 in red for Cahn-Hilliard equation with logarithmic
potential computed by positivity preserving scheme with time step 8¢ = 1070 at 1 = 2.5 x 107%, 1.183 x 1073, 1.1514 x 1073, 2.368 x 1073,
5.240 x 1073, 4 x 102, (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Lagrange multiplier function to enforce the positivity, and expand the underlying PDE using the KKT conditions.
The key question is how to solve the expanded system efficiently with essentially the same cost as the generic
numerical scheme.

We constructed a new class of positivity preserving schemes by using the predictor—corrector approach to the
expanded system: the prediction step can be a generic semi-implicit or implicit scheme, while the correction step is
used to enforce the positivity and can be implemented as a simple pointwise update with negligible cost. This new
approach is not restricted to any particular spatial discretization and can be combined with various time discretization
schemes. It can be applied to a large class of parabolic PDEs which require solutions to be positive. It is also non
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Min(u,)

10" 1

W

0 0.005 001 0.015 0.02 0.025 0.03
Time

Fig. 12. The minimum value of u; for Cahn-Hilliard equation in 3D using positive-preserving scheme (4.33).

intrusive as you can easily modify your non-positivity preserving schemes for them to become positivity preserving.
In addition, we also presented a modification to the above approach so that the schemes can also preserve mass if
the underlying PDE is mass conserving.

An interesting and useful observation is that the ad-hoc cut-off approach can be interpreted as a special case
of our predictor—corrector approach. Hence, it provides a different justification for the cut-off approach, moreover
allows us to modify the cut-off approach so that it becomes mass conserving, and opens new avenue for further
exploration.

We established stability results for the first- and second-order schemes based on the new approach under a general
setting, and presented ample numerical experiments to validate the new approach. Our numerical results indicate
that the new approach is very effective for the variety of problems that we tested.
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