

Optical conductivity of a Dirac-Fermi liquid

Prachi Sharma and Dmitrii L. Maslov

Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA

Alessandro Principi

*Department of Physics and Astronomy, University of Manchester,
Oxford Road, M13 9PL Manchester, United Kingdom*

(Dated: June 1, 2022)

A Dirac-Fermi liquid (DFL) —a doped system with Dirac spectrum—is an important example of a non-Galilean-invariant Fermi liquid (FL). Real-life realizations of a DFL are found, e.g., in doped graphene and the surface state of a three-dimensional topological insulator. We study the optical conductivity of a DFL arising from intraband electron-electron (*ee*) scattering. It is shown that the effective current relaxation rate behaves as $1/\tau_J \propto (\omega^2 + 4\pi^2 T^2) (3\omega^2 + 8\pi^2 T^2)$ for $\max\{\omega, T\} \ll \mu$, where μ is the chemical potential, with an additional logarithmic factor in two dimensions. In graphene, the quartic form of $1/\tau_J$ competes with a small FL-like term, $\propto \omega^2 + 4\pi^2 T^2$, due to trigonal warping of the Fermi surface. In the presence of weak disorder, the optical conductivity is the sum of two Drude-like terms, with widths given by the electron-electron and electron-impurity scattering rates, respectively. In the presence of *ee* and electron-impurity scattering only, the *dc* resistivity varies non-monotonically with temperature, approaching the residual value both at low and high T , with a maximum in between. We also calculated the dynamic charge susceptibility, $\chi_c(\mathbf{q}, \omega)$, outside the particle-hole continua and to one-loop order in the dynamically screened Coulomb interaction. For a DFL, the dissipative part of $\chi_c(\mathbf{q}, \omega)$ scales as $q^2 \omega \ln |\omega|$ and q^4/ω^3 for frequencies larger and smaller than the plasmon frequency at given q , respectively.

I. INTRODUCTION

The optical conductivity of a Fermi liquid (FL) is described by the Gurzhi universal form¹

$$\text{Re}\sigma(\omega, T) = \sigma_D \left(1 + \frac{4\pi^2 T^2}{\omega^2} \right). \quad (1.1)$$

In what follows, we set $k_B = 1$ and $\hbar = 1$. Despite its generality, Eq. (1.1) does not apply to all types of FLs. For example, it obviously does not apply to a Galilean-invariant FL, i.e., a single-band system with a parabolic dispersion. In the latter case, momentum conservation automatically implies current conservation, and thus $\text{Re}\sigma(\omega, T) = 0$. The minimal condition for Eq. (1.1) to apply is a sufficiently strong violation of Galilean invariance. If umklapp scattering is allowed, Eq. (1.1) applies automatically. However, it can also apply even if umklapp scattering is forbidden. Namely, it applies to a three-dimensional (3D) FL with a Fermi surface (FS) that deviates from an ellipsoidal shape^{2,3} and to a two-dimensional (2D) FL with a concave FS.^{2,4-11} Universality of Eq. (1.1) is protected by the first-Matsubara-frequency rule,¹² which stipulates that $\text{Re}\sigma(\pm 2i\pi T, T) = 0$. We will refer to a FL with optical conductivity described by Eq. (1.1) as to a “conventional” one.

If the conditions specified above are not satisfied, a FL belongs to an intermediate class, which we will dub as a “partially Galilean-invariant FL”. Examples include a FL with isotropic but non-parabolic dispersion (both in 2D and 3D), and a 2D FL with a convex FS. A prominent member of this class is a Dirac-Fermi liquid (DFL), i.e., a system with isotropic and linear dispersion doped away from the Dirac point, which is the focus of this paper.

Examples of a DFL are provided by gated monolayer graphene in 2D and doped Dirac and Weyl semi metals in 3D. The single-particle and thermodynamic properties of conventional and partially Galilean-invariant FLs are very much alike. However, their transport properties are very much different. A linear dispersion in a DFL implies that Galilean invariance is broken and thus dissipation at finite frequency is possible. However, dissipation in a DFL is weaker than in a conventional FL, because the interaction between electrons right on the FS does not relax the current.

In this paper, we show that the dissipative part of the optical conductivity of a DFL due from intraband excitations is described by the following scaling form

$$\text{Re}\sigma(\omega, T) = \sigma_D \frac{\omega^2}{\mu^2} \left(1 + \frac{4\pi^2 T^2}{\omega^2} \right) \left(3 + \frac{8\pi^2 T^2}{\omega^2} \right) S(\omega, T), \quad (1.2)$$

where μ is the chemical potential (assumed to be the largest energy scale in the problem), and $S(\omega, T)$ varies with ω and T logarithmically in 2D and is constant in 3D. Note that $\text{Re}\sigma(\pm 2\pi iT, T) = 0$, in agreement with the first-Matsubara-frequency rule.¹² The difference between the Gurzhi form in Eq. (1.1) and the DFL form in Eq. (1.2) is especially prominent at $T = 0$. In this case, the conductivity of a conventional FL does not depend on ω , while the conductivity of a DFL is small in proportion to $(\omega/\mu)^2 \ll 1$. In fact, Eq. (1.2) is valid for any partially Galilean-invariant FL; particular details affect only coefficient σ_D . For an isotropic FL, σ_D is proportional to (the square of) the “non-parabolicity coefficient”, defined as

$$w = 1 - \frac{k_F \epsilon''(k_F)}{\epsilon'(k_F)}, \quad (1.3)$$

where $\epsilon(k)$ is the electron dispersion and k_F is the Fermi momentum. For a Galilean-invariant system, the dispersion is quadratic, hence $w = 0$ and there is no dissipation. For any other dispersion, $w \neq 0$; in particular, $w = 1$ for the Dirac dispersion.

Phenomenologically, the optical conductivity can be described by the current relaxation time, $\tau_J(\omega, T)$, defined by

$$\text{Re}\sigma(\omega, T) \propto \frac{1}{\omega^2 \tau_J(\omega, T)}. \quad (1.4)$$

With this definition

$$\frac{1}{\tau_J(\omega, T)} \propto \omega^2 + 4\pi^2 T^2, \quad (1.5)$$

for a conventional FL, while

$$\frac{1}{\tau_J(\omega, T)} \propto (\omega^2 + 4\pi^2 T^2) (3\omega^2 + 8\pi^2 T^2) S(\omega, T) \quad (1.6)$$

for a DFL. The quartic (as opposed to quadratic) scaling of $1/\tau_J$ for a DFL was noted in a number of studies, mostly of 2D systems.^{2–8,11} It arises because the quadratic term in $1/\tau_J$ vanishes once electrons are projected onto the FS, and one has to go further away from the FS to obtain a finite result.

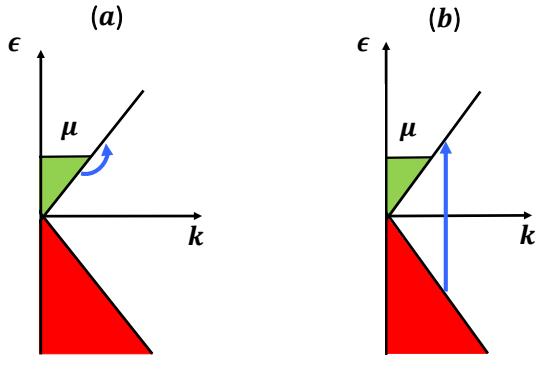


Figure 1. Intra-band (a) and inter-band (b) optical transitions in a Dirac metal.

To be specific, in this paper we focus on doped monolayer graphene which can behave either as a Dirac or conventional FL, depending on doping. Optical response of graphene has been a subject of extensive research; see, e.g., reviews in Refs. 13–16. At the level of non-interacting electrons, the optical conductivity of graphene is given by a universal form^{17–20}

$$\text{Re}\sigma(\omega) = \frac{e^2}{4} \theta(\omega - 2\mu), \quad (1.7)$$

where we assume that $\mu \geq 0$ without the loss of generality. The absorption threshold at $\omega = 2\mu$ is due to Pauli

blocking of states available for transitions between the lower and upper Dirac cones (cf. Fig. 1). The optical conductivity of graphene in the near infrared and optical ranges, i.e., far above the Pauli threshold of 2μ , is indeed observed to be close to the universal value of $e^2/4$.^{21–24} However, experimentally one also observes significant absorption at $\omega \lesssim 2\mu$,^{16,22,23,25} which would be absent in ideal graphene. Certainly, some of this absorption is due to extrinsic scattering mechanisms, e.g., impurity scattering. However, there is still significant absorption even at frequencies exceeding the width of the Drude peak. That, and also the fact that at higher frequencies the conductivity scales with ω/μ ,¹³ prompts one to think about intrinsic mechanisms as well.

On the theoretical side, a large number of authors studied the deviation of the conductivity of graphene at CNP from the universal value due to ee interaction.^{13,15,26–33} Absorption below the Pauli threshold in doped systems has also been addressed theoretically, but in fewer studies. In Refs. 34–37, it was shown that about 50% of absorption can be explained by scattering of electrons (or holes) by disorder, with an additional contribution of excitonic effects.³⁷ Many-body effects in intraband absorption were considered in Refs. 32, 38, and 39. The most relevant to our study is the one by Principi et al.,³⁹ whose result for the $T = 0$ optical conductivity of graphene agrees with ours, up to a factor of $\ln \omega$ and the dependence on the coupling constant.

The rest of our paper is organized as follows. Our model is outlined in Sec. II. In lieu of calculating the diagrams generated by the Kubo formula, we adopt a method that allows one to calculate the dissipative part of the conductivity by using the exact Heisenberg equations of motion.^{7,8,40} This method is described in Sec. III A. In Sec. III B, we show that if the 2D Fermi surfaces around each of the Dirac points are approximated by circles, the optical conductivity is of the form given in Eq. (1.2) with

$$\sigma_D = \frac{e^2}{240\pi^2} \text{ and } S(\omega, T) = \ln \frac{v_D \kappa}{\max\{\omega, T\}} \quad (1.8)$$

where v_D is the group velocity of Dirac fermions and κ is the (inverse) screening radius. To re-iterate, Eqs. (1.2) and (1.8) are valid only in the FL regime, i.e., for $\max\{\omega, T\} \ll \mu$. However, they allow one to obtain an order-of-magnitude estimate for the conductivity at the charge-neutrality point (CNP) by putting $\omega \sim T \sim \mu$. This yields $\sigma \sim e^2$, consistent with prior results for the conductivity of an interacting system of Dirac fermions at CNP.^{29,30,41}

We also considered the effect of trigonal warping (Sec. III C), which restores the conventional FL behavior. A trigonally warped FS is still convex (cf. Fig. 2), and thus intra-valley scattering contributes only the $\max\{\omega^4, T^4\}$ term to $1/\tau_J$.² However, the valleys are not equivalent, and inter-valley scattering does give rise to a conventional FL term, $1/\tau_J \propto \max\{\omega^2, T^2\}$. The corresponding contribution to the optical conductivity is of

the Gurzhi form [Eq. (1.1)] but with a small prefactor, proportional to the product of $k_{\text{F}}a$, where a is the lattice spacing.

In Sec. IV, we analyze an interplay between ee and electron-impurity (ei) scattering channels at the level of the Boltzmann equation. We show that if ee scattering is the dominant mechanism, the optical conductivity is described by the sum of two Drude peaks, with widths given by the ee and ei scattering rates, i.e., the ee and ei channels act as two resistors connected in parallel. If ei scattering dominates, the optical conductivity is described by a single Drude peak with a width given by the sum of the ee and ei scattering rates, i.e., the ee and ei channels act as two resistors connected in series. As a limiting case, we also derive the T dependence of the dc resistivity. The resistivity increases as $T^4 \ln T$ above the residual value at the lowest T , reaches a maximum at some T that corresponds to comparable ee and ei scattering rates, and finally goes down back exactly to the residual value at higher T ; cf. Fig. 4. In Sec. V, we calculate the dynamical charge susceptibility of a DFL, $\chi_c(\mathbf{q}, \omega)$, using the Kubo formula. In a Galilean-invariant FL, $\text{Im}\chi_c(\mathbf{q}, \omega)$ scales as q^4/ω^3 for $q v_F \ll \omega \ll v_F \kappa$,³⁹ one factor of q^2 is due to charge conservation and another one is due to current conservation. On a technical level, the second factor of q^2 comes about because of a cancelation between the self-energy, exchange, and Aslamazov-Larkin diagrams. In a DFL, $\text{Im}\chi_c(\mathbf{q}, \omega)$ scales as $q^2 \omega \ln |\omega|$ for $\omega \gg \omega_p(q)$, where $\omega_p(q)$ is the plasmon frequency at given q , and as q^4/ω^3 for $\omega \ll \omega_p(q)$. Via the Einstein relation, the $q^2 \omega \ln |\omega|$ scaling of the charge susceptibility implies that at $q = 0$ the conductivity of a DFL scales as $\omega^2 \ln |\omega|$, in agreement with the result of a direct calculation. Other Dirac systems—bilayer graphene, the surface state of a 3D topological insulator, and 3D Weyl/Dirac semimetals—as well as a relation of our results to the experiment are discussed in Sec. VI. Our conclusions are presented in Sec. VII.

II. DOPED MONOLAYER GRAPHENE

One of the most popular examples of DFL is a doped monolayer graphene (MLG). We begin with the non-

interacting tight-binding Hamiltonian⁴²

$$H_0 = -\gamma_0 \sum_{s, \langle i, j \rangle} [a_s^\dagger(\mathbf{R}_i) b_s(\mathbf{R}_j) + h.c.] - \mu \sum_{s, i} \hat{n}_s(\mathbf{R}_i), \quad (2.1)$$

where $a_s(\mathbf{R}_i)$ and $b_s(\mathbf{R}_i)$ are the fermionic operators corresponding to A and B sublattices, $\langle i, j \rangle$ imply summation over the nearest neighbors, s labels spin, μ is the chemical potential, and $\hat{n}_s(\mathbf{R}_i) = a_s^\dagger(\mathbf{R}_i) a_s(\mathbf{R}_i) + b_s^\dagger(\mathbf{R}_i) b_s(\mathbf{R}_i)$ is the number density operator. In the momentum space, the Hamiltonian is given by

$$H_0 = -\gamma_0 \sum_{s, \mathbf{k}} \Phi_{\mathbf{k}} a_{\mathbf{k}, s}^\dagger b_{\mathbf{k}, s} + \text{H.c.} - \mu (a_{\mathbf{k}, s}^\dagger a_{\mathbf{k}, s} + b_{\mathbf{k}, s}^\dagger b_{\mathbf{k}, s}), \quad (2.2)$$

where

$$\Phi_{\mathbf{k}} = \sum_i e^{i\mathbf{k} \cdot \delta_i} = e^{ik_y a} + 2e^{-i\frac{k_y a}{2}} \cos\left(\frac{\sqrt{3}}{2}k_x a\right), \quad (2.3)$$

is a form factor obtained by summation over the nearest neighbors connected by vectors $\delta_1 = (0, a)$, $\delta_2 = (-\sqrt{3}a/2, -a/2)$, and $\delta_3 = (\sqrt{3}a/2, -a/2)$, and a is the carbon-carbon distance. The Hamiltonian is diagonalized by introducing a new basis⁴³

$$\begin{aligned} a_{\mathbf{k}, s} &= \frac{e^{i\phi_{\mathbf{k}}}}{\sqrt{2}} (\alpha_{\mathbf{k}, s} + \beta_{\mathbf{k}, s}) \\ b_{\mathbf{k}, s} &= \frac{1}{\sqrt{2}} (\beta_{\mathbf{k}, s} - \alpha_{\mathbf{k}, s}), \end{aligned} \quad (2.4)$$

where $\alpha_{\mathbf{k}, s}$ ($\beta_{\mathbf{k}, s}$) denotes the annihilation operator of electron (hole) in the conduction (valence) band, and $\phi_{\mathbf{k}}$ is defined by $\Phi_{\mathbf{k}} = |\Phi_{\mathbf{k}}| e^{i\phi_{\mathbf{k}}}$. In the new basis, the Hamiltonian is just the sum of the conduction and valence band parts:

$$H_0 = \sum_{\mathbf{k} s} (\epsilon_{\mathbf{k}} - \mu) \alpha_{\mathbf{k}, s}^\dagger \alpha_{\mathbf{k}, s} + (-\epsilon_{\mathbf{k}} - \mu) \beta_{\mathbf{k}, s}^\dagger \beta_{\mathbf{k}, s} \quad (2.5)$$

where $\epsilon_{\mathbf{k}} = \gamma_0 |\Phi_{\mathbf{k}}|$.

We will be interested in low-energy Dirac fermions with momenta near two inequivalent Dirac points $\mathbf{K}_{\zeta=\pm} = (\zeta 4\pi/(3\sqrt{3}a), 0)$. Near these points, $\Phi_{\mathbf{k}}$ can be expanded as

$$\Phi_{\mathbf{K}_{\zeta} + \mathbf{p}} \equiv \Phi_{\zeta, \mathbf{p}} = -\frac{3a}{2}(\zeta p_x - ip_y) + \frac{3a^2}{8}(\zeta p_x + ip_y)^2. \quad (2.6)$$

The last, $\mathcal{O}(a^2)$ term describes trigonal warping. The low-energy 4×4 Hamiltonian can be written as the sum of the Dirac and trigonal-warping parts

$$H_0 = H_D + H_{TW} \quad (2.7a)$$

$$H_D = \sum_{\mathbf{p},s} \Psi_{\mathbf{p},s}^\dagger [v_D \mathbf{p} \cdot (\tau_z \otimes \boldsymbol{\sigma}) - \mu(\tau_0 \otimes \sigma_0)] \Psi_{\mathbf{p},s} \quad (2.7b)$$

$$H_{TW} = -\frac{v_D a}{4} \sum_{\mathbf{p},s} \Psi_{\mathbf{p},s}^\dagger [(p_x^2 - p_y^2)(\tau_0 \otimes \sigma_x) - 2p_x p_y (\tau_0 \otimes \sigma_y)] \Psi_{\mathbf{p},s}, \quad (2.7c)$$

where $v_D = 3\gamma_0 a/2$ is the Dirac velocity, τ and $\boldsymbol{\sigma}$ are the Pauli matrices which operate in the valley and sublattice spaces, respectively, τ_0 and σ_0 are the identity matrices, and

$$\Psi_{\mathbf{p},s}^\dagger = (\psi_{\mathbf{K}_+ + \mathbf{p},s}^\dagger, \psi_{\mathbf{K}_- + \mathbf{p},s}^\dagger) = (a_{+, \mathbf{p},s}^\dagger, b_{+, \mathbf{p},s}^\dagger, b_{-, \mathbf{p},s}^\dagger, a_{-, \mathbf{p},s}^\dagger) \quad (2.8)$$

is a 4-spinor describing the states near the K_\pm point. With trigonal warping taken into account, the energy spectrum is given by

$$\epsilon_{\varsigma, \mathbf{p}, \lambda} = \epsilon_{\varsigma, \mathbf{p}, \lambda}^D + \epsilon_{\varsigma, \mathbf{p}, \lambda}^{TW} \quad (2.9a)$$

$$\epsilon_{\varsigma, \mathbf{p}, \lambda}^D = \lambda v_D p, \quad (2.9b)$$

$$\epsilon_{\varsigma, \mathbf{p}, \lambda}^{TW} = -\lambda \varsigma \frac{v_D a p^2}{4} \cos 3\theta_{\mathbf{p}} \quad (2.9c)$$

with $\lambda, \varsigma = \pm 1$. The corresponding isoenergetic contours are shown in Fig. 2.

where $g_+(\mathbf{k}) = \Phi_{+, \mathbf{k}} / |\Phi_{+, \mathbf{k}}|$, $g_-(\mathbf{k}) = |\Phi_{-, \mathbf{k}}| / \Phi_{-, \mathbf{k}}$, and $\alpha_{\varsigma, \mathbf{p}, s}(\beta_{\varsigma, \mathbf{p}, s})$ denotes the annihilation operator for an electron (hole) in the conduction (valence) band located near the K_ς point. To linear order in pa , $g_\varsigma(\mathbf{p})$ is given by

$$g_\varsigma(\mathbf{p}) = e^{-i\theta_{\mathbf{p}}} \left(1 - \frac{i}{4} \varsigma p a \sin 3\theta_{\mathbf{p}} \right), \quad (2.11)$$

where $\theta_{\mathbf{p}}$ is the azimuthal angle of \mathbf{p} . The Hamiltonian in the electron-hole basis is the same as in Eq. (2.7a), except for now the electron and hole operators carry the

For low-energy fermions, the unitary transformation from the four-component spinor $\Psi_{\mathbf{p},s}$ to a diagonal electron-hole basis reads

$$\begin{pmatrix} a_{+, \mathbf{p}, s} \\ b_{+, \mathbf{p}, s} \\ b_{-, \mathbf{p}, s} \\ a_{-, \mathbf{p}, s} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -g_+(\mathbf{p}) & g_+(\mathbf{p}) & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & g_-(\mathbf{p}) & -g_-(\mathbf{p}) \\ 0 & 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \beta_{+, \mathbf{p}, s} \\ \alpha_{+, \mathbf{p}, s} \\ \beta_{-, \mathbf{p}, s} \\ \alpha_{-, \mathbf{p}, s} \end{pmatrix}, \quad (2.10)$$

valley index:

$$H_0 = \sum_{\varsigma, \mathbf{k}, s} (\epsilon_{\varsigma, \mathbf{k}, +} - \mu) \alpha_{\varsigma, \mathbf{k}, s}^\dagger \alpha_{\varsigma, \mathbf{k}, s} + (\epsilon_{\varsigma, \mathbf{k}, -} - \mu) \beta_{\varsigma, \mathbf{k}, s}^\dagger \beta_{\varsigma, \mathbf{k}, s}, \quad (2.12)$$

with $\epsilon_{\varsigma, \mathbf{k}, s}$ given by Eq. (2.9a).

The gradient part of the current operator corresponding to the Hamiltonian in Eqs. (2.7a-2.7c) is readily found from $\mathbf{J} = -\partial H_0 / \partial \mathbf{A}$. The x and y components of \mathbf{J} at $q = 0$ are given by

$$\begin{aligned} J_x &= e \sum_{\mathbf{p}, s} \Psi_{\mathbf{p}, s}^\dagger \left(v_D (\tau_z \otimes \sigma_x) - \frac{v_D a}{2} [p_x (\tau_0 \otimes \sigma_x) - p_y (\tau_0 \otimes \sigma_y)] \right) \Psi_{\mathbf{p}, s}, \\ J_y &= e \sum_{\mathbf{p}, s} \Psi_{\mathbf{p}, s}^\dagger \left(v_D (\tau_z \otimes \sigma_y) + \frac{v_D a}{2} [p_y (\tau_0 \otimes \sigma_x) + p_x (\tau_0 \otimes \sigma_y)] \right) \Psi_{\mathbf{p}, s}, \end{aligned} \quad (2.13)$$

where e is the elementary charge. When expressed in

the electron-hole basis, the current operator in Eq. (2.13)

contains both the intra- and inter-band contributions. In a doped system, the inter-band contributions arise only for $\omega \geq 2\mu$. As we focus on the range of $\omega \ll \mu$, the inter-band contributions can be neglected. Also, the occupied states in the valence band do not contribute to the current. The remaining intra-conduction-band part of the current is

$$\mathbf{J} = \sum_{\varsigma, \mathbf{p}, s} \mathbf{v}_{\varsigma, \mathbf{p}} \alpha_{\varsigma, \mathbf{p}, s}^\dagger \alpha_{\varsigma, \mathbf{p}, s}, \quad (2.14)$$

where $\mathbf{v}_{\varsigma, \mathbf{p}} = \nabla \epsilon_{\varsigma, \mathbf{p}}$ is the group velocity at the \mathbf{K}_ς point.

The density-density interaction between fermions is described by

$$H_{\text{int}} = 1/2 \sum_{\mathbf{Q}} U_0(\mathbf{Q}) \rho_{\mathbf{Q}} \rho_{-\mathbf{Q}}, \quad (2.15)$$

$$\begin{aligned} H_{\text{int}} = & \frac{1}{2} \sum_{\mathbf{k}', \mathbf{p}', \mathbf{k}, \mathbf{p}} \sum_{s, s'} U_0(\mathbf{k} - \mathbf{k}') \delta(\mathbf{k}' + \mathbf{p}' - \mathbf{k} - \mathbf{p}) \\ & \times \left[\Delta\varphi_{++}(\mathbf{k}', \mathbf{k}) \Delta\varphi_{++}(\mathbf{p}', \mathbf{p}) \alpha_{+, \mathbf{k}', s}^\dagger \alpha_{+, \mathbf{p}', s'}^\dagger \alpha_{+, \mathbf{p}, s} \alpha_{+, \mathbf{k}, s} + \Delta\varphi_{--}(\mathbf{k}', \mathbf{k}) \Delta\varphi_{--}(\mathbf{p}', \mathbf{p}) \alpha_{-, \mathbf{k}', s}^\dagger \alpha_{-, \mathbf{p}', s'}^\dagger \alpha_{-, \mathbf{p}, s} \alpha_{-, \mathbf{k}, s} \right. \\ & + \Delta\varphi_{++}(\mathbf{k}', \mathbf{k}) \Delta\varphi_{--}(\mathbf{p}', \mathbf{p}) \alpha_{+, \mathbf{k}', s}^\dagger \alpha_{-, \mathbf{p}', s'}^\dagger \alpha_{-, \mathbf{p}, s} \alpha_{+, \mathbf{k}, s} + \Delta\varphi_{--}(\mathbf{k}', \mathbf{k}) \Delta\varphi_{++}(\mathbf{p}', \mathbf{p}) \alpha_{-, \mathbf{k}', s}^\dagger \alpha_{+, \mathbf{p}', s'}^\dagger \alpha_{+, \mathbf{p}, s} \alpha_{-, \mathbf{k}, s} \\ & + U_0(\mathbf{K}_0 + \mathbf{k} - \mathbf{k}') \left[\Delta\varphi_{-+}(\mathbf{k}', \mathbf{k}) \Delta\varphi_{+-}(\mathbf{p}', \mathbf{p}) \alpha_{-, \mathbf{k}', s}^\dagger \alpha_{+, \mathbf{p}', s'}^\dagger \alpha_{-, \mathbf{p}, s} \alpha_{+, \mathbf{k}, s} \right. \\ & \left. + \Delta\varphi_{+-}(\mathbf{k}', \mathbf{k}) \Delta\varphi_{-+}(\mathbf{p}', \mathbf{p}) \alpha_{+, \mathbf{k}', s}^\dagger \alpha_{-, \mathbf{p}', s'}^\dagger \alpha_{+, \mathbf{p}, s} \alpha_{-, \mathbf{k}, s} \right], \end{aligned} \quad (2.16)$$

where $\Delta\varphi_{\varsigma\varsigma'}(\mathbf{k}', \mathbf{k}) = (1 + e^{-i(\phi_{\varsigma, \mathbf{k}'} - \phi_{\varsigma', \mathbf{k}})})/2$ and $\mathbf{K}_0 = \mathbf{K}_+ - \mathbf{K}_-$ is the vector connecting the valleys. The first two (last four) terms in H_{int} describe the intra-valley (inter-valley) interaction. The last two inter-valley terms corresponds to exchange processes, in which an electron lands onto another valley after scattering, therefore such processes require large momentum transfers, on the order of $K_0 \sim 1/a \gg k_F$, which correspond to small Coulomb matrix elements. Such processes will be neglected. In Sec. IIIB, it will be shown that the intra-band part of the optical conductivity is controlled by processes with small momentum transfers, i.e., $Q \ll k_F$. Therefore, one can also neglect the Q dependence of the phase factors $\Delta\varphi_{\varsigma\varsigma}(\mathbf{k}, \mathbf{Q})$, which are then reduced to $\Delta\varphi_{\varsigma\varsigma}(\mathbf{k}, \mathbf{0}) = 1$. Now $\Delta\varphi_{\varsigma\varsigma}(\mathbf{k}, \mathbf{0})$ does not depend on the valley index, and thus the matrix elements of the intra- and inter-valley interactions are the same. Therefore, we arrive at the final form of the interaction Hamiltonian

$$H_{\text{int}} = \frac{1}{2} \sum_{\mathbf{k}, \mathbf{p}, \mathbf{Q}, s, s', \varsigma, \varsigma'} U_0(\mathbf{Q}) \alpha_{\varsigma, \mathbf{k} + \mathbf{Q}, s}^\dagger \alpha_{\varsigma', \mathbf{p} - \mathbf{Q}, s'}^\dagger \alpha_{\varsigma', \mathbf{p}, s'} \alpha_{\varsigma, \mathbf{k}, s}, \quad (2.17)$$

in which the valley index plays the role of a (conserved) isospin.

where $\rho_{\mathbf{Q}} = \sum_{\mathbf{p}, s} \Psi_{\mathbf{p}, s}^\dagger \Psi_{\mathbf{p} + \mathbf{Q}, s}$ and $U_0(\mathbf{Q}) = 2\pi e^2/Q$ is the bare Coulomb potential. When expressed in the electron-hole basis, H_{int} contains a large number of terms, corresponding to inter- and intra-band, as well as to inter- and intra-valley interactions. Out of those, we will keep only the intra-conduction-band terms, which give the leading contribution to the optical conductivity for $\omega \ll \mu$. Also, we assume that doping is sufficiently low, such that umklapp processes can be neglected. Then H_{int} is reduced to

III. OPTICAL CONDUCTIVITY OF A NON-GALILEAN-INVARIANT SYSTEM

A. Formalism

We are interested in the optical conductivity measured in a response to a uniform electric field, which oscillates with frequency ω . In lieu of using the diagrammatic technique for the Kubo formula, we adopt the formalism used in the memory matrix theory.⁴⁰ This formalism allows one to obtain directly the optical conductivity in the ballistic regime, defined by $\omega \gg 1/\tau_J(\omega, T)$.

The optical conductivity tensor is given by

$$\Pi_{\ell m}(\omega, T) = \frac{i}{\omega} [\Pi_{\ell m}(\omega, T) - \Pi_{\ell m}(0, T)], \quad (3.1)$$

where $\Pi_{\ell m}(\omega, T)$ is the current-current correlation function

$$\begin{aligned} \Pi_{\ell m}(\omega, T) &= -i \int_0^\infty dt e^{i\omega t} \langle [J_\ell(t), J_m(0)] \rangle, \\ &\equiv -i \langle [J_\ell, J_m] \rangle_\omega. \end{aligned} \quad (3.2)$$

The $\Pi_{\ell m}(0, T)$ term in Eq. (3.1) accounts for the diamagnetic part of the current, which must cancel the gradient part at $\omega = 0$ to maintain gauge invariance.^{44,45} Since

$\Pi_{\ell m}(0, T)$ is purely real, it contributes only to the imaginary part of the conductivity, whereas its real part is given by

$$\text{Re}\sigma_{\ell m}(\omega, T) = -\frac{1}{\omega} \text{Im}\Pi_{\ell m}(\omega, T). \quad (3.3)$$

To obtain $\text{Re}\sigma_{\ell m}(\omega, T)$ to lowest order in the interaction, we integrate by parts in Eq. (3.2) to find

$$\text{Re}\sigma_{\ell m}(\omega, T) = \frac{1}{\omega^3} \langle [\partial_t J_\ell, \partial_t J_m] \rangle_\omega, \quad (3.4)$$

where $\partial_t \mathbf{J} = i[H, \mathbf{J}(t)]$. If the Hamiltonian is projected onto the upper Dirac cone, its free part commutes with the current, therefore $\partial_t \mathbf{J}$ is linear in the interaction [see Eq.(3.5) below]. If we then take an average in $\langle [\partial_t J_\ell, \partial_t J_m] \rangle$ over the non-interacting ground state, the resulting conductivity will be at two-loop order in the interaction. The result obtained in this way is equivalent to evaluating the two-loop diagrams for the Kubo formula, but it eliminates the need for collecting contributions from different diagrams, which partially cancel each other. A similar method was used in Ref. 46 to

calculate the conductivity of a Galilean-invariant FL at finite q .

Calculating the commutator of H_{int} and \mathbf{J} , we find the time derivative of \mathbf{J} as

$$\begin{aligned} \partial_t \mathbf{J} = & e \frac{i}{2} \sum_{\varsigma\varsigma'} \sum_{\mathbf{k}\mathbf{k}'\mathbf{p}'} \sum_{ss'} U(\mathbf{k} - \mathbf{k}') \Delta \mathbf{v}_{\varsigma,\varsigma'} \\ & \times \alpha_{\varsigma,\mathbf{k}',s}^\dagger \alpha_{\varsigma',\mathbf{p}',s'}^\dagger \alpha_{\varsigma',\mathbf{p},s'} \alpha_{\varsigma,\mathbf{k},s} \delta(\mathbf{k} + \mathbf{p}' - \mathbf{k} - \mathbf{p}), \end{aligned} \quad (3.5)$$

where

$$\Delta \mathbf{v}_{\varsigma,\varsigma'} = \mathbf{v}_{\varsigma,\mathbf{k}} + \mathbf{v}_{\varsigma',\mathbf{p}} - \mathbf{v}_{\varsigma,\mathbf{k}'} - \mathbf{v}_{\varsigma',\mathbf{p}'} \quad (3.6)$$

is a change in the velocity due to an ee collision. Note that due to a trigonal warping term in the electron dispersion [Eq. (2.9c)], the group velocities in different valleys are different. To be specific, we take the interaction to be a screened Coulomb potential, $U(\mathbf{Q}) = 2\pi e^2/(Q + \kappa)$ with $\kappa = 4e^2\mu/v_D^2$. It will be shown in Sec. III B, however, the scaling form of the conductivity is valid for any form of the interaction, as long $U(\mathbf{Q} \rightarrow 0) = \text{const}$ and $U(\mathbf{Q} \rightarrow \infty) = 0$. Using Eqs. (3.5) and (3.4), we obtain the optical conductivity $\sigma = (\sigma_{xx} + \sigma_{yy})/2$ as

$$\begin{aligned} \text{Re}\sigma(\omega, T) = & e^2 \frac{\pi}{\omega^3} (1 - e^{-\beta\omega}) \sum_{\varsigma\varsigma'} \int \frac{d^D \mathbf{k}'}{(2\pi)^D} \int \frac{d^D \mathbf{p}'}{(2\pi)^D} \int \frac{d^D \mathbf{k}}{(2\pi)^D} \int \frac{d^D \mathbf{p}}{(2\pi)^D} (\Delta \mathbf{v}_{\varsigma,\varsigma'})^2 \\ & \times U(\mathbf{k} - \mathbf{k}') \left[U(\mathbf{k} - \mathbf{k}') - \delta_{\varsigma\varsigma'} \frac{U(\mathbf{p} - \mathbf{k}')}{2} \right] \\ & \times n_F(\epsilon_{\varsigma,\mathbf{k}'}) n_F(\epsilon_{\varsigma',\mathbf{p}'}) [1 - n_F(\epsilon_{\varsigma,\mathbf{k}})] [1 - n_F(\epsilon_{\varsigma',\mathbf{p}})] \delta(\omega + \epsilon_{\varsigma',\mathbf{p}'} + \epsilon_{\varsigma,\mathbf{k}'} - \epsilon_{\varsigma,\mathbf{k}} - \epsilon_{\varsigma',\mathbf{p}}) \delta(\mathbf{k}' + \mathbf{p}' - \mathbf{k} - \mathbf{p}), \end{aligned} \quad (3.7)$$

where $n_F(\epsilon)$ is the Fermi function and $\beta = 1/T$. A detailed derivation of Eq. (3.7) is given in Appendix A. The square brackets in the second line of Eq.(3.7) contain the interaction potential at small and large momentum transfers, given by the first and second terms, respectively. where v_F and m are the Fermi velocity and mass of the quadratic dispersion, respectively. We will see later on

in this section that the integral over Q is logarithmically divergent at the lower limit. This implies that $Q \ll k_F$ and, therefore, the second term in the square brackets can be neglected. It is convenient to introduce the momentum and energy transfers as $\mathbf{Q} = \mathbf{k} - \mathbf{k}' = \mathbf{p}' - \mathbf{p}$ and $\Omega = \epsilon_{\varsigma,\mathbf{k}-\mathbf{Q}} - \epsilon_{\varsigma,\mathbf{k}} = \epsilon_{\varsigma',\mathbf{p}} - \epsilon_{\varsigma',\mathbf{p}+\mathbf{Q}} - \omega$, respectively, upon which Eq. (3.7) becomes

$$\begin{aligned} \text{Re}\sigma(\omega, T) = & e^2 \frac{\pi}{\omega^3} (1 - e^{-\beta\omega}) \sum_{\varsigma\varsigma'} \int \frac{d^D Q}{(2\pi)^D} \int \frac{d^D k}{(2\pi)^D} \int \frac{d^D p}{(2\pi)^D} \int d\Omega (\Delta \mathbf{v}_{\varsigma,\varsigma'})^2 U^2(\mathbf{Q}) \\ & \times n_F(\epsilon_{\varsigma,\mathbf{k}} + \Omega) n_F(\epsilon_{\varsigma',\mathbf{p}} - \omega - \Omega) [1 - n_F(\epsilon_{\varsigma,\mathbf{k}})] [1 - n_F(\epsilon_{\varsigma',\mathbf{p}})] \delta(\Omega - \epsilon_{\varsigma,\mathbf{k}-\mathbf{Q}} + \epsilon_{\varsigma,\mathbf{k}}) \delta(\omega + \Omega + \epsilon_{\varsigma',\mathbf{p}+\mathbf{Q}} - \epsilon_{\varsigma',\mathbf{p}}). \end{aligned} \quad (3.8)$$

For a Galilean-invariant system, $\mathbf{v}_\mathbf{k} = \mathbf{k}/m$ and $\Delta \mathbf{v}$ vanishes by momentum conservation, so $\text{Re}\sigma = 0$ for any finite ω . For a non-Galilean-invariant system, $\mathbf{v}_\mathbf{k} \neq \mathbf{k}/m$ and $\Delta \mathbf{v}$ does not vanish exactly, so in general $\text{Re}\sigma \neq 0$. Now, we will discuss the optical conductivity for the par-

ticular cases of doped graphene with and without trigonal warping.

B. Monolayer graphene without trigonal warping

In this section, we calculate the optical conductivity for the case of doped graphene without taking trigonal warping into account. In this approximation, the disper-

sion is isotropic and linear in momentum, the K_+ and K_- valleys are degenerate, and summation over the valley indices in Eq. (3.8) simply gives a factor of 4. In the rest of this section, the valley index will be suppressed. Equation (3.8) then becomes

$$\text{Re}\sigma(\omega, T) = e^2 \frac{4\pi}{\omega^3} (1 - e^{\beta\omega}) \int \frac{d^D Q}{(2\pi)^D} \int \frac{d^D k}{(2\pi)^D} \int \frac{d^D p}{(2\pi)^D} \int d\Omega (\Delta\mathbf{v})^2 U^2(\mathbf{Q}) \\ \times n_F(\epsilon_{\mathbf{k}} + \Omega) n_F(\epsilon_{\mathbf{p}} - \omega - \Omega) [1 - n_F(\epsilon_{\mathbf{k}})] [1 - n_F(\epsilon_{\mathbf{p}})] \delta(\Omega - \epsilon_{\mathbf{k}-\mathbf{Q}} + \epsilon_{\mathbf{k}}) \delta(\omega + \Omega + \epsilon_{\mathbf{p}+\mathbf{Q}} - \epsilon_{\mathbf{p}}). \quad (3.9)$$

For any isotropic dispersion $\epsilon_{\mathbf{k}} = \epsilon(k)$, the group velocity can be written as $\mathbf{v}_{\mathbf{k}} = f(k)\mathbf{k}$, where $f(k) = \epsilon'(k)/k$. Therefore, if we project electrons onto the FS, i.e., put $|\mathbf{k}| = |\mathbf{p}| = |\mathbf{k} - \mathbf{q}| = |\mathbf{p} + \mathbf{q}| = k_F$, then $\Delta\mathbf{v} = 0$. To obtain a non-zero result, one needs to expand the velocity to leading order in deviation from the FS. Writing $k = k_F + (\epsilon_{\mathbf{k}} - \mu)/v_F$ with $v_F = \epsilon'(k_F)$ (and the same for other momenta), and expanding $\Delta\mathbf{v}$ to first order in $\epsilon_{\mathbf{k}} - \mu$, we obtain

$$\Delta\mathbf{v} = \frac{w}{k_F} \left[\hat{\mathbf{k}} (\epsilon_{\mathbf{k}-\mathbf{Q}} - \epsilon_{\mathbf{k}}) + \hat{\mathbf{p}} (\epsilon_{\mathbf{p}+\mathbf{Q}} - \epsilon_{\mathbf{p}}) \right. \\ \left. + \frac{\mathbf{Q}}{k_F} (\epsilon_{\mathbf{p}+\mathbf{Q}} - \epsilon_{\mathbf{k}-\mathbf{Q}}) \right], \quad (3.10)$$

where $\hat{k} = \mathbf{k}/k$, $\hat{\mathbf{p}} = \mathbf{p}/p$, and

$$w = -\frac{k_F^2 f'(k_F)}{v_F} = 1 - \frac{k_F \epsilon''(k_F)}{\epsilon'(k_F)} \quad (3.11)$$

is the dimensionless coefficient which quantifies a deviation from Galilean invariance. For a power-law dispersion, $\epsilon_{\mathbf{k}} \propto k^a$,

$$w = 2 - a. \quad (3.12)$$

The $a = 2$ case corresponds to a Galilean-invariant system, when $w = 0$ and thus $\text{Re}\sigma(\omega, T) = 0$, as it should be.

However, $\text{Re}\sigma(\omega, T) \neq 0$ for any other a . If the dispersion deviates from the quadratic one by a small amount, $\delta\epsilon(k)$, then

$$w = \frac{\delta\epsilon'(k_F)}{v_F} - m\delta\epsilon''(k_F), \quad (3.13)$$

where v_F and m are the Fermi velocity and mass of the quadratic dispersion, respectively.

We will see later on in this section that the integral over Q is logarithmically divergent at the lower limit. This implies that typical $Q \ll k_F$ and, therefore, the last term in Eq. (3.10) can be neglected compared to the first two. It is also convenient to express the differences of the dispersion in Eq. (3.10) via the frequency of light, ω , and energy transfer, Ω , using the conservation of energy, as specified by the delta-functions in Eq. (3.8). Restricting now to the Dirac spectrum with $w = 1$, we obtain

$$\Delta\mathbf{v} = \frac{1}{k_F} \left[\hat{\mathbf{k}}\Omega - \hat{\mathbf{p}}(\Omega + \omega) \right]. \quad (3.14)$$

We see that $\Delta\mathbf{v}^2 \propto \max\{\omega^2, \Omega^2\}$. This explains the origin of the extra $\max\{\Omega^2, \omega^2\}$ factor in the current relaxation rate, Eq. (1.6). Since we already obtained $\Delta\mathbf{v}^2$ to leading order in Ω and ω , the remainder of the integrand in Eq. (3.8) can be projected onto the FS, which amounts to neglecting ω and Ω in the arguments of delta-functions. Accordingly,

$$\text{Re}\sigma(\omega, T) = e^2 \frac{4\pi N_F^2}{\omega^3} (1 - e^{-\beta\omega}) \int \frac{d^2 Q}{(2\pi)^2} \int d\epsilon_{\mathbf{k}} \int d\epsilon_{\mathbf{p}} \int d\Omega \int_0^{2\pi} \frac{d\theta_{\mathbf{kQ}}}{2\pi} \int_0^{2\pi} \frac{d\theta_{\mathbf{pQ}}}{2\pi} U^2(\mathbf{Q}) \Delta\mathbf{v}^2 \\ \times n_F(\epsilon_{\mathbf{k}} + \Omega) n_F(\epsilon_{\mathbf{p}} - \omega - \Omega) [1 - n_F(\epsilon_{\mathbf{k}})] [1 - n_F(\epsilon_{\mathbf{p}})] \delta(\epsilon_{\mathbf{p}+\mathbf{Q}} - \epsilon_{\mathbf{p}}) \delta(\epsilon_{\mathbf{k}} - \epsilon_{\mathbf{k}-\mathbf{Q}}), \quad (3.15)$$

where $N_F = \mu/2\pi v_F^2$ is the density of states at the Fermi level per spin and per valley, and $\theta_{\mathbf{nn}'}$ is the angle between vectors \mathbf{n} and \mathbf{n}' . Next, the dispersions in the delta-functions can be expanded to linear order in Q . This imposes kinematic constraints on the angles between \mathbf{k} and \mathbf{Q} , and between \mathbf{p} and \mathbf{Q} , namely, $\theta_{\mathbf{kQ}} = \pm\pi/2$ and $\theta_{\mathbf{pQ}} = \pm\pi/2$. The first constraint corresponds to the Cooper channel, with $\mathbf{p} = -\mathbf{k}$, while the second one to

the collinear channel, with $\mathbf{p} = \mathbf{k}$. Accounting for both of these constraints, we obtain

$$\Delta\mathbf{v}^2 = \frac{2}{k_F^2} [(2\Omega + \omega)^2 + \omega^2]. \quad (3.16)$$

Now the integrals over $\epsilon_{\mathbf{k}}$, $\epsilon_{\mathbf{p}}$, and Ω in Eq. (3.15) can be

carried out; as shown in Appendix B, the result is

$$\begin{aligned} & \int d\epsilon_{\mathbf{k}} \int d\epsilon_{\mathbf{p}} \int d\Omega [(2\Omega + \omega)^2 + \omega^2] \\ & \times n_F(\epsilon_{\mathbf{k}} + \Omega) n_F(\epsilon_{\mathbf{p}} - \omega - \Omega) [1 - n_F(\epsilon_{\mathbf{k}})] [1 - n_F(\epsilon_{\mathbf{p}})] \\ & = \frac{\omega^5}{15(1 - e^{-\beta\omega})} \left(1 + \frac{4\pi^2 T^2}{\omega^2}\right) \left(3 + \frac{8\pi^4 T^4}{\omega^4}\right). \end{aligned} \quad (3.17)$$

The integral over Q in the leading log approximation is given by

$$\int_{\max\{|\omega|, T\}/v_D}^{\infty} \frac{dQ}{Q(Q + \kappa)^2} \approx \frac{1}{\kappa^2} \ln \frac{v_D \kappa}{\max(|\omega|, T)}. \quad (3.18)$$

The logarithmic divergence of the integral above is *a posteriori* justification for neglecting the term proportional to Q in Eq. (3.10). Collecting everything together, we obtain the final result for the conductivity

$$\begin{aligned} \text{Re}\sigma(\omega, T) &= \frac{e^2}{240\pi^2} \frac{\omega^2}{\mu^2} \left(1 + \frac{4\pi^2 T^2}{\omega^2}\right) \left(3 + \frac{8\pi^4 T^4}{\omega^4}\right) \\ &\times \ln \frac{\Lambda_Q}{\max\{|\omega|, T\}}, \end{aligned} \quad (3.19)$$

where $\Lambda_Q = v_D \kappa$. Equation (3.19) obviously satisfies the first-Matsubara-frequency rule,¹² i.e., $\text{Re}\sigma(\pm 2\pi iT, T) = 0$. The scaling form in Eq. (3.19) applies not only to a graphene monolayer with Coulomb interaction but to any 2D system with an isotropic but non-parabolic dispersion. A change in the dispersion brings in only an overall factor of w^2 , defined in Eq. (3.11), while a change in the interaction affects only the choice of cutoff Λ_Q under the log.

The presence of the logarithmic factor in Eq. (3.19) is quite interesting. It is well known that the quasiparticle scattering rate in a 2D FL scales as $E^2 \ln E$, where $E = \max\{|\omega|, T\}$ (Refs. 47 and 48), but it is also understood that the logarithmic factor comes from processes with small momentum transfers. Therefore, if a E^2 term in the conductivity is allowed due to broken Galilean invariance, it comes without an extra log factor, because the logarithmic singularity is canceled by the “transport factor”, $\Delta \mathbf{v}^2$, which is proportional to Q^2 at small Q (Ref. 12). In our case, however, Galilean invariance is broken only partially, and only a subleading, E^4 term is allowed in the conductivity. One can view this term as resulting from expanding each of the delta-functions in Eq. (3.15) in ω/Q . The two extra factors of ω change the scaling from E^2 to E^4 , but the $1/Q^2$ factor results in an additional log term. Another example of such a behavior is a $T^4 \ln T$ scaling of the conductivity of a Galilean-invariant system with energy-dependent impurity scattering time.² Once the logarithmic singularity is present, the coupling constant of the Coulomb interaction enters only via a cutoff, because the screened Coulomb potential at $Q \ll \kappa$ does not contain the electron charge.

The current relaxation rate in a conventional FL [Eq. (1.5)] is related to a quasiparticle lifetime which, in its turn, is related to the electron self-energy via

$$1/\tau_{\text{SP}}(\varepsilon, T) = -2\text{Im}\Sigma(\varepsilon, T) \propto \varepsilon^2 + \pi^2 T^2. \quad (3.20)$$

The difference between the scaling forms of $\tau_J(\omega, T)$ in Eq. (1.5) and $\tau_{\text{SP}}(\varepsilon, T)$ in Eq. (3.20) is due to thermal averaging of (3.20) over ε . The correct scaling form of $\tau_J(\omega, T)$ can already be deduced from the single-bubble diagram for the conductivity; other diagrams only modify the overall prefactor.¹² On the contrary, the scaling form of $\tau_J(\omega, T)$ for a DFL [Eq. (1.6)] is not related to that of $\tau_{\text{SP}}(\varepsilon, T)$, even if one takes higher-order terms in the self-energy into account.

Equation (3.19) accounts only for intrasubband excitations. At first sight, intersubband excitations should give a much smaller contribution, because available states in the valence and conduction bands are separated by the Pauli threshold, $2\mu \gg \omega$. However, this is true only in the absence of ee interactions. A detailed analysis shows⁴⁹ that in an interacting system the contribution of intersubband excitations to the conductivity is on the order of $(e^2/(\omega^2/\mu^2))$, which is smaller than the intrasubband contribution in Eq. (3.19) but only by a logarithmic factor. Moreover, the intrasubband contribution in 3D does not have a logarithmic factor (see Sec. VI C), and the intra- and intersubband contributions are of the same order. The reason for the intra- and intersubband contributions to be almost comparable is as follows. When cast into a Drude-like form, both contributions (at $T = 0$) can be written as $\text{Re}\sigma = (e^2)(1/\Delta^2 \tau_J)$, where Δ is the excitation energy and τ_J is the corresponding current relaxation time. For intrasubband transitions, Δ is small, $\sim \omega$, but momentum conservation reduces $1/\tau_J$ compared to its conventional FL form by a factor of $\omega^2/\mu^2 \ll 1$: $1/\tau_J \sim (\omega^2/\mu)(\omega^2/\mu^2) |\ln \omega|^{D-3}$. For intersubband transitions, Δ is large, $\sim \mu$, but momentum conservation plays no role and $1/\tau_J$ is of the conventional FL form: $1/\tau_J \sim \omega^2/\mu$. As a result, a small factor of $1/\Delta^2$ for intersubband transitions is partially compensated by a large factor of $1/\tau_J$, and *vice versa* for intrasubband transitions.

C. Monolayer graphene with trigonal warping

In this section, we study the effect of trigonal warping, which leads to anisotropy of the FSs around each of the two Dirac points and also breaks valley degeneracy. The contribution to the optical conductivity from intravalley scattering in Eq. (3.8) are given by the $\zeta = \zeta'$ terms in the sum, and can be evaluated along the same lines as in Sec. III B. In this case, trigonal warping does not lead to any quantitative changes because the FS remains simply connected and convex,² and the corresponding current relaxation rate is still quartic in ω and T . On the contrary, scattering between inequivalent valley does give rise to quadratic scaling, and it is this scattering that we focus

on in this section. Intervalley scattering is described by

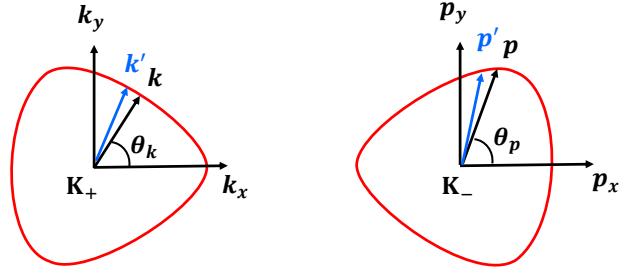


Figure 2. An inter-valley scattering process. The two Fermi surfaces (red) with trigonal warping are located at two adjacent K_+ and K_- points in the Brillouin zone of graphene. \mathbf{k} and \mathbf{k}' are the initial and final momenta of an electron in the K_+ valley. Similarly, \mathbf{p} and \mathbf{p}' are the initial and final momenta in the K_- valley.

the $\varsigma \neq \varsigma'$ terms in Eq. (3.8). A typical scattering process is depicted in Fig. 2. The optical conductivity due to inter-valley scattering is given by

$$\begin{aligned} \text{Re}\sigma^{\text{inter}}(\omega, T) = & \frac{2\pi e^2}{\omega^3} \frac{1 - e^{-\beta\omega}}{(2\pi)^2} \int \frac{d^2Q}{(2\pi)^2} \int \frac{d\epsilon_{+, \mathbf{k}}}{2\pi} \int \frac{d\epsilon_{-, \mathbf{p}}}{2\pi} \int d\Omega \oint_{C_+} \frac{d\ell_{\mathbf{k}}}{v_{\mathbf{k}}} \oint_{C_-} \frac{d\ell_{\mathbf{p}}}{v_{\mathbf{p}}} (\mathbf{v}_{+, \mathbf{k}-\mathbf{Q}} + \mathbf{v}_{-, \mathbf{p}+\mathbf{Q}} - \mathbf{v}_{+, \mathbf{k}} - \mathbf{v}_{-, \mathbf{p}})^2 U^2(\mathbf{Q}) \\ & \times n_F(\epsilon_{+, \mathbf{k}} + \Omega) n_F(\epsilon_{-, \mathbf{p}} - \Omega - \omega) [1 - n_F(\epsilon_{+, \mathbf{k}})] [1 - n_F(\epsilon_{-, \mathbf{p}})] \delta(\omega + \Omega + \epsilon_{-, \mathbf{p}+\mathbf{Q}} - \epsilon_{-, \mathbf{p}}) \delta(\Omega - \epsilon_{+, \mathbf{k}-\mathbf{Q}} + \epsilon_{+, \mathbf{k}}), \end{aligned} \quad (3.21)$$

where now \mathbf{k} and \mathbf{p} are the initial momenta in the K_+ and K_- valleys, and $d\ell_{\mathbf{k}}(d\ell_{\mathbf{p}})$ is the line element of the Fermi contour $C_+(C_-)$ near $K_+(K_-)$ point.

A change in the velocity due to an ee collision can be written as

$$\mathbf{v}_{+, \mathbf{k}-\mathbf{Q}} + \mathbf{v}_{-, \mathbf{p}+\mathbf{Q}} - \mathbf{v}_{+, \mathbf{k}} - \mathbf{v}_{-, \mathbf{p}} = \Delta\mathbf{v}^D + \Delta\mathbf{v}^{\text{TW}}, \quad (3.22)$$

where $\Delta\mathbf{v}^D$ and $\Delta\mathbf{v}^{\text{TW}}$ are due to the Dirac and trigonal warping parts of the velocity, respectively. For electrons on the FS, $\Delta\mathbf{v}^D = 0$, while $\Delta\mathbf{v}^{\text{TW}} \neq 0$. Therefore, the leading-order correction for the conductivity from inter-valley scattering is due to $(\Delta\mathbf{v}^{\text{TW}})^2$, and is proportional to a^2 . Delegating the computational details to Appendix C, we present here only the final result for the conductivity due to intervalley scattering:

$$\text{Re}\sigma^{\text{inter}}(\omega, T) = \frac{29e^2}{48\pi^2} \alpha_e^2 |\ln \alpha_e| (k_F a)^2 \left(1 + \frac{4\pi^2 T^2}{\omega^2} \right), \quad (3.23)$$

where

$$\alpha_e = \frac{e^2}{v_D} \quad (3.24)$$

is the effective fine-structure constant. The ω/T scaling of $\text{Re}\sigma^{\text{inter}}$ is same as for a conventional FL [cf. Eq. (1.1)] but with a small prefactor of $(k_F a)^2$, which characterizes the strength of trigonal warping.

D. Combined result for the conductivity from intra- and inter-valley scattering

1. High-frequency regime

The total conductivity is given by the sum of the intra-valley [Eq. (3.19)] and inter-valley [Eq. (3.23)] contributions, and can be cast into a Drude-like form:

$$\text{Re}\sigma(\omega, T) = \frac{ne^2}{m^* \omega^2 \tau_J(\omega, T)}, \quad (3.25)$$

where $n = \mu/\pi v_D$ is the number density, $m^* = \mu/v_D^2$ is the effective mass, and the current relaxation time is defined as

$$\frac{1}{\tau_J(\omega, T)} = \frac{1}{240\pi} \frac{(\omega^2 + 4\pi^2 T^2)(3\omega^2 + 8\pi^2 T^2)}{\mu^3} \ln \frac{\alpha_e \mu}{\max\{|\omega|, T\}} + \frac{29}{48\pi} \alpha_e^2 |\ln \alpha_e| (k_F a)^2 \frac{\omega^2 + 4\pi^2 T^2}{\mu}. \quad (3.26)$$

The first term in $1/\tau_J$ arises from intra-valley scattering and is specific for a DFL, while the second one is a Gurzhi-like contribution arising from inter-valley scattering. The competition between the two terms is determined by the hierarchy of the three energy scales: ω , T , and $\omega_{\text{TW}} \equiv \alpha_e(k_F a)\mu \ll \mu$. As an example, we analyze the dependence of $1/\tau_J$ on ω at fixed T . If $\omega_{\text{TW}} \ll T$, the effect of trigonal warping is negligible: $1/\tau_J$ is mostly given by the DFL term. This behavior is shown in the left panel of Fig. 3(a). If $T \ll \omega_{\text{TW}}$, $1/\tau_J$ starts with the T^2 term for $\omega \ll T$, then scales as ω^2 for $T \ll \omega \ll \omega_{\text{TW}}$, and finally follows the ω^4 dependence for $\omega_{\text{TW}} \ll \omega$. This case is illustrated in Fig. 3(b).

2. Low-frequency regime

Although Eq. (3.25) looks like a high-frequency tail of the conventional Drude formula, $\text{Re}\sigma = e^2 n \tau_J / m(1 + \omega^2 \tau_J^2)$, it would be incorrect to extrapolate this result to the *dc* limit, because *ee* interaction in the absence of umklapp scattering cannot render the *dc* conductivity finite.⁵⁰ In fact, Eq. (3.25) is valid only for $\omega \gg 1/\tau_J(0, T)$. In this section, we will show that, in the absence of disorder and at $\omega \rightarrow 0$, the conductivity can be described by the sum of a delta-function term and a regular part:

$$\text{Re}\sigma(\omega \rightarrow 0, T) = \frac{\pi n e^2}{m^*} \delta(\omega) + \sigma_{\text{reg}}(T), \quad (3.27)$$

where $\sigma_{\text{reg}}(T)$ scales either as T^{-4} or T^{-2} , depending on whether T is higher or lower than ω_{TW} . The form in Eq. (3.27) pertains to any non-Galilean-invariant system, in which *ee* interaction can render the conductivity finite only at a finite but not zero frequency. For example, this form follows from the semiclassical equations of motion for a two-band system (in this case, the delta-function term is absent if the system is compensated).³

On a more general level, Eq. (3.27) can be derived from the Boltzmann equation, using the method outlined in Ref. 2. As we are now interested in the limit of $\omega \ll T$, it suffices to consider a semiclassical form of the Boltzmann equation:

$$(-i\omega + 0^+) \delta f_{\mathbf{k}} - e(\mathbf{v}_{\mathbf{k}} \cdot \mathbf{E}) n'_{\mathbf{k}} = -I_{\text{ee}}[\delta f_{\mathbf{k}}], \quad (3.28)$$

where $\delta f_{\mathbf{k}}$ is a non-equilibrium correction to the Fermi function ($n_{\mathbf{k}}$) and $I_{\text{ee}}[\delta f]$ is the (linearized) *ee* collision integral. The collision integral can be viewed as a linear operator acting on $\delta f_{\mathbf{k}}$:

$$I_{\text{ee}}[\delta f_{\mathbf{k}}] = \sum_{\mathbf{k}'} \hat{I}_{\text{ee}}(\mathbf{k}, \mathbf{k}') \delta f_{\mathbf{k}'}. \quad (3.29)$$

In general, \hat{I}_{ee} is non-Hermitian and thus can be written as a direct product of its left (L) and right (R) eigenvectors

$$\hat{I}_{\text{ee}} = \frac{1}{\tau_{\text{ee}}^*(T)} \sum_n \xi_n |\Phi_L^n\rangle \langle \Phi_L^n|, \quad (3.30)$$

where ξ_n is the n^{th} eigenvalue and $\tau_{\text{ee}}^*(T)$ is the effective *ee* scattering time, which defines the magnitude of \hat{I}_{ee} . Without a loss of generality, we can choose $\tau_{\text{ee}}^*(T)$ to coincide with $\tau_J(0, T)$ given by Eq. (3.26), i.e.,

$$\frac{1}{\tau_{\text{ee}}^*(T)} = \frac{1}{\tau_J^*(0, T)} = \frac{2\pi^3}{15} \frac{T^4}{\mu^3} \ln \frac{\alpha_e \mu}{T}, \quad (3.31)$$

where for brevity we omitted the T^2 term resulting from trigonal warping. Because Φ_L^n and Φ_R^n form an orthonormal basis, a general solution of Eq. (3.28) can be written as

$$\delta f_{\mathbf{k}} = \sum_n c_n |\Phi_R^n\rangle. \quad (3.32)$$

Substituting this expansion into Eq. (3.28), we obtain coefficients c_n as

$$c_n = \frac{e \langle \Phi_L^n | \mathbf{v}_{\mathbf{k}} \cdot \mathbf{E} n'_{\mathbf{k}} \rangle}{-i\omega + \frac{\xi_n}{\tau_{\text{ee}}^*(T)} + 0^+}. \quad (3.33)$$

If *ee* interaction conserves momentum, I_{ee} is nullified by a combination $\mathbf{A} \cdot \mathbf{k}$, where \mathbf{A} is an arbitrary \mathbf{k} -independent vector.⁵⁰ This means that operator \hat{I}_{ee} has a zero mode with eigenvalue $\xi_0 = 0$. In the limit of $\omega \tau_{\text{ee}}^*(T) \rightarrow 0$, the series in Eq. (3.32) contains only the zero-mode term with

$$c_0 = \frac{e \langle \Phi_L^0 | \mathbf{v}_{\mathbf{k}} \cdot \mathbf{E} n'_{\mathbf{k}} \rangle}{-i\omega + 0^+}. \quad (3.34)$$

The corresponding contribution to $\delta f_{\mathbf{k}}$ gives the delta-function term in Eq. (3.27). The next-to-leading contribution corresponds to the minimum non-zero eigenvalue, $\xi_1 > 0$:

$$c_1 = \frac{e \langle \Phi_L^1 | \mathbf{v}_{\mathbf{k}} \cdot \mathbf{E} n'_{\mathbf{k}} \rangle}{-i\omega + \frac{\xi_1}{\tau_{\text{ee}}^*(T)} + 0^+}. \quad (3.35)$$

Because ξ_n are the eigenvalues of a dimensionless operator which does not contain any physical parameters, we should expect that $\xi_1 \sim 1$. For $\omega \ll 1/\tau_{\text{ee}}^*$, one can then neglect ω in the denominator of c_1 . The corresponding contribution to $\delta f_{\mathbf{k}}$ gives the second term in Eq. (3.27).

So far, we have found the asymptotic forms of the conductivity in the opposite limits of $\omega \gg 1/\tau_J(0, T)$ and $\omega \ll 1/\tau_J(0, T)$, given by Eqs. (3.25) and (3.27), respectively. Although Eq. (3.25) matches in order-of-magnitude with σ_{reg} in Eq. (3.27) at $\omega \sim 1/\tau_J(0, T)$, it

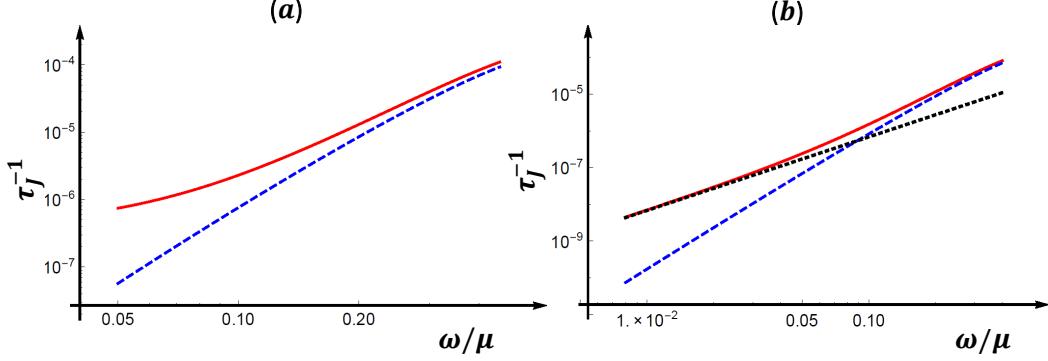


Figure 3. Solid line: the current relaxation rate, $1/\tau_J(\omega, T)$ (normalized by μ) from Eq. (3.26), as a function of frequency at fixed temperature. Here, $\alpha = 0.8$, $k_F a = 0.05$, and $\omega_{TW}/\mu = 0.04$. The dashed and dotted-dashed lines depict the scaling forms for DFL [the first term in Eq. (3.26)] and conventional FL [the second term in Eq. (3.26)], respectively. a) $T/\mu = 10^{-2}$. In this case, the DFL scaling form dominates for all frequencies of interest. b) $T/\mu = 10^{-4}$. In this case, one can see a crossover between the DFL and conventional FL scaling forms).

does not mean that σ_{reg} can be described by the Drude form at all frequencies. A precise form of $\text{Re}\sigma(\omega, T)$ in the intermediate range of $\omega \sim 1/\tau_J(0, T)$ can be obtained only by an exact solution of the Boltzmann equation, which is outside the scope of this paper. We note, however, that for a simpler case of a two-band parabolic system the regular part of the conductivity follows the Drude form for all frequencies.³

IV. DIRAC FERMI LIQUID WITH IMPURITIES

In this section, we consider an interplay between impurity and ee scattering in a DFL at the level of the semi-classical Boltzmann equation, which neglects quantum interference and hydrodynamic effects. We assume that the effective impurity radius is much smaller than the Fermi wavelength but much larger than the lattice spacing. In this case, impurities act as point-like, isotropic scatterers for electrons within the K_+ and K_- valleys, while scattering between the valleys is suppressed. As in the previous sections, we assume that ee interaction is long-ranged and also neglect trigonal warping, such that the valley degree of freedom plays the role of conserved isospin. The non-equilibrium correction to the Fermi function can be parameterized as $\delta f_{\mathbf{k}} = -Tn'_{\mathbf{k}}g_{\mathbf{k}}$. Then the linearized Boltzmann equation, which includes scattering by point-like impurities and ee scattering, reads

$$-\left(i\omega - \frac{1}{\tau_i}\right)Tn'_{\mathbf{k}}g_{\mathbf{k}} - e\mathbf{E} \cdot \mathbf{v}_{\mathbf{k}}n'_{\mathbf{k}} = -I_{ee}[g_{\mathbf{k}}], \quad (4.1)$$

where τ_i is the transport mean free time for impurity scattering and

$$I_{ee}[g_{\mathbf{k}}] = \int \frac{d^2\mathbf{k}'}{(2\pi)^2} \int \frac{d^2\mathbf{p}'}{(2\pi)^2} \int \frac{d^2\mathbf{p}}{(2\pi)^2} W_{\mathbf{k},\mathbf{p};\mathbf{k}',\mathbf{p}'} \times (g_{\mathbf{k}} + g_{\mathbf{p}} - g_{\mathbf{k}'} - g_{\mathbf{p}'}) \times n_{\mathbf{k}}n_{\mathbf{p}}(1 - n_{\mathbf{k}'})(1 - n_{\mathbf{p}'}) \times \delta(\epsilon_{\mathbf{k}} + \epsilon_{\mathbf{p}} - \epsilon_{\mathbf{k}'} - \epsilon_{\mathbf{p}'})\delta(\mathbf{k} + \mathbf{p} - \mathbf{k}' - \mathbf{p}'). \quad (4.2)$$

With spin and valley degeneracy taken into account,^{50,51} the scattering probability to lowest order in an instantaneous interaction is given by

$$W_{\mathbf{k},\mathbf{p};\mathbf{k}',\mathbf{p}'} = 8\pi U(\mathbf{k} - \mathbf{k}') \left[U(\mathbf{k} - \mathbf{k}') - \frac{1}{2}U(\mathbf{k} - \mathbf{p}') \right], \quad (4.3)$$

where the first (second) term in the square brackets come from direct (exchange) ee interaction. In our model of a weakly screened Coulomb potential, the exchange term can be neglected and

$$W_{\mathbf{k},\mathbf{p};\mathbf{k}',\mathbf{p}'} = 8\pi U^2(\mathbf{k} - \mathbf{k}'). \quad (4.4)$$

A. Low temperatures: slow electron-electron scattering

We now solve Eq. (4.1) for the case of low temperatures, when ee collisions are less frequent than ei collisions, and the ee contribution can be evaluated via a perturbation theory in I_{ee} ; cf. Refs. 2, 9, and 52. At the first step, we solve Eq.(4.1) with $I_{ee} = 0$, which yields

$$g_{\mathbf{k}}^{(0)} = -\frac{e\tau_i(\mathbf{v}_{\mathbf{k}} \cdot \mathbf{E})}{T(1 - i\omega\tau_i)}. \quad (4.5)$$

and the corresponding contribution to the optical conductivity is of the Drude form:

$$\sigma_i(\omega) = \frac{e^2 n \tau_i}{m^* (1 - i\omega \tau_i)}. \quad (4.6)$$

Next, we substitute $g_k^{(0)}$ back into Eq. (4.1) and find a correction due to ee scattering

$$g_k^{(1)} = \frac{\tau_i}{T(1 - i\omega \tau_i) n'_k} I_{ee}[g_k^{(0)}]. \quad (4.7)$$

The corresponding correction to the optical conductivity is given by

$$\begin{aligned} \delta\sigma_{ee} = & -\frac{4\pi e^2 \tau_i^2 N_F^2}{T(1 - i\omega \tau_i)^2} \int \frac{d^2 Q}{(2\pi)^2} \int d\epsilon_k \int d\epsilon_p \int d\Omega \\ & \times \int \frac{d\theta_k}{2\pi} \int \frac{d\theta_p}{2\pi} (\Delta v)^2 U^2(\mathbf{Q}) \\ & \times n(\epsilon_k) n(\epsilon_p) [1 - n(\epsilon_k + \Omega)] [1 - n(\epsilon_p - \Omega)] \\ & \times \delta(\epsilon_k - \epsilon_{k-Q} + \Omega) \delta(\epsilon_p - \epsilon_{p+Q} - \Omega), \end{aligned} \quad (4.8)$$

where, as before, $\Delta v = v_k + v_p - v_{k-Q} - v_{p+Q}$. Note that the integral in the last equation is the same as in Eq. (3.9) but with $\omega = 0$ and, therefore, the rest of the calculation is the same as in Sec. III B. The final result reads

$$\delta\sigma_{ee}(\omega, T) = -\frac{e^2 n \tau_i}{m^*} \frac{1 - \omega^2 \tau_i^2}{(1 - i\omega \tau_i)^2} \frac{\tau_i}{\tau_{ee}^*(T)}, \quad (4.9)$$

where $\tau_{ee}^*(T)$ is given by Eq. (3.31). Note that Eq. (4.9) can be obtained by replacing τ_i in the Drude formula [Eq. (4.6)] by the effective scattering time, $\tau_{eff}(T) = \tau_i \tau_{ee}^*(T) / (\tau_i + \tau_{ee}^*(T))$, and expanding the result to first order in $1/\tau_{ee}^*(T)$. In this regime, therefore, we recover the Mathiessen rule, i.e., the ei and ee channels act as two resistors connected in series. Correspondingly, the real and imaginary parts of the conductivity are given by

$$\begin{cases} \text{Re}\sigma(\omega, T) \\ \text{Im}\sigma(\omega, T) \end{cases} = \frac{e^2 n \tau_{eff}(T)}{m^* [1 + \omega^2 \tau_{eff}^2(T)]} \times \begin{cases} 1 \\ \omega \tau_{eff}(T) \end{cases}. \quad (4.10)$$

B. High temperatures: fast electron-electron scattering

We now turn to the opposite limit of high temperatures, when ee scattering is faster than ei one. (Sometimes, this regime is referred to as a “hydrodynamic” one, although there is no real hydrodynamic regime in bulk samples with point-like impurities). The analysis of this limit proceeds in the same way as in Sec. III D 2; we only need to replace an infinitesimally small damping term [0^+ in Eq. (3.28)] by finite $1/\tau_i$. Consequently, Eq. (3.33) for expansion coefficients c_n is replaced by

$$c_n = \frac{e \langle \Phi_L^\xi | \mathbf{v}_k \cdot \mathbf{E} n'_k \rangle}{-i\omega + \tau_i^{-1} + \frac{\xi_n}{\tau_{ee}^*(T)}}. \quad (4.11)$$

At $1/\tau_{ee}^*(T) \rightarrow \infty$, the $\xi_0 = 0$ eigenvalue gives the leading contribution, and the delta-function term in Eq. (3.27) is replaced by the Drude form with the width given by $1/\tau_i$, as in Eq. (4.6). This Drude form is completely independent of the ee interaction despite the fact that ee scattering is the dominant one. On the other hand, one can neglect $1/\tau_i$ in all $c_{n \neq 0}$. This results in replacing the second, regular term in Eq. (3.33) by another Drude form with the width given by $1/\tau_{ee}^*(T)$. Correspondingly, the real and imaginary parts of the conductivity are given by

$$\begin{cases} \text{Re}\sigma(\omega, T) \\ \text{Im}\sigma(\omega, T) \end{cases} = \frac{ne^2}{m^*} \times \begin{cases} \frac{\tau_i}{1 + \omega^2 \tau_i^2} + \frac{\tau_{ee}^*(T)}{1 + \omega^2 \tau_{ee}^{*2}} \\ \frac{\omega \tau_i^2}{1 + \omega^2 \tau_i^2} + \frac{\omega \tau_{ee}^{*2}(T)}{1 + \omega^2 \tau_{ee}^{*2}} \end{cases}. \quad (4.12)$$

Physically, it means that if ee scattering is faster than ei one, the two channels act as two resistors connected in parallel.

C. dc limit

The analysis presented in the two preceding sections can be also extended to include the *dc* limit ($\omega = 0$). In particular, the conductivity in the regime of slow ee scattering is found simply by substituting $\omega = 0$ into Eq. (4.9). Converting the result into the resistivity $\rho(T) = 1/\sigma(0, T)$, we obtain

$$\rho(T) = \rho_i + \frac{m^*}{ne^2} \frac{1}{\tau_{ee}^*(T)} \propto \text{const} + \mathcal{O}(T^4 \ln T), \quad (4.13)$$

where $\rho_i = m^*/ne^2 \tau_i$ is the residual resistivity and $\tau_{ee}^*(T)$ is given by Eq. (3.31). Although it may look as if Eq. (4.13) obeys the Mathiessen rule, it is only valid for low enough temperatures, when $\tau_{ee}^*(T) \gg \tau_i$ or $T \ll T_i = (\mu^3/\tau_i)^{1/4}$. Note that $1/\tau_i \ll T_i \ll \mu$ as long as the “good-metal condition”, $\mu \tau_i \gg 1$, is satisfied.

In the opposite limit of $\tau_{ee}^*(T) \ll \tau_i$ ($T \gg T_i$), ee scattering is the dominant mechanism. However, it conserves momentum and thus can only establish a quasi-equilibrium state with the Fermi surface displaced by a drift velocity whose magnitude is still controlled by ei scattering. The high-temperature limit was analyzed in Ref. 2 using the method outlined in Sec. III D 2. The key ingredient here is again the existence of the zero mode of the ee collision integral. Without repeating the analysis here, we simply reproduce here the result of Ref. 2 for the high- T limit of the conductivity

$$\sigma_{\ell m}|_{T \gg T_i} = 2N_v e^2 N_F \tau_i \sum_n \frac{\langle v_\ell k_n \rangle \langle v_m k_n \rangle}{\langle k_n^2 \rangle}. \quad (4.14)$$

where N_v is the valley degeneracy (= 4 for graphene) and $\langle \dots \rangle$ denotes averaging over the FS. At the same time, the low- T limit is given by

$$\sigma_{\ell m}|_{T \ll T_i} = 2N_v e^2 N_F \tau_i \langle v_\ell v_m \rangle. \quad (4.15)$$

In general, high- and low- T limits are different. However, for an isotropic dispersion, which is the case of doped

graphene without trigonal warping, the two limits coincide. (For quadratic dispersion, the two limits also coincide but the resistivity does not depend on T at all.) Therefore,

$$\rho(T \gg T_i) = \rho_i [1 + \mathcal{O}(\tau_{ee}^*/\tau_i)] = \text{const} + \mathcal{O}(T^{-4}). \quad (4.16)$$

In between the two limits given by Eqs. (4.13) and (4.16), the resistivity reaches a maximum of height $\sim \rho_i$ at $T \sim T_i$, as illustrated in Fig. 4.

We emphasize that the maximum in the resistivity occurs in a model which accounts only for the ei and ee scattering channels. In real systems, scattering by phonon gives rise a monotonically increasing with T resistivity, which may mask the maximum. An interplay between electron-electron and electron-phonon scattering is discussed further in Sec. VI D.

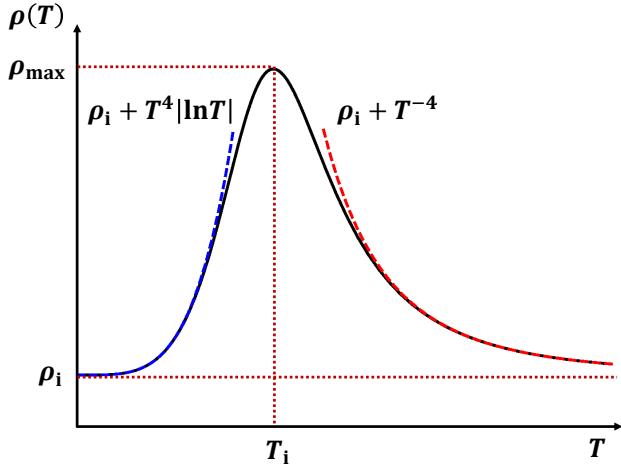


Figure 4. A sketch of the temperature dependence of the dc resistivity of doped graphene in the presence of electron-impurity and electron-electron scattering. Here, ρ_i is the residual resistivity due to impurities, $\rho_{\max} \sim \rho_i$, $T_i = (\mu^3/\tau_i)^{1/4}$, and τ_i is the transport time for electron-impurity scattering. The dashed lines depict the low- and high- T asymptotic limits.

V. DYNAMICAL CHARGE SUSCEPTIBILITY OF A DIRAC FERMI LIQUID

A. Formalism

In this section, we analyze the dissipative part of the charge susceptibility of a DFL, $\text{Im}\chi_c(\mathbf{q}, \omega)$. This quantity can be measured on its own, e.g., via momentum-resolved electron energy loss spectroscopy (M-EELS),^{53–55} and is also related to the longitudinal conductivity via the Einstein relation

$$\text{Re}\sigma(\mathbf{q}, \omega) = \frac{e^2 \omega}{q^2} \text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega), \quad (5.1)$$

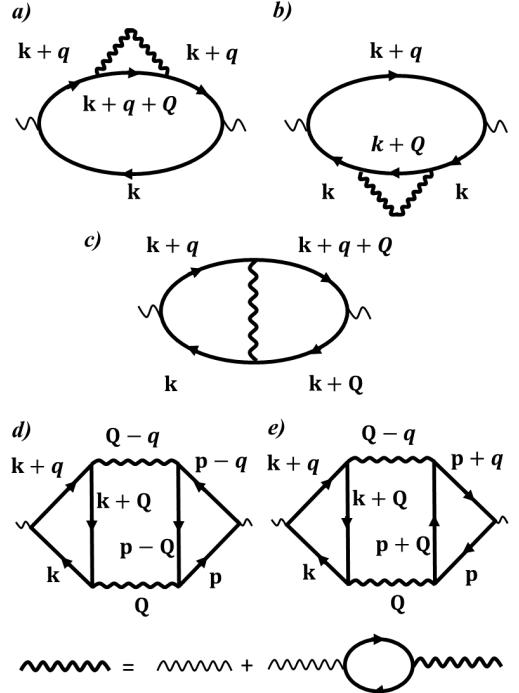


Figure 5. One-loop diagrams for the irreducible charge susceptibility. The bold wavy line denotes a dynamically screened Coulomb interaction.

where superscript $^{\text{irr}}$ denotes the irreducible part. In this section, we will find $\text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega)$ from the Kubo formula, to one-loop order in a dynamically screened Coulomb interaction. Equation (5.1) can then be used as an independent check for the result of Sec. III for $\text{Re}\sigma(\mathbf{q}, \omega)$, obtained via the equations of motion and Boltzmann equation. In Sec. III, we found that $\text{Re}\sigma(\omega, T=0) \propto \omega^2 \ln |\omega|$ which, when substituted into the Einstein relation, gives $\text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega) \propto q^2 \omega \ln |\omega|$. In this section, we will confirm this result by an explicit calculation of $\text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega)$ for 2D Dirac fermions in doped graphene.

The regions occupied by the continua of particle-hole excitation in doped graphene are shown by heavily shaded (red) regions in Fig. 6. Within these regions, $\text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega) \neq 0$ even for non-interacting electrons. At the level of Random Phase Approximation (RPA), ee interaction modifies the spectral weight within the continua but does not lead to a non-zero spectral weight outside the continua. The latter occurs only if the interaction between quasiparticles is taken into account, which means that one has to go beyond RPA and renormalize the polarization bubble by the interaction. One-loop diagrams for the irreducible charge susceptibility are shown in Fig. 5, where the bold wavy line denotes a dynamically screened Coulomb interaction

$$U(\mathbf{Q}, \Omega_l) = [U_0^{-1}(\mathbf{Q}) - \Pi(\mathbf{Q}, \Omega_l)]^{-1}, \quad (5.2)$$

$\Pi(\mathbf{Q}, \Omega_l)$ is the free-electron polarization bubble, and $U_0(\mathbf{Q}) = 2\pi e^2/Q$. In what follows, we focus on the case

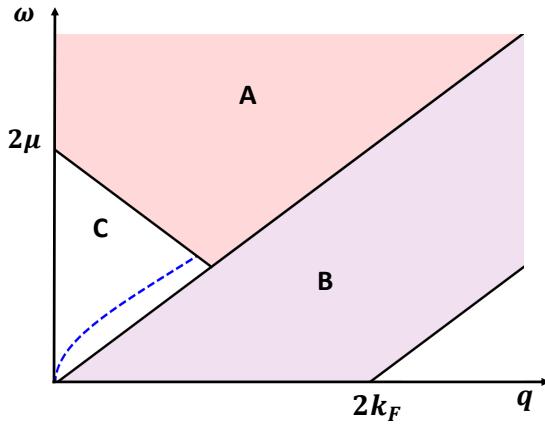


Figure 6. Regions A and B correspond to particle-hole continua in doped graphene. A non-zero spectral weight in region C is due to the interaction between quasi-particles, described by the diagrams in Fig. 5. The dashed line shows the plasmon dispersion.

$$\chi_c^{(S,E)}(\mathbf{q}, \omega_m) = -2 \int \int \int \int \frac{d^2 Q d^2 k d\Omega_l d\varepsilon_n}{(2\pi)^6} U(\mathbf{Q}, \Omega_l) \frac{(\epsilon_{\mathbf{k}+\mathbf{q}} - \epsilon_{\mathbf{k}} - \epsilon_{\mathbf{k}+\mathbf{Q}+\mathbf{q}} + \epsilon_{\mathbf{k}+\mathbf{Q}})^2}{(i\omega_m - \epsilon_{\mathbf{k}+\mathbf{Q}+\mathbf{q}} + \epsilon_{\mathbf{k}+\mathbf{Q}})^2 (i\omega_m - \epsilon_{\mathbf{k}+\mathbf{q}} + \epsilon_{\mathbf{k}})^2} \\ \times [G(\mathbf{k}, \varepsilon_n) - G(\mathbf{k} + \mathbf{q}, \varepsilon_n + \omega_m)] [G(\mathbf{k} + \mathbf{Q}, \varepsilon_n + \Omega_l) - G(\mathbf{k} + \mathbf{Q} + \mathbf{q}, \varepsilon_n + \Omega_l + \omega_m)], \quad (5.3)$$

where $G(\mathbf{k}, \varepsilon_n) = (i\varepsilon_n - \epsilon_{\mathbf{k}} + \mu)^{-1}$ and $\epsilon_{\mathbf{k}} = v_D k$ (an overall factor of 2 in Eq. (5.3) is due to valley degeneracy). We focus on the range of momenta and frequencies denoted far away from both continua boundaries, i.e., on the range $v_D q \ll \omega \ll \mu$. This region is denoted as C in Fig. 6. To order q^2 , diagrams *a-c* yield (see Appendix D 1 for details)

$$\text{Im}\chi_2^{(S,E)}(\mathbf{q}, \omega) = \frac{e^4}{\pi^2 v_D^2} \left[\frac{2}{3} \frac{q^2}{\omega} \int_0^{\Lambda_Q} \frac{dQ Q}{(Q + \kappa)^2} - \frac{1}{5} \frac{q^2 \omega}{\kappa^2 v_D^2} \ln \frac{v_D \kappa}{|\omega|} \right]. \quad (5.4)$$

The first term in Eq. (5.4) is not specific to whether the system is Galilean-invariant or not, while the second term is specific for a DFL. For the charge susceptibility, the choice of the upper-limit cutoff (Λ_Q) in the first term is arbitrary because this term cancels out with the corresponding contribution from the Aslamazov-Larkin (AL) diagrams (*d* and *e* in Fig. 5).⁵⁷

To order q^2 , the contribution from the AL diagrams can be written as

$$\chi_2^{(AL)}(\mathbf{q}, \omega_m) = 16 \int \int \frac{d^2 Q d\Omega_l}{(2\pi)^3} U(\mathbf{Q}, \Omega_l) U(\mathbf{Q} - \mathbf{q}, \Omega_l - \omega_m) \\ \times [\mathcal{T}^2(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) + |\mathcal{T}(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m)|^2],$$

of small Q scattering, when the phase factors in the matrix elements of spinor wavefunctions can be replaced by unity. At this level, the information about the Dirac nature of the system enters only via the linear dispersion of electronic excitation and also via the additional (two-fold) valley degeneracy. As in Ref. 56, the contributions from the self-energy and exchange diagrams (*a-c* in Fig. 5), can be combined as

where

$$\mathcal{T}(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) = \int \int \frac{d^2 k d\varepsilon_n}{(2\pi)^3} G(\mathbf{k}, \varepsilon_n) G(\mathbf{k} + \mathbf{q}, \varepsilon_n + \omega_m) \\ \times G(\mathbf{k} + \mathbf{Q}, \varepsilon_n + \Omega_l) \quad (5.6)$$

is a “triangle” formed by three Green’s functions. To one-loop order, the dynamically screened Coulomb potential in Eq. (5.5) can be replaced by the static one. Under the same conditions as for Eq. (5.4), the AL contribution is reduced to (see Appendix D 2 for details)

$$\text{Im}\chi_2^{(AL)}(\mathbf{q}, \omega) = \frac{e^4}{\pi^2 v_D^2} \left[-\frac{2}{3} \frac{q^2}{\omega} \int_0^{\Lambda_Q} \frac{dQ Q}{(Q + \kappa)^2} + \frac{2}{5} \frac{q^2 \omega}{\kappa^2 v_D^2} \ln \frac{v_D \kappa}{|\omega|} \right]. \quad (5.7)$$

On adding up Eqs. (5.4) and (5.7), the first terms in each of the equations cancel each other, and we obtain the total $\mathcal{O}(q^2)$ contribution to the charge susceptibility as

$$\text{Im}\chi_{c,2}^{\text{irr}}(\mathbf{q}, \omega) = \frac{q^2 \omega}{80\pi^2 \mu^2} \ln \frac{v_D \kappa}{|\omega|}. \quad (5.8)$$

One can see that $\text{Im}\chi_{c,2}^{\text{irr}}(\mathbf{q}, \omega)$ in the equation above and the $T = 0$ value of the longitudinal conductivity (5.5) in Eq. (3.19) do satisfy the Einstein relation, Eq. (5.1).

The $\mathcal{O}(q^2)$ result for the charge susceptibility suffices to obtain the $q = 0$ limit of the conductivity via the Einstein relation. However, if the goal is to find the charge susceptibility in the entire region C in Fig. 5, one also needs to calculate the $\mathcal{O}(q^4)$ term. Such a calculation was performed in Ref. 39, where it was shown that the $\mathcal{O}(q^4)$ term in the charge susceptibility behaves as q^4/ω^3 . For

completeness, we verified this result in a different way: by calculating the conductivity to order q^2 first and then using the Einstein relation. The conductivity was calculated by using the method developed in Ref. 46, in which one extracts the conductivity from the rate of photon absorption by interacting electrons. Deferring the result to forthcoming publication,⁵⁸ we present only the result here

$$\text{Re}\sigma(\mathbf{q}, \omega) = \frac{e^2}{24\pi^2} \left[\frac{\omega^2}{10\mu^2} \left(1 + 4\pi^2 \frac{T^2}{\omega^2} \right) \left(3 + 4\pi^2 \frac{T^2}{\omega^2} \right) \ln \frac{v_D \kappa}{\max\{\omega, 2\pi T\}} + \frac{q^2 \kappa^2}{m^{*2} \omega^2} \left(1 + 4\pi^2 \frac{T^2}{\omega^2} \right) \ln \frac{k_F}{\kappa} \right], \quad (5.9)$$

where $m^* = k_F/v_D$. The first term coincides with the $q = 0$ limit of the conductivity in Ref. (3.19), while the second term is the $\mathcal{O}(q^2)$ contribution. Parenthetically, we note that the $\mathcal{O}(q^2)$ is the same as a in a Galilean-invariant 2D FL (with $m^* \rightarrow k_F/v_F$). In this regard, our result disagrees with that of Ref. 46, where

it was argued that in the Galilean-invariant case $\text{Re}\sigma = (e^2/12\pi^2)(q^2/k_F^2)(1 + 4\pi^2 T^2/\omega^2) \ln(v_F \kappa / \max\{\omega, T\})$. We find that such a term is, indeed, present but it is subleading to the $\mathcal{O}(q^2)$ term in Eq. (5.9) for $\omega \ll v_F \kappa$.

Substituting Eq. (5.9) into the Einstein relation, we obtain the charge susceptibility to order q^4 as

$$\text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega) = \frac{1}{24\pi^2} \left[\frac{q^2 \omega}{10\mu^2} \left(1 + 4\pi^2 \frac{T^2}{\omega^2} \right) \left(3 + 4\pi^2 \frac{T^2}{\omega^2} \right) \ln \frac{v_D \kappa}{\max\{\omega, 2\pi T\}} + \frac{q^4 \kappa^2}{m^{*2} \omega^3} \left(1 + 4\pi^2 \frac{T^2}{\omega^2} \right) \ln \frac{k_F}{\kappa} \right], \quad (5.10)$$

The $T = 0$ limit of the $\mathcal{O}(q^2)$ term in Eq. (5.10) coincides with our previous result in Eq. (5.8). At $T = 0$, the $\mathcal{O}(q^2)$ and $\mathcal{O}(q^4)$ terms in $\text{Im}\chi_c^{\text{irr}}$ become comparable at $\omega \sim \omega_p(q)$, where $\omega_p(q) = 2\sqrt{\mu e^2 q}$ is the plasmon dispersion in graphene. Since the plasmon dispersion lies within region C in Fig. 5, both these terms need to be taken

into account.

B. Total charge susceptibility and plasmon damping

We now analyze the imaginary part of the total charge susceptibility, obtained by summing up RPA diagrams with bubbles given by χ_c^{irr} :

$$\text{Im}\chi_c(\mathbf{q}, \omega) = \frac{\text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega)}{[1 + U_0(\mathbf{q})\text{Re}\chi_c^{\text{irr}}(\mathbf{q}, \omega)]^2 + [U_0(\mathbf{q})\text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega)]^2}, \quad (5.11)$$

or, on using Eq. (5.1),

$$\text{Im}\chi_c(\mathbf{q}, \omega) = \frac{q^2}{e^2 \omega} \frac{\text{Re}\sigma(\omega)}{\left[1 - \frac{2\pi q}{\omega} \text{Im}\sigma(\mathbf{q}, \omega) \right]^2 + \left[\frac{2\pi q}{\omega} \text{Re}\sigma(\mathbf{q}, \omega) \right]^2}. \quad (5.12)$$

To lowest order in ee interaction, $\text{Im}\sigma(\mathbf{q}, \omega)$ can be replaced by its non-interacting limit: $\text{Im}\sigma(\mathbf{q}, \omega) =$

$ne^2/m^* \omega$. Equation (5.12) is then reduced to

$$\text{Im}\chi_c(\mathbf{q}, \omega) = \frac{q^2}{e^2 \omega} \frac{\text{Re}\sigma(\mathbf{q}, \omega)}{\left[1 - \frac{\omega_p^2(q)}{\omega^2} \right]^2 + \left[\frac{2\pi q}{\omega} \text{Re}\sigma(\mathbf{q}, \omega) \right]^2}. \quad (5.13)$$

The second term in the denominator describes the damping of the plasmon by ee interaction. From now and till

the end of this section, we will focus on the $T = 0$ limit.

For $v_D q \ll \omega \ll \omega_p(q)$, the unity in the first term and the entire second term in the denominator of Eq. (5.13) can be neglected, while the conductivity can be approximated by the $\mathcal{O}(q^2)$ term in Eq. (5.9). This yields

$$\text{Im}\chi_c(\mathbf{q}, \omega) \approx \frac{q^2 \omega^3}{e^2 \omega_p^4(q)} \text{Re}\sigma \sim \frac{q^2 \omega}{\mu^2} \ln \frac{k_F}{\kappa}. \quad (5.14)$$

For $\omega_p(q) \ll \omega \ll v_D \kappa$, the leading term in the denominator of Eq. —eqrefctchi is unity, and the total and irreducible susceptibilities are almost the same:

$$\text{Im}\chi_c(\mathbf{q}, \omega) \approx \text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega) \sim \frac{q^2 \omega}{\mu^2} \ln \frac{v_D \kappa}{|\omega|}. \quad (5.15)$$

As we see, the asymptotics of $\text{Im}\chi_c(\mathbf{q}, \omega)$ for $\omega \ll \omega_p(q)$ and $\omega \gg \omega_p(q)$ differ only in the logarithmic factor. The imaginary part of χ_c , as given by Eq. (5.8), is plotted in Fig. 7 as a function of frequency at finite q .

We now use the results for the dissipative parts of the longitudinal conductivity and charge susceptibility to derive the plasmon damping coefficient, deduced from the position of the pole in Eq. (5.13) at $\omega = \omega_p(q) - i\Gamma(q)$. According to Eq. (5.13), the damping coefficient near the plasmon pole is given by

$$\Gamma(\mathbf{q}) = \pi q \text{Re}\sigma(\mathbf{q}, \omega = \omega_p(q)). \quad (5.16)$$

Substituting Eq. (5.9) into Eq. (5.16), we obtain

$$\Gamma(q) = \frac{e^2 \kappa}{160\pi} \frac{q^2}{k_F^2} \left(\ln \frac{\kappa}{q} + \frac{20}{3} \ln \frac{k_F}{\kappa} \right). \quad (5.17)$$

It is interesting to compare this result with that for a Galilean-invariant 2D FL with the same number density:⁵⁸

$$\Gamma_{\text{GI}}(q) = \frac{e^4 q^2}{12\pi E_F} \ln \frac{k_F}{\kappa}. \quad (5.18)$$

One can see that the damping coefficients in Eqs. (5.17) and (5.18) differ just by numerical and logarithmic factors. The reason is that the $q = 0$ part of the conductivity in Eq. (5.9), which is specific for a DFL, and the q^2 part, which is present even in a Galilean-invariant FL, become comparable at $\omega \sim \omega_p(q)$.

VI. OTHER DIRAC SYSTEMS AND RELATION TO THE EXPERIMENT

In this section, we discuss the ω/T scaling of the optical conductivity due to ee interactions in other types of DFLs.

A. Bilayer graphene

For the case of Bernal-stacked bilayer graphene (BLG), the effective low-energy Hamiltonian resembles the Dirac-like Hamiltonian of monolayer graphene, Eq.(2.7b), but

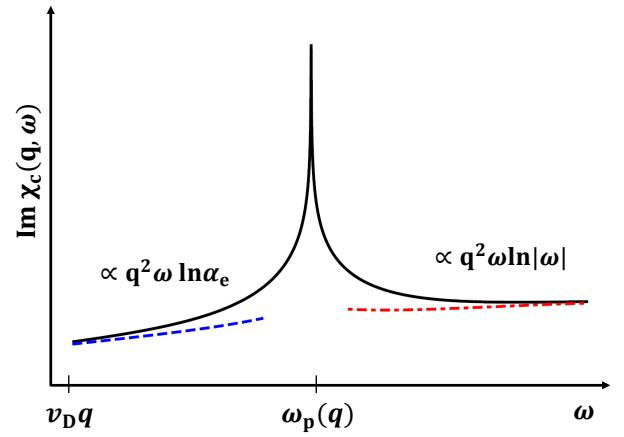


Figure 7. Log-log scale. Solid: the imaginary part of the total charge susceptibility for doped graphene, as given by Eq. (5.13) for $q/k_F = 10^{-4}$ and $\alpha_e = e^2/v_D = 0.8$. Dashed and dot-dashed: the asymptotic limits given by Eq. (5.14) and Eq. (5.15), respectively.

with quadratic terms on the anti-diagonal instead of linear ones.⁵⁹ Therefore, the energy eigenvalues are $\epsilon_{\mathbf{k}}^{\pm} = \pm k^2/2\tilde{m}$, where $\tilde{m} = \gamma_1/2v_D^2$ and γ_1 is the interlayer coupling between the nearest sites. In this approximation, the system is Galilean invariant, and intraband ee scattering does not give rise to a finite optical conductivity. To get a finite conductivity, one needs to find corrections to the quadratic dispersion. We adopt a standard model for BLG,⁵⁹ which includes intralayer hopping between A and B sites (with coupling γ_0), interlayer hopping between the nearest A sites and the nearest B sites (with couplings γ_1 and γ_3 , respectively), but neglects interlayer hopping between A and B sites. In this model the lowest branch of the conduction band is given by⁵⁹

$$\epsilon_{\zeta, \mathbf{k}}^+ = \left\{ \frac{\gamma_1^2}{2} + \left(v_D^2 - \frac{v_3^2}{2} \right) k^2 - \left[\frac{\gamma_1^4}{4} + \gamma_1^2 \left(v_D^2 - \frac{v_3^2}{2} \right) k^2 + 2\zeta v_3 v_D^2 k^3 \cos 3\theta_{\mathbf{k}} + v_3^2 \left(v_D^2 + \frac{v_3^2}{4} \right) k^4 \right]^{1/2} \right\}^{1/2}, \quad (6.1)$$

where, as before, $v_D = 3\gamma_0 a/2$ and $v_3 = 3\gamma_3 a/2$. For a realistic BLG, $\gamma_1 \sim \gamma_3 \ll \gamma_0$ (Ref. 59) and, therefore, $v_3 \ll v_D$. For $\gamma_1 \ll \mu \ll \gamma_0$ the states near the FS have a Dirac dispersion with a slope of v_D , and we are back to the case of monolayer graphene (MLG), discussed in Sec. III B. For $\mu \ll \gamma_1$, all the k -dependent terms under $[\dots]^{1/2}$ in Eq. (6.1) are subleading to the γ_1^4 term. Expanding $[\dots]^{1/2}$ to order k^6 and neglecting v_3 compared to v_D whenever possible, we obtain

$$\epsilon_{\zeta, \mathbf{k}}^+ = \left\{ v_3^2 k^2 + \left(\frac{k^2}{2\tilde{m}} \right)^2 - \frac{2\zeta v_D^2 v_3 k^3}{\gamma_1} \cos 3\theta_{\mathbf{k}} - \frac{2v_D^6 k^6}{\gamma_1^4} \right\}^{1/2}. \quad (6.2)$$

where $\zeta = \pm 1$ denotes the K_{\pm} point. For $\mu \ll \tilde{m}v_3^2$ the first term under the square root in the equation above is the dominant one, and we are again back to a Dirac dispersion, but with a slope of v_3 rather than v_D . This is another case of a DFL discussed in Sec. III B. A specific to BLG regime occurs for $\tilde{m}v_3^2 \ll \mu \ll \gamma_1$. In this regime the quartic term is the dominant one. Expanding to first order in the subleading terms and omitting a constant, $\tilde{m}v_3^2$ term, we obtain

$$\epsilon_{\zeta, \mathbf{k}} = \frac{k^2}{2\tilde{m}} - \zeta v_3 k \cos 3\theta_{\mathbf{k}} - \frac{k^4}{4\tilde{m}^2 \gamma_1}. \quad (6.3)$$

The first term in the equation above corresponds to a Galilean-invariant FL with $\text{Re}\sigma(\omega, T) = 0$. The second, anisotropic term gives rise to a finite $\text{Re}\sigma(\omega, T)$, described by the Gurzhi formula, Eq. (1.1). As in the case of MLG with trigonal warping, discussed in Sec. III C, the mechanism of dissipation is ee scattering between inequivalent valleys. Finally, the last term is an isotropic correction to the quadratic dispersion, which gives rise to a finite $\text{Re}\sigma(\omega, T)$, described by the DFL form, Eq. (3.19). Therefore, the conductivity of BLG has the same general form as in Eqs. (3.25) and (3.26) for MLG, but with different coefficients. To estimate the coefficient of the DFL part, we neglect the trigonal-warping term in Eq. (6.3) and treat the quartic term as a correction to the quadratic one. Equation (3.13) then gives a non-parabolicity coefficient as $|w| = 4\mu/\gamma_1 \ll 1$. On the other hand, the coefficient of the Gurzhi part is proportional to the magnitude of the trigonal-warping term in Eq. (6.3), i.e., to $(v_3/v_F)^2$, where $v_F = k_F/\tilde{m}$. Combining the two contributions, we express the conductivity of BLG as

$$\begin{aligned} \text{Re}\sigma_{\text{BLG}}(\omega, T) = e^2 & \left[c_1 \mathcal{D} \left(\frac{T}{\omega} \right) \left(\frac{\omega}{\gamma_1} \right)^2 \right. \\ & \left. + c_2 \alpha_e'^2 |\ln \alpha_e'| \frac{\tilde{m}v_3^2}{\mu} \mathcal{G} \left(\frac{T}{\omega} \right) \right] \quad (6.4) \end{aligned}$$

, where $\mathcal{D}(x) = (1 + 4\pi^2 x^2)(3 + 8\pi^2 x^2)$ and $\mathcal{G}(x) = 1 + 4\pi^2 x^2$ are the DFL and Gurzhi scaling functions, respectively, $\alpha_e' = e^2/v_F$ is the Coulomb coupling constant for BLG, and $c_{1,2} \sim 1$ are numerical coefficients. For a rough

estimate, we take $\omega \sim T$ and $\alpha_e' \sim 1$. Then the competition between the two terms in Eq. (6.4) is determined by the ratio of ω to $\Omega_{\text{TW}} \equiv \gamma_1 \sqrt{\tilde{m}v_3^2}/\mu$. If the chemical potential is in the interval $\tilde{m}v_3^2 < \mu < \gamma_1(\tilde{m}v_3^2/\gamma_1)^{1/3}$, then $\Omega_{\text{TW}} > \mu$, and the Gurzhi part dominates over the DFL one for all frequencies of interest. If the chemical potential is in the interval $\gamma_1(\tilde{m}v_3^2/\gamma_1)^{1/3} < \mu < \gamma_1$, then $\Omega_{\text{TW}} < \mu$, and the Gurzhi part dominates over the DFL one for $\omega < \Omega_{\text{TW}}$, while it is vice versa for $\Omega_{\text{TW}} < \omega < \mu$.

B. Surface state of a three-dimensional topological insulator

Another 2D Dirac system is the surface state of a 3D topological insulator, which contains a single Dirac cone at the Γ point of a 2D Brillouin zone. With hexagonal warping taken into account, the dispersion is given by⁶⁰

$$\epsilon_{\mathbf{k}}^{\pm} = \pm \sqrt{v_D^2 k^2 + \lambda_{HW}^2 k^2 \cos^2(3\theta_{\mathbf{k}})}. \quad (6.5)$$

If hexagonal warping is neglected, the system is identical to a single-valley version of monolayer graphene. Consequently, the optical conductivity of the surface state is given by Eq. (3.19) divided by a factor of 2. However, the effect of crystalline anisotropy is different in the two systems. Trigonal warping in graphene, however weak, makes the K and K' valleys inequivalent. Consequently, inter-valley scattering gives rise to a FL behavior of the conductivity, described by the second term in Eq. (3.26). On the other hand, the Fermi contour of the topological surface state remains convex for μ less than some critical value, which depends on the warping parameter, λ_{HW} . As long as the Fermi contour is convex, the leading term in the optical conductivity scales as $\max\{\omega^4, T^4\}$ (Ref. 61), and the *dc* resistivity exhibits a non-monotonic T dependence shown in Fig. 4. For μ larger than a critical value, the system exhibits a conventional FL behavior, with $\text{Re}\sigma(\omega, T) \propto \max\{\omega^2, T^2\}$, etc. Except for a narrow range of μ near the convex-to-concave transition,⁶¹ the surface state does not exhibit a competition between the DFL and conventional FL behaviors but rather behaves either as a DFL (below the transition) or as a conventional FL (above the transition).

C. Doped three-dimensional Dirac/Weyl metal

Another important class of Dirac-Fermi liquids are 3D Dirac and Weyl metals, doped away from the Dirac point. The properties of these systems are discussed in a number of excellent reviews,⁶²⁻⁶⁵ so we will limit our discussion to a minimum. In the simplest case, a 3D Dirac/Weyl metal can be described by a system of N_v equivalent Dirac cones with spin degeneracy N_s . For non-interacting electrons and at $T = 0$, the optical conductivity of a Dirac/Weyl

metal is given by⁶⁶

$$\text{Re}\sigma(\omega) = \frac{ge^2}{24\pi} \frac{\omega}{v_D} \theta(\omega - 2\mu), \quad (6.6)$$

where $g = N_s N_v$. As in the 2D case, absorption is possible only due to interband transitions, which are allowed for $\omega > 2\mu$. Equation (6.6) also describes the limiting case of an undoped system at $\mu = 0$. The linear or quasi-linear scaling of $\text{Re}\sigma(\omega)$ with ω for $\omega > 2\mu$ was observed in a number of materials, including HgCdTe,⁶⁷ ZrTe₅,⁶⁸ Eu₂Ir₂O₇,^{69,70} and Cd₃As₂.⁷¹ can be described by a system of N_v equivalent Dirac cones with spin degeneracy N_s , its optical conductivity can be derived along the same lines as for (monolayer) graphene.

As in the 2D case, intraband absorption for $\omega \ll \mu$ becomes possible if one take *ee* interaction into account. Skipping the computational details, we present here the final result for the intraband conductivity of a 3D system with an isotropic Dirac spectrum:

$$\text{Re}\sigma(\omega, T) = \frac{Cg^2 e^3 k_F}{\sqrt{v_D}} \frac{\omega^2}{\mu^2} \left(1 + \frac{4\pi^2 T^2}{\omega^2}\right) \left(3 + \frac{8\pi^2 T^2}{\omega^2}\right). \quad (6.7)$$

where $C = 1/3840\pi^2$. In contrast to the 2D case, the integral over the momentum transfers in 3D is not logarithmically divergent, and typical Q are on the order of the interaction radius (κ). Therefore, Eq. (6.7) is valid only for a long-range interaction, when $\kappa \ll k_F$, rather than for any interaction, as it is the case for 2D. Once this condition is satisfied, the scaling form in Eq. (6.7) is also valid for any non-parabolic but isotropic dispersion, rather than only for the Dirac one.

As mentioned in Sec. III B, however, the interband contribution in 3D is of the same order as the intraband one; therefore, numerical prefactor C in a complete result would differ from the one in Eq. (6.7). A more detailed account of the 3D case will be published elsewhere.⁴⁹

D. Relation to the experiment

In this section, we discuss the feasibility of observing our predictions for the *ee* contribution to the conductivity in the experiment, focusing on the case of monolayer graphene. As it also the case for other materials, the main difficulty with identifying the *ee* contribution to the resistivity are the competing effects of scattering by impurities, defects and sample boundaries (*ei*) and electron-phonon (*eph*) scattering.

1. Optical measurement

At low temperatures, the main competing mechanism is *ei* scattering. At $T \rightarrow 0$ and high enough frequencies, the conductivity assumes a Drude-like form,

$$\text{Re}\sigma(\omega) = \frac{ne^2}{m^* \omega^2} \left(\frac{1}{\tau_i} + \frac{1}{\tau_J(\omega, 0)} \right), \quad (6.8)$$

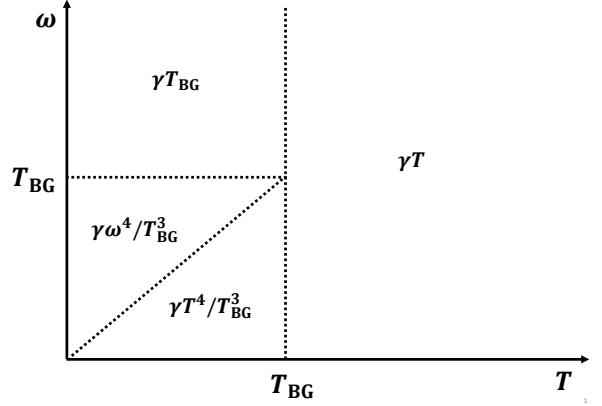


Figure 8. Frequency and temperature dependences of the current relaxation rate, $1/\tau_{\text{eph}}$, for scattering by 2D acoustical phonons in graphene. Here, $T_{\text{BG}} = 2k_F v_s$ is the Bloch-Grüneisen temperature, v_s is the speed of sound, and γ is the dimensionless coupling constant. Equations in the plot show the asymptotic behavior of $1/\tau_{\text{eph}}$ in a given region of ω and T .

where

$$\frac{1}{\tau_J(\omega, 0)} = \frac{1}{80\pi} \frac{\omega^4}{\mu^3} \ln \frac{v_D \kappa}{\omega} \quad (6.9)$$

is obtained by putting $T = 0$ in Eq. (3.26) and neglecting the trigonal warping term. For a rough estimate, one can also replace $v_D \kappa$ by μ in the argument of the logarithm. As frequency increases, the conductivity first decreases as $1/\omega^2$, reaches a minimum at

$$\omega_{\text{min}} = \mu \left(\frac{160\pi}{g_{dc} \ln \left(\frac{g_{dc}}{160\pi} \right)^{1/4}} \right)^{1/4}, \quad (6.10)$$

where $g_{dc} = 2\mu\tau_i$ is the conductance of a graphene monolayer at $T = 0$ in units of e^2/h , and then starts to increase as ω^2 . This nonmonotonic behavior is a signature of the *ee* contribution. Because our theory is valid only for $\omega \ll \mu$, we need to require that $\omega_{\text{min}} \lesssim \mu$ or $\left(g_{dc} \ln \left(g_{dc}/160\pi \right)^{1/4} / 160\pi \right)^{1/4} \gtrsim 1$. Formally, this condition requires $g_{dc} \gg 1$ but, because of a large numerical factor, $160\pi \approx 500$, and also of a small exponent, $1/4$, the condition is much more restrictive, and can only be satisfied in a sample with both high mobility *and* high carrier number density. These conditions are *not* met in the samples used in prior optical measurements.^{22,23,25}. For example, the highest conductance a sample used in Ref. 22 is $g_{dc} = 160$, at the gate voltage of 71 V, whereas we need g_{dc} to exceed at least 500. This explains why no minima in $\text{Re}\sigma(\omega)$ well below μ were observed in these studies. On the other hand, much higher number densities and thus higher conductances can be achieved in

samples with electrolytic gating. For example, the lowest residual resistance of $\rho \approx 38 \Omega$ measured in Ref. 72 at $n = 1.8 \times 10^{14} \text{ cm}^{-2}$ corresponds to $g_{dc} \approx 663$, which is above the required value.

If the temperature is not very low, one also needs to worry about the competing effect of *eph* scattering. If flexural phonons in graphene are quenched by a substrate and $\max\{\omega, T\}$ is less than the in-plane optical phonon frequency ($\omega_{\text{opt}} \approx 180 \text{ meV}$ ^{73,74}), the main mechanism that competes with *ee* scattering is scattering by in-plane acoustic phonons. Scattering by acoustic phonons is characterized by the Bloch-Grüneisen temperature ($T_{\text{BG}} = 2k_{\text{F}}v_{\text{s}}$, where v_{s} is the sound velocity), which separates the regimes of inelastic and quasielastic scattering. In the quasielastic regime ($\omega > T_{\text{BG}}$), the *eph* scattering rate is independent of ω , while the *ee* rate continues increase with ω . This allows one to identify the *ee* contribution, as it was done in classical experiments on good metals.^{75,76} When applying the same recipe to graphene though, one needs to keep in mind that it is a 2D, low-carrier system which harbors a Dirac rather than conventional FL. Because of these features, not only *ee* scattering but also *eph* scattering in graphene are quite distinct from those in good metals.

In 2D, the *eph* current relaxation rate scales as T^4 in the inelastic regime and at $\omega = 0$.^{72,77} Extending this result to finite ω , we obtain

$$\frac{1}{\tau_{\text{eph}}(\omega, T)} \sim \gamma \frac{(\omega^2 + 4\pi^2 T^2)(3\omega^2 + 8\pi^2 T^2)}{T_{\text{BG}}^3}, \quad (6.11)$$

where γ is the dimensionless *eph* coupling constant. (Note that the scaling form is the same as for a DFL.) In the quasielastic regime, $1/\tau_{\text{eph}}(\omega, T) \sim \gamma \max\{T, T_{\text{BG}}\}$ and is independent of ω . For numerical reasons, the actual crossover between the inelastic and quasielastic regimes occurs at $T_{\text{CBG}} \approx 0.2T_{\text{BG}}$ rather than at T_{BG} itself.^{72,77} The asymptotic limits of $1/\tau_{\text{eph}}(\omega, T)$ in the different regions of the (ω, T) plane are shown in Fig. 8. At the same time, the electron-electron contribution scales as $\max\{\omega^4 \ln |\omega|, T^4 \ln T\}$ all the way up to the chemical potential, which is larger than T_{BG} by a factor of at least $v_{\text{D}}/v_{\text{s}} \sim 50$. Even at a rather high number density of 10^{13} cm^{-2} , this interval is very wide: from 25 cm^{-1} to 1500 cm^{-1} .

2. dc measurement

In this section, we analyze the feasibility of detecting the *ee* contribution in a *dc* measurement. As shown in Sec. IV C, the T -dependence of the current relaxation rate due to a combined effect of the *ei* and *ee* mechanisms can be described by the following relation

$$\frac{1}{\tau_J(T)} = \frac{1}{\tau_i} f\left(\frac{\tau_i}{\tau_{\text{ee}}^*(T)}\right), \quad (6.12)$$

where $\tau_{\text{ee}}^*(T)$ is given by Eq. (3.31), and function $f(x)$ is such that $f(x \rightarrow 0) = 1 + x + \dots$, $f(x \rightarrow \infty) =$

$1 - \mathcal{O}(1/x)$, and $f(x)$ has a maximum at $x \sim 1$ (see Fig. 4). For residual mobility of $10^5 \text{ cm}^2/\text{Vs}$ and number density $n = 10^{12} \text{ cm}^{-2}$, we find $1/\tau_i \approx 0.6 \text{ meV}$, and thus a crossover temperature at which $\tau_i = \tau_{\text{ee}}(T_i)$, is about 180 K.

The *eph* scattering rate can be written as^{72,77}

$$\frac{1}{\tau_{\text{eph}}} = \begin{cases} 64\pi^3 \gamma T^4 / 15T_{\text{BG}}^3 & \text{for } T \ll T_{\text{BG}}; \\ \gamma T, & \text{for } T \gg T_{\text{BG}}, \end{cases} \quad (6.13)$$

where $\gamma = D^2 \mu / 4\rho_m v_s^2 v_D^2 \equiv \mu/\mu_{\text{eph}}$, D is the deformation-potential constant, and ρ_m is the mass density of graphene. For $T \gg T_{\text{BG}}$ scattering is quasielastic and isotropic; therefore, the scattering rate is proportional to the electronic density of states, which is small at low doping. This smallness is reflected in the large value of parameter μ_{eph} : from the experimentally measured slope of the linear-in- T resistivity⁷² we deduce $\mu_{\text{eph}} \approx 2.7 \text{ eV}$; therefore, $\gamma \ll 1$ for all experimentally achievable doping levels.

Coming back to *ee* scattering, we estimated a crossover temperature between the two regimes described by Eq. (6.12) to be around 180 K, which is substantially higher than the Bloch-Grüneisen crossover temperature: $T_{\text{CBG}} \sim 5-15 \text{ K}$ for $n = 10^{12}-10^{13} \text{ cm}^{-2}$. Therefore, for $T < T_{\text{CBG}}$, the electron-electron contribution to the scattering rate is given just by Eq. (3.26). Up to a log, both the *ee* scattering rate and the low- T part of the *eph* scattering rate scale as T^4 ; however, the former is inversely proportional to μ^3 while the latter is inversely proportional to $T_{\text{BG}}^3 \ll \mu^3$. As a result, *eph* scattering dominates over *ee* one with a large margin: $\tau_{\text{eph}}/\tau_{\text{ee}}^* \sim 10^{-4}$ at $n = 10^{12} \text{ cm}^{-2}$.

For $T > T_{\text{CBG}}$ the competition between *ee* and *eph* scattering mechanisms is more interesting. In this regime, *eph* scattering is quasielastic and thus plays the same role as *ei* scattering. At sufficiently high T , *eph* scattering is stronger than *ei* one, and one can replace τ_i in Eq. (6.12) by the high- T limit of Eq. (6.13); then

$$\frac{1}{\tau_J(T)} = \frac{1}{\tau_{\text{eph}}(T)} f\left(\frac{\tau_{\text{eph}}(T)}{\tau_{\text{ee}}^*(T)}\right) \quad (6.14)$$

Using Eq. (3.31) and the first line of Eq. (6.13), we estimate the crossover temperature between the two regimes described by Eq. (6.14) as

$$T_{\text{ph}} = (15/2\pi^3)^{1/3} \mu^{4/3} / \mu_{\text{eph}}^{1/3}, \quad (6.15)$$

which amounts to $T_{\text{ph}} = 270 - 1300 \text{ K}$ for $n = 10^{12} - 10^{13} \text{ cm}^{-2}$. For $T < T_{\text{ph}}$, the resistivity varies faster than T , i.e., as $T + \text{const} \times T^4 \ln T$, goes over a hump at $T \sim T_{\text{ph}}$, and then approaches the linear T -dependence again for $T > T_{\text{ph}}$ (see Fig. 9).

On the experimental side, the resistivity of graphene at low doping exhibits a crossover from a linear T dependence below 200 K to a superlinear one above 200 K,^{78,79} while no such a crossover is observed at higher doping.⁷² This is consistent with the behavior predicted

by Eq. (6.15), because the crossover temperature increases with n as $T_{\text{ph}} \propto n^{2/3}$. For the lowest n in Ref. 72 ($n = 1.36 \times 10^{13} \text{ cm}^{-2}$) we find $T_{\text{ph}} \approx 1550 \text{ K}$, which is well above the highest temperature measured. On the other hand, T_{ph} is within the measurement range for lower n used in Refs. 78 and 79. A superlinear resistivity was attributed alternatively to two-phonon scattering by flexural phonons,^{78,80} scattering on surface phonons in the SiO_2 substrate,^{79,81} or else to a crossover between degenerate and non-degenerate regimes in electron scattering by charged impurities.⁸² We submit, however, that ee scattering may also provide a plausible explanation of the superlinear scaling.

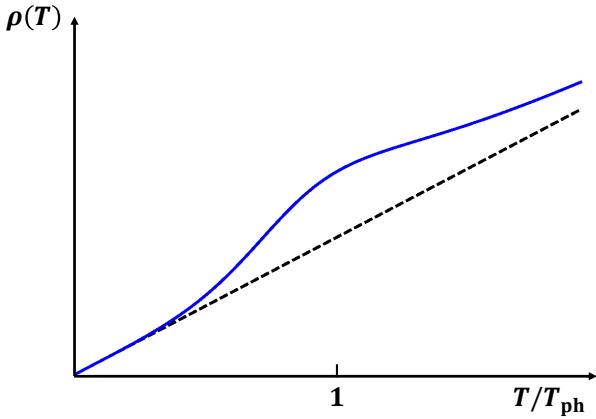


Figure 9. A sketch of the temperature dependence of the *dc* resistivity (in a.u.) of doped graphene in the presence of quasielastic electron-phonon scattering and electron-electron scattering. The temperature is normalized to crossover temperature T_{ph} , defined by Eq. (6.15). The straight dashed line is a pure electron-phonon contribution with a slope deduced from the experiment.⁷²

VII. CONCLUSIONS

In this paper, we have studied the effect of electron-electron (ee) interaction on the optical and *dc* conductivity of a non-Galilean-invariant but isotropic Fermi liquid (FL), focusing primarily on one representative example: a Dirac Fermi liquid (DFL). We studied a model of doped monolayer graphene with two inequivalent valleys at K_\pm points and considered both intra- and inter-valley ee scattering. If trigonal warping of Fermi contours is neglected, the valleys became degenerate. We showed that the leading contribution to the optical conductivity comes from processes with small momentum transfers, $Q \ll k_F$. In this case, the intra- and inter-valley interactions contribute equally, and the current relaxation rate acquires a universal form, reproduced below for the

reader's convenience:

$$1/\tau_J \propto (\omega^2 + 4\pi^2 T^2) (3\omega^2 + 8\pi^2 T^2) \ln \frac{\Lambda}{\max\{|\omega|, T\}}, \quad (7.1)$$

This form replaces the universal Gurzhi form for a conventional FL, Eq. (1.1). In 2D, Eq. (7.1) form is *universal*—it is valid for form of interaction (as long as it is finite at $Q \rightarrow 0$ and vanishes at $Q \rightarrow \infty$) and for any isotropic but non-parabolic dispersion, rather than only for a Dirac one. The quartic (as opposed to quadratic) scaling reflects the fact that the interaction between electrons on an isotropic Fermi surface (FS) does not relax the current, and one need to invoke the states close to but away from the FS.

Weak anisotropy due to trigonal warping breaks the valley degeneracy, and inter-valley scattering give rises to a Gurzhi-like contribution to the current relaxation rate. Although this contribution scales as $\max\{\omega^2, T^2\}$, it comes with a small prefactor proportional to doping, and thus competes with a quartic, DFL contribution.

Equation (7.1) is valid only for $\omega \gg 1/\tau_J(0, T)$ and *cannot* be extended to the static limit. In the absence of other current-relaxing processes, $1/\tau_J(\omega \rightarrow 0, T)$ is given by the sum of delta function at $\omega = 0$ and a regular part in Eq. (7.1) at $\omega = 0$. This form is characteristic for any non-Galilean invariant system, which has finite optical conductivity due to ee interactions at finite frequency but infinite *dc* conductivity.

We also studied the interplay between electron-impurity (ei) and electron-electron (ee) scattering via a semi-classical Boltzmann equation. If ee scattering is less frequent than ei one, the Mathiessen rule is satisfied, in a sense that the total current relaxation rate is the sum of the impurity one and the quartic correction due to ee interaction. However, this is not true if the two rates are comparable. In the opposite limit of more frequent ee scattering, the optical conductivity can be written as the sum of two Drude peaks, with widths given by the ei and ee relaxation rates, respectively. This result can also be extended to the *dc* limit, where the resistivity approaches the residual value for temperatures both below and *above* a crossover temperature, T_i , at which the ei and ee current relaxation rates are equal. In between the two limits, the resistivity varies non-monotonically with T , exhibiting a maximum at $T \sim T_i$, see Fig. 4. For $T \ll T_i$, the total relaxation rate is the sum of the ei and ee contributions. However, our estimates show that such a non-monotonic behavior would be masked by inelastic electron-phonon *eph* scattering for T below the Bloch-Grüneisen temperature, T_{BG} . For $T > T_{\text{BG}}$, ei scattering is replaced by quasielastic *eph* scattering. In this case, the resistivity increases faster than T for T below a crossover temperature, T_{eph} , exhibits a hump at $T \sim T_{\text{eph}}$, and then approaches a linear behavior again, see Fig. 9.

We also have studied the dynamical charge response of doped graphene, at $T = 0$ and in the absence of disor-

der, to one-loop order in a dynamically screened Coulomb interaction. We showed the imaginary part of the (irreducible) charge susceptibility scales $\text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega) \propto q^2\omega \ln|\omega|$ outside the particle-hole continua, i.e., for $v_D q \ll \omega \ll v_D \kappa \ll \mu$. This scaling is a direct consequence of broken Galilean invariance in graphene, which implies that the current is not conserved. We verified that our results for $\text{Re}\sigma(\omega, T = 0)$ and $\text{Im}\chi_c^{\text{irr}}(\mathbf{q}, \omega)$ satisfy the Einstein relation. The plasmon damping rate is proportional to q^2 in a DFL, which is same as in Galilean-invariant FL.

Towards the end, we discussed the optical conductiv-

ity for a number of related systems: 3D Dirac/Weyl fermions, bilayer graphene, and the surface state of a 3D topological insulator, as well as the implications of our results for the existing and future experiments.

ACKNOWLEDGMENTS

We are grateful to A. Chubukov, L. Glazman, A. Levchenko, A. Rosch, A. Kumar, J. Schmalian, O. Vafek, G. Vignale, and V. Yudson for stimulating discussions. This work was supported by the National Science Foundation under Grant No. NSF DMR-1720816.

Appendix A: Optical conductivity at finite T and ω from the Kubo formula

In this section, we derive a general expression for the optical conductivity in a uniform electric field, and at finite temperature and frequency, to lowest order in electron-electron interaction, Eq. (3.7) of the main text. We adopt the formalism used by Rosch⁸ to find the optical conductivity at zero temperature, using the Kubo formula and Heisenberg equation of motion. The Kubo formula reads

$$\sigma_{\ell m}(\mathbf{q}, \omega) = \frac{i}{\omega} [\Pi_{\ell m}(\mathbf{q}, \omega) + \Pi_{\ell m}^{\text{dia}}], \quad (\text{A1})$$

where

$$\begin{aligned} \Pi_{\ell m}(\mathbf{q}, \omega) &= -i \int_{-\infty}^{\infty} dt e^{i\omega(t-t')} \Theta(t-t') \langle [J_{\ell}^{\dagger}(\mathbf{q}, t), J_m(\mathbf{q}, t')] \rangle \\ &= -i \int_0^{\infty} dt e^{i\omega t} \langle [J_{\ell}^{\dagger}(\mathbf{q}, t), J_m(\mathbf{q}, 0)] \rangle \end{aligned} \quad (\text{A2})$$

is the current-current correlation function and angular brackets denote averaging over thermal distribution.⁸³ Next, $\Pi_{\ell m}^{\text{dia}}$ is the diamagnetic part of the conductivity. Because Gauge invariance guarantees that $\Pi_{\ell m}^{\text{dia}} = -\Pi_{\ell m}(\mathbf{q} = 0, \omega \rightarrow 0)$ (Ref. 44), an explicit form of $\Pi_{\ell m}^{\text{dia}}$ is not needed.

For a homogeneous time varying field, $\mathbf{q} = 0$ and $\Pi_{\ell m}(\omega) \equiv \Pi_{\ell m}(0, \omega)$ becomes

$$\Pi_{\ell m}(\omega) = -i \int_0^{\infty} dt e^{i\omega t} \langle [J_{\ell}(t), J_m(0)] \rangle. \quad (\text{A3})$$

Integrating by parts and using the Heisenberg equation of motion $d\mathbf{J}/dt = -i[\mathbf{J}(t), H]$ along with the cyclic property of a trace, we rewrite $\Pi_{\ell m}(\omega)$ as

$$\begin{aligned} \Pi_{\ell m}(\omega) &= \frac{1}{i\omega} \langle [J_{\ell}(0), J_m(0)] \rangle - \int_0^{\infty} dt \frac{e^{i\omega t}}{\omega} \langle \left[\frac{dJ_{\ell}(t)}{dt}, J_m(0) \right] \rangle \\ &= \frac{i}{\omega} \int_0^{\infty} dt e^{i\omega t} \langle [J_{\ell}(t), [J_m(0), H]] \rangle, \end{aligned} \quad (\text{A4})$$

where H is the total Hamiltonian. One more integration by parts leads to

$$\omega^2 \Pi_{\ell m}(\omega) = -\langle [J_{\ell}(0), K_m(0)] \rangle - \langle [K_{\ell}(t), K_m(0)] \rangle_{\omega}, \quad (\text{A5})$$

where $\mathbf{K}(t) = [\mathbf{J}(t), H]$ and $\langle K_{\ell}(t), K_m(0) \rangle_{\omega} = -i \int_0^{\infty} dt e^{i\omega t} \langle [[J_{\ell}(t), H], [J_m(0), H]] \rangle$. Because the first term in the equation above is purely real, the real part of the optical conductivity is given by

$$\text{Re}\sigma_{\ell m}(\omega, T) = \frac{1}{\omega^3} \text{Im} \langle [K_{\ell}(t), K_m(0)] \rangle_{\omega}. \quad (\text{A6})$$

The Hamiltonian of the system is given by

$$H = \sum_{\varsigma \mathbf{k} s} \epsilon_{\varsigma, \mathbf{k}, s} \alpha_{\varsigma, \mathbf{k}, s}^{\dagger} \alpha_{\varsigma, \mathbf{k}, s} + \frac{1}{2} \sum_{\varsigma \varsigma'} \sum_{\mathbf{k} \mathbf{k}' \mathbf{p}'} \sum_{s s'} U_0(|\mathbf{k} - \mathbf{k}'|) \alpha_{\varsigma, \mathbf{k}', s}^{\dagger} c_{\varsigma', \mathbf{p}', s'}^{\dagger} \alpha_{\varsigma', \mathbf{p}, s'} \alpha_{\varsigma, \mathbf{k}, s} \delta(\mathbf{k}' + \mathbf{p}' - \mathbf{k} - \mathbf{p}), \quad (\text{A7})$$

where ς is the valley index. For the case of graphene, $\varsigma = \pm$ denote the two Dirac points K_ς . For a density-density interaction, such the one in the equation above, the $\mathbf{q} = 0$ current operator is

$$\mathbf{J} = e \sum_{\varsigma \mathbf{k} s} \mathbf{v}_{\varsigma, \mathbf{k}} \alpha_{\varsigma, \mathbf{k}, s}^\dagger \alpha_{\varsigma, \mathbf{k}, s}, \quad (\text{A8})$$

where $\mathbf{v}_{\varsigma, \mathbf{k}} = \nabla_{\mathbf{k}} \epsilon_{\varsigma, \mathbf{k}, s}$ is the group velocity. Correspondingly, $\mathbf{K}(t)$ is given by

$$\begin{aligned} \mathbf{K}(t) &= [\mathbf{J}(t), H] \\ &= \frac{e}{2} \sum_{\varsigma \varsigma'} \sum_{\mathbf{k} \mathbf{p} \mathbf{k}' \mathbf{p}'} \sum_{s s'} U_0(|\mathbf{k} - \mathbf{k}'|) (\mathbf{v}_{\varsigma, \mathbf{k}'} + \mathbf{v}_{\varsigma', \mathbf{p}'} - \mathbf{v}_{\varsigma, \mathbf{k}} - \mathbf{v}_{\varsigma', \mathbf{p}}) \alpha_{\varsigma, \mathbf{k}', s}^\dagger \alpha_{\varsigma', \mathbf{p}', s'}^\dagger \alpha_{\varsigma', \mathbf{p}, s'} \alpha_{\varsigma, \mathbf{k}, s} \delta(\mathbf{k}' + \mathbf{p}' - \mathbf{k} - \mathbf{p}) \end{aligned} \quad (\text{A9})$$

and its correlator by

$$\begin{aligned} \langle [K_\ell(t), K_m(0)] \rangle_\omega &= -i \frac{e^2}{4} \int_0^\infty dt e^{i\omega t} \sum_{\varsigma_1 \varsigma'_1 \varsigma_2 \varsigma'_2} \sum_{s_1 s'_1 s_2 s'_2} \sum_{\mathbf{k}_1 \mathbf{p}_1 \mathbf{k}'_1 \mathbf{p}'_1} \sum_{\mathbf{k}_2 \mathbf{p}_2 \mathbf{k}'_2 \mathbf{p}'_2} \\ &\quad \times \left(v_{\varsigma_1, \mathbf{k}'_1}^\ell + v_{\varsigma'_1, \mathbf{p}'_1}^\ell - v_{\varsigma_1, \mathbf{k}_1}^\ell - v_{\varsigma'_1, \mathbf{p}_1}^\ell \right) \left(v_{\varsigma_2, \mathbf{k}'_2}^m + v_{\varsigma'_2, \mathbf{p}'_2}^m - v_{\varsigma_2, \mathbf{k}_2}^m - v_{\varsigma'_2, \mathbf{p}_2}^m \right) \\ &\quad \times U_0(|\mathbf{k}_1 - \mathbf{k}'_1|) U_0(|\mathbf{k}_2 - \mathbf{k}'_2|) \delta(\mathbf{k}'_1 + \mathbf{p}'_1 - \mathbf{k}_1 - \mathbf{p}_1) \delta(\mathbf{k}'_2 + \mathbf{p}'_2 - \mathbf{k}_2 - \mathbf{p}_2) \\ &\quad \times \langle [\alpha_{\varsigma_1, \mathbf{k}'_1, s_1}^\dagger(t) \alpha_{\varsigma'_1, \mathbf{p}'_1, s'_1}^\dagger(t) \alpha_{\varsigma_1, \mathbf{k}_1, s_1}(t) \alpha_{\varsigma_2, \mathbf{k}'_2, s_2}^\dagger(0) \alpha_{\varsigma'_2, \mathbf{p}'_2, s'_2}^\dagger(0) \alpha_{\varsigma'_2, \mathbf{p}, s'_2}(0) \alpha_{\gamma, \mathbf{k}_2, s_2}(0)] \rangle. \end{aligned} \quad (\text{A10})$$

Since $\langle [K_\ell(t), K_m(0)] \rangle_\omega$ is already quadratic in the interaction, to lowest order the expectation value of the commutator above can be calculated for free fermions. Using the time dependence of the operators, $\alpha_{\varsigma, \mathbf{k}, s}(t) = \alpha_{\varsigma, \mathbf{k}, s} e^{-i\epsilon_{\varsigma, \mathbf{k}} t}$, the integration over time can be done easily. The thermal average of the commutator is evaluated by applying Wick's theorem and using that $n_F(\epsilon_{\varsigma, \mathbf{k}}) = \langle \alpha_{\varsigma, \mathbf{k}, s}^\dagger \alpha_{\varsigma, \mathbf{k}, s} \rangle$ is the Fermi function. Taking the imaginary part of the correlation function, we finally arrive at

$$\begin{aligned} \text{Re} \sigma_{\ell m}(\omega, T) &= \frac{2\pi e^2 (1 - e^{-\beta\omega})}{\omega^3} \sum_{\varsigma \varsigma'} \sum_{\mathbf{k} \mathbf{p} \mathbf{k}' \mathbf{p}'} (v_{\varsigma, \mathbf{k}'}^\ell + v_{\varsigma', \mathbf{p}'}^\ell - v_{\varsigma, \mathbf{k}}^\ell - v_{\varsigma', \mathbf{p}}^\ell) (v_{\varsigma, \mathbf{k}'}^m + v_{\varsigma', \mathbf{p}'}^m - v_{\varsigma, \mathbf{k}}^m - v_{\varsigma', \mathbf{p}}^m) \\ &\quad \times U_0(|\mathbf{k} - \mathbf{k}'|) \left[U_0(|\mathbf{k} - \mathbf{k}'|) - \delta_{\varsigma \varsigma'} \delta_{\varsigma \varsigma'} \frac{U_0(|\mathbf{p} - \mathbf{k}'|)}{2} \right] \\ &\quad \times n_F(\epsilon_{\varsigma, \mathbf{k}'}) n_F(\epsilon_{\varsigma', \mathbf{p}'}) [1 - n_F(\epsilon_{\varsigma, \mathbf{k}})] [1 - n_F(\epsilon_{\varsigma', \mathbf{p}})] \delta(\omega + \epsilon_{\varsigma', \mathbf{p}'} + \epsilon_{\varsigma, \mathbf{k}'} - \epsilon_{\varsigma, \mathbf{k}} - \epsilon_{\varsigma', \mathbf{p}}) \delta(\mathbf{k}' + \mathbf{p}' - \mathbf{k} - \mathbf{p}). \end{aligned} \quad (\text{A11})$$

here for each $\varsigma = \pm$ we get all possibilities of intra and inter-valley scattering processes. For an isotropic system, the equation above is reduced to Eq. (3.7) of the main text.

Appendix B: Integral over energies

The integrals over energies in Eq. (3.17) is given by

$$I = \int d\epsilon_{\mathbf{k}} \int d\epsilon_{\mathbf{p}} \int d\Omega [(2\Omega + \omega)^2 + \omega^2] n_F(\epsilon_{\mathbf{k}} + \Omega) n_F(\epsilon_{\mathbf{p}} - \omega - \Omega) [1 - n_F(\epsilon_{\mathbf{k}})] [1 - n_F(\epsilon_{\mathbf{p}})], \quad (\text{B1})$$

Introducing dimensionless variables, $x = \epsilon_{\mathbf{k}}/T$, $y = \epsilon_{\mathbf{p}}/T$, $a = \Omega/T$, and $b = \omega/T$, we obtain

$$I = T^5 \int_{-\infty}^\infty dx \int_{-\infty}^\infty dy \int_{-\infty}^\infty da [(2a + b)^2 + b^2] \frac{e^x}{e^x + 1} \frac{e^y}{e^y + 1} \frac{1}{e^{a+x} + 1} \frac{1}{e^{y-a-b} + 1}. \quad (\text{B2})$$

Substituting $u = e^x$, and $v = e^y$, we get

$$\begin{aligned} I &= T^5 e^b \int_0^\infty du \int_0^\infty dv \int_{-\infty}^\infty da [(2a + b)^2 + b^2] \frac{1}{u+1} \frac{1}{v+1} \frac{1}{e^{-a} + u} \frac{1}{e^{a+b} + v}, \\ &= T^5 e^b \int_0^\infty du \int_0^\infty dv \int_{-\infty}^\infty da [(2a + b)^2 + b^2] \frac{1}{e^{-a} - 1} \left(\frac{1}{u+1} - \frac{1}{e^{-a} + u} \right) \frac{1}{e^{a+b} - 1} \left(\frac{1}{v+1} - \frac{1}{e^{a+b} + v} \right). \end{aligned} \quad (\text{B3})$$

Integration over u and v leads to

$$\begin{aligned} I &= -T^5 e^b \int_{-\infty}^{\infty} da \frac{a(a+b)((2a+b)^2 + b^2)}{(e^{-a}-1)(e^{a+b}-1)}, \\ &= T^5 \frac{(3b^5 + 20\pi^2 b^3 + 32\pi^4 b)}{15(1-e^{-b})} = \frac{b(b^2 + 4\pi^2)(3b^2 + 8\pi)}{15(1-e^{-b})}, \end{aligned} \quad (\text{B4})$$

which is Eq. (3.17) of the main text.

Appendix C: Optical conductivity from intervalley scattering

In this Appendix, we present the derivation of Eq. (3.23) for the contribution to the optical conductivity from intervalley scattering. With trigonal warping of the isoenergetic contours taken account according to Eqs. (2.9a-2.9c), the group velocity in Cartesian coordinates is given by

$$\mathbf{v}_{\varsigma,\mathbf{k}} = \nabla_{\mathbf{k}} \epsilon_{\varsigma,\mathbf{k}} = \mathbf{v}_{\mathbf{k}}^D + \mathbf{v}_{\varsigma,\mathbf{k}}^{\text{TW}}, \quad (\text{C1})$$

where

$$\begin{aligned} \mathbf{v}_{\mathbf{k}}^D &= \frac{v_D}{k} (k_x \hat{x} + k_y \hat{y}), \\ \mathbf{v}_{\varsigma,\mathbf{k}}^{\text{TW}} &= \frac{\varsigma v_D a}{4} \left(\frac{(2k_x^4 + 3k_x^2 k_y^2 - 3k_y^4)}{k^3} \hat{x} - \frac{k_x k_y (7k_x^2 + 3k_y^2)}{k^3} \hat{y} \right). \end{aligned} \quad (\text{C2})$$

A change in the velocity due to an ee collision can be written as

$$\mathbf{v}_{+, \mathbf{k}-\mathbf{Q}} + \mathbf{v}_{-, \mathbf{p}+\mathbf{Q}} - \mathbf{v}_{+, \mathbf{k}} - \mathbf{v}_{-, \mathbf{p}} = \Delta \mathbf{v}^D + \Delta \mathbf{v}^{\text{TW}}, \quad (\text{C3})$$

where $\Delta \mathbf{v}^D$ and $\Delta \mathbf{v}^{\text{TW}}$ are due to the Dirac and trigonal-warping parts of the velocity, respectively. To leading order in $k_F a \ll 1$, one can take the dispersion to be isotropic everywhere else in Eq. (3.21) and drop the valley index. Accordingly, the contour integrals are replaced by $\oint d\ell_{\mathbf{k}}/v_{\mathbf{k}} = (k_F/(2\pi v_D)) \int d\theta_{\mathbf{k}\mathbf{Q}}$. Next, for electrons on the FS one can drop ω in the δ -functions. Then the kinematics constraints on the angles are still $\theta_{\mathbf{k}\mathbf{Q}} = \pm\pi/2$ and $\theta_{\mathbf{p}\mathbf{Q}} = \pm\pi/2$. Finally, for small angle scattering $\Delta \mathbf{v}$ can be expanded in \mathbf{Q} as

$$\Delta \mathbf{v}^{\text{TW}} = -(\mathbf{Q} \cdot \nabla_{\mathbf{k}}) \mathbf{v}_{+, \mathbf{k}}^{\text{TW}} + (\mathbf{Q} \cdot \nabla_{\mathbf{p}}) \mathbf{v}_{-, \mathbf{p}}^{\text{TW}} = -(\mathbf{Q} \cdot \nabla_{\mathbf{k}}) \mathbf{v}_{+, \mathbf{k}}^{\text{TW}} - (\mathbf{Q} \cdot \nabla_{\mathbf{p}}) \mathbf{v}_{+, \mathbf{p}}^{\text{TW}}. \quad (\text{C4})$$

Since an electron pair with opposite velocities carries zero current both before and after the collision, Cooper channel should not contribute to current relaxation. Indeed, because $\mathbf{v}_{\varsigma, -\mathbf{k}}^{\text{TW}} = \mathbf{v}_{\varsigma, \mathbf{k}}^{\text{TW}}$, it follows that $\Delta \mathbf{v}^{\text{TW}} = 0$ for the Cooper channel ($\mathbf{p} = -\mathbf{k}$), and we need to consider only the collinear channel ($\mathbf{p} = \mathbf{k}$). Using $\theta_{\mathbf{k}} = \theta_{\mathbf{k}\mathbf{Q}} + \theta_{\mathbf{Q}}$ with $\theta_{\mathbf{k}\mathbf{Q}} = \pm\pi/2$, we obtain in polar coordinates

$$\Delta \mathbf{v}^{\text{TW}} = v_D(k_F a) \frac{Q}{k_F} \left(3 \cos(3\theta_{\mathbf{Q}}) \hat{\mathbf{k}} - 7 \sin(3\theta_{\mathbf{Q}}) \hat{\theta}_{\mathbf{Q}} \right). \quad (\text{C5})$$

Equation (3.21) is then reduced to

$$\begin{aligned} \text{Re}\sigma^{\text{inter}}(\omega, T) &= e^2 \frac{N_F^2}{2\pi\omega^3} (1 - e^{-\beta\omega}) \int \frac{d^2 Q}{(2\pi)^2} (\Delta \mathbf{v}^{\text{TW}})^2 U^2(\mathbf{Q}) \frac{1}{(v_D Q)^2} \\ &\times \int d\epsilon_{\mathbf{k}} \int d\epsilon_{\mathbf{p}} \int d\Omega n_F(\epsilon_{\mathbf{k}} + \Omega) n_F(\epsilon_{\mathbf{p}} - \Omega - \omega) [1 - n_F(\epsilon_{\mathbf{k}})] [1 - n_F(\epsilon_{\mathbf{p}})], \end{aligned} \quad (\text{C6})$$

Averaging $(\Delta \mathbf{v}^{\text{TW}})^2$ over $\theta_{\mathbf{Q}}$ yields

$$\int_0^{2\pi} \frac{d\theta_{\mathbf{Q}}}{2\pi} (\Delta \mathbf{v}^{\text{TW}})^2 = 29(v_D Q a)^2. \quad (\text{C7})$$

The integral over Q is solved to leading log order as

$$\int dQ Q U^2(\mathbf{Q}) = (2\pi e^2)^2 \ln \frac{k_F}{\kappa}, \quad (\text{C8})$$

while the energy integrals in Eq. (C6) give

$$\begin{aligned} \int d\epsilon_{\mathbf{k}} \int d\epsilon_{\mathbf{p}} \int d\Omega \times n_{\text{F}}(\epsilon_{\mathbf{k}} + \Omega) n_{\text{F}}(\epsilon_{\mathbf{p}} - \Omega - \omega) (1 - n_{\text{F}}(\epsilon_{\mathbf{k}})) (1 - n_{\text{F}}(\epsilon_{\mathbf{p}})) \\ = \frac{\omega(\omega^2 + 4\pi^2 T^2)}{6(1 - e^{-\beta\omega})}. \end{aligned} \quad (\text{C9})$$

Collecting everything together, we obtain the result in Eq. (3.23) of the main text.

Appendix D: Charge susceptibility

1. Self-energy and exchange diagram for the irreducible charge susceptibility

In this section, we calculate the sum of diagrams a and b ("self-energy"), and c ("exchange") in Fig. 5 for doped monolayer graphene. For $\omega \ll 2\mu$, inter-band transitions are neglected and the system is effectively reduced to a single-band one. Also, the matrix elements in the Green functions for doped graphene can be replaced by unities in the forward-scattering limit. Under these approximations, the sum of the three diagrams can be written as⁵⁶

$$\begin{aligned} \chi_c^{(\text{S,E})}(\mathbf{q}, \omega_m) = - \int \int \int \int \frac{d^D \mathbf{Q} d^D \mathbf{k} d\Omega_l d\epsilon_n}{(2\pi)^{2(D+1)}} U(\mathbf{Q}, \Omega_l) \frac{(\epsilon_{\mathbf{k}+\mathbf{q}} - \epsilon_{\mathbf{k}} - \epsilon_{\mathbf{k}+\mathbf{Q}+\mathbf{q}} + \epsilon_{\mathbf{k}+\mathbf{Q}})^2}{(i\omega_m - \epsilon_{\mathbf{k}+\mathbf{Q}+\mathbf{q}} + \epsilon_{\mathbf{k}+\mathbf{Q}})^2 (i\omega_m - \epsilon_{\mathbf{k}+\mathbf{q}} + \epsilon_{\mathbf{k}})^2} \\ \times [G(\mathbf{k}, \epsilon_n) - G(\mathbf{k} + \mathbf{q}, \epsilon_n + \omega_m)] [G(\mathbf{k} + \mathbf{Q}, \epsilon_n + \Omega_l) - G(\mathbf{k} + \mathbf{Q} + \mathbf{q}, \epsilon_n + \Omega_l + \omega_m)]. \end{aligned} \quad (\text{D1})$$

We will be interested in long-wavelength excitation with momenta $q \ll \omega/v_{\text{D}} \ll k_{\text{F}}$. In this case, the denominators in the fraction in the first line of Eq. (D1) can be replaced by $i\omega_m$. Also, typical momentum transfers are assumed to be much smaller than k_{F} . Therefore, the single-particle dispersion in the numerator of the same fraction can be expanded both in q and Q . For a Dirac dispersion, the leading-order term in this expansion reads

$$\epsilon_{\mathbf{k}+\mathbf{q}} - \epsilon_{\mathbf{k}} - \epsilon_{\mathbf{k}+\mathbf{Q}+\mathbf{q}} + \epsilon_{\mathbf{k}+\mathbf{Q}} \approx -\frac{qQv_{\text{D}}}{k_{\text{F}}} \sin \theta \sin \theta' \quad (\text{D2})$$

where θ and θ' are the angles that \mathbf{q} and \mathbf{Q} make with \mathbf{k} , respectively. With these simplifications, Eq. (D1) is reduced to

$$\begin{aligned} \chi_c^{(\text{S,E})}(\mathbf{q}, \omega_m) = -\frac{1}{\omega_m^4 k_{\text{F}}^2} \int \int \int \int \frac{d^2 \mathbf{Q} d^2 \mathbf{k} d\Omega_l d\epsilon_n}{(2\pi)^6} U(\mathbf{Q}, \Omega_l) (qQv_{\text{D}} \sin \theta \sin \theta')^2 \\ \times [G(\mathbf{k}, \epsilon_n) - G(\mathbf{k} + \mathbf{q}, \epsilon_n + \omega_m)] [G(\mathbf{k} + \mathbf{Q}, \epsilon_n + \Omega_l) - G(\mathbf{k} + \mathbf{Q} + \mathbf{q}, \epsilon_n + \Omega_l + \omega_m)]. \end{aligned} \quad (\text{D3})$$

Next, we integrate the products of the Green's functions in the equation above first over ϵ_n , and then over $\epsilon_{\mathbf{k}}$ and θ , and neglect q compared to Q in the final result. This gives

$$\begin{aligned} \chi_c^{(\text{S,E})}(\mathbf{q}, \omega_m) = -\frac{iN_{\text{F}}q^2v_{\text{D}}^2}{2k_{\text{F}}^2\omega_m^4} \int \frac{Q^3 dQ}{2\pi} \int \frac{d\Omega_l}{(2\pi)} U(\mathbf{Q}, \Omega_l) \\ \times \frac{d\theta'}{2\pi} \sin^2 \theta' \left[\frac{2\Omega_l}{i\Omega_l - v_{\text{D}}\hat{\mathbf{k}} \cdot \mathbf{Q}} - \frac{\Omega_l + \omega_m}{i(\Omega_l + \omega_m) - v_{\text{D}}\hat{\mathbf{k}} \cdot \mathbf{Q}} - \frac{\Omega_l - \omega_m}{i(\Omega_l - \omega_m) - v_{\text{D}}\hat{\mathbf{k}} \cdot \mathbf{Q}} \right], \end{aligned} \quad (\text{D4})$$

where N_{F} is the density of states. Now we integrate over θ' , using

$$\int_0^{2\pi} \frac{dx}{2\pi} \frac{\sin^2 x}{iy - \cos x} = i(y - \text{sgn}y\sqrt{y^2 + 1}), \quad (\text{D5})$$

to get

$$\begin{aligned} \chi_c^{(\text{S,E})}(\mathbf{q}, \omega_m) = -\frac{N_{\text{F}}q^2v_{\text{D}}}{2k_{\text{F}}^2\omega_m^4} \int \frac{Q^3 dQ}{2\pi} \int \frac{d\Omega_l}{(2\pi)} U(\mathbf{Q}, \Omega_l) \\ \times \frac{1}{Q^2} \left[2\omega_m^2 + 2|\Omega_l| \sqrt{\Omega_l^2 + (v_{\text{D}}Q)^2} - |\Omega_l + \omega_m| \sqrt{(\Omega_l + \omega_m)^2 + (v_{\text{D}}Q)^2} - |\Omega_l - \omega_m| \sqrt{(\Omega_l - \omega_m)^2 + (v_{\text{D}}Q)^2} \right]. \end{aligned} \quad (\text{D6})$$

Now we will simplify the form of the interaction potential. First, we notice that a static interaction cannot give rise to a finite imaginary part of the susceptibility outside the particle-hole continuum. Therefore, we can subtract off a

static screened Coulomb potential from the dynamical one in Eq. (D6). Next, we assume first and verify thereafter, that typical Q are such that $\Omega \ll v_D Q$. Then the difference of the dynamical and static screened Coulomb potentials can be expanded in $x \equiv \Omega_l \ll v_D Q$ as

$$U_{\text{dyn}}(Q, \Omega_l) = U(Q, \Omega_l) - U(Q, 0) = \frac{1}{N_F} a^2 x (1 + ax + (a^2 - 1/2)x^2 + \dots), \quad (\text{D7})$$

where $a = \kappa/(Q + \kappa)$. We see later on that an expansion above does need to go to order x^3 , which is usually neglected for a conventional FL.

Next we integrate over Ω_l in Eq.(D6) to obtain

$$\begin{aligned} \int d\Omega_l U_{\text{dyn}}(\mathbf{Q}, \Omega_l) &= \frac{2v_D Q}{N_F} a^2 \int_0^\Lambda dx x [1 + ax + (a^2 - 1/2)x^2] \\ &\times \left[2y^2 + 2x \left(1 + \frac{x^2}{2} \right) - (x+y) \left(1 + \frac{(x+y)^2}{2} \right) - |x-y| \left(1 + \frac{(x-y)^2}{2} \right) \right] \\ &= -\frac{2}{3} v_D Q a^2 y^3 - \frac{1}{5} v_D Q a^4 y^5 + \mathcal{I}(\Lambda) + \mathcal{O}(y^2) + \mathcal{O}(y^4) \dots, \end{aligned} \quad (\text{D8})$$

where $y = \omega_m/v_D Q > 0$, $\mathcal{I}(\Lambda)$ is some function of the upper cutoff, which is irrelevant in what follows. Terms of the order $\mathcal{O}(y^2, y^4 \dots)$ do not contribute to $\text{Im}\chi_c$ and are omitted. Finally, the remaining integral over Q reads

$$\chi_c^{(S,E)}(\mathbf{q}, \omega_m) = \frac{e^4}{\pi^2 v_D^2} \left[\frac{2}{3} \frac{q^2}{\omega_m} \int_0^{\Lambda_Q} \frac{dQ Q}{(Q + \kappa)^2} + \frac{1}{5} \frac{q^2 \omega_m \kappa^2}{v_D^2} \int_{|\omega_m|/v_D}^\infty \frac{dQ}{Q} \frac{1}{(Q + \kappa)^4} \right], \quad (\text{D9})$$

where Λ_Q is some upper cutoff. We will complete the integral over Q after combining Eq. (D9) with a contribution from the AL diagrams. Then it will be seen that the first term in Eq. (D9) cancels out and, therefore, a choice of Λ_Q is irrelevant.

2. Aslamazov-Larkin diagrams

In this section, we evaluate the contribution of AL diagrams, e and f in Fig. 5. The sum of the two diagrams can be written as

$$\delta\chi_c^{\text{AL}}(\mathbf{q}, \omega_m) = (N_s N_v)^2 \int_{Q, \Omega_l} [\mathcal{T}^2(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) + |\mathcal{T}(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m)|^2] U(\mathbf{Q}, \Omega_l) U(\mathbf{Q} - \mathbf{q}, \Omega_l - \omega_m), \quad (\text{D10})$$

where N_s and N_v are the spin and valley degeneracies, respectively, and

$$\mathcal{T}(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) = \int_{\mathbf{k}, \varepsilon_n} G(\mathbf{k}, \varepsilon_n) G(\mathbf{k} + \mathbf{q}, \varepsilon_n + \omega_m) G(\mathbf{k} + \mathbf{Q}, \varepsilon_n + \Omega_l) \quad (\text{D11})$$

is a ‘‘triangular’’ part of the diagram. The combination $\mathcal{T}^2 + |\mathcal{T}|^2$ can be identically re-written as $2\text{Re}\mathcal{T}^2 + 2i\text{Re}\mathcal{T}\text{Im}\mathcal{T}$. Because any physical susceptibility is purely real on the Matsubara axis, the imaginary part of $\mathcal{T}^2 + |\mathcal{T}|^2$ must vanish upon integrations and thus can be omitted. Therefore, we need to find only $\text{Re}\mathcal{T}$. We begin by integrating over ε_n to obtain

$$\mathcal{T}(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) = \int_{\mathbf{k}} \frac{1}{i\omega_m - \epsilon_{\mathbf{k}+\mathbf{q}} + \epsilon_{\mathbf{k}}} \left[\frac{n_{\mathbf{k}} - n_{\mathbf{k}+\mathbf{Q}}}{i\Omega_l - \epsilon_{\mathbf{k}+\mathbf{Q}} + \epsilon_{\mathbf{k}}} - \frac{n_{\mathbf{k}+\mathbf{q}} - n_{\mathbf{k}+\mathbf{Q}}}{i(\Omega_l - \omega_m) - \epsilon_{\mathbf{k}+\mathbf{Q}} + \epsilon_{\mathbf{k}+\mathbf{q}}} \right]. \quad (\text{D12})$$

From this point on, the calculation proceeds along a different route compared to the one for the self-energy and exchange diagrams. Namely, if the single-particle dispersion are expanded to linear order in q and Q , we will get a zero result for $\text{Re}\mathcal{T}$. This is a reflection of a known fact that AL diagrams hinge on violating particle-hole symmetry.⁸⁴ To get a non-zero result, we need to keep $\mathcal{O}(Q^2)$ terms in the dispersion. However, we can ignore $\mathcal{O}(q^2)$ terms, because q can be chosen arbitrarily small. For doped graphene, such an expansion amounts to $\epsilon_{\mathbf{k}+\mathbf{Q}} \approx \epsilon_{\mathbf{k}} + \mathbf{v}_{\mathbf{k}} \cdot \mathbf{Q} + Q^2 \sin^2 \theta / 2m^*$, where $m^* = k_F/v_D$ and θ is the angle between \mathbf{Q} and \mathbf{k} .

Expanding the Fermi functions in Eq. (D12) to order Q^2 , we obtain

$$\begin{aligned} \mathcal{T}(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) &= \int_{\mathbf{k}} \frac{1}{i\omega_m - \mathbf{v}_{\mathbf{k}} \cdot \mathbf{q}} \left[\frac{(\mathbf{v}_{\mathbf{k}} \cdot \mathbf{Q} + \frac{Q^2}{2m^*} \sin^2 \theta)(-n'_{\mathbf{k}}) - \frac{1}{2}(\mathbf{v}_{\mathbf{k}} \cdot \mathbf{Q})^2 n''_{\mathbf{k}}}{i\Omega_l - \mathbf{v}_{\mathbf{k}} \cdot \mathbf{Q} - \frac{Q^2}{2m^*} \sin^2 \theta} \right. \\ &\quad \left. - \frac{[\mathbf{v}_{\mathbf{k}} \cdot (\mathbf{q} - \mathbf{Q}) + \frac{Q^2}{2m^*} \sin^2 \theta] n'_{\mathbf{k}} - \frac{1}{2}(\mathbf{v}_{\mathbf{k}} \cdot \mathbf{Q})^2 n''_{\mathbf{k}}}{i(\Omega_l - \omega_m) - \mathbf{v}_{\mathbf{k}} \cdot (\mathbf{q} - \mathbf{Q}) - \frac{Q^2}{2m^*} \sin^2 \theta} \right] \end{aligned} \quad (\text{D13})$$

It is convenient to separate \mathcal{T} into two parts as $\mathcal{T} = \mathcal{T}_1 + \mathcal{T}_2$, where \mathcal{T}_1 and \mathcal{T}_2 contain terms proportional to $n'_{\mathbf{k}}$ and $n''_{\mathbf{k}}$, respectively. At $T = 0$, $n'_{\mathbf{k}} = -\delta(\epsilon_{\mathbf{k}} - \mu)$ and $n''_{\mathbf{k}} = -\delta'(\epsilon_{\mathbf{k}} - \mu)$, so that

$$\begin{aligned}\mathcal{T}_1(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) &= \int_{\mathbf{k}} \frac{\delta(\epsilon_{\mathbf{k}} - \mu)}{i\omega_m - \mathbf{v}_{\mathbf{k}} \cdot \mathbf{q}} \left[\frac{\mathbf{v}_{\mathbf{k}} \cdot \mathbf{Q} + \frac{Q^2}{2m^*} \sin^2 \theta}{i\Omega_l - \mathbf{v}_{\mathbf{k}} \cdot \mathbf{Q} - \frac{Q^2}{2m^*} \sin^2 \theta} + \frac{\mathbf{v}_{\mathbf{k}} \cdot (\mathbf{q} - \mathbf{Q}) + \frac{Q^2}{2m^*} \sin^2 \theta}{i(\Omega_l - \omega_m) - \mathbf{v}_{\mathbf{k}} \cdot (\mathbf{q} - \mathbf{Q}) - \frac{Q^2}{2m^*} \sin^2 \theta} \right], \\ \mathcal{T}_2(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) &= \frac{1}{2} \int_{\mathbf{k}} \frac{\delta'(\epsilon_{\mathbf{k}} - \mu)(\mathbf{v}_{\mathbf{k}} \cdot \mathbf{Q})^2}{i\omega_m - \mathbf{v}_{\mathbf{k}} \cdot \mathbf{q}} \left[\frac{1}{i\Omega_l - \mathbf{v}_{\mathbf{k}} \cdot \mathbf{Q}} - \frac{1}{i(\Omega_l - \omega_m) - \mathbf{v}_{\mathbf{k}} \cdot \mathbf{Q} + \mathbf{v}_{\mathbf{k}} \cdot \mathbf{q}} \right].\end{aligned}\quad (\text{D14})$$

We neglected the $\mathcal{O}(Q^2)$ terms in the denominators of both two parts of \mathcal{T}_2 because \mathcal{T}_2 is already proportional to Q^2 . Now we integrate over $\epsilon_{\mathbf{k}}$ in Eq. (D14) to obtain

$$\begin{aligned}\mathcal{T}_1(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) &= N_F \int \frac{d\theta}{2\pi} \frac{1}{i\omega_m - v_D \hat{\mathbf{k}} \cdot \mathbf{q}} \left[\frac{v_D \hat{\mathbf{k}} \cdot \mathbf{Q} + \frac{Q^2}{2m^*} \sin^2 \theta}{i\Omega_l - v_D \hat{\mathbf{k}} \cdot \mathbf{Q} - \frac{Q^2}{2m^*} \sin^2 \theta} + \frac{v_D \hat{\mathbf{k}} \cdot (\mathbf{q} - \mathbf{Q}) + \frac{Q^2}{2m^*} \sin^2 \theta}{i(\Omega_l - \omega_m) - v_D \hat{\mathbf{k}} \cdot (\mathbf{q} - \mathbf{Q}) - \frac{Q^2}{2m^*} \sin^2 \theta} \right], \\ \mathcal{T}_2(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) &= -\frac{1}{4\pi} \int \frac{d\theta}{2\pi} \frac{(\hat{\mathbf{k}} \cdot \mathbf{Q})^2}{i\omega_m - v_D \hat{\mathbf{k}} \cdot \mathbf{q}} \left[\frac{1}{i\Omega_l - v_D \hat{\mathbf{k}} \cdot \mathbf{Q}} - \frac{1}{i(\Omega_l - \omega_m) - v_D \hat{\mathbf{k}} \cdot \mathbf{Q} + v_D \hat{\mathbf{k}} \cdot \mathbf{q}} \right].\end{aligned}\quad (\text{D15})$$

Since we are interested in the regime of $qv_D \ll \omega$, the equations above can be expanded in q . When doing so, we will be discarding imaginary parts of $\mathcal{T}_{1,2}$ because they must vanish on subsequent integration anyway. The leading-order results of such an expansion read:

$$\begin{aligned}\text{Re}\mathcal{T}_1(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) &= N_F \frac{Q^2}{2m^*} \int \frac{d\theta}{2\pi} (v_D \hat{\mathbf{k}} \cdot \mathbf{q}) \sin^2 \theta \\ &\quad \times \left[\frac{1}{(i\omega_m)^2} \left(\frac{1}{i\Omega_l - v_D \hat{\mathbf{k}} \cdot \mathbf{Q}} - \frac{1}{i(\Omega_l - \omega_m) - v_D \hat{\mathbf{k}} \cdot \mathbf{Q}} + \frac{v_D \hat{\mathbf{k}} \cdot \mathbf{Q}}{(i\Omega_l - v_D \hat{\mathbf{k}} \cdot \mathbf{Q})^2} - \frac{v_D \hat{\mathbf{k}} \cdot \mathbf{Q}}{(i(\Omega_l - \omega_m) - v_D \hat{\mathbf{k}} \cdot \mathbf{Q})^2} \right) \right. \\ &\quad \left. + \frac{2}{i\omega_m} \left(\frac{1}{(i(\Omega_l - \omega_m) - v_D \hat{\mathbf{k}} \cdot \mathbf{Q})^2} + \frac{v_D \hat{\mathbf{k}} \cdot \mathbf{Q}}{(i(\Omega_l - \omega_m) - v_D \hat{\mathbf{k}} \cdot \mathbf{Q})^3} \right) \right], \\ \text{Re}\mathcal{T}_2(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) &= -\frac{1}{4\pi} \int \frac{d\theta}{2\pi} (\hat{\mathbf{k}} \cdot \mathbf{q}) (\hat{\mathbf{k}} \cdot \mathbf{Q})^2 \\ &\quad \times \left[\frac{1}{(i\omega_m)^2} \left(\frac{1}{i\Omega_l - v_D \hat{\mathbf{k}} \cdot \mathbf{Q}} - \frac{1}{i(\Omega_l - \omega_m) - v_D \hat{\mathbf{k}} \cdot \mathbf{Q}} \right) + \frac{1}{i\omega_m} \left(\frac{1}{(i(\Omega_l - \omega_m) - v_D \hat{\mathbf{k}} \cdot \mathbf{Q})^2} \right) \right].\end{aligned}\quad (\text{D16})$$

where $N_F = m^*/4\pi$ is the density of states per spin and per valley. Now we integrate over θ (the angle between \mathbf{k} and \mathbf{Q}) to obtain

$$\text{Re}\mathcal{T}(\mathbf{Q}, \mathbf{q}, \Omega_l, \omega_m) = \frac{\mathbf{q} \cdot \mathbf{Q}}{4\pi\omega_m^2(v_D Q)^2} \left(|\Omega_l| \sqrt{\Omega_l^2 + (v_D Q)^2} - |\Omega_l - \omega_m| \sqrt{(\Omega_l - \omega_m)^2 + (v_D Q)^2} + (\Omega_l - \omega_m)^2 - \Omega_l^2 \right). \quad (\text{D17})$$

Substituting the last result back into Eq. (D10) and rescaling the variables as $x = \Omega_l/v_D Q$ and $y = \omega_m/v_D Q$, we find

$$\begin{aligned}\chi_c^{\text{AL}}(\mathbf{q}, \omega_m) &= \frac{2(N_s N_v)^2}{16\pi^2\omega_m^4} \int \frac{d^2Q}{(2\pi)^2} \int \frac{dx}{2\pi} \frac{2\pi e^2}{Q + \kappa \left(1 - \frac{|x|}{\sqrt{x^2+1}} \right)} \frac{2\pi e^2}{Q + \kappa \left(1 - \frac{|x-y|}{\sqrt{(x-y)^2+1}} \right)} \\ &\quad \times (\mathbf{q} \cdot \mathbf{Q})^2 v_D Q \left(|x| \sqrt{x^2+1} - |x-y| \sqrt{(x-y)^2+1} + (x-y)^2 - x^2 \right)^2.\end{aligned}\quad (\text{D18})$$

Now we will simplify the last equation assuming that $\Omega_l \sim \omega_m \ll v_D Q$. Our goal is to find the imaginary part of χ_c^{irr} after analytic continuation, while Eq. (D18) is proportional to the even (fourth) power of ω_m , which remains real after analytic continuation. Therefore, when expanding the integrand of Eq. (D18) in $\Omega_l/v_D Q$ and $\omega_m/v_D Q$, we need to keep those terms that will be integrated into odd powers of ω_m . To order ω_m^5 , the integral over x is solved as

$$\begin{aligned}I_{\text{AL}} &= \int_{-\infty}^{\infty} dx \left(\frac{1}{(Q + \kappa)^2} + \frac{\kappa}{(Q + \kappa)^3} (|x| + |x+y|) + \frac{\kappa^2}{(Q + \kappa)^4} (x^2 + (x-y)^2 + |x||x-y|) \right) \\ &\quad \times \left(|x|(1 + \frac{x^2}{2}) - |x-y|(1 + \frac{(x-y)^2}{2}) - 2xy + y^2 \right)^2 \\ &= \mathcal{O}(y^2) - \frac{2}{3(Q + \kappa)^2} y^3 + \mathcal{O}(y^4) - \frac{2\kappa^2}{5(Q + \kappa)^4} y^5,\end{aligned}\quad (\text{D19})$$

where spelled out only the odd in ω_m terms. Substituting the y^3 and y^5 terms into Eq. (D18), we get

$$\chi_c^{\text{AL}}(\mathbf{q}, \omega_m) = -\frac{e^4}{\pi^2 v_D^2} \left[\frac{2}{3} \frac{q^2}{\omega_m} \int_0^{\Lambda_Q} \frac{dQ Q}{(Q + \kappa)^2} + \frac{2}{5} \frac{q^2 \omega_m \kappa^2}{v_D^2} \int_{|\omega_m|/v_D}^{\infty} \frac{dQ}{Q} \frac{1}{(Q + \kappa)^4} \right], \quad (\text{D20})$$

where we used that $N_s = N_v = 2$ for graphene.

Now see that the first terms in Eq. (D9) for the self-energy and exchange diagrams and Eq. (D20) cancel each other. Solving the remaining integral over Q to leading log order and using $\kappa = 4m^*e^2$, we obtain the final result:

$$\chi_c^{\text{irr}}(\mathbf{q}, \omega_m) = -\frac{q^2 \omega_m}{80\pi^2 \mu^2} \ln \frac{v_D \kappa}{|\omega_m|}. \quad (\text{D21})$$

Carrying out analytical continuation and taking the imaginary part of the result, we arrive at Eq. (5.7) of the main text.

¹ R. Gurzhi, Sov. Phys.-JETP **35**, 673 (1959).

² H. Pal, V. Yudson, and D. Maslov, *Lith. J. Phys.* **52**, 142 (2012).

³ D. L. Maslov and A. V. Chubukov, *Rep. Prog. Phys.* **80**, 026503 (2016).

⁴ R. Gurzhi, A. Kopeliovich, and S. Rutkevich, *JETP Lett.* **56**, 159 (1982).

⁵ R. N. Gurzhi, A. Kopeliovich, and S. B. Rutkevich, *Adv. Phys.* **36**, 221 (1987).

⁶ R. N. Gurzhi, A. N. Kalinenko, and A. I. Kopeliovich, *Phys. Rev. B* **52**, 4744 (1995).

⁷ A. Rosch and P. C. Howell, *Phys. Rev. B* **72**, 104510 (2005).

⁸ A. Rosch, *Annalen der Physik* **15**, 526 (2006).

⁹ D. L. Maslov, V. I. Yudson, and A. V. Chubukov, *Phys. Rev. Lett.* **106**, 106403 (2011).

¹⁰ U. Briskot, M. Schütt, I. V. Gornyi, M. Titov, B. N. Narozhny, and A. D. Mirlin, *Phys. Rev. B* **92**, 115426 (2015).

¹¹ P. J. Ledwith, H. Guo, and L. Levitov, *Ann. Phys.* **411**, 167913 (2019).

¹² A. V. Chubukov and D. L. Maslov, *Phys. Rev. B* **86**, 155136 (2012); D. L. Maslov and A. V. Chubukov, *Phys. Rev. B* **86**, 155137 (2012).

¹³ N. M. R. Peres, *Rev. Mod. Phys.* **82**, 2673 (2010).

¹⁴ S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, *Rev. Mod. Phys.* **83**, 407 (2011).

¹⁵ V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, *Rev. Mod. Phys.* **84**, 1067 (2012).

¹⁶ K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, *Solid State Comm.* **152**, 1341 (2012).

¹⁷ A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein, *Phys. Rev. B* **50**, 7526 (1994).

¹⁸ T. Ando, Y. Zheng, and H. Suzuura, *J. Jap. Soc. Japan* **71**, 1318 (2002).

¹⁹ V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, *Phys. Rev. Lett.* **96**, 256802 (2006).

²⁰ L. A. Falkovsky and A. A. Varlamov, *Eur. Phys. J.* **56**, 281 (2007).

²¹ K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, *Science* **306**, 666 (2004).

²² Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, *Nature Physics* **4**, 532 (2008).

²³ K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, *Phys. Rev. Lett.* **101**, 196405 (2008).

²⁴ R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, *Science* **320**, 1308 (2008).

²⁵ J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, *Phys. Rev. B* **83**, 165113 (2011).

²⁶ E. G. Mishchenko, *Phys. Rev. Lett.* **98**, 216801 (2007).

²⁷ D. E. Sheehy and J. Schmalian, *Phys. Rev. Lett.* **99**, 226803 (2007).

²⁸ E. G. Mishchenko, *Europhys. Lett.* **83**, 17005 (2008).

²⁹ A. B. Kashuba, *Phys. Rev. B* **78**, 085415 (2008).

³⁰ L. Fritz, J. Schmalian, M. Müller, and S. Sachdev, *Phys. Rev. B* **78**, 085416 (2008).

³¹ I. F. Herbut, V. Jurić, and O. Vafek, *Phys. Rev. Lett.* **100**, 046403 (2008).

³² S. H. Abedinpour, G. Vignale, A. Principi, M. Polini, W.-K. Tse, and A. H. MacDonald, *Phys. Rev. B* **84**, 045429 (2011).

³³ I. Sodemann and M. M. Fogler, *Phys. Rev. B* **86**, 115408 (2012).

³⁴ N. M. R. Peres, J. M. B. Lopes dos Santos, and T. Stauber, *Phys. Rev. B* **76**, 073412 (2007).

³⁵ T. Stauber, N. M. R. Peres, and A. H. Castro Neto, *Phys. Rev. B* **78**, 085418 (2008).

³⁶ N. M. R. Peres, T. Stauber, and A. H. C. Neto, *Europhys. Lett.* **84**, 38002 (2008).

³⁷ N. M. R. Peres, R. M. Ribeiro, and A. H. Castro Neto, *Phys. Rev. Lett.* **105**, 055501 (2010).

³⁸ A. G. Grushin, B. Valenzuela, and M. A. H. Vozmediano, *Phys. Rev. B* **80**, 155417 (2009).

³⁹ A. Principi, G. Vignale, M. Carrega, and M. Polini, *Phys. Rev. B* **88**, 195405 (2013).

⁴⁰ W. Götze and P. Wölfle, *Phys. Rev. B* **6**, 1226 (1972).

⁴¹ M. Müller, L. Fritz, and S. Sachdev, *Phys. Rev. B* **78**, 115406 (2008).

⁴² A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, *Rev. Mod. Phys.* **81**, 109 (2009).

⁴³ S. A. Jafari and G. Baskaran, *J. Phys.* **24**, 095601 (2012).

⁴⁴ A. A. Abrikosov, *JETP* **17**, 1372 (1963).

⁴⁵ L. A. Falkovsky and A. A. Varlamov, *Eur. Phys. J.* **56**, 281 (2007).

⁴⁶ E. G. Mishchenko, M. Y. Reizer, and L. I. Glazman, *Phys. Rev. B* **69**, 195302 (2004).

⁴⁷ A. V. Chaplik, *JETP* **33**, 997 (1971).

⁴⁸ G. F. Giuliani and J. J. Quinn, *Phys. Rev. B* **26**, 4421 (1982).

⁴⁹ A. Goyal, S. Prachi, and D. L. Maslov, in preparation.

⁵⁰ E. M. Lifshitz and L. P. Pitaevskii, *Physical Kinetics, Course of Theoretical Physics, v. X* (Butterworth-Heinemann, Burlington, 1981).

⁵¹ J. Rammer and H. Smith, *Rev. Mod. Phys.* **58**, 323 (1986).

⁵² R. N. Gurzhi, *Phys. Usp.* **11**, 255 (1968).

⁵³ M. Mitrano, A. A. Husain, S. Vig, A. Kogar, M. S. Rak, S. I. Rubeck, J. Schmalian, B. Uchoa, J. Schneeloch, R. Zhong, G. D. Gu, and P. Abbamonte, *Proc. Natl. Acad. Sci. USA* **115**, 5392 (2018).

⁵⁴ A. A. Husain, M. Mitrano, M. S. Rak, S. I. Rubeck, H. Yang, C. Sow, Y. Maeno, P. E. Batson, and P. Abbamonte, [arXiv:2007.06670](https://arxiv.org/abs/2007.06670).

⁵⁵ E. W. Huang, K. Limtragoon, C. Setty, A. A. Husain, M. Mitrano, P. Abbamonte, and P. W. Phillips, [arXiv:2010.02947](https://arxiv.org/abs/2010.02947).

⁵⁶ V. A. Zyuzin, P. Sharma, and D. L. Maslov, *Phys. Rev. B* **98**, 115139 (2018).

⁵⁷ If we were to calculate the spin susceptibility, however, the AL diagrams would vanish on tracing spins out, and the first term in Eq. (5.4) would provide the leading contribution. In this case, an appropriate choice would be $\Lambda_Q \sim k_F$.

⁵⁸ S. Prachi, A. Principi, G. Vignale, and D. L. Maslov, in preparation.

⁵⁹ E. McCann and M. Koshino, *Rep. Prog. Phys.* **76**, 056503 (2013).

⁶⁰ L. Fu, *Phys. Rev. Lett.* **103**, 266801 (2009).

⁶¹ H. K. Pal, V. I. Yudson, and D. L. Maslov, *Phys. Rev. B* **85**, 085439 (2012).

⁶² P. Hosur and X. Qi, *C. R. Phys.* **14**, 857 (2013).

⁶³ O. Vafek and A. Vishwanath, *Annu. Rev. Condens. Matter Phys.* **5**, 83 (2014).

⁶⁴ A. Burkov, *Annu. Rev. Condens. Matter Phys.* **9**, 359 (2018).

⁶⁵ N. P. Armitage, E. J. Mele, and A. Vishwanath, *Rev. Mod. Phys.* **90**, 015001 (2018).

⁶⁶ P. E. C. Ashby and J. P. Carbotte, *Phys. Rev. B* **89**, 245121 (2014).

⁶⁷ M. Orlita, D. M. Basko, M. S. Zholudev, F. Teppe, W. Knap, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretzki, P. Neugebauer, C. Faugeras, A.-L. Barra, G. Martinez, and M. Potemski, *Nature Physics* **10**, 233 (2014).

⁶⁸ R. Y. Chen, S. J. Zhang, J. A. Schneeloch, C. Zhang, Q. Li, G. D. Gu, and N. L. Wang, *Phys. Rev. B* **92**, 075107 (2015).

⁶⁹ A. B. Sushkov, J. B. Hofmann, G. S. Jenkins, J. Ishikawa, S. Nakatsuji, S. Das Sarma, and H. D. Drew, *Phys. Rev. B* **92**, 241108 (2015).

⁷⁰ G. S. Jenkins, C. Lane, B. Barbiellini, A. B. Sushkov, R. L. Carey, F. Liu, J. W. Krizan, S. K. Kushwaha, Q. Gibson, T.-R. Chang, H.-T. Jeng, H. Lin, R. J. Cava, A. Bansil, and H. D. Drew, *Phys. Rev. B* **94**, 085121 (2016).

⁷¹ D. Neubauer, J. P. Carbotte, A. A. Nateprov, A. Löhle, M. Dressel, and A. V. Pronin, *Phys. Rev. B* **93**, 121202 (2016).

⁷² D. K. Efetov and P. Kim, *Phys. Rev. Lett.* **105**, 256805 (2010).

⁷³ Y. Kopelevich, S. Bud'ko, D. R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, *ISRN Condensed Matter Physics* **2012**, 501686 (2012).

⁷⁴ I. Childres, L. A. Jauregui, W. Park, H. Cao, and Y. P. Chen, in *New Developments in Photon and Materials Research*, Vol. 1 (Nova Science Publishers (Hauppauge, NY), 2013).

⁷⁵ R. T. Beach and R. W. Christy, *Phys. Rev. B* **16**, 5277 (1977).

⁷⁶ G. R. Parkins, W. E. Lawrence, and R. W. Christy, *Phys. Rev. B* **23**, 6408 (1981).

⁷⁷ E. H. Hwang and S. Das Sarma, *Phys. Rev. B* **77**, 115449 (2008).

⁷⁸ S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, *Phys. Rev. Lett.* **100**, 016602 (2008).

⁷⁹ J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, *Nature Nanotechnology* **3**, 206 (2008).

⁸⁰ E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbochhev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, *Phys. Rev. Lett.* **105**, 266601 (2010).

⁸¹ S. Fratini and F. Guinea, *Phys. Rev. B* **77**, 195415 (2008).

⁸² E. H. Hwang and S. Das Sarma, *Phys. Rev. B* **79**, 165404 (2009).

⁸³ G. D. Mahan, *Many-Particle Physics*, 3rd ed. (Kluwer Academic/Plenum Press, 2000).

⁸⁴ A. Kamenev and Y. Oreg, *Phys. Rev. B* **52**, 7516 (1995).