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A Dirac-Fermi liquid (DFL) —a doped system with Dirac spectrum—is an important example of
a non-Galilean-invariant Fermi liquid (FL). Real-life realizations of a DFL are found, e.g., in doped
graphene and the surface state of a three-dimensional topological insulator. We study the optical
conductivity of a DFL arising from intraband electron-electron (ee) scattering. It is shown that the
effective current relaxation rate behaves as 1/7; o (w” + 47°T?) (3w® + 87°T?) for max{w, T} < u,
where p is the chemical potential, with an additional logarithmic factor in two dimensions. In
graphene, the quartic form of 1/7; competes with a small FL-like term, oc w?+472T?, due to trigonal
warping of the Fermi surface. In the presence of weak disorder, the optical conductivity is the sum
of two Drude-like terms, with widths given by the electron-electron and electron-impurity scattering
rates, respectively. In the presence of ee and electron-impurity scattering only, the dc resistivity
varies non-monotonically with temperature, approaching the residual value both at low and high T',
with a maximum in between. We also calculated the dynamic charge susceptibility, x.(q,w), outside
the particle-hole continua and to one-loop order in the dynamically screened Coulomb interaction.
For a DFL, the dissipative part of y.(q,w) scales as ¢>wIn|w| and ¢*/w?® for frequencies larger and
smaller than the plasmon frequency at given ¢, respectively.

I. INTRODUCTION

The optical conductivity of a Fermi liquid (FL) is de-
scribed by the Gurzhi universal form®
472712 )

Reo(w,T) = o¢ <1 + oz

(1.1)

In what follows, we set kg = 1 and A = 1. Despite
its generality, Eq. (1.1) does not apply to all types of
FLs. For example, it obviously does not apply to a
Galilean-invariant FL, i.e., a single-band system with a
parabolic dispersion. In the latter case, momentum con-
servation automatically implies current conservation, and
thus Reo(w,T) = 0. The minimal condition for Eq. (1.1)
to apply is a sufficiently strong violation of Galilean in-
variance. If umklapp scattering is allowed, Eq. (1.1) ap-
plies automatically. However, it can also apply even if
umklapp scattering is forbidden. Namely, it applies to
a three-dimensional (3D) FL with a Fermi surface (FS)
that deviates from an ellipsoidal shape?? and to a two-
dimensional (2D) FL with a concave FS.%4 1 Univer-
sality of Eq. (1.1) is protected by the first-Matsubara—
frequency rule,'? which stipulates that Reo (+2inT,T) =
0. We will refer to a FL with optical conductivity de-
scribed by Eq. (1.1) as to a “conventional” one.

If the conditions specified above are not satisfied, a FL
belongs to an intermediate class, which we will dub as
a "partially Galilean-invariant FL.”. Examples include a
FL with isotropic but non-parabolic dispersion (both in
2D and 3D), and a 2D FL with a convex FS. A prominent
member of this class is a Dirac-Fermi liquid (DFL), i.e., a
system with isotropic and linear dispersion doped away
from the Dirac point, which is the focus of this paper.

Examples of a DFL are provided by gated monolayer
graphene in 2D and doped Dirac and Weyl semi metals
in 3D. The single-particle and thermodynamic properties
of conventional and partially Galilean-invariant FLs are
very much alike. However, their transport properties are
very much different. A linear dispersion in a DFL implies
that Galilean invariance is broken and thus dissipation
at finite frequency is possible. However, dissipation in a
DFL is weaker than in a conventional FL, because the
interaction between electrons right on the FS does not
relax the current.

In this paper, we show that the dissipative part of the
optical conductivity of a DFL due from intraband exci-
tations is described by the following scaling form
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where p is the chemical potential (assumed to be the
largest energy scale in the problem), and S(w,T’) varies
with w and T logarithmically in 2D and is constant in
3D. Note that Reo(+27iT,T) = 0, in agreement with
the first-Matsubara—frequency rule.'? The difference be-
tween the Gurzhi form in Eq. (1.1) and the DFL form in
Eq. (1.2) is especially prominent at 7' = 0. In this case,
the conductivity of a conventional FL. does not depend on
w, while the conductivity of a DFL is small in proportion
to (w/p)? < 1. In fact, Eq. (1.2) is valid for any partially
Galilean-invariant FL; particular details affect only coef-
ficient op. For an isotropic FL, op is proportional to (the
square of) the “non-parabolicity coefficient”, defined as
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where €(k) is the electron dispersion and kp is the Fermi
momentum. For a Galilean-invariant system, the disper-
sion is quadratic, hence w = 0 and there is no dissipation.
For any other dispersion, w # 0; in particular, w = 1 for
the Dirac dispersion.

Phenomenologically, the optical conductivity can be
described by the current relaxation time, 7;(w,T), de-
fined by

Reo(w,T) x (1.4)

w2ty (w,T)

With this definition

oc w? 47T (1.5)
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for a conventional FL, while

) ™ (w? + 47°T?) (3w® + 87>T?)S(w, T)1.6)
for a DFL. The quartic (as opposed to quadratic) scal-
ing of 1/7; for a DFL was noted in a number of stud-
ies, mostly of 2D systems.? 3'! It arises because the
quadratic term in 1/7; vanishes once electrons are pro-
jected onto the FS, and one has to go further away from
the FS to obtain a finite result.

(a) (b)

Figure 1. Intra-band (a) and inter-band (b) optical transitions
in a Dirac metal.

To be specific, in this paper we focus on doped mono-
layer graphene which can behave either as a Dirac or
conventional FL, depending on doping. Optical re-
sponse of graphene has been a subject of extensive re-
search; see, e.g., reviews in Refs. 13-16. At the level
of non-interacting electrons, the optical conductivity of
graphene is given by a universal form'” 20
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Reo(w) = %9(@«1 —2u), (1.7)

where we assume that p > 0 without the loss of general-
ity. The absorption threshold at w = 2u is due to Pauli

blocking of states available for transitions between the
lower and upper Dirac cones (cf. Fig. 1). The optical
conductivity of graphene in the near infrared and optical
ranges, i.e, far above the Pauli threshold of 2u, is indeed
observed to be close to the universal value of e2/4.2172
However, experimentally one also observes significant ab-
sorption at w < 2u,'62223:25 which would be absent in
ideal graphene. Certainly, some of this absorption is due
to extrinsic scattering mechanisms, e.g., impurity scat-
tering. However, there is still significant absorption even
at frequencies exceeding the width of the Drude peak.
That, and also the fact that at higher frequencies the con-
ductivity scales with w/u,'3 prompts one to think about
intrinsic mechanisms as well.

On the theoretical side, a large number of authors stud-
ied the deviation of the conductivity of graphene at CNP
from the universal value due to ee interaction.!15:26-33
Absorption below the Pauli threshold in doped systems
has also been addressed theoretically, but in fewer stud-
ies. In Refs. 34-37, it was shown that about 50% of ab-
sorption can be explained by scattering of electrons (or
holes) by disorder, with an additional contribution of ex-
citonic effects.?” Many-body effects in intraband absorp-
tion were considered in Refs. 32, 38, and 39. The most
relevant to our study is the one by Principi et al.,? whose
result for the T" = 0 optical conductivity of graphene
agrees with ours, up to a factor of Inw and the depen-
dence on the coupling constant.

The rest of our paper is organized as follows. Our
model is outlined in Sec. II. In lieu of calculating the
diagrams generated by the Kubo formula, we adopt
a method that allows one to calculate the dissipative
part of the conductivity by using the exact Heisenberg
equations of motion.”®4° This method is described in
Sec. IIT A. In Sec. ITII B, we show that if the 2D Fermi sur-
faces around each of the Dirac points are approximated
by circles, the optical conductivity is of the form given
in Eq. (1.2) with
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where vp is the group velocity of Dirac fermions and
is the (inverse) screening radius. To re-iterate, Eqgs. (1.2)
and (1.8) are valid only in the FL regime, i.e., for
max{w,T} < u. However, they allow one to obtain an
order-of-magnitude estimate for the conductivity at the
charge-neutrality point (CNP) by putting w ~ T ~ p.
This yields o ~ €2, consistent with prior results for the
conductivity of an interacting system of Dirac fermions
at CNP.29’30’41

We also considered the effect of trigonal warping
(Sec. III C), which restores the conventional FL behav-
ior. A trigonally warped FS is still convex (cf. Fig. 2),
and thus intra-valley scattering contributes only the
max{w?*, T*} term to 1/7,.> However, the valleys are not
equivalent, and inter-valley scattering does give rise to
a conventional FL term, 1/7; & max{w? T?}. The cor-
responding contribution to the optical conductivity is of



the Gurzhi form [Eq. (1.1)] but with a small prefactor,
proportional to the product of kra, where a is the lattice
spacing.

In Sec. IV, we analyze an interplay between ee and
electron-impurity (e?) scattering channels at the level of
the Boltzmann equation. We show that if ee scattering is
the dominant mechanism, the optical conductivity is de-
scribed by the sum of two Drude peaks, with widths given
by the ee and ei scattering rates, i.e, the ee and ei chan-
nels act as two resistors connected in parallel. If ei scat-
tering dominates, the optical conductivity is described by
a single Drude peak with a width given by the sum of the
ee and e? scattering rates, i.e., the ee and ei channels act
as two resistors connected in series. As a limiting case, we
also derive the T dependence of the dc resistivity. The
resistivity increases as T%InT above the residual value
at the lowest T', reaches a maximum at some T that cor-
responds to comparable ee and e: scattering rates, and
finally goes down back exactly to the residual value at
higher T'; cf. Fig. 4. In Sec. V, we calculate the dynam-
ical charge susceptibility of a DFL, x.(q,w), using the
Kubo formula. In a Galilean-invariant FL, Imy.(q,w)
scales as q*/w? for qup < w < vpk;3Y one factor of ¢2 is
due to charge conservation and another one is due to cur-
rent conservation. On a technical level, the second factor
of ¢% comes about because of a cancelation between the
self-energy, exchange, and Aslamazov-Larkin diagrams.
In a DFL, Imy.(q,w) scales as ¢?wIn |w| for w > w,(q),
where wp(g) is the plasmon frequency at given ¢, and as
q*/w? for w < wp(g). Via the the Einstein relation, the
q?wIn |w| scaling of the charge susceptibility implies that
at ¢ = 0 the conductivity of a DFL scales as w? In |w|, in
agreement with the result of a direct calculation. Other
Dirac systems—bilayer graphene, the surface state of a 3D
topological insulator, and 3D Weyl/Dirac semimetals —
as well as a relation of our results to the experiment are
discussed in Sec. VI. Our conclusions are presented in
Sec. VII.

II. DOPED MONOLAYER GRAPHENE

One of the most popular examples of DFL is a doped
monolayer graphene (MLG). We begin with the non-

interacting tight-binding Hamiltonian*?

0= "7 Z
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(2.1)
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where a( ;) are the fermionic operators cor-
responding to A and B sublattices, (i,7) imply sum-
mation over the nearest neighbors, s labels spin, p is
the chemical potential, and 7s(R;) = al(R;)a,(R;) +
bi(R;)b,(R;) is the number density operator. In the mo-
mentum space, the Hamiltonian is given by

Hy = —vp Z @kal)sbk)s +Hec. —p (aLSak75 + bLSbk)s) ,
s,k

(2.2)

where

kya 3
Zezk i — gtkya 4 9p—i—4- cos(\gk a), (2.3)

[

is a form factor obtained by summation over the near-
est neighbors connected by vectors §; = (0,a), J2 =
(—V3a/2,-a/2), and 65 = (V3a/2,—a/2), and a is the
carbon-carbon distance. The Hamiltonian is diagonal-

ized by introducing a new basis*3
elPx
Ak s = W (ak,s + 5k,s)
1
bk,s = ﬁ (ﬂk,s — ak,s) 5 (24)

where o s(Bk,s) denotes the annihilation operator of
electron (hole) in the conduction (valence) band, and ¢
is defined by @) = |®y|e'?*. In the new basis, the Hamil-
tonian is just the sum of the conduction and valence band
parts:

Ho =" (e — ) of sy, + (—exc = 1) B By 1(25)
ks

where e, = 79| Pk|.

We will be interested in low-energy Dirac fermions with
momenta near two inequivalent Dirac points Kc—1 =
(§47r/(3\/§a)7 O). Near these points, ®y can be expanded
as

3a , 3a? )
Pk 4p = P p = —— (Pz —ipy) + ——(sPx + ipy)*.

2 8
(2.6)
The last, O(a?) term describes trigonal warping. The

low-energy 4 x 4 Hamiltonian can be written as the sum
of the Dirac and trigonal-warping parts



Hy = Hp + Hrw 2.7a)
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where vp = 3vpa/2 is the Dirac velocity, 7 and o are the
Pauli matrices which operate in the valley and sublattice
spaces, respectively, 79 and o are the identity matrices,
and

\IIIMS = (w;r{++pys’w;r<_+P>S> - (ai’PvS’bT"vPv“bT—»Pys’aT—,p,s

(2.8)

is a 4-spinor describing the states near the K point.
With trigonal warping taken into account, the energy
spectrum is given by

€cp A = e?’p)\ + egT;YA 2.9a)
e?,p))\ = \upp, (2.9b)
2
eZgA = AR g 30, (2.9¢)
|
A+ .p,s —9+(P) 9+(P)
byps | _ L 1 1
b_ps V2 0 0
G—p,s 0 0

where g4 (K) = . 1/| 4 1], g (K) = [0 x]/®_ 1, and
acp.s(Be,p,s) denotes the annihilation operator for an
electron (hole) in the conduction (valence) band located
near the K. point. To linear order in pa, g.(p) is given
by

oe(p) = e~ (1 - igpa sin 30p), (2.11)
where 05, is the azimuthal angle of p. The Hamiltonian
in the electron-hole basis is the same as in Eq. (2.7a),

except for now the electron and hole operators carry the
J

vpa

with \,¢ = +1. The corresponding isoenergetic contours
are shown in Fig. 2.

For low-energy fermions, the unitary transformation
from the four-component spinor ¥, to a diagonal
electron-hole basis reads

0 0 By ps

0 0 Ol+7p’s
g-(p) —9-(p) B-ps |’

1 1 Q_ ps

(2.10)

valley index:

Hy= Y (ccar = mal i@, + (e = 1Bl By

sk,s

(2.12)

with ec i s given by Eq. (2.9a).

The gradient part of the current operator correspond-
ing to the Hamiltonian in Egs. (2.7a-2.7c¢) is readily found
from J = —0Hy/0A. The x and y components of J at
q = 0 are given by

Jy = eZ‘I’L’S (’UD(TZ ®oz) — - 2(T0 ® 02) — py(T0 ® O'y)]) Uy s,
P;s

vpa

Jy = ez \I'LS (’UD(TZ ® oy) + 5
p.s

where e is the elementary charge. When expressed in

[py(TO & Uz) +pa:(7—0 & Uy)]) \Dp7sv

(2.13)

(

the electron-hole basis, the current operator in Eq. (2.13)



contains both the intra- and inter-band contributions. In
a doped system, the inter-band contributions arise only
for w > 2u. As we focus on the range of w < p, the
inter-band contributions can be neglected. Also, the oc-
cupied states in the valence band do not contribute to
the current. The remaining intra-conduction-band part
of the current is

_ T
J= § : Ve p@ p,s%,p,s>

$HP,S

(2.14)

where v¢ , = Ve p is the group velocity at the K point.
The density-density interaction between fermions is de-
scribed by

Hiy = 1/2 Z UO(Q)pr—Qa (215)
Q

J

1
Hi = 5 > Y Uk —K)5(K +p' —k—p)

k/,p’ . k,p s,s’

where pq = > . \II;[),S\I]p+Q,s and Up(Q) = 2me?/Q
is the bare Coulomb potential. When expressed in
the electron-hole basis, Hj,; contains a large number of
terms, corresponding to inter- and intra-band, as well as
to inter- and intra-valley interactions. Out of those, we
will keep only the intra-conduction-band terms, which
give the leading contribution to the optical conductivity
for w < p. Also, we assume that doping is sufficiently
low, such that umklapp processes can be neglected. Then
H;, is reduced to

x [ASD‘H’(k/’ k)A<'0++(p,’ p)aLk’,sO‘i,p/,s’O‘+,p,s'a+,k,s + Aw——(klv k)Acp__(p’, p)O‘T—,k’,so‘iyp’ys’a—pys’a—,k,s

+ Ao (K k) Ap__(p',p)al o ol o a4+ Ap (K k) Ap, (P p)al o ol sag el

+ UO(KO +k— k/) A@*+(k/7 k)A(p+, (p/, p)aT—,k/,sai,p’,s’af,p,s’a—i-,k,s

+ A<P+—(k'7k)A<P—+(P/,k)al,k/7sOéT_,p/,s/O‘+,p,s’O‘—,k,s )

where Apo (K, k) = (1+ e*i(¢’<)k’*¢<’)k)) /2 and Ky =
K, — K_ is the vector connecting the valleys. The first
two (last four) terms in Hiy describe the intra-valley
(inter-valley) interaction. The last two inter-valley terms
corresponds to exchange processes, in which an electron
lands onto another valley after scattering, therefore such
processes require large momentum transfers, on the order
of Koy ~ 1/a > kg, which correspond to small Coulomb
matrix elements. Such processes will be neglected. In
Sec. III B, it will be shown that the intra-band part of
the optical conductivity is controlled by processes with
small momentum transfers, i.e., ) < kr. Therefore, one
can also neglect the Q dependence of the phase factors
Apc(k,Q), which are then reduced to Ay (k,0) = 1.
Now Agpc(k,0) does not depend on the valley index, and
thus the matrix elements of the intra- and inter-valley
interactions are the same. Therefore, we arrive at the
final form of the interaction Hamiltonian

Hing = % Z

k,p,Q,s,8’,5,¢’

(2.17)

in which the valley index plays the role of a (conserved)
isospin.

i T
UO(Q)ac,kJrQ,sac’,p*Q,S’acﬁP:S’acyk,S’

(2.16)

III. OPTICAL CONDUCTIVITY OF A
NON-GALILEAN-INVARIANT SYSTEM

A. Formalism

We are interested in the optical conductivity measured
in a response to a uniform electric field, which oscillates
with frequency w. In lieu of using the diagrammatic
technique for the Kubo formula, we adopt the formal-
ism used in the memory matrix theory.*® This formalism
allows one to obtain directly the optical conductivity in
the ballistic regime, defined by w > 1/75(w,T).

The optical conductivity tensor is given by

O¢m (w, T)

[Hém(wa T) - HZm(Ov T)] ) (31)

G
Cw
where Iy, (w,T) is the current-current correlation func-
tion
My (w,T) = —i / dte = [Je(t), Jm (O)]),
0
= —i([Je, Jm)])w-

The Iy, (0, T) term in Eq. (3.1) accounts for the diamag-
netic part of the current, which must cancel the gradient
part at w = 0 to maintain gauge invariance.***> Since

(3.2)



114, (0, T) is purely real, it contributes only to the imag-
inary part of the conductivity, whereas its real part is
given by

1
Reopm (w,T) = —;Imﬂgm(w,T). (3.3)

To obtain Reoy,, (w
tion, we integrate by parts in Eq. (3.

,T) to lowest order in the interac-
2) to find

1
Reopm(w,T) = E([&Jg, Otdm])w, (3.4)

where 0;J = i[H,J(t)]. If the Hamiltonian is projected
onto the upper Dirac cone, its free part commutes with
the current, therefore 0;J is linear in the interaction
[see Eq.(3.5) below]. If we then take an average in
([O¢Je, Or ]y over the non-interacting ground state, the
resulting conductivity will be at two-loop order in the
interaction. The result obtained in this way is equiva-
lent to evaluating the two-loop diagrams for the Kubo
formula, but it eliminates the need for collecting contri-
butions from different diagrams, which partially cancel

calculate the conductivity of a Galilean-invariant FL at
finite q.

Calculating the commutator of Hj, and J, we find the
time derivative of J as

0J = e% Y3 Y Uk-K)Aveo

IS kpk’p’ ss’
/
x ai,k’7sai/,p/,s’a<’vp7s/a§7k,s6(k +p - k— p)’
(3.5)

where

Ave o =Vek + Vo p — Vek — Vo pr (3.6)

is a change in the velocity due to an ee collision. Note
that due to a trigonal warping term in the electron disper-
sion [Eq. (2.9¢)], the group velocities in different valleys
are different. To be specific, we take the interaction to be
a screened Coulomb potential, U(Q) = 27e?/(Q+k)with
k = 4e?u/vy. Tt will be shown in Sec. IIIB, how-
ever, the scaling form of the conductivity is valid for any
form of the interaction, as long U(Q — 0) = const and
U(Q — o0) = 0. Using Egs. (3.5) and (3.4), we obtain
the optical conductivity o = (044 + 0yy)/2 as

each other. A similar method was used in Ref. 46 to
|
dPx’ dPp’ dPk
_ *ﬁw
Reo(w,T) =e"—(1—e Z/ / 2m)D /(27T)D
Ulp-¥
x Uk — k) [U(k —K) - 5“,(1’2)}

x nr (€1 )ne (€ p)[1 = ne (e [1

where np(€) is the Fermi function and 8 = 1/T. A de-
tailed derivation of Eq. (3.7) is given in Appendix A. The
square brackets in the second line of Eq.(3.7) contain the
interaction potential at small and large momentum trans-
fers, given by the first and second terms, respectively.
where vp and m are the Fermi velocity and mass of the
quadratic dispersion, respectively. We will see later on

J

- nF(ec’,p)]é(w + € p T €k — €k —

D
[ G Avee?

€ p)d(k' +p’ —k —p),

(

in this section that the integral over () is logarithmically
divergent at the lower limit. This implies that Q < kg
and, therefore, the second term in the square brackets
can be neglected. It is convenient to introduce the mo-
mentum and energy transfers as Q = k—-k' = p' —p
and Q) = €. k—Q — €ck = €/ p — €/ p+Q — W, Tespectively,
upon which Eq. (3.7) becomes

Reo(w,T) =

x np (e x + Q)nr (e p

For a Galilean-invariant system, v = k/m and Av
vanishes by momentum conservation, so Reo = 0 for any
finite w. For a non-Galilean—invariant system, vy # k/m
and Av does not vanish exactly, so in general Reo # 0.
Now, we will discuss the optical conductivity for the par-

e Z/ o / dD)]ia/ (Zf) / Aavss ) UHQ)

—w = Q[ =)t -

ng (6§/7p)]5(Q -

€/ p)-

(3.8)

€,k—Q T+ Ec,k)é(w +Q+ € prq —

(

ticular cases of doped graphene with and without trigonal
warping.



B. DMonolayer graphene without trigonal warping

In this section, we calculate the optical conductivity
for the case of doped graphene without taking trigonal
warping into account. In this approximation, the disper-

J

sion is isotropic and linear in momentum, the K, and
K_ wvalleys are degenerate, and summation over the val-
ley indices in Eq. (3.8) simply gives a factor of 4. In the
rest of this section, the valley index will be suppressed.
Equation (3.8) then becomes

Q4w arP dPk aP
Reo(u. ) = 50 =) [ G55 [ oo | oy
X nF(ek + Q)TLF(EP —w — Q)[]. — TLF(Gk)][]. — nF(Gp)](S(Q —€xk-Q t ek)é(w +Q+ €p+Q — €p).

For any isotropic dispersion e, = €(k), the group veloc-
ity can be written as vy = f(k)k, where f(k) = € (k)/k.
Therefore, if we project electrons onto the FS, i.e., put
k| = |p| = |k —a| = [p + a| = kp, then Av = 0. To
obtain a non-zero result, one needs to expand the veloc-
ity to leading order in deviation from the FS. Writing
k = kr + (ex — p)/vp with vp = €/(kr) (and the same
for other momenta), and expanding Av to first order in
€k — l4, we obtain

w X
Av = T [k (ek—Q — €x) + P (ép+Q — €p)

F
Q

+ Lpra—aa)l, (3.10)
F

where k = k/k, p =p/p, and
_kpf(ke) ke (kr) (3.11)
VF El(kp) ’

is the dimensionless coefficient which quantifies a devia-
tion from Galilean invariance. For a power-law disper-
sion, € o< k%,

w=2—a.

(3.12)

The a = 2 case corresponds to a Galilean-invariant sys-
tem, when w = 0 and thus Reo(w, T') = 0, as it should be.

J

5 /dQ(Av)QUQ(Q)
(3.9)

(

However, Reo(w,T) # 0 for any other a. If the disper-
sion deviates from the quadratic one by a small amount,
de(k), then

_ 5€l(kF)

_ (5”]{
op me(p),

(3.13)
where vp and m are the Fermi velocity and mass of the
quadratic dispersion, respectively.

We will see later on in this section that the integral
over (Q is logarithmically divergent at the lower limit.
This implies that typical ) < kr and, therefore, the last
term in Eq. (3.10) can be neglected compared to the first
two. It is also convenient to express the differences of the
dispersion in Eq. (3.10) via the frequency of light, w, and
energy transfer, €, using the conservation of energy, as
specified by the delta-functions in Eq. (3.8). Restricting
now to the Dirac spectrum with w = 1, we obtain

Av = ki [1;9 —p(Q+ w)} : (3.14)

We see that Av? mgx{wQ, 02}, This explains the ori-
gin of the extra max{7T?,w?} factor in the current relax-
ation rate, Eq. (1.6). Since we already obtained Av? to
leading order in €2 and w, the remainder of the integrand
in Eq. (3.8) can be projected onto the FS, which amounts
to neglecting w and €2 in the arguments of delta-functions.
Accordingly,

2 27 27
Reo(w,T) = 24”NF(1f —Buw) / @Q /dek/dep/dﬁ/ ‘wkq/ dg—‘;“”Uz(Q)Av2
0

X nr(ex + Q)nr(ep

where N = 11/2m03, is the density of states at the Fermi
level per spin and per valley, and Oy, is the angle be-
tween vectors m and n’. Next, the dispersions in the
delta-functions can be expanded to linear order in Q.
This imposes kinematic constraints on the angles between
k and Q, and between p and Q, namely, kg = £7/2
and Opq = £7/2. The first constraint corresponds to the
Cooper channel, with p = —k, while the second one to

—w— Q )[1 = nr(a)] [1 —nr(ep)] d(eprq — €p)d(ex — ex—q);

(3.15)

(

the collinear channel, with p = k. Accounting for both
of these constraints, we obtain

Av? = ]32 (20 + w)® + w?]. (3.16)

Now the integrals over ek, €p, and € in Eq. (3.15) can be



carried out; as shown in Appendix B, the result is

/&5/¢?/ﬂnmﬂ+wf+ﬁ]

X nF(Gk + Q)np(ﬁp —w— Q) [1 — np(ek)] []. — np(ep)]

_ w? 14 47 T? 34 8t
~15(1 — e=Bw) w? wt )7

The integral over @ in the leading log approximation is
given by

(3.17)

> dQ 1 UDK
P (31y)
/max{w|,T}/vD QQ+r)?* w2 max(|lw],T)

The logarithmic divergence of the integral above is a pos-
teriori justification for neglecting the term proportional
to @ in Eq. (3.10). Collecting everything together, we
obtain the final result for the conductivity

e’ w? 472T? 8272

Ag
max{|w|, T}’

x In (3.19)

where Ag = vpk. Equation (3.19) obviously satisfies the
first-Matsubara-frequency rule,'? i.e., Reo(+2miT,T) =
0. The scaling form in Eq. (3.19) applies not only to
a graphene monolayer with Coulomb interaction but to
any 2D system with an isotropic but non-parabolic dis-
persion. A change in the dispersion brings in only an
overall factor of w?, defined in Eq. (3.11), while a change
in the interaction affects only the choice of cutoff Ag un-
der the log.

The presence of the logarithmic factor in Eq. (3.19) is
quite interesting. It is well known that the quasiparti-
cle scattering rate in a 2D FL scales as E?In F, where
E = max{|w|,T} (Refs. 47 and 48), but it is also un-
derstood that the logarithmic factor comes from pro-
cesses with small momentum transfers. Therefore, if a
E? term in the conductivity is allowed due to broken
Galilean invariance, it comes without an extra log fac-
tor, because the logarithmic singularity is canceled by
the “transport factor”, Av?, which is proportional to Q2
at small Q(Ref. 12). In our case, however, Galilean in-
variance is broken only partially, and only a subleading,
E* term is allowed in the conductivity. One can view
this term as resulting from expanding each of the delta-
functions in Eq. (3.15) in w/@. The two extra factors of
w change the scaling from E? to E*, but the 1/Q? fac-
tor results in an additional log term. Another example
of such a behavior is a T*InT scaling of the conductiv-
ity of a Galilean-invariant system with energy-dependent
impurity scattering time.? Once the logarithmic singu-
larity is present, the coupling constant of the Coulomb
interaction enters only via a cutoff, because the screened
Coulomb potential at Q < k does not contain the elec-
tron charge.

The current relaxation rate in a conventional FL
[Eq. (1.5)] is related to a quasiparticle lifetime which,
in its turn, is related to the electron self-energy via

1/7sp(e, T) = —2Im%(e, T) o % + 7w2T2. (3.20)

The difference between the scaling forms of 7;(w,T) in
Eq. (1.5) and 7sp(e,T") in Eq. (3.20) is due to thermal
averaging of (3.20) over e. The correct scaling form of
Tj(w,T) can already be deduced from the single-bubble
diagram for the conductivity; other diagrams only modify
the overall prefactor.'? On the contrary, the scaling form
of 75(w,T) for a DFL [Eq. (1.6)] is not related to that
of 7sp(e,T'), even if one takes higher-order terms in the
self-energy into account.

Equation (3.19) accounts only for intrasubband excita-
tions. At first sight, intersubband excitations should give
a much smaller contribution, because available states in
the valence and conduction bands are separated by the
Pauli threshold, 2u > w. However, this is true only
in the absence of ee interactions. A detailed analysis
shows?” that in an interacting system the contribution
of intersubband excitations to the conductivity is on the
order of (e2?/)(w?/u?), which is smaller than the intra-
subband contribution in Eq. (3.19) but only by a loga-
rithmic factor. Moreover, the intrasubband contribution
in 3D does not have a logarithmic factor (see Sec. VIC),
and the intra- and intersubband contributions are of the
same order. The reason for the intra- and intersub-
band contributions to be almost comparable is as follows.
When cast into a Drude-like form, both contributions (at
T = 0) can be written as Reoc = (e2) (1/A%7;), where
A is the excitation energy and 7; is the corresponding
current relaxation time. For intrasubband transitions,
A is small, ~ w, but momentum conservation reduces
1/7; compared to its conventional FL form by a factor of
W2/ < 12 1)1y ~ (w?/p)(w?/p?)| Inw|P~3. For inter-
subband transitions, A is large, ~ p, but momentum con-
servation plays no role and 1/7; is of the conventional FL
form: 1/7; ~ w?/pu. As a result, a small factor of 1/A?
for intersubband transitions is partially compensated by
a large factor of 1/7;, and wvice versa for intrasubband
transitions.

C. Monolayer graphene with trigonal warping

In this section, we study the effect of trigonal warping,
which leads to anisotropy of the FSs around each of the
two Dirac points and also breaks valley degeneracy. The
contribution to the optical conductivity from intravalley
scattering in Eq. (3.8) are given by the ¢ = ¢’ terms in
the sum, and can be evaluated along the same lines as in
Sec. ITI B. In this case, trigonal warping does not lead to
any quantitative changes because the F'S remains simply
connected and convex,? and the corresponding current re-
laxation rate is still quartic in w and 7. On the contrary,
scattering between inequivalent valley does give rise to
quadratic scaling, and it is this scattering that we focus



on in this section. Intervalley scattering is described by

2me2 1 — e Bw

Reginter (w,T) =

X np(e+’k + Q)nF(E,’p

where now k and p are the initial momenta in the Ky
and K_ valleys, and dfx(dlp) is the line element of the
Fermi contour C4 (C_) near K (K_) point.

A change in the velocity due to an ee collision can be
written as

Vik-Q+ Voprq — Vik — Vop = AvP + AvTY,
(3.22)

where AvP and Av™W are due to the Dirac and trigonal-
warping parts of the velocity, respectively. For electrons
on the FS, AvP = 0, while AvTW £ 0. Therefore, the
leading-order correction for the conductivity from inter-

Valley scattering is due to (Av )2 and is proportional

to a?. Delegating the computational details to Appendix
C, we present here only the final result for the conduc-
tivity due to intervalley scattering:

29¢?
2ozg| In ae|(kpa)? (1 +

Regnter (w,T) =

487

47272
w )

(3.23)
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Figure 2. An inter-valley scattering process. The two Fermi
surfaces (red) with trigonal warping are located at two ad-
jacent Ky and K_ points in the Brillouin zone of graphene.
k and k' are the initial and final momenta of an electron in
the K4 valley. Similarly, p and p’ are the initial and final
momenta in the K_ valley.

the ¢ # ¢’ terms in Eq. (3.8). A typical scattering process
is depicted in Fig. 2. The optical conductivity due to
inter-valley scattering is given by

Vik — Vap)QUQ(Q)

—nr(e-p)] 5(w +Q+ e prq—€-p)i(Q —€erx—q+erk),
(3.21)

—L(Vik-Q+V_opiq-—

where

62

Qe = —

. (3.24)

is the effective fine-structure constant. The w/T scaling
of Reo ™ is same as for a conventional FL [cf. Eq. (1.1)]
but with a small prefactor of (kra)?, which characterizes
the strength of trigonal warping.

D. Combined result for the conductivity from
intra- and inter-valley scattering

1. High-frequency regime

The total conductivity is given by the sum of the intra-
valley [Eq. (3.19)] and inter-valley [Eq. (3.23)] contribu-
tions, and can be cast into a Drude-like form:

ne? 1

Reo(w,T) = (3.25)

m* w21y (w,T)’
where n = p/mup is the number density, m* = u/v3

is the effective mass, and the current relaxation time is
defined as
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77 (w, T) ~ 2407 w3

The first term in 1/7; arises from intra-valley scatter-
ing and is specific for a DFL, while the second one is
a Gurzhi-like contribution arising from inter-valley scat-
tering. The competition between the two terms is deter-
mined by the hierarchy of the three energy scales: w, T,
and wrw = ae(kra)p < p. As an example, we analyze
the dependence of 1/7; on w at fixed T. If wrw < T,
the effect of trigonal warping is negligible: 1/7; is mostly
given by the DFL term. This behavior is shown in the
left panel of Fig. 3(a). If T <« wrw, 1/7; starts with the
T? term for w < T, then scales as w? for T < w < wrw,
and finally follows the w* dependence for wrw < w. This
case is illustrated in Fig. 3(b).

2. Low-frequency regime

Although Eq. (3.25) looks like a high-frequency tail of
the conventional Drude formula, Rec = e*nr;/m(1 +
w?72), it would be incorrect to extrapolate this result to
the dclimit, because ee interaction in the absence of umk-
lapp scattering cannot render the dc conductivity finite.?°
In fact, Eq. (3.25) is valid only for w > 1/7,;(0,T). In
this section, we will show that, in the absence of disorder
and at w — 0, the conductivity can be described by the
sum of a delta-function term and a regular part:

’/TTL€2

25(0) + v (1)

Reo(w = 0,T) = (3.27)

where 0,65(T) scales either as T7-% or T2, depending
on whether T is higher or lower than ww. The form in
Eq. (3.27) pertains to any non-Galilean-invariant system,
in which ee interaction can render the conductivity finite
only at a finite but not zero frequency. For example, this
form follows from the semiclassical equations of motion
for a two-band system (in this case, the delta-function
term is absent if the system is compensated).?

On a more general level, Eq. (3.27) can be derived from
the Boltzmann equation, using the method outlined in
Ref. 2. As we are now interested in the limit of w <« T, it
suffices to consider a semiclassical form of the Boltzmann
equation:

(—iw +0M)5fix — e(vic - E)nj = —Lee[0 fi], (3.28)
where ¢ fi is a non-equilibrium correction to the Fermi
function (ny) and I..[df] is the (linearized) ee collision
integral. The collision integral can be viewed as a linear
operator acting on § fx:

Leo[6 fic = Too(k, )6 fro- (3.29)
o

n 29
n =z
max{|w|, T} 487

9 w? + 47272

a2 In ae|(kpa) (3.26)

(

In general, fee is non-Hermitian and thus can be written
as a direct product of its left (L) and right (R) eigenvec-
tors

- 1
Iee: n(I)n q)nv
) D& R @

(3.30)

where &, is the n'! eigenvalue and 7% (T') is the effective
ee scattering time, which defines the magnitude of fee.
Without a loss of generality, we can choose 75(T) to
coincide with 7;(0,T) given by Eq. (3.26), i.e.,

1 1 23 T et
= f— n
(T) 73(0,T) 15 u3 T~

. (3.31)

Tee
where for brevity we omitted the T? term resulting from
trigonal warping. Because ®} and ®% form an orthonor-
mal basis, a general solution of Eq. (3.28) can be written

as

5fic =" cnl®F). (3.32)

Substituting this expansion into Eq.(3.28), we obtain co-
efficients ¢,, as

e(PF | vic - Eny,)

”:_' &n 4
iw ~+ @8] +0

*
Tee

(3.33)

If ee interaction conserves momentum, I is nullified by a
combination A -k, where A is an arbitrary k-independent
vector.?® This means that operator I, has a zero mode
with eigenvalue §; = 0. In the limit of w7l (T) — 0,
the series in Eq. (3.32) contains only the zero-mode term
with

(Y |vi, - Enj)

—iw+ 0T (3.34)

Co =

The corresponding contribution to ¢ fx gives the delta-
function term in Eq. (3.27). The next-to-leading contri-
bution corresponds to the minimum non-zero eigenvalue,
& >0

(@) [vic - Eng)

—iw+%+0+'

(3.35)

C1 =

Because &,, are the eigenvalues of a dimensionless opera-
tor which does not contain any physical parameters, we
should expect that & ~ 1. For w < 1/7%&,, one can then
neglect w in the denominator of ¢;. The corresponding
contribution to ¢ fx gives the second term in Eq. (3.27).

So far, we have found the asymptotic forms of the
conductivity in the opposite limits of w > 1/7;(0,7T)
and w < 1/7;(0,T), given by Eqgs. (3.25) and (3.27),
respectively. Although Eq. (3.25) matches in order-of-
magnitude with o.e in Eq. (3.27) at w ~ 1/7,(0,7), it
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Figure 3. Solid line: the current relaxation rate, 1/7;(w,T) (normalized by n) from Eq. (3.26), as a function of frequency at
fixed temperature. Here, a« = 0.8, kra = 0.05, and wrw /p = 0.04. The dashed and dotted-dashed lines depict the scaling forms
for DFL [the first term in Eq. (3.26)] and conventional FL [the second term in Eq. (3.26)], respectively. a) T/u = 1072, In
this case, the DFL scaling form dominates for all frequencies of interest. b) T/ = 10™*. In this case, one can see a crossover

between the DFL and conventional FL scaling forms).

does not mean that o,.z can be described by the Drude
form at all frequencies. A precise form of Reo(w,T) in
the intermediate range of w ~ 1/7;(0,T) can be obtained
only by an exact solution of the Boltzmann equation,
which is outside the scope of this paper. We note, how-
ever, that for a simpler case of a two-band parabolic
system the regular part of the conductivity follows the
Drude form for all frequencies.?

IV. DIRAC FERMI LIQUID WITH IMPURITIES

In this section, we consider an interplay between impu-
rity and ee scattering in a DFL at the level of the semi-
classical Boltzmann equation, which neglects quantum
interference and hydrodynamic effects. We assume that
the effective impurity radius is much smaller than the
Fermi wavelength but much larger than the lattice spac-
ing. In this case, impurities act as point-like, isotropic
scatterers for electrons within the K and K_ wvalleys,
while scattering between the valleys is suppressed. As in
the previous sections, we assume that ee interaction is
long-ranged and also neglect trigonal warping, such that
the valley degree of freedom plays the role of conserved
isospin. The non-equilibrium correction to the Fermi
function can be parameterized as d fx = —Tn} gx. Then
the linearized Boltzmann equation, which includes scat-
tering by point-like impurities and ee scattering, reads

1

1
_ (iw — > Tni(gk —cE- ani( = _Iee[gk]v (41)

where 7; is the transport mean free time for impurity
scattering and

d2k/ d2p/ d2p
Iee = e’ 1/
)= [ Gz | e | e Piows

X (9x + 9p — 9’ — gp')

X nknp(l — nk/)(l — ’flp/)

X d(ex +€p — e — €p)d(k +p — kK —p’).
(4.2)

With spin and valley degeneracy taken into account,%:5!

the scattering probability to lowest order in an instanta-
neous interaction is given by

1
Wy pix' pr = 87U (k — k) |UKk-X)— §U(k -p)|,
(4.3)

where the first (second) term in the square brackets come
from direct (exchange) ee interaction. In our model of a
weakly screened Coulomb potential, the exchange term
can be neglected and

Wi pkr pr = 87U (k — K'). (4.4)

A. Low temperatures: slow electron-electron
scattering

We now solve Eq. (4.1) for the case of low tempera-
tures, when ee collisions are less frequent than ei col-
lisions, and the ee contribution can be evaluated via a
perturbation theory in I4; cf. Refs. 2, 9, and 52. At the
first step, we solve Eq.(4.1) with I, = 0, which yields

(0) __ eTi(Vk . E)

D’ =T —iwn) (45)



and the corresponding contribution to the optical con-
ductivity is of the Drude form:

627’L7’i

(4.6)

o) = =)

Next, we substitute g( ) back into Eq. (4.1) and find a
correction due to ee scattering

1) _ Ti

gl = (0)
T(1 —iwr)nj

Leelgy '] (4.7

The corresponding correction to the optical conductivity
is given by

4me 7'2N2 d’Q
00ce = _T 1= iwm)? / /dek/dep/dQ
db doy
< [ o [ SR UZ(Q)

x n(ex)n(ep) [1 —n(ex + Q)] [1 — n(ep — Q)]
X 0(ex — ex—q + Q)0(ep — €prq — ),

(4.8)

where, as before, Av = vy + v — vk_q — Vp+q. Note
that the integral in the last equation is the same as in
Eq. (3.9) but with w = 0 and, therefore, the rest of the
calculation is the same as in Sec. IIIB. The final result
reads

e2nm 1 —Ww?n 2 T

m* (1-— zw7‘1)2 (1)’

where 77,(T) is given by Eq. (3.31). Note that Eq. (4.9)
can be obtained by replacing 7; in the Drude formula
[Eq. (4.6)] by the effective scattering time, 7eg(T) =
Tie(T) /(1 + 75(T)), and expanding the result to first
order in 1/75(T). In this regime, therefore, we recover
the Mathiessen rule, i.e., the ei and ee channels act as
two resistors connected in series. Correspondingly, the
real and imaginary parts of the conductivity are given by

{ Reo(w,T) _ e2nteg (T) y { 1
Imo(w, T) m* [1 + w272%(T)] wreg(T)
(4.10)

00ee(w, T) = —

(4.9)

Tee

B. High temperatures: fast electron-electron
scattering

We now turn to the opposite limit of high tempera-
tures, when ee scattering is faster than ei one. (Some-
times, this regime is referred to as a “hydrodynamic” one,
although there is no real hydrodynamic regime in bulk
samples with point-like impurities). The analysis of this
limit proceeds in the same way as in Sec. IIID 2; we only
need to replace an infinitesimally small damping term [0™
in Eq. (3.28)] by finite 1/7;. Consequently, Eq. (3.33) for
expansion coefficients ¢,, is replaced by

e(®} |[vic - Enj)

t _Z’W+Ti71+¢*£7&“)

(4.11)
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At 1/725(T) — oo, the & = 0 eigenvalue gives the leading
contribution, and the delta-function term in Eq. (3.27)
is replaced by the Drude form with the width given by
1/7, as in Eq. (4.6). This Drude form is completely in-
dependent of the ee interaction despite the fact that ee
scattering is the dominant one. On the other hand, one
can neglect 1/7; in all ¢;,0. This results in replacing the
second, regular term in Eq. (3.33) by another Drude form
with the width given by 1/7%(T'). Correspondingly, the
real and imaginary parts of the conductivity are given by

(T)
Reo(w,T) _ ne? T =+ 11w27592 12
Ima’(w T) - m* x wr? wrl2(T) ( . )
’ 1+w2‘ri2 1+w?7y2

Physically, it means that if ee scattering is faster than e:
one, the two channels act as two resistors connected in
parallel.

C. dc limit

The analysis presented in the two preceding sections
can be also extended to include the dec limit (w = 0).
In particular, the conductivity in the regime of slow
ee scattering is found simply by substituting w = 0
into Eq. (4.9). Converting the result into the resistiv-
ity p(T) = 1/0(0,T), we obtain

*

m 4
p(T)=pi+ — neZ 72(T) ox const + O(T* InT)(4.13)
where p; = m* /ne 7, is the residual resistivity and

75 (T) is given by Eq. (3.31). Although it may look
as if Eq. (4.13) obeys the Mathiessen rule, it is only
valid for low enough temperatures, when 75 (T) > 7
or T < Ty = (,u3/7'i)1/4. Note that 1/7y < T} < p as
long as the “good-metal condition”, p7; > 1, is satisfied.

In the opposite limit of 75 (T) < nn (T > Ti), ee
scattering is the dominant mechanism. However, it con-
serves momentum and thus can only establish a quasi-
equilibrium state with the Fermi surface displaced by a
drift velocity whose magnitude is still controlled by ei
scattering. The high-temperature limit was analyzed in
Ref. 2 using the method outlined in Sec. III D 2. The key
ingredient here is again the existence of the zero mode of
the ee collision integral. Without repeating the analysis
here, we simply reproduce here the result of Ref. 2 for
the high-T" limit of the conductivity

<W kn> <Um kn>

Oem|r>T, = 2Nv62NFTiZ 52

n

. (4.14)

where N, is the valley degeneracy (= 4 for graphene) and
(...) denotes averaging over the FS. At the same time,
the low-T limit is given by

U€m|T<<Ti = 2NU62NFT1<’Ugvm>. (4.15)

In general, high- and low-T" limits are different. However,
for an isotropic dispersion, which is the case of doped



graphene without trigonal warping, the two limits coin-
cide. (For quadratic dispersion, the two limits also co-
incide but the resistivity does not depend on T at all.)
Therefore,

p(T > T) = pi [1 4+ O(r%, /7)) = const + O(T ™).
(4.16)

In between the two limits given by Eqgs. (4.13) and (4.16),
the resistivity reaches a maximum of height ~ p; at T ~
T;, as illustrated in Fig. 4.

We emphasize that the maximum in the resistivity oc-
curs in a model which accounts only for the ei and ee scat-
tering channels. In real systems, scattering by phonon
gives rise a monotonically increasing with T resistivity,
which may mask the maximum. An interplay between
electron-electron and electron-phonon scattering is dis-
cussed further in Sec. VID.

p(T)

p max

p; + T*|InT|

Pi

T, T

Figure 4. A sketch of the temperature dependence of the
dc resistivity of doped graphene in the presence of electron-
impurity and electron-electron scattering. Here, p; is the
residual resistivity due to impurities, pmax ~ pi, T3 =
(13 /7)Y, and 7 is the transport time for electron-impurity
scattering. The dashed lines depict the low- and high-T
asymptotic limits.

V. DYNAMICAL CHARGE SUSCEPTIBILITY
OF A DIRAC FERMI LIQUID

A. Formalism

In this section, we analyze the dissipative part of the
charge susceptibility of a DFL, Imx.(q,w). This quantity
can be measured on its own, e.g., via momentum-resolved
electron energy loss spectroscopy (M-EELS),%37%% and is
also related to the longitudinal conductivity via the Ein-
stein relation

2

e’w
Reo(q,w) = ?Imxc (q,w), (5.1)
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Figure 5. One-loop diagrams for the irreducible charge
susceptibility. The bold wavy line denotes a dynamically
screened Coulomb interaction.

where superscript ™" denotes the irreducible part. In this
section, we will find Imy!™(q,w) from the Kubo formula,
to one-loop order in a dynamically screened Coulomb in-
teraction. Equation (5.1) can then be used as an inde-
pendent check for the result of Sec. III for Reo(q,w), ob-
tained via the equations of motion and Boltzmann equa-
tion. In Sec. I1I, we found that Reo(w, T = 0) oc w? In |w|
which, when substituted into the Einstein relation, gives
Imy™(q,w) oc ¢*wIn|w|. In this section, we will confirm
this result by an explicit calculation of Imy*(q,w) for
2D Dirac fermions in doped graphene.

The regions occupied by the continua of particle-
hole excitation in doped graphene are shown by heav-
ily shaded (red) regions in Fig. 6. Within these regions,
Imx'™(q,w) # 0 even for non-interacting electrons. At
the level of Random Phase Approximation (RPA), ee in-
teraction modifies the spectral weight within the continua
but does not lead to a non-zero spectral weight outside
the continua. The latter occurs only if the interaction be-
tween quasiparticles is taken into account, which means
that one has to go beyond RPA and renormalize the
polarization bubble by the interaction. One-loop dia-
grams for the irreducible charge susceptibility are shown
in Fig. 5, where the bold wavy line denotes a dynamically
screened Coulomb interaction

U(Q,2) = [U;1(Q) - TI(Q, )],

I1(Q, ;) is the free-electron polarization bubble, and
Uo(Q) = 2me?/Q. In what follows, we focus on the case

(5.2)
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Figure 6. Regions A and B correspond to particle-hole con-
tinua in doped graphene. A non-zero spectral weight in region
C is due to the interaction between quasi-particles, described
by the diagrams in Fig. 5. The dashed line shows the plasmon
dispersion.

(S E)

where G(k,&,) = (ien —ex +p) " and e = vpk (an
overall factor of 2 in Eq. (5.3) is due to valley degener-
acy). We focus on the range of momenta and frequencies
denoted far away from both continua boundaries, i.e., on
the range vpqg < w < p. This region is denoted as C
in Fig. 6. To order ¢?, diagrams a-c yield (see Appendix

D1 for details)
64 2q¢” /AQ dQQ
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i el It b
5k203 T |wl

Imx ™ (q,w) =

(5.4)

The first term in Eq. (5.4) is not specific to whether the
system is Galilean-invariant or not, while the second term
is specific for a DFL. For the charge susceptibility, the
choice of the upper-limit cutoff (Ag) in the first term is
arbitrary because this term cancels out with the corre-
sponding contribution from the Aslamazov-Larkin (AL)
diagrams (d and e in Fig. 5).°7

To order ¢, the contribution from the AL diagrams
can be written as

d2Qd0)
@) =16 [ [ U@ U@ - a i —un)

X [TQ(Qa q, Ql7 Wm) + |T(Q> q, Qla Wm)|2]a
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of small @) scattering, when the phase factors in the ma-
trix elements of spinor wavefunctions can be replaced by
unity. At this level, the information about the Dirac na-
ture of the system enters only via the linear dispersion
of electronic excitation and also via the additional (two-
fold) valley degeneracy. As in Ref. 56, the contributions
from the self-energy and exchange diagrams (a-c in Fig.
5), can be combined as

(ktq — €k — €k+Qtq T €k+Q)

d? d2k‘dQ d&‘n 2
:_2//// Q l (Qle) 2/ 2
(Zwm — €k4+Q+q T 6k+Q) (Zwm — €k+q T Gk)

x [G(k,en) — G( k+q,6n+wm)}[ k+Q,en+ ) —

Gk+Q+q,en+U+wn),

(

where

2
T(Q, q Uy wom) = / / Ci;jf;“e(k, )Gk + £ + )
X G(k + Qa En + Ql) (56)

is a “triangle” formed by three Green’s functions. To one-
loop order, the dynamically screened Coulomb potential
in Eq. (5.5) can be replaced by the static one. Under the
same conditions as for Eq. (5.4), the AL contribution is
reduced to (see Appendix D2 for details)

e 292/AQ _dQQ
g | 3w Jo  (Q+k)?
2 Pw VDK
i ey P S
5k2v T |wl

Imx$*™ (q,w) =

(5.7)

On adding up Egs. (5.4) and (5.7), the first terms in
each of the equations cancel each other, and we obtain
the total O(q?) contribution to the charge susceptibility
as

*w UpK
n—-.
80m2u?  |wl

irr

ImXc 2 (qa )

(5.8)

One can see that Imx¥%(q,w) in the equation above

and the T = 0 value of the longitudinal conductivity

(5.5)in Eq. (3.19) do satisfy the Einstein relation, Eq. (5.1).



The O(qg?) result for the charge susceptibility suffices
to obtain the ¢ = 0 limit of the conductivity via the Ein-
stein relation. However, if the goal is to find the charge
susceptibility in the entire region C in Fig. 5, one also
needs to calculate the O(g*) term. Such a calculation was
performed in Ref. 39, where it was shown that the O(q*)
term in the charge susceptibility behaves as ¢*/w®. For

2 2 T2 T
Reo(q,w) = 227 {w <1 —|—47r2> (3 + 47r2w—

10p2 w?

where m* = kp/vp. The first term coincides with the
g = 0 limit of the conductivity in Ref. (3.19), while
the second term is the O(q¢?) contribution. Parenthet-
ically, we note that the O(q?) is the same as a in a
Galilean-invariant 2D FL (with m* — kp/vp). In this
regard, our result disagrees with that of Ref. 46, where

J

~ 1 [¢w 5 T2 o T UpK q*K? 5 T2 kp
Imy ™ 144" — ) | 3+4r"— |1 1447 — | In —
e (g w) { ( A w? A w? nmax{w,27rT} + m*%w3 e W) e |

T 2472 | 1042

The T = 0 limit of the O(¢?) term in Eq. (5.10) coincides
with our previous result in Eq. (5.8). At T = 0, the O(¢?)

and O(q*) terms in Imy!™ become comparable at w ~

wp(q), where wy(q) = 24/ pe?q is the plasmon dispersion
in graphene. Since the plasmon dispersion lies within
region C in Fig. 5, both these terms need to be taken
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completeness, we verified this result in a different way:
by calculating the conductivity to order ¢? first and then
using the Einstein relation. The conductivity was calcu-
lated by using the method developed in Ref. 46, in which
one extracts the conductivity from the rate of photon
absorption by interacting electrons. Deferring the result
to forthcoming publication,®® we present only the result
here

2,2 2
VDK q°K oI kr
1 1+4r°— | In —
) nmax{w,Qﬂ'T} + m*2w? < A w2> s }7

(5.9)

(

it was argued that in the Galilean-invariant case Reo =
(e?/1272)(¢*/k%) (1 + 47T? Jw?) In (vprk/ max{w, T}).
We find that such a term is, indeed, present but it is
subleading to the O(¢?) term in Eq. (5.9) for w < vpk.

Substituting Eq. (5.9) into the Einstein relation, we
obtain the charge susceptibility to order ¢* as

(5.10)

(

into account.

B. Total charge susceptibility and plasmon
damping

We now analyze the imaginary part of the total charge

susceptibility, obtained by summing up RPA diagrams
with bubbles given by x.*:

C

Imx" (g, w)
Imxe(q,w) = : 3 : 5
[1 4 Uo(a)Rexe* (q,w)]” + [Uo(@)Imxe™ (q, w)]
(5.11)
[
or, on using Eq. (5.1), ne?/m*w. Equation (5.12) is then reduced to
2 2 Reo(q,w)
q Reo(w _ q,
Imx.(q,w) = = o 2( ) o 2" Tme(q, ) = ew w2@)]? | ren 2
w1 - 2N me(q,w)]” + [Z4Reo(q, w)] [1-%82]" + [20Reo(q,w)]
(5.12) (5.13)

To lowest order in ee interaction, Imo(q,w) can be
replaced by its non-interacting limit: Imo(q,w) =

The second term in the denominator describes the damp-
ing of the plasmon by ee interaction. From now and till



the end of this section, we will focus on the T' = 0 limit.
For vpg <« w < wp(gq), the unity in the first term and
the entire second term in the denominator of Eq. (5.13)
can be neglected, while the conductivity can be approx-
imated by the O(g?) term in Eq. (5.9). This yields

2,3 2
qw g w  kp
Inye(q,w) ~ L9 Reo ~ L9 (5.14)
¢ 2wi(q) w2k

For wp(¢) < w < vpk, the leading term in the denomi-
nator of Eq. —eqreftchi is unity, and the total and irre-
ducible susceptibilities are almost the same:

2
irr q-w

UpKk
IHle(q,QO QjIran (qnuo ﬁJ‘;;r1n4447

o (5.15)

As we see, the asymptotics of Imx.(q,w) for w < wp(q)
and w > wp(q) differ only in the logarithmic factor. The
imaginary part of x., as given by Eq. (5.8), is plotted in
Fig. 7 as a function of frequency at finite q.

We now use the results for the dissipative parts of the
longitudinal conductivity and charge susceptibility to de-
rive the plasmon damping coefficient, deduced from the
position of the pole in Eq. (5.13) at w = wy(q) — iT'(q).
According to Eq. (5.13), the damping coefficient near the
plasmon pole is given by

I'(q) = mgReo(q,w = wp(q)). (5.16)
Substituting Eq. (5.9) into Eq. (5.16), we obtain
ek ¢? k 20  kp
I(q) = S (ln—+=Ih—|. 5.17
(@) 160wk}<nq+3nn) (5.17)

It is interesting to compare this result with that for
a Galilean-invariant 2D FL with the same number
density:°®

€4q2 kF

n—. (5.18)

Pale) = o g ]

One can see that the damping coefficients in Eqs. (5.17)
and (5.18) differ just by numerical and logarithmic fac-
tors. The reason is that the ¢ = 0 part of the conductivity
in Eq. (5.9), which is specific for a DFL, and the ¢? part,
which is present even in a Galilean-invariant FL, become
comparable at w ~ wp(q).

VI. OTHER DIRAC SYSTEMS AND RELATION
TO THE EXPERIMENT

In this section, we discuss the w/T scaling of the opti-
cal conductivity due to ee interactions in other types of
DFLs.

16

A. Bilayer graphene

For the case of Bernal-stacked bilayer graphene (BLG),
the effective low-energy Hamiltonian resembles the Dirac-
like Hamiltonian of monolayer graphene, Eq.(2.7b), but

lon)
3
=3
=
>
g

« g wln|w

x q’w Ina, 1 |w]

f f
vpq wp(q) w
Figure 7. Log-log scale. Solid: the imaginary part of the

total charge susceptibility for doped graphene, as given by
Eq. (5.13) for ¢/kr = 107* and ae = €?/vp = 0.8. Dashed
and dot-dashed: the asymptotic limits given by Eq. (5.14)
and Eq. (5.15), respectively.

with quadratic terms on the anti-diagonal instead of lin-
ear ones.” Therefore, the energy eigenvalues are elf =
+k? /2, where 1 = 71 /2v3 and 71 is the interlayer cou-
pling between the nearest sites. In this approximation,
the system is Galilean invariant, and intraband ee scat-
tering does not give rise to a finite optical conductivity.
To get a finite conductivity, one needs to find corrections
to the quadratic dispersion. We adopt a standard model
for BLG, which includes intralayer hopping between A
and B sites (with coupling o), interlayer hopping be-
tween the nearest A sites and the nearest B sites (with
couplings v; and 3, respectively), but neglects interlayer
hopping between A and B sites. In this model the lowest
branch of the conduction band is given by®°

2

+ gkl AT g of 2 V3 2 2 1.3 2(,2 Y3\ ,4 e
€ = ?—i— DG k* — I—i—% b kE* + 2cusvik” cos 36y + v ’UD—FZ k , (6.1)



where, as before, vp = 3va/2 and vs = 3ys3a/2. For a
realistic BLG, 71 ~ 73 < 70 (Ref. 59) and, therefore,
vg K vp. For 71 < p < o the states near the FS have
a Dirac dispersion with a slope of vp, and we are back
to the case of monolayer graphene (MLG), discussed in
Sec. ITI B. For p < =1, all the k-dependent terms under

[.. ]1/2 in Eq. (6.1) are subleading to the v{ term. Ex-

panding |[. .. ]1/ % to order k° and neglecting vs compared
to vp whenever possible, we obtain

2m

1/2
]412 2 2 2 k.S 2 6 kﬁ
e:k = {v§k2 + ( ) — Mcos?ﬂk — UD4 } .

Al 71

(6.2)

where ¢ = 41 denotes the K+ point. For y < mwv? the
first term under the square root in the equation above
is the dominant one, and we are again back to a Dirac
dispersion, but with a slope of vz rather than vp. This is
another case of a DFL discussed in Sec. III B. A specific to
BLG regime occurs for for mv3 < pu < 71. In this regime
the quartic term is the dominant one. Expanding to first
order in the subleading terms and omitting a constant,
mo3 term, we obtain

k2 k*

o susk cos 30y — (6.3)

€ck = 4’17%2’)/1 .
The first term in the equation above corresponds to a
Galilean-invariant FL with Reo(w,T) = 0. The sec-
ond, anisotropic term gives rise to a finite Reo(w,T),
described by the Gurzhi formula, Eq. (1.1). As in
the case of MLG with trigonal warping, discussed in
Sec. ITIT C, the mechanism of dissipation is ee scattering
between inequivalent valleys. Finally, the last term is an
isotropic correction to the quadratic dispersion, which
gives rise to a finite Reo(w,T), described by the DFL
form, Eq. (3.19). Therefore, the conductivity of BLG
has the same general form as in Egs. (3.25) and (3.26) for
MLG, but with different coefficients. To estimate the co-
efficient of the DFL part, we neglect the trigonal-warping
term in Eq. (6.3) and treat the quartic term as a correc-
tion to the quadratic one. Equation (3.13) then gives a
non-parabolicity coefficient as |w| = 4p/v1 < 1. On the
other hand, the coefficient of the Gurzhi part is propor-
tional to the magnitude of the trigonal-warping term in
Eq. (6.3), i.e., to (v3/vr)?, where vp = kg/m. Combin-
ing the two contributions, we express the conductivity of

BLG as
T 2
“ ( ) ( )
w Y1

-
+ep0? [In | g (T>] (6.4)
1 w
, where D(r) = (1 + 47%22)(3 + 87%22) and G(x) = 1 +
47222 are the DFL and Gurzhi scaling functions, respec-
tively, o/, = e%/vr is the Coulomb coupling constant for
BLG, and ¢ 2 ~ 1 are numerical coefficients. For a rough

Reoprg(w,T) = €2
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estimate, we take w ~ T and o/, ~ 1. Then the compe-
tition between the two terms in Eq. (6.4) is determined
by the ratio of w to Qrw = v11/mv3/p. If the chemical
potential is in the interval mwv2 < p < 7y (w3 /y1)Y3,
then Qrw > u, and the Gurzhi part dominates over the
DFL one for all frequencies of interest. If the chemical
potential is in the interval v, (w3 /1)'/? < u < 71, then
Qrw < i, and the Gurzhi part dominates over the DFL
one for w < Qrw, while it is vice versa for Qrw < w < p.

B. Surface state of a three-dimensional topological
insulator

Another 2D Dirac system is the surface state of a 3D
topological insulator, which contains a single Dirac cone
at the I" point of a 2D Brillouin zone. With hexagonal
warping taken into account, the dispersion is given by%

ef = +1/v3 k2 + A k2 cos?(30y). (6.5)
If hexagonal warping is neglected, the system is identical
to a single-valley version of monolayer graphene. Con-
sequently, the optical conductivity of the surface state
is given by Eq. (3.19) divided by a factor of 2. How-
ever, the effect of crystalline anisotropy is different in
the two systems. Trigonal warping in graphene, however
weak, makes the K and K’ valleys inequivalent. Con-
sequently, inter-valley scattering gives rise to a FL be-
havior of the conductivity, described by the second term
in Eq. (3.26). On the other hand, the Fermi contour of
the topological surface state remains convex for u less
than some critical value, which depends on the warping
parameter, Agw. As long as the Fermi contour is con-
vex, the leading term in the optical conductivity scales
as max{w*, T*} (Ref. 61), and the dc resistivity exhibits
a non-monotonic T dependence shown in Fig. 4. For pu
larger than a critical value, the system exhibits a con-
ventional FL behavior, with Reo(w,T) x max{w?, T?},
etc. Except for a narrow range of p near the convex-to-
concave transition,®! the surface state does not exhibit a
competition between the DFL and conventional FL be-
haviors but rather behaves either as a DFL (below the
transition) or as a conventional FL (above the transition).

C. Doped three-dimensional Dirac/Weyl metal

Another important class of Dirac-Fermi liquids are 3D
Dirac and Weyl metals, doped away from the Dirac point.
The properties of these systems are discussed in a number
of excellent reviews,%2 %% so we will limit our discussion to
a minimum. In the simplest case, a 3D Dirac/Weyl metal
can be described by a system of N,, equivalent Dirac cones
with spin degeneracy Ng. For non-interacting electrons
and at T = 0, the optical conductivity of a Dirac/Weyl



metal is given by%®

ge? w

922 (- 2p),

Reo(w) = S0 g

(6.6)
where g = Ny;N,. As in the 2D case, absorption is possi-
ble only due to interband transitions, which are allowed
for w > 2u. Equation (6.6) also describes the limiting
case of an undoped system at p = 0. The linear or quasi-
linear scaling of Reo(w) with w for w > 2u was observed
in a number of materials, including HgCdTe,5” ZrTes,5®
Euslry 07,5970 and CdzAs,.™ can be described by a sys-
tem of N, equivalent Dirac cones with spin degeneracy
N, its optical conductivity can be derived along the same
lines as for (monolayer) graphene.

As in the 2D case, intraband absorption for w < p
becomes possible if one take ee interaction into account.
Skipping the computational details, we present here the
final result for the intraband conductivity of a 3D system
with an isotropic Dirac spectrum:

Cg?e3kr w? 472T? 8272
Reo(w,T) = s 2 1+ 2 3+ )
(6.7)

where C' = 1/384072. In contrast to the 2D case, the
integral over the momentum transfers in 3D is not loga-
rithmically divergent, and typical @) are on the order of
the interaction radius (k). Therefore, Eq. (6.7) is valid
only for a long-range interaction, when k < kg, rather
than for any interaction, as it is the case for 2D. Once
this condition is satisfied, the scaling form in Eq. (6.7) is
also valid for any non-parabolic but isotropic dispersion,
rather than only for the Dirac one.

As mentioned in Sec.I1I B, however, the interband con-
tribution in 3D is of the same order as the intraband
one; therefore, numerical prefactor C' in a complete result
would differ from the one in Eq. (6.7). A more detailed
account of the 3D case will be published elsewhere.*”

D. Relation to the experiment

In this section, we discuss the feasibility of observing
our predictions for the ee contribution to the conduc-
tivity in the experiment, focusing on the case of mono-
layer graphene. As it also the case for other materials,
the main difficulty with identifying the ee contribution
to the resistivity are the competing effects of scattering
by impurities, defects and sample boundaries (ei) and
electron-phonon (eph) scattering.

1. Optical measurement

At low temperatures, the main competing mechanism
is ei scattering. At T'— 0 and high enough frequencies,
the conductivity assumes a Drude-like form,

ne? 1 1
72 J— + - s
m*w? \ 17 77 (w,0)

Reo(w) = (6.8)

18

w
YTre
yT
"
yo* /T
YT*/The
Tye T
Figure 8.  Frequency and temperature dependences of the

current relaxation rate, 1/7¢pn, for scattering by 2D acousti-
cal phonons in graphene. Here, Tsc = 2krvs is the Bloch-
Griineisen temperature, vs is the speed of sound, and = is the
dimensionless coupling constant. Equations in the plot show
the asymptotic behavior of 1/7epn is a given region of w and
T.

where

1 1 w* wpk
L R R P 6.9
77(w,0) 807 w3 e (6.9)

is obtained by putting 7' = 0 in Eq. (3.26) and neglecting
the trigonal warping term. For a rough estimate, one can
also replace vpk by p in the argument of the logarithm.
As frequency increases, the conductivity first decreases
as 1/w?, reaches a minimum at

160 e
Wmin = M LI s (610)
9de 1/4
gacIn ({45

where g4. = 2u7; is the conductance of a graphene mono-
layer at T = 0 in units of €?/h, and then starts to in-
crease as w?. This nonmonotonic behavior is a signa-
ture of the ee contribution. Because our theory is valid

only for w < p, we need to require that wyi, S ul or

" 1/4 _
(gdc In (g4./1607) /16071') 2 1. Formally, this con-

dition requires gq4. > 1 but, because of a large numerical
factor, 1607 = 500, and also of a small exponent, 1/4,
the condition is much more restrictive, and can only be
satisfied in a sample with both high mobility and high
carrier number density. These conditions are not met in
the samples used in prior optical measurements.?223:25,
For example, the highest conductance a sample used in
Ref. 22 is g4. = 160, at the gate voltage of 71 V, whereas
we need g.q to exceed at least 500. This explains why no
minima in Reo(w) well below p were observed in these
studies. On the other hand, much higher number den-
sities and thus higher conductances can be achieved in



samples with electrolytic gating. For example, the low-
est residual resistance of p ~ 38 {2 measured in Ref. 72 at
n = 1.8 x 10" cm™2 corresponds to gq. ~ 663, which is
above the required value.

If the temperature is not very low, one also needs to
worry about the competing effect of eph scattering. If
flexural phonons in graphene are quenched by a sub-
strate and max{w,T} is less than the in-plane opti-
cal phonon frequency (wept ~ 180meV 73,74) " the main
mechanism that competes with ee scattering is scatter-
ing by in-plane acoustic phonons. Scattering by acoustic
phonons is characterized by the Bloch-Griineisen tem-
perature (Tpg = 2kpvs, where vy is the sound velocity),
which separates the regimes of inelastic and quasielastic
scattering. In the quasielastic regime (w > Tgg), the
eph scattering rate is independent of w, while the ee rate
continues increase with w. This allows one to identify the
ee contribution, as it was done in classical experiments
on good metals.”7% When applying the same recipe to
graphene though, one needs to keep in mind that it is a
2D, low-carrier system which harbors a Dirac rather than
conventional FL. Because of these features, not only ee
scattering but also eph scattering in graphene are quite
distinct from those in good metals.

In 2D, the eph current relaxation rate scales as 7% in
the inelastic regime and at w = 0.7>77 Extending this
result to finite w, we obtain

1 N (w? + 472T?) (3w? + 872T?) (6.11)
Tepn (@, 1) " Tiq o

where 7 is the dimensionless eph coupling constant.
(Note that the scaling form is the same as for a DFL.) In
the quasielastic regime, 1/7eph(w,T) ~ ymax{T,Tpc}
and is independent of w. For numerical reasons, the
actual crossover between the inelastic and quasielastic
regimes occurs at Tcpg ~ 0.2Tgg rather at than at
Tpe itself.”7" The asymptotic limits of 1/7epn(w,T) in
the different regions of the (w,T') plane are shown in
Fig. 8. At the same time, the electron-electron contri-
bution scales as max{w*In |w|,T*InT?} all the way up to
the chemical potential, which is larger than Tgg by a fac-
tor of at least vp/vs ~ 50. Even at a rather high number
density of 10" cm™2, this interval is very wide: from 25
em™! to 1500 em ™.

2. dc measurement

In this section, we analyze the feasibility of detecting
the ee contribution in a dc¢ measurement. As shown in
Sec. IV C, the T-dependence of the current relaxation
rate due to a combined effect of the ei and ee mechanisms
can be described by the following relation

LY e

m(T) ' \7%(T))’
where 75,(T) is given by Eq. (3.31), and function f(z)
is such that f(z — 0) = 142+ ..., fla = ) =

(6.12)
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1 —0O(1/z), and f(z) has a maximum at & ~ 1 (see
Fig. 4). For residual mobility of 10° cm?/Vs and number
density n = 10*2 cm ™2, we find 1/7; ~ 0.6 meV, and thus
a crossover temperature at which 7, = 7..(7}), is about
180 K.

The eph scattering rate can be written as”>"”

1 [ 64n3yT* /1513 for T < Tha; 6.13
%7 ~T, for T > Txq, (6.13)
where v = D2?u/4pmv20v3 = p/pepn, D is the
deformation-potential constant, and p,, is the mass den-
sity of graphene. For T > Tpg scattering is quasielas-
tic and isotropic; therefore, the scattering rate is pro-
portional to the electronic density of states, which is
small at low doping. This smallness is reflected in the
large value of parameter jiepn: from the experimentally
measured slope of the linear-in-T resistivity "2 we deduce
teph = 2.7eV; therefore, v < 1 for all experimentally
achievable doping levels.

Coming back to ee scattering, we estimated a crossover
temperature between the two regimes described by
Eq. (6.12) to be around 180 K, which is substantially
higher than the Bloch-Griineisen crossover temperature:
Teee ~ 5—15K for n = 102—10'3 cm™2. Therefore, for
T < Tcra, the electron-electron contribution to the scat-
tering rate is given just by Eq. (3.26). Up to a log, both
the ee scattering rate and the low-T part of the eph scat-
tering rate scale as T*; however, the former is inversely
proportional to p® while the latter is inversely propor-
tional to T < w3. As a result, eph scattering domi-
nates over ee one with a large margin: Tepn/70 ~ 1074
at n =10'2 cm—2.

For T' > Tcpe the competition between ee and
eph scattering mechanisms is more interesting. In this
regime, eph scattering is quasielastic and thus plays the
same role as ei scattering. At sufficiently high T, eph
scattering is stronger than ei one, and one can replace 7;
in Eq. (6.12) by the high-T limit of Eq. (6.13); then

[ S <Teph(T))
TJ (T) 7—eph(T) Toe (T)
Using Eq. (3.31) and the first line of Eq. (6.13), we esti-

mate the crossover temperature between the two regimes
described by Eq. (6.14) as

(6.14)

Tph — (15/27(_3)1/3'”4/3/'“1/3

oy (6.15)

which amounts to T, = 270 — 1300K for n = 10'2 —
103 em™2. For T < Ty, the resistivity varies faster than
T, ie., as T + const x T*InT, goes over a hump at T ~
Ton, and then approaches the linear T-dependence again
for T > Ty (see Fig. 9).

On the experimental side, the resistivity of graphene
at low doping exhibits a crossover from a linear T de-
pendence below 200 K to a superlinear one above 200
K,”®7 while no such a crossover is observed at higher
doping.™ This is consistent with the behavior predicted



by Eq. (6.15), because the crossover temperature in-
creases with n as Tpp o< n2/3. For the lowest n in Ref. 72
(n = 1.36 x 103 cm™2) we find T, ~ 1550 K, which is
well above the highest temperature measured. On the
other hand, T, is within the measurement range for
lower n used in Refs. 78 and 79. A superlinear resistivity
was attributed alternatively to two-phonon scattering by
flexural phonons,”®3 scattering on surface phonons in
the SiO4 substrate,””3! or else to a crossover between
degenerate and non-degenerate regimes in electron scat-
tering by charged impurities.®? We submit, however, that
ee scattering may also provide a plausible explanation of
the superlinear scaling.

p(T)

1 T/Tpn

Figure 9. A sketch of the temperature dependence of the
dc resistivity (in a.u) of doped graphene in the presence of
quasielastic electron-phonon scattering and electron-electron
scattering. The temperature is normalized to crossover tem-
perature Tpn, defined by Eq. (6.15). The straight dashed line
is a pure electron-phonon contribution with a slope deduced
from the experiment.”

VII. CONCLUSIONS

In this paper, we have studied the effect of electron-
electron (ee) interaction on the optical and de conductiv-
ity of a non-Galilean—invariant but isotropic Fermi lig-
uid (FL), focusing primarily on one representative exam-
ple: a Dirac Fermi liquid (DFL). We studied a model of
doped monolayer graphene with two inequivalent valleys
at K4 points and considered both intra- and inter-valley
ee scattering. If trigonal warping of Fermi contours is
neglected, the valleys became degenerate. We showed
that the leading contribution to the optical conductivity
comes from processes with small momentum transfers,
@ < kp. In this case, the intra- and inter-valley in-
teractions contribute equally, and the current relaxation
rate acquires a universal form, reproduced below for the
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reader’s convenience:
A
max{|wl|, T}’
(7.1)

1/7; o (w? 4+ 47*T?) (3w® + 87°T?) In

This form replaces the universal Gurzhi form for a
conventional FL, Eq. (1.1). In 2D, Eq. (7.1) form is
universal-it is valid for form of interaction (as long as
it is finite at @ — 0 and vanishes at ) — o) and for any
isotropic but non-parabolic dispersion, rather than only
for a Dirac one. The quartic (as opposed to quadratic)
scaling reflects the fact that the interaction between elec-
trons on an isotropic Fermi surface (F'S) does not relax
the current, and one need to invoke the states close to
but away from the FS.

Weak anisotropy due to trigonal warping breaks the
valley degeneracy, and inter-valley scattering give rises
to a Gurzhi-like contribution to the current relaxation
rate. Although this contribution scales as max{w?, T2},
it comes with a small prefactor proportional to doping,
and thus competes with a quartic, DFL contribution.

Equation (7.1) is valid only for w > 1/7,(0,T) and
cannot be extended to the static limit. In the absence of
other current-relaxing processes, 1/7;(w — 0,T) is given
by the sum of delta function at w = 0 and a regular part
in Eq. (7.1) at w = 0. This form is characteristic for any
non-Galilean invariant system, which has finite optical
conductivity due to ee interactions at finite frequency
but infinite dc conductivity.

We also studied the interplay between -electron-
impurity (ef) and electron-electron (ee) scattering via a
semi-classical Boltzmann equation. If ee scattering is less
frequent than ei one, the Mathiessen rule is satisfied, in
a sense that the total current relaxation rate is the sum
of the impurity one and the quartic correction due to ee
interaction. However, this is not true if the two rates
are comparable. In the opposite limit of more frequent
ee scattering, the optical conductivity can be written as
the sum of two Drude peaks, with widths given by the
et and ee relaxation rates, respectively. This result can
also be extended to the dc limit, where the resistivity
approaches the residual value for temperatures both be-
low and above a crossover temperature, 7;, at which the
et and ee current relaxation rates are equal. In between
the two limits, the resistivity varies non-monotonically
with T, exhibiting a maximum at T ~ T}, see Fig. 4.
For T' <« T}, the total relaxation rate is the sum of the
et and ee contributions. However, our estimates show
that such a non-monotonic behavior would be masked
by inelastic electron-phonon eph scattering for T' below
the Bloch-Griineisen temperature, Tgg. For T > Tpq,
el scattering is replaced by quasielastic eph scattering.
In this case, the resistivity increases faster than T for T
below a crossover temperature, Tcph, exhibits a hump at
T ~ Teph, and then approaches a linear behavior again,
see Fig. 9.

We also have studied the dynamical charge response of
doped graphene, at 7' = 0 and in the absence of disor-



der, to one-loop order in a dynamically screened Coulomb
interaction. We showed the imaginary part of the (ir-
reducible) charge susceptibility scales Imyi*(q,w) oc
®wln|w| outside the particle-hole continua, i.e., for
vpqg € w K vpk K p. This scaling is a direct conse-
quence of broken Galilean invariance in graphene, which
implies that the current is not conserved. We verified
that our results for Reo(w, T = 0) and Imy'*(q,w) sat-
isfy the Einstein relation. The plasmon damping rate is
proportional to ¢% in a DFL, which is same as in Galilean-
invariant FL.

Towards the end, we discussed the optical conductiv-
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ity for a number of related systems: 3D Dirac/Weyl
fermions, bilayer graphene, and the surface state of a
3D topological insulator, as well as and the implications
of our results for the existing and future experiments.
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Appendix A: Optical conductivity at finite 7' and w from the Kubo formula

In this section, we derive a general expression for the optical conductivity in a uniform electric field, and at finite
temperature and frequency, to lowest order in electron-electron interaction, Eq. (3.7) of the main text. We adopt
the formalism used by Rosch® to find the optical conductivity at zero temperature, using the Kubo formula and
Heisenberg equation of motion. The Kubo formula reads

[Hem(q, w) + 1G0T (A1)

E\@

Ufm,(qv w)

where

em(q,w) = *i/oo dte =0 (t — t')([J} (a,1), Jm(a,t')])

—0o0

“i [ e @0, Infa,0) (42)

is the current-current correlation function and angular brackets denote averaging over thermal distribution.®? Next,

I1dia is the diamagnetic part of the conductivity. Because Gauge invariance guarantees that I1¢2 = Iy, (q = 0,w —
0) (Ref. 44), an explicit form of II$# is not needed.

For a homogeneous time varying ﬁeld q =0 and Iy, (w) =

Mgy () = —i / dte ! ([ Te(t), T (O))). (A3)

T4, (0, w) becomes

Integrating by parts and using the Heisenberg equation of motion dJ/dt = —i[J(¢), H] along with the cyclic property

of a trace, we rewrite Iy, (w) as

Mo () = = (19e(0), T (O o
-1 e ). ), (A1)
where H is the total Hamiltonian. One more integration by parts leads to
WQHém(w) = _<[J€(0)7Km(0)]> - <[K€(t)aKm(0)]>wa (A5)
where K(t) = [J(¢), H] and (Ky(t), K (0))o, = —i [, dte™([[Jo(t), H], [Jm(0), H]]). Because the first term in the

equation above is purely real, the real part of the optical conductivity is given by
1
Reopm (w,T) = EIm([Kg(t)7 K (0)])ew. (A6)

The Hamiltonian of the system is given by

H= Z€§k5a§ks cks+ Z Z ZUO k —Kk'|)a ck’scpS’a’

cks ss’ kpk/p’ ss’

w0 0K +p —k—p), (A7)
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where ¢ is the valley index. For the case of graphene, ¢ = £ denote the two Dirac points K.. For a density-density
interaction, such the one in the equation above, the q = 0 current operator is

_ 1
J=e) veral o (A8)
cks

where v¢ x = Ve ks is the group velocity. Correspondingly, K(t) is given by
K(t) = [J(t), H]
e
= § Z Z Z U0(|k - k/|) (V§,k' +Vep = Vek — V§';P> az,k’,saz’,p’,s’aq’,p,s’cg,k,s(s(k/ + p/ —k— p)(Ag)

¢’ kpk/p’ ss’

and its correlator by

2 o0
_ .€ Twt
(0. KO = =i [ 3550 Yy
S1615264 s187 5255 kip1k|p) kapaok)p)
¢ ¢ ¢ ¢
X (vil,k’l + UCLP& TGk T ’UC{,IM) (vg,k’z + UZZP/Z - /UZZJQ - v:z,Pz)
x Un([k1 — k) Uo (ka2 — k5[)d(ky + Py — ki — p1)d(K; + ph — ko — p2)
T T T T
X0 gy (D0 ot (D oy (D0, 1y o, (500, 1, (D)0 oy o (O)argy o (O)ry s, o, (O)])-
(A10)
Since ([K(t), Kn(0)])w is already quadratic in the interaction, to lowest order the expectation value of the commutator
above can be calculated for free fermions. Using the time dependence of the operators, ok s(t) = ac ks "k the
integration over time can be done easily. The thermal average of the commutator is evaluated by applying Wick’s

theorem and using that np(ec k) = <ai k.s% 1) is the Fermi function. Taking the imaginary part of the correlation
function, we finally arrive at

27T62(1 — e—,@w) L 14 14 14 m m m m
RGJZm(WaT) = T Z Z (vc,k/ + Verp' —Vsk — UC’,p) (vg,k’ + 0 o — U — v§’7p) (A]_l)
ss’ kpk’p’
U -k
< i~ ) [t - ) g0 2B ZKD

X nF(Ec,k’)nF(ec’,p’)[l - nF(Gc,k)][l - nF(QGp)M(‘*’ + € p T €k — €k — 5@’,p)5(kl +p —k-— p)

here for each ¢ = 4+ we get all possibilities of intra and inter-valley scattering processes. For an isotropic system, the
equation above is reduced to Eq. (3.7) of the main text.

Appendix B: Integral over energies
The integrals over energies in Eq. (3.17) is given by
I= /dek/dep /dQ [(29 +w)? + w2] nr(ex + Qnp(ep —w — Q) [1 — np(ex)] [1 — nrep)], (B1)

Introducing dimensionless variables, x = ex /T,y = €p/T,a = Q/T, and b = w/T, we obtain

I=7°[ d d da [(2a + b)? + b?] - € . B2
\/700 z[m y[m a[@a+b)+ ]ew+1ey+1)€“+”+1ey‘“—b+l (B2)

> > > 11 1 1
I:T5b/ d/ d/ da [(2a + b)? + b? B3
¢ 0 “ 0 Y a[(a+ b7+ ]u—&—lv—I—le—“—&—ue’”‘b—&—zﬂ (B3)

i i 1 1 1 1 1 1
=T%" [ d d da [(2a 4 b)* + b? - - :
¢ 0 u/o v[m a[(a+ 07+ ]e—“—1<u—|—1 e_a+u)ea+b—1(v+1 e‘”’b—l—v)
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Integration over u and v leads to
I = —T5€b /OO daa’(a’ + b)(<2a + b)2 + b2)
(em@ —1)(eatb —1) 7’
5 (30° +20m26% + 327%b)  b(b? + 47%)(3b? + 87)
B 15(1 — e~b) B 15(1 —e~?) ’

— 00

which is Eq. (3.17) of the main text.

Appendix C: Optical conductivity from intervalley scattering

In this Appendix, we present the derivation of Eq. (3.23) for the contribution to the optical conductivity from
intervalley scattering. With trigonal warping of the isoenergetic contours taken account according to Egs. (2.9a-2.9¢),
the group velocity in Cartesian coordinates is given by

Vek = Vi€ k = VE + VEXV, (C1)
where
VD = %D (ko + kyi)
cupa [ (2k% +3k2k2 — 3k2) kK, (Tk2 + 3k2)
VEXV: 1 ( k3y Yog — Y & Y4 1. (C2)

A change in the velocity due to an ee collision can be written as

Vik-Q+VopiqQ—Vik—V_p=AvP +AvIWV,
(C3)

where AvP and AvT™ are due to the Dirac and trigonal-warping parts of the velocity, respectively. To leading order
in kpa < 1, one can take the dispersion to be isotropic everywhere else in Eq. (3.21) and drop the valley index.
Accordingly, the contour integrals are replaced by § dfx/vk = (kr/(27vp)) [ dfkq. Next, for electrons on the FS one
can drop w in the §—functions. Then the kinematics constraints on the angles are still fkq = £7/2 and 0pq = £7/2.
Finally, for small angle scattering Av can be expanded in Q as

AVIY = —(Q- Vi) VY +(Q- Vvl = —(Q- VivEY - (@ Vo )vIY. (C4)

Since an electron pair with opposite velocities carries zero current both before and after the collision, Cooper channel
should not contribute to current relaxation. Indeed, because vg\ivk = VZXV, it follows that Av™W = 0 for the Cooper
channel (p = —k), and we need to consider only the collinear channel (p = k). Using 0x = 0xq+0q with fxq = £7/2,

we obtain in polar coordinates

AvTW = ’UD(k/’FCL)kQ (3 cos(30q )k — 7sin(39Q)ék) .
F

(C5)
Equation (3.21) is then reduced to
: N2 d’Q 1
inter — 2 F _ —Pw TW\2772
Reo (w,T)=¢e P (1—e )/ e (Av-"M)*U=(Q) 02
X /dek/dep/dﬂnp(ek + Q)’I”LF(EP -0 - w) []. — np(ek)] [1 — nF(ep)] R (CG)
Averaging (AVTW)2 over Oq yields
27
/ P9 (Av™)? = 20(0p Qa2 (C7)
o 2

The integral over @ is solved to leading log order as

K

[ QU@ = (2ret1n ke, (C8)
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while the energy integrals in Eq. (C6) give

/dek/dep/dQ x np(ex + Q)np(ep — Q2 — w)(1 — np(ex)) (1 — nr(ep))

 w(w?® +47?T?)
6(1 —eBw)

Collecting everything together, we obtain the result in Eq. (3.23) of the main text.

Appendix D: Charge susceptibility
1. Self-energy and exchange diagram for the irreducible charge susceptibility

In this section, we calculate the sum of diagrams a and b (“self-energy”), and ¢ (”exchange”) in Fig. 5 for doped
monolayer graphene. For w < 2pu, inter-band transitions are neglected and the system is effectively reduced to a
single-band one. Also, the matrix elements in the Green functions for doped graphene can be replaced by unities in
the forward-scattering limit. Under these approximations, the sum of the three diagrams can be written as®®

dP dedeen € —€x — € + € 2
Al - / oo rmeereree
(iwm — €k+Qtq T €k+Q)? (IWm — €ktq + €k)
Gk, e,) — G(k + A+ wm)][Gk+Q,en + ) — Gk + Q+q,en + U +wm).  (D1)

We will be interested in long-wavelength excitation with momenta ¢ < w/vp < kp. In this case, the denominators
in the fraction in the first line of Eq. (D1) can be replaced by iw,,. Also, typical momentum transfers are assumed
to be much smaller than kp. Therefore, the single-particle dispersion in the numerator of the same fraction can be
expanded both in ¢ and Q. For a Dirac dispersion, the leading-order term in this expansion reads

qQup

€k+q — €k — €k+Q+q T €k+Q = — . sin 0 sin ¢’ (D2)

where 6 and 0" are the angles that q and Q make with k, respectively. With these simplifications, Eq. (D1) is reduced

to
& d?kdszdn o
w4 k2 //// Q L UQ, Ql)(quD31n981n0’)2

x [Gk,en) =G k+q,6n+wm)}[ (k+Q,en+ Q) —Gk+Q+qen + U +wn).  (D3)

(S, E)(

Xe q, wm =

Next, we integrate the products of the Green’s functions in the equation above first over ¢,,, and then over e, and 6,
and neglect ¢ compared to ) in the final result. This gives

; 2,2 3
(S.E) _ _iNwqovp / QdQ [ d ;5
Xe (q7 Wm) Zk%wfn ot (27‘(‘) (Qa l)
d9’ 2Q Q m Q - Wm
X — sin® ¢’ L - L ~ - L —Wm (D4)
2m i€ —upk - Q Z(Ql +wm) —vpk - Q Z(Ql 7wm) —wpk - Q
where Nr is the density of states. Now we integrate over #’, using
2w 2
dr sin“x
P Y iy — 241 D5
/0 DT — i(y — sgnyv'y? + 1), (D5)
to get
Neg?v Q3*dQ [ dQ
(S,E) _ _rqvp l Q0 D6
Xe (qa wm) 2k%w$n / o (2 ) (Q l) ( )

X é {2w,2n +2|[1/QF + (vpQ)% — | + Wi |V (U + wm)? + (v Q)2 — | — win|[V/ (U — wim)? + (vp Q)2

Now we will simplify the form of the interaction potential. First, we notice that a static interaction cannot give rise
to a finite imaginary part of the susceptibility outside the particle-hole continuum. Therefore, we can subtract off a
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static screened Coulomb potential from the dynamical one in Eq. (D6). Next, we assume first and verify thereafter,
that typical @ are such that ) < vp@. Then the difference of the dynamical and static screened Coulomb potentials
can be expanded in x = Q; K vpQ as

Uayn(Q, ) = U(Q, ) — U(Q,0) = NiFa%c (I4+az+ (a®—1/2)2" +...), (D7)

where a = 1/(Q + x). We see later on that an expansion above does need to go to order x3, which is usually neglected
for a conventional FL.
Next we integrate over €; in Eq.(D6) to obtain

A
/dQlUdyn(Q7 ) = 2UDQa2 dzz [1+ azx + (a® — 1/2)2”]
Nrp 0
2 2 )2
x {2y2+2m <1+202) —(z+vy) <1+(x—;y)> — |z —y] <1+($2y))]
- _gvDQazy?’ - %UDQa‘lys +Z(A) +O(y*) + Oy") ..., (D8)

where y = wy,, /vp@ > 0, Z(A) is some function of the upper cutoff, which is irrelevant in what follows. Terms of the
order O(y?,y..) do not contribute to Imy, and are omitted. Finally, the remaining integral over Q reads

* l2 ¢’ /AQ dQQ | 1¢°wnk> /°° dQ 1
o \

(S,E) _ I g
Xe (qa wm) 7721)]23 3w Q + K)Q 5 v]2) )

Wm |/vD Q (Q + 5)4

(D9)

where A is some upper cutoff. We will complete the integral over @ after combining Eq. (D9) with a contribution
from the AL diagrams. Then it will be seen that the first term in Eq. (D9) cancels out and, therefore, a choice of Ag
is irrelevant.

2. Aslamazov-Larkin diagrams

In this section, we evaluate the contribution of AL diagrams, e and fin Fig. 5 The sum of the two diagrams can be
written as

6X?L(qa wm) = (N€N1))2 /Q 0 [TQ(Q7qa Ql;wnl) + ‘T(Q7q7 Ql7wm)|2]U(Qa QZ)U(Q —q, Ql - an)? (DIO)

where N, and N, are the spin and valley degeneracies, respectively, and

T(Q.a, Y, wi) = Gk, en)G(k+q,en +win)Gk+ Q,en + ) (D11)
k,en
is a “triangular” part of the diagram. The combination 72+ |7 |? can be identically re-written as 2Re7?2 +2iReT ImT .
Because any physical susceptibility is purely real on the Matsubara axis, the imaginary part of 72+ |7|? must vanish
upon integrations and thus can be omitted. Therefore, we need to find only Re7. We begin by integrating over ¢,, to
obtain

1 Nk — M+ Q Nk+q ~ Mk+Q

T(Qa q, Qhw’rn) /k iy — flerq T e |:ZQl i + ek ’L(Ql _ wm) — rq T flrq . (D12)
From this point on, the calculation proceeds along a different route compared to the one for the self-energy and
exchange diagrams. Namely, if the single-particle dispersion are expanded to linear order in ¢ and Q, we will get a
zero result for Re7. This is a reflection of a known fact that AL diagrams hinge on violating particle-hole symmetry.5*
To get a non-zero result, we need to keep O(Q?) terms in the dispersion. However, we can ignore O(g?) terms, because q
can be chosen arbitrarily small. For doped graphene, such an expansion amounts to ex+q =~ ex+vi - Q+Q? sin? # /2m*,
where m* = kp/vp and 6 is the angle between Q and k.

Expanding the Fermi functions in Eq. (D12) to order 2, we obtain

1 (vi- Q+ 2?:* sin® 0)(771;{) _ %(Vk . Q)2nﬁ
T(Qaqa Ql7wm) = - : Lo
k Wm — Vk - q i — Vi Q — 52 sin’ 0

[vk (q—Q)+ 2%2* sin? 0} nj — 3(vi - Q)*ny!
i —wm) — vk (q— Q) — Q? <in2g

2m*

(D13)
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It is convenient to separate 7 into two parts as T = T; + T2, where 71 and Tz contain terms proportional to nj and

ny, respectively. At T =0, nj, = —0(ex — ) and nj, = —¢’ (ek — ), so that
§(ex — vi- Q a-Q
ﬂ(Q,q,Qz,wm)=/. (=11 - + - ke la-Q)F - ,
k Wm = Vi q [ — vy - Q i( — wm) —vk-(q— Q) Dy
1 5/(61( — [L)(Vk . Q) |: 1 1 :|
> ,,Q,mzf/ ; , - - : D14
2(Q a4 wm) 2 Jx  iwm—Vk-q i —vie-Q  i( —wm) V- Q+Vvi-q (P19

We neglected the O(Q?) terms in the denominators of both two parts of 75 because 75 is already proportional to Q2.
Now we integrate over € in Eq. (D14) to obtain

R . )
do 1 vpk - Q 4 £ Sin29 ok -
T1(Q,q, 2, wm) = N pk-Q+ 3, . pk-(q—-Q)+ i
2 ity —vpk - q [# — k- Q i( — wim) — vpk - (q — Q) oo sin” §
1 rdo (k- Q) 1 1

E(Q7q7 Ql)wm) =

47T 2w 'me —UDIA{'q

(D15)

i —UDR-Q (U — wm) —leAc-Q+le;-q
Since we are interested in the regime of qup < w, the equations above can be expanded in ¢q. When doing so, we will
be discarding imaginary parts of 77 2 because they must vanish on subsequent integration anyway. The leading-order
results of such an expansion read:

Q2

ReTl(Q»q,Ql»Wm)ZNF2m /Qﬂ_(ka q)sin? 0

y 1 1 B 1 L wkQ vpk - Q
(iwm)Q in - ’UDlA( . Q Z(Ql - wm) - UDIA( . Q (ZQ[ - ’UDIA( . Q)2 (Z(Ql — wm) - ’UDIA{ . Q)2

o )|
iwm \ (i( — wpm) — vk - Q)2 (i(Q — wm) —vpk- Q)3 /) |
RT3 Qo) = = [ S0 (k- a) (- Q)

[t (s o) & ()]
(iwm)? \ i —vpk-Q  i(Y —wm) —vpk-Q ) Wwm \ (i( — wm) — vpk - Q)2

where Np = m* /47 is the density of states per spin and per valley. Now we integrate over 6 (the angle between k
and Q) to obtain

RT(Q 0 O 0m) = e Do (190107 + (0Q) = 190 o /T = T (0@ + (5 = )? = 0 ).
(D17)
Substituting the last result back into Eq. (D10) and rescaling the variables as = ;/vp@ and y = w,, /vp@, we find
N,N,)? d? dx 2me? 2me?
(g = 2 4) / Q2 / —
167m2w?, (2m)

27TQ+”(1_ = )QJFF“( \/JL?LH)
< (a- Q@ (JalV/a 1~ r—yl/(a 9P 11+ (e~ ) —a?) . (D15)

Now we will simplify the last equation assuming that ; ~ w,, < vp@. Our goal is to find the imaginary part of

X' after analytic continuation, while Eq. (D18) is proportional to the even (fourth) power of w,,, which remains real
after analytic continuation. Therefore when expanding the integrand of Eq. (D18) in Q;/vp@ and w,, /vpQ, we need
to keep those terms that will be 1ntegrated into odd powers of w,,. To order w?,, the integral over x is solved as

> 1 K K2 2 2 _
IAL:/Ode((Q+H)2+(Q+/‘0)3(|x|+|x+y|)+@""ﬁ)4(x +(z—y)" +zl|z y|))

2 T — )2 2
x (|x|<1+m —x—y<1+<y)>—2xy+y2)

2 ) 2
2 2k2

=000~ gt O g

(D19)
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where spelled out only the odd in w,, terms. Substituting the y* and y° terms intp Eq. (D18), we get

AL et [2 ¢ /AQ Y /°° dQ 1
o \

wmljop @ (Q+r)H|T (D20)

Xe (q’wm):_ﬂv% 3 Wm Q+rK)?2 5 v}

where we used that Ny = N,, = 2 for graphene.

Now see that the first terms in Eq. (D9) for the self-energy and exchange diagrams and Eq. (D20) cancel each other.
Solving the remaining integral over @ to leading log order and using x = 4m*e?, we obtain the final result:
Pwm UDK

————In—. D21
80722 . |wm| (D21)

irr

Xe' (g, wm) =

Carrying out analytical continuation and taking the imaginary part of the result, we arrive at Eq. (5.7) of the main
text.
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