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COORDINATES ADAPTED TO VECTOR FIELDS II: SHARP RESULTS

By BRIAN STREET

Abstract. Given a finite collection of C'! vector fields on a C? manifold which span the tangent space
at every point, we consider the question of when there is locally a coordinate system in which these
vector fields are €51 for s € (1,00], where €* denotes the Zygmund space of order s. We give
necessary and sufficient, coordinate-free conditions for the existence of such a coordinate system.
Moreover, we present a quantitative study of these coordinate charts. This is the second part in a
three part series of papers. The first part, joint with Stovall, addressed the same question, though
the results were not sharp, and showed how such coordinate charts can be viewed as scaling maps
in sub-Riemannian geometry. When viewed in this light, these results can be seen as strengthening
and generalizing previous works on the quantitative theory of sub-Riemannian geometry, initiated by
Nagel, Stein, and Wainger, and furthered by Tao and Wright, the author, and others. In the third part,
we prove similar results concerning real analyticity.

1. Introduction. Let Xi,..., X, beC ! vector fields on a C'> manifold M,
which span the tangent space at every point of M. For s > 0, let 4° denote the
Zygmund space of order s, and let 4> denote C** (for non-integer s, the Zygmund
space coincides with the classical Holder space—see Section 5.1 for more details
on Zygmund spaces). In this paper, we investigate the following closely related
questions for s € (1,0[:

(i) When is there a coordinate system near a fixed point xo € M such that the
vector fields X,..., X, are €**! in this coordinate system?

(ii) When is there a ©**2 manifold structure on M, compatible with its C?
structure, such that X7,..., X, are & **+! with respect to this structure? When such
a structure exists, we will see it is unique.

(i1i)) When there is a a coordinate system as in (i), how can we pick it so that
X1,..., X, are “normalized” in this coordinate system in a quantitative way which
is useful for applying techniques from analysis?

We present necessary and sufficient conditions for (i) and (ii), and under these
conditions give a quantitative answer to (iii).

The heart of this paper is (iii); (i) and (ii) are simple consequences of our an-
swer to (iii). The first paper in this series, joint with Stovall, [SS18] focused on a
solution to (iii) which “lost one derivative”. In this paper, we take the coordinate
chart developed in [SS18] as a black box, and show how to improve it to give the
sharp result. The methods in [SS18] are based on ODEs, while the methods in this
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paper are based on elliptic PDEs. These PDE methods were inspired by, and are
closely related to, Malgrange’s celebrated proof of the Newlander-Nirenberg theo-
rem [Mal69]. In the third paper in this series, [Str21], we return to ODE methods
to prove analogous results concerning real analyticity.

The coordinate charts developed in (iii) can be viewed as scaling maps in sub-
Riemannian geometry. When viewed in this light, these coordinate charts can be
seen as the latest results on the quantitative theory of sub-Riemannian geometry
which was initiated by Nagel, Stein, and Wainger [NSW85] and C. Fefferman and
Séanchez-Calle [FSC86], and furthered by many others, including Tao and Wright
[TWO3] and the author [Str11]. We refer the reader to [SS18] for how these charts
can be viewed as scaling maps, as well as a more leisurely introduction to the
questions investigated in this paper.

This paper is a continuation of the results in [SS18]. That paper gives several
applications and motivations for the results described here (see, also, Remarks 2.16
and 2.17), and a more leisurely description of some of the main definitions (though
we include all necessary definitions in this paper, so that the statement of the results
is self-contained).

The results in this paper are a key tool in a companion paper where we study
analogous questions regarding complex vector fields [Str20]. When viewed from
the perspective of sub-Riemannian geometry, this companion paper allows us to
create a quantitative theory of sub-Riemannian geometry which is adapted to the
complex structure of a complex manifold. We call this sub-Hermitian geometry;
see [Str20] for more details.

Remark 1.1. The results in this paper may be reminiscent of the celebrated
results of DeTurck and Kazdan [DK81] regarding a coordinate system in which
a Riemnnian metric tensor has optimal regularity—which also used the methods
introduced by Malgrange [Mal69]. However, there does not seem to be a direct
relationship between our results and theirs.

Acknowledgment. This material is partially based upon work supported by the
NSF under grant DMS-1440140 while the author was in residence at the Mathemat-
ical Sciences Research Institute in Berkeley, California, during the spring semester
of 2017.

2. Results. In this section, we present the main results of this paper. In Sec-
tion 5 (also in [SS18, Section 2]), Zygmund spaces are defined, where a distinction
is made between Zygmund spaces on a subset of R", and Zygmund spaces on a
C? manifold M. If Q C R™ is a bounded, connected, open set and s > 0, we write
¢ () for the classical Zygmund space of order s on €2; and for a Banach space
V', we write ’°(€2; V') for the Zygmund space of order s of functions taking values
in V. For a vector field Y = >_%_, aj(t)a%_ on 2, we identify Y with the function
(at,...,an) : 2 — R", so that it makes sense to consider [|Y[|¢s(qrn). We write
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() =420 €*(Q2), which coincides with the space of smooth functions on
Q, all of whose derivatives are bounded on 2. For complete definitions and more
details on €*({2), see Section 5.1.

Fix M a C? manifold with C"! vector fields X7, ... ,Xgon M.On M, we have
the following:

e Bx(x,0): the sub-Riemannian ball of radius § > 0 centered at x € M, in-
duced by X1,...,X,. This is defined by

Bx(l‘,5)

=y €M |3vy:[0,1]=M, v(0)==z, v(1) =y, - is absolutely continuous,
(2.1)

(L]

e p(x,y): the sub-Riemannian distance on A induced by Xj,..., X,—this is
the distance associated to the balls Bx (z,).

q
:Zaj(t)éXj(’y(t) a; € L7([0,1])
j=1

(2.2) p(z,y):==inf{6 > 0:y € Bx(z,9)}.

In general, p is merely an extended metric (p may take the value ). However, if
X1,..., X, span the tangent space at every point and M is connected, then p is a
metric—this is the setting we are most interested in.

o C'"°(M): the scale of Holder spaces on M, for m € N, s € [0,1], with
respect to X,...,X,. Here, and in the rest of the paper, we use the convention
0eN.

e ¢ (M): the Zygmund space of order s € (0,0 on M, with respect to
Xy, Xy

Definitions of C'{"*(M) and €5 (M) are given in Section 5.2, and we refer the
reader to [SS18] for more leisurely discussion of these spaces. We remark that the
Banach spaces C'y"*(M) and €5 (M) are defined in such a way that their norms
are invariant under C? diffeomorphisms. More precisely, if ¥ : N — M is a C?
diffeomorphism, then

(2.3) I llegsary = 197 fllezs vy, IS

\IJ*X

ey o) = V" Fllgs, . (v)-

Remark 2.1. (2.3) can be interpreted as saying the norms || f ||CQS(M) and

If
computed in any C? coordinate system, and the answer is independent of the
chosen coordinate system. Moreover, it makes sense to talk about, for example,
C3(M)=,, C;?’O(M), even if M is merely a C? manifold, and X1,..., X, are
C! vector fields on M.

¢ (M) are “coordinate-free.” In practice, this means that these norms can be
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Throughout the paper, if we say | f{|¢ (1) < e we mean f € €% (M) and the
norm is finite, and similarly for any other function spaces.

2.1. Qualitative results. Let Xi,...,X,beC ! vector fields on a C'> mani-
fold 9. For x,y € M, let p(x,y) denote the sub-Riemannian distance associated to
Xi,...,XqonMdefined in (2.2). Fix zg € M and let Z := {y € M : p(x0,y) <oo}.
p is a metric on Z, and we give Z the topology induced by p (this is finer than the
topology as a subspace of ), and may be strictly finer—see [SS18, Lemma A.1]
for details). Let M C Z be a connected open subset of Z containing x. We give M
the topology of a subspace of Z. We begin with a classical result to set the stage.

PROPOSITION 2.2. Suppose [X;, X;|=>"1_, cf;ij, where cf;j : M — Rare
locally bounded. Then, there is a C* manifold structure on M (compatible with its
topology) such that:

e The inclusion M — O is a C? injective immersion.

e Xi,...,X, are C! vector fields tangent to M.

o Xy,..., X, span the tangent space at every point of M.

Furthermore, this C? structure is unique in the sense that if M is given another
C? structure (compatible with its topology) such that the inclusion map M — I
is a C? injective immersion, then the identity map M — M is a C? diffeomorphism
between these two structures.

For a proof of Proposition 2.2, see [SS18, Appendix A]. Henceforth, we as-
sume the conditions of Proposition 2.2 so that M is a C? manifold and X1, ... , Xg
are C'! vector fields on M which span the tangent space at every point. We write
n = dimspan{ X, (zo),...,X,(zo)} so that dim M = n.

Remark 2.3. If X (z9),...,Xq(xo) span T, 9, then M is an open subman-
ifold of M. If Xy,..., X, span the tangent space at every point of 91 and 901 is
connected, one may take M = 1.

THEOREM 2.4. (The local theorem) For s € (1,e], the following three condi-
tions are equivalent:
(i) There is an open neighborhood V- C M of x¢ and a C* diffeomorphism
®:U — V where U CR" is open, such that ®*X,...,®* X, € €*T(U;R").
(ii) Re-order the vector fields so that X|(x),..., Xy (xo) are linearly inde-
pendent. There is an open neighborhood V- C M of xq such that:
o [ X, X,l=>"0, éﬁij, 1 <1i,5 <n, where éfj eey(V).
o Forn+1<j<q X;=>}_, bek, where bé‘? € %j?“(V).
(iii) There exists an open neighborhood V- C M of xo such that [ X;, X;| =
zzzlc’?ij, 1 <i,j <q, where cf;j ey (V).

2,

Remark 2.5. (ii) and (iii) of Theorem 2.4 are similar but have slightly different
advantages. In (ii), because X1,..., X, form a basis for the tangent space of M
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near xg, the functions éf ; and b;‘? are uniquely determined (so long as V' is chosen
sufficiently small). Moreover, one can directly check to see if (ii) holds by com-
puting these functions. In light of Remark 2.1, this computation can be done in any
C? coordinate system. If ¢ > n, X1, ... , X4 are linearly dependent, and the cﬁ ; in
(iii) are not uniquely determined; (iii) only asks that there exist a choice of cf’ ; sat-
isfying the conditions in (iii). Despite this lack of uniqueness, in many applications
it is more convenient to use the setting in (iii) (see, for example, the application of
the quantitative results in [SS18, Section 7.1.1]).

Remark 2.6. Theorem 2.4 is stated for s € (1,eo]. It would be nice to obtain the
same result for s € (0,0, however to do this with the methods of this paper, if it
is even possible, would require a more technical analysis of the PDEs which arise.
See Remark 6.10 for more details. Similar remarks hold for the other main results
of this paper.

THEOREM 2.7. (The global theorem) For s € (1,e0], the following three con-
ditions are equivalent:

(i) There exists a €°* atlas on M, compatible with its C? structure, such that
Xi,..., X, are €571 with respect to this atlas.

(ii) For each xo € M, any of the three equivalent conditions from Theorem 2.4
holds for this choice of x.

(i) [Xi, X5) = Y0 ¢ j Xp, 1 <i,j < g, where Vag € M, 3V C M open
with xo € V such that cf’j v ECR(V), 1<i,5,k<q

Furthermore, under these conditions, the €5 manifold structure on M in-
duced by the atlas from (i) is unique, in the sense that if there is another €2
atlas on M, compatible with its C* structure, and such that X 1y, Xg are ¢t
with respect to this second atlas, then the identity map M — M is a €+ diffeo-
morphism between these two €2 manifold structures on M. See Section 5.4 for
formal definitions regarding €°* manifolds.

Remark 2.8. As a corollary, we obtain results similar to Theorems 2.4 and 2.7
with the Zygmund spaces ¢ replaced by the easier to understand Holder spaces
C™-*, with the restriction that s € (0, 1). For details, see Section 7.

Remark 2.9. The reader only wishing to understand proof of the above quali-
tative results, and not the more technical quantitative results, may wish to skip to
the proof outline presented in Section 3.

2.2. Quantitative results. Theorem 2.4 gives necessary and sufficient con-
ditions for a certain type of coordinate chart to exist. For applications in analysis,
it is essential to have quantitative control of this coordinate chart and the quanti-
tative control we obtain will be invariant under arbitrary C? diffeomorphisms; see
Remark 2.15. By using this quantitative control, these charts can be seen as gen-
eralized scaling maps in sub-Riemannian geometry—see [SS18, Section 7] and
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Remarks 2.16 and 2.17 for more details on this and other applications. We now
turn to these quantitative results, which are the heart of this paper. Because the
goal is to keep track of what each constant depends on, this is somewhat technical.
To ease notation, we introduce various notions of “admissible constants”; these
are constants which depend only on certain parameters. While these definitions
are somewhat unwieldy, they greatly simplify the statement of results and proofs
throughout the paper.

Let Xi,...,X,be C !'vector fields on a C? manifold 9t. Throughout the paper,
B™(n) denotes the Euclidean ball of radius n > 0 centered at 0 € R™.

Definition 2.10. For x € M, n > 0,and U C M, we say the list X = X1,..., X,
satisfies C(xg,n,U) if for every a € B%(n) the expression

e XittagXg

exists in U. More precisely, consider the differential equation

%E(r) =a1 X (E(r)) —I—'-'—I—aqu(E(r)), E(0) = xo.

We assume that a solution to this differential equation existsuptor =1, E': [0,1] —
U.We have E(r) = era1Xit-+raqXq g0

For1 <n <gq, we let

Z(n,q) —{(11,22, )1 ) i; € {1,. ..,q}}:{l,...,q}”.

For J = (j1,...,jn) € Z(n,q) we write X ; for the list of vector fields X, ,..., X
We write /\XJ =X NANXpA N

Fix zo € M and let n := dimspan{ X (z),...,X,(z0)}. Fix {,{ € (0,1]. We
assume that on By (x¢,§), the X;’s satisfy

n*

X],Xk ZC]le, Cé»,kEC(Bx(IL’(),f)),

where Bx (x¢,€) is given the metric topology induced by p from (2.2). Proposi-
tion 2.2 applies to show that By (,) is an n-dimensional, C?, injectively im-
mersed submanifold of M. X1,..., X, are C ! vector fields on Bx (z¢,&) and span
the tangent space at every point. Henceforth, we treat X1,..., X, as vector fields
on Bx (x,&).

Let Jy € Z(n,q) be such that A X j,(x¢) # 0 and moreover

A X (o)

—1
A | =<

(2.4) max
JeZ(n,q)
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where % is defined as follows. Let A : \" T, Bx (x¢,£) — R be any nonzero
0

linear functional; then

AXi(xo) _ AMAXs(20))
AXp(@o)  AMAXy(20)

Because \" T, Bx (z0,&) is one dimensional, (2.5) is independent of the choice
of A; see [SS18, Section 5] for more details. Note that a Jy € Z(n,q) satisfying
(2.4) always exists—one can pick Jy so that (2.4) holds with ( = 1; however, it
is important for some applications to have the flexibility to choose ¢ < 1 (this
is needed, for example, in [Str20]). Without loss of generality, reorder the vector
fields so that Jo = (1,...,n).

e Let > 0 be such that X, satisfies C(zo,n, ).

e Let dy > 0 be such that for § € (0, ] the following holds: if z € Bx, (z0,¢)
is such that X, satisfies C(z,d, Bx, (20,§)) and if ¢ € B"(d) is such that
e X1t FtnXny — 2 and if X|(2),..., X, (2) are linearly independent, then ¢ = 0.

(2.5)

Remark 2.11. Because X1,..., X, are C', such an n > 0 and &g > 0 always
exist; see Lemma 6.12 and Remark 6.13. However, in general one can only guar-
antee that 7, d are small in terms of the C'' norms of X7,...,X,, in some coor-
dinate system—and this is not a diffeomorphic invariant quantity. Thus, we state
our results in terms of dy an 7 to preserve the diffeomorphic invariance. See [SS18,
Section 4.1] for more details on 7 and dy.

Definition 2.12. We say C' is a 0-admissible constant if C' can be chosen to
depend only on upper bounds for ¢, (7!, ¢!, and Hcé ke, @og) 1 <5k
El 0 ?
q.

For the remainder of this section, fix so > 1. The results which follow depend
on this choice of sg, and are stronger as sg approaches 1.

Definition 2.13. For s > sy, if we say C'is an {s}-admissible constant, it means
that we assume cg x €Cx, (BXJ0 (20,€)) for 1 < j,k,1 < q. C is then allowed to
’ 0
depend on s, sg, lower bounds > 0 for (, &, n, and &y, and upper bounds for ¢
l . . .
and ||c; 43, (Bx gy @6) 1 < j,k,l <gq. For s < s9, we define {s}-admissible

constants to be {s¢ }-admissible constants.

We write A Sy B for A < OB where C'is a positive {s}-admissible constant.
We write A~y B for A <rgy B and B S,y A. Similarly we define 5o and ~
for the same comparisons with 0-admissible constants in place of {s}-admissible
constants.

THEOREM 2.14. (The quantitative theorem) There exists a 0-admissible con-
stant x € (0,&] such that:

(@) Vy € Bx,, (10.x). A X () #0.
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(b) Vy € Bx, (z0,X).

AXs(y)

——" x5 1.
/\XJO (y) ‘

(©) VX' € (0,x], Bx,, (x0,X") is an open subset of Bx (x¢,£) and is therefore
a submanifold.

For the rest of the theorem, we assume c;k € ‘5;0]0 (Bx,, (20,€)), for 1 <

sup
JeZ(n,q)

3,k,1 < q. There exists a C* map ® : B™(1) — Bx,, (z0,x) and {s}-admissible
constants £1,&, > 0 such that:

(d) ®(B"(1)) is an open subset of Bx ; (xo,X), and is therefore a submanifold
of Bx (o,§).

(e) ®: B"(1) — ®(B™(1)) is a C? diffeomorphism.

() Bx(0,62) C Bx, (0,61) € B(B™(1)) C B (10,€).

(g) (0) = 0.

LetY; = ®* X and let M"*™ denote the Banach space of n x n real matrices
endowed with the operator norm. There exists an {s}-admissible K > 1 and a
matrix A € €°(B™(1); M"™™") such that:

(h) Y, = K(I + A)V, where V denotes the gradient in R" (thought of as a
column vector) and we are identifying Yy, with the column vector of vector fields
V1,Y5,...,Y,]".

(i) A(0) =0 and supycgn(y) [|A(H)|[pgn < 3.

() Fors>0,1<j<q,

(2.6) 1Y

@51 (Br(1)R) S{s} -

(k) We have the following equivalence of norms, for f € C(B"(1)), s >0,

I/

@s(Bn(1)) ~s—2} |If %3, (B (1) P52} 1 flles Bn(1))-

() For f € C(Bx, (%0,x)), s >0,
1fo@llgs(Br1)) Sgs—23 \|f\|<g§J0(BXJO (0.:X))"

Remark 2.15. The main results of this paper (including Theorem 2.14) are in-
variant under arbitrary C? diffeomorphisms. This is true quantitatively—all of the
estimates are unchanged when pushed forward under an arbitrary C? diffeomor-
phism; this is a consequence of (2.3). More precisely, take 9t and X1,..., X, as
above. Let IV be another C? manifold and let U : M — N be a C? diffeomorphism.
Then, X1,..., X satisfy the hypotheses of Theorem 2.14 at the base point x if and
only if ¥, X,..., ¥, X, satisfy them at ¥(x(). Moreover, admissible constants (of
any kind) when defined in terms of Xj,..., X, are the same as admissible con-
stants when defined in terms of W, X7,..., ¥, X,. Also, if ¢ is the map guaranteed
by Theorem 2.14 when applied to X1,..., X, at the point z(, then W o ® is the map
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guaranteed by Theorem 2.14 when applied to ¥, X,..., ¥, X, at the point ¥ (z)
(as can be checked by tracing through the proof). Thus, the conclusions of Theo-
rem 2.14 (and the other main results of this paper) remain completely unchanged
when the setting is pushed forward under a C? diffeomorphsim. See [SS18] for
more details.

Remark 2.16. As mentioned before, [SS18, Section 7] contains several appli-
cations for results like Theorems 2.14 and 2.21. Many of the applications in [SS18,
Section 7] provide results in an infinitely smooth setting. By using the results in
this paper (e.g., Theorem 2.14) in place of the corresponding results in [SS18] one
can immediately obtain analogous results regarding a finite level of smoothness us-
ing the same proofs, which are in many ways sharp. This sharpness may be useful
when studying certain non-linear PDEs defined by vector fields—where the vector
fields may be defined in terms of the solution to the PDE and one does not have a
priori access to smoothness estimates.

Remark 2.17. In Theorems 2.14 and 2.21 we have been explicit about what
each constant depends on (by using the various kinds of admissible constants). In
applications, what turns out to be important is what the constants do not depend
on. Two simple examples of how this can work are as follows:

e We describe the setting of the foundational work of Nagel, Stein, and
Wainger [NSW85]. Let Z1,...,Z, be smooth vector fields on a smooth manifold
M, where each vector field Z; is paired with a formal degree d; € [1,0). Suppose,
for1 <j,k <gq,

(Z;,21) = Z Cé;k;Zl, C§'7k€<gl:c(M)'
dy<dj-+dy,

Set X ;5 =% Z;. Then it easy easy to see that X LI ,Xg satisfy the hypotheses
of Theorem 2.14 uniformly in § € (0, 1] and uniformly as the base point x( ranges
over compact subsets of M. Thus, the conclusions of Theorem 2.14 hold uniformly
in the same way; i.e., the various kinds of admissible constants can be chosen
independent of ¢ € (0,1] and z (as o ranges over a compact set). See [SS18,
Section 7.1] for more details on this application. One can proceed more generally
by letting the X ]‘5 depend on § in a more complicated way; see [SS18, Section 7.3].

o Let Xy,...,X, be C” vector fields on a smooth manifold M. Suppose
(X5, Xk =20, Cé’,le’ where Cé’,k € 6>.(M). The classical Frobenius theorem
applies to foliate M into leaves. This may be a singular foliation: the dimension
of the leaves might not be constant. The classical proofs of the Frobenius theorem
give coordinate charts which define these leaves; however these coordinate charts
“blow-up” as one approaches a singular point (i.e., a point where the dimension of
the leaves is not constant on any neighborhood of the point). The quantitative na-
ture of Theorem 2.14 shows that it gives coordinate charts that avoid this blow-up
in a certain sense. See [Str20] for a detailed discussion of this.
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The above two examples work with C* vector fields, however (as in Re-
mark 2.16) it is straightforward to work with C'! vector fields and instead assume
the hypotheses of Theorem 2.14 hold uniformly in the relevant parameters. This
allows one to obtain results which are in many ways sharp in terms of regularity.
We leave further details to the reader.

2.2.1. Densities. Let x € (0,£] be as in Theorem 2.14. In many applications
(e.g., [SS18, Section 7.1]), one is given a density on BXJO (0, x) and it is of interest
to measure certain sets with respect to this density. For a quick introduction to the
basics of densities, we refer the reader to [GuiO8] (see also [NicO7] where densities
are called 1-densities).

Let v be a C'! density on Bx,, (z0,x)- Suppose

EXjV:ija ISJSTL, ijC(BXJO(m()aX))J

where Lx; denotes the Lie derivative with respect to X ;. Our goal is to understand
®*v and v(Bx (x0,&2)), where ® and &, are as in Theorem 2.14.

Remark 2.18. Recall, in Theorem 2.14 we fixed some sy > 1 and all of the
estimates in Theorem 2.14 were in terms of this fixed sg. Similarly, all of the results
in this section depend on this fixed choice of s.

Definition 2.19. If we say C'is a [so;v]|-admissible constant, it means that C'
is a {so }-admissible constant which is also allowed to depend on upper bounds for

fillows, @, 1 <5 <n.

Definition 2.20. For s € (0,0), if we say C is an {s;v }-admissible constant, it
means that we assume f; € ‘5)8% (Bx,, (z0,x)), and C'is a {s}-admissible constant
1<

which is also allowed to depend on upper bounds for || fjH(g)S(JO (B (20,X))"

j < n. For s <0, we define {s;r}-admissible constants to be [so;r]-admissible
constants.

We write A Sy, B for A < CB where C' is a positive {s;v}-admissible
constant. We write A ~ .,y B for A Sy, B and B S,y A. We similarly define

5 [so:V] and %[so;u] .

THEOREM 2.21. Define h € C'(B"(1)) by ®*v = hoyep, where oep denotes
the usual Lebesgue density on R".

(@) h(t) =g V(X1,- ., Xn)(w0), VE € B™(1). In particular, h(t) always has
the same sign, and is either never zero or always zero.

(b) For s> 0, ||hllgs(pn(1)) Sts—1y V(X1 Xn)(20)]-

COROLLARY 2.22. Let & be as in Theorem 2.14. Then,

(2.7) IJ(BXJ0 (20,£2)) Rison) ¥ (Bx (70,£2)) Rsgw v(X15---, X)) (20),
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and therefore,

[v(Bxy, (20:€2)) | ®psga |V (Bx (20.€2)) | Fpsga [V (X1, Xin) (0)

~o omax (X XG) (o)

3. Outline of the proof. The proof of Theorem 2.14 is somewhat technical.
This is partially due to its quantitative nature: we keep careful track of what each
constant depends on at every step. As mentioned before, this is essential for the
applications we have in mind (see, e.g., Remark 2.17). In this section, we present an
outline of the proof where we do not keep track of such dependencies. We hope this
will help give the reader an overview of the proof before we enter into the technical
details. For this section, we write A < B to mean A < C'B, where C' is a constant
“which only depends on the right things;” we will make such estimates precise in
the rigourous proof in later sections. To keep things simple, we outline the proof of
Theorem 2.4 (iii)=-(i) which is essentially a qualitative version of Theorem 2.14.

Fix an n-dimensional C? manifold M, and suppose we are given C'! vector
fields Xy,..., X, on M which span the tangent space at every point. Fix a point
xo € M, and reorder the vector fields so that X (z9),..., X, (zo) form a basis of
T, M ((2.4) is the assumption that X,..., X, have nearly “maximal determinant”
among all such choices). Fix s € (1,0]. Our main assumption is

(X, X;] Zc”Xk

near x, where c ;€ €5, near x.

Goal. Our goal is to find a C? diffeomorphism ® : B"(1) = ®(B"(1)),
where ®(B"(1)) C M is an open neighborhood of z(, such that ®*X; €
¢*T1(B™(1);R"), and moreover || Xj||¢ss1(gn(1)mn) S 1.

A main problem we face is that our assumptions are in terms of the diffeomor-
phically invariant spaces 4y, and not in terms of standard spaces, and so we cannot
initially apply standard techniques. The first step gets around this issue.

Step 1. The results of [SS18] (see, also, Proposition 4.1) provide a C? dif-
feomorphism ®¢ : B™(19) — ®o(B"(n0)), where 19 > 1, ®(B™(10)) is an open
neighborhood of z¢, ®o(0) = x¢, and such that if Y; := ®;.X;, then the following
holds.

(1) We have

= (I+A)V,
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where V denotes the gradient in R" (thought of as a column vector), and A(t) is an
n x n matrix satisfying || Allgs(gn (y)am-ny S 1 and A(0) = 0.

(i) Forn+1<k<gq, Y, =], bV}, where b}, € €5T1(B"(n)).

(iii) For 1 <j,k <n, [V}, Y] =1L, & .Y, with & , € €5(B" (np)).

Step 1 achieves the goal, except with a loss of one derivative: the vector fields
Y1,...,Y, are only €°°, not ¢**!. However, more is true: if all we knew was that
Y1,...,Y, were ¢°°, then we would only have (ii) and (iii) with s replaced by s —
1. We will leverage this extra regularity to find a new coordinate system which
completes the proof. To do this, we use methods adapted from Malgrange’s work
[Mal69].

Reduction 1. Tt suffices to find a ¢**! diffeomorphism ®, : B"(1) =
$,(B"(1)) € B"(10), where ®,(0) = 0, and such that [[®3Yj[[,... < 1, for
1 < 5 < n. Indeed, given such a map ®,, the goal is achieved by taking
P = (I)O o @2.

Step 2. Fix ~» > 0 small, to be chosen later. Let W (t) := ~¢t. For 1 < j <mn,
set Yj :=yW1Y;. We have

= (I+A)V,

where A(t) = A(yt). Since A(0) = 0, by taking v = v(v2,70) > O sufficiently
small, we have

M |4 <.

%3 (Bn(5);Mn=n)
(2) For 1 <j,k<n,[Y;, Y] =", & Vi, where H%

‘ < 1 (since
©*(B"(5))

~l E Y
Cik = TYY5C5 k)

Reduction 2. Tt suffices to find a €*! diffeomorphism ®; : B"(1) =
@, (B™(1)) € B™(S5), with ®;(0) = 0, and such that || ®]Y]|lzs+1 S 1, 1 < j <n.

Here, we may take 7, as small as we like when finding ®;. We then take
®; := W, o®; to complete the proof. This is Proposition 6.8.

Step 3. This step is Lemma 6.9. Fix y; > 0 small to be chosen later. By taking

~

72 = 72(71) > 0 sufficiently small, we find a ¢"**! diffeomorphism &, : B*(2) =
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®,(B"(2)) C B™(5), with ®,(0) = 0, such that if ¥; := ®3Y;, then

Y
Y, N

Tl =U+A)V,
Y,

where
o If /Tj is the jth row of A, then Z] ¥ 0_A j(v) =
o If &? is the (j, k) component of A, then \\CL?HL” <.
We find ®; by solving a non-linear elliptic PDE satisfied by <I>f1. See Lemma 6.9.
All that remains to show is that the map ®; given in Step 3 satisfies the condi-
tions of Reduction 2, provided ~; is taken small enough. This is covered in Propo-
sition 6.6. The idea is the following. We have

n
3.1) R ARG
=1

where égk = <I>’{5§ x € €°(B™(2)). Also, we know A € €°(B"(2)), but we wish to
show that A € €**1(B"(1)). To do this, note that (3.1) can be re-written as

0~ 0 0 ~ 0
8_tjA Bt A +A] atAk AkatA =Djk,
where % = [a% e 91T and D, ;, € €. Combining this with > i1 oy Ry j(v) =

0, we see that A satisfies the system of equations:
EA+T(AVA) =D,

where D € €, I is an explicit constant coefficient bilinear form, and

~ 9~ 0 ~ "0 -
EA= ( Ap— A-> ) Gy
ot; oty 1<j<k<n ;815]. ’

By Lemma A.6, £ is elliptic. If ~; is chosen sufficiently small, standard elliptic
theory shows A € €51, completing the proof.

Remark 3.1. When we turn to the rigorous proof, we present the steps in the
reverse order. This is because it is much easier to make explicit the quantitative
nature of each step when they are presented in the reverse order.
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4. Results from the first paper. In this section, we describe the main
result of [SS18]; namely, [SS18, Theorem 4.7]. We do not state the full result
and instead state an immediate consequence of it, which is what is relevant for
this paper. The setting is the same as Theorem 2.14, so that we have fixed some
sp > 1 and defined O-admissible constants and {s}-admissible constants as in Def-
initions 2.12 and 2.13. As in Theorem 2.14 we, without loss of generality, re-
order the vector fields so that Jy = (1,...,n). Set 7y := min{n,&} and define
®g : B"(10) — Bx,, (z0,€) by

4.1) By (... ty) = XKt Xo g

PROPOSITION 4.1. There exists a 0-admissible constant x € (0,&] such that:
(@) Yy € Bx,, (z0,x), N X, (y) #0.
(b) Vy € Bx, (z0,X).

AXs(y)

7‘%1.

/\ XJ() (y)

sup
J€I(n,q)

(©) V' € (0,x], Bx,, (x0,X') is an open subset of Bx (xo,&) and is therefore
a submanifold.

For the rest of the proposition, we assume 05-7 k€ ‘K)S(OJO (Bx o (20,8)), for 1 <
J kU < q. There exists an {so }-admissible constant 1 € (0,10] such that:

(d) @o(B"(m)) is an open subset of Bx, (o, x) and is therefore a submani-
fold of Bx (wo,).

(e) ®g: B"(n1) — ®o(B™ (1)) is a C? diffeomorphism.

Let Yj := &3 X, and write Y, = (I + A)V, where V denotes the gradient in
R™ (thought of as a column vector) and we are identifying Y j, with the column
vector of vector fields [Y1,Ya,...,Y,]".

(f) A(0) =0 and sup;e gy, [|A(E) [rgnen < 3.

(g) Fors>0,1<j<gq

(4.2) Yilligs (Brmymn) Stsy 1-

(h) There exist b, € €T (B"(m)), n+1<k<q, 1 <1<n, such that Yy, =
Sy 0.Ys and ||\l (n ) Sps—1y 1 Vs > 0.

(i) For 1 <j,k <n, [Y;,Y3] =1L, & Y1, where for s >0,

-l
12 kllos (87 (1)) Sgsy 1-

The statement of [SS18, Theorem 4.7] uses “l-admissible constants” which
we have not defined here. However, it is easy to see that 1-admissible constants are
{50 }-admissible constants for sy > 1, and so Proposition 4.1 follows from [SS18,
Theorem 4.7].
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Remark 4.2. The main difference between Proposition 4.1 and Theorem 2.14
can be seen by comparing (4.2) and (2.6): (2.6) is stronger than (4.2) by one deriv-
ative. The central point of this paper is to obtain this stronger (sharp) result.

4.1. Densities. We describe the results on densities from [SS18, Section 6]
needed in this paper. The setting is the same as in Section 2.2.1; thus we are given a
C! density v on Bx,, (z0,€) satisfying Lx;v = fjv. [so;v] and {s;v}-admissible
constants are defined as in that section (Definitions 2.19 and 2.20). We also use
another type of admissible constant. As before, we reorder the vector fields so that
Jo = (1,...,n).

Definition 4.3. We say C'is a 0;v-admissible constant if C' is a 0-admissible
constant which is also allowed to depend on upper bounds for || f;||¢/ B, (#0.))>
1 <j<n.Wewrite A <., B for A < CB, where C'is a 0; v-admissible constant,
and write A ~,, B for A <¢., B and B <., A. Note that 0; v-admissible constants

are [so;v]-admissible constants.

We introduce a distinguished density on Bx o (z0,x) given by

IANNLa N NZy,
4.3 Ly Dy) = .
(4.3) vo(Z1,...,Zn) X A A AX,
Note that Xy A X5 A -+ A X, is never zero on By, (z0,x) (by Proposition 4.1 (a)),
so that vy is defined on By, (2o, ). Itis clearly a density.

PROPOSITION 4.4. Given a C' density v as above, there exists g €
C(Bx,, (w0, X)) such that v = guy and

@ g(z) ~ow g(x0) = v(Xy, ..., Xn)(20), V& € Bx, (w0, x)- In particular, g
always has the same sign, and is either never zero or always zero.

(b) For s >0, 1< 5 <n, we have

lglleg, (Bx,, @ox) Sts-1h [V (X150, Xn) (o) |
Proof. This is an immediate consequence of [SS18, Theorem 6.5]. U

5. Function spaces. In this section, we define the function spaces which
are used in this paper as well as discuss the main properties we use. These spaces
were all defined in [SS18], and we refer the reader to that paper for a more detailed
discussion these spaces. As in that paper, we make a distinction between function
spaces on open subsets of R and function spaces on a C? manifold M. Open
subsets of R™ have a natural smooth structure, and it makes sense to talk about the
usual function spaces on these open sets. On a C? manifold M, it does not make
sense to talk about, for example, C* functions. However, if we are also given C'!
vector fields X7,..., X, on M, it makes sense to talk about functions which are
smooth with respect to these vector fields, and that is how we proceed.
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5.1. Function spaces on Euclidean space. In this section, we describe the
standard function spaces on R™ which we use. Let 2 C R" be a bounded, con-
nected, open set (we will almost always be considering the case when (2 is a ball
in R™). We have the following classical Banach spaces of functions on 2:

C(Q)=C%Q) :={f:Q— C| fis continuous and bounded},
[ fllcw) = 1 fllcoq) = Sug\f(mﬂ-
e

Form € N,
C™(Q):={feC’(Q)|95f€C’Q), Vo] <m},
I fllem @) == Z 195 fllco)-

|a|<m

Next we define the classical Lipschitz-Hélder spaces. For s € [0, 1],

I fllcos @y == I fllco) + sup lz—y| 7% f(2) = f(y)),
x,yc

CO*(Q):={f € C%Q) : || Fllcos () <=}

Form e N, s € [0,1],

£ llems@y =D 1105 fllcos):

|| <m

O™ (@) 1= {f € C™(Q) ¢ | fllomeey < =}.

Next, we turn to the Zygmund-Holder spaces. Given h € R™ define Q, := {x €
R™: x,x+h,x+2h € Q}. For s € (0,1] set

I flles@) = I fllcosrzy+ sup |h|7*|f(z+2h) =2f(x+h)+ f(z)],
O;Eth"
xelly

E(Q) = {f € CUQ) : |1l < ).

Form eN, s € (0,1], set

gmts(Q) = Z 0z f

laj<m

CQ) = {f € CT(Q) : [|fllgmes (o) < oo}

I1f

€5 ()

We set

€=(Q):=()6°(Q), C=(Q):=[)C™Q).

s>0 meN
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It is straightforward to verify that for a ball B, €=(B) = C*(B). For a Banach
space V, we let C(2; V), C™ (4 V), C™*(2; V), and €°(€2; V') denote the anal-
ogous spaces of functions taking values in V. By identifying a vector field ¥ =
Z?:I a; aitj on {2 with the function (ay,...,a,) : @ — R", it makes sense to write,
for example, [|Y|4s(qrn)-

Remark 5.1. The term || f[|o.5/2(qy) in the definition of [| f[|¢s(q) is somewhat
unusual, and is usually replaced by || f|lc(q). As is well known, if € is a bounded
Lipschitz domain, these two choices yield equivalent norms (this follows easily
from [Tri06, Theorem 1.118 (i)]). However, the constants involved in this equiva-
lence depend on §2. In this paper, we will almost always be considering the case
2 = B"(n), for some explicit choice of 7). Thus, the difference between these two
possible definitions of || f[|«s () will not affect any of the results in this paper. The
choice we have made here is slightly more convenient for some of our purposes;
see [SS18, Remark 2.1] for more comments on this.

Definition 5.2. For s € (0,o0], we say f € €5.(Q2) if Va € €, there exists an
open ball B C (), centered at x, with f!B € €% (B).

Remark 5.3. 1f  is a bounded Lipschitz domain, m € N, s € (0, 1), the spaces
C™3(Q) and €15 (Q) are the same—see [Tri06, Theorem 1.118 (i)]; however,
if s € {0,1}, these spaces differ. As a consequence, for any open set 2 C R",
form € N, s € (0,1), we have 4,7"*(Q2) equals the space of functions which are

loc
locally in C"™*. The space ¢}.(£2) equals the usual space of functions which are
locally smooth on 2.

5.2. Function spaces on manifolds. Let Xi,..., X, be C I vector fields
on a connected C? manifold M. Corresponding to Xi,...,X4, we have a sub-
Riemannian metric given by (2.2). We use ordered multi-index notation: X . Here,
a denotes a list of elements {1,...,q} and || denotes the length of the list. For
example X>131) = X, X, X3X and |(2,1,3,1)| = 4.

Associated to the vector fields Xj,...,X,, we have the following Banach
spaces of functions on M.

C(M)=C% (M) :={f: M — C| f is continuous and bounded },
= = su x)|.
I lleon = 1o an) mezl&\f( )|

For m € N, we define

CR(M):={feC(M)|X"fexists and X° f € C(M),V|a| <m},
Ifllepan = > IX*Fllewn-

laj<m
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For s € [0, 1], we define the Lipschitz-Holder space associated to X by

17t any = 1l + s p(w.9) [ F(a) = F),
x,yc
zFY

OOS —{fEC HfHCg(’S(M)<°°}‘

Form € Nand s € [0,1], set

I gy = D2 1K Flleosag

|| <mn

CY (M) = {f € CR(M) : || floms ar) < ==}

We turn to the Zygmund-Holder spaces. For this, we use the Holder spaces
C%%([a,b]) for a closed interval [a,b] C R; || - ||co.s(fq,)) is defined via the same
formula as in (5.1). Given h > 0, s € (0, 1) define

a
PRLo(h) = {’Y 10,20] — M |7/ (t) = Y d;()X;(1(t)), dj € C>*([0,2A]),
j=1

q
> ;120 0,2 < 1}-
j=1

For s € (0,1] set

IFlhegon = 1 laarzay = S0 h2°|F(220)) =2£ (1) + £ (0))]
lpgja/Z( )
and form € N,
Hf <gm+s Z ||X f (/S
|a|<m
and we set

G (M) = {f € OR (M) || fllgmes ar) < ==}
Set
T(M):=(%¢%(M) and CR(M):= () CR(M
s>0 meN

It is a consequence of [SS18, Lemma 8.1] that €5 (M) = C3(M); indeed,
(M) C C3(M) is clear while the reverse containment follows from [SS18,
Lemma 8.1]. For more details on these spaces, we refer the reader to [SS18].
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Remark 5.4. When we write V f for a C! vector field V and f: M — R,
we define this as V f(z) = % |t:0f(etvm). When we say V f exists, it mean that
this derivative exists in the classical sense, Vz. If we have several C'! vector fields
Vi,..., Vi, we define ViV, --- Vi f :=Vi(Va(---VL(f))) and to say that this exists
means that at each stage the derivatives exist.

Remark 5.5. For certain subsets of M which are not themselves manifolds,
we can still define the above norms. Indeed, let X,..., X, be C I vector fields on
a C? manifold M and fix £ > 0. In this setting, By (z0,£) might not be a mani-
fold (though it sometimes is—see Proposition 2.2). By (z¢,) is a metric space,
with the metric p. For a function f : Bx(z9,§) — C and x € Bx(x¢,&), it makes
sense to consider X; f(z) 1= % | ot (e!Xiz). Using this, we can define the spaces
C'¢°(Bx(x0,£)) and €5 (Bx (xo,£)), and their corresponding norms, with the
same formulas as above.

5.3. Some results on function spaces. In this section, we present some
results concerning the above function spaces which we need later in the paper.
Many of these results are standard and easy to prove; however a main goal of this

section is to precisely state what each estimate depends on, as that is essential for
our main results.

LEMMA 5.6. FormeN, s € (0,1), n>0,

(5.2) I fllcmos By = N f llgmssBr )
where the implicit constants depend on n, m, s, and an upper bound for n~'.

Furthermore, form € N, s € (0,1], r € (m+ s,0),

(5.3) I fllcmas Brim)y SN llerBrm)

where the implicit constant depends on n, m, s, r, and an upper bound for n".

Proof. It suffices to prove (5.2) in the case m = 0. When 1 = 1, (5.2) (with
m = 0) follows easily from [Tri06, Theorem 1.118 (i)] (by considering the cases
M = 1,2 in that theorem). For general 7, (5.2) (with m = 0) follows from the case
n =1 and a simple scaling argument which we leave to the reader. (5.3) follows
immediately from (5.2). O

LEMMA 5.7. The spaces Cy° (M), €5 (M), C™*(2), and €* () are alge-
bras. In fact, we have for m € N, s € [0,1],

1f9lloms (ary < Crmgll fllom=an lglloms ars

where Cy, 4 is a constant depending only on m and q. And for meN, s€ (m,m+1],

(5.4) 1 f9llzs ar) < Cmgll Flles anll9llzs )
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Moreover, these algebras have multiplicative inverses for functions which are
bounded away from zero. If f € CV"°(M) with infyepr|f(z)| > co > O then
flx)™' = ﬁ € CY° (M) with

1f @) Nl ary < C,

where C' can be chosen to depend only on m, q, co, and an upper bound for
HfHC)T?’S(M)- And form €N, s € (m,m+ 1] if f € €5 (M) with infyepr|f(x)] >
co > O then f(x)~' € €5(M) with

(5.5) I1f(z)~!

where C' can be chosen to depend only on m, q, co, and an upper bound for
1&g (ar)- The same results hold with C¢*(M) replaced by C™*(Q) and
€5 (M) replaced by €°(Q2) (with n playing the role of q).

(«/)S( (M) S C7

Proof. This is [SS18, Proposition 8.3]. O

LEMMA 5.8. Let D],Dz >0, 81 >0 s0>51, sp>1, f S %Sl(Bn(Dl)),
g € €%2(B™(Dy);R™) with g(B™(D,)) € B"(Dy). Then, fog € €% (B™(Dy))
and || f o gllgsi (Bm(Dy)) < CNflles1 (Br(D,)) where C can be chosen to depend only
on sy, 53, D1, D>, m, n, and an upper bound for ||g||<gsz(Bm(D2)).

Furthermore, if s1 € (0,1), f is as above, and g € C'(B™(D,);R") with
9(B™(D>)) € B"(D1), then fog € € (B™(D2)) and |[fog
Cllf

an upper bound for ||g||c1(gm (p,))-

¢ (Bm(Dy)) S
%51 (Bn(Dy)) where C' can be chosen to depend only on si, Dy, D), n, and

Proof. We use the notation A < B for A < C'B where C'is as in the statement
of the lemma. Without loss of generality, we assume || f
the first claim by induction on k, where s; € (k,k+1].

We begin with the base case k = 0 so that s; € (0,1]. We use y to denote
elements of R" and x to denote elements of R™. Since s; € (0, 1], we may, without
loss of generality, assume s, € (1,2); indeed, if s, > 2 we may replace s, with
3/2 in the proof that follows. Since [|g[|c1(gm(p,)rn) < 9l (Bm(Dy)re) S 1, it
is immediate to verify that || f o g[|co.s;/2(gm(p,)) S 1. Let ,h € R™ be such that
x,x+h,z+2h € B™(D,). We wish to show

@*1(Bn(Dy)) = 1. We prove

(5.6) |fog(z+2h)—2fog(x+h)+ fog(x)| < |h*,

which will complete the proof of the base case. Define + : [0,2h] — B™(Dy)
by (t) = g(z + |—Z‘t) Let r := (s —1)/2 € (0,52 — 1). We use the classical
fact that ||g|cir(pm(pymn) S llg
7l qo2imprn) S 1

Set 3(t) = shrgl@ +2h) + (1 = 5hr)g(@) = vl + (1 = 557)7(0)
so that 4 : [0,2|h|] — B™(Dy) is a line segment of length |g(z +2h) — g(z)| <

@s2(Bm(Dy)rn) S 1 (see Lemma 5.6). Thus,
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2|hlllgllc1 < |R|. Thus, we have
£ G@IY) =27 (3(11)) + £ (5(0) | S [nl*.
For ¢ € [0,2|h]], we have

[5(5) = ()| = t‘”@'hz% 2010 ;v(m‘

=th () =7 ()],
for some ¢;,c; € [0,2]h|] by the mean value theorem. Thus,

7(t) =7 (@)| < tler = e [Illorr S IR

We again use the classical fact that ||f||Co,sl/<1+r>(Bn(Dl)) S llgsi(Br(pyy) < 1 (see
Lemma 5.6). Thus, we have

|fog(z+2h)—2fog(z+h)+ fog(x)|=|f(v(2h]))=2f(v(|h]))+f(7(0))]
<[f(QIA) =2f(F(1R1) + £ (3©O) | +2[f (3 (1Al) = F (v (1)) ]
S+ (AR = (R [N oo gy S IR

completing the proof of (5.6), and therefore the proof of the base case.
Now take s; > 1 and we assume the result for s; — 1. We have,

m

[fog

(fog) +Hf°9”<gsvl(3m(D2))-

@11 (B (D)

¢*51(B™(D»))

81‘]

[fog

@511 (Bm(D,)) < 1 by the inductive hypothesis, so it suffices to estimate

0 .
‘ Ty (fog) #0115 (Dy))’ We have, using Lemma 5.7,
0 Jgi
‘ T(fog) <8 > Fr
€Ly %Srl(Bm(Dz b Tillgsi-1(Bm(Dy))
S
l 1 8yl ¢ 171(B™(Dy)) Oz; ¢*1-1(B™(Dy))
The inductive hypothesis shows H T Dy <1, and
Sl* m )
99,
‘ Do, S gllgs 8wy S gl Bm(Dy)) S 1,
7 cgsl—l(Bm(Dz))

since s > s;. Combining the above estimates shows || f o g
completes the proof of the induction.

Finally, we turn to the case when s; € (0,1) and g € C'(B™(D,);R"). In this
case, the same proof as the base case above works, by taking » = 0 throughout.

(gsl(Bm(Dz)) SJ 1, and
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Here, we use the Lemma 5.6 to see || f{[co.si (gn(p,)) S [1flle=1(Bn (D)), for s1 €
(0,1). O

LEMMA 5.9. Fix s > 1, Dy,D; > 0. Suppose H € €°(B"(D;);R") is
such that B™(D,) C H(B"™(D,)), H : B*(D,) — H(B™(D,)) is a homeomor-
phism, and infyegn(p, |detdH (t)] > co > 0. Then, H™' € €*(B"(D1);R"), with
| H! @s(Br(D,):Rn) < C, where C' can be chosen to depend only onn, s, Dy, D,
co, and an upper bound for ||H

(ga(Bn(Dl)JRn)

Proof. We use A < B for A < CB, where C is as in the statement
of the lemma. Since [ H|c1gnip,)rn) < IIH
H-'eCY(B™"(D,);R") and HHil“Cl(Bn(Dz);Rn) < 1. Thus, it suffices to show

@s(Br(Dy)Rr) S 1, we have

(5.7) d(H™") e € (B"(Dy):M™") with [|d(H ") ||s-1(pa(pyypaneny S 1.
We use the formula
-1

(5.8) d(H™')(t) = (dH (H'(t)))

From our hypotheses, we have ||dH

¢s=1(B"(D,);M"*") 5 1. Since

inf |detdH(t)| 2 1,
te B™ (D)

using the cofactor representation of v ~— (dH (v))~! and applying Lemma 5.7, we
have

(5.9) |(dH)™!

(/sfl(Bn(Dl);Mnxn) 5 1

We begin by proving (5.7) in the case s € (1,2). Since

1(dH) ™ legs-1(pn(py)pmneny S 1
and |[H '|c1(pn(p,ygn) S 1, it follows from Lemma 5.8 (using (5.8)) that
||d(H71)||(gs—l(Bn(D2);Mn><n) < 1, which completes the proof of (5.7) in this case.
We now proceed by induction. Take m > 2 and suppose we know the lemma
for s € (1,m) and we wish to prove (5.7) for s € [m,m+1). Fix s € [m,m+1).
Take s; = 245 — 1 € (m — 1,m); note that s — 1 < s;. By our inductive hy-
pothesis, we have H ! € €1 (B"(D,);R"), with || H !
bining this with ||(dH)~!
(5.8), Lemma 5.8 shows that ||d(H71)||(gs—l(Bn(D2);Mn><n) < 1, which completes
the proof. O

(gsl(Bn(Dz);Rn) 5 1. COl’Il-
@s—1 (B (Dy);Mnr*n) < 1 (as shown in (5.9)) and using

LEMMA 5.10. Let m € N with m > 1, s € (0,1], and n; > 0. For f €
€5 (B"(m)) and v € (0,1], set f(t) := f(yt). Then, for 0 <~ < min{%, 1},
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we have for f € €5 (B™(n,)) with f(0) =

1/

gms(pn(s)) VIS ligmeaBrin))-

Proof. Using v € (0, 1], it follows immediately from the definitions that

S ey = Y. ANOEHO) esmns)

I<|a|<m 1<|a|l<m

< Y Aeloes

I<|a|<m

(5.10)

ws(Br(m)) < Y llgmesBnm))-

Since f,(0) = f(0) = 0, we have (using the Fundamental Theorem of Calculus)

£l et (magsy = I leomnsy + D 105 Fyllcoaas)

laf=1

<6 Z 105 fyllcosnisy) < 6| fllcr(Bram))-

|ar|=1

(5.11)

Directly from the definitions (see also [SS18, Lemma 8.1]), we have (for any ball
B and any function g)

#s(B) < S|gllcos sy < 15[lgllcor By < 15l|gller(m) < 15]lg

Hg (ngrS(B)’

Thus, using (5.11), we have

| fxllgs Brs)) < 15115 lleresrisy) < 90vN Fllcr Brim)) < 90V f llgm+s(Brim))-
Combining this with (5.10) yields the result. O

Remark 5.11. For the next two results, we use the convention that for s €
(—1,0] we set €° = CO%(+1/2 and for m < 0 we set C'™* = C?, with equality of
norms.

PROPOSITION 5.12. Fixn € (0,1], and let Y1,...,Y, be vector fields on B"(n).
We suppose Y; = z]l]@tkandé){t): ?lk yfor 1 <j<gq 1<k<n,
where aj e CY(B"(n)) and b] e C(B™(n ))

o Let m € N, s € [0,1]. Suppose a b] € C™m=L3(B™(n)), Vj,k. Then,
(B (n)) = Cy*(B"(n)), and

[ fllem.s ) = 1 leps B my)

where the implicit constants can be chosen to depend only on upper bounds for q,
s (Br(n) VI K-

m, and ”a‘l; HC'mfl,s(Bn(n))
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o Let s > 0. Suppose a;‘?,bi € ¢ Y(B"(n)), Vj,k. Then, €°(B™(n)) =
€y (B™(n)), and

I/

where the implicit constants can be chosen to depend only on s and upper bounds
forq, 0!, and Ha? b,

B () ~ I flles B m),

(gs—l(Bn(n)), (gs—l(Bn(n)), Vj, k

Proof. This is [SS18, Proposition 8.12]. O

COROLLARY 5.13. Let 0 <y < 1. Let Y1,...,Y, be C' vector fields on
B™ (1) which span then tangent space to B™(n,) at every point.
(i) FormeN, s€[0,1], if Yi,...,Y, € C™135(B"(1p);R™), then

C™*(B"(m)) = Cy*(B" (m))-
(i) Fors>0,ifYy,...,Y, € €5 1(B"(n2);R"), then
¢°(B"(m)) = 6y (B" (m))-

Proof. We describe the proof for (i); the proof for (ii) is similar. Since
Yi,...,Yy € C™L4 (B (1);R™), we have (by definition), Y; = 37 ah -
with a;? € C™ 15(B"(1)). Moreover, since Y7,...,Y; span the tangent space

at every point of B™(1,), we may write E% = 3:1 biY}, where bi, is locally
in Cm*178. Since B"™(n) is a relatively compact subset of B" (1), we see
a;?,bi € C™ 135(B"(n;)). From here, Proposition 5.12 yields (i), completing the

proof. O

5.4. Manifolds with Zygmund regularity. In this paper we use %° mani-
folds; the definition is exactly what one would expect, though a little care is needed
due to the subtleties of Zygmund spaces. For example, one must define the Zyg-
mund maps in the right way to ensure that the composition of two Zygmund maps
is again a Zygmund map. For completeness, we present the relevant (standard)
definitions here.

Definition 5.14. Let Uy C R™ and U, C R™ be open sets. For s € (0,0], we
say f: Uy — Uyisa 6y, mapif f € €. (U; R™).

loc

LEMMA 5.15. Let Uy CR™, U, C R™, and Us C R™ be open sets. For s| €
(0,00], 53> 51, 52 € (1,00, if f1 : Uy = Uz is a 6., map and f>: U, = Uz is a 6,2,
map, then frofi: Uy — Uz isa 6!

loc map.

Proof. For s; = oo, the result is obvious. For s; € (0,0), because the notion of

being a ¢}, map is local, is suffices to check fi o f> is in ™' on sufficiently small

balls. This is described in Lemma 5.8. O
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LEMMA 5.16. For s € (1,00] if f: Uy = Uz is a 65,
diffeomorphism, then f~': Uy — Uy isa 67

loc

map which is also a C'!
map.

Proof. For s = o, this is standard. For s € (1,0) it suffices to check f~!isin
¢° when restricted to sufficiently small balls. This is described in Lemma 5.9. [J

Definition 5.17. Fix s € (1,e0| and let M be a topological space. We say
{(¢a,Va) : a« € I} (where Z is some index set) is a ¢’° atlas of dimension n if
{V4 :« € T} is an open cover for M, ¢, : V,, — U, is a homeomorphism where
Ua CR™is open, and ¢go .t : ¢0(VsNV,) = Usis a6

loc AP.

Definition 5.18. For s € (1,0, a ¢* manifold of dimension n is a Hausdorff,
paracompact topological space M endowed with a ¢’® atlas of dimension 7.

Remark 5.19. In this paper we assume all manifolds are paracompact. This is
used in the proofs of Theorem 2.7 and Corollary 7.4 where a partition of unity is
used. Otherwise, paracompactness is not used in this paper.

Remark 5.20. Note that an open set {2 C R" is naturally a 4 manifold of di-
mension n; where we take the atlas consisting of a single coordinate chart (namely,
the identity map 2 — £2). We henceforth give open sets this manifold structure.

Remark 5.21. A ¢° manifold is a C"" manifold for any m < s. In light of
Remark 5.3, ¢ manifolds and C*° manifolds are the same.

Definition 5.22. For s € (0,c0], let M and N be ¢**! manifolds with €*+!
atlases {(¢a,Va)} and {(5,Ws)}, respectively. We say f: M — N is a €5
map if Ygo fop,'isa € map, Va, 8.

loc

LEMMA 5.23. For s € (0,00|, suppose My, M, and M3 are €°' manifolds,
and f : My — M, and f> : My, — M3 are Cflf):rl maps. Then, o fi: M, — Msj is

a ‘flf)jl map.

Proof. This follows from Lemma 5.15. U

LEMMA 5.24. Suppose s € (0,0, My and M, are €' manifolds, and f
My — My isa ‘Klf)jl map which is also a C' diffeomorphism. Then, f~': M, —
M is a €5 map.

loc

Proof. This follows from Lemma 5.16. U

Definition 5.25. Suppose s € (0,0], and M and M, are €**! manifolds. We
say f: M; — M, is a 5! diffemorphism if f : M; — M, is a bijection and
f:M, — M, and f~': My — M, are €' maps.

loc
Remark 5.26. For s € (0,20], €**! manifolds form a category, where the mor-
phisms are given by %lf)jl maps. The isomorphisms in this category are exactly the
¢**! diffeomorphisms.
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For s € (0,%0], a €**! manifold is a C'! manifold, and it therefore makes sense
to talk about vector fields on such a manifold.

Definition 5.27. For s € (0,c0] let M be a €**! manifold of dimension n with
¢t atlas {(¢a, Va)}; here ¢ : Vo, — U, is a €**! diffeomorphism and U, C
R™ is open. We say a C” vector field X on M is a €* vector field if (¢ )X €
65 (UasR™), Vau

6. Proofs. We turn to the proofs of the main results in this paper; as in the
statement of Theorem 2.14, we fix some sy > 1 throughout. The most difficult part
is constructing the map ¢ from Theorem 2.14. We will construct ¢ by seeing it as
a composition of two maps ® = &0 d,, where @ is the map from Proposition 4.1
and @, is described in Section 6.1. @, itself will be constructed as a composition
of two maps ®, = ¥, o @, which will be described in Section 6.6.

In the some of the sections below, we introduce new notions of {s}-admissible
constants. We will be explicit in each section which notion we are using. These
notions will be defined in such a way that the compositions described above give
the proper result. For example, we prove Theorem 2.14 by reducing it to Propo-
sition 6.3, below. Theorem 2.14 and Proposition 6.3 use different notions of {s}-
admissible constants. However, in the application of Proposition 6.3 to prove The-
orem 2.14, constants which are {s}-admissible in the sense of Theorem 2.14, will
be {s}-admissible in the sense of Proposition 6.3. A similar situation occurs when
we reduce Proposition 6.3 to Proposition 6.8. Thus, the various notions of {s}-
admissible constants will seamlessly glue together to yield the main results of this
paper. In each setting, once we have defined {s}-admissible constants, we use the
notation A S,y B to mean A < C'B where C'is a positive {s}-admissible constant.
And we write A~ B for A Sr) Band B Sy A

In Section 6.1 we describe the map ®,. In Section 6.2 we show how Theo-
rem 2.14 follows by setting & = &y o ®,. In Section 6.3 we prove the results on
densities, namely Theorem 2.21 and Corollary 2.22. In Section 6.4 we state and
prove a result on how to recognize the regularity of vector fields by considering
their commutators. In Section 6.5 we describe and construct the map ®;. In Sec-
tion 6.6 we construct the map ®,. Finally, in Section 6.7 we prove the qualitative
results; namely Theorems 2.4 and 2.7. As mentioned in the introduction, the proofs
which follow take many ideas from the work of Malgrange [Mal69].

The main idea is the following. In Proposition 4.1 we only have

1Yjlls (B (m)rr) Sty s

but we wish to have ||Yjllqs+1(gn(y)mny Sis) 1. However, Proposition 4.1 gives
us additional information: namely, (i), where we have [Y;,Y;] = >", 59-7 WY, 1<
J.k <n,with “E‘l]-’kucgs(Bn(nl)) S¢s) 1. Notice, if all we knew was [|Yj |5 (gn (5, ):mn)

S¢sy 1 then the best we could say in general is that Héék s 1(Br(n)) S{s) 15 thus
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(i) gives us additional regularity information on Yi,...,Y,,. This is not enough
to conclude that [|Y;
smooth vector fields on R?, Z|, Z,, which span the tangent space at every point,
such that [Z,Z,] = 0 (take Z; = \Il*a%j where ¥ : R? — R? is a C? diffeomor-
phism). However, as we will describe in Section 6.1, this is enough to conclude
that there is a different coordinate system (denoted by ®;) in which we have
|23V

Gs+1(Bn (n):R") S¢sy 1s indeed it is easy to find two non-

@1 (Br(1):Rn) ~{s) 1, which will complete the proof.

6.1. ®,. Fix n; > 0 and suppose we are given vector fields Yi,...,Y, on
B™(n;) of the form

0 0
Y=—4+A_—_=({I+A)V, A0 =
oAz = (I+ AV, A(0)
Here, we are writing Y for the column vector of vector fields Y = [V7,...,Y,]",
% is the column vector % = [(%,...,%]T (which we also write as V), and

A is an n x n matrix depending on t € B™(n;). Fix sp > 1 and suppose A €
¢ (B™(n);M"™*™) and

[V}, V] Zc]kY,

where Ez',k € €% (B™(m)).

Definition 6.1. For s > s, if we say C'is a {s}-admissible constant, it means
A€ €5(B™(n);M™*™) and 6§7k € €*(B™(m)), 1 <j,k,0 <n.C can be cho-
sen to depend only on s, s and upper bounds for n, 7, ", | Allgs (Bn(m)panen)s

and Héék @s(Bn(n))- For 8 < s, we define {s}-admissible constants to be {so}-
admissible constants.

Remark 6.2. In the definition of {s}-admissible constants, the vector fields
Y; and the functions él . are assumed to have the same regularity. Usually, one
would expect the functlons c i to be one derivative worse than the vector fields Y;.
What the following pr0p0s1t10n shows is that one can pick a different coordinate
system in which the vector fields Y; have one more derivative of regularity, thereby
achieving this expectation.

PROPOSITION 6.3. There exists an {so }-admissible constant K > 1 and a map
®, : B"(1) — B™(n1) such that
(a) @, € €(B"(1);R"), and

[ @2

¢st1(Bn(1);R?) g{s} I, Vs>0.

(b) ®2(0) =0, dP,(0) = K~ 'I.
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(c) ®2(B™(1)) C B"(n1) is open and ®, : B*(1) — ®2(B™(1)) is a €*F!
diffeomorphism.
Let ?j = ®3Y;. Then,

(d) Y = K(I+A)V, and A(0) = 0.

(€) supyepn(i) | A(w)|lpgron < 3.

® [1Y;

We defer the proof of Proposition 6.3 to Section 6.6.

¢st1(Bn(1);R?) g{s} 1, fors>0,1<j5<n.

6.2. Proof of Theorem 2.14. In this section, we prove Theorem 2.14 by
combining Propositions 4.1 and 6.3. We take the same setting as in Theorem 2.14,
and define 0-admissible and {s}-admissible constants as in Definitions 2.12
and 2.13. Take ®¢, Yi,...,Y,, A, n1, and x be as in Proposition 4.1, so that
®o : B"(m) — Bx,, (20, x). Note that (4.2) implies [[Al|gs(pn () pamen) Sqsp 1
Hence, using Proposition 4.1 (f), (g), and (i), we see that Proposition 6.3 applies to
Y1,...,Y, (with this choice of 1), and every constant which is {s}-admissible in
the sense of Proposition 6.3 is {s}-admissible in the sense of this section. Thus we
obtain a map ¥, : B"(1) — B"™(n) as in Proposition 6.3. Let K, A andYi,...|Y,
be as in that proposition. Notationally, we prove Theorem 2.14 with Y in place of
Y and A in place of A.

With x € (0,£] as in Proposition 4.1, Theorem 2.14 (a), (b), and (c) follow
immediately from Proposition 4.1 (a), (b), and (c). Set & = $yo P, : B"(1) —
B X T (x(), X) .

By Proposition 4.1 (d) and (e), ® takes open subsets of B™(n;) to open sub-
sets of By, (9, x). By Proposition 6.3 (¢), ®>(B"(1)) is open in B"(1;). Theo-
rem 2.14 (d) follows. Theorem 2.14 (e) follows by combining Proposition 4.1 (e)
and Proposition 6.3 (¢).

By the definition of ®g, (4.1), we have ®((0) = xo. By Proposition 6.3 (b), we
have ®,(0) = 0. Hence, ®(0) = z, proving Theorem 2.14 (g). The existence of £
as in Theorem 2.14 (f) follows just as in [SS18, Lemma 9.23], while the existence
of &, follows from [SS18, Lemma 9.35].

For 1 < j < n, we have ®*X; = ®30;X; = ®3Y; = Y;. Forn+1<j <,
we define )7] := ®*X;. Proposition 6.3 (d) and (e) shows ?JO =K+ A\)V and
proves Theorem 2.14 (h) and (i).

Proposition 6.3 (f) proves Theorem 2.14(j) for 1 < j <n.Forn+1<j <gq,
we proceed as follows. Let bé- be as in Proposition 4.1 (h). Then, we have

6.1) Y=Y =Y 05(b5v;) =D (bro®))Vi.
k=1 k=1

We have already shown

(6.2) ¥illger(pnymn) Sy 1, 1<k <n.
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: k
Since ||b]

@s+1(Bn () S{s} 1 by Proposition 4.1 (h) and ||q>2 @s+1(Bn(1):R") S{s} 1
by Proposition 6.3 (a), we have Hb;g 0 Dsf|gstipn(ry) Sysp 1 for s >0 (see
Lemma 5.8). Combining this with (6.1) and (6.2) completes the proof of Theo-
rem 2.14 (j).

N Notice that Theorem 2.14 (j) (W/l}ich we haveA already sh(lwn) implies
[Allgs1(Br1)pmeny Sisy 1. We have Yy, = K(I + A)V. Since [|A(u)|ypsn <
%, Yu € B"(1), (I—l—;l\(u)) is invertible for all w € B™(1) and we have
H(I—i—ﬁ)* @B (1)) Sysy 1 (this uses Lemma 5.7 and the cofactor repre-
sentation of (I + A)~1). Hence, V = K~ (I—h@)*l?}o. Le., foreach 1 < j <n,
a% can be written as a linear combination, with coefficients in ¢’**!(B"(1)) of

)71, Yn, and the ¢"**! norms of the coefficients are S¢sy 1. Combining this with
Theorem 2.14 (j), Proposition 5.12 applies to prove Theorem 2.14 (k).
For Theorem 2.14 (1), we already know by Theorem 2.14 (k) that

[f o @lgs(Bn(1)) Rfs—2y [ fo @ 6 (BN
0
That Hfo@H%&s (Bn(1 ||f||<6/‘s (B, @0.0) follows from [SS18, Proposi-

tion 8.6]; Theorem 2.14 (1) follows.

6.3. Densities. In this section, we prove Theorem 2.21 and Corollary 2.22.
We take the setting of Theorem 2.21 and therefore we have a C'! density v and a
notion of {s;v}-admissible constants, as in Definition 2.20. We let ®, Y7, ... Yy,
K, and A be as in Theorem 2.14, and we let v be as in (4.3).

LEMMA 6.4. Define hg by ®* vy = hoopep. Then, hg = det(K (I + A))~'. In
particular;, ho(t) =5 1, Vt € B"(1), and

(6.3) [[ho

e (Br(1) S{s-13 1, $>0.

Proof. Because sup;cgn (1) || A(t)[[pnxn < % and K =~ 1 by Theorem 2.14,
we have |det(K (14 A))~!| = det(K (I + A))~", and det(K (I + A))~' ~y 1.
Using that ®.Y; = X,

o 0 0
= @ (222

_ (cp*yo)(t)((K(1+A(t)))*lyl(t),...,(K(1+A(t)))*lyn(t))
= |det (K (T+ A1) | (@"10) () (Vi (1), Yal1))

= det (K (I+A(t))) " w0 (@(1)) (X1 (2(1)),..., Xa (2(1)))
= det (K (I+A(1)) .
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This proves hg = det(K (I + A))~" and therefore ho(t) ~4, 1. Theorem 2.14 (j)
implies || Allgs(pn(1ypmen) Sqs—1) 1; (6.3) follows from this using Lemma 5.7,
completing the proof. O

Proof of Theorem 2.21. Let g be as in Proposition 4.4 so that v = gvy. Hence,
hore, = ®*v = @ gy = (g o P)hooLep, Where hy is as in Lemma 6.4. Thus,
h = (g o ®)ho. Proposition 4.4 (a) implies g o ®(t) ~(5,.,) ¥(X1,...,X;)(w0) and
Lemma 6.4 shows ho(t) R(s) 1. (@) follows.

Theorem 2.14 (1) combined with Proposition 4.4 (b) shows [|g o ®||gs(pn(1))
S{s—1y) 1. Combining this with (6.3) and the formula h = (g o ®)hy, and using
Lemma 5.7, proves (b) and completes the proof. O

To prove Corollary 2.22, we introduce a corollary of Theorem 2.14.

COROLLARY 6.5. Let @, &1, and &, be as in Theorem 2.14. Then, there exist
{s0}-admissible constants 0 < &4 < & < & and a map @ : B"(1) — Bx (20,&2)
which satisfies all the same estimates as ® so that

C Bx,, (z0,&) € Bx (20,£2)
C Bx,, (z0,&1) € ®(B"(1)) € Bx,, (z0,x) C Bx;,, (0,£).

Proof. After obtaining &), &, and ® from Theorem 2.14, we apply Theo-
rem 2.14 again with £ replaced by &, to yield the map ® and {s}-admissible
constants &3 and &4 as above. O

Proof of Corollary 2.22. Using Theorem 2.21 (a), we have

V(@(B"(1))) = A ' / R

= / h(t) dt %[50;1’] I/(Xl,...,Xn) (l‘o),
Br(1)

and we have the same estimate for ® replaced by </IS, where @ is as in Corollary 6.5.
Since

®(B"(1)) € Bx,, (%0,&) C Bx (20,&) € @(B"(1)),

and since h(t) always has the same sign (by Theorem 2.21 (a)), (2.7) follows.
To complete the proof, we need to show

(64) |I/(X1,...,Xn)(l‘o)‘%o ) max ‘I/(le,...,Xjn)(:L‘o)‘.
(]1,...,]n)€z(n,q)
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However, either both sides of this equation equal 0, or Proposition 4.4 shows

(X X, ) (20) | [m0(X5is - X5 ) (o)

v (X1,...,X,) (20)| \Vo(Xh---,Xn)(:Eo)\
X)X )
N Xl(:L’())/\"'/\Xn(«TO)

-1
SC 50 17

where we have used the definition of { (see (2.4)). Since the left-hand side of (6.4)
is < the right-hand side, this completes the proof. O

6.4. A regularity result. Let Y],...,Y,, be vector fields on B™(2). Using
the vector notation from Section 6.1, write

9 9
y=9 .49
ETRRar T

where A : B"(2) — M"*". Let ak denote the (j,k) component of A, and define

Aj = [al aj,...,a}l;ie., Ajis thejth row of A. We have
Y, = a% + Aj%
Suppose
(6.5) [V}, Y] = En:c;kyl
=1
and
(6.6) Z 3, Aj=

PROPOSITION 6.6. In the above setting, there exists 1 = v1(n) > 0 (de-
pending only on n) such that the following holds. If s > 1 is such that cé- k,af €

¢°(B™(2)), Vj,k,l, and HafHLm(Bn(z)) <1, V4, k, then a;? € ¢**Y(B"(1)) and
D;EIICX ”a?”%»sﬂ(Bn(l)) < Dn,s:
where D,, s can be chosen to depend only on s, and upper bounds for n,
||a§||<gs(3n(2)), and ||C§»,k||<gs(3n(2)) (for all ],k‘,l)
Proof. Set Cjj, = [¢],..., ¢} ;). Then (6.5) can be rewritten as

) ) ) )
oAk = A A An— Augr Ay = = C(I+A).



1822 B. STREET

Combining this with (6.6) shows that A satisfies the following system of equations:

~

EA+T(A,VA) =C,

where
G, G, "9
EA= <—Ak——A»> , —A; |,
ot oty 7 1<j<k<n ;atj ’

I' is a constant coefficient bilinear form, depending only on n, and C =
(CiuI+A))1<j<k<n,0).

By Lemma A.6, & is elliptic. Also, ||C|l¢s < Dy, where D, , is as in the
statement of the proposition (see Lemma 5.7). From here, the result follows from
Proposition A.3 (taking s; = s — 1 and s, = s in that proposition). ]

6.5. ®,. Fix so > 1. Let Y],...,Y,, be €% vector fields on B"(5). Using

the matrix notation of Section 6.1, we assume Y7, ..., Y, have the form
0 0
Y=—+A—, A0)=0
8t + 82,:7 ( ) )

where A : B™(5) — M"™ ", We assume

V3. Y] =D v
=1

Definition 6.7. For s > s, if we say C'is a {s}-admissible constant it means
that A € €°(B"(5);M"*") and ¢;, € €°(B"(5)), 1 < j,k,l <n.C can be cho-
sen to depend only on s, sg, n, and upper bounds for ||A

%/s(Bn(S)’Man) and
Hcé.k||<gs(3n(5)), 1 < j,k,l <n.Fors < sy, we define {s}-admissible constants
to be {sp }-admissible constants.

PROPOSITION 6.8. There exists 7y = v2(n,so) > 0 (72 depending only on n
and sg) such that if || Al|gso(Bn(s)mm<n) < 72 then there exists @1 : B"(1) — B"(5)
such that:

(@) ®; €€ (B"(1);R") and | P, lls0+1(Bn (1)) < Dn,so» Where D s, de-
pends only on n and s.

(b) ||(I)1||%/'s+1(Bn(1)) S{s} 1, Vs > 0.

(c) ©,(0) =0and d®,(0) = I.

(d) ®((B"(1)) C B™(5) is open.

(e) ®;:B"(1) — ®1(B"(1)) is a €**" diffeomorphism.

Let l/}] = @Y, then
0 ~0

Y=—+A
8t+ ot’
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where
() //1\(9) = 0 and sup,cgn (1) | A(w)||pgnsn < L
@ [ Allgs1(an(aypann) Sgsy 1 s> 0.
0 1Y) llgstrBrymny Sty L s> 0.

The rest of this section is devoted to the proof of Proposition 6.8.

LEMMA 6.9. Fix 0,7, > 0. There exists v, =v2(n, s0,0,71) > 0 (72 depending
only on n, so, 0, and ~y1) such that if || Allgso(pn(symm<n) < 72 then there exists
H € €01 (B™(4);R") of the form H(t) =t + R(t) where

(a) H(B"™(4)) CR" is open and H : B"(4) — H(B"(4)) is a €*°*" diffeo-
morphism.

(b) R(0) =0 and dR(0) =0.

(c) R € (B"(4);R") with HRH%SOH(BHM);RH) <o.

(d) HR ¢s+1(Bn(3);R") S{s} 1 for all s > 0.

Moreover, let 17] = H.Y;. Then Y = % + A\% and
(e) Ifgj is the jth row of A, then > i a%jgj(v) =0forve H(B"(4)).

N . A ~k
(§) Ifaj is the (j,k) component of A, then a3 || L= (B (4))) < -

Proof. If o > 0 is sufficiently small, depending only on sy and n, and if (c)
holds, the Inverse Function Theorem implies (a). Thus, without loss of generality,
we shrink o > 0 so that (a) holds. (d) for s < sq follows from the result for s = s
(by the definition of {s}-admissible constants). Thus it suffices to prove (d) for
S > 50.

To begin, let R € €*0+1(B"(4);R"™) be any function satisfying R(0) = 0,
dR(0) =0, and || R|[4so+1(gn(4)mn) < 0 (We will later specialize to a specific choice
of R). To emphasize the dependance of H on R, we write Hp in place of H, so
that Hr(t) =t + R(t). Using the standard notation if R = (Ry,..., R, ), we have

rOR; ORy , ]

8—151(t) ot (t)
aR()=| s

oR,, OR,

L ot ) - Oty ®)]

Setting Y; := (Hg).Y;, a direct computation shows

-~ 5 ~ 9
V=" 1A=
+ (v)av,

where

67 A@)= (dR(t)T AW (T + dR(t)T)) ‘ . ve Hp(B"(4)).

t=Hz'(v)
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Without loss of generality, we take o < 3!, and by taking +, > 0 sufficiently small
(6.7) implies (f).

We wish to pick R so that
(6.8) zn:iﬁ-(v) =0, ve Hg(B"(4)).
= 87)j J ’

Define W(A,R)(t) := (V1 (A, R)(t),...,V, (A, R)(t)) by

V(A R)(t)

n P B B —
= Jz_:l 5 (AR @)+ AW @) (1 +ar (1 @))) |

’

v=HRg(t)

where the subscript j, k denotes taking the (j, k) component of the matrix. In light
of (6.7), (6.8) is equivalent to W (A, R)(t) =0, t € B"(4).
For any function K (t), the chain rule shows

(6.9) %K(HRI(U)) = dK(t)(I+dR(t))*1ej,

v=HRg(t)

where e; denotes the jth standard basis element—the point is that the right-hand
side of (6.9) is a function of dK (t) and dR(t). Thus, using the notation of Appen-
dix A.3, we have

U(A,R)(t)=g(2"A(t), 7°R(t))

for some smooth function g defined near the origin, with g(0,0) = 0. Furthermore,
it is easy to see that g(2' A(t), 2> R(t)) is quasilinear in R in the sense of (A.10).

We wish to solve for R in terms of A so that W(A,R) = 0, provided
| Allgso (B (s)mm<n) < 72, Where 72 is a chosen small as in the statement of
the lemma. To do this, we apply Proposition A.4; thus we need to make sure
g(Z2'A(t),2%R(t)) is elliptic in the sense of that proposition (where we are
replacing B with R in the statement of that proposition). Define &, as in (A.11);
we wish to show &, is elliptic. Note that

d
R— —| W(0,eR
de le=0 ( ' )
is a second order, constant coefficient, differential operator acting on R whose
principal symbol is &. Thus, we wish to show that this differential operator is
elliptic. It suffices to compute this operator in the special case when R € C*.
Assuming R is C*°, we have

Hep(t)=t+eR(t), Hp(v)=v—eR(v)+0(e),
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where O(e?) denotes a term which is C* in the variable ¢ or v, and all of whose
derivatives in this variable (of all orders > 0) are O(€?). Thus,

n

‘Ilk(()?eR) = Z a?}] < dR(HER( ))T)j k
=1 ’

'U:HeR(t)
_ Zn: o (edR(v)T) +0(&)
o v, Ik ly=t+eR(t)
n 8 8Rk 2
+0O(e
Z 8“) 811] v—t+5R(t) ( )
= Zf@Rk(t) +0(e).
j=1 7

Thus,

d

€

(0, eR) = Z ot Rl’z 81&2 Z 81&2 ’

e=0

and we conclude g(2' A(t), 2> R(t)) is elliptic in the sense of Proposition A.4.
We apply Proposition A.4 with D =4, n =3, and

N={Re€*"'(B"(4;R"):|R

oo (Br(a)mr) < O )

Thus, if 72 > 0 is sufficiently small, and if || Al (g (5)mm<n) < 72, We may solve
for R = R(A) € N such that ¥(A,R) =0, R(0) =0, dR(0) =0, and (c) and (d)
hold. As we saw earlier, ¥(A, R) = 0 is equivalent to (e), and (a) and (f) have
already been verified. This completes the proof. O

Remark 6.10. Throughout this paper, we fixed so > 1. It would be nice if we
could achieve the same results for so > 0, however technical issues arise if we try
to follow the methods of this paper with sg € (0, 1]. This is particularly notable in
the proof of Lemma 6.9. When sg > 1, the solutions we consider to the PDE which
arises in that lemma are classical, however if sy € (0, 1], it seems likely one would
have to consider some kind of generalized solution. A similar problem occurs in
the proof of Proposition 6.6.

Proof of Proposition 6.8. Let v; = v1(n) > 0 be as in Proposition 6.6. We
shrink ; > 0, if necessary, to ensure that if A is an n x n matrix with compo-
nents &f and |&f| <71, then H;{HMan < % We take oy, 5, > 0 to be so small that if
[ Rl gs0+1(Bn4)mn) < On,so We have

o If H(t) =t+ R(t), then B"(2) C H(B"(3)).

e detdH (t) > 3,Vt € B"(3).
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Applying Lemma 6.9 with this choice of v, and with o = o, 4, yields v, and
H as in that theorem. Since B™(2) C H(B™(3)), by the choice of oy, 5, and in
light of Lemma 6.9 (a), we may define ®; : B"(2) — B"(3) C B"(5) by ®,(t) =
H *l(t). (c), (d), and (e) follow from the corresponding properties of H described
in Lemma 6.9.

Since || H [|gs+1(pn(3)mn) Sis) 1 (by Lemma 6.9 (d)) and because detd H (t) >
1, Vt € B"(3) (by the choice of o = 7, 4,), we have ‘|¢1H<gs+l(Bn(/2\);Rn) Sty 1
(see Lemma 5.9), proving (b); the same proof gives (a) Moreover itY; =®7Y, =
H.Y;, we have ||i>j‘|<gs(Bn (2):Rn) S{s) 1. Writing Y = at Aaat, that A(0) =0
follows from (c) and the fact that A(0) = 0. That sup,cpn g ||A( M pnen < %
follows from the choice of «; and Lemma 6.9 (f). This establishes ).

All that remains to establish are the two (clearly equivalent) statements (g)
and (h). For this, we use Proposition 6.6. Since HXA/J

@s(Br(2):Rn) S{sy 1, we have
105 |52(Bn (2)) S{s} 1. Also, we have

[V}, V] = @;[Y;, 3] @IZchY} Zc]kY,

where éék, = Cégk: o ®y. Using (b), Lemma 5.8, and the assumption ||c§k @s(B(5))

%s(Bn(2)) S{s} 1. Finally, Lemma 6.9 (e) and (f) show

Sysy 1, this implies Héék, 1 a
that all of the hypotheses of Proposition 6.6 hold for Y7,...,Y,,. Applying Proposi-
tion 6.6 yields (g) and (h), completing the proof. U

6.6. Construction of ®,. In this section, we prove Proposition 6.3, and
we take the same setting and notation as in that proposition; thus, we have vector
fields Yy,...,Y,, and functions cf’ '; as in that proposition, and we have a notion of
{s}—admiss1ble constants given in Definition 6.1. Because of this definition of {s}-
admissible constants, it suffices to assume s > s in all of Proposition 6.3. Thus, in

this section we consider only s > s.

LEMMA 6.11. Define, for’y €(0,1], Oy : B™(m /v) — B”(m) by U, (t) =~t.
Let Y’Y = yULY]. Then, Y]'Y =5 +Aﬂ,at and [YV =3 1€k ’VYV where for
v € (0 min{%,1}], s > s,

l
(6.10) 1Ay lls(Br(sypamm) Sgsy s N5 allesBrs)) Sisy -

Proof. Since A, (t) = A(vt) and A(0) =0, that [|Ay s (Bn(s)mmn) Sts) Y

follows from Lemma 5.10 (this uses s > so > 1). Since cél( ) = Wcé»’k(yt),

ch7k, @s(Br(5) S{s} v follows directly from the definitions (this uses 7 €
(0, 1] O
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Proof of Proposition 6.3. Let A, c%, and Yj'y be as in Lemma 6.11. Fix 7, =
Y2(n,s0) > 0 as in Proposition 6.8. Take v ~(,} 1 so small v < min{%,1} and
[ Ay [0 (7 (5)mny < 72 (this is clearly possible by (6.10)). With this choice of
Y, We have ||C§-’l||<gs(3n(5)) S{s} Yy < 1 and ||Ary||(gs(Bn(5)) S{s} Yy < 1, for s > S50,
by (6.10).

In light of these remarks, Proposition 6.8 applies to Y{",...,Y;] to yield a
map ®; : B"(1) — B"(5) as in that proposition (and constants which are {s}-
admissible in the sense of that proposition are {s}-admissible in the sense of this
section). Let 17;’ = <I>’fY]7.

Set @ :=W.0®;: B"(1) — B"(n), and let Y; = ®3Y;. Note that Y; = K'Y,
where K := % > 1 is an {so}-admissible constant. With this choice of K and ®,,

the proposition follows from the corresponding results for ®; and 1717, ...,Y;] given
in Proposition 6.8. U

6.7. Qualitative results. We now turn to the qualitative results; i.e., Theo-
rems 2.4 and 2.7. These are simple consequences of Theorem 2.14. We begin with
Theorem 2.4. For this we recall [SS18, Proposition 4.14].

LEMMA 6.12 (Proposition 4.14 of [SS18]). Let X,..., X, be C! vector fields
on a C? manifold IN.

o Vg€ M, In >0, such that Xy,..., X, satisfy C(xo,n,M).

o Let K @ 9 be a compact set. Then, there exists &y > 0 such that V0 € S9!
if v € K is such that 0, X (z) 4 -+ 0,X,(x) # 0, then ¥r € (0, 5],

e?"91X1+“‘+7"9quaj ?é .

Remark 6.13. Lemma 6.12 shows that we always have 7 and dg as in the as-
sumptions of Theorem 2.14. Thus, if we wish to apply Theorem 2.14 to obtain a
qualitative result, we do not need to verify the existence of 1 and d.

Proof of Theorem 2.4. (i)=-(ii): First we prove the result with s < . Let U,
V, o, and ® be as in (i). Without loss of generality assume 0 € U and ®(0) = xy.
Reorder X1,..., X, so that X (xo),...,X,(zo) are linearly independent and let
Y; = ®*Xj, so that Y; € €571 (U;R"), 1 < j < q. Note that Y7(0),...,Y,,(0) span
the tangent space ToU. Let > 0 be so small B"(2n) C U and Y7, ...,Y,, form a
basis for the tangent space on B™(2n). It is immediate to verify, for 1 < j,k < g,
that

(6.11) Y. Y] =) &Y,
=1
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where 62-7 x € €°(B"(n)). Because Y7,...,Y, span the tangent space at every point
of B"(2n) and Y; € €**1(B™(2n);R™), 1 < j < g, Corollary 5.13 implies

(6.12) & €€ (B"(n) =€ (B"(n)).

Pushing (6.11) forward via ® shows [X;, X} ] =>"/" | & ; le, with é c 5= c ko®” L
(2.3) and (6.12) combine to give c K ECX(2(B"(n))).

Using that Y7,...,Y,, span the tangent space at every point of B™(2n) and that
Y; e ST U;R™), 1 < j <gq,forn+1<j<q, we may write

(6.13) v, =S By,

where ZNJS? € ¢ (B™(n)). By Corollary 5.13, l;;? € ¢ (B (n)) =€ (B (n)),
and by (2.3), b¥ = Dk o @~ € G (®(B"())). Pushing (6.13) forward via @,
we have X; = >, be r on ®(B"™(n)) this completes the proof of (ii) with V'
replaced by ®(B"(n)), when s < eo.

If s = o note that in the above proof 7, ég > and bé‘? can be chosen independent
of s, thus when s = o the above proof applied to each s < oo completes the proof
of (ii).

(i1)=-(iii): Suppose (ii) holds. We wish to show for 1 <1i,j <g,

(6.14) (X, X;] Zczjxk, ki eek(V).

where s and V' are as in (ii). For 1 <i,5 <mn, (6.14) is contained in (ii). We prove
the result for n+1 <4,j < ¢q. The remaining cases (1 <i<nandn+1<j <gq,
orn+1<i<gand 1 <j <n)are similar and easier. We have

n n
[X:,X;] = Z b Xy, Z b;?Zsz

ki1=1 k=1
— Z (bfl (Xklbe)sz—b?Z(Xkafl)Xkl+belbkzé§ﬂ kzX,).
ki,ko=1 =1

We are given b;? €€y (V) and Chy &y, € €x (V). It follows immediately from the
definition of ‘f)s(“ that X; b;? € €5 (V). From here, (6.14) follows from the fact that
€5 (V) is an algebra (see Lemma 5.7), completing the proof of (iii).

(iii)=-(i): This is a consequence of Theorem 2.14. We make a few comments
to this end. First of all, as discussed in Lemma 6.12 and Remark 6.13, there exist
n and d¢ as in the hypotheses of Theorem 2.14. Fix any sg € (1,s]\ {0} and take
¢ > 0sosmall Bx(zg,§) C V. Take Jy as in Theorem 2.14 (with ¢ = 1). We have,
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directly from the definitions,
Cﬁj € (5)5((‘/) C (5)5((BX (z0,8)) C (g)S(JO (BXJO (z0,€)) (g)s(OJO (BXJO (70,8))-

Thus, all of the hypotheses of Theorem 2.14 hold for this choice of sg. This yields
a map ® as in Theorem 2.14. This map satisfies the conclusions of (i), and this
completes the proof. U

We now turn to Theorem 2.7. The uniqueness of the €"**2 structure described
in that theorem follows from the next lemma.

LEMMA 6.14. Fix s € (0,0|. Let M and N be two n-dimensional €*** mani-
folds, and suppose X1,...,X, are €+ vector fields on M which span the tangent
space at every point, and Z1, ..., Zq are €+ vector fields on N. Let W : M — N
be a C? diffeomorphism such that ¥, X; = Z;. Then V is a ¢* diffeomorphism.

Proof. We first prove the result in the special case when M and N are open
subsets of R™; in this case we can identify the vector fields with R™ valued func-
tions, in the usual way. We use x to denote points in M C R™ and y to denote a
points in N C R™.

Fix a point zy € M, we will show V¥ & ‘Klfm“ on a neighborhood of z; since
xo € M is arbitrary, this will complete the proof of the case when M and N are
open subsets of R"™. Reorder X7, ..., X, so that X{(x),..., X, (xo) are linearly in-
dependent; and reorder 71, ..., Z, in the same way to that we still have ¥, X, = Z;.
Since X (z9),...,Xn(zo) form a basis of T, M, we may pick an open neighbor-
hood U of zg so that X(z),..., X, (z) form a basis for the tangent space at every
zel.

Let 2 (z) := (X (x)|--- | Xn(2)); ie., Z is the n x n matrix whose columns
are given by the vectors X1i,...,X,. Similarly, let Z(y) = (Z1(y)|...|Zn(y)).
By hypothesis, we have 2 € €°F(M;M"*") and 2 € €5 (N;M"*™). Since

loc loc
v, X; = Z;, we have the matrix equation

(6.15) dV(x) 2 (z) = Z(¥(x)), x€ M.

Since X1,...,X, span the tangent space at every point of U, the matrix 2~ is
invertible, Vz € U. It follows from Lemma 5.7 (by using the cofactor formula for
2 (2)71), that 27 (-)~! € €71 (U; M™*™). From (6.15), we obtain

loc

(6.16) d¥(z) =2 (V(2)) 2 (z)"", zel.

Suppose ¥ € %S/”(U;R”), for some s’ > 0. We will show

loc

T e (gmin{s’+3,8+2}(U;Rn);

loc
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and then it will follow by iteration that U € €*/?(U;R"), as desired. This will
complete the proof since CZ,.(U;R™) C 62.(U;R™). Since ¥ € €5 +2(U;R") and

loc
Z € €5 (N; M), it follows from Lemma 5.15 that

loc

oV Cgmin{s'+27s+l}(U;Mn><n)‘

loc

Since we have already shown 2°(:)~!' € €H(U;M™™), it follows from
Lemma 5.7 and (6.16) that
AV (z) = Z(U(2)) 2 (z)' € gmmH2 0 ypromy,

loc

Since we also have ¥ € ‘Klf)':z(U;R”), it follows that ¥ € ‘Klﬁn{s/H’HZ}(U;R”),
as desired. This completes the proof in the case when M and NN are open subsets
of R™.

We now turn to the general case, where M and N are ¢**? manifolds of
dimension n, and Xj,..., Xy, Zi,...,Z,, and ¥ are as in the statement of the
lemma. Since M and N are €**? manifolds they have associated €**2 atlases

{(¢a,Va)} and { (¢, Wp)}, respectively. We wish to show, Ve, 3,

Wa = 30006, s fu (Va0 (Wa)) — w5 (W (V) (W5)

is a ¢’**? diffeomorphism, and this will complete the proof.
By hypothesis, we have

(Yap).((¢a),X5) = (v5).2)-

Since (¢a)«X1,- .-, (¢a)eXq and (¥5).Z1,..., (¥5).Zy are €571 vector fields, by
hypothesis, and (¢q)«X1,...,(¢a)«X, span the tangent space at every point of
®a(Vy), it follows from the above case (when M and N are open subsets of R™),
that W, gisa ¢**? diffeomorphism. This completes the proof. U

Proof of Theorem 2.7. (ii)=-(i): Under the condition (ii), for each x € M, there
exist open sets U, CR", V,, C M, and a Cc? diffeomorphism @, : U, — V, such
thatif Y = ©7 X, then Y* € €1 (U,;R™). We wish to show that the collection
{(®,;1,V,) : 2 € M} forms a €2 atlas on M once that is shown, (i) will follow
since the X; will be €*+1 with respect to this atlas by definition, and this atlas is
clearly compatible with the C? structure on M. Hence, we need only verify that
the transition functions are ‘51‘;32 Take x1,22 € M such that V,;, NV, # 0. Set
V=0, lod, Uy NP, (V) = Up, N®, ! (Vz,). We wish to show W is a €512
diffeomorphism. We already know W is a C? diffeomorphism and W *Yj"’”1 = Yj”.
That ¥ is a €2 diffeomorphism now follows from Lemma 6.14, completing the
proof of (i).

(i)=-(iii): Suppose (i) holds. Using a simple partition of unity argument,
we may write [X;, X;] = >1, c;le, where cé»’k : M — R and are 6;°

e maps.
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We wish to show Vg € M, 3V C M open with o € V and ¢} [, € €5%(V).
Fix g € M, and let W C M be a neighborhood of x( such that there is a
¢*+2 diffeomoprhism ® : B"(1) — W with ®(0) = x¢. Set Y; = ®*X, so
that Y; € €°*1(B"(3/4);R") and Yi,...,Y, span the tangent space at ev-
ery point of B™(1). Also we have cé.’k od € ¢°(B"(3/4)). Corollary 5.13 shows
ch po® € €*(B"(1/2)) =6y (B"(1/2)) and (2.3) shows ¢, ; € €3 (®(B"(1/2))).
This proves (i) with V = ®(B"(1/2)).

(ii1)=-(ii1): This is obvious.

Finally, as mentioned before, the uniqueness of the %512 manifold structure,
as described in the theorem, is an immediate consequence of Lemma 6.14. O

7. Holder spaces. Let {2 C R" be a bounded, Lipschitz domain. It is easy
to see that for m € N, s € [0, 1], m + s > 0 we have the containment C"*(Q2) C
¢™5(Q). Form e N, s € (0,1), we also have the reverse containment €™ "%(2) C
C™#(§2); this follows easily from [Tri06, Theorem 1.118 (i)].

When we move to the corresponding spaces with respect to C'! vector fields
Xi,...,X ona C? manifold M, we have similar results. For any m € N, s € [0, 1]
with m+ s > 0, we have C{"*(M) C €y *(M); see [SS18, Lemma 8.1]. The
reverse containment for m € N and s € (0,1) is a bit more difficult and requires
appropriate hypotheses on the vector fields. We state a quantitative local version of
this in the next proposition.

PROPOSITION 7.1. We take all the same assumptions and notation as in Theo-
rem 2.14, and let ® be as in that theorem (and { s }-admissible constants as in Def-

inition 2.13). Then, for m € N, s € (0,1), and for any function f € C(®(B"(1))),

(7.1) 1f o=@ (1)) Rimts—23 | f llgpss @i ))-

Proof. We use Lemma 5.6; in particular, for g € C(B™(1)), me N, s € (0,1),

(7.2) lglloms (Br 1)) = [lgllgm+s (B (1)),

where the implicit constants depend only on m + s and n. Let Y; = ®* X, and let
A be as in Theorem 2.14. Letting Y; = ®* X;, Theorem 2.14 (j) shows

[Yjllgm+s—1(Bn1ymn) S{mts—2y 1

and therefore by (7.2), [|Yjllcm-1.s(gn(1)mn) Sgm+s—2y 1. Here, we are using the
convention in Remark 5.11 to define C~ ! and €*~! when s — 1 < 0. Similarly, we
have || Allgm+s-1(pn(1)ypmsny, | Allom-rs(Br1)mn) Spmts—2) 1-

Since Y, = K (I + A)V we have V= K (I + A)~'Y},. Thus, we may write
V as a linear combination of Y7, ..., Y, with coefficients whose C™~1¥(B"(1))
and €5~ 1(B™(1)) norms are S50y 1.
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With all of the above remarks, Proposition 5.12 shows for any g € B"(1),

lgllcms(Bn(1)) Rm+s—23 19l e n (1)

lg

s (B (1) Fmes-2} 19l mn1))-

Combining this with (7.2), we have

(7.3) 9l oz (Br (1)) R mas—23 19llggsmn 1y

(2.3) shows

1f o @l srry) = 1f e @(Bra)))
1S o ®@llegmss (1)) = [ lgm=@(Bna1)):-
Combining this and (7.3) with g = f o ® yields (7.1) and completes the proof. []

Similarly, we may create Holder versions of Theorems 2.4 and 2.7. We state
these results here. We take the same setup as in Theorems 2.4 and 2.7.

COROLLARY 7.2. (The local result) For m € N, m > 1 and s € (0,1) the
following three conditions are equivalent:
(i) There is an open neighborhood V- C M of zo and a C? diffeomorphism
O : U — V where U C R" is open, such that ®*X1,...,®* X, € CmHLs(U;RM).
(ii) Re-order the vector fields so that X|(x),..., X (xo) are linearly inde-
pendent. There is an open neighborhood V- C M of xq such that:
o [Xi, X;] =20 8 Xy 1 <i,j <n, where & ; € CY"°(V).
e Forn+1<j<¢q X;=>}_, bek, where b;‘? € C’?H’S(V).
(iii) There exists an open neighborhood V- C M of xo such that [ X;, X;| =
zzzlc’?’ij, 1 <i,j <q, where Cf,j e O (V).

)

Proof. (1)=-(ii)=-(iii) has a nearly identical proof to the corresponding results
in Theorem 2.4, and we leave the details to the reader. Assume (iii) holds. Then,
since C'¢"* (V) C €3 *(V) (by [SS18, Lemma 8.1]) we have that Theorem 2.4 (iii)
holds (with s replaced by m + s). Therefore, Theorem 2.4 (i) holds (again, with s
replaced by m+-s); we may shrink U in Theorem 2.4 (i) so that it is a Euclidean ball.
Letting ® be as in Theorem 2.4 (i), we have ®*X|,...,®* X, € €T (U;R").
Since U is a ball, Lemma 5.6 shows ¢ "sT1(U;R?) = C™"1L3(U;R™) (this is
the point where we use s 7 0, 1). (i) follows, completing the proof. O

Remark 7.3. The only place m > 1, s # 0,1 was used in Corollary 7.2 was
(iii)=-(i). The implications (i)=-(ii)=-(iii) hold for m € N, s € [0, 1] with the same
proof. We do not know whether (iii)=-(i) holds for m =0 or s =0, 1.

COROLLARY 7.4. (The global result) For m € N, m > 1 and s € (0,1), the
following three conditions are equivalent.
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(1) There exists a C™ 25 atlas on M, compatible with its C? structure, such
that X1, ..., X, are C™ 1% with respect to this atlas.

(i1) Foreach xg € M, any of the three equivalent conditions from Corollary 7.2
holds for this choice of x.

(i) [X;,X;] = Zzzlcﬁij, 1 <i,j <q, where Vxo € M, 3V C M open
with o € V such that cﬁj v ECY’(V), 1<i,j,k<q

Furthermore, under these conditions, the C™12:5 manifold structure on M in-
duced by the atlas from (i) is unique, in the sense that if there is another C" 25
atlas on M, compatible with its C? structure, and such that X1, ... ,Xqare cmtls
with respect to this second atlas, then the identity map M — M is a C™ %5 dif-
feomorphism between these two C™ 2% manifold structures on M.

Proof. With Corollary 7.2 in hand, the proof is nearly identical to the proof of
Theorem 2.7 and we leave the details to the reader. U

Appendix A. Elliptic PDEs. We require quantitative versions of some
standard results from elliptic PDEs. The proofs of these results are well known,
and the quantitative versions follow by keeping track of constants in the proofs.
We make no effort to present the results or proofs in greatest generality, and only
present what is needed for this paper.

A.l. Regularity of linear elliptic equations. Let £ be a constant coeffi-
cient partial differential operator of order M,

E:C”(R%C™) — C=(R™C™),

where my > m;. We may think of £ as a my X m; matrix of constant coefficient
partial differential operators of order < M.

Fix D € (0,00). Let £ =}, <ps Ca(2)0F Where ¢q : B"(D) — M™*™(C).
For u: B"(D) — C™ and g : B"(D) — C™ we consider the equation

(A.1) (E+Lu=g.

PROPOSITION A.l. Suppose & is elliptic, and fix g > 0. There exists v =
Y(€) > 0 such that if u and g satisfy (A.1) and ||ca || =(Bn(D)pamaxmiy < 7, Vo
then the following holds for all s > sy >0, n € (0, D),

ue ¢ M(B"(D);C™), g € €°(B"(D);C™),

(A.2)
Ca € CHO(BM(D);MM™*™) = 4 € €M (B"(n);C™).

Moreover we have

(A3) HUH%/'S*M(B”(U);(C’"I) < C (Hg”%/'s(Bn(D);(cmz) + Hu (6)50+A1(BW(D);Cm1)) 5
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where C' can be chosen to depend only on sg, s, £, D, 0, €y, and upper bounds for
llca U

¢t (B (D);M™m2xM2)s (550+A{(Bn(D)), and HQH%/‘S(B"(D);C’"Q)‘

Proof sketch. We sketch a proof of (A.2) using theory from [Tay11]. There are
many proofs of this result which are well known to experts. We use the theory from
[Tay11] because that reference uses Zygmund spaces, while many other references
only state results for Holder spaces with non-integer exponents (even though many
of these proofs can be generalized to Zygmund spaces). The quantitative estimate,
(A.3), follows by keeping track of constants in this proof. For Zygmund spaces,
[Tay11] uses the notation C instead of €”*(R"™)—for this proof, we use this nota-
tion to help the reader make the connection with the results in that book.

Note that if v = v(£) > 0 is sufficiently small, £ + £ is uniformly el-
liptic on B"(D). Let u € €**M(B"(D),C™), g € €*(B"(D);C™), and
Co € €5T(B™(D);M™2*"™) satisfying (A.1). Fix € (0, D) and take ¢, ¢2, ¢3 €
Cy (B™(D)) such that ¢; = 1 on a neighborhood of the support of ¢;_; and ¢; =1
on a neighborhood of the closure of B"(n). Since (€ + L)u = g, we have

(A4) $2(E+ L)d3u = ¢ag.

Using the notation of Chapter 13, Section 9 of [Tayll], we have ¢(€ + L) =
a(x, D) where a(z,£) € C:T 5N

Set § = min { Pt ‘Z;‘:g} so that 6 € (0, 1). By Proposition 9.9 of Chapter 13
of [Tayl1],

a(xz,&) = aﬁ(:n,ﬁ) +ab(ac,£), at e Sf\f;, a’ e Cf*eOS%{(HEO)&.
Note that since £ + L is elliptic on B™(D), a is elliptic on a neighborhood of the

support of ¢;, and the same is therefore true of a’.
Rewriting (A.4) we have

(A.5) a*(z,D)p3u = ¢og — a’(x, D) p3u.

Since ¢su € CfMM, by assumption, Proposition 9.10 of Chapter 13 of [Tayl1]
implies a’(z, D)¢p3u € ¢ sotmin{eo,s=so}, Combining this with ¢pg € C'¥ we have
a*(x, D)p3u € Cotmin{eo.s=so}

Since a is elliptic on a neighborhood of the support of ¢, we conclude ¢;u €
cgorMrmin{eo. 570} 44 d therefore u € ¢ %o+ M+min{eo,s—so} (B™(n);C™). (A.2) fol-
lows by iterating this result. g

Remark A.2. In [Tayl1] a different (but equivalent) norm is used in the defi-
nition of €’*(B™(n)) (see Remark 5.1). The constants in this eqivalence depend on
s, n, and 7. This does not create a problem in Proposition A.1 since C' is allowed
to depend on £ (and therefore on n), s, sg, 1, and D.
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A.2. Regularity for a nonlinear elliptic equation. Let £ be a constant
coefficient, first order, partial differential operator,

E:CT(R"C™) — C™(R™;,C™),

where my > mj. We may think of £ as a my X m; matrix of constant coefficient
partial differential operators of order < 1.

Let I': C™ x C™™ — C" be a bilinear map. Fix D > 0, we consider the
equation, for b: B"(D) — C™, ¢: B"(D) — C™2,

(A.6) Eb+T(b,Vb) =ec.

PROPOSITION A.3. Suppose & is elliptic. Then, there exists v =~(E,T) >0
such that if b and c satisfy (A.6), and if for some si,sp) > 0 we have c €
%Sz(Bn(D);(sz), b e (551+1(Bn(D);(le), with ||b||L°°(B”(D);(le) <, then
foralln € (0,D), b€ €21 (BN (n);C™). Moreover,

16

@=2+1(Bn () cm) <O (Hb g1 (Brp)cm) Tl (gsz(Bn(D);cmz)> :

where C' can be chosen to depend only on sy, sy, D, n, €, I, and upper bounds for
b

(6)81+1(BH(D);CWL1) and HCH%SZ(B”(D);CMZ)’

Proof. We will show, under the hypotheses of the proposition, that there exists
~v=~(&,T) > 0 such that if b and c are as in the proposition, we have for n € (0, D),

(A7) be grter e (B () e,
and
(A.8)
1Bl gminter+3/2.5241 (s y < € (Hb @1+ (Br(D)Ccm) T HCH%/'SZ(B”(D);C’"2)>7

where C'is as in the statement of the proposition. The result then follows by itera-
tion.

We use Proposition A.1 with M =1, ¢y = %, so=s1, and s:rnin{SQ,sH—%}
applied to (A.6). With these choices, if v =v(&,T") > 0 is sufficiently small, Propo-
sition A.1 applies to prove (A.7) and (A.8), completing the proof. (]

A.3. Existence for a nonlinear elliptic equation. Fix D >0, m,m, € N.
For functions A : B"(D) — R™ and B : B"(D) — R write

P'A=(02A) 01, P°B=(9B)jaj<2. Z2B=(09B)a-2

so that, for example, 22 B is the vector of all partial derivatives of B up to order 2,
and %, B is the vector of all partial derivatives of B of order exactly 2.
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Fix a C* function g. We wish to consider the equation
(A.9) 9(2'A(z),2°B(x)) =0.

Here g is C** and defined on a neighborhood of the origin, takes values in R™2, and
satisfies g(0,0) = 0. Our goal is to give conditions on g so that given A (sufficiently
small), we can find B = B(A) so that (A.9) holds; we further wish to understand
the regularity properties of B in a quantitative way.

Though it is not necessary for the results that follow, we assume (A.9) is quasi-
linear in B, which is sufficient for our purposes and simplifies the proof. That is,
we assume

(A.10)
9(2' A2), 7*B(z)) = 91 (A(), 7' B()) 22 B(x) + 92(2" A(z), 7' B(x)),

where g; and g, are smooth on a neighborhood of the origin, g; takes values in
matrices of an appropriate size, and g,(0,0) = 0.
Finally, let & denote the second order partial differential operator

(A.ll) SzB = gl(0,0)ng,

so that & is an my x my matrix of constant, real coefficient partial differential
operators of order < 2.

PROPOSITION A.4. Suppose & is elliptic. Fix sy > 0 and a neigh-
borhood N C €*'(B"(D);R™) of 0. Then, there exists a neighborhood
W C €s0(B™(D);R™) of 0 and a map

B:W — N
such that
(A.12) 9(2'A(z),2°#(A)(x)) =0, x€B"(D), Ac W.
This map satisfies 2' B(A)(0) =0, VA € W, and
(A.13) 1B (A)llg2+50 (n (D)) < CllAllgr+s0 (Bn(pymm )5

where C does not depend on A € W. Finally, for n € (0,D), let R, denote the
restriction map R, : f f‘B”(n)' Then, for s > so, n € (0,D),

(A.14) R,0B:€"*(B"(D);R™)NW — €2"(B"(n);R™),
and

(A.15) ([ By 0 B(A)||g2+5 (Br(mymma) < Copns
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where Cs ;, can be chosen to depend on an upper bound for || Al 1+s(gr(pyrm)
and does not depend on A € W in any other way. It can depend on any of the other

ingredients in the problem.

The rest of this section is devoted to a sketch of a proof of Proposition A.4.
The proof is a standard application of the Inverse Function Theorem combined
with Proposition A.1; we include the proof as it gives the required quantitative
estimates, which are essential for our purposes.

By expanding g into a Taylor series, we have

9(2'A,2°B) = 4 A+ EB+q(2'A,2°B),

where .7 is a first order linear differential operator with constant coefficients, £ is a
second order linear differential operator with constant coefficients whose principal
symbol is &, and ¢ is smooth and vanishes to second order at (0,0).

Since £ is elliptic (because & is), it is a standard fact that £ has a continuous
right inverse

P €% (B"(D);R™) — €25 (B"(D);R™),

where EP = I and for all || < 1, 03P(B)(z)| 0.

Set

=0

F(A,B)(z) = (A(z),9(2'A(z), 2*|-Po/ A+ PB)(z))).

Fix (small) open neighborhoods Ny, Uy C €50 (B™(D);R™)x¢* (B"(D);R™)
of (0,0), to be chosen later. We take Uy = Up(Ny) small enough that F': Uy — Np.

LEMMA A.5. There exists an open neighborhood Wy C Ny of (0,0) and a map
G : Wy — Uy such that F(G(A,B)) = (A, B) and

||G(A, B) (gl+50 (B"(D);le )Xcgso (B”(D);R’"Z)

(A10) < C||(A.B)

@150 (Bn(D):R™ ) x €0 (Bn (D);R™2)>
where C' does not depend on the choice of (A, B) € Wj.

Proof. Ttis clear that F'is a C' map F': Uy C €750 x €% — Ny C €175 x
¢* with F'(0) =0and dF'(0) = I. The lemma now follows from the usual Inverse
Function Theorem on Banach spaces. O

Let Wy be as in Lemma A.5 and set W := {A: (A4,0) € Wy}. Note that W C
€'+50(B™(D);R™) is an open neighborhood of 0. Taking G as in Lemma A.5 it
is easy to see that GG is of the form G(A, B) = (A,G(A, B)). We set

B(A) = —Pod A+PG(A,0).
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It is clear that & satisfies (A.12). By taking Ny small, we may take Uy and W as
small as we like. Thus, because the range of G is contained in Uy, if Ny, Uy, and
W are chosen to be sufficiently small we have % : W — N. Furthermore, by the
choice of P we have 2! %(A)(0) = 0. Also, (A.13) follows from (A.16) and the
continuity of P.

It remains to prove (A.14) and (A.15). For this, we use that we have the flexibil-
ity to take Uy and Ny as small as we like (though they must be chosen independent
of s).

Let v = v(&) > 0 be as in Proposition A.1. By taking Ny and Uy sufficiently
small, and using the fact that g; is smooth, we have for A € W, every coefficient of
the differential operator £ := (g;(A(x), 2' B(A)(z)) — 1(0,0))Z, has L™ norm
< ~y; indeed, since Wy C Ny, taking Ny small forces W), and therefore W, to be a
small neighborhood of 0. Setting B = %(A), we will apply Proposition A.1 (with
u = B) to the equation

(A17) (&+L)B=g (A(a:),@lB(m))QzB(x) = —gz(QIA(a;),@lB(m)).
Let 0 < <m < D. We will show for s > s5 > s9, A€ W, B=%(A),

A€ €' (B"(D):R™), B € €*(B"(1,):R™)

(A.18) .

—Be (52+82+mln{§78752}(Bn(,’71);Rmz)’
with
(Alg) ”B (52+52+min{%,s—sz}(Bn(nl);Rmz) S C8,52777177727

where  Css, 5 can be chosen to depend on |[|Allgiesgn(pyrmi) and
I|B @2+52(Bn (np):km2)> DUt not depend on A or B in any other way. It can de-
pend on any other ingredient in the problem. (A.14) and (A.15) follow from (A.18)
and (A.19) via a simple iteration. Thus we prove (A.18) and (A.19) which will
complete the proof.

Since g; and g, are smooth, if A € €!** and B € €2, we have
g1(A,.QIB) c €52+l and gz(.@lA,.@lB) c (gmin{s,sfrl} C cgmin{s,sz+%} (see
Lemma 5.8). Furthermore, we have

(A.20) llg1(A, -QIB)H%SNM H92(91A> QlB)H(gmin{s,ser%} < 08,82777177727

where Cs s, 1, 1, is as above; in particular, the estimate on g (A, 2 'B) in (A.20)
shows that the coefficients of £ are in €*2*! with €*>*! norms bounded by
Cs,s5,m,m» Where Cs ,, ., is as above. Applying Proposition A.1 to (A.17) with
M =2, sp = sp, s = min{s,s; + %}, and ¢ = %, and using the estimate on

¢(2'A, 2' B) in (A.20), (A.18) and (A.19) follow, completing the proof.
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A.4. An elliptic operator. In this section, we discuss a particular first or-
der, overdetermined, constant coefficient, linear, elliptic operator which is needed
in this paper. For a function A = (4,,...,4,) € C*(R";R") we define

0 0 "0
A= <a—tﬁ‘k‘a—ta“j>lg<kgn’§a—t5“j
LEMMA A.6. & is elliptic.
Proof. Tt is easy to compute £*€ directly to see
EEA=— ” g—; ,
j=1""7
and the result follows. U

A more abstract way to see Lemma A.6 is as follows. We identify A with the
1-form A = Aydt; + Ardty, + - - + A, dt,,. Then,

0 0 "9
A= — A ——A; ; A=—Y —A,
A= Y <atj = J>dt3/\dtk, 5 ;(%j .

1<j<k<n

where 6 denotes the codifferential on R™. Hence, £ can be written as €A =
(dA,—d0A), and therefore £*E = dé + dd. Le., £*E is the Laplace-de Rham
operator acting on 1-forms, and is therefore elliptic.
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