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A Dirac-Fermi liquid (DFL) —a doped system with Dirac spectrum—is an important example of
a non-Galilean-invariant Fermi liquid (FL). Real-life realizations of a DFL are found, e.g., in doped
graphene and the surface state of a three-dimensional topological insulator. We study the optical
conductivity of a DFL arising from intraband electron-electron (ee) scattering. It is shown that the
effective current relaxation rate behaves as 1/τJ ∝

(
ω2 + 4π2T 2

) (
3ω2 + 8π2T 2

)
for max{ω, T} � µ,

where µ is the chemical potential, with an additional logarithmic factor in two dimensions. In
graphene, the quartic form of 1/τJ competes with a small FL-like term, ∝ ω2+4π2T 2, due to trigonal
warping of the Fermi surface. In the presence of weak disorder, the optical conductivity is the sum
of two Drude-like terms, with widths given by the electron-electron and electron-impurity scattering
rates, respectively. In the presence of ee and electron-impurity scattering only, the dc resistivity
varies non-monotonically with temperature, approaching the residual value both at low and high T ,
with a maximum in between. We also calculated the dynamic charge susceptibility, χc(q, ω), outside
the particle-hole continua and to one-loop order in the dynamically screened Coulomb interaction.
For a DFL, the dissipative part of χc(q, ω) scales as q2ω ln |ω| and q4/ω3 for frequencies larger and
smaller than the plasmon frequency at given q, respectively.

I. INTRODUCTION

The optical conductivity of a Fermi liquid (FL) is de-
scribed by the Gurzhi universal form1

Reσ(ω, T ) = σG

(
1 +

4π2T 2

ω2

)
. (1.1)

In what follows, we set kB = 1 and h̄ = 1. Despite
its generality, Eq. (1.1) does not apply to all types of
FLs. For example, it obviously does not apply to a
Galilean-invariant FL, i.e., a single-band system with a
parabolic dispersion. In the latter case, momentum con-
servation automatically implies current conservation, and
thus Reσ(ω, T ) = 0. The minimal condition for Eq. (1.1)
to apply is a sufficiently strong violation of Galilean in-
variance. If umklapp scattering is allowed, Eq. (1.1) ap-
plies automatically. However, it can also apply even if
umklapp scattering is forbidden. Namely, it applies to
a three-dimensional (3D) FL with a Fermi surface (FS)
that deviates from an ellipsoidal shape2,3 and to a two-
dimensional (2D) FL with a concave FS.2,4–11 Univer-
sality of Eq. (1.1) is protected by the first-Matsubara–
frequency rule,12 which stipulates that Reσ(±2iπT, T ) =
0. We will refer to a FL with optical conductivity de-
scribed by Eq. (1.1) as to a “conventional” one.

If the conditions specified above are not satisfied, a FL
belongs to an intermediate class, which we will dub as
a ”partially Galilean-invariant FL”. Examples include a
FL with isotropic but non-parabolic dispersion (both in
2D and 3D), and a 2D FL with a convex FS. A prominent
member of this class is a Dirac-Fermi liquid (DFL), i.e., a
system with isotropic and linear dispersion doped away
from the Dirac point, which is the focus of this paper.

Examples of a DFL are provided by gated monolayer
graphene in 2D and doped Dirac and Weyl semi metals
in 3D. The single-particle and thermodynamic properties
of conventional and partially Galilean-invariant FLs are
very much alike. However, their transport properties are
very much different. A linear dispersion in a DFL implies
that Galilean invariance is broken and thus dissipation
at finite frequency is possible. However, dissipation in a
DFL is weaker than in a conventional FL, because the
interaction between electrons right on the FS does not
relax the current.

In this paper, we show that the dissipative part of the
optical conductivity of a DFL due from intraband exci-
tations is described by the following scaling form

Reσ(ω, T ) = σD
ω2

µ2

(
1 +

4π2T 2

ω2

)(
3 +

8π2T 2

ω2

)
S(ω, T ),

(1.2)

where µ is the chemical potential (assumed to be the
largest energy scale in the problem), and S(ω, T ) varies
with ω and T logarithmically in 2D and is constant in
3D. Note that Reσ(±2πiT, T ) = 0, in agreement with
the first-Matsubara–frequency rule.12 The difference be-
tween the Gurzhi form in Eq. (1.1) and the DFL form in
Eq. (1.2) is especially prominent at T = 0. In this case,
the conductivity of a conventional FL does not depend on
ω, while the conductivity of a DFL is small in proportion
to (ω/µ)2 � 1. In fact, Eq. (1.2) is valid for any partially
Galilean-invariant FL; particular details affect only coef-
ficient σD. For an isotropic FL, σD is proportional to (the
square of) the “non-parabolicity coefficient”, defined as

w = 1− kFε
′′(kF)

ε′(kF)
, (1.3)
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where ε(k) is the electron dispersion and kF is the Fermi
momentum. For a Galilean-invariant system, the disper-
sion is quadratic, hence w = 0 and there is no dissipation.
For any other dispersion, w 6= 0; in particular, w = 1 for
the Dirac dispersion.

Phenomenologically, the optical conductivity can be
described by the current relaxation time, τJ(ω, T ), de-
fined by

Reσ(ω, T ) ∝ 1

ω2τJ(ω, T )
. (1.4)

With this definition

1

τJ(ω, T )
∝ ω2 + 4π2T 2, (1.5)

for a conventional FL, while

1

τJ(ω, T )
∝
(
ω2 + 4π2T 2

)
(3ω2 + 8π2T 2)S(ω, T )(1.6)

for a DFL. The quartic (as opposed to quadratic) scal-
ing of 1/τJ for a DFL was noted in a number of stud-
ies, mostly of 2D systems.2–8,11 It arises because the
quadratic term in 1/τJ vanishes once electrons are pro-
jected onto the FS, and one has to go further away from
the FS to obtain a finite result.
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Figure 1. Intra-band (a) and inter-band (b) optical transitions
in a Dirac metal.

To be specific, in this paper we focus on doped mono-
layer graphene which can behave either as a Dirac or
conventional FL, depending on doping. Optical re-
sponse of graphene has been a subject of extensive re-
search; see, e.g., reviews in Refs. 13–16. At the level
of non-interacting electrons, the optical conductivity of
graphene is given by a universal form17–20

Reσ(ω) =
e2

4
θ(ω − 2µ), (1.7)

where we assume that µ ≥ 0 without the loss of general-
ity. The absorption threshold at ω = 2µ is due to Pauli

blocking of states available for transitions between the
lower and upper Dirac cones (cf. Fig. 1). The optical
conductivity of graphene in the near infrared and optical
ranges, i.e, far above the Pauli threshold of 2µ, is indeed
observed to be close to the universal value of e2/4.21–24

However, experimentally one also observes significant ab-
sorption at ω <∼ 2µ,16,22,23,25 which would be absent in
ideal graphene. Certainly, some of this absorption is due
to extrinsic scattering mechanisms, e.g., impurity scat-
tering. However, there is still significant absorption even
at frequencies exceeding the width of the Drude peak.
That, and also the fact that at higher frequencies the con-
ductivity scales with ω/µ,13 prompts one to think about
intrinsic mechanisms as well.

On the theoretical side, a large number of authors stud-
ied the deviation of the conductivity of graphene at CNP
from the universal value due to ee interaction.13,15,26–33

Absorption below the Pauli threshold in doped systems
has also been addressed theoretically, but in fewer stud-
ies. In Refs. 34–37, it was shown that about 50% of ab-
sorption can be explained by scattering of electrons (or
holes) by disorder, with an additional contribution of ex-
citonic effects.37 Many-body effects in intraband absorp-
tion were considered in Refs. 32, 38, and 39. The most
relevant to our study is the one by Principi et al.,39 whose
result for the T = 0 optical conductivity of graphene
agrees with ours, up to a factor of lnω and the depen-
dence on the coupling constant.

The rest of our paper is organized as follows. Our
model is outlined in Sec. II. In lieu of calculating the
diagrams generated by the Kubo formula, we adopt
a method that allows one to calculate the dissipative
part of the conductivity by using the exact Heisenberg
equations of motion.7,8,40 This method is described in
Sec. III A. In Sec. III B, we show that if the 2D Fermi sur-
faces around each of the Dirac points are approximated
by circles, the optical conductivity is of the form given
in Eq. (1.2) with

σD =
e2

240π2
and S(ω, T ) = ln

vDκ

max{ω, T}
(1.8)

where vD is the group velocity of Dirac fermions and κ
is the (inverse) screening radius. To re-iterate, Eqs. (1.2)
and (1.8) are valid only in the FL regime, i.e., for
max{ω, T} � µ. However, they allow one to obtain an
order-of-magnitude estimate for the conductivity at the
charge-neutrality point (CNP) by putting ω ∼ T ∼ µ.
This yields σ ∼ e2, consistent with prior results for the
conductivity of an interacting system of Dirac fermions
at CNP.29,30,41

We also considered the effect of trigonal warping
(Sec. III C), which restores the conventional FL behav-
ior. A trigonally warped FS is still convex (cf. Fig. 2),
and thus intra-valley scattering contributes only the
max{ω4, T 4} term to 1/τJ .2 However, the valleys are not
equivalent, and inter-valley scattering does give rise to
a conventional FL term, 1/τJ ∝ max{ω2, T 2}. The cor-
responding contribution to the optical conductivity is of
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the Gurzhi form [Eq. (1.1)] but with a small prefactor,
proportional to the product of kFa, where a is the lattice
spacing.

In Sec. IV, we analyze an interplay between ee and
electron-impurity (ei) scattering channels at the level of
the Boltzmann equation. We show that if ee scattering is
the dominant mechanism, the optical conductivity is de-
scribed by the sum of two Drude peaks, with widths given
by the ee and ei scattering rates, i.e, the ee and ei chan-
nels act as two resistors connected in parallel. If ei scat-
tering dominates, the optical conductivity is described by
a single Drude peak with a width given by the sum of the
ee and ei scattering rates, i.e., the ee and ei channels act
as two resistors connected in series. As a limiting case, we
also derive the T dependence of the dc resistivity. The
resistivity increases as T 4 lnT above the residual value
at the lowest T , reaches a maximum at some T that cor-
responds to comparable ee and ei scattering rates, and
finally goes down back exactly to the residual value at
higher T ; cf. Fig. 4. In Sec. V, we calculate the dynam-
ical charge susceptibility of a DFL, χc(q, ω), using the
Kubo formula. In a Galilean-invariant FL, Imχc(q, ω)
scales as q4/ω3 for qvF � ω � vFκ;39 one factor of q2 is
due to charge conservation and another one is due to cur-
rent conservation. On a technical level, the second factor
of q2 comes about because of a cancelation between the
self-energy, exchange, and Aslamazov-Larkin diagrams.
In a DFL, Imχc(q, ω) scales as q2ω ln |ω| for ω � ωp(q),
where ωp(q) is the plasmon frequency at given q, and as
q4/ω3 for ω � ωp(q). Via the the Einstein relation, the
q2ω ln |ω| scaling of the charge susceptibility implies that
at q = 0 the conductivity of a DFL scales as ω2 ln |ω|, in
agreement with the result of a direct calculation. Other
Dirac systems–bilayer graphene, the surface state of a 3D
topological insulator, and 3D Weyl/Dirac semimetals –
as well as a relation of our results to the experiment are
discussed in Sec. VI. Our conclusions are presented in
Sec. VII.

II. DOPED MONOLAYER GRAPHENE

One of the most popular examples of DFL is a doped
monolayer graphene (MLG). We begin with the non-

interacting tight-binding Hamiltonian42

H0 = −γ0

∑
s,〈i,j〉

[
a†s(Ri)bs(Rj) + h.c

]
− µ

∑
s,i

n̂s(Ri),

(2.1)

where as(Ri) and bs(Ri) are the fermionic operators cor-
responding to A and B sublattices, 〈i, j〉 imply sum-
mation over the nearest neighbors, s labels spin, µ is
the chemical potential, and n̂s(Ri) = a†s(Ri)as(Ri) +
b†s(Ri)bs(Ri) is the number density operator. In the mo-
mentum space, the Hamiltonian is given by

H0 = −γ0

∑
s,k

Φka
†
k,sbk,s + H.c.− µ

(
a†k,sak,s + b†k,sbk,s

)
,

(2.2)

where

Φk =
∑
i

eik·δi = eikya + 2e−i
kya

2 cos(

√
3

2
kxa), (2.3)

is a form factor obtained by summation over the near-
est neighbors connected by vectors δ1 = (0, a), δ2 =(
−
√

3a/2,−a/2
)
, and δ3 =

(√
3a/2,−a/2

)
, and a is the

carbon-carbon distance. The Hamiltonian is diagonal-
ized by introducing a new basis43

ak,s =
eiφk

√
2

(αk,s + βk,s)

bk,s =
1√
2

(βk,s − αk,s) , (2.4)

where αk,s(βk,s) denotes the annihilation operator of
electron (hole) in the conduction (valence) band, and φk
is defined by Φk = |Φk|eiφk . In the new basis, the Hamil-
tonian is just the sum of the conduction and valence band
parts:

H0 =
∑
ks

(εk − µ)α†k,sαk,s + (−εk − µ)β†k,sβk,s,(2.5)

where εk = γ0|Φk|.
We will be interested in low-energy Dirac fermions with

momenta near two inequivalent Dirac points Kς=± =(
ς4π/(3

√
3a), 0

)
. Near these points, Φk can be expanded

as

ΦKς+p ≡ Φς,p = −3a

2
(ςpx − ipy) +

3a2

8
(ςpx + ipy)2.

(2.6)

The last, O(a2) term describes trigonal warping. The
low-energy 4× 4 Hamiltonian can be written as the sum
of the Dirac and trigonal-warping parts
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H0 = HD +HTW (2.7a)

HD =
∑
p,s

Ψ†p,s [vDp · (τz ⊗ σ)− µ(τ0 ⊗ σ0)] Ψp,s (2.7b)

HTW = −vDa

4

∑
p,s

Ψ†p,s
[
(p2
x − p2

y)(τ0 ⊗ σx)− 2pxpy(τ0 ⊗ σy)
]

Ψp,s, (2.7c)

where vD = 3γ0a/2 is the Dirac velocity, τ and σ are the
Pauli matrices which operate in the valley and sublattice
spaces, respectively, τ0 and σ0 are the identity matrices,
and

Ψ†p,s =
(
ψ†K++p,s, ψ

†
K−+p,s

)
=
(
a†+,p,s, b

†
+,p,s, b

†
−,p,s, a

†
−,p,s

)
(2.8)

is a 4-spinor describing the states near the K± point.
With trigonal warping taken into account, the energy
spectrum is given by

ες,p,λ = εDς,p,λ + εTW
ς,p,λ (2.9a)

εDς,p,λ = λvDp, (2.9b)

εTW
ς,p,λ = −λς vDap

2

4
cos 3θp (2.9c)

with λ, ς = ±1. The corresponding isoenergetic contours
are shown in Fig. 2.

For low-energy fermions, the unitary transformation
from the four-component spinor Ψps to a diagonal
electron-hole basis reads

a+,p,s

b+,p,s
b−,p,s
a−,p,s

 =
1√
2

−g+(p) g+(p) 0 0
1 1 0 0
0 0 g−(p) −g−(p)
0 0 1 1

 ·
β+,p,s

α+,p,s

β−,p,s
α−,p,s

 ,

(2.10)

where g+(k) = Φ+,k/|Φ+,k|, g−(k) = |Φ−,k|/Φ−,k, and
ας,p,s(βς,p,s) denotes the annihilation operator for an
electron (hole) in the conduction (valence) band located
near the Kς point. To linear order in pa, gς(p) is given
by

gς(p) = e−iθp
(

1− i

4
ςpa sin 3θp

)
, (2.11)

where θp is the azimuthal angle of p. The Hamiltonian
in the electron-hole basis is the same as in Eq. (2.7a),
except for now the electron and hole operators carry the

valley index:

H0 =
∑
ς,k,s

(ες,k,+ − µ)α†ς,k,sας,k,s + (ες,k,− − µ)β†ς,k,sβς,k,s,

(2.12)

with ες,k,s given by Eq. (2.9a).

The gradient part of the current operator correspond-
ing to the Hamiltonian in Eqs. (2.7a-2.7c) is readily found
from J = −∂H0/∂A. The x and y components of J at
q = 0 are given by

Jx = e
∑
p,s

Ψ†p,s

(
vD(τz ⊗ σx)− vDa

2
[px(τ0 ⊗ σx)− py(τ0 ⊗ σy)]

)
Ψp,s,

Jy = e
∑
p,s

Ψ†p,s

(
vD(τz ⊗ σy) +

vDa

2
[py(τ0 ⊗ σx) + px(τ0 ⊗ σy)]

)
Ψp,s, (2.13)

where e is the elementary charge. When expressed in the electron-hole basis, the current operator in Eq. (2.13)
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contains both the intra- and inter-band contributions. In
a doped system, the inter-band contributions arise only
for ω ≥ 2µ. As we focus on the range of ω � µ, the
inter-band contributions can be neglected. Also, the oc-
cupied states in the valence band do not contribute to
the current. The remaining intra-conduction-band part
of the current is

J =
∑
ς,p,s

vς,pα
†
ς,p,sας,p,s, (2.14)

where vς,p = ∇ες,p is the group velocity at the Kς point.
The density-density interaction between fermions is de-

scribed by

Hint = 1/2
∑
Q

U0(Q)ρQρ−Q, (2.15)

where ρQ =
∑

p,s Ψ†p,sΨp+Q,s and U0(Q) = 2πe2/Q
is the bare Coulomb potential. When expressed in
the electron-hole basis, Hint contains a large number of
terms, corresponding to inter- and intra-band, as well as
to inter- and intra-valley interactions. Out of those, we
will keep only the intra-conduction-band terms, which
give the leading contribution to the optical conductivity
for ω � µ. Also, we assume that doping is sufficiently
low, such that umklapp processes can be neglected. Then
Hint is reduced to

Hint =
1

2

∑
k′,p′,k,p

∑
s,s′

U0(k− k′)δ(k′ + p′ − k− p)

×
[
∆ϕ++(k′,k)∆ϕ++(p′,p)α†+,k′,sα

†
+,p′,s′α+,p,s′α+,k,s + ∆ϕ−−(k′,k)∆ϕ−−(p′,p)α†−,k′,sα

†
−,p′,s′α−,p,s′α−,k,s

+ ∆ϕ++(k′,k)∆ϕ−−(p′,p)α†+,k′,sα
†
−,p′,s′α−,p,s′α+,k,s + ∆ϕ−−(k′,k)∆ϕ++(p′,p)α†−,k′,sα

†
+,p′,s′α+,p,s′α−,k,s

]
+ U0(K0 + k− k′)

[
∆ϕ−+(k′,k)∆ϕ+−(p′,p)α†−,k′,sα

†
+,p′,s′α−,p,s′α+,k,s

+ ∆ϕ+−(k′,k)∆ϕ−+(p′,k)α†+,k′,sα
†
−,p′,s′α+,p,s′α−,k,s

]
,

(2.16)

where ∆ϕςς′(k
′,k) =

(
1 + e−i(φς,k′−φς′,k)

)
/2 and K0 =

K+ −K− is the vector connecting the valleys. The first
two (last four) terms in Hint describe the intra-valley
(inter-valley) interaction. The last two inter-valley terms
corresponds to exchange processes, in which an electron
lands onto another valley after scattering, therefore such
processes require large momentum transfers, on the order
of K0 ∼ 1/a � kF, which correspond to small Coulomb
matrix elements. Such processes will be neglected. In
Sec. III B, it will be shown that the intra-band part of
the optical conductivity is controlled by processes with
small momentum transfers, i.e., Q� kF. Therefore, one
can also neglect the Q dependence of the phase factors
∆ϕςς(k,Q), which are then reduced to ∆ϕςς(k,0) = 1.
Now ∆ϕςς(k,0) does not depend on the valley index, and
thus the matrix elements of the intra- and inter-valley
interactions are the same. Therefore, we arrive at the
final form of the interaction Hamiltonian

Hint =
1

2

∑
k,p,Q,s,s′,ς,ς′

U0(Q)α†ς,k+Q,sα
†
ς′,p−Q,s′ας′,p,s′ας,k,s,

(2.17)

in which the valley index plays the role of a (conserved)
isospin.

III. OPTICAL CONDUCTIVITY OF A
NON-GALILEAN–INVARIANT SYSTEM

A. Formalism

We are interested in the optical conductivity measured
in a response to a uniform electric field, which oscillates
with frequency ω. In lieu of using the diagrammatic
technique for the Kubo formula, we adopt the formal-
ism used in the memory matrix theory.40 This formalism
allows one to obtain directly the optical conductivity in
the ballistic regime, defined by ω � 1/τJ(ω, T ).

The optical conductivity tensor is given by

σ`m(ω, T ) =
i

ω
[Π`m(ω, T )−Π`m(0, T )] , (3.1)

where Π`m(ω, T ) is the current-current correlation func-
tion

Π`m(ω, T ) = −i
∫ ∞

0

dteiωt〈[J`(t), Jm(0)]〉,

≡ −i〈[J`, Jm)]〉ω. (3.2)

The Π`m(0, T ) term in Eq. (3.1) accounts for the diamag-
netic part of the current, which must cancel the gradient
part at ω = 0 to maintain gauge invariance.44,45 Since
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Π`m(0, T ) is purely real, it contributes only to the imag-
inary part of the conductivity, whereas its real part is
given by

Reσ`m(ω, T ) = − 1

ω
ImΠ`m(ω, T ). (3.3)

To obtain Reσ`m(ω, T ) to lowest order in the interac-
tion, we integrate by parts in Eq. (3.2) to find

Reσ`m(ω, T ) =
1

ω3
〈[∂tJ`, ∂tJm]〉ω, (3.4)

where ∂tJ = i[H,J(t)]. If the Hamiltonian is projected
onto the upper Dirac cone, its free part commutes with
the current, therefore ∂tJ is linear in the interaction
[see Eq.(3.5) below]. If we then take an average in
〈[∂tJ`, ∂tJm]〉 over the non-interacting ground state, the
resulting conductivity will be at two-loop order in the
interaction. The result obtained in this way is equiva-
lent to evaluating the two-loop diagrams for the Kubo
formula, but it eliminates the need for collecting contri-
butions from different diagrams, which partially cancel
each other. A similar method was used in Ref. 46 to

calculate the conductivity of a Galilean-invariant FL at
finite q.

Calculating the commutator of Hint and J, we find the
time derivative of J as

∂tJ = e
i

2

∑
ςς′

∑
kpk′p′

∑
ss′

U(k− k′)∆vς,ς′

× α†ς,k′,sα
†
ς′,p′,s′ας′,p,s′ας,k,sδ(k + p′ − k− p),

(3.5)

where

∆vς,ς′ = vς,k + vς′,p − vς,k′ − vς′,p′ (3.6)

is a change in the velocity due to an ee collision. Note
that due to a trigonal warping term in the electron disper-
sion [Eq. (2.9c)], the group velocities in different valleys
are different. To be specific, we take the interaction to be
a screened Coulomb potential, U(Q) = 2πe2/(Q+κ)with
κ = 4e2µ/v2

D. It will be shown in Sec. III B, how-
ever, the scaling form of the conductivity is valid for any
form of the interaction, as long U(Q → 0) = const and
U(Q → ∞) = 0. Using Eqs. (3.5) and (3.4), we obtain
the optical conductivity σ = (σxx + σyy)/2 as

Reσ(ω, T ) = e2 π

ω3
(1− e−βω)

∑
ςς′

∫
dDk′

(2π)D

∫
dDp′

(2π)D

∫
dDk

(2π)D

∫
dDp

(2π)D
(∆vς,ς′)

2 (3.7)

× U(k− k′)

[
U(k− k′)− δςς′

U(p− k′)

2

]
× nF(ες,k′)nF(ες′,p′)[1− nF(ες,k)][1− nF(ες′,p)]δ(ω + ες′,p′ + ες,k′ − ες,k − ες′,p)δ(k′ + p′ − k− p),

where nF(ε) is the Fermi function and β = 1/T . A de-
tailed derivation of Eq. (3.7) is given in Appendix A. The
square brackets in the second line of Eq.(3.7) contain the
interaction potential at small and large momentum trans-
fers, given by the first and second terms, respectively.
where vF and m are the Fermi velocity and mass of the
quadratic dispersion, respectively. We will see later on

in this section that the integral over Q is logarithmically
divergent at the lower limit. This implies that Q � kF

and, therefore, the second term in the square brackets
can be neglected. It is convenient to introduce the mo-
mentum and energy transfers as Q = k − k′ = p′ − p
and Ω = ες,k−Q− ες,k = ες′,p− ες′,p+Q−ω, respectively,
upon which Eq. (3.7) becomes

Reσ(ω, T ) = e2 π

ω3
(1− e−βω)

∑
ςς′

∫
dDQ

(2π)D

∫
dDk

(2π)D

∫
dDp

(2π)D

∫
dΩ(∆vς,ς′)

2U2(Q)

× nF(ες,k + Ω)nF(ες′,p − ω − Ω)[1− nF(ες,k)][1− nF(ες′,p)]δ(Ω− ες,k−Q + ες,k)δ(ω + Ω + ες′,p+Q − ες′,p).

(3.8)

For a Galilean-invariant system, vk = k/m and ∆v
vanishes by momentum conservation, so Reσ = 0 for any
finite ω. For a non-Galilean–invariant system, vk 6= k/m
and ∆v does not vanish exactly, so in general Reσ 6= 0.
Now, we will discuss the optical conductivity for the par-

ticular cases of doped graphene with and without trigonal
warping.
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B. Monolayer graphene without trigonal warping

In this section, we calculate the optical conductivity
for the case of doped graphene without taking trigonal
warping into account. In this approximation, the disper-

sion is isotropic and linear in momentum, the K+ and
K− valleys are degenerate, and summation over the val-
ley indices in Eq. (3.8) simply gives a factor of 4. In the
rest of this section, the valley index will be suppressed.
Equation (3.8) then becomes

Reσ(ω, T ) = e2 4π

ω3
(1− eβω)

∫
dDQ

(2π)D

∫
dDk

(2π)D

∫
dDp

(2π)D

∫
dΩ(∆v)2U2(Q)

× nF(εk + Ω)nF(εp − ω − Ω)[1− nF(εk)][1− nF(εp)]δ(Ω− εk−Q + εk)δ(ω + Ω + εp+Q − εp). (3.9)

For any isotropic dispersion εk = ε(k), the group veloc-
ity can be written as vk = f(k)k, where f(k) = ε′(k)/k.
Therefore, if we project electrons onto the FS, i.e., put
|k| = |p| = |k − q| = |p + q| = kF, then ∆v = 0. To
obtain a non-zero result, one needs to expand the veloc-
ity to leading order in deviation from the FS. Writing
k = kF + (εk − µ)/vF with vF = ε′(kF) (and the same
for other momenta), and expanding ∆v to first order in
εk − µ, we obtain

∆v =
w

kF

[
k̂ (εk−Q − εk) + p̂ (εp+Q − εp)

+
Q

kF
(εp+Q − εk−Q)

]
, (3.10)

where k̂ = k/k, p̂ = p/p, and

w = −k
2
Ff
′(kF)

vF
= 1− kFε

′′(kF)

ε′(kF)
(3.11)

is the dimensionless coefficient which quantifies a devia-
tion from Galilean invariance. For a power-law disper-
sion, εk ∝ ka,

w = 2− a. (3.12)

The a = 2 case corresponds to a Galilean-invariant sys-
tem, when w = 0 and thus Reσ(ω, T ) = 0, as it should be.

However, Reσ(ω, T ) 6= 0 for any other a. If the disper-
sion deviates from the quadratic one by a small amount,
δε(k), then

w =
δε′(kF)

vF
−mδε′′(kF), (3.13)

where vF and m are the Fermi velocity and mass of the
quadratic dispersion, respectively.

We will see later on in this section that the integral
over Q is logarithmically divergent at the lower limit.
This implies that typical Q� kF and, therefore, the last
term in Eq. (3.10) can be neglected compared to the first
two. It is also convenient to express the differences of the
dispersion in Eq. (3.10) via the frequency of light, ω, and
energy transfer, Ω, using the conservation of energy, as
specified by the delta-functions in Eq. (3.8). Restricting
now to the Dirac spectrum with w = 1, we obtain

∆v =
1

kF

[
k̂Ω− p̂(Ω + ω)

]
. (3.14)

We see that ∆v2 ∝ max{ω2,Ω2}. This explains the ori-
gin of the extra max{T 2, ω2} factor in the current relax-
ation rate, Eq. (1.6). Since we already obtained ∆v2 to
leading order in Ω and ω, the remainder of the integrand
in Eq. (3.8) can be projected onto the FS, which amounts
to neglecting ω and Ω in the arguments of delta-functions.
Accordingly,

Reσ(ω, T ) = e2 4πN2
F

ω3
(1− e−βω)

∫
d2Q

(2π)2

∫
dεk

∫
dεp

∫
dΩ

∫ 2π

0

dθkQ
2π

∫ 2π

0

dθpQ
2π

U2(Q)∆v2

× nF(εk + Ω)nF(εp − ω − Ω) [1− nF(εk)] [1− nF(εp)] δ(εp+Q − εp)δ(εk − εk−Q), (3.15)

where NF = µ/2πv2
D is the density of states at the Fermi

level per spin and per valley, and θnn′ is the angle be-
tween vectors n and n′. Next, the dispersions in the
delta-functions can be expanded to linear order in Q.
This imposes kinematic constraints on the angles between
k and Q, and between p and Q, namely, θkQ = ±π/2
and θpQ = ±π/2. The first constraint corresponds to the
Cooper channel, with p = −k, while the second one to

the collinear channel, with p = k. Accounting for both
of these constraints, we obtain

∆v2 =
2

k2
F

[
(2Ω + ω)2 + ω2

]
. (3.16)

Now the integrals over εk, εp, and Ω in Eq. (3.15) can be
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carried out; as shown in Appendix B, the result is∫
dεk

∫
dεp

∫
dΩ
[
(2Ω + ω)2 + ω2

]
× nF(εk + Ω)nF(εp − ω − Ω) [1− nF(εk)] [1− nF(εp)]

=
ω5

15(1− e−βω)

(
1 +

4πT 2

ω2

)(
3 +

8π4T 4

ω4

)
.

(3.17)

The integral over Q in the leading log approximation is
given by∫ ∞

max{|ω|,T}/vD

dQ

Q(Q+ κ)2
≈ 1

κ2
ln

vDκ

max(|ω|, T )
.(3.18)

The logarithmic divergence of the integral above is a pos-
teriori justification for neglecting the term proportional
to Q in Eq. (3.10). Collecting everything together, we
obtain the final result for the conductivity

Reσ(ω, T ) =
e2

240π2

ω2

µ2

(
1 +

4π2T 2

ω2

)(
3 +

8π2T 2

ω2

)
× ln

ΛQ
max{|ω|, T}

, (3.19)

where ΛQ = vDκ. Equation (3.19) obviously satisfies the
first-Matsubara-frequency rule,12 i.e., Reσ(±2πiT, T ) =
0. The scaling form in Eq. (3.19) applies not only to
a graphene monolayer with Coulomb interaction but to
any 2D system with an isotropic but non-parabolic dis-
persion. A change in the dispersion brings in only an
overall factor of w2, defined in Eq. (3.11), while a change
in the interaction affects only the choice of cutoff ΛQ un-
der the log.

The presence of the logarithmic factor in Eq. (3.19) is
quite interesting. It is well known that the quasiparti-
cle scattering rate in a 2D FL scales as E2 lnE, where
E = max{|ω|, T} (Refs. 47 and 48), but it is also un-
derstood that the logarithmic factor comes from pro-
cesses with small momentum transfers. Therefore, if a
E2 term in the conductivity is allowed due to broken
Galilean invariance, it comes without an extra log fac-
tor, because the logarithmic singularity is canceled by
the “transport factor”, ∆v2, which is proportional to Q2

at small Q(Ref. 12). In our case, however, Galilean in-
variance is broken only partially, and only a subleading,
E4 term is allowed in the conductivity. One can view
this term as resulting from expanding each of the delta-
functions in Eq. (3.15) in ω/Q. The two extra factors of
ω change the scaling from E2 to E4, but the 1/Q2 fac-
tor results in an additional log term. Another example
of such a behavior is a T 4 lnT scaling of the conductiv-
ity of a Galilean-invariant system with energy-dependent
impurity scattering time.2 Once the logarithmic singu-
larity is present, the coupling constant of the Coulomb
interaction enters only via a cutoff, because the screened
Coulomb potential at Q � κ does not contain the elec-
tron charge.

The current relaxation rate in a conventional FL
[Eq. (1.5)] is related to a quasiparticle lifetime which,
in its turn, is related to the electron self-energy via

1/τSP(ε, T ) = −2ImΣ(ε, T ) ∝ ε2 + π2T 2. (3.20)

The difference between the scaling forms of τJ(ω, T ) in
Eq. (1.5) and τSP(ε, T ) in Eq. (3.20) is due to thermal
averaging of (3.20) over ε. The correct scaling form of
τJ(ω, T ) can already be deduced from the single-bubble
diagram for the conductivity; other diagrams only modify
the overall prefactor.12 On the contrary, the scaling form
of τJ(ω, T ) for a DFL [Eq. (1.6)] is not related to that
of τSP(ε, T ), even if one takes higher-order terms in the
self-energy into account.

Equation (3.19) accounts only for intrasubband excita-
tions. At first sight, intersubband excitations should give
a much smaller contribution, because available states in
the valence and conduction bands are separated by the
Pauli threshold, 2µ � ω. However, this is true only
in the absence of ee interactions. A detailed analysis
shows49 that in an interacting system the contribution
of intersubband excitations to the conductivity is on the
order of (e2/)(ω2/µ2), which is smaller than the intra-
subband contribution in Eq. (3.19) but only by a loga-
rithmic factor. Moreover, the intrasubband contribution
in 3D does not have a logarithmic factor (see Sec. VI C),
and the intra- and intersubband contributions are of the
same order. The reason for the intra- and intersub-
band contributions to be almost comparable is as follows.
When cast into a Drude-like form, both contributions (at
T = 0) can be written as Reσ = (e2)

(
1/∆2τJ

)
, where

∆ is the excitation energy and τJ is the corresponding
current relaxation time. For intrasubband transitions,
∆ is small, ∼ ω, but momentum conservation reduces
1/τJ compared to its conventional FL form by a factor of
ω2/µ2 � 1: 1/τJ ∼ (ω2/µ)(ω2/µ2)| lnω|D−3. For inter-
subband transitions, ∆ is large, ∼ µ, but momentum con-
servation plays no role and 1/τJ is of the conventional FL
form: 1/τJ ∼ ω2/µ. As a result, a small factor of 1/∆2

for intersubband transitions is partially compensated by
a large factor of 1/τJ , and vice versa for intrasubband
transitions.

C. Monolayer graphene with trigonal warping

In this section, we study the effect of trigonal warping,
which leads to anisotropy of the FSs around each of the
two Dirac points and also breaks valley degeneracy. The
contribution to the optical conductivity from intravalley
scattering in Eq. (3.8) are given by the ς = ς ′ terms in
the sum, and can be evaluated along the same lines as in
Sec. III B. In this case, trigonal warping does not lead to
any quantitative changes because the FS remains simply
connected and convex,2 and the corresponding current re-
laxation rate is still quartic in ω and T . On the contrary,
scattering between inequivalent valley does give rise to
quadratic scaling, and it is this scattering that we focus
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on in this section. Intervalley scattering is described by

𝐊+

𝒌𝒚

𝒌𝒙

𝒑𝒚

𝒑𝒙

𝜽𝒌
𝜽𝒑

𝒌′
𝒌

𝒑′𝒑

𝐊−

Figure 2. An inter-valley scattering process. The two Fermi
surfaces (red) with trigonal warping are located at two ad-
jacent K+ and K− points in the Brillouin zone of graphene.
k and k′ are the initial and final momenta of an electron in
the K+ valley. Similarly, p and p′ are the initial and final
momenta in the K− valley.

the ς 6= ς ′ terms in Eq. (3.8). A typical scattering process
is depicted in Fig. 2. The optical conductivity due to
inter-valley scattering is given by

Reσinter(ω, T ) =
2πe2 1− e−βω

ω3

∫
d2Q

(2π)2

∫
dε+,k

2π

∫
dε−,p

2π

∫
dΩ

∮
C+

d`k
vk

∮
C−

d`p
vp

(v+,k−Q + v−,p+Q − v+,k − v−,p)2U2(Q)

× nF(ε+,k + Ω)nF(ε−,p − Ω− ω) [1− nF(ε+,k)] [1− nF(ε−,p)] δ(ω + Ω + ε−,p+Q − ε−,p)δ(Ω− ε+,k−Q + ε+,k),

(3.21)

where now k and p are the initial momenta in the K+

and K− valleys, and d`k(d`p) is the line element of the
Fermi contour C+(C−) near K+(K−) point.

A change in the velocity due to an ee collision can be
written as

v+,k−Q + v−,p+Q − v+,k − v−,p = ∆vD + ∆vTW,

(3.22)

where ∆vD and ∆vTW are due to the Dirac and trigonal-
warping parts of the velocity, respectively. For electrons
on the FS, ∆vD = 0, while ∆vTW 6= 0. Therefore, the
leading-order correction for the conductivity from inter-

valley scattering is due to
(
∆vTW

)2
, and is proportional

to a2. Delegating the computational details to Appendix
C, we present here only the final result for the conduc-
tivity due to intervalley scattering:

Reσinter(ω, T ) =
29e2

48π2
α2

e | lnαe|(kFa)2

(
1 +

4π2T 2

ω2

)
,

(3.23)

where

αe =
e2

vD
(3.24)

is the effective fine-structure constant. The ω/T scaling
of Reσinter is same as for a conventional FL [cf. Eq. (1.1)]
but with a small prefactor of (kFa)2, which characterizes
the strength of trigonal warping.

D. Combined result for the conductivity from
intra- and inter-valley scattering

1. High-frequency regime

The total conductivity is given by the sum of the intra-
valley [Eq. (3.19)] and inter-valley [Eq. (3.23)] contribu-
tions, and can be cast into a Drude-like form:

Reσ(ω, T ) =
ne2

m∗
1

ω2τJ(ω, T )
, (3.25)

where n = µ/πvD is the number density, m∗ = µ/v2
D

is the effective mass, and the current relaxation time is
defined as
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1

τJ(ω, T )
=

1

240π

(
ω2 + 4π2T 2

) (
3ω2 + 8π2T 2

)
µ3

ln
αeµ

max{|ω|, T}
+

29

48π
α2

e | lnαe|(kFa)2ω
2 + 4π2T 2

µ
. (3.26)

The first term in 1/τJ arises from intra-valley scatter-
ing and is specific for a DFL, while the second one is
a Gurzhi-like contribution arising from inter-valley scat-
tering. The competition between the two terms is deter-
mined by the hierarchy of the three energy scales: ω, T ,
and ωTW ≡ αe(kFa)µ � µ. As an example, we analyze
the dependence of 1/τJ on ω at fixed T . If ωTW � T ,
the effect of trigonal warping is negligible: 1/τJ is mostly
given by the DFL term. This behavior is shown in the
left panel of Fig. 3(a). If T � ωTW, 1/τJ starts with the
T 2 term for ω � T , then scales as ω2 for T � ω � ωTW,
and finally follows the ω4 dependence for ωTW � ω. This
case is illustrated in Fig. 3(b).

2. Low-frequency regime

Although Eq. (3.25) looks like a high-frequency tail of
the conventional Drude formula, Reσ = e2nτJ/m(1 +
ω2τ2

J ), it would be incorrect to extrapolate this result to
the dc limit, because ee interaction in the absence of umk-
lapp scattering cannot render the dc conductivity finite.50

In fact, Eq. (3.25) is valid only for ω � 1/τJ(0, T ). In
this section, we will show that, in the absence of disorder
and at ω → 0, the conductivity can be described by the
sum of a delta-function term and a regular part:

Reσ(ω → 0, T ) =
πne2

m∗
δ(ω) + σreg(T ), (3.27)

where σreg(T ) scales either as T−4 or T−2, depending
on whether T is higher or lower than ωTW. The form in
Eq. (3.27) pertains to any non-Galilean-invariant system,
in which ee interaction can render the conductivity finite
only at a finite but not zero frequency. For example, this
form follows from the semiclassical equations of motion
for a two-band system (in this case, the delta-function
term is absent if the system is compensated).3

On a more general level, Eq. (3.27) can be derived from
the Boltzmann equation, using the method outlined in
Ref. 2. As we are now interested in the limit of ω � T , it
suffices to consider a semiclassical form of the Boltzmann
equation:

(−iω + 0+)δfk − e(vk ·E)n′k = −Iee[δfk], (3.28)

where δfk is a non-equilibrium correction to the Fermi
function (nk) and Iee[δf ] is the (linearized) ee collision
integral. The collision integral can be viewed as a linear
operator acting on δfk:

Iee[δfk] =
∑
k′

Îee(k,k′)δfk′ . (3.29)

In general, Îee is non-Hermitian and thus can be written
as a direct product of its left (L) and right (R) eigenvec-
tors

Îee =
1

τ∗ee(T )

∑
n

ξn|ΦnR〉〈ΦnL|, (3.30)

where ξn is the nth eigenvalue and τ∗ee(T ) is the effective

ee scattering time, which defines the magnitude of Îee.
Without a loss of generality, we can choose τ∗ee(T ) to
coincide with τJ(0, T ) given by Eq. (3.26), i.e.,

1

τ∗ee(T )
=

1

τ∗J (0, T )
=

2π3

15

T 4

µ3
ln
αeµ

T
, (3.31)

where for brevity we omitted the T 2 term resulting from
trigonal warping. Because Φn

L and ΦnR form an orthonor-
mal basis, a general solution of Eq. (3.28) can be written
as

δfk =
∑
n

cn|ΦnR〉. (3.32)

Substituting this expansion into Eq.(3.28), we obtain co-
efficients cn as

cn =
e〈ΦnL|vk ·En′k〉
−iω + ξn

τ∗ee(T ) + 0+
. (3.33)

If ee interaction conserves momentum, Iee is nullified by a
combination A·k, where A is an arbitrary k-independent
vector.50 This means that operator Îee has a zero mode
with eigenvalue ξ0 = 0. In the limit of ωτ∗ee(T ) → 0,
the series in Eq. (3.32) contains only the zero-mode term
with

c0 =
e〈Φ0

L|vk ·En′k〉
−iω + 0+

. (3.34)

The corresponding contribution to δfk gives the delta-
function term in Eq. (3.27). The next-to-leading contri-
bution corresponds to the minimum non-zero eigenvalue,
ξ1 > 0:

c1 =
e〈Φ1

L|vk ·En′k〉
−iω + ξ1

τ∗ee(T ) + 0+
. (3.35)

Because ξn are the eigenvalues of a dimensionless opera-
tor which does not contain any physical parameters, we
should expect that ξ1 ∼ 1. For ω � 1/τ∗ee, one can then
neglect ω in the denominator of c1. The corresponding
contribution to δfk gives the second term in Eq. (3.27).

So far, we have found the asymptotic forms of the
conductivity in the opposite limits of ω � 1/τJ(0, T )
and ω � 1/τJ(0, T ), given by Eqs. (3.25) and (3.27),
respectively. Although Eq. (3.25) matches in order-of-
magnitude with σreg in Eq. (3.27) at ω ∼ 1/τJ(0, T ), it
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𝝎/𝝁 𝝎/𝝁

𝝉
𝑱−
𝟏

(𝒂) (𝒃)

𝝉
𝑱−
𝟏

Figure 3. Solid line: the current relaxation rate, 1/τJ(ω, T ) (normalized by µ) from Eq. (3.26), as a function of frequency at
fixed temperature. Here, α = 0.8, kFa = 0.05, and ωTW/µ = 0.04. The dashed and dotted-dashed lines depict the scaling forms
for DFL [the first term in Eq. (3.26)] and conventional FL [the second term in Eq. (3.26)], respectively. a) T/µ = 10−2. In
this case, the DFL scaling form dominates for all frequencies of interest. b) T/µ = 10−4. In this case, one can see a crossover
between the DFL and conventional FL scaling forms).

does not mean that σreg can be described by the Drude
form at all frequencies. A precise form of Reσ(ω, T ) in
the intermediate range of ω ∼ 1/τJ(0, T ) can be obtained
only by an exact solution of the Boltzmann equation,
which is outside the scope of this paper. We note, how-
ever, that for a simpler case of a two-band parabolic
system the regular part of the conductivity follows the
Drude form for all frequencies.3

IV. DIRAC FERMI LIQUID WITH IMPURITIES

In this section, we consider an interplay between impu-
rity and ee scattering in a DFL at the level of the semi-
classical Boltzmann equation, which neglects quantum
interference and hydrodynamic effects. We assume that
the effective impurity radius is much smaller than the
Fermi wavelength but much larger than the lattice spac-
ing. In this case, impurities act as point-like, isotropic
scatterers for electrons within the K+ and K− valleys,
while scattering between the valleys is suppressed. As in
the previous sections, we assume that ee interaction is
long-ranged and also neglect trigonal warping, such that
the valley degree of freedom plays the role of conserved
isospin. The non-equilibrium correction to the Fermi
function can be parameterized as δfk = −Tn′kgk. Then
the linearized Boltzmann equation, which includes scat-
tering by point-like impurities and ee scattering, reads

−
(
iω − 1

τi

)
Tn′kgk − eE · vkn

′
k = −Iee[gk], (4.1)

where τi is the transport mean free time for impurity
scattering and

Iee[gk] =

∫
d2k′

(2π)2

∫
d2p′

(2π)2

∫
d2p

(2π)2
Wk,p;k′,p′

× (gk + gp − gk′ − gp′)
× nknp(1− nk′)(1− np′)
× δ(εk + εp − εk′ − εp′)δ(k + p− k′ − p′).

(4.2)

With spin and valley degeneracy taken into account,50,51

the scattering probability to lowest order in an instanta-
neous interaction is given by

Wk,p;k′,p′ = 8πU(k− k′)

[
U(k− k′)− 1

2
U(k− p′)

]
,

(4.3)

where the first (second) term in the square brackets come
from direct (exchange) ee interaction. In our model of a
weakly screened Coulomb potential, the exchange term
can be neglected and

Wk,p;k′,p′ = 8πU2(k− k′). (4.4)

A. Low temperatures: slow electron-electron
scattering

We now solve Eq. (4.1) for the case of low tempera-
tures, when ee collisions are less frequent than ei col-
lisions, and the ee contribution can be evaluated via a
perturbation theory in Iei; cf. Refs. 2, 9, and 52. At the
first step, we solve Eq.(4.1) with Iee = 0, which yields

g
(0)
k = − eτi(vk ·E)

T (1− iωτi)
. (4.5)
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and the corresponding contribution to the optical con-
ductivity is of the Drude form:

σi(ω) =
e2nτi

m∗(1− iωτi)
. (4.6)

Next, we substitute g
(0)
k back into Eq. (4.1) and find a

correction due to ee scattering

g
(1)
k =

τi
T (1− iωτi)n′k

Iee[g
(0)
k ]. (4.7)

The corresponding correction to the optical conductivity
is given by

δσee = − 4πe2τ2
i N

2
F

T (1− iωτi)2

∫
d2Q

(2π)2

∫
dεk

∫
dεp

∫
dΩ

×
∫
dθk
2π

∫
dθp
2π

(∆v)2U2(Q)

× n(εk)n(εp) [1− n(εk + Ω)] [1− n(εp − Ω)]

× δ(εk − εk−Q + Ω)δ(εp − εp+Q − Ω), (4.8)

where, as before, ∆v = vk + vp − vk−Q − vp+Q. Note
that the integral in the last equation is the same as in
Eq. (3.9) but with ω = 0 and, therefore, the rest of the
calculation is the same as in Sec. III B. The final result
reads

δσee(ω, T ) = −e
2nτi
m∗

1− ω2τ2
i

(1− iωτi)2

τi
τ∗ee(T )

, (4.9)

where τ∗ee(T ) is given by Eq. (3.31). Note that Eq. (4.9)
can be obtained by replacing τi in the Drude formula
[Eq. (4.6)] by the effective scattering time, τeff(T ) =
τiτ
∗
ee(T )/(τi + τ∗ee(T )), and expanding the result to first

order in 1/τ∗ee(T ). In this regime, therefore, we recover
the Mathiessen rule, i.e., the ei and ee channels act as
two resistors connected in series. Correspondingly, the
real and imaginary parts of the conductivity are given by{

Reσ(ω, T )
Imσ(ω, T )

=
e2nτeff(T )

m∗ [1 + ω2τ2
eff(T )]

×
{

1
ωτeff(T )

.

(4.10)

B. High temperatures: fast electron-electron
scattering

We now turn to the opposite limit of high tempera-
tures, when ee scattering is faster than ei one. (Some-
times, this regime is referred to as a “hydrodynamic” one,
although there is no real hydrodynamic regime in bulk
samples with point-like impurities). The analysis of this
limit proceeds in the same way as in Sec. III D 2; we only
need to replace an infinitesimally small damping term [0+

in Eq. (3.28)] by finite 1/τi. Consequently, Eq. (3.33) for
expansion coefficients cn is replaced by

cn =
e〈ΦξL|vk ·En′k〉
−iω + τ−1

i + ξn
τ∗ee(T )

. (4.11)

At 1/τ∗ee(T )→∞, the ξ0 = 0 eigenvalue gives the leading
contribution, and the delta-function term in Eq. (3.27)
is replaced by the Drude form with the width given by
1/τi, as in Eq. (4.6). This Drude form is completely in-
dependent of the ee interaction despite the fact that ee
scattering is the dominant one. On the other hand, one
can neglect 1/τi in all cn6=0. This results in replacing the
second, regular term in Eq. (3.33) by another Drude form
with the width given by 1/τ∗ee(T ). Correspondingly, the
real and imaginary parts of the conductivity are given by{

Reσ(ω, T )
Imσ(ω, T )

=
ne2

m∗
×


τi

1+ω2τ2
i

+
τ∗ee(T )

1+ω2τ∗2ee

ωτ2
i

1+ω2τ2
i

+
ωτ∗2ee (T )
1+ω2τ∗2ee

.(4.12)

Physically, it means that if ee scattering is faster than ei
one, the two channels act as two resistors connected in
parallel.

C. dc limit

The analysis presented in the two preceding sections
can be also extended to include the dc limit (ω = 0).
In particular, the conductivity in the regime of slow
ee scattering is found simply by substituting ω = 0
into Eq. (4.9). Converting the result into the resistiv-
ity ρ(T ) = 1/σ(0, T ), we obtain

ρ(T ) = ρi +
m∗

ne2

1

τ∗ee(T )
∝ const +O(T 4 lnT ),(4.13)

where ρi = m∗/ne2τi is the residual resistivity and
τ∗ee(T ) is given by Eq. (3.31). Although it may look
as if Eq. (4.13) obeys the Mathiessen rule, it is only
valid for low enough temperatures, when τ∗ee(T ) � τi
or T � Ti = (µ3/τi)

1/4. Note that 1/τi � Ti � µ as
long as the “good-metal condition”, µτi � 1, is satisfied.

In the opposite limit of τ∗ee(T ) � τi (T � Ti), ee
scattering is the dominant mechanism. However, it con-
serves momentum and thus can only establish a quasi-
equilibrium state with the Fermi surface displaced by a
drift velocity whose magnitude is still controlled by ei
scattering. The high-temperature limit was analyzed in
Ref. 2 using the method outlined in Sec. III D 2. The key
ingredient here is again the existence of the zero mode of
the ee collision integral. Without repeating the analysis
here, we simply reproduce here the result of Ref. 2 for
the high-T limit of the conductivity

σ`m|T�Ti
= 2Nve

2NFτi
∑
n

〈v`kn〉〈vmkn〉
〈k2
n〉

. (4.14)

where Nv is the valley degeneracy (= 4 for graphene) and
〈. . . 〉 denotes averaging over the FS. At the same time,
the low-T limit is given by

σ`m|T�Ti = 2Nve
2NFτi〈v`vm〉. (4.15)

In general, high- and low-T limits are different. However,
for an isotropic dispersion, which is the case of doped
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graphene without trigonal warping, the two limits coin-
cide. (For quadratic dispersion, the two limits also co-
incide but the resistivity does not depend on T at all.)
Therefore,

ρ(T � Ti) = ρi [1 +O(τ∗ee/τi)] = const +O(T−4).

(4.16)

In between the two limits given by Eqs. (4.13) and (4.16),
the resistivity reaches a maximum of height ∼ ρi at T ∼
Ti, as illustrated in Fig. 4.

We emphasize that the maximum in the resistivity oc-
curs in a model which accounts only for the ei and ee scat-
tering channels. In real systems, scattering by phonon
gives rise a monotonically increasing with T resistivity,
which may mask the maximum. An interplay between
electron-electron and electron-phonon scattering is dis-
cussed further in Sec. VI D.

𝑻

𝝆 𝑻

𝝆𝐦𝐚𝐱

𝝆𝐢

𝝆𝐢 + 𝑻𝟒 𝐥𝐧𝑻 𝝆𝐢 + 𝑻−𝟒

𝑻𝐢

Figure 4. A sketch of the temperature dependence of the
dc resistivity of doped graphene in the presence of electron-
impurity and electron-electron scattering. Here, ρi is the
residual resistivity due to impurities, ρmax ∼ ρi, Ti =
(µ3/τi)

1/4, and τi is the transport time for electron-impurity
scattering. The dashed lines depict the low- and high-T
asymptotic limits.

V. DYNAMICAL CHARGE SUSCEPTIBILITY
OF A DIRAC FERMI LIQUID

A. Formalism

In this section, we analyze the dissipative part of the
charge susceptibility of a DFL, Imχc(q, ω). This quantity
can be measured on its own, e.g., via momentum-resolved
electron energy loss spectroscopy (M-EELS),53–55 and is
also related to the longitudinal conductivity via the Ein-
stein relation

Reσ(q, ω) =
e2ω

q2
Imχirr

c (q, ω), (5.1)

Figure 5. One-loop diagrams for the irreducible charge
susceptibility. The bold wavy line denotes a dynamically
screened Coulomb interaction.

where superscript irr denotes the irreducible part. In this
section, we will find Imχirr

c (q, ω) from the Kubo formula,
to one-loop order in a dynamically screened Coulomb in-
teraction. Equation (5.1) can then be used as an inde-
pendent check for the result of Sec. III for Reσ(q, ω), ob-
tained via the equations of motion and Boltzmann equa-
tion. In Sec. III, we found that Reσ(ω, T = 0) ∝ ω2 ln |ω|
which, when substituted into the Einstein relation, gives
Imχirr

c (q, ω) ∝ q2ω ln |ω|. In this section, we will confirm
this result by an explicit calculation of Imχirr

c (q, ω) for
2D Dirac fermions in doped graphene.

The regions occupied by the continua of particle-
hole excitation in doped graphene are shown by heav-
ily shaded (red) regions in Fig. 6. Within these regions,
Imχirr

c (q, ω) 6= 0 even for non-interacting electrons. At
the level of Random Phase Approximation (RPA), ee in-
teraction modifies the spectral weight within the continua
but does not lead to a non-zero spectral weight outside
the continua. The latter occurs only if the interaction be-
tween quasiparticles is taken into account, which means
that one has to go beyond RPA and renormalize the
polarization bubble by the interaction. One-loop dia-
grams for the irreducible charge susceptibility are shown
in Fig. 5, where the bold wavy line denotes a dynamically
screened Coulomb interaction

U(Q,Ωl) =
[
U−1

0 (Q)−Π(Q,Ωl)
]−1

, (5.2)

Π(Q,Ωl) is the free-electron polarization bubble, and
U0(Q) = 2πe2/Q. In what follows, we focus on the case
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𝒒𝟐𝒌𝑭

𝟐𝝁

𝝎

A

B

C

Figure 6. Regions A and B correspond to particle-hole con-
tinua in doped graphene. A non-zero spectral weight in region
C is due to the interaction between quasi-particles, described
by the diagrams in Fig. 5. The dashed line shows the plasmon
dispersion.

of small Q scattering, when the phase factors in the ma-
trix elements of spinor wavefunctions can be replaced by
unity. At this level, the information about the Dirac na-
ture of the system enters only via the linear dispersion
of electronic excitation and also via the additional (two-
fold) valley degeneracy. As in Ref. 56, the contributions
from the self-energy and exchange diagrams (a-c in Fig.
5), can be combined as

χ(S,E)
c (q, ωm) = −2

∫ ∫ ∫ ∫
d2Qd2kdΩldεn

(2π)6
U(Q,Ωl)

(εk+q − εk − εk+Q+q + εk+Q)2

(iωm − εk+Q+q + εk+Q)2(iωm − εk+q + εk)2

× [G(k, εn)−G(k + q, εn + ωm)] [G(k + Q, εn + Ωl)−G(k + Q + q, εn + Ωl + ωm)] ,

(5.3)

where G(k, εn) = (iεn − εk + µ)
−1

and εk = vDk (an
overall factor of 2 in Eq. (5.3) is due to valley degener-
acy). We focus on the range of momenta and frequencies
denoted far away from both continua boundaries, i.e., on
the range vDq � ω � µ. This region is denoted as C
in Fig. 6. To order q2, diagrams a-c yield (see Appendix
D 1 for details)

Imχ
(S,E)
2 (q, ω) =

e4

π2v2
D

[
2

3

q2

ω

∫ ΛQ

0

dQQ

(Q+ κ)2

−1

5

q2ω

κ2v2
D

ln
vDκ

|ω|

]
. (5.4)

The first term in Eq. (5.4) is not specific to whether the
system is Galilean-invariant or not, while the second term
is specific for a DFL. For the charge susceptibility, the
choice of the upper-limit cutoff (ΛQ) in the first term is
arbitrary because this term cancels out with the corre-
sponding contribution from the Aslamazov-Larkin (AL)
diagrams (d and e in Fig. 5).57

To order q2, the contribution from the AL diagrams
can be written as

χ
(AL)
2 (q, ωm) = 16

∫ ∫
d2QdΩl
(2π)3

U(Q,Ωl)U(Q− q,Ωl − ωm)

× [T 2(Q,q,Ωl, ωm) + |T (Q,q,Ωl, ωm)|2],

(5.5)

where

T (Q,q,Ωl, ωm) =

∫ ∫
d2kdεn
(2π)3

G(k, εn)G(k + q, εn + ωm)

× G(k + Q, εn + Ωl) (5.6)

is a “triangle” formed by three Green’s functions. To one-
loop order, the dynamically screened Coulomb potential
in Eq. (5.5) can be replaced by the static one. Under the
same conditions as for Eq. (5.4), the AL contribution is
reduced to (see Appendix D 2 for details)

Imχ
(AL)
2 (q, ω) =

e4

π2v2
D

[
−2

3

q2

ω

∫ ΛQ

0

dQQ

(Q+ κ)2

+
2

5

q2ω

κ2v2
D

ln
vDκ

|ω|

]
. (5.7)

On adding up Eqs. (5.4) and (5.7), the first terms in
each of the equations cancel each other, and we obtain
the total O(q2) contribution to the charge susceptibility
as

Imχirr
c,2(q, ω) =

q2ω

80π2µ2
ln
vDκ

|ω|
. (5.8)

One can see that Imχirr
c,2(q, ω) in the equation above

and the T = 0 value of the longitudinal conductivity
in Eq. (3.19) do satisfy the Einstein relation, Eq. (5.1).
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The O(q2) result for the charge susceptibility suffices
to obtain the q = 0 limit of the conductivity via the Ein-
stein relation. However, if the goal is to find the charge
susceptibility in the entire region C in Fig. 5, one also
needs to calculate the O(q4) term. Such a calculation was
performed in Ref. 39, where it was shown that the O(q4)
term in the charge susceptibility behaves as q4/ω3. For

completeness, we verified this result in a different way:
by calculating the conductivity to order q2 first and then
using the Einstein relation. The conductivity was calcu-
lated by using the method developed in Ref. 46, in which
one extracts the conductivity from the rate of photon
absorption by interacting electrons. Deferring the result
to forthcoming publication,58 we present only the result
here

Reσ(q, ω) =
e2

24π2

[
ω2

10µ2

(
1 + 4π2T

2

ω2

)(
3 + 4π2T

2

ω2

)
ln

vDκ

max{ω, 2πT}
+

q2κ2

m∗2ω2

(
1 + 4π2T

2

ω2

)
ln
kF
κ

]
,

(5.9)

where m∗ = kF /vD. The first term coincides with the
q = 0 limit of the conductivity in Ref. (3.19), while
the second term is the O(q2) contribution. Parenthet-
ically, we note that the O(q2) is the same as a in a
Galilean-invariant 2D FL (with m∗ → kF /vF ). In this
regard, our result disagrees with that of Ref. 46, where

it was argued that in the Galilean-invariant case Reσ =
(e2/12π2)(q2/k2

F )
(
1 + 4π2T 2/ω2

)
ln (vFκ/max{ω, T}).

We find that such a term is, indeed, present but it is
subleading to the O(q2) term in Eq. (5.9) for ω � vFκ.

Substituting Eq. (5.9) into the Einstein relation, we
obtain the charge susceptibility to order q4 as

Imχirr
c (q, ω) =

1

24π2

[
q2ω

10µ2

(
1 + 4π2T

2

ω2

)(
3 + 4π2T

2

ω2

)
ln

vDκ

max{ω, 2πT}
+

q4κ2

m∗2ω3

(
1 + 4π2T

2

ω2

)
ln
kF
κ

]
,

(5.10)

The T = 0 limit of the O(q2) term in Eq. (5.10) coincides
with our previous result in Eq. (5.8). At T = 0, the O(q2)
and O(q4) terms in Imχirr

c become comparable at ω ∼
ωp(q), where ωp(q) = 2

√
µe2q is the plasmon dispersion

in graphene. Since the plasmon dispersion lies within
region C in Fig. 5, both these terms need to be taken

into account.

B. Total charge susceptibility and plasmon
damping

We now analyze the imaginary part of the total charge
susceptibility, obtained by summing up RPA diagrams
with bubbles given by χirr

c :

Imχc(q, ω) =
Imχirr

c (q, ω)

[1 + U0(q)Reχirr
c (q, ω)]

2
+ [U0(q)Imχirr

c (q, ω)]
2 ,

(5.11)

or, on using Eq. (5.1),

Imχc(q, ω) =
q2

e2ω

Reσ(ω)[
1− 2πq

ω Imσ(q, ω)
]2

+
[

2πq
ω Reσ(q, ω)

]2 .
(5.12)

To lowest order in ee interaction, Imσ(q, ω) can be
replaced by its non-interacting limit: Imσ(q, ω) =

ne2/m∗ω. Equation (5.12) is then reduced to

Imχc(q, ω) =
q2

e2ω

Reσ(q, ω)[
1− ω2

p(q)

ω2

]2
+
[

2πq
ω Reσ(q, ω)

]2 .
(5.13)

The second term in the denominator describes the damp-
ing of the plasmon by ee interaction. From now and till
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the end of this section, we will focus on the T = 0 limit.
For vDq � ω � ωp(q), the unity in the first term and

the entire second term in the denominator of Eq. (5.13)
can be neglected, while the conductivity can be approx-
imated by the O(q2) term in Eq. (5.9). This yields

Imχc(q, ω) ≈ q2ω3

e2ω4
p(q)

Reσ ∼ q2ω

µ2
ln
kF

κ
. (5.14)

For ωp(q) � ω � vDκ, the leading term in the denomi-
nator of Eq. —eqreftchi is unity, and the total and irre-
ducible susceptibilities are almost the same:

Imχc(q, ω) ≈ Imχirr
c (q, ω) ∼ q2ω

µ2
ln
vDκ

|ω|
. (5.15)

As we see, the asymptotics of Imχc(q, ω) for ω � ωp(q)
and ω � ωp(q) differ only in the logarithmic factor. The
imaginary part of χc, as given by Eq. (5.8), is plotted in
Fig. 7 as a function of frequency at finite q.

We now use the results for the dissipative parts of the
longitudinal conductivity and charge susceptibility to de-
rive the plasmon damping coefficient, deduced from the
position of the pole in Eq. (5.13) at ω = ωp(q) − iΓ(q).
According to Eq. (5.13), the damping coefficient near the
plasmon pole is given by

Γ(q) = πqReσ(q, ω = ωp(q)). (5.16)

Substituting Eq. (5.9) into Eq. (5.16), we obtain

Γ(q) =
e2κ

160π

q2

k2
F

(
ln
κ

q
+

20

3
ln
kF
κ

)
. (5.17)

It is interesting to compare this result with that for
a Galilean-invariant 2D FL with the same number
density:58

ΓGI(q) =
e4q2

12πEF
ln
kF

κ
. (5.18)

One can see that the damping coefficients in Eqs. (5.17)
and (5.18) differ just by numerical and logarithmic fac-
tors. The reason is that the q = 0 part of the conductivity
in Eq. (5.9), which is specific for a DFL, and the q2 part,
which is present even in a Galilean-invariant FL, become
comparable at ω ∼ ωp(q).

VI. OTHER DIRAC SYSTEMS AND RELATION
TO THE EXPERIMENT

In this section, we discuss the ω/T scaling of the opti-
cal conductivity due to ee interactions in other types of
DFLs.

A. Bilayer graphene

For the case of Bernal-stacked bilayer graphene (BLG),
the effective low-energy Hamiltonian resembles the Dirac-
like Hamiltonian of monolayer graphene, Eq.(2.7b), but

𝝎𝝎𝐩(𝒒)𝒗𝐃𝒒
𝐈𝐦

𝛘
𝐜
(𝐪
,𝝎

)

∝ 𝐪𝟐𝝎𝐥𝐧|𝝎|
∝ 𝐪𝟐𝝎 𝐥𝐧𝜶𝐞

Figure 7. Log-log scale. Solid: the imaginary part of the
total charge susceptibility for doped graphene, as given by
Eq. (5.13) for q/kF = 10−4 and αe = e2/vD = 0.8. Dashed
and dot-dashed: the asymptotic limits given by Eq. (5.14)
and Eq. (5.15), respectively.

with quadratic terms on the anti-diagonal instead of lin-
ear ones.59 Therefore, the energy eigenvalues are ε±k =
±k2/2m̃, where m̃ = γ1/2v

2
D and γ1 is the interlayer cou-

pling between the nearest sites. In this approximation,
the system is Galilean invariant, and intraband ee scat-
tering does not give rise to a finite optical conductivity.
To get a finite conductivity, one needs to find corrections
to the quadratic dispersion. We adopt a standard model
for BLG,59 which includes intralayer hopping between A
and B sites (with coupling γ0), interlayer hopping be-
tween the nearest A sites and the nearest B sites (with
couplings γ1 and γ3, respectively), but neglects interlayer
hopping between A and B sites. In this model the lowest
branch of the conduction band is given by59

ε+ς,k =

{
γ2

1

2
+

(
v2

D −
v2

3

2

)
k2 −

[
γ4

1

4
+ γ2

1

(
v2

D −
v2

3

2

)
k2 + 2ςv3v

2
Dk

3 cos 3θk + v2
3

(
v2

D +
v2

3

4

)
k4

]1/2
}1/2

, (6.1)
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where, as before, vD = 3γ0a/2 and v3 = 3γ3a/2. For a
realistic BLG, γ1 ∼ γ3 � γ0 (Ref. 59) and, therefore,
v3 � vD. For γ1 � µ � γ0 the states near the FS have
a Dirac dispersion with a slope of vD, and we are back
to the case of monolayer graphene (MLG), discussed in
Sec. III B. For µ � γ1, all the k-dependent terms under

[. . . ]
1/2

in Eq. (6.1) are subleading to the γ4
1 term. Ex-

panding [. . . ]
1/2

to order k6 and neglecting v3 compared
to vD whenever possible, we obtain

ε+ς,k =

{
v2

3k
2 +

(
k2

2m̃

)2

− 2ςv2
Dv3k

3

γ1
cos 3θk −

2v6
Dk

6

γ4
1

}1/2

.

(6.2)

where ς = ±1 denotes the K± point. For µ � m̃v2
3 the

first term under the square root in the equation above
is the dominant one, and we are again back to a Dirac
dispersion, but with a slope of v3 rather than vD. This is
another case of a DFL discussed in Sec. III B. A specific to
BLG regime occurs for for m̃v2

3 � µ� γ1. In this regime
the quartic term is the dominant one. Expanding to first
order in the subleading terms and omitting a constant,
m̃v2

3 term, we obtain

εςk =
k2

2m̃
− ςv3k cos 3θk −

k4

4m̃2γ1
. (6.3)

The first term in the equation above corresponds to a
Galilean-invariant FL with Reσ(ω, T ) = 0. The sec-
ond, anisotropic term gives rise to a finite Reσ(ω, T ),
described by the Gurzhi formula, Eq. (1.1). As in
the case of MLG with trigonal warping, discussed in
Sec. III C, the mechanism of dissipation is ee scattering
between inequivalent valleys. Finally, the last term is an
isotropic correction to the quadratic dispersion, which
gives rise to a finite Reσ(ω, T ), described by the DFL
form, Eq. (3.19). Therefore, the conductivity of BLG
has the same general form as in Eqs. (3.25) and (3.26) for
MLG, but with different coefficients. To estimate the co-
efficient of the DFL part, we neglect the trigonal-warping
term in Eq. (6.3) and treat the quartic term as a correc-
tion to the quadratic one. Equation (3.13) then gives a
non-parabolicity coefficient as |w| = 4µ/γ1 � 1. On the
other hand, the coefficient of the Gurzhi part is propor-
tional to the magnitude of the trigonal-warping term in
Eq. (6.3), i.e., to (v3/vF)2, where vF = kF/m̃. Combin-
ing the two contributions, we express the conductivity of
BLG as

ReσBLG(ω, T ) = e2

[
c1D

(
T

ω

)(
ω

γ1

)2

+c2α
′2
e |lnα′e|

m̃v2
3

µ
G
(
T

ω

)]
(6.4)

, where D(x) = (1 + 4π2x2)(3 + 8π2x2) and G(x) = 1 +
4π2x2 are the DFL and Gurzhi scaling functions, respec-
tively, α′e = e2/vF is the Coulomb coupling constant for
BLG, and c1,2 ∼ 1 are numerical coefficients. For a rough

estimate, we take ω ∼ T and α′e ∼ 1. Then the compe-
tition between the two terms in Eq. (6.4) is determined

by the ratio of ω to ΩTW ≡ γ1

√
m̃v2

3/µ. If the chemical

potential is in the interval m̃v2
3 < µ < γ1(m̃v2

3/γ1)1/3,
then ΩTW > µ, and the Gurzhi part dominates over the
DFL one for all frequencies of interest. If the chemical
potential is in the interval γ1(m̃v2

3/γ1)1/3 < µ < γ1, then
ΩTW < µ, and the Gurzhi part dominates over the DFL
one for ω < ΩTW, while it is vice versa for ΩTW < ω < µ.

B. Surface state of a three-dimensional topological
insulator

Another 2D Dirac system is the surface state of a 3D
topological insulator, which contains a single Dirac cone
at the Γ point of a 2D Brillouin zone. With hexagonal
warping taken into account, the dispersion is given by60

ε±k = ±
√
v2

Dk
2 + λ2

HWk
2 cos2(3θk). (6.5)

If hexagonal warping is neglected, the system is identical
to a single-valley version of monolayer graphene. Con-
sequently, the optical conductivity of the surface state
is given by Eq. (3.19) divided by a factor of 2. How-
ever, the effect of crystalline anisotropy is different in
the two systems. Trigonal warping in graphene, however
weak, makes the K and K ′ valleys inequivalent. Con-
sequently, inter-valley scattering gives rise to a FL be-
havior of the conductivity, described by the second term
in Eq. (3.26). On the other hand, the Fermi contour of
the topological surface state remains convex for µ less
than some critical value, which depends on the warping
parameter, λHW . As long as the Fermi contour is con-
vex, the leading term in the optical conductivity scales
as max{ω4, T 4} (Ref. 61), and the dc resistivity exhibits
a non-monotonic T dependence shown in Fig. 4. For µ
larger than a critical value, the system exhibits a con-
ventional FL behavior, with Reσ(ω, T ) ∝ max{ω2, T 2},
etc. Except for a narrow range of µ near the convex-to-
concave transition,61 the surface state does not exhibit a
competition between the DFL and conventional FL be-
haviors but rather behaves either as a DFL (below the
transition) or as a conventional FL (above the transition).

C. Doped three-dimensional Dirac/Weyl metal

Another important class of Dirac-Fermi liquids are 3D
Dirac and Weyl metals, doped away from the Dirac point.
The properties of these systems are discussed in a number
of excellent reviews,62–65 so we will limit our discussion to
a minimum. In the simplest case, a 3D Dirac/Weyl metal
can be described by a system of Nv equivalent Dirac cones
with spin degeneracy Ns. For non-interacting electrons
and at T = 0, the optical conductivity of a Dirac/Weyl
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metal is given by66

Reσ(ω) =
ge2

24π

ω

vD
θ(ω − 2µ), (6.6)

where g = NsNv. As in the 2D case, absorption is possi-
ble only due to interband transitions, which are allowed
for ω > 2µ. Equation (6.6) also describes the limiting
case of an undoped system at µ = 0. The linear or quasi-
linear scaling of Reσ(ω) with ω for ω > 2µ was observed
in a number of materials, including HgCdTe,67 ZrTe5,68

Eu2Ir2O7,69,70 and Cd3As2.71 can be described by a sys-
tem of Nv equivalent Dirac cones with spin degeneracy
Ns, its optical conductivity can be derived along the same
lines as for (monolayer) graphene.

As in the 2D case, intraband absorption for ω � µ
becomes possible if one take ee interaction into account.
Skipping the computational details, we present here the
final result for the intraband conductivity of a 3D system
with an isotropic Dirac spectrum:

Reσ(ω, T ) =
Cg2e3kF√

vD

ω2

µ2

(
1 +

4π2T 2

ω2

)(
3 +

8π2T 2

ω2

)
.

(6.7)

where C = 1/3840π2. In contrast to the 2D case, the
integral over the momentum transfers in 3D is not loga-
rithmically divergent, and typical Q are on the order of
the interaction radius (κ). Therefore, Eq. (6.7) is valid
only for a long-range interaction, when κ � kF, rather
than for any interaction, as it is the case for 2D. Once
this condition is satisfied, the scaling form in Eq. (6.7) is
also valid for any non-parabolic but isotropic dispersion,
rather than only for the Dirac one.

As mentioned in Sec.III B, however, the interband con-
tribution in 3D is of the same order as the intraband
one; therefore, numerical prefactor C in a complete result
would differ from the one in Eq. (6.7). A more detailed
account of the 3D case will be published elsewhere.49

D. Relation to the experiment

In this section, we discuss the feasibility of observing
our predictions for the ee contribution to the conduc-
tivity in the experiment, focusing on the case of mono-
layer graphene. As it also the case for other materials,
the main difficulty with identifying the ee contribution
to the resistivity are the competing effects of scattering
by impurities, defects and sample boundaries (ei) and
electron-phonon (eph) scattering.

1. Optical measurement

At low temperatures, the main competing mechanism
is ei scattering. At T → 0 and high enough frequencies,
the conductivity assumes a Drude-like form,

Reσ(ω) =
ne2

m∗ω2

(
1

τi
+

1

τJ(ω, 0)

)
, (6.8)
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Figure 8. Frequency and temperature dependences of the
current relaxation rate, 1/τeph, for scattering by 2D acousti-
cal phonons in graphene. Here, TBG = 2kFvs is the Bloch-
Grüneisen temperature, vs is the speed of sound, and γ is the
dimensionless coupling constant. Equations in the plot show
the asymptotic behavior of 1/τeph is a given region of ω and
T .

where

1

τJ(ω, 0)
=

1

80π

ω4

µ3
ln
vDκ

ω
(6.9)

is obtained by putting T = 0 in Eq. (3.26) and neglecting
the trigonal warping term. For a rough estimate, one can
also replace vDκ by µ in the argument of the logarithm.
As frequency increases, the conductivity first decreases
as 1/ω2, reaches a minimum at

ωmin = µ

(
160π

gdc ln
(
gdc

160π

)1/4
)1/4

, (6.10)

where gdc = 2µτi is the conductance of a graphene mono-
layer at T = 0 in units of e2/h, and then starts to in-
crease as ω2. This nonmonotonic behavior is a signa-
ture of the ee contribution. Because our theory is valid
only for ω � µ, we need to require that ωmin

<∼ µ1 or(
gdc ln (gdc/160π)

1/4
/160π

)1/4
>∼ 1. Formally, this con-

dition requires gdc � 1 but, because of a large numerical
factor, 160π ≈ 500, and also of a small exponent, 1/4,
the condition is much more restrictive, and can only be
satisfied in a sample with both high mobility and high
carrier number density. These conditions are not met in
the samples used in prior optical measurements.22,23,25.
For example, the highest conductance a sample used in
Ref. 22 is gdc = 160, at the gate voltage of 71 V, whereas
we need gcd to exceed at least 500. This explains why no
minima in Reσ(ω) well below µ were observed in these
studies. On the other hand, much higher number den-
sities and thus higher conductances can be achieved in
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samples with electrolytic gating. For example, the low-
est residual resistance of ρ ≈ 38 Ω measured in Ref. 72 at
n = 1.8 × 1014 cm−2 corresponds to gdc ≈ 663, which is
above the required value.

If the temperature is not very low, one also needs to
worry about the competing effect of eph scattering. If
flexural phonons in graphene are quenched by a sub-
strate and max{ω, T} is less than the in-plane opti-
cal phonon frequency (ωopt ≈ 180 meV 73,74), the main
mechanism that competes with ee scattering is scatter-
ing by in-plane acoustic phonons. Scattering by acoustic
phonons is characterized by the Bloch-Grüneisen tem-
perature (TBG = 2kFvs, where vs is the sound velocity),
which separates the regimes of inelastic and quasielastic
scattering. In the quasielastic regime (ω > TBG), the
eph scattering rate is independent of ω, while the ee rate
continues increase with ω. This allows one to identify the
ee contribution, as it was done in classical experiments
on good metals.75,76 When applying the same recipe to
graphene though, one needs to keep in mind that it is a
2D, low-carrier system which harbors a Dirac rather than
conventional FL. Because of these features, not only ee
scattering but also eph scattering in graphene are quite
distinct from those in good metals.

In 2D, the eph current relaxation rate scales as T 4 in
the inelastic regime and at ω = 0.72,77 Extending this
result to finite ω, we obtain

1

τeph(ω, T )
∼ γ (ω2 + 4π2T 2)(3ω2 + 8π2T 2)

T 3
BG

, (6.11)

where γ is the dimensionless eph coupling constant.
(Note that the scaling form is the same as for a DFL.) In
the quasielastic regime, 1/τeph(ω, T ) ∼ γmax{T, TBG}
and is independent of ω. For numerical reasons, the
actual crossover between the inelastic and quasielastic
regimes occurs at TCBG ≈ 0.2TBG rather at than at
TBG itself.72,77 The asymptotic limits of 1/τeph(ω, T ) in
the different regions of the (ω, T ) plane are shown in
Fig. 8. At the same time, the electron-electron contri-
bution scales as max{ω4 ln |ω|, T 4 lnT} all the way up to
the chemical potential, which is larger than TBG by a fac-
tor of at least vD/vs ∼ 50. Even at a rather high number
density of 1013 cm−2, this interval is very wide: from 25
cm−1 to 1500 cm−1.

2. dc measurement

In this section, we analyze the feasibility of detecting
the ee contribution in a dc measurement. As shown in
Sec. IV C, the T -dependence of the current relaxation
rate due to a combined effect of the ei and ee mechanisms
can be described by the following relation

1

τJ(T )
=

1

τi
f

(
τi

τ∗ee(T )

)
, (6.12)

where τ∗ee(T ) is given by Eq. (3.31), and function f(x)
is such that f(x → 0) = 1 + x + . . . , f(x → ∞) =

1 − O(1/x), and f(x) has a maximum at x ∼ 1 (see
Fig. 4). For residual mobility of 105 cm2/Vs and number
density n = 1012 cm−2, we find 1/τi ≈ 0.6 meV, and thus
a crossover temperature at which τi = τee(Ti), is about
180 K.

The eph scattering rate can be written as72,77

1

τeph
=

{
64π3γT 4/15T 3

BG for T � TBG;
γT, for T � TBG,

(6.13)

where γ = D2µ/4ρmv
2
s v

2
D ≡ µ/µeph, D is the

deformation-potential constant, and ρm is the mass den-
sity of graphene. For T � TBG scattering is quasielas-
tic and isotropic; therefore, the scattering rate is pro-
portional to the electronic density of states, which is
small at low doping. This smallness is reflected in the
large value of parameter µeph: from the experimentally
measured slope of the linear-in-T resistivity72 we deduce
µeph ≈ 2.7 eV; therefore, γ � 1 for all experimentally
achievable doping levels.

Coming back to ee scattering, we estimated a crossover
temperature between the two regimes described by
Eq. (6.12) to be around 180 K, which is substantially
higher than the Bloch-Grüneisen crossover temperature:
TCBG ∼ 5−15 K for n = 1012−1013 cm−2. Therefore, for
T < TCBG, the electron-electron contribution to the scat-
tering rate is given just by Eq. (3.26). Up to a log, both
the ee scattering rate and the low-T part of the eph scat-
tering rate scale as T 4; however, the former is inversely
proportional to µ3 while the latter is inversely propor-
tional to T 3

BG � µ3. As a result, eph scattering domi-
nates over ee one with a large margin: τeph/τ

∗
ee ∼ 10−4

at n = 1012 cm−2.
For T > TCBG the competition between ee and

eph scattering mechanisms is more interesting. In this
regime, eph scattering is quasielastic and thus plays the
same role as ei scattering. At sufficiently high T , eph
scattering is stronger than ei one, and one can replace τi
in Eq. (6.12) by the high-T limit of Eq. (6.13); then

1

τJ(T )
=

1

τeph(T )
f

(
τeph(T )

τ∗ee(T )

)
(6.14)

Using Eq. (3.31) and the first line of Eq. (6.13), we esti-
mate the crossover temperature between the two regimes
described by Eq. (6.14) as

Tph = (15/2π3)1/3µ4/3/µ
1/3
eph, (6.15)

which amounts to Tph = 270 − 1300 K for n = 1012 −
1013 cm−2. For T < Tph, the resistivity varies faster than
T , i.e., as T + const× T 4 lnT , goes over a hump at T ∼
Tph, and then approaches the linear T -dependence again
for T > Tph (see Fig. 9).

On the experimental side, the resistivity of graphene
at low doping exhibits a crossover from a linear T de-
pendence below 200 K to a superlinear one above 200
K,78,79 while no such a crossover is observed at higher
doping.72 This is consistent with the behavior predicted
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by Eq. (6.15), because the crossover temperature in-
creases with n as Tph ∝ n2/3. For the lowest n in Ref. 72
(n = 1.36 × 1013 cm−2) we find Tph ≈ 1550 K, which is
well above the highest temperature measured. On the
other hand, Tph is within the measurement range for
lower n used in Refs. 78 and 79. A superlinear resistivity
was attributed alternatively to two-phonon scattering by
flexural phonons,78,80 scattering on surface phonons in
the SiO2 substrate,79,81 or else to a crossover between
degenerate and non-degenerate regimes in electron scat-
tering by charged impurities.82 We submit, however, that
ee scattering may also provide a plausible explanation of
the superlinear scaling.

𝑻/𝑻𝐩𝐡

𝝆 𝑻

𝟏

Figure 9. A sketch of the temperature dependence of the
dc resistivity (in a.u) of doped graphene in the presence of
quasielastic electron-phonon scattering and electron-electron
scattering. The temperature is normalized to crossover tem-
perature Tph, defined by Eq. (6.15). The straight dashed line
is a pure electron-phonon contribution with a slope deduced
from the experiment.72

VII. CONCLUSIONS

In this paper, we have studied the effect of electron-
electron (ee) interaction on the optical and dc conductiv-
ity of a non-Galilean–invariant but isotropic Fermi liq-
uid (FL), focusing primarily on one representative exam-
ple: a Dirac Fermi liquid (DFL). We studied a model of
doped monolayer graphene with two inequivalent valleys
at K± points and considered both intra- and inter-valley
ee scattering. If trigonal warping of Fermi contours is
neglected, the valleys became degenerate. We showed
that the leading contribution to the optical conductivity
comes from processes with small momentum transfers,
Q � kF. In this case, the intra- and inter-valley in-
teractions contribute equally, and the current relaxation
rate acquires a universal form, reproduced below for the

reader’s convenience:

1/τJ ∝
(
ω2 + 4π2T 2

) (
3ω2 + 8π2T 2

)
ln

Λ

max{|ω|, T}
,

(7.1)

This form replaces the universal Gurzhi form for a
conventional FL, Eq. (1.1). In 2D, Eq. (7.1) form is
universal–it is valid for form of interaction (as long as
it is finite at Q→ 0 and vanishes at Q→∞) and for any
isotropic but non-parabolic dispersion, rather than only
for a Dirac one. The quartic (as opposed to quadratic)
scaling reflects the fact that the interaction between elec-
trons on an isotropic Fermi surface (FS) does not relax
the current, and one need to invoke the states close to
but away from the FS.

Weak anisotropy due to trigonal warping breaks the
valley degeneracy, and inter-valley scattering give rises
to a Gurzhi-like contribution to the current relaxation
rate. Although this contribution scales as max{ω2, T 2},
it comes with a small prefactor proportional to doping,
and thus competes with a quartic, DFL contribution.

Equation (7.1) is valid only for ω � 1/τJ(0, T ) and
cannot be extended to the static limit. In the absence of
other current-relaxing processes, 1/τJ(ω → 0, T ) is given
by the sum of delta function at ω = 0 and a regular part
in Eq. (7.1) at ω = 0. This form is characteristic for any
non-Galilean invariant system, which has finite optical
conductivity due to ee interactions at finite frequency
but infinite dc conductivity.

We also studied the interplay between electron-
impurity (ei) and electron-electron (ee) scattering via a
semi-classical Boltzmann equation. If ee scattering is less
frequent than ei one, the Mathiessen rule is satisfied, in
a sense that the total current relaxation rate is the sum
of the impurity one and the quartic correction due to ee
interaction. However, this is not true if the two rates
are comparable. In the opposite limit of more frequent
ee scattering, the optical conductivity can be written as
the sum of two Drude peaks, with widths given by the
ei and ee relaxation rates, respectively. This result can
also be extended to the dc limit, where the resistivity
approaches the residual value for temperatures both be-
low and above a crossover temperature, Ti, at which the
ei and ee current relaxation rates are equal. In between
the two limits, the resistivity varies non-monotonically
with T , exhibiting a maximum at T ∼ Ti, see Fig. 4.
For T � Ti, the total relaxation rate is the sum of the
ei and ee contributions. However, our estimates show
that such a non-monotonic behavior would be masked
by inelastic electron-phonon eph scattering for T below
the Bloch-Grüneisen temperature, TBG. For T > TBG,
ei scattering is replaced by quasielastic eph scattering.
In this case, the resistivity increases faster than T for T
below a crossover temperature, Teph, exhibits a hump at
T ∼ Teph, and then approaches a linear behavior again,
see Fig. 9.

We also have studied the dynamical charge response of
doped graphene, at T = 0 and in the absence of disor-



21

der, to one-loop order in a dynamically screened Coulomb
interaction. We showed the imaginary part of the (ir-
reducible) charge susceptibility scales Imχirr

c (q, ω) ∝
q2ω ln |ω| outside the particle-hole continua, i.e., for
vDq � ω � vDκ � µ. This scaling is a direct conse-
quence of broken Galilean invariance in graphene, which
implies that the current is not conserved. We verified
that our results for Reσ(ω, T = 0) and Imχirr

c (q, ω) sat-
isfy the Einstein relation. The plasmon damping rate is
proportional to q2 in a DFL, which is same as in Galilean-
invariant FL.

Towards the end, we discussed the optical conductiv-

ity for a number of related systems: 3D Dirac/Weyl
fermions, bilayer graphene, and the surface state of a
3D topological insulator, as well as and the implications
of our results for the existing and future experiments.
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Appendix A: Optical conductivity at finite T and ω from the Kubo formula

In this section, we derive a general expression for the optical conductivity in a uniform electric field, and at finite
temperature and frequency, to lowest order in electron-electron interaction, Eq. (3.7) of the main text. We adopt
the formalism used by Rosch8 to find the optical conductivity at zero temperature, using the Kubo formula and
Heisenberg equation of motion. The Kubo formula reads

σ`m(q, ω) =
i

ω

[
Π`m(q, ω) + Πdia

`m

]
, (A1)

where

Π`m(q, ω) = −i
∫ ∞
−∞

dteiω(t−t′)Θ(t− t′)〈[J†` (q, t), Jm(q, t′)]〉

= −i
∫ ∞

0

dteiωt〈[J†` (q, t), Jm(q, 0)]〉 (A2)

is the current-current correlation function and angular brackets denote averaging over thermal distribution.83 Next,
Πdia
`m is the diamagnetic part of the conductivity. Because Gauge invariance guarantees that Πdia

`m = −Π`m(q = 0, ω →
0) (Ref. 44), an explicit form of Πdia

`m is not needed.
For a homogeneous time varying field, q = 0 and Π`m(ω) ≡ Π`m(0, ω) becomes

Π`m(ω) = −i
∫ ∞

0

dteiωt〈[J`(t), Jm(0)]〉. (A3)

Integrating by parts and using the Heisenberg equation of motion dJ/dt = −i[J(t), H] along with the cyclic property
of a trace, we rewrite Π`m(ω) as

Π`m(ω) =
1

iω
〈[J`(0), Jm(0)]〉 −

∫ ∞
0

dt
eiωt

ω
〈[dJ`(t)

dt
, Jm(0)]〉

=
i

ω

∫ ∞
0

dteiωt〈[J`(t), [Jm(0), H]]〉, (A4)

where H is the total Hamiltonian. One more integration by parts leads to

ω2Π`m(ω) = −〈[J`(0),Km(0)]〉 − 〈[K`(t),Km(0)]〉ω, (A5)

where K(t) = [J(t), H] and 〈K`(t),Km(0)〉ω = −i
∫∞

0
dteiωt〈[[J`(t), H], [Jm(0), H]]〉. Because the first term in the

equation above is purely real, the real part of the optical conductivity is given by

Reσ`m(ω, T ) =
1

ω3
Im〈[K`(t),Km(0)]〉ω. (A6)

The Hamiltonian of the system is given by

H =
∑
ςks

ες,k,sα
†
ς,k,sας,k,s +

1

2

∑
ςς′

∑
kpk′p′

∑
ss′

U0(|k− k′|)α†ς,k′,sc
†
ς′,p′,s′ας′,p,s′ας,k,sδ(k

′ + p′ − k− p), (A7)
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where ς is the valley index. For the case of graphene, ς = ± denote the two Dirac points Kς . For a density-density
interaction, such the one in the equation above, the q = 0 current operator is

J = e
∑
ςks

vς,kα
†
ς,k,sας,k,s, (A8)

where vς,k = ∇kες,k,s is the group velocity. Correspondingly, K(t) is given by

K(t) = [J(t), H]

=
e

2

∑
ςς′

∑
kpk′p′

∑
ss′

U0(|k− k′|) (vς,k′ + vς′,p′ − vς,k − vς′,p)α†ς,k′,sα
†
ς′,p′,s′ας′,p,s′cς,k,sδ(k

′ + p′ − k− p),(A9)

and its correlator by

〈[K`(t),Km(0)]〉ω = −ie
2

4

∫ ∞
0

dteiωt
∑

ς1ς′1ς2ς
′
2

∑
s1s′1s2s

′
2

∑
k1p1k′1p

′
1

∑
k2p2k′2p

′
2

×
(
v`ς1,k′1 + v`ς′1,p′1 − v

`
ς1,k1

− v`ς′1,p1

)(
vmς2,k′2 + vmς′2,p′2 − v

m
ς2,k2

− vmς′2,p2

)
× U0(|k1 − k′1|)U0(|k2 − k′2|)δ(k′1 + p′1 − k1 − p1)δ(k′2 + p′2 − k2 − p2)

× 〈[α†ς1,k′1,s1(t)α†ς′1,p′1,s′1
(t)ας′1,p1,s′1

(t)ας1,k1,s1
(t), α†ς2,k′2,ς2

(0)α†ς′2,p′2,ς′2
(0)ας′2,p,s′2

(0)αγ,k2,ς2
(0)]〉.

(A10)

Since 〈[K`(t),Km(0)]〉ω is already quadratic in the interaction, to lowest order the expectation value of the commutator
above can be calculated for free fermions. Using the time dependence of the operators, ας,k,s(t) = ας,k,se

−iες,kt, the
integration over time can be done easily. The thermal average of the commutator is evaluated by applying Wick’s

theorem and using that nF(ες,k) = 〈α†ς,k,sας,k,s〉 is the Fermi function. Taking the imaginary part of the correlation
function, we finally arrive at

Reσ`m(ω, T ) =
2πe2(1− e−βω)

ω3

∑
ςς′

∑
kpk′p′

(
v`ς,k′ + v`ς′,p′ − v`ς,k − v`ς′,p

) (
vmς,k′ + vmς′,p′ − vmς,k − vmς′,p

)
(A11)

× U0(|k− k′|)
[
U0(|k− k′|)− δςς′δςς′

U0(|p− k′|)
2

]
× nF(ες,k′)nF(ες′,p′)[1− nF(ες,k)][1− nF(ες′,p)]δ(ω + ες′,p′ + ες,k′ − ες,k − ες′,p)δ(k′ + p′ − k− p).

here for each ς = ± we get all possibilities of intra and inter-valley scattering processes. For an isotropic system, the
equation above is reduced to Eq. (3.7) of the main text.

Appendix B: Integral over energies

The integrals over energies in Eq. (3.17) is given by

I =

∫
dεk

∫
dεp

∫
dΩ
[
(2Ω + ω)2 + ω2

]
nF(εk + Ω)nF(εp − ω − Ω) [1− nF(εk)] [1− nF(εp)] , (B1)

Introducing dimensionless variables, x = εk/T, y = εp/T, a = Ω/T , and b = ω/T , we obtain

I = T 5

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

da
[
(2a+ b)2 + b2

] ex

ex + 1

ey

ey + 1)

1

ea+x + 1

1

ey−a−b + 1
. (B2)

Substituting u = ex, and v = ey, we get

I = T 5eb
∫ ∞

0

du

∫ ∞
0

dv

∫ ∞
−∞

da
[
(2a+ b)2 + b2

] 1

u+ 1

1

v + 1

1

e−a + u

1

ea+b + v
, (B3)

= T 5eb
∫ ∞

0

du

∫ ∞
0

dv

∫ ∞
−∞

da
[
(2a+ b)2 + b2

] 1

e−a − 1

(
1

u+ 1
− 1

e−a + u

)
1

ea+b − 1

(
1

v + 1
− 1

ea+b + v

)
.
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Integration over u and v leads to

I = −T 5eb
∫ ∞
−∞

da
a(a+ b)((2a+ b)2 + b2)

(e−a − 1)(ea+b − 1)
,

= T 5 (3b5 + 20π2b3 + 32π4b)

15(1− e−b)
=
b(b2 + 4π2)(3b2 + 8π)

15(1− e−b)
, (B4)

which is Eq. (3.17) of the main text.

Appendix C: Optical conductivity from intervalley scattering

In this Appendix, we present the derivation of Eq. (3.23) for the contribution to the optical conductivity from
intervalley scattering. With trigonal warping of the isoenergetic contours taken account according to Eqs. (2.9a-2.9c),
the group velocity in Cartesian coordinates is given by

vς,k = ∇kες,k = vD
k + vTW

ς,k , (C1)

where

vD
k =

vD

k
(kxx̂+ ky ŷ) ,

vTW
ς,k =

ςvDa

4

(
(2k4

x + 3k2
xk

2
y − 3k4

y)

k3
x̂−

kxky(7k2
x + 3k2

y)

k3
ŷ

)
. (C2)

A change in the velocity due to an ee collision can be written as

v+,k−Q + v−,p+Q − v+,k − v−,p = ∆vD + ∆vTW,

(C3)

where ∆vD and ∆vTW are due to the Dirac and trigonal-warping parts of the velocity, respectively. To leading order
in kFa � 1, one can take the dispersion to be isotropic everywhere else in Eq. (3.21) and drop the valley index.
Accordingly, the contour integrals are replaced by

∮
d`k/vk = (kF/(2πvD))

∫
dθkQ. Next, for electrons on the FS one

can drop ω in the δ−functions. Then the kinematics constraints on the angles are still θkQ = ±π/2 and θpQ = ±π/2.
Finally, for small angle scattering ∆v can be expanded in Q as

∆vTW = − (Q ·∇k) vTW
+,k + (Q ·∇p)vTW

−,p = −(Q ·∇k)vTW
+,k − (Q ·∇p)vTW

+,p . (C4)

Since an electron pair with opposite velocities carries zero current both before and after the collision, Cooper channel
should not contribute to current relaxation. Indeed, because vTW

ς,−k = vTW
ς,k , it follows that ∆vTW = 0 for the Cooper

channel (p = −k), and we need to consider only the collinear channel (p = k). Using θk = θkQ+θQ with θkQ = ±π/2,
we obtain in polar coordinates

∆vTW = vD(kFa)
Q

kF

(
3 cos(3θQ)k̂− 7 sin(3θQ)θ̂k

)
.

(C5)

Equation (3.21) is then reduced to

Reσinter(ω, T ) = e2 N2
F

2πω3
(1− e−βω)

∫
d2Q

(2π)2
(∆vTW)2U2(Q)

1

(vDQ)2

×
∫
dεk

∫
dεp

∫
dΩnF(εk + Ω)nF(εp − Ω− ω) [1− nF(εk)] [1− nF(εp)] , (C6)

Averaging
(
∆vTW

)2
over θQ yields ∫ 2π

0

dθQ
2π

(
∆vTW

)2
= 29(vDQa)2. (C7)

The integral over Q is solved to leading log order as∫
dQQU2(Q) = (2πe2)2 ln

kF

κ
, (C8)
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while the energy integrals in Eq. (C6) give∫
dεk

∫
dεp

∫
dΩ × nF(εk + Ω)nF(εp − Ω− ω)(1− nF(εk))(1− nF(εp))

=
ω(ω2 + 4π2T 2)

6(1− e−βω)
. (C9)

Collecting everything together, we obtain the result in Eq. (3.23) of the main text.

Appendix D: Charge susceptibility

1. Self-energy and exchange diagram for the irreducible charge susceptibility

In this section, we calculate the sum of diagrams a and b (“self-energy”), and c (”exchange”) in Fig. 5 for doped
monolayer graphene. For ω � 2µ, inter-band transitions are neglected and the system is effectively reduced to a
single-band one. Also, the matrix elements in the Green functions for doped graphene can be replaced by unities in
the forward-scattering limit. Under these approximations, the sum of the three diagrams can be written as56

χ(S,E)
c (q, ωm) = −

∫ ∫ ∫ ∫
dDQdDkdΩldεn

(2π)2(D+1)
U(Q,Ωl)

(εk+q − εk − εk+Q+q + εk+Q)2

(iωm − εk+Q+q + εk+Q)2(iωm − εk+q + εk)2

× [G(k, εn)−G(k + q, εn + ωm)][G(k + Q, εn + Ωl)−G(k + Q + q, εn + Ωl + ωm)]. (D1)

We will be interested in long-wavelength excitation with momenta q � ω/vD � kF. In this case, the denominators
in the fraction in the first line of Eq. (D1) can be replaced by iωm. Also, typical momentum transfers are assumed
to be much smaller than kF . Therefore, the single-particle dispersion in the numerator of the same fraction can be
expanded both in q and Q. For a Dirac dispersion, the leading-order term in this expansion reads

εk+q − εk − εk+Q+q + εk+Q ≈ −
qQvD

kF
sin θ sin θ′ (D2)

where θ and θ′ are the angles that q and Q make with k, respectively. With these simplifications, Eq. (D1) is reduced
to

χ(S,E)
c (q, ωm) = − 1

ω4
mk

2
F

∫ ∫ ∫ ∫
d2Qd2kdΩldεn

(2π)6
U(Q,Ωl) (qQvD sin θ sin θ′)

2

× [G(k, εn)−G(k + q, εn + ωm)][G(k + Q, εn + Ωl)−G(k + Q + q, εn + Ωl + ωm)]. (D3)

Next, we integrate the products of the Green’s functions in the equation above first over εn, and then over εk and θ,
and neglect q compared to Q in the final result. This gives

χ(S,E)
c (q, ωm) = − iNFq

2v2
D

2k2
Fω

4
m

∫
Q3dQ

2π

∫
dΩl
(2π)

U(Q,Ωl)

× dθ′

2π
sin2 θ′

[
2Ωl

iΩl − vDk̂ ·Q
− Ωl + ωm

i(Ωl + ωm)− vDk̂ ·Q
− Ωl − ωm
i(Ωl − ωm)− vDk̂ ·Q

]
, (D4)

where NF is the density of states. Now we integrate over θ′, using∫ 2π

0

dx

2π

sin2 x

iy − cosx
= i(y − sgny

√
y2 + 1), (D5)

to get

χ(S,E)
c (q, ωm) = −NFq

2vD

2k2
Fω

4
m

∫
Q3dQ

2π

∫
dΩl
(2π)

U(Q,Ωl) (D6)

× 1

Q2

[
2ω2

m + 2|Ωl|
√

Ω2
l + (vDQ)2 − |Ωl + ωm|

√
(Ωl + ωm)2 + (vDQ)2 − |Ωl − ωm|

√
(Ωl − ωm)2 + (vDQ)2

]
.

Now we will simplify the form of the interaction potential. First, we notice that a static interaction cannot give rise
to a finite imaginary part of the susceptibility outside the particle-hole continuum. Therefore, we can subtract off a
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static screened Coulomb potential from the dynamical one in Eq. (D6). Next, we assume first and verify thereafter,
that typical Q are such that Ω� vDQ. Then the difference of the dynamical and static screened Coulomb potentials
can be expanded in x ≡ Ωl � vDQ as

Udyn(Q,Ωl) = U(Q,Ωl)− U(Q, 0) =
1

NF
a2x

(
1 + ax+ (a2 − 1/2)x2 + . . .

)
, (D7)

where a = κ/(Q+κ). We see later on that an expansion above does need to go to order x3, which is usually neglected
for a conventional FL.

Next we integrate over Ωl in Eq.(D6) to obtain∫
dΩlUdyn(Q,Ωl) =

2vDQ

NF
a2

∫ Λ

0

dxx
[
1 + ax+ (a2 − 1/2)x2

]
×
[
2y2 + 2x

(
1 +

x2

2

)
− (x+ y)

(
1 +

(x+ y)2

2

)
− |x− y|

(
1 +

(x− y)2

2

)]
= −2

3
vDQa

2y3 − 1

5
vDQa

4y5 + I(Λ) +O(y2) +O(y4) . . . , (D8)

where y = ωm/vDQ > 0, I(Λ) is some function of the upper cutoff, which is irrelevant in what follows. Terms of the
order O(y2, y4..) do not contribute to Imχc and are omitted. Finally, the remaining integral over Q reads

χ(S,E)
c (q, ωm) =

e4

π2v2
D

[
2

3

q2

ωm

∫ ΛQ

0

dQQ

(Q+ κ)2
+

1

5

q2ωmκ
2

v2
D

∫ ∞
|ωm|/vD

dQ

Q

1

(Q+ κ)4

]
,

(D9)

where ΛQ is some upper cutoff. We will complete the integral over Q after combining Eq. (D9) with a contribution
from the AL diagrams. Then it will be seen that the first term in Eq. (D9) cancels out and, therefore, a choice of ΛQ

is irrelevant.

2. Aslamazov-Larkin diagrams

In this section, we evaluate the contribution of AL diagrams, e and f in Fig. 5 The sum of the two diagrams can be
written as

δχAL
c (q, ωm) = (NsNv)

2

∫
Q,Ωl

[T 2(Q,q,Ωl, ωm) + |T (Q,q,Ωl, ωm)|2]U(Q,Ωl)U(Q− q,Ωl − ωm), (D10)

where Ns and Nv are the spin and valley degeneracies, respectively, and

T (Q,q,Ωl, ωm) =

∫
k,εn

G(k, εn)G(k + q, εn + ωm)G(k + Q, εn + Ωl) (D11)

is a “triangular” part of the diagram. The combination T 2 + |T |2 can be identically re-written as 2ReT 2 +2iReT ImT .
Because any physical susceptibility is purely real on the Matsubara axis, the imaginary part of T 2 + |T |2 must vanish
upon integrations and thus can be omitted. Therefore, we need to find only ReT . We begin by integrating over εn to
obtain

T (Q,q,Ωl, ωm) =

∫
k

1

iωm − εk+q + εk

[
nk − nk+Q

iΩl − εk+Q + εk
− nk+q − nk+Q

i(Ωl − ωm)− εk+Q + εk+q

]
. (D12)

From this point on, the calculation proceeds along a different route compared to the one for the self-energy and
exchange diagrams. Namely, if the single-particle dispersion are expanded to linear order in q and Q, we will get a
zero result for ReT . This is a reflection of a known fact that AL diagrams hinge on violating particle-hole symmetry.84

To get a non-zero result, we need to keep O(Q2) terms in the dispersion. However, we can ignore O(q2) terms, because q
can be chosen arbitrarily small. For doped graphene, such an expansion amounts to εk+Q ≈ εk+vk ·Q+Q2 sin2 θ/2m∗,
where m∗ = kF/vD and θ is the angle between Q and k.

Expanding the Fermi functions in Eq. (D12) to order Q2, we obtain

T (Q,q,Ωl, ωm) =

∫
k

1

iωm − vk · q

[
(vk ·Q + Q2

2m∗ sin2 θ)(−n′k)− 1
2 (vk ·Q)2n′′k

iΩl − vk ·Q− Q2

2m∗ sin2 θ

−

[
vk · (q−Q) + Q2

2m∗ sin2 θ
]
n′k − 1

2 (vk ·Q)2n′′k

i(Ωl − ωm)− vk · (q−Q)− Q2

2m∗ sin2 θ

 (D13)
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It is convenient to separate T into two parts as T = T1 + T2, where T1 and T2 contain terms proportional to n′k and
n′′k, respectively. At T = 0, n′k = −δ(εk − µ) and n′′k = −δ′(εk − µ), so that

T1(Q,q,Ωl, ωm) =

∫
k

δ(εk − µ)

iωm − vk · q

[
vk ·Q + Q2

2m∗ sin2 θ

iΩl − vk ·Q− Q2

2m∗ sin2 θ
+

vk · (q−Q) + Q2

2m∗ sin2 θ

i(Ωl − ωm)− vk · (q−Q)− Q2

2m∗ sin2 θ

]
,

T2(Q,q,Ωl, ωm) =
1

2

∫
k

δ′(εk − µ)(vk ·Q)2

iωm − vk · q

[
1

iΩl − vk ·Q
− 1

i(Ωl − ωm)− vk ·Q + vk · q

]
. (D14)

We neglected the O(Q2) terms in the denominators of both two parts of T2 because T2 is already proportional to Q2.
Now we integrate over εk in Eq. (D14) to obtain

T1(Q,q,Ωl, ωm) = NF

∫
dθ

2π

1

iωm − vDk̂ · q

[
vDk̂ ·Q + Q2

2m∗ sin2 θ

iΩl − vDk̂ ·Q− Q2

2m∗ sin2 θ
+

vDk̂ · (q−Q) + Q2

2m∗ sin2 θ

i(Ωl − ωm)− vDk̂ · (q−Q)− Q2

2m∗ sin2 θ

]
,

T2(Q,q,Ωl, ωm) = − 1

4π

∫
dθ

2π

(k̂ ·Q)2

iωm − vDk̂ · q

[
1

iΩl − vDk̂ ·Q
− 1

i(Ωl − ωm)− vDk̂ ·Q + vDk̂ · q

]
. (D15)

Since we are interested in the regime of qvD � ω, the equations above can be expanded in q. When doing so, we will
be discarding imaginary parts of T1,2 because they must vanish on subsequent integration anyway. The leading-order
results of such an expansion read:

ReT1(Q,q,Ωl, ωm) = NF
Q2

2m∗

∫
dθ

2π
(vDk̂ · q) sin2 θ

×

[
1

(iωm)2

(
1

iΩl − vDk̂ ·Q
− 1

i(Ωl − ωm)− vDk̂ ·Q
+

vDk̂ ·Q
(iΩl − vDk̂ ·Q)2

− vDk̂ ·Q
(i(Ωl − ωm)− vDk̂ ·Q)2

)

+
2

iωm

(
1

(i(Ωl − ωm)− vDk̂ ·Q)2
+

vDk̂ ·Q
(i(Ωl − ωm)− vDk̂ ·Q)3

)]
,

ReT2(Q,q,Ωl, ωm) = − 1

4π

∫
dθ

2π
(k̂ · q)(k̂ ·Q)2

×

[
1

(iωm)2

(
1

iΩl − vDk̂ ·Q
− 1

i(Ωl − ωm)− vDk̂ ·Q

)
+

1

iωm

(
1

(i(Ωl − ωm)− vDk̂ ·Q)2

)]
. (D16)

where NF = m∗/4π is the density of states per spin and per valley. Now we integrate over θ (the angle between k
and Q) to obtain

ReT (Q,q,Ωl, ωm) =
q ·Q

4πω2
m(vDQ)2

(
|Ωl|

√
Ω2
l + (vDQ)2 − |Ωl − ωm|

√
(Ωl − ωm)2 + (vDQ)2 + (Ωl − ωm)2 − Ω2

l

)
.

(D17)

Substituting the last result back into Eq. (D10) and rescaling the variables as x = Ωl/vDQ and y = ωm/vDQ, we find

χAL
c (q, ωm) =

2(NsNv)
2

16π2ω4
m

∫
d2Q

(2π)2

∫
dx

2π

2πe2

Q+ κ
(

1− |x|√
x2+1

) 2πe2

Q+ κ

(
1− |x−y|√

(x−y)2+1

)
× (q ·Q)2vDQ

(
|x|
√
x2 + 1− |x− y|

√
(x− y)2 + 1 + (x− y)2 − x2

)2

. (D18)

Now we will simplify the last equation assuming that Ωl ∼ ωm � vDQ. Our goal is to find the imaginary part of
χirr
c after analytic continuation, while Eq. (D18) is proportional to the even (fourth) power of ωm, which remains real

after analytic continuation. Therefore, when expanding the integrand of Eq. (D18) in Ωl/vDQ and ωm/vDQ, we need
to keep those terms that will be integrated into odd powers of ωm. To order ω5

m, the integral over x is solved as

IAL =

∫ ∞
−∞

dx

(
1

(Q+ κ)2
+

κ

(Q+ κ)3
(|x|+ |x+ y|) +

κ2

(Q+ κ)4
(x2 + (x− y)2 + |x||x− y|)

)
×
(
|x|(1 +

x2

2
)− |x− y|(1 +

(x− y)2

2
)− 2xy + y2

)2

= O(y2)− 2

3(Q+ κ)2
y3 +O(y4)− 2κ2

5(Q+ κ)4
y5, (D19)
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where spelled out only the odd in ωm terms. Substituting the y3 and y5 terms intp Eq. (D18), we get

χAL
c (q, ωm) = − e4

π2v2
D

[
2

3

q2

ωm

∫ ΛQ

0

dQQ

(Q+ κ)2
+

2

5

q2ωmκ
2

v2
D

∫ ∞
|ωm|/vD

dQ

Q

1

(Q+ κ)4

]
, (D20)

where we used that Ns = Nv = 2 for graphene.
Now see that the first terms in Eq. (D9) for the self-energy and exchange diagrams and Eq. (D20) cancel each other.

Solving the remaining integral over Q to leading log order and using κ = 4m∗e2, we obtain the final result:

χirr
c (q, ωm) = − q2ωm

80π2µ2
ln
vDκ

|ωm|
. (D21)

Carrying out analytical continuation and taking the imaginary part of the result, we arrive at Eq. (5.7) of the main
text.
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