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COORDINATES ADAPTED TO VECTOR FIELDS II: SHARP RESULTS

By BRIAN STREET

Abstract. Given a finite collection of C1 vector fields on a C2 manifold which span the tangent space
at every point, we consider the question of when there is locally a coordinate system in which these
vector fields are C s+1 for s ∈ (1,∞], where C s denotes the Zygmund space of order s. We give
necessary and sufficient, coordinate-free conditions for the existence of such a coordinate system.
Moreover, we present a quantitative study of these coordinate charts. This is the second part in a
three part series of papers. The first part, joint with Stovall, addressed the same question, though
the results were not sharp, and showed how such coordinate charts can be viewed as scaling maps
in sub-Riemannian geometry. When viewed in this light, these results can be seen as strengthening
and generalizing previous works on the quantitative theory of sub-Riemannian geometry, initiated by
Nagel, Stein, and Wainger, and furthered by Tao and Wright, the author, and others. In the third part,
we prove similar results concerning real analyticity.

1. Introduction. Let X1, . . . ,Xq be C1 vector fields on a C2 manifold M ,
which span the tangent space at every point of M . For s > 0, let C s denote the
Zygmund space of order s, and let C ∞ denote C∞ (for non-integer s, the Zygmund
space coincides with the classical Hölder space—see Section 5.1 for more details
on Zygmund spaces). In this paper, we investigate the following closely related
questions for s ∈ (1,∞]:

(i) When is there a coordinate system near a fixed point x0 ∈M such that the
vector fields X1, . . . ,Xq are C s+1 in this coordinate system?

(ii) When is there a C s+2 manifold structure on M , compatible with its C2

structure, such that X1, . . . ,Xq are C s+1 with respect to this structure? When such
a structure exists, we will see it is unique.

(iii) When there is a a coordinate system as in (i), how can we pick it so that
X1, . . . ,Xq are “normalized” in this coordinate system in a quantitative way which
is useful for applying techniques from analysis?
We present necessary and sufficient conditions for (i) and (ii), and under these
conditions give a quantitative answer to (iii).

The heart of this paper is (iii); (i) and (ii) are simple consequences of our an-
swer to (iii). The first paper in this series, joint with Stovall, [SS18] focused on a
solution to (iii) which “lost one derivative”. In this paper, we take the coordinate
chart developed in [SS18] as a black box, and show how to improve it to give the
sharp result. The methods in [SS18] are based on ODEs, while the methods in this

Manuscript received December 6, 2018.
Research supported in part by NSF grants DMS-1401671 and DMS-1764265.
American Journal of Mathematics 143 (2021), 1791–1840. © 2021 by Johns Hopkins University Press.

1791



1792 B. STREET

paper are based on elliptic PDEs. These PDE methods were inspired by, and are
closely related to, Malgrange’s celebrated proof of the Newlander-Nirenberg theo-
rem [Mal69]. In the third paper in this series, [Str21], we return to ODE methods
to prove analogous results concerning real analyticity.

The coordinate charts developed in (iii) can be viewed as scaling maps in sub-
Riemannian geometry. When viewed in this light, these coordinate charts can be
seen as the latest results on the quantitative theory of sub-Riemannian geometry
which was initiated by Nagel, Stein, and Wainger [NSW85] and C. Fefferman and
Sánchez-Calle [FSC86], and furthered by many others, including Tao and Wright
[TW03] and the author [Str11]. We refer the reader to [SS18] for how these charts
can be viewed as scaling maps, as well as a more leisurely introduction to the
questions investigated in this paper.

This paper is a continuation of the results in [SS18]. That paper gives several
applications and motivations for the results described here (see, also, Remarks 2.16
and 2.17), and a more leisurely description of some of the main definitions (though
we include all necessary definitions in this paper, so that the statement of the results
is self-contained).

The results in this paper are a key tool in a companion paper where we study
analogous questions regarding complex vector fields [Str20]. When viewed from
the perspective of sub-Riemannian geometry, this companion paper allows us to
create a quantitative theory of sub-Riemannian geometry which is adapted to the
complex structure of a complex manifold. We call this sub-Hermitian geometry;
see [Str20] for more details.

Remark 1.1. The results in this paper may be reminiscent of the celebrated
results of DeTurck and Kazdan [DK81] regarding a coordinate system in which
a Riemnnian metric tensor has optimal regularity—which also used the methods
introduced by Malgrange [Mal69]. However, there does not seem to be a direct
relationship between our results and theirs.

Acknowledgment. This material is partially based upon work supported by the
NSF under grant DMS-1440140 while the author was in residence at the Mathemat-
ical Sciences Research Institute in Berkeley, California, during the spring semester
of 2017.

2. Results. In this section, we present the main results of this paper. In Sec-
tion 5 (also in [SS18, Section 2]), Zygmund spaces are defined, where a distinction
is made between Zygmund spaces on a subset of Rn, and Zygmund spaces on a
C2 manifold M . If Ω⊂ R

n is a bounded, connected, open set and s > 0, we write
C s(Ω) for the classical Zygmund space of order s on Ω; and for a Banach space
V , we write C s(Ω;V ) for the Zygmund space of order s of functions taking values
in V . For a vector field Y =

∑n
j=1aj(t)

∂
∂tj

on Ω, we identify Y with the function

(a1, . . . ,an) : Ω → R
n, so that it makes sense to consider ‖Y ‖C s(Ω;Rn). We write
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C ∞(Ω) :=
⋂

s>0 C s(Ω), which coincides with the space of smooth functions on
Ω, all of whose derivatives are bounded on Ω. For complete definitions and more
details on C s(Ω), see Section 5.1.

Fix M a C2 manifold with C1 vector fields X1, . . . ,Xq on M . On M , we have
the following:

• BX(x,δ): the sub-Riemannian ball of radius δ > 0 centered at x ∈M , in-
duced by X1, . . . ,Xq. This is defined by

BX(x,δ)

:=

{

y∈M | ∃γ : [0,1]→M, γ(0)=x, γ(1)=y, γ is absolutely continuous,

γ′(t)=
q∑

j=1

aj(t)δXj

(
γ(t)

)
, aj ∈L∞([0,1]

)
,

∥
∥
∥
∥

q∑

j=1

∣
∣aj

∣
∣2
∥
∥
∥
∥
[L∞]

<1

}

.

(2.1)

• ρ(x,y): the sub-Riemannian distance on M induced by X1, . . . ,Xq—this is
the distance associated to the balls BX(x,δ).

ρ(x,y) := inf
{
δ > 0 : y ∈BX(x,δ)

}
.(2.2)

In general, ρ is merely an extended metric (ρ may take the value ∞). However, if
X1, . . . ,Xq span the tangent space at every point and M is connected, then ρ is a
metric—this is the setting we are most interested in.

• Cm,s
X (M): the scale of Hölder spaces on M , for m ∈ N, s ∈ [0,1], with

respect to X1, . . . ,Xq . Here, and in the rest of the paper, we use the convention
0 ∈N.

• C s
X(M): the Zygmund space of order s ∈ (0,∞] on M , with respect to

X1, . . . ,Xq .
Definitions of Cm,s

X (M) and C s
X(M) are given in Section 5.2, and we refer the

reader to [SS18] for more leisurely discussion of these spaces. We remark that the
Banach spaces Cm,s

X (M) and C s
X(M) are defined in such a way that their norms

are invariant under C2 diffeomorphisms. More precisely, if Ψ : N →M is a C2

diffeomorphism, then

‖f‖Cm,s
X (M) = ‖Ψ∗f‖Cm,s

Ψ∗X (N), ‖f‖C s
X (M) = ‖Ψ∗f‖C s

Ψ∗X (N).(2.3)

Remark 2.1. (2.3) can be interpreted as saying the norms ‖f‖Cm,s
X (M) and

‖f‖C s
X (M) are “coordinate-free.” In practice, this means that these norms can be

computed in any C2 coordinate system, and the answer is independent of the
chosen coordinate system. Moreover, it makes sense to talk about, for example,
C∞
X(M) =

⋂
mC

m,0
X (M), even if M is merely a C2 manifold, and X1, . . . ,Xq are

C1 vector fields on M .
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Throughout the paper, if we say ‖f‖C s
X (M) < ∞ we mean f ∈ C s

X(M) and the
norm is finite, and similarly for any other function spaces.

2.1. Qualitative results. Let X1, . . . ,Xq be C1 vector fields on a C2 mani-
fold M. For x,y ∈M, let ρ(x,y) denote the sub-Riemannian distance associated to
X1, . . . ,Xq on M defined in (2.2). Fix x0 ∈M and let Z := {y ∈M : ρ(x0,y)<∞}.
ρ is a metric on Z , and we give Z the topology induced by ρ (this is finer than the
topology as a subspace of M, and may be strictly finer—see [SS18, Lemma A.1]
for details). LetM ⊆Z be a connected open subset of Z containing x0. We giveM
the topology of a subspace of Z . We begin with a classical result to set the stage.

PROPOSITION 2.2. Suppose [Xi,Xj ] =
∑q

k=1 c
k
i,jXk, where cki,j :M →R are

locally bounded. Then, there is a C2 manifold structure on M (compatible with its
topology) such that:

• The inclusion M ↪→M is a C2 injective immersion.
• X1, . . . ,Xq are C1 vector fields tangent to M .
• X1, . . . ,Xq span the tangent space at every point of M .
Furthermore, this C2 structure is unique in the sense that ifM is given another

C2 structure (compatible with its topology) such that the inclusion map M ↪→M

is a C2 injective immersion, then the identity mapM →M is a C2 diffeomorphism
between these two structures.

For a proof of Proposition 2.2, see [SS18, Appendix A]. Henceforth, we as-
sume the conditions of Proposition 2.2 so that M is a C2 manifold and X1, . . . ,Xq

are C1 vector fields on M which span the tangent space at every point. We write
n := dimspan{X1(x0), . . . ,Xq(x0)} so that dimM = n.

Remark 2.3. If X1(x0), . . . ,Xq(x0) span Tx0M, then M is an open subman-
ifold of M. If X1, . . . ,Xq span the tangent space at every point of M and M is
connected, one may take M =M.

THEOREM 2.4. (The local theorem) For s ∈ (1,∞], the following three condi-
tions are equivalent:

(i) There is an open neighborhood V ⊆M of x0 and a C2 diffeomorphism
Φ : U → V where U ⊆ R

n is open, such that Φ∗X1, . . . ,Φ
∗Xq ∈ C s+1(U ;Rn).

(ii) Re-order the vector fields so that X1(x0), . . . ,Xn(x0) are linearly inde-
pendent. There is an open neighborhood V ⊆M of x0 such that:

• [Xi,Xj ] =
∑n

k=1 ĉ
k
i,jXk, 1 ≤ i,j ≤ n, where ĉki,j ∈ C s

X(V ).

• For n+1 ≤ j ≤ q, Xj =
∑n

k=1 b
k
jXk, where bkj ∈ C s+1

X (V ).
(iii) There exists an open neighborhood V ⊆M of x0 such that [Xi,Xj ] =∑q

k=1 c
k
i,jXk, 1 ≤ i,j ≤ q, where cki,j ∈ C s

X(V ).

Remark 2.5. (ii) and (iii) of Theorem 2.4 are similar but have slightly different
advantages. In (ii), because X1, . . . ,Xn form a basis for the tangent space of M
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near x0, the functions ĉki,j and bkj are uniquely determined (so long as V is chosen
sufficiently small). Moreover, one can directly check to see if (ii) holds by com-
puting these functions. In light of Remark 2.1, this computation can be done in any
C2 coordinate system. If q > n, X1, . . . ,Xq are linearly dependent, and the cki,j in
(iii) are not uniquely determined; (iii) only asks that there exist a choice of cki,j sat-
isfying the conditions in (iii). Despite this lack of uniqueness, in many applications
it is more convenient to use the setting in (iii) (see, for example, the application of
the quantitative results in [SS18, Section 7.1.1]).

Remark 2.6. Theorem 2.4 is stated for s∈ (1,∞]. It would be nice to obtain the
same result for s ∈ (0,∞], however to do this with the methods of this paper, if it
is even possible, would require a more technical analysis of the PDEs which arise.
See Remark 6.10 for more details. Similar remarks hold for the other main results
of this paper.

THEOREM 2.7. (The global theorem) For s ∈ (1,∞], the following three con-
ditions are equivalent:

(i) There exists a C s+2 atlas on M , compatible with its C2 structure, such that
X1, . . . ,Xq are C s+1 with respect to this atlas.

(ii) For each x0 ∈M , any of the three equivalent conditions from Theorem 2.4
holds for this choice of x0.

(iii) [Xi,Xj ] =
∑q

k=1 c
k
i,jXk, 1 ≤ i,j ≤ q, where ∀x0 ∈ M , ∃V ⊆ M open

with x0 ∈ V such that cki,j
∣
∣
V
∈ C s

X(V ), 1 ≤ i,j,k ≤ q.
Furthermore, under these conditions, the C s+2 manifold structure on M in-

duced by the atlas from (i) is unique, in the sense that if there is another C s+2

atlas on M , compatible with its C2 structure, and such that X1, . . . ,Xq are C s+1

with respect to this second atlas, then the identity map M →M is a C s+2 diffeo-
morphism between these two C s+2 manifold structures on M . See Section 5.4 for
formal definitions regarding C s+2 manifolds.

Remark 2.8. As a corollary, we obtain results similar to Theorems 2.4 and 2.7
with the Zygmund spaces Cm+s replaced by the easier to understand Hölder spaces
Cm,s, with the restriction that s ∈ (0,1). For details, see Section 7.

Remark 2.9. The reader only wishing to understand proof of the above quali-
tative results, and not the more technical quantitative results, may wish to skip to
the proof outline presented in Section 3.

2.2. Quantitative results. Theorem 2.4 gives necessary and sufficient con-
ditions for a certain type of coordinate chart to exist. For applications in analysis,
it is essential to have quantitative control of this coordinate chart and the quanti-
tative control we obtain will be invariant under arbitrary C2 diffeomorphisms; see
Remark 2.15. By using this quantitative control, these charts can be seen as gen-
eralized scaling maps in sub-Riemannian geometry—see [SS18, Section 7] and
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Remarks 2.16 and 2.17 for more details on this and other applications. We now
turn to these quantitative results, which are the heart of this paper. Because the
goal is to keep track of what each constant depends on, this is somewhat technical.
To ease notation, we introduce various notions of “admissible constants”; these
are constants which depend only on certain parameters. While these definitions
are somewhat unwieldy, they greatly simplify the statement of results and proofs
throughout the paper.

LetX1, . . . ,Xq be C1 vector fields on a C2 manifold M. Throughout the paper,
Bn(η) denotes the Euclidean ball of radius η > 0 centered at 0 ∈ R

n.

Definition 2.10. For x∈M, η > 0, and U ⊆M, we say the listX =X1, . . . ,Xq

satisfies C(x0,η,U) if for every a ∈Bq(η) the expression

ea1X1+···+aqXqx0

exists in U . More precisely, consider the differential equation

∂

∂r
E(r) = a1X1

(
E(r)

)
+ · · ·+aqXq

(
E(r)

)
, E(0) = x0.

We assume that a solution to this differential equation exists up to r= 1,E : [0,1]→
U . We have E(r) = era1X1+···+raqXqx0.

For 1 ≤ n≤ q, we let

I(n,q) :=
{(
i1, i2, . . . , in

)
: ij ∈ {1, . . . ,q}}= {1, . . . ,q}n.

For J = (j1, . . . , jn)∈I(n,q) we writeXJ for the list of vector fieldsXj1 , . . . ,Xjn .
We write

∧
XJ :=Xj1 ∧Xj2 ∧ ·· ·∧Xjn .

Fix x0 ∈M and let n := dimspan{X1(x0), . . . ,Xq(x0)}. Fix ξ,ζ ∈ (0,1]. We
assume that on BX(x0, ξ), the Xj’s satisfy

[
Xj,Xk

]
=

q∑

l=1

clj,kXl, clj,k ∈ C
(
BX

(
x0, ξ

))
,

where BX(x0, ξ) is given the metric topology induced by ρ from (2.2). Proposi-
tion 2.2 applies to show that BX(x0, ξ) is an n-dimensional, C2, injectively im-
mersed submanifold of M. X1, . . . ,Xq are C1 vector fields on BX(x0, ξ) and span
the tangent space at every point. Henceforth, we treat X1, . . . ,Xq as vector fields
on BX(x0, ξ).

Let J0 ∈ I(n,q) be such that
∧
XJ0(x0) 
= 0 and moreover

max
J∈I(n,q)

∣
∣
∣
∣

∧
XJ(x0)∧
XJ0(x0)

∣
∣
∣
∣≤ ζ−1,(2.4)
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where
∧
XJ (x0)∧
XJ0 (x0)

is defined as follows. Let λ :
∧nTx0BX(x0, ξ)→R be any nonzero

linear functional; then
∧
XJ (x0)∧
XJ0(x0)

:=
λ(
∧
XJ(x0))

λ(
∧
XJ0(x0))

.(2.5)

Because
∧nTx0BX(x0, ξ) is one dimensional, (2.5) is independent of the choice

of λ; see [SS18, Section 5] for more details. Note that a J0 ∈ I(n,q) satisfying
(2.4) always exists—one can pick J0 so that (2.4) holds with ζ = 1; however, it
is important for some applications to have the flexibility to choose ζ < 1 (this
is needed, for example, in [Str20]). Without loss of generality, reorder the vector
fields so that J0 = (1, . . . ,n).

• Let η > 0 be such that XJ0 satisfies C(x0,η,M).
• Let δ0 > 0 be such that for δ ∈ (0,δ0] the following holds: if z ∈BXJ0

(x0, ξ)

is such that XJ0 satisfies C(z,δ,BXJ0
(x0, ξ)) and if t ∈ Bn(δ) is such that

et1X1+···+tnXnz = z and if X1(z), . . . ,Xn(z) are linearly independent, then t= 0.

Remark 2.11. Because X1, . . . ,Xn are C1, such an η > 0 and δ0 > 0 always
exist; see Lemma 6.12 and Remark 6.13. However, in general one can only guar-
antee that η, δ0 are small in terms of the C1 norms of X1, . . . ,Xn in some coor-
dinate system—and this is not a diffeomorphic invariant quantity. Thus, we state
our results in terms of δ0 an η to preserve the diffeomorphic invariance. See [SS18,
Section 4.1] for more details on η and δ0.

Definition 2.12. We say C is a 0-admissible constant if C can be chosen to
depend only on upper bounds for q, ζ−1, ξ−1, and ‖clj,k‖C(BXJ0

(x0,ξ)), 1 ≤ j,k, l ≤
q.

For the remainder of this section, fix s0 > 1. The results which follow depend
on this choice of s0, and are stronger as s0 approaches 1.

Definition 2.13. For s≥ s0, if we sayC is an {s}-admissible constant, it means
that we assume clj,k ∈ C s

XJ0
(BXJ0

(x0, ξ)) for 1 ≤ j,k, l ≤ q. C is then allowed to

depend on s, s0, lower bounds > 0 for ζ , ξ, η, and δ0, and upper bounds for q
and ‖clj,k‖C s

XJ0
(BXJ0

(x0,ξ)), 1 ≤ j,k, l ≤ q. For s < s0, we define {s}-admissible

constants to be {s0}-admissible constants.

We writeA�{s}B forA≤CB where C is a positive {s}-admissible constant.
We write A ≈{s} B for A �{s} B and B �{s} A. Similarly we define �0 and ≈0

for the same comparisons with 0-admissible constants in place of {s}-admissible
constants.

THEOREM 2.14. (The quantitative theorem) There exists a 0-admissible con-
stant χ ∈ (0, ξ] such that:

(a) ∀y ∈BXJ0
(x0,χ),

∧
XJ0(y) 
= 0.
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(b) ∀y ∈BXJ0
(x0,χ),

sup
J∈I(n,q)

∣
∣
∣
∣

∧
XJ(y)∧
XJ0(y)

∣
∣
∣
∣≈0 1.

(c) ∀χ′ ∈ (0,χ], BXJ0
(x0,χ

′) is an open subset of BX(x0, ξ) and is therefore
a submanifold.

For the rest of the theorem, we assume clj,k ∈ C s0
XJ0

(BXJ0
(x0, ξ)), for 1 ≤

j,k, l ≤ q. There exists a C2 map Φ : Bn(1) → BXJ0
(x0,χ) and {s0}-admissible

constants ξ1, ξ2 > 0 such that:
(d) Φ(Bn(1)) is an open subset ofBXJ0

(x0,χ), and is therefore a submanifold
of BX(x0, ξ).

(e) Φ : Bn(1)→ Φ(Bn(1)) is a C2 diffeomorphism.
(f) BX(x0, ξ2)⊆BXJ0

(x0, ξ1)⊆ Φ(Bn(1)) ⊆BX(x0, ξ).
(g) Φ(0) = x0.
Let Yj = Φ∗Xj and let Mn×n denote the Banach space of n×n real matrices

endowed with the operator norm. There exists an {s0}-admissible K ≥ 1 and a
matrix A ∈ C s0(Bn(1);Mn×n) such that:

(h) YJ0 = K(I +A)∇, where ∇ denotes the gradient in R
n (thought of as a

column vector) and we are identifying YJ0 with the column vector of vector fields
[Y1,Y2, . . . ,Yn]

�.
(i) A(0) = 0 and supt∈Bn(1) ‖A(t)‖Mn×n ≤ 1

2 .
(j) For s > 0, 1 ≤ j ≤ q,

‖Yj‖C s+1(Bn(1);Rn) �{s} 1.(2.6)

(k) We have the following equivalence of norms, for f ∈ C(Bn(1)), s > 0,

‖f‖C s(Bn(1)) ≈{s−2} ‖f‖C s
YJ0

(Bn(1)) ≈{s−2} ‖f‖C s
Y (Bn(1)).

(l) For f ∈ C(BXJ0
(x0,χ)), s > 0,

‖f ◦Φ‖C s(Bn(1)) �{s−2} ‖f‖C s
XJ0

(BXJ0
(x0,χ)).

Remark 2.15. The main results of this paper (including Theorem 2.14) are in-
variant under arbitrary C2 diffeomorphisms. This is true quantitatively—all of the
estimates are unchanged when pushed forward under an arbitrary C2 diffeomor-
phism; this is a consequence of (2.3). More precisely, take M and X1, . . . ,Xq as
above. LetN be another C2 manifold and let Ψ :M →N be a C2 diffeomorphism.
Then,X1, . . . ,Xq satisfy the hypotheses of Theorem 2.14 at the base point x0 if and
only if Ψ∗X1, . . . ,Ψ∗Xq satisfy them at Ψ(x0). Moreover, admissible constants (of
any kind) when defined in terms of X1, . . . ,Xq are the same as admissible con-
stants when defined in terms of Ψ∗X1, . . . ,Ψ∗Xq . Also, if Φ is the map guaranteed
by Theorem 2.14 when applied to X1, . . . ,Xq at the point x0, then Ψ◦Φ is the map
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guaranteed by Theorem 2.14 when applied to Ψ∗X1, . . . ,Ψ∗Xq at the point Ψ(x0)

(as can be checked by tracing through the proof). Thus, the conclusions of Theo-
rem 2.14 (and the other main results of this paper) remain completely unchanged
when the setting is pushed forward under a C2 diffeomorphsim. See [SS18] for
more details.

Remark 2.16. As mentioned before, [SS18, Section 7] contains several appli-
cations for results like Theorems 2.14 and 2.21. Many of the applications in [SS18,
Section 7] provide results in an infinitely smooth setting. By using the results in
this paper (e.g., Theorem 2.14) in place of the corresponding results in [SS18] one
can immediately obtain analogous results regarding a finite level of smoothness us-
ing the same proofs, which are in many ways sharp. This sharpness may be useful
when studying certain non-linear PDEs defined by vector fields—where the vector
fields may be defined in terms of the solution to the PDE and one does not have a
priori access to smoothness estimates.

Remark 2.17. In Theorems 2.14 and 2.21 we have been explicit about what
each constant depends on (by using the various kinds of admissible constants). In
applications, what turns out to be important is what the constants do not depend
on. Two simple examples of how this can work are as follows:

• We describe the setting of the foundational work of Nagel, Stein, and
Wainger [NSW85]. Let Z1, . . . ,Zq be smooth vector fields on a smooth manifold
M , where each vector field Zj is paired with a formal degree dj ∈ [1,∞). Suppose,
for 1 ≤ j,k ≤ q,

[
Zj ,Zk

]
=

∑

dl≤dj+dk

clj,kZl, clj,k ∈ C ∞
loc(M).

Set Xδ
j := δdjZj . Then it easy easy to see that Xδ

1 , . . . ,X
δ
q satisfy the hypotheses

of Theorem 2.14 uniformly in δ ∈ (0,1] and uniformly as the base point x0 ranges
over compact subsets ofM . Thus, the conclusions of Theorem 2.14 hold uniformly
in the same way; i.e., the various kinds of admissible constants can be chosen
independent of δ ∈ (0,1] and x0 (as x0 ranges over a compact set). See [SS18,
Section 7.1] for more details on this application. One can proceed more generally
by letting the Xδ

j depend on δ in a more complicated way; see [SS18, Section 7.3].
• Let X1, . . . ,Xq be C∞ vector fields on a smooth manifold M . Suppose

[Xj ,Xk] =
∑q

l=1 c
l
j,kXl, where clj,k ∈ C ∞

loc(M). The classical Frobenius theorem
applies to foliate M into leaves. This may be a singular foliation: the dimension
of the leaves might not be constant. The classical proofs of the Frobenius theorem
give coordinate charts which define these leaves; however these coordinate charts
“blow-up” as one approaches a singular point (i.e., a point where the dimension of
the leaves is not constant on any neighborhood of the point). The quantitative na-
ture of Theorem 2.14 shows that it gives coordinate charts that avoid this blow-up
in a certain sense. See [Str20] for a detailed discussion of this.
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The above two examples work with C∞ vector fields, however (as in Re-
mark 2.16) it is straightforward to work with C1 vector fields and instead assume
the hypotheses of Theorem 2.14 hold uniformly in the relevant parameters. This
allows one to obtain results which are in many ways sharp in terms of regularity.
We leave further details to the reader.

2.2.1. Densities. Let χ∈ (0, ξ] be as in Theorem 2.14. In many applications
(e.g., [SS18, Section 7.1]), one is given a density onBXJ0

(x0,χ) and it is of interest
to measure certain sets with respect to this density. For a quick introduction to the
basics of densities, we refer the reader to [Gui08] (see also [Nic07] where densities
are called 1-densities).

Let ν be a C1 density on BXJ0
(x0,χ). Suppose

LXjν = fjν, 1 ≤ j ≤ n, fj ∈ C(BXJ0
(x0,χ)),

where LXj denotes the Lie derivative with respect to Xj . Our goal is to understand
Φ∗ν and ν(BX(x0, ξ2)), where Φ and ξ2 are as in Theorem 2.14.

Remark 2.18. Recall, in Theorem 2.14 we fixed some s0 > 1 and all of the
estimates in Theorem 2.14 were in terms of this fixed s0. Similarly, all of the results
in this section depend on this fixed choice of s0.

Definition 2.19. If we say C is a [s0;ν]-admissible constant, it means that C
is a {s0}-admissible constant which is also allowed to depend on upper bounds for
‖fj‖C(BXJ0

(x0,χ)), 1 ≤ j ≤ n.

Definition 2.20. For s ∈ (0,∞), if we say C is an {s;ν}-admissible constant, it
means that we assume fj ∈C s

XJ0
(BXJ0

(x0,χ)), andC is a {s}-admissible constant

which is also allowed to depend on upper bounds for ‖fj‖C s
XJ0

(BXJ0
(x0,χ)), 1 ≤

j ≤ n. For s ≤ 0, we define {s;ν}-admissible constants to be [s0;ν]-admissible
constants.

We write A �{s;ν} B for A ≤ CB where C is a positive {s;ν}-admissible
constant. We write A≈{s;ν} B for A�{s;ν} B and B �{s;ν} A. We similarly define
�[s0;ν] and ≈[s0;ν].

THEOREM 2.21. Define h ∈ C1(Bn(1)) by Φ∗ν = hσLeb, where σLeb denotes
the usual Lebesgue density on R

n.
(a) h(t)≈[s0;ν] ν(X1, . . . ,Xn)(x0), ∀t∈Bn(1). In particular, h(t) always has

the same sign, and is either never zero or always zero.
(b) For s > 0, ‖h‖C s(Bn(1)) �{s−1;ν} |ν(X1, . . . ,Xn)(x0)|.
COROLLARY 2.22. Let ξ2 be as in Theorem 2.14. Then,

ν
(
BXJ0

(
x0, ξ2

))≈[s0;ν] ν
(
BX

(
x0, ξ2

))≈[s0;ν] ν
(
X1, . . . ,Xn

)(
x0
)
,(2.7)
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and therefore,
∣
∣ν
(
BXJ0

(
x0, ξ2

))∣
∣≈[s0;ν]

∣
∣ν
(
BX

(
x0, ξ2

))∣
∣≈[s0;ν]

∣
∣ν
(
X1, . . . ,Xn

)(
x0
)∣
∣

≈0 max
(j1,...,jn)∈I(n,q)

∣
∣ν
(
Xj1 , . . . ,Xjn

)(
x0
)∣
∣.

3. Outline of the proof. The proof of Theorem 2.14 is somewhat technical.
This is partially due to its quantitative nature: we keep careful track of what each
constant depends on at every step. As mentioned before, this is essential for the
applications we have in mind (see, e.g., Remark 2.17). In this section, we present an
outline of the proof where we do not keep track of such dependencies. We hope this
will help give the reader an overview of the proof before we enter into the technical
details. For this section, we write A�B to mean A≤ CB, where C is a constant
“which only depends on the right things;” we will make such estimates precise in
the rigourous proof in later sections. To keep things simple, we outline the proof of
Theorem 2.4 (iii)⇒(i) which is essentially a qualitative version of Theorem 2.14.

Fix an n-dimensional C2 manifold M , and suppose we are given C1 vector
fields X1, . . . ,Xq on M which span the tangent space at every point. Fix a point
x0 ∈M , and reorder the vector fields so that X1(x0), . . . ,Xn(x0) form a basis of
Tx0M ((2.4) is the assumption that X1, . . . ,Xn have nearly “maximal determinant”
among all such choices). Fix s ∈ (1,∞]. Our main assumption is

[
Xi,Xj

]
=

q∑

k=1

cki,jXk

near x0, where cki,j ∈ C s
X , near x0.

Goal. Our goal is to find a C2 diffeomorphism Φ : Bn(1)
∼−→ Φ(Bn(1)),

where Φ(Bn(1)) ⊆ M is an open neighborhood of x0, such that Φ∗Xj ∈
C s+1(Bn(1);Rn), and moreover ‖Xj‖C s+1(Bn(1);Rn) � 1.

A main problem we face is that our assumptions are in terms of the diffeomor-
phically invariant spaces C s

X , and not in terms of standard spaces, and so we cannot
initially apply standard techniques. The first step gets around this issue.

Step 1. The results of [SS18] (see, also, Proposition 4.1) provide a C2 dif-
feomorphism Φ0 : Bn(η0)

∼−→ Φ0(B
n(η0)), where η0 � 1, Φ0(B

n(η0)) is an open
neighborhood of x0, Φ0(0) = x0, and such that if Yj := Φ∗

0Xj , then the following
holds.

(i) We have
⎡

⎢
⎢
⎢
⎣

Y1

Y2
...
Yn

⎤

⎥
⎥
⎥
⎦
= (I+A)∇,
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where ∇ denotes the gradient in R
n (thought of as a column vector), and A(t) is an

n×nmatrix satisfying ‖A‖C s(Bn(η0);Mn×n) � 1 and A(0) = 0.
(ii) For n+1 ≤ k ≤ q, Yk =

∑n
l=1 b

l
kYl, where blk ∈ C s+1(Bn(η0)).

(iii) For 1 ≤ j,k ≤ n, [Yj ,Yk] =
∑n

l=1 č
l
j,kYl, with člj,k ∈ C s(Bn(η0)).

Step 1 achieves the goal, except with a loss of one derivative: the vector fields
Y1, . . . ,Yq are only C s, not C s+1. However, more is true: if all we knew was that
Y1, . . . ,Yq were C s, then we would only have (ii) and (iii) with s replaced by s−
1. We will leverage this extra regularity to find a new coordinate system which
completes the proof. To do this, we use methods adapted from Malgrange’s work
[Mal69].

Reduction 1. It suffices to find a C s+1 diffeomorphism Φ2 : Bn(1)
∼−→

Φ2(B
n(1)) ⊆ Bn(η0), where Φ2(0) = 0, and such that ‖Φ∗

2Yj‖C s+1 � 1, for
1 ≤ j ≤ n. Indeed, given such a map Φ2, the goal is achieved by taking
Φ := Φ0 ◦Φ2.

Step 2. Fix γ2 > 0 small, to be chosen later. Let Ψγ(t) := γt. For 1 ≤ j ≤ n,
set Ỹj := γΨ∗

γYj . We have

⎡

⎢
⎢
⎢
⎢
⎣

Ỹ1

Ỹ2
...

Ỹn

⎤

⎥
⎥
⎥
⎥
⎦
= (I+ Ã)∇,

where Ã(t) = A(γt). Since A(0) = 0, by taking γ = γ(γ2,η0) > 0 sufficiently
small, we have

(1)
∥
∥
∥Ã

∥
∥
∥

C s(Bn(5);Mn×n)
≤ γ2.

(2) For 1 ≤ j,k ≤ n, [Ỹj , Ỹk] =
∑n

l=1 c̃
l
j,kỸl, where

∥
∥
∥c̃lj,k

∥
∥
∥

C s(Bn(5))
� 1 (since

c̃lj,k = γΨ∗
γ č

l
j,k).

Reduction 2. It suffices to find a C s+1 diffeomorphism Φ1 : Bn(1)
∼−→

Φ1(B
n(1)) ⊆ Bn(5), with Φ1(0) = 0, and such that ‖Φ∗

1Ỹj‖C s+1 � 1, 1 ≤ j ≤ n.
Here, we may take γ2 as small as we like when finding Φ1. We then take
Φ2 :=Ψγ1 ◦Φ1 to complete the proof. This is Proposition 6.8.

Step 3. This step is Lemma 6.9. Fix γ1 > 0 small to be chosen later. By taking
γ2 = γ2(γ1)> 0 sufficiently small, we find a C s+1 diffeomorphism Φ1 :Bn(2)

∼−→
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Φ1(B
n(2))⊆Bn(5), with Φ1(0) = 0, such that if Ŷj :=Φ∗

1Ỹj , then

⎡

⎢
⎢
⎢
⎢
⎣

Ŷ1

Ŷ2
...

Ŷn

⎤

⎥
⎥
⎥
⎥
⎦
= (I+ Â)∇,

where
• If Âj is the jth row of Â, then

∑n
j=1

∂
∂vj
Âj(v) = 0.

• If âkj is the (j,k) component of Â, then ‖âkj ‖L∞ ≤ γ1.

We find Φ1 by solving a non-linear elliptic PDE satisfied by Φ−1
1 . See Lemma 6.9.

All that remains to show is that the map Φ1 given in Step 3 satisfies the condi-
tions of Reduction 2, provided γ1 is taken small enough. This is covered in Propo-
sition 6.6. The idea is the following. We have

[
Ŷj, Ŷk

]
=

n∑

l=1

ĉlj,kŶl,(3.1)

where ĉlj,k =Φ∗
1c̃

l
j,k ∈ C s(Bn(2)). Also, we know A∈ C s(Bn(2)), but we wish to

show that A ∈ C s+1(Bn(1)). To do this, note that (3.1) can be re-written as

∂

∂tj
Âk− ∂

∂tk
Âj + Âj

∂

∂t
Âk− Âk

∂

∂t
Aj =Dj,k,

where ∂
∂t = [ ∂

∂t1
, . . . , ∂

∂tn
]� and Dj,k ∈ C s. Combining this with

∑n
j=1

∂
∂vj
Âj(v) =

0, we see that Â satisfies the system of equations:

EA+Γ(A,∇A) =D,

where D ∈ C s, Γ is an explicit constant coefficient bilinear form, and

EÂ=

⎛

⎝
(
∂

∂tj
Âk− ∂

∂tk
Âj

)

1≤j<k≤n

,
n∑

j=1

∂

∂tj
Âj

⎞

⎠ .

By Lemma A.6, E is elliptic. If γ1 is chosen sufficiently small, standard elliptic
theory shows A ∈ C s+1, completing the proof.

Remark 3.1. When we turn to the rigorous proof, we present the steps in the
reverse order. This is because it is much easier to make explicit the quantitative
nature of each step when they are presented in the reverse order.
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4. Results from the first paper. In this section, we describe the main
result of [SS18]; namely, [SS18, Theorem 4.7]. We do not state the full result
and instead state an immediate consequence of it, which is what is relevant for
this paper. The setting is the same as Theorem 2.14, so that we have fixed some
s0 > 1 and defined 0-admissible constants and {s}-admissible constants as in Def-
initions 2.12 and 2.13. As in Theorem 2.14 we, without loss of generality, re-
order the vector fields so that J0 = (1, . . . ,n). Set η0 := min{η,ξ} and define
Φ0 :Bn(η0)→BXJ0

(x0, ξ) by

Φ0
(
t1, . . . , tn

)
:= et1X1+···+tnXnx0.(4.1)

PROPOSITION 4.1. There exists a 0-admissible constant χ ∈ (0, ξ] such that:
(a) ∀y ∈BXJ0

(x0,χ),
∧
XJ0(y) 
= 0.

(b) ∀y ∈BXJ0
(x0,χ),

sup
J∈I(n,q)

∣
∣
∣
∣

∧
XJ(y)∧
XJ0(y)

∣
∣
∣
∣≈0 1.

(c) ∀χ′ ∈ (0,χ], BXJ0
(x0,χ

′) is an open subset of BX(x0, ξ) and is therefore
a submanifold.

For the rest of the proposition, we assume clj,k ∈ C s0
XJ0

(BXJ0
(x0, ξ)), for 1 ≤

j,k, l ≤ q. There exists an {s0}-admissible constant η1 ∈ (0,η0] such that:
(d) Φ0(B

n(η1)) is an open subset of BXJ0
(x0,χ) and is therefore a submani-

fold of BX(x0, ξ).
(e) Φ0 :Bn(η1)→ Φ0(B

n(η1)) is a C2 diffeomorphism.
Let Yj := Φ∗

0Xj , and write YJ0 = (I+A)∇, where ∇ denotes the gradient in
R
n (thought of as a column vector) and we are identifying YJ0 with the column

vector of vector fields [Y1,Y2, . . . ,Yn]
�.

(f) A(0) = 0 and supt∈Bn(η1) ‖A(t)‖Mn×n ≤ 1
2 .

(g) For s > 0, 1 ≤ j ≤ q,

‖Yj‖C s(Bn(η1);Rn) �{s} 1.(4.2)

(h) There exist blk ∈ C s0+1(Bn(η1)), n+1 ≤ k ≤ q, 1 ≤ l ≤ n, such that Yk =∑n
l=1 b

l
kYl and ‖blk‖C s(Bn(η1)) �{s−1} 1, ∀s > 0.

(i) For 1 ≤ j,k ≤ n, [Yj,Yk] =
∑n

l=1 c̃
l
j,kYl, where for s > 0,

‖c̃lj,k‖C s(Bn(η1)) �{s} 1.

The statement of [SS18, Theorem 4.7] uses “1-admissible constants” which
we have not defined here. However, it is easy to see that 1-admissible constants are
{s0}-admissible constants for s0 > 1, and so Proposition 4.1 follows from [SS18,
Theorem 4.7].
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Remark 4.2. The main difference between Proposition 4.1 and Theorem 2.14
can be seen by comparing (4.2) and (2.6): (2.6) is stronger than (4.2) by one deriv-
ative. The central point of this paper is to obtain this stronger (sharp) result.

4.1. Densities. We describe the results on densities from [SS18, Section 6]
needed in this paper. The setting is the same as in Section 2.2.1; thus we are given a
C1 density ν on BXJ0

(x0, ξ) satisfying LXjν = fjν. [s0;ν] and {s;ν}-admissible
constants are defined as in that section (Definitions 2.19 and 2.20). We also use
another type of admissible constant. As before, we reorder the vector fields so that
J0 = (1, . . . ,n).

Definition 4.3. We say C is a 0;ν-admissible constant if C is a 0-admissible
constant which is also allowed to depend on upper bounds for ‖fj‖C(BXJ0

(x0,χ)),

1 ≤ j ≤ n. We write A�0;ν B for A≤CB, where C is a 0;ν-admissible constant,
and writeA≈0;ν B forA�0;ν B and B�0;ν A. Note that 0;ν-admissible constants
are [s0;ν]-admissible constants.

We introduce a distinguished density on BXJ0
(x0,χ) given by

ν0
(
Z1, . . . ,Zn

)
:=

∣
∣
∣
∣
Z1 ∧Z2 ∧ ·· ·∧Zn

X1 ∧X2 ∧ ·· ·∧Xn

∣
∣
∣
∣ .(4.3)

Note that X1 ∧X2∧·· ·∧Xn is never zero on BXJ0
(x0,χ) (by Proposition 4.1 (a)),

so that ν0 is defined on BXJ0
(x0,χ). It is clearly a density.

PROPOSITION 4.4. Given a C1 density ν as above, there exists g ∈
C(BXJ0

(x0,χ)) such that ν = gν0 and
(a) g(x) ≈0;ν g(x0) = ν(X1, . . . ,Xn)(x0), ∀x ∈ BXJ0

(x0,χ). In particular, g
always has the same sign, and is either never zero or always zero.

(b) For s > 0, 1 ≤ j ≤ n, we have

‖g‖C s
XJ0

(BXJ0
(x0,χ)) �{s−1;ν}

∣
∣ν
(
X1, . . . ,Xn

)(
x0
)∣
∣.

Proof. This is an immediate consequence of [SS18, Theorem 6.5]. �

5. Function spaces. In this section, we define the function spaces which
are used in this paper as well as discuss the main properties we use. These spaces
were all defined in [SS18], and we refer the reader to that paper for a more detailed
discussion these spaces. As in that paper, we make a distinction between function
spaces on open subsets of R

n and function spaces on a C2 manifold M . Open
subsets of Rn have a natural smooth structure, and it makes sense to talk about the
usual function spaces on these open sets. On a C2 manifold M , it does not make
sense to talk about, for example, C∞ functions. However, if we are also given C1

vector fields X1, . . . ,Xq on M , it makes sense to talk about functions which are
smooth with respect to these vector fields, and that is how we proceed.
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5.1. Function spaces on Euclidean space. In this section, we describe the
standard function spaces on R

n which we use. Let Ω ⊂ R
n be a bounded, con-

nected, open set (we will almost always be considering the case when Ω is a ball
in R

n). We have the following classical Banach spaces of functions on Ω:

C(Ω) = C0(Ω) := {f : Ω−→ C | f is continuous and bounded},
‖f‖C(Ω) = ‖f‖C0(Ω) := sup

x∈Ω

∣
∣f(x)

∣
∣.

For m ∈ N,

Cm(Ω) :=
{
f ∈C0(Ω) | ∂αx f ∈ C0(Ω), ∀|α| ≤m

}
,

‖f‖Cm(Ω) :=
∑

|α|≤m

‖∂αx f‖C0(Ω).

Next we define the classical Lipschitz-Hölder spaces. For s ∈ [0,1],

‖f‖C0,s(Ω) := ‖f‖C0(Ω) + sup
x,y∈Ω
x 
=y

|x−y|−s
∣
∣f(x)− f(y)∣∣,

C0,s(Ω) :=
{
f ∈C0(Ω) : ‖f‖C0,s(Ω) < ∞

}
.

(5.1)

For m ∈ N, s ∈ [0,1],

‖f‖Cm,s(Ω) :=
∑

|α|≤m

‖∂αx f‖C0,s(Ω),

Cm,s(Ω) :=
{
f ∈ Cm(Ω) : ‖f‖Cm,s(Ω) < ∞

}
.

Next, we turn to the Zygmund-Hölder spaces. Given h ∈ R
n define Ωh := {x ∈

R
n : x,x+h,x+2h ∈Ω}. For s ∈ (0,1] set

‖f‖C s(Ω) := ‖f‖C0,s/2(Ω) + sup
0
=h∈Rn

x∈Ωh

|h|−s
∣
∣f(x+2h)−2f(x+h)+ f(x)

∣
∣,

C s(Ω) :=
{
f ∈ C0(Ω) : ‖f‖C s(Ω) < ∞

}
.

For m ∈ N, s ∈ (0,1], set

‖f‖C m+s(Ω) :=
∑

|α|≤m

‖∂αx f‖C s(Ω),

C s+m(Ω) :=
{
f ∈ Cm(Ω) : ‖f‖Cm+s(Ω) < ∞

}
.

We set

C ∞(Ω) :=
⋂

s>0

C s(Ω), C∞(Ω) :=
⋂

m∈N
Cm(Ω).
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It is straightforward to verify that for a ball B, C ∞(B) = C∞(B). For a Banach
space V , we let C(Ω;V ), Cm(Ω;V ), Cm,s(Ω;V ), and C s(Ω;V ) denote the anal-
ogous spaces of functions taking values in V . By identifying a vector field Y =
∑n

j=1aj
∂
∂tj

on Ω with the function (a1, . . . ,an) : Ω→ R
n, it makes sense to write,

for example, ‖Y ‖C s(Ω;Rn).

Remark 5.1. The term ‖f‖C0,s/2(Ω) in the definition of ‖f‖C s(Ω) is somewhat
unusual, and is usually replaced by ‖f‖C(Ω). As is well known, if Ω is a bounded
Lipschitz domain, these two choices yield equivalent norms (this follows easily
from [Tri06, Theorem 1.118 (i)]). However, the constants involved in this equiva-
lence depend on Ω. In this paper, we will almost always be considering the case
Ω =Bn(η), for some explicit choice of η. Thus, the difference between these two
possible definitions of ‖f‖C s(Ω) will not affect any of the results in this paper. The
choice we have made here is slightly more convenient for some of our purposes;
see [SS18, Remark 2.1] for more comments on this.

Definition 5.2. For s ∈ (0,∞], we say f ∈ C s
loc(Ω) if ∀x ∈ Ω, there exists an

open ball B ⊆ Ω, centered at x, with f
∣
∣
B
∈ C s(B).

Remark 5.3. If Ω is a bounded Lipschitz domain, m ∈N, s ∈ (0,1), the spaces
Cm,s(Ω) and Cm+s(Ω) are the same—see [Tri06, Theorem 1.118 (i)]; however,
if s ∈ {0,1}, these spaces differ. As a consequence, for any open set Ω ⊆ R

n,
for m ∈ N, s ∈ (0,1), we have Cm+s

loc (Ω) equals the space of functions which are
locally in Cm,s. The space C ∞

loc(Ω) equals the usual space of functions which are
locally smooth on Ω.

5.2. Function spaces on manifolds. Let X1, . . . ,Xq be C1 vector fields
on a connected C2 manifold M . Corresponding to X1, . . . ,Xq , we have a sub-
Riemannian metric given by (2.2). We use ordered multi-index notation: Xα. Here,
α denotes a list of elements {1, . . . ,q} and |α| denotes the length of the list. For
example X(2,1,3,1) =X2X1X3X1 and |(2,1,3,1)| = 4.

Associated to the vector fields X1, . . . ,Xq, we have the following Banach
spaces of functions on M .

C(M) = C0
X(M) := {f :M −→ C | f is continuous and bounded},

‖f‖C(M) = ‖f‖C0
X (M) := sup

x∈M

∣
∣f(x)

∣
∣.

For m ∈N, we define

Cm
X (M) :=

{
f ∈ C(M) |Xαf exists and Xαf ∈ C(M),∀|α| ≤m

}
,

‖f‖Cm
X (M) :=

∑

|α|≤m

‖Xαf‖C(M).



1808 B. STREET

For s ∈ [0,1], we define the Lipschitz-Hölder space associated to X by

‖f‖
C0,s

X (M)
:= ‖f‖C(M) + sup

x,y∈M
x 
=y

ρ(x,y)−s
∣
∣f(x)− f(y)∣∣,

C0,s
X (M) :=

{
f ∈ C(M) : ‖f‖

C0,s
X (M)

< ∞
}
.

For m ∈ N and s ∈ [0,1], set

‖f‖Cm,s
X (M) :=

∑

|α|≤m

‖Xαf‖
C0,s

X (M)
,

Cm,s
X (M) :=

{
f ∈ Cm

X (M) : ‖f‖Cm,s
X (M) < ∞

}
.

We turn to the Zygmund-Hölder spaces. For this, we use the Hölder spaces
C0,s([a,b]) for a closed interval [a,b] ⊂ R; ‖ · ‖C0,s([a,b]) is defined via the same
formula as in (5.1). Given h > 0, s ∈ (0,1) define

PM
X,s(h) :=

{

γ : [0,2h] −→M | γ′(t) =
q∑

j=1

dj(t)Xj

(
γ(t)

)
, dj ∈ C0,s([0,2h]),

q∑

j=1

‖dj‖2
C0,s([0,2h]) < 1

}

.

For s ∈ (0,1] set

‖f‖C s
X (M) := ‖f‖

C
0,s/2
X (M)

+ sup
h>0

γ∈PM
X,s/2(h)

h−s
∣
∣f
(
γ(2h)

)−2f(γ(h))+ f
(
γ(0)

)∣
∣ ,

and for m ∈ N,

‖f‖C m+s
X (M) :=

∑

|α|≤m

‖Xαf‖C s
X (M),

and we set

C s+m
X (M) :=

{
f ∈ Cm

X (M) : ‖f‖C m+s
X (M) < ∞

}
.

Set

C ∞
X(M) :=

⋂

s>0

C s
X(M) and C∞

X(M) :=
⋂

m∈N
Cm
X (M).

It is a consequence of [SS18, Lemma 8.1] that C ∞
X(M) = C∞

X(M); indeed,
C ∞
X(M) ⊆ C∞

X(M) is clear while the reverse containment follows from [SS18,
Lemma 8.1]. For more details on these spaces, we refer the reader to [SS18].
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Remark 5.4. When we write V f for a C1 vector field V and f : M → R,
we define this as V f(x) := d

dt

∣
∣
t=0f(e

tV x). When we say V f exists, it mean that
this derivative exists in the classical sense, ∀x. If we have several C1 vector fields
V1, . . . ,VL, we define V1V2 · · ·VLf := V1(V2(· · ·VL(f))) and to say that this exists
means that at each stage the derivatives exist.

Remark 5.5. For certain subsets of M which are not themselves manifolds,
we can still define the above norms. Indeed, let X1, . . . ,Xq be C1 vector fields on
a C2 manifold M and fix ξ > 0. In this setting, BX(x0, ξ) might not be a mani-
fold (though it sometimes is—see Proposition 2.2). BX(x0, ξ) is a metric space,
with the metric ρ. For a function f : BX(x0, ξ)→ C and x ∈ BX(x0, ξ), it makes
sense to consider Xjf(x) := d

dt

∣
∣
t=0f(e

tXjx). Using this, we can define the spaces
Cm,s
X (BX(x0, ξ)) and C s

X(BX(x0, ξ)), and their corresponding norms, with the
same formulas as above.

5.3. Some results on function spaces. In this section, we present some
results concerning the above function spaces which we need later in the paper.
Many of these results are standard and easy to prove; however a main goal of this
section is to precisely state what each estimate depends on, as that is essential for
our main results.

LEMMA 5.6. For m ∈ N, s ∈ (0,1), η > 0,

‖f‖Cm,s(Bn(η)) ≈ ‖f‖C m+s(Bn(η)),(5.2)

where the implicit constants depend on n, m, s, and an upper bound for η−1.
Furthermore, for m ∈N, s ∈ (0,1], r ∈ (m+ s,∞),

‖f‖Cm,s(Bn(η)) � ‖f‖C r(Bn(η)),(5.3)

where the implicit constant depends on n, m, s, r, and an upper bound for η−1.

Proof. It suffices to prove (5.2) in the case m = 0. When η = 1, (5.2) (with
m = 0) follows easily from [Tri06, Theorem 1.118 (i)] (by considering the cases
M = 1,2 in that theorem). For general η, (5.2) (with m= 0) follows from the case
η = 1 and a simple scaling argument which we leave to the reader. (5.3) follows
immediately from (5.2). �

LEMMA 5.7. The spaces Cm,s
X (M), C s

X(M), Cm,s(Ω), and C s(Ω) are alge-
bras. In fact, we have for m ∈ N, s ∈ [0,1],

‖fg‖Cm,s
X (M) ≤ Cm,q‖f‖Cm,s

X (M)‖g‖Cm,s
X (M),

whereCm,q is a constant depending only onm and q. And form∈N, s∈(m,m+1],

‖fg‖C s
X (M) ≤ Cm,q‖f‖C s

X (M)‖g‖C s
X (M).(5.4)
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Moreover, these algebras have multiplicative inverses for functions which are
bounded away from zero. If f ∈ Cm,s

X (M) with infx∈M |f(x)| ≥ c0 > 0 then
f(x)−1 = 1

f(x) ∈ Cm,s
X (M) with

‖f(x)−1‖Cm,s
X (M) ≤ C,

where C can be chosen to depend only on m, q, c0, and an upper bound for
‖f‖Cm,s

X (M). And for m ∈ N, s ∈ (m,m+ 1] if f ∈ C s
X(M) with infx∈M |f(x)| ≥

c0 > 0 then f(x)−1 ∈ C s
X(M) with

‖f(x)−1‖C s
X (M) ≤ C,(5.5)

where C can be chosen to depend only on m, q, c0, and an upper bound for
‖f‖C s

X (M). The same results hold with Cm,s
X (M) replaced by Cm,s(Ω) and

C s
X(M) replaced by C s(Ω) (with n playing the role of q).

Proof. This is [SS18, Proposition 8.3]. �

LEMMA 5.8. Let D1,D2 > 0, s1 > 0, s2 ≥ s1, s2 > 1, f ∈ C s1(Bn(D1)),
g ∈ C s2(Bm(D2);Rn) with g(Bm(D2)) ⊆ Bn(D1). Then, f ◦ g ∈ C s1(Bm(D2))

and ‖f ◦g‖C s1 (Bm(D2)) ≤C‖f‖C s1 (Bn(D1)) where C can be chosen to depend only
on s1, s2, D1, D2, m, n, and an upper bound for ‖g‖C s2 (Bm(D2)).

Furthermore, if s1 ∈ (0,1), f is as above, and g ∈ C1(Bm(D2);Rn) with
g(Bm(D2)) ⊆ Bn(D1), then f ◦ g ∈ C s1(Bm(D2)) and ‖f ◦ g‖C s1 (Bm(D2)) ≤
C‖f‖C s1 (Bn(D1)) where C can be chosen to depend only on s1, D1, D2, n, and
an upper bound for ‖g‖C1(Bm(D2)).

Proof. We use the notation A�B for A≤CB where C is as in the statement
of the lemma. Without loss of generality, we assume ‖f‖C s1 (Bn(D1)) = 1. We prove
the first claim by induction on k, where s1 ∈ (k,k+1].

We begin with the base case k = 0 so that s1 ∈ (0,1]. We use y to denote
elements of Rn and x to denote elements of Rm. Since s1 ∈ (0,1], we may, without
loss of generality, assume s2 ∈ (1,2); indeed, if s2 ≥ 2 we may replace s2 with
3/2 in the proof that follows. Since ‖g‖C1(Bm(D2);Rn) ≤ ‖g‖C s2 (Bm(D2);Rn) � 1, it
is immediate to verify that ‖f ◦ g‖C0,s1/2(Bm(D2))

� 1. Let x,h ∈ R
m be such that

x,x+h,x+2h ∈Bm(D2). We wish to show
∣
∣f ◦g(x+2h)−2f ◦g(x+h)+ f ◦g(x)∣∣ � |h|s1 ,(5.6)

which will complete the proof of the base case. Define γ : [0,2h] → Bn(D1)

by γ(t) = g
(
x+ h

|h|t
)
. Let r := (s2 − 1)/2 ∈ (0,s2 − 1). We use the classical

fact that ‖g‖C1,r(Bm(D2);Rn) � ‖g‖C s2 (Bm(D2);Rn) � 1 (see Lemma 5.6). Thus,
‖γ‖C1,r([0,2|h|];Rn) � 1.

Set γ̃(t) = t
2|h|g(x + 2h) +

(
1 − t

2|h|
)
g(x) = t

2|h|γ(2|h|) +
(
1 − t

2|h|
)
γ(0),

so that γ̃ : [0,2|h|] → Bn(D1) is a line segment of length |g(x+ 2h)− g(x)| ≤
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2|h|‖g‖C1 � |h|. Thus, we have
∣
∣
∣f
(
γ̃
(
2|h|))−2f

(
γ̃
(|h|))+ f(γ̃(0))

∣
∣
∣� |h|s1 .

For t ∈ [0,2|h|], we have

∣
∣γ̃(t)−γ(t)∣∣= t

∣
∣
∣
∣
γ(2|h|)−γ(0)

2|h| − γ(t)−γ(0)
t

∣
∣
∣
∣= t

∣
∣γ′
(
c1
)−γ′(c2

)∣
∣,

for some c1, c2 ∈ [0,2|h|] by the mean value theorem. Thus,
∣
∣γ̃(t)−γ(t)∣∣≤ t

∣
∣c1 − c2

∣
∣r‖γ‖C1,r � |h|1+r.

We again use the classical fact that ‖f‖C0,s1/(1+r)(Bn(D1))
� ‖f‖C s1 (Bn(D1))≤ 1 (see

Lemma 5.6). Thus, we have
∣
∣f ◦g(x+2h)−2f ◦g(x+h)+ f ◦g(x)∣∣= ∣

∣f
(
γ
(
2|h|))−2f

(
γ
(|h|))+f(γ(0))∣∣

≤ ∣
∣f
(
γ̃
(
2|h|))−2f

(
γ̃
(|h|))+ f(γ̃(0))∣∣+2

∣
∣f
(
γ̃
(|h|))− f(γ(|h|))∣∣

� |h|s1 +
∣
∣γ̃
(|h|)−γ(|h|)∣∣s1/(1+r)‖f‖C0,s1/(1+r)(Bn(D1))

� |h|s1 ,

completing the proof of (5.6), and therefore the proof of the base case.
Now take s1 > 1 and we assume the result for s1 −1. We have,

‖f ◦g‖C s1 (Bm(D2)) ≤
m∑

j=1

∥
∥
∥
∥
∂

∂xj
(f ◦g)

∥
∥
∥
∥

C s1−1(Bm(D2))

+‖f ◦g‖C s1−1(Bm(D2))
.

‖f ◦ g‖C s1−1(Bm(D2))
� 1 by the inductive hypothesis, so it suffices to estimate

∥
∥
∥ ∂
∂xj

(f ◦g)
∥
∥
∥

C s1−1(Bm(D2))
. We have, using Lemma 5.7,

∥
∥
∥
∥
∂

∂xj
(f ◦g)

∥
∥
∥
∥

C s1−1(Bm(D2))

≤
n∑

l=1

∥
∥
∥
∥

(
∂f

∂yl
◦g
)
∂gl
∂xj

∥
∥
∥
∥

C s1−1(Bm(D2))

�
n∑

l=1

∥
∥
∥
∥
∂f

∂yl
◦g
∥
∥
∥
∥

C s1−1(Bm(D2))

∥
∥
∥
∥
∂gl
∂xj

∥
∥
∥
∥

C s1−1(Bm(D2))

.

The inductive hypothesis shows
∥
∥
∥ ∂f
∂yl

◦g
∥
∥
∥

C s1−1(Bm(D2))
� 1, and

∥
∥
∥
∥
∂gl
∂xj

∥
∥
∥
∥

C s1−1(Bm(D2))

� ‖g‖C s1 (Bm(D2)) � ‖g‖C s2 (Bm(D2)) � 1,

since s2 ≥ s1. Combining the above estimates shows ‖f ◦ g‖C s1 (Bm(D2)) � 1, and
completes the proof of the induction.

Finally, we turn to the case when s1 ∈ (0,1) and g ∈C1(Bm(D2);Rn). In this
case, the same proof as the base case above works, by taking r = 0 throughout.
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Here, we use the Lemma 5.6 to see ‖f‖C0,s1 (Bn(D1))
� ‖f‖C s1 (Bn(D1)), for s1 ∈

(0,1). �

LEMMA 5.9. Fix s > 1, D1,D2 > 0. Suppose H ∈ C s(Bn(D1);Rn) is
such that Bn(D2) ⊆ H(Bn(D1)), H : Bn(D1) → H(Bn(D1)) is a homeomor-
phism, and inft∈Bn(D1) |detdH(t)| ≥ c0 > 0. Then, H−1 ∈ C s(Bn(D2);Rn), with
‖H−1‖C s(Bn(D2);Rn) ≤C , where C can be chosen to depend only on n, s, D1, D2,
c0, and an upper bound for ‖H‖C s(Bn(D1);Rn).

Proof. We use A � B for A ≤ CB, where C is as in the statement
of the lemma. Since ‖H‖C1(Bn(D1);Rn) ≤ ‖H‖C s(Bn(D1);Rn) � 1, we have
H−1 ∈C1(Bn(D2);Rn) and ‖H−1‖C1(Bn(D2);Rn) � 1. Thus, it suffices to show

d(H−1) ∈ C s−1(Bn(D2);M
n×n) with ‖d(H−1)‖C s−1(Bn(D2);Mn×n) � 1.(5.7)

We use the formula

d
(
H−1)(t) =

(
dH

(
H−1(t)

))−1
.(5.8)

From our hypotheses, we have ‖dH‖C s−1(Bn(D1);Mn×n) � 1. Since

inf
t∈Bn(D1)

∣
∣detdH(t)

∣
∣� 1,

using the cofactor representation of v �→ (dH(v))−1 and applying Lemma 5.7, we
have

‖(dH)−1‖C s−1(Bn(D1);Mn×n) � 1.(5.9)

We begin by proving (5.7) in the case s ∈ (1,2). Since

‖(dH)−1‖C s−1(Bn(D1);Mn×n) � 1

and ‖H−1‖C1(Bn(D1);Rn) � 1, it follows from Lemma 5.8 (using (5.8)) that
‖d(H−1)‖C s−1(Bn(D2);Mn×n) � 1, which completes the proof of (5.7) in this case.

We now proceed by induction. Take m ≥ 2 and suppose we know the lemma
for s ∈ (1,m) and we wish to prove (5.7) for s ∈ [m,m+ 1). Fix s ∈ [m,m+ 1).
Take s1 = m+1+s

2 − 1 ∈ (m− 1,m); note that s− 1 < s1. By our inductive hy-
pothesis, we have H−1 ∈C s1(Bn(D2);Rn), with ‖H−1‖C s1 (Bn(D2);Rn) � 1. Com-
bining this with ‖(dH)−1‖C s−1(Bn(D1);Mn×n) � 1 (as shown in (5.9)) and using
(5.8), Lemma 5.8 shows that ‖d(H−1)‖C s−1(Bn(D2);Mn×n) � 1, which completes
the proof. �

LEMMA 5.10. Let m ∈ N with m ≥ 1, s ∈ (0,1], and η1 > 0. For f ∈
Cm+s(Bn(η1)) and γ ∈ (0,1], set fγ(t) := f(γt). Then, for 0 < γ ≤ min{η1

5 ,1},
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we have for f ∈ Cm+s(Bn(η1)) with f(0) = 0,

‖fγ‖C m+s(Bn(5)) ≤ γ91‖f‖C m+s(Bn(η1)).

Proof. Using γ ∈ (0,1], it follows immediately from the definitions that

∑

1≤|α|≤m

‖∂αx fγ‖C s(Bn(5)) =
∑

1≤|α|≤m

γ|α|‖(∂αx f)(γ·)‖C s(Bn(5))

≤
∑

1≤|α|≤m

γ|α|‖∂αx f‖C s(Bn(η1)) ≤ γ‖f‖Cm+s(Bn(η1)).
(5.10)

Since fγ(0) = f(0) = 0, we have (using the Fundamental Theorem of Calculus)

‖fγ‖C1(Bn(5)) = ‖fγ‖C0(Bn(5)) +
∑

|α|=1

‖∂αx fγ‖C0(Bn(5))

≤ 6
∑

|α|=1

‖∂αx fγ‖C0(Bn(5)) ≤ 6γ‖f‖C1(Bn(η1)).
(5.11)

Directly from the definitions (see also [SS18, Lemma 8.1]), we have (for any ball
B and any function g)

‖g‖C s(B) ≤ 5‖g‖C0,s(B) ≤ 15‖g‖C0,1(B) ≤ 15‖g‖C1(B) ≤ 15‖g‖C m+s(B).

Thus, using (5.11), we have

‖fγ‖C s(Bn(5)) ≤ 15‖fγ‖C1(Bn(5)) ≤ 90γ‖f‖C1(Bn(η1)) ≤ 90γ‖f‖C m+s(Bn(η1)).

Combining this with (5.10) yields the result. �

Remark 5.11. For the next two results, we use the convention that for s ∈
(−1,0] we set C s = C0,(s+1)/2 and for m< 0 we set Cm,s = C0, with equality of
norms.

PROPOSITION 5.12. Fix η ∈ (0,1], and let Y1, . . . ,Yq be vector fields onBn(η).
We suppose Yj =

∑n
j=1a

k
j

∂
∂tk

and ∂
∂tk

=
∑q

j=1 b
j
kYj , for 1 ≤ j ≤ q, 1 ≤ k ≤ n,

where akj ∈ C1(Bn(η)) and bjk ∈C(Bn(η)).

• Let m ∈ N, s ∈ [0,1]. Suppose akj , b
j
k ∈ Cm−1,s(Bn(η)), ∀j,k. Then,

Cm,s(Bn(η)) = Cm,s
Y (Bn(η)), and

‖f‖Cm,s(Bn(η)) ≈ ‖f‖Cm,s
Y (Bn(η)),

where the implicit constants can be chosen to depend only on upper bounds for q,
m, and ‖akj ‖Cm−1,s(Bn(η)), ‖bjk‖Cm−1,s(Bn(η)), ∀j,k.
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• Let s > 0. Suppose akj , b
j
k ∈ C s−1(Bn(η)), ∀j,k. Then, C s(Bn(η)) =

C s
Y (B

n(η)), and

‖f‖C s(Bn(η)) ≈ ‖f‖C s
Y (Bn(η)),

where the implicit constants can be chosen to depend only on s and upper bounds
for q, η−1, and ‖akj ‖C s−1(Bn(η)), ‖bjk‖C s−1(Bn(η)), ∀j,k.

Proof. This is [SS18, Proposition 8.12]. �

COROLLARY 5.13. Let 0 < η1 < η2. Let Y1, . . . ,Yq be C1 vector fields on
Bn(η2) which span then tangent space to Bn(η2) at every point.

(i) For m ∈ N, s ∈ [0,1], if Y1, . . . ,Yq ∈Cm−1,s(Bn(η2);Rn), then

Cm,s(Bn(η1)) = Cm,s
Y (Bn(η1)).

(ii) For s > 0, if Y1, . . . ,Yq ∈ C s−1(Bn(η2);Rn), then

C s(Bn(η1)) = C s
Y (B

n(η1)).

Proof. We describe the proof for (i); the proof for (ii) is similar. Since
Y1, . . . ,Yq ∈ Cm−1,s(Bn(η2);Rn), we have (by definition), Yj =

∑n
j=1a

k
j

∂
∂tk

with akj ∈ Cm−1,s(Bn(η2)). Moreover, since Y1, . . . ,Yq span the tangent space

at every point of Bn(η2), we may write ∂
∂tk

=
∑q

j=1 b
j
kYj , where bjk is locally

in Cm−1,s. Since Bn(η1) is a relatively compact subset of Bn(η2), we see
akj , b

j
k ∈ Cm−1,s(Bn(η1)). From here, Proposition 5.12 yields (i), completing the

proof. �

5.4. Manifolds with Zygmund regularity. In this paper we use C s mani-
folds; the definition is exactly what one would expect, though a little care is needed
due to the subtleties of Zygmund spaces. For example, one must define the Zyg-
mund maps in the right way to ensure that the composition of two Zygmund maps
is again a Zygmund map. For completeness, we present the relevant (standard)
definitions here.

Definition 5.14. Let U1 ⊆ R
n1 and U2 ⊆ R

n2 be open sets. For s ∈ (0,∞], we
say f : U1 → U2 is a C s

loc map if f ∈ C s
loc(U1;Rn2).

LEMMA 5.15. Let U1 ⊆ R
n1 , U2 ⊆ R

n2 , and U3 ⊆ R
n3 be open sets. For s1 ∈

(0,∞], s2 ≥ s1, s2 ∈ (1,∞], if f1 : U1 → U2 is a C s1
loc map and f2 :U2 → U3 is a C s2

loc
map, then f2 ◦f1 : U1 → U3 is a C s1

loc map.

Proof. For s1 = ∞, the result is obvious. For s1 ∈ (0,∞), because the notion of
being a C s

loc map is local, is suffices to check f1 ◦f2 is in C s1 on sufficiently small
balls. This is described in Lemma 5.8. �
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LEMMA 5.16. For s ∈ (1,∞] if f : U1 → U2 is a C s
loc map which is also a C1

diffeomorphism, then f−1 : U2 → U1 is a C s
loc map.

Proof. For s= ∞, this is standard. For s ∈ (1,∞) it suffices to check f−1 is in
C s when restricted to sufficiently small balls. This is described in Lemma 5.9. �

Definition 5.17. Fix s ∈ (1,∞] and let M be a topological space. We say
{(φα,Vα) : α ∈ I} (where I is some index set) is a C s atlas of dimension n if
{Vα : α ∈ I} is an open cover for M , φα : Vα → Uα is a homeomorphism where
Uα ⊆ R

n is open, and φβ ◦φ−1
α : φα(Vβ ∩Vα)→ Uβ is a C s

loc map.

Definition 5.18. For s ∈ (1,∞], a C s manifold of dimension n is a Hausdorff,
paracompact topological space M endowed with a C s atlas of dimension n.

Remark 5.19. In this paper we assume all manifolds are paracompact. This is
used in the proofs of Theorem 2.7 and Corollary 7.4 where a partition of unity is
used. Otherwise, paracompactness is not used in this paper.

Remark 5.20. Note that an open set Ω⊆ R
n is naturally a C ∞ manifold of di-

mension n; where we take the atlas consisting of a single coordinate chart (namely,
the identity map Ω→ Ω). We henceforth give open sets this manifold structure.

Remark 5.21. A C s manifold is a Cm manifold for any m < s. In light of
Remark 5.3, C ∞ manifolds and C∞ manifolds are the same.

Definition 5.22. For s ∈ (0,∞], let M and N be C s+1 manifolds with C s+1

atlases {(φα,Vα)} and {(ψβ ,Wβ)}, respectively. We say f : M → N is a C s+1
loc

map if ψβ ◦f ◦φ−1
α is a C s+1

loc map, ∀α,β.

LEMMA 5.23. For s ∈ (0,∞], suppose M1, M2, and M3 are C s+1 manifolds,
and f :M1 →M2 and f2 :M2 →M3 are C s+1

loc maps. Then, f2 ◦f1 : M1 →M3 is
a C s+1

loc map.

Proof. This follows from Lemma 5.15. �

LEMMA 5.24. Suppose s ∈ (0,∞], M1 and M2 are C s+1 manifolds, and f :
M1 →M2 is a C s+1

loc map which is also a C1 diffeomorphism. Then, f−1 : M2 →
M1 is a C s+1

loc map.

Proof. This follows from Lemma 5.16. �

Definition 5.25. Suppose s ∈ (0,∞], and M1 and M2 are C s+1 manifolds. We
say f : M1 →M2 is a C s+1 diffemorphism if f : M1 →M2 is a bijection and
f : M1 →M2 and f−1 :M2 →M1 are C s+1

loc maps.

Remark 5.26. For s ∈ (0,∞], C s+1 manifolds form a category, where the mor-
phisms are given by C s+1

loc maps. The isomorphisms in this category are exactly the
C s+1 diffeomorphisms.
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For s ∈ (0,∞], a C s+1 manifold is a C1 manifold, and it therefore makes sense
to talk about vector fields on such a manifold.

Definition 5.27. For s ∈ (0,∞] let M be a C s+1 manifold of dimension n with
C s+1 atlas {(φα,Vα)}; here φα : Vα → Uα is a C s+1 diffeomorphism and Uα ⊆
R
n is open. We say a C0 vector field X on M is a C s vector field if (φα)∗X ∈

C s
loc(Uα;Rn), ∀α.

6. Proofs. We turn to the proofs of the main results in this paper; as in the
statement of Theorem 2.14, we fix some s0 > 1 throughout. The most difficult part
is constructing the map Φ from Theorem 2.14. We will construct Φ by seeing it as
a composition of two maps Φ=Φ0 ◦Φ2, where Φ0 is the map from Proposition 4.1
and Φ2 is described in Section 6.1. Φ2 itself will be constructed as a composition
of two maps Φ2 =Ψγ ◦Φ1, which will be described in Section 6.6.

In the some of the sections below, we introduce new notions of {s}-admissible
constants. We will be explicit in each section which notion we are using. These
notions will be defined in such a way that the compositions described above give
the proper result. For example, we prove Theorem 2.14 by reducing it to Propo-
sition 6.3, below. Theorem 2.14 and Proposition 6.3 use different notions of {s}-
admissible constants. However, in the application of Proposition 6.3 to prove The-
orem 2.14, constants which are {s}-admissible in the sense of Theorem 2.14, will
be {s}-admissible in the sense of Proposition 6.3. A similar situation occurs when
we reduce Proposition 6.3 to Proposition 6.8. Thus, the various notions of {s}-
admissible constants will seamlessly glue together to yield the main results of this
paper. In each setting, once we have defined {s}-admissible constants, we use the
notation A�{s}B to meanA≤CB whereC is a positive {s}-admissible constant.
And we write A≈{s} B for A�{s} B and B �{s} A.

In Section 6.1 we describe the map Φ2. In Section 6.2 we show how Theo-
rem 2.14 follows by setting Φ = Φ0 ◦Φ2. In Section 6.3 we prove the results on
densities, namely Theorem 2.21 and Corollary 2.22. In Section 6.4 we state and
prove a result on how to recognize the regularity of vector fields by considering
their commutators. In Section 6.5 we describe and construct the map Φ1. In Sec-
tion 6.6 we construct the map Φ2. Finally, in Section 6.7 we prove the qualitative
results; namely Theorems 2.4 and 2.7. As mentioned in the introduction, the proofs
which follow take many ideas from the work of Malgrange [Mal69].

The main idea is the following. In Proposition 4.1 we only have

‖Yj‖C s(Bn(η1);Rn) �{s} 1,

but we wish to have ‖Yj‖C s+1(Bn(η1);Rn) �{s} 1. However, Proposition 4.1 gives
us additional information: namely, (i), where we have [Yj ,Yk] =

∑n
l=1 c̃

l
j,kYl, 1 ≤

j,k≤n, with ‖c̃lj,k‖C s(Bn(η1)) �{s} 1. Notice, if all we knew was ‖Yj‖C s(Bn(η1);Rn)

�{s} 1 then the best we could say in general is that ‖c̃lj,k‖C s−1(Bn(η1)) �{s} 1; thus
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(i) gives us additional regularity information on Y1, . . . ,Yn. This is not enough
to conclude that ‖Yj‖C s+1(Bn(η1);Rn) �{s} 1; indeed it is easy to find two non-
smooth vector fields on R

2, Z1, Z2, which span the tangent space at every point,
such that [Z1,Z2] = 0 (take Zj = Ψ∗ ∂

∂xj
where Ψ : R2 → R

2 is a C2 diffeomor-
phism). However, as we will describe in Section 6.1, this is enough to conclude
that there is a different coordinate system (denoted by Φ2) in which we have
‖Φ∗

2Yj‖C s+1(Bn(1);Rn) �{s} 1, which will complete the proof.

6.1. Φ2. Fix η1 > 0 and suppose we are given vector fields Y1, . . . ,Yn on
Bn(η1) of the form

Y =
∂

∂t
+A

∂

∂t
= (I+A)∇, A(0) = 0.

Here, we are writing Y for the column vector of vector fields Y = [Y1, . . . ,Yn]
�,

∂
∂t is the column vector ∂

∂t = [ ∂
∂t1
, . . . , ∂

∂tn
]� (which we also write as ∇), and

A is an n× n matrix depending on t ∈ Bn(η1). Fix s0 > 1 and suppose A ∈
C s0(Bn(η1);Mn×n) and

[
Yj,Yk

]
=

n∑

l=1

c̃lj,kYl,

where c̃lj,k ∈ C s0(Bn(η1)).

Definition 6.1. For s ≥ s0, if we say C is a {s}-admissible constant, it means
A ∈ C s(Bn(η1);Mn×n) and c̃lj,k ∈ C s(Bn(η1)), 1 ≤ j,k, l ≤ n. C can be cho-

sen to depend only on s0, s and upper bounds for n, η−1
1 , ‖A‖C s(Bn(η1);Mn×n),

and ‖c̃lj,k‖C s(Bn(η1)). For s < s0, we define {s}-admissible constants to be {s0}-
admissible constants.

Remark 6.2. In the definition of {s}-admissible constants, the vector fields
Yj and the functions c̃lj,k are assumed to have the same regularity. Usually, one

would expect the functions c̃lj,k to be one derivative worse than the vector fields Yj .
What the following proposition shows is that one can pick a different coordinate
system in which the vector fields Yj have one more derivative of regularity, thereby
achieving this expectation.

PROPOSITION 6.3. There exists an {s0}-admissible constant K ≥ 1 and a map
Φ2 : Bn(1)→Bn(η1) such that

(a) Φ2 ∈ C s0+1(Bn(1);Rn), and

‖Φ2‖C s+1(Bn(1);Rn) �{s} 1, ∀s > 0.

(b) Φ2(0) = 0, dΦ2(0) =K−1I .
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(c) Φ2(B
n(1)) ⊆ Bn(η1) is open and Φ2 : Bn(1) → Φ2(B

n(1)) is a C s0+1

diffeomorphism.
Let Ŷj =Φ∗

2Yj . Then,
(d) Ŷ =K(I+ Â)∇, and Â(0) = 0.
(e) supu∈Bn(1) ‖Â(u)‖Mn×n ≤ 1

2 .

(f) ‖Ŷj‖C s+1(Bn(1);Rn) �{s} 1, for s > 0, 1 ≤ j ≤ n.

We defer the proof of Proposition 6.3 to Section 6.6.

6.2. Proof of Theorem 2.14. In this section, we prove Theorem 2.14 by
combining Propositions 4.1 and 6.3. We take the same setting as in Theorem 2.14,
and define 0-admissible and {s}-admissible constants as in Definitions 2.12
and 2.13. Take Φ0, Y1, . . . ,Yq, A, η1, and χ be as in Proposition 4.1, so that
Φ0 : Bn(η1) → BXJ0

(x0,χ). Note that (4.2) implies ‖A‖C s(Bn(η1);Mn×n) �{s} 1.
Hence, using Proposition 4.1 (f), (g), and (i), we see that Proposition 6.3 applies to
Y1, . . . ,Yn (with this choice of η1), and every constant which is {s}-admissible in
the sense of Proposition 6.3 is {s}-admissible in the sense of this section. Thus we
obtain a map Φ2 :Bn(1)→Bn(η1) as in Proposition 6.3. Let K , Â, and Ŷ1, . . . , Ŷn
be as in that proposition. Notationally, we prove Theorem 2.14 with Ŷ in place of
Y and Â in place of A.

With χ ∈ (0, ξ] as in Proposition 4.1, Theorem 2.14 (a), (b), and (c) follow
immediately from Proposition 4.1 (a), (b), and (c). Set Φ = Φ0 ◦Φ2 : Bn(1) →
BXJ0

(x0,χ).
By Proposition 4.1 (d) and (e), Φ0 takes open subsets of Bn(η1) to open sub-

sets of BXJ0
(x0,χ). By Proposition 6.3 (c), Φ2(B

n(1)) is open in Bn(η1). Theo-
rem 2.14 (d) follows. Theorem 2.14 (e) follows by combining Proposition 4.1 (e)
and Proposition 6.3 (c).

By the definition of Φ0, (4.1), we have Φ0(0) = x0. By Proposition 6.3 (b), we
have Φ2(0) = 0. Hence, Φ(0) = x0, proving Theorem 2.14 (g). The existence of ξ1

as in Theorem 2.14 (f) follows just as in [SS18, Lemma 9.23], while the existence
of ξ2 follows from [SS18, Lemma 9.35].

For 1 ≤ j ≤ n, we have Φ∗Xj = Φ∗
2Φ

∗
0Xj = Φ∗

2Yj = Ŷj . For n+ 1 ≤ j ≤ q,
we define Ŷj := Φ∗Xj . Proposition 6.3 (d) and (e) shows ŶJ0 = K(I + Â)∇ and
proves Theorem 2.14 (h) and (i).

Proposition 6.3 (f) proves Theorem 2.14 (j) for 1 ≤ j ≤ n. For n+ 1 ≤ j ≤ q,
we proceed as follows. Let blj be as in Proposition 4.1 (h). Then, we have

Ŷj =Φ∗
2Yj =

n∑

k=1

Φ∗
2

(
bkjYk

)
=

n∑

k=1

(
bkj ◦Φ2

)
Ŷk.(6.1)

We have already shown

‖Ŷk‖C s+1(Bn(1);Rn) �{s} 1, 1 ≤ k ≤ n.(6.2)
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Since ‖bkj ‖C s+1(Bn(η1)) �{s} 1 by Proposition 4.1 (h) and ‖Φ2‖C s+1(Bn(1);Rn) �{s} 1
by Proposition 6.3 (a), we have ‖bkj ◦ Φ2‖C s+1(Bn(1)) �{s} 1 for s > 0 (see
Lemma 5.8). Combining this with (6.1) and (6.2) completes the proof of Theo-
rem 2.14 (j).

Notice that Theorem 2.14 (j) (which we have already shown) implies
‖Â‖C s+1(Bn(1);Mn×n) �{s} 1. We have ŶJ0 = K(I + Â)∇. Since ‖Â(u)‖Mn×n ≤
1
2 , ∀u ∈ Bn(1), (I + Â(u)) is invertible for all u ∈ Bn(1) and we have

‖(I + Â)−1‖C s+1(Bn(1)) �{s} 1 (this uses Lemma 5.7 and the cofactor repre-

sentation of (I+ Â)−1). Hence, ∇ =K−1(I + Â)−1ŶJ0 . I.e., for each 1 ≤ j ≤ n,
∂
∂tj

can be written as a linear combination, with coefficients in C s+1(Bn(1)) of

Ŷ1, . . . , Ŷn, and the C s+1 norms of the coefficients are �{s} 1. Combining this with
Theorem 2.14 (j), Proposition 5.12 applies to prove Theorem 2.14 (k).

For Theorem 2.14 (l), we already know by Theorem 2.14 (k) that

‖f ◦Φ‖C s(Bn(1)) ≈{s−2} ‖f ◦Φ‖C s
̂YJ0

(Bn(1)).

That ‖f ◦ Φ‖C s
̂YJ0

(Bn(1)) ≤ ‖f‖C s
XJ0

(BXJ0
(x0,χ)) follows from [SS18, Proposi-

tion 8.6]; Theorem 2.14 (l) follows.

6.3. Densities. In this section, we prove Theorem 2.21 and Corollary 2.22.
We take the setting of Theorem 2.21 and therefore we have a C1 density ν and a
notion of {s;ν}-admissible constants, as in Definition 2.20. We let Φ, Y1, . . . ,Yq,
K, and A be as in Theorem 2.14, and we let ν0 be as in (4.3).

LEMMA 6.4. Define h0 by Φ∗ν0 = h0σLeb. Then, h0 = det(K(I +A))−1. In
particular, h0(t)≈{s0} 1, ∀t ∈Bn(1), and

‖h0‖C s(Bn(1)) �{s−1} 1, s > 0.(6.3)

Proof. Because supt∈Bn(1) ‖A(t)‖Mn×n ≤ 1
2 and K ≈{s0} 1 by Theorem 2.14,

we have |det(K(I +A))−1| = det(K(I +A))−1, and det(K(I +A))−1 ≈{s0} 1.
Using that Φ∗Yj =Xj ,

h0(t) =
(
Φ∗ν0

)
(t)

(
∂

∂t1
,
∂

∂t2
, . . . ,

∂

∂tn

)

=
(
Φ∗ν0

)
(t)
((
K(I+A(t)

))−1
Y1(t), . . . ,

(
K
(
I+A(t)

))−1
Yn(t)

)

=
∣
∣
∣det

(
K
(
I+A(t)

))−1
∣
∣
∣
(
Φ∗ν0

)
(t)
(
Y1(t), . . . ,Yn(t)

)

= det
(
K
(
I+A(t)

))−1
ν0
(
Φ(t)

)(
X1

(
Φ(t)

)
, . . . ,Xn

(
Φ(t)

))

= det
(
K
(
I+A(t)

))−1
.



1820 B. STREET

This proves h0 = det(K(I +A))−1 and therefore h0(t) ≈{s0} 1. Theorem 2.14 (j)
implies ‖A‖C s(Bn(1);Mn×n) �{s−1} 1; (6.3) follows from this using Lemma 5.7,
completing the proof. �

Proof of Theorem 2.21. Let g be as in Proposition 4.4 so that ν = gν0. Hence,
hσLeb = Φ∗ν = Φ∗gν0 = (g ◦Φ)h0σLeb, where h0 is as in Lemma 6.4. Thus,
h = (g ◦Φ)h0. Proposition 4.4 (a) implies g ◦Φ(t) ≈[s0;ν] ν(X1, . . . ,Xn)(x0) and
Lemma 6.4 shows h0(t)≈{s0} 1. (a) follows.

Theorem 2.14 (l) combined with Proposition 4.4 (b) shows ‖g ◦Φ‖C s(Bn(1))

�{s−1;ν} 1. Combining this with (6.3) and the formula h = (g ◦Φ)h0, and using
Lemma 5.7, proves (b) and completes the proof. �

To prove Corollary 2.22, we introduce a corollary of Theorem 2.14.

COROLLARY 6.5. Let Φ, ξ1, and ξ2 be as in Theorem 2.14. Then, there exist
{s0}-admissible constants 0< ξ4 ≤ ξ3 ≤ ξ2 and a map Φ̂ : Bn(1)→BXJ0

(x0, ξ2)

which satisfies all the same estimates as Φ so that

BX

(
x0, ξ4

)⊆BXJ0

(
x0, ξ3

)⊆ Φ̂
(
Bn(1)

) ⊆BXJ0

(
x0, ξ2

)⊆BX

(
x0, ξ2

)

⊆BXJ0

(
x0, ξ1

)⊆ Φ
(
Bn(1)

) ⊆BXJ0

(
x0,χ

)⊆BXJ0

(
x0, ξ

)
.

Proof. After obtaining ξ1, ξ2, and Φ from Theorem 2.14, we apply Theo-
rem 2.14 again with ξ replaced by ξ2, to yield the map Φ̂ and {s0}-admissible
constants ξ3 and ξ4 as above. �

Proof of Corollary 2.22. Using Theorem 2.21 (a), we have

ν
(
Φ
(
Bn(1)

))
=

∫

Φ(Bn(1))
ν =

∫

Bn(1)
Φ∗ν

=

∫

Bn(1)
h(t)dt≈[s0;ν] ν

(
X1, . . . ,Xn

)(
x0
)
,

and we have the same estimate for Φ replaced by Φ̂, where Φ̂ is as in Corollary 6.5.
Since

Φ̂
(
Bn(1)

) ⊆BXJ0

(
x0, ξ2

)⊆BX

(
x0, ξ2

)⊆Φ
(
Bn(1)

)
,

and since h(t) always has the same sign (by Theorem 2.21 (a)), (2.7) follows.
To complete the proof, we need to show

∣
∣ν
(
X1, . . . ,Xn

)(
x0
)∣
∣≈0 max

(j1,...,jn)∈I(n,q)
∣
∣ν
(
Xj1 , . . . ,Xjn

)(
x0
)∣
∣.(6.4)
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However, either both sides of this equation equal 0, or Proposition 4.4 shows
∣
∣ν
(
Xj1 , . . . ,Xjn

)(
x0
)∣
∣

∣
∣ν
(
X1, . . . ,Xn

)(
x0
)∣
∣ =

∣
∣ν0

(
Xj1 , . . . ,Xjn

)(
x0
)∣
∣

∣
∣ν0

(
X1, . . . ,Xn

)(
x0
)∣
∣

=

∣
∣
∣
∣
∣

Xj1

(
x0
)∧ ·· ·∧Xjn

(
x0
)

X1
(
x0
)∧ ·· ·∧Xn

(
x0
)

∣
∣
∣
∣
∣
≤ ζ−1 �0 1,

where we have used the definition of ζ (see (2.4)). Since the left-hand side of (6.4)
is ≤ the right-hand side, this completes the proof. �

6.4. A regularity result. Let Y1, . . . ,Yn be vector fields on Bn(2). Using
the vector notation from Section 6.1, write

Y =
∂

∂t
+A

∂

∂t
,

where A : Bn(2) → M
n×n. Let akj denote the (j,k) component of A, and define

Aj = [a1
j , . . . ,a

n
j ]; i.e., Aj is the jth row of A. We have

Yj =
∂

∂tj
+Aj

∂

∂t
.

Suppose

[
Yj,Yk

]
=

n∑

l=1

clj,kYl(6.5)

and

n∑

j=1

∂

∂tj
Aj = 0.(6.6)

PROPOSITION 6.6. In the above setting, there exists γ1 = γ1(n) > 0 (de-
pending only on n) such that the following holds. If s > 1 is such that clj,k,a

k
j ∈

C s(Bn(2)), ∀j,k, l, and ‖akj ‖L∞(Bn(2)) ≤ γ1, ∀j,k, then akj ∈ C s+1(Bn(1)) and

max
j,k

‖akj ‖C s+1(Bn(1)) ≤Dn,s,

where Dn,s can be chosen to depend only on s, and upper bounds for n,
‖akj ‖C s(Bn(2)), and ‖clj,k‖C s(Bn(2)) (for all j,k, l).

Proof. Set Cj,k = [c1
j,k, . . . , c

n
j,k]. Then (6.5) can be rewritten as

∂

∂tj
Ak− ∂

∂tk
Aj +Aj

∂

∂t
Ak−Ak

∂

∂t
Aj =Cj,k(I+A).
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Combining this with (6.6) shows that A satisfies the following system of equations:

EA+Γ(A,∇A) = Ĉ,

where

EA=

⎛

⎝
(
∂

∂tj
Ak− ∂

∂tk
Aj

)

1≤j<k≤n

,

n∑

j=1

∂

∂tj
Aj

⎞

⎠ ,

Γ is a constant coefficient bilinear form, depending only on n, and Ĉ =

((Cj,k(I+A))1≤j<k≤n,0).
By Lemma A.6, E is elliptic. Also, ‖Ĉ‖C s ≤ Dn,s, where Dn,s is as in the

statement of the proposition (see Lemma 5.7). From here, the result follows from
Proposition A.3 (taking s1 = s−1 and s2 = s in that proposition). �

6.5. Φ1. Fix s0 > 1. Let Y1, . . . ,Yn be C s0 vector fields on Bn(5). Using
the matrix notation of Section 6.1, we assume Y1, . . . ,Yn have the form

Y =
∂

∂t
+A

∂

∂t
, A(0) = 0,

where A :Bn(5)→M
n×n. We assume

[
Yj,Yk

]
=

n∑

l=1

clj,kYl.

Definition 6.7. For s ≥ s0, if we say C is a {s}-admissible constant it means
that A ∈ C s(Bn(5);Mn×n) and cj,k ∈ C s(Bn(5)), 1 ≤ j,k, l ≤ n. C can be cho-
sen to depend only on s, s0, n, and upper bounds for ‖A‖C s(Bn(5);Mn×n) and
‖clj,k‖C s(Bn(5)), 1 ≤ j,k, l ≤ n. For s < s0, we define {s}-admissible constants
to be {s0}-admissible constants.

PROPOSITION 6.8. There exists γ2 = γ2(n,s0) > 0 (γ2 depending only on n
and s0) such that if ‖A‖C s0 (Bn(5);Mn×n) ≤ γ2 then there exists Φ1 :Bn(1)→Bn(5)
such that:

(a) Φ1 ∈C s0+1(Bn(1);Rn) and ‖Φ1‖C s0+1(Bn(1);Rn) ≤Dn,s0 , whereDn,s0 de-
pends only on n and s0.

(b) ‖Φ1‖C s+1(Bn(1)) �{s} 1, ∀s > 0.
(c) Φ1(0) = 0 and dΦ1(0) = I .
(d) Φ1(B

n(1)) ⊆Bn(5) is open.
(e) Φ1 :Bn(1)→ Φ1(B

n(1)) is a C s0+1 diffeomorphism.
Let Ŷj :=Φ∗

1Yj , then

Ŷ =
∂

∂t
+ Â

∂

∂t
,
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where
(f) Â(0) = 0 and supu∈Bn(1) ‖Â(u)‖Mn×n ≤ 1

2 .

(g) ‖Â‖C s+1(Bn(1);Mn×n) �{s} 1, s > 0.

(h) ‖Ŷj‖C s+1(Bn(1);Rn) �{s} 1, s > 0.

The rest of this section is devoted to the proof of Proposition 6.8.

LEMMA 6.9. Fix σ,γ1 > 0. There exists γ2 = γ2(n,s0,σ,γ1)> 0 (γ2 depending
only on n, s0, σ, and γ1) such that if ‖A‖C s0 (Bn(5);Mn×n) ≤ γ2 then there exists
H ∈ C s0+1(Bn(4);Rn) of the form H(t) = t+R(t) where

(a) H(Bn(4)) ⊆ R
n is open and H : Bn(4) → H(Bn(4)) is a C s0+1 diffeo-

morphism.
(b) R(0) = 0 and dR(0) = 0.
(c) R ∈ C s0+1(Bn(4);Rn) with ‖R‖C s0+1(Bn(4);Rn) ≤ σ.
(d) ‖R‖C s+1(Bn(3);Rn) �{s} 1 for all s > 0.

Moreover, let Ŷj =H∗Yj . Then Ŷ = ∂
∂v + Â

∂
∂v and

(e) If Âj is the jth row of Â, then
∑n

j=1
∂
∂vj
Âj(v) = 0 for v ∈H(Bn(4)).

(f) If âkj is the (j,k) component of Â, then ‖âkj ‖L∞(H(Bn(4))) ≤ γ1.

Proof. If σ > 0 is sufficiently small, depending only on s0 and n, and if (c)
holds, the Inverse Function Theorem implies (a). Thus, without loss of generality,
we shrink σ > 0 so that (a) holds. (d) for s < s0 follows from the result for s= s0

(by the definition of {s}-admissible constants). Thus it suffices to prove (d) for
s≥ s0.

To begin, let R ∈ C s0+1(Bn(4);Rn) be any function satisfying R(0) = 0,
dR(0) = 0, and ‖R‖C s0+1(Bn(4);Rn) ≤σ (we will later specialize to a specific choice
of R). To emphasize the dependance of H on R, we write HR in place of H , so
that HR(t) = t+R(t). Using the standard notation if R= (R1, . . . ,Rn), we have

dR(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂R1

∂t1
(t) · · · ∂R1

∂tn
(t)

...
. . .

...

∂Rn

∂t1
(t) · · · ∂Rn

∂tn
(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Setting Ŷj := (HR)∗Yj , a direct computation shows

Ŷ =
∂

∂v
+ Â(v)

∂

∂v
,

where

Â(v) =
(
dR(t)�+A(t)

(
I+dR(t)�

))∣∣
∣
t=H−t

R (v)
, v ∈HR

(
Bn(4)

)
.(6.7)
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Without loss of generality, we take σ ≤ γ1
2 , and by taking γ2 > 0 sufficiently small

(6.7) implies (f).
We wish to pick R so that

n∑

j=1

∂

∂vj
Âj(v) = 0, v ∈HR

(
Bn(4)

)
.(6.8)

Define Ψ(A,R)(t) := (Ψ1(A,R)(t), . . . ,Ψn(A,R)(t)) by

Ψk(A,R)(t)

:=
n∑

j=1

∂

∂vj

(
dR

(
H−1

R (v)
)�

+A
(
H−1

R (v)
)(
I+dR

(
H−1

R (v)
)�))

j,k

∣
∣
∣
∣
v=HR(t)

;

where the subscript j,k denotes taking the (j,k) component of the matrix. In light
of (6.7), (6.8) is equivalent to Ψ(A,R)(t) = 0, t ∈Bn(4).

For any function K(t), the chain rule shows

∂

∂vj
K
(
H−1

R (v)
)∣∣
∣
v=HR(t)

= dK(t)
(
I+dR(t)

)−1
ej ,(6.9)

where ej denotes the jth standard basis element—the point is that the right-hand
side of (6.9) is a function of dK(t) and dR(t). Thus, using the notation of Appen-
dix A.3, we have

Ψ(A,R)(t) = g
(
D1A(t),D2R(t)

)

for some smooth function g defined near the origin, with g(0,0) = 0. Furthermore,
it is easy to see that g(D1A(t),D2R(t)) is quasilinear in R in the sense of (A.10).

We wish to solve for R in terms of A so that Ψ(A,R) = 0, provided
‖A‖C s0 (Bn(5);Mn×n) ≤ γ2, where γ2 is a chosen small as in the statement of
the lemma. To do this, we apply Proposition A.4; thus we need to make sure
g(D1A(t),D2R(t)) is elliptic in the sense of that proposition (where we are
replacing B with R in the statement of that proposition). Define E2 as in (A.11);
we wish to show E2 is elliptic. Note that

R �−→ d

dε

∣
∣
∣
ε=0

Ψ(0, εR)

is a second order, constant coefficient, differential operator acting on R whose
principal symbol is E2. Thus, we wish to show that this differential operator is
elliptic. It suffices to compute this operator in the special case when R ∈ C∞.

Assuming R is C∞, we have

HεR(t) = t+ εR(t), H−1
εR (v) = v− εR(v)+O(ε2),
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where O(ε2) denotes a term which is C∞ in the variable t or v, and all of whose
derivatives in this variable (of all orders ≥ 0) are O(ε2). Thus,

Ψk(0, εR) =
n∑

j=1

∂

∂vj

(
εdR

(
H−1

εR (v)
)�)

j,k

∣
∣
∣
∣
v=HεR(t)

=

n∑

j=1

∂

∂vj

(
εdR(v)�

)

j,k

∣
∣
∣
∣
v=t+εR(t)

+O
(
ε2)

=

n∑

j=1

ε
∂

∂vj

∂Rk

∂vj
(v)

∣
∣
∣
∣
v=t+εR(t)

+O
(
ε2)

=

n∑

j=1

ε
∂2

∂t2j
Rk(t)+O

(
ε2).

Thus,

d

dε

∣
∣
∣
∣
ε=0

Ψ(0, εR) =

⎛

⎝
n∑

j=1

∂2

∂t2j
R1,

n∑

j=1

∂2

∂t2j
R2, . . . ,

n∑

j=1

∂2

∂t2j
Rn

⎞

⎠ ,

and we conclude g(D1A(t),D2R(t)) is elliptic in the sense of Proposition A.4.
We apply Proposition A.4 with D = 4, η = 3, and

N =
{
R ∈ C s0+1(Bn(4);Rn) : ‖R‖C s0+1(Bn(4);Rn) < σ

}
.

Thus, if γ2 > 0 is sufficiently small, and if ‖A‖C s0 (Bn(5);Mn×n) ≤ γ2, we may solve
for R = R(A) ∈N such that Ψ(A,R) = 0, R(0) = 0, dR(0) = 0, and (c) and (d)
hold. As we saw earlier, Ψ(A,R) = 0 is equivalent to (e), and (a) and (f) have
already been verified. This completes the proof. �

Remark 6.10. Throughout this paper, we fixed s0 > 1. It would be nice if we
could achieve the same results for s0 > 0, however technical issues arise if we try
to follow the methods of this paper with s0 ∈ (0,1]. This is particularly notable in
the proof of Lemma 6.9. When s0 > 1, the solutions we consider to the PDE which
arises in that lemma are classical, however if s0 ∈ (0,1], it seems likely one would
have to consider some kind of generalized solution. A similar problem occurs in
the proof of Proposition 6.6.

Proof of Proposition 6.8. Let γ1 = γ1(n) > 0 be as in Proposition 6.6. We
shrink γ1 > 0, if necessary, to ensure that if Â is an n×n matrix with compo-
nents âkj and |âkj | ≤ γ1, then ‖Â‖Mn×n ≤ 1

2 . We take σn,s0 > 0 to be so small that if
‖R‖C s0+1(Bn(4);Rn) ≤ σn,s0 we have

• If H(t) = t+R(t), then Bn(2)⊆H(Bn(3)).
• detdH(t)≥ 1

2 , ∀t ∈Bn(3).
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Applying Lemma 6.9 with this choice of γ1 and with σ = σn,s0 yields γ2 and
H as in that theorem. Since Bn(2) ⊆ H(Bn(3)), by the choice of σn,s0, and in
light of Lemma 6.9 (a), we may define Φ1 : Bn(2)→ Bn(3) ⊆ Bn(5) by Φ1(t) =

H−1(t). (c), (d), and (e) follow from the corresponding properties of H described
in Lemma 6.9.

Since ‖H‖C s+1(Bn(3);Rn) �{s} 1 (by Lemma 6.9 (d)) and because detdH(t) ≥
1
2 , ∀t ∈ Bn(3) (by the choice of σ = σn,s0), we have ‖Φ1‖C s+1(Bn(2);Rn) �{s} 1

(see Lemma 5.9), proving (b); the same proof gives (a). Moreover, if Ŷj =Φ∗
1Yj =

H∗Yj , we have ‖Ŷj‖C s(Bn(2);Rn) �{s} 1. Writing Ŷ = ∂
∂t + Â ∂

∂t , that Â(0) = 0

follows from (c) and the fact that A(0) = 0. That supu∈Bn(1) ‖Â(u)‖Mn×n ≤ 1
2

follows from the choice of γ1 and Lemma 6.9 (f). This establishes (f).
All that remains to establish are the two (clearly equivalent) statements (g)

and (h). For this, we use Proposition 6.6. Since ‖Ŷj‖C s(Bn(2);Rn) �{s} 1, we have
‖âkj ‖C s(Bn(2)) �{s} 1. Also, we have

[
Ŷj , Ŷk

]
=Φ∗

1

[
Yj ,Yk

]
=Φ∗

1

n∑

l=1

clj,kYl =

n∑

l=1

ĉlj,kŶl,

where ĉlj,k = clj,k ◦Φ1. Using (b), Lemma 5.8, and the assumption ‖clj,k‖C s(Bn(5))

�{s} 1, this implies ‖ĉlj,k‖C s(Bn(2)) �{s} 1. Finally, Lemma 6.9 (e) and (f) show

that all of the hypotheses of Proposition 6.6 hold for Ŷ1, . . . , Ŷn. Applying Proposi-
tion 6.6 yields (g) and (h), completing the proof. �

6.6. Construction of Φ2. In this section, we prove Proposition 6.3, and
we take the same setting and notation as in that proposition; thus, we have vector
fields Y1, . . . ,Yn and functions c̃ki,j as in that proposition, and we have a notion of
{s}-admissible constants given in Definition 6.1. Because of this definition of {s}-
admissible constants, it suffices to assume s≥ s0 in all of Proposition 6.3. Thus, in
this section we consider only s≥ s0.

LEMMA 6.11. Define, for γ ∈ (0,1], Ψγ :Bn(η1/γ)→Bn(η1) by Ψγ(t) = γt.
Let Y γ

j := γΨ∗
γYj . Then, Y γ

j = ∂
∂t +Aγ

∂
∂t and [Y γ

j ,Y
γ
k ] =

∑n
l=1 c

l,γ
j,kY

γ
l , where for

γ ∈ (0,min{η1
5 ,1}], s≥ s0,

‖Aγ‖C s(Bn(5);Mn×n) �{s} γ, ‖cl,γj,k‖C s(Bn(5)) �{s} γ.(6.10)

Proof. Since Aγ(t) = A(γt) and A(0) = 0, that ‖Aγ‖C s(Bn(5);Mn×n) �{s} γ
follows from Lemma 5.10 (this uses s ≥ s0 > 1). Since cl,γj,k(t) = γclj,k(γt),

‖cl,γj,k‖C s(Bn(5)) �{s} γ follows directly from the definitions (this uses γ ∈
(0,1]). �
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Proof of Proposition 6.3. Let Aγ , cl,γj,k, and Y γ
j be as in Lemma 6.11. Fix γ2 =

γ2(n,s0) > 0 as in Proposition 6.8. Take γ ≈{s0} 1 so small γ ≤ min{η1
5 ,1} and

‖Aγ‖C s0 (Bn(5);Mn×n) ≤ γ2 (this is clearly possible by (6.10)). With this choice of

γ, we have ‖cl,γj,k‖C s(Bn(5)) �{s} γ ≤ 1 and ‖Aγ‖C s(Bn(5)) �{s} γ ≤ 1, for s ≥ s0,
by (6.10).

In light of these remarks, Proposition 6.8 applies to Y γ
1 , . . . ,Y

γ
n to yield a

map Φ1 : Bn(1) → Bn(5) as in that proposition (and constants which are {s}-
admissible in the sense of that proposition are {s}-admissible in the sense of this
section). Let Ŷ γ

j =Φ∗
1Y

γ
j .

Set Φ2 :=Ψγ ◦Φ1 :Bn(1)→Bn(η1), and let Ŷj =Φ∗
2Yj . Note that Ŷj =KŶ γ

j ,

where K := 1
γ ≥ 1 is an {s0}-admissible constant. With this choice of K and Φ2,

the proposition follows from the corresponding results for Φ1 and Ŷ γ
1 , . . . , Ŷ

γ
n given

in Proposition 6.8. �

6.7. Qualitative results. We now turn to the qualitative results; i.e., Theo-
rems 2.4 and 2.7. These are simple consequences of Theorem 2.14. We begin with
Theorem 2.4. For this we recall [SS18, Proposition 4.14].

LEMMA 6.12 (Proposition 4.14 of [SS18]). Let X1, . . . ,Xq be C1 vector fields
on a C2 manifold M.

• ∀x0 ∈M, ∃η > 0, such that X1, . . . ,Xq satisfy C(x0,η,M).
• Let K �M be a compact set. Then, there exists δ0 > 0 such that ∀θ ∈ Sq−1

if x ∈K is such that θ1X1(x)+ · · ·+ θqXq(x) 
= 0, then ∀r ∈ (0,δ0],

erθ1X1+···+rθqXqx 
= x.

Remark 6.13. Lemma 6.12 shows that we always have η and δ0 as in the as-
sumptions of Theorem 2.14. Thus, if we wish to apply Theorem 2.14 to obtain a
qualitative result, we do not need to verify the existence of η and δ0.

Proof of Theorem 2.4. (i)⇒(ii): First we prove the result with s < ∞. Let U ,
V , x0, and Φ be as in (i). Without loss of generality assume 0 ∈ U and Φ(0) = x0.
Reorder X1, . . . ,Xq so that X1(x0), . . . ,Xn(x0) are linearly independent and let
Yj =Φ∗Xj , so that Yj ∈ C s+1(U ;Rn), 1 ≤ j ≤ q. Note that Y1(0), . . . ,Yn(0) span
the tangent space T0U . Let η > 0 be so small Bn(2η) ⊂ U and Y1, . . . ,Yn form a
basis for the tangent space on Bn(2η). It is immediate to verify, for 1 ≤ j,k ≤ q,
that

[
Yj,Yk

]
=

n∑

l=1

c̃lj,kYl,(6.11)
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where c̃lj,k ∈ C s(Bn(η)). Because Y1, . . . ,Yq span the tangent space at every point

of Bn(2η) and Yj ∈ C s+1(Bn(2η);Rn), 1 ≤ j ≤ q, Corollary 5.13 implies

c̃ki,j ∈ C s(Bn(η)) = C s
Y (B

n(η)).(6.12)

Pushing (6.11) forward via Φ shows [Xj ,Xk] =
∑n

l=1 ĉ
l
j,kXl, with ĉlj,k = c̃lj,k◦Φ−1.

(2.3) and (6.12) combine to give ĉlj,k ∈ C s
X(Φ(Bn(η))).

Using that Y1, . . . ,Yn span the tangent space at every point of Bn(2η) and that
Yj ∈ C s+1(U ;Rn), 1 ≤ j ≤ q, for n+1 ≤ j ≤ q, we may write

Yj =

n∑

k=1

b̃kjYk(6.13)

where b̃kj ∈ C s+1(Bn(η)). By Corollary 5.13, b̃kj ∈C s+1(Bn(η)) =C s+1
Y (Bn(η)),

and by (2.3), bkj = b̃kj ◦Φ−1 ∈ C s+1
X (Φ(Bn(η))). Pushing (6.13) forward via Φ,

we have Xj =
∑n

k=1 b
k
jXk on Φ(Bn(η)) this completes the proof of (ii) with V

replaced by Φ(Bn(η)), when s < ∞.
If s= ∞ note that in the above proof η, ĉlj,k, and bkj can be chosen independent

of s, thus when s = ∞ the above proof applied to each s < ∞ completes the proof
of (ii).

(ii)⇒(iii): Suppose (ii) holds. We wish to show for 1 ≤ i,j ≤ q,

[
Xi,Xj

]
=

q∑

k=1

cki,jXk, cki,j ∈ C s
X(V ).(6.14)

where s and V are as in (ii). For 1 ≤ i,j ≤ n, (6.14) is contained in (ii). We prove
the result for n+1 ≤ i,j ≤ q. The remaining cases (1 ≤ i≤ n and n+1 ≤ j ≤ q,
or n+1 ≤ i≤ q and 1 ≤ j ≤ n) are similar and easier. We have

[
Xi,Xj

]
=

⎡

⎣
n∑

k1=1

bk1
i Xk1 ,

n∑

k2=1

bk2
j Xk2

⎤

⎦

=
n∑

k1,k2=1

(

bk1
i

(
Xk1b

k2
j

)
Xk2 − bk2

j

(
Xk2b

k1
i

)
Xk1 +

n∑

l=1

bk1
i b

k2
j ĉ

l
k1,k2

Xl

)

.

We are given bkj ∈ C s+1
X (V ) and ĉlk1,k2

∈ C s
X(V ). It follows immediately from the

definition of C s+1
X thatXlb

k
j ∈C s

X(V ). From here, (6.14) follows from the fact that
C s
X(V ) is an algebra (see Lemma 5.7), completing the proof of (iii).

(iii)⇒(i): This is a consequence of Theorem 2.14. We make a few comments
to this end. First of all, as discussed in Lemma 6.12 and Remark 6.13, there exist
η and δ0 as in the hypotheses of Theorem 2.14. Fix any s0 ∈ (1,s] \{∞} and take
ξ > 0 so small BX(x0, ξ)⊆ V . Take J0 as in Theorem 2.14 (with ζ = 1). We have,
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directly from the definitions,

cki,j ∈ C s
X(V )⊆ C s

X(BX(x0, ξ))⊆ C s
XJ0

(BXJ0
(x0, ξ))⊆ C s0

XJ0
(BXJ0

(x0, ξ)).

Thus, all of the hypotheses of Theorem 2.14 hold for this choice of s0. This yields
a map Φ as in Theorem 2.14. This map satisfies the conclusions of (i), and this
completes the proof. �

We now turn to Theorem 2.7. The uniqueness of the C s+2 structure described
in that theorem follows from the next lemma.

LEMMA 6.14. Fix s ∈ (0,∞]. Let M and N be two n-dimensional C s+2 mani-
folds, and suppose X1, . . . ,Xq are C s+1 vector fields on M which span the tangent
space at every point, and Z1, . . . ,Zq are C s+1 vector fields on N . Let Ψ :M →N

be a C2 diffeomorphism such that Ψ∗Xj = Zj . Then Ψ is a C s+2 diffeomorphism.

Proof. We first prove the result in the special case when M and N are open
subsets of Rn; in this case we can identify the vector fields with R

n valued func-
tions, in the usual way. We use x to denote points in M ⊆ R

n and y to denote a
points in N ⊆R

n.
Fix a point x0 ∈M , we will show Ψ ∈ C s+1

loc on a neighborhood of x0; since
x0 ∈M is arbitrary, this will complete the proof of the case when M and N are
open subsets of Rn. ReorderX1, . . . ,Xq so thatX1(x0), . . . ,Xn(x0) are linearly in-
dependent; and reorder Z1, . . . ,Zq in the same way to that we still have Ψ∗Xj =Zj .
Since X1(x0), . . . ,Xn(x0) form a basis of Tx0M , we may pick an open neighbor-
hood U of x0 so that X1(x), . . . ,Xn(x) form a basis for the tangent space at every
x ∈ U .

Let X (x) := (X1(x)| · · · |Xn(x)); i.e., X is the n×n matrix whose columns
are given by the vectors X1, . . . ,Xn. Similarly, let Z (y) = (Z1(y)| . . . |Zn(y)).
By hypothesis, we have X ∈ C s+1

loc (M ;Mn×n) and Z ∈ C s+1
loc (N ;Mn×n). Since

Ψ∗Xj = Zj , we have the matrix equation

dΨ(x)X (x) = Z (Ψ(x)), x ∈M.(6.15)

Since X1, . . . ,Xn span the tangent space at every point of U , the matrix X is
invertible, ∀x ∈ U . It follows from Lemma 5.7 (by using the cofactor formula for
X (x)−1), that X (·)−1 ∈ C s+1

loc (U ;Mn×n). From (6.15), we obtain

dΨ(x) = Z
(
Ψ(x)

)
X (x)−1, x ∈ U.(6.16)

Suppose Ψ ∈ C s′+2
loc (U ;Rn), for some s′ ≥ 0. We will show

Ψ ∈ C
min{s′+3,s+2}
loc (U ;Rn);
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and then it will follow by iteration that Ψ ∈ C s+2
loc (U ;Rn), as desired. This will

complete the proof since C2
loc(U ;Rn)⊂ C 2

loc(U ;Rn). Since Ψ ∈ C s′+2
loc (U ;Rn) and

Z ∈ C s+1
loc (N ;Mn×n), it follows from Lemma 5.15 that

Z ◦Ψ ∈ C
min{s′+2,s+1}
loc (U ;Mn×n).

Since we have already shown X (·)−1 ∈ C s+1
loc (U ;Mn×n), it follows from

Lemma 5.7 and (6.16) that

dΨ(x) = Z (Ψ(x))X (x)−1 ∈ C
min{s′+2,s+1}
loc (U ;Mn×n).

Since we also have Ψ ∈ C s′+2
loc (U ;Rn), it follows that Ψ ∈ C

min{s′+3,s+2}
loc (U ;Rn),

as desired. This completes the proof in the case when M and N are open subsets
of Rn.

We now turn to the general case, where M and N are C s+2 manifolds of
dimension n, and X1, . . . ,Xq, Z1, . . . ,Zq , and Ψ are as in the statement of the
lemma. Since M and N are C s+2 manifolds they have associated C s+2 atlases
{(φα,Vα)} and {(ψβ ,Wβ)}, respectively. We wish to show, ∀α,β,

Ψα,β := ψβ ◦Ψ◦φ−1
α : φα

(
Vα

⋂
Ψ−1(Wβ)

)
−→ ψβ

(
Ψ(Vα)

⋂
Wβ

)

is a C s+2 diffeomorphism, and this will complete the proof.
By hypothesis, we have

(
Ψα,β

)
∗
((
φα
)
∗Xj

)
=
(
ψβ

)
∗Zj.

Since (φα)∗X1, . . . ,(φα)∗Xq and (ψβ)∗Z1, . . . ,(ψβ)∗Zq are C s+1 vector fields, by
hypothesis, and (φα)∗X1, . . . ,(φα)∗Xq span the tangent space at every point of
φα(Vα), it follows from the above case (when M and N are open subsets of Rn),
that Ψα,β is a C s+2 diffeomorphism. This completes the proof. �

Proof of Theorem 2.7. (ii)⇒(i): Under the condition (ii), for each x∈M , there
exist open sets Ux ⊆ R

n, Vx ⊆M , and a C2 diffeomorphism Φx : Ux → Vx such
that if Y x

j =Φ∗
xXj , then Y x

j ∈ C s+1(Ux;Rn). We wish to show that the collection
{(Φ−1

x ,Vx) : x ∈M} forms a C s+2 atlas on M ; once that is shown, (i) will follow
since the Xj will be C s+1 with respect to this atlas by definition, and this atlas is
clearly compatible with the C2 structure on M . Hence, we need only verify that
the transition functions are C s+2

loc . Take x1,x2 ∈M such that Vx1 ∩ Vx2 
= /0. Set
Ψ=Φ−1

x2
◦Φx1 : Ux1 ∩Φ−1

x1
(Vx2)→ Ux2 ∩Φ−1

x2
(Vx1). We wish to show Ψ is a C s+2

diffeomorphism. We already know Ψ is a C2 diffeomorphism and Ψ∗Y x1
j = Y x2

j .
That Ψ is a C s+2 diffeomorphism now follows from Lemma 6.14, completing the
proof of (i).

(i)⇒(iii): Suppose (i) holds. Using a simple partition of unity argument,
we may write [Xj ,Xk] =

∑q
l=1 c

l
j,kXl, where clj,k : M → R and are C s

loc maps.
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We wish to show ∀x0 ∈ M , ∃V ⊆ M open with x0 ∈ V and clj,k
∣
∣
V
∈ C s

X(V ).
Fix x0 ∈ M , and let W ⊆ M be a neighborhood of x0 such that there is a
C s+2 diffeomoprhism Φ : Bn(1) → W with Φ(0) = x0. Set Yj = Φ∗Xj , so
that Yj ∈ C s+1(Bn(3/4);Rn) and Y1, . . . ,Yq span the tangent space at ev-
ery point of Bn(1). Also we have clj,k ◦Φ ∈ C s(Bn(3/4)). Corollary 5.13 shows

clj,k◦Φ∈C s(Bn(1/2)) =C s
Y (B

n(1/2)) and (2.3) shows clj,k ∈C s
X(Φ(Bn(1/2))).

This proves (ii) with V =Φ(Bn(1/2)).
(iii)⇒(ii): This is obvious.
Finally, as mentioned before, the uniqueness of the C s+2 manifold structure,

as described in the theorem, is an immediate consequence of Lemma 6.14. �

7. Hölder spaces. Let Ω ⊂ R
n be a bounded, Lipschitz domain. It is easy

to see that for m ∈ N, s ∈ [0,1], m+ s > 0 we have the containment Cm,s(Ω) ⊆
Cm+s(Ω). Form∈N, s∈ (0,1), we also have the reverse containment Cm+s(Ω)⊆
Cm,s(Ω); this follows easily from [Tri06, Theorem 1.118 (i)].

When we move to the corresponding spaces with respect to C1 vector fields
X1, . . . ,Xq on a C2 manifold M , we have similar results. For any m ∈N, s ∈ [0,1]
with m+ s > 0, we have Cm,s

X (M) ⊆ Cm+s
X (M); see [SS18, Lemma 8.1]. The

reverse containment for m ∈ N and s ∈ (0,1) is a bit more difficult and requires
appropriate hypotheses on the vector fields. We state a quantitative local version of
this in the next proposition.

PROPOSITION 7.1. We take all the same assumptions and notation as in Theo-
rem 2.14, and let Φ be as in that theorem (and {s}-admissible constants as in Def-
inition 2.13). Then, for m ∈ N, s ∈ (0,1), and for any function f ∈ C(Φ(Bn(1))),

‖f‖Cm,s
X (Φ(Bn(1))) ≈{m+s−2} ‖f‖C m+s

X (Φ(Bn(1))).(7.1)

Proof. We use Lemma 5.6; in particular, for g ∈C(Bn(1)), m ∈N, s ∈ (0,1),

‖g‖Cm,s(Bn(1)) ≈ ‖g‖C m+s(Bn(1)),(7.2)

where the implicit constants depend only on m+ s and n. Let Yj =Φ∗Xj , and let
A be as in Theorem 2.14. Letting Yj =Φ∗Xj , Theorem 2.14 (j) shows

‖Yj‖C m+s−1(Bn(1);Rn) �{m+s−2} 1,

and therefore by (7.2), ‖Yj‖Cm−1,s(Bn(1);Rn) �{m+s−2} 1. Here, we are using the
convention in Remark 5.11 to define C−1,· and C s−1 when s−1 ≤ 0. Similarly, we
have ‖A‖C m+s−1(Bn(1);Mn×n),‖A‖Cm−1,s(Bn(1);Rn) �{m+s−2} 1.

Since YJ0 =K(I+A)∇ we have ∇ =K−1(I+A)−1YJ0 . Thus, we may write
∇ as a linear combination of Y1, . . . ,Yn, with coefficients whose Cm−1,s(Bn(1))
and Cm+s−1(Bn(1)) norms are �{m+s−2} 1.
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With all of the above remarks, Proposition 5.12 shows for any g ∈Bn(1),

‖g‖Cm,s(Bn(1)) ≈{m+s−2} ‖g‖Cm,s
Y (Bn(1)),

‖g‖C m+s(Bn(1)) ≈{m+s−2} ‖g‖C m+s
Y (Bn(1)).

Combining this with (7.2), we have

‖g‖Cm,s
Y (Bn(1)) ≈{m+s−2} ‖g‖C m+s

Y (Bn(1)).(7.3)

(2.3) shows

‖f ◦Φ‖Cm,s
Y (Bn(1)) = ‖f‖Cm,s

X (Φ(Bn(1))),

‖f ◦Φ‖C m+s
Y (Bn(1)) = ‖f‖Cm+s

X (Φ(Bn(1))).

Combining this and (7.3) with g = f ◦Φ yields (7.1) and completes the proof. �

Similarly, we may create Hölder versions of Theorems 2.4 and 2.7. We state
these results here. We take the same setup as in Theorems 2.4 and 2.7.

COROLLARY 7.2. (The local result) For m ∈ N, m ≥ 1 and s ∈ (0,1) the
following three conditions are equivalent:

(i) There is an open neighborhood V ⊆M of x0 and a C2 diffeomorphism
Φ : U → V where U ⊆ R

n is open, such that Φ∗X1, . . . ,Φ
∗Xq ∈ Cm+1,s(U ;Rn).

(ii) Re-order the vector fields so that X1(x0), . . . ,Xn(x0) are linearly inde-
pendent. There is an open neighborhood V ⊆M of x0 such that:

• [Xi,Xj ] =
∑n

k=1 ĉ
k
i,jXk, 1 ≤ i,j ≤ n, where ĉki,j ∈Cm,s

X (V ).

• For n+1 ≤ j ≤ q, Xj =
∑n

k=1 b
k
jXk, where bkj ∈Cm+1,s

X (V ).
(iii) There exists an open neighborhood V ⊆M of x0 such that [Xi,Xj ] =∑q

k=1 c
k
i,jXk, 1 ≤ i,j ≤ q, where cki,j ∈ Cm,s

X (V ).

Proof. (i)⇒(ii)⇒(iii) has a nearly identical proof to the corresponding results
in Theorem 2.4, and we leave the details to the reader. Assume (iii) holds. Then,
since Cm,s

X (V )⊆Cm+s
X (V ) (by [SS18, Lemma 8.1]) we have that Theorem 2.4 (iii)

holds (with s replaced by m+ s). Therefore, Theorem 2.4 (i) holds (again, with s
replaced bym+s); we may shrink U in Theorem 2.4 (i) so that it is a Euclidean ball.
Letting Φ be as in Theorem 2.4 (i), we have Φ∗X1, . . . ,Φ

∗Xq ∈ Cm+s+1(U ;Rn).
Since U is a ball, Lemma 5.6 shows Cm+s+1(U ;Rn) = Cm+1,s(U ;Rn) (this is
the point where we use s 
= 0,1). (i) follows, completing the proof. �

Remark 7.3. The only place m ≥ 1, s 
= 0,1 was used in Corollary 7.2 was
(iii)⇒(i). The implications (i)⇒(ii)⇒(iii) hold for m ∈ N, s ∈ [0,1] with the same
proof. We do not know whether (iii)⇒(i) holds for m= 0 or s= 0,1.

COROLLARY 7.4. (The global result) For m ∈ N, m ≥ 1 and s ∈ (0,1), the
following three conditions are equivalent.
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(i) There exists a Cm+2,s atlas on M , compatible with its C2 structure, such
that X1, . . . ,Xq are Cm+1,s with respect to this atlas.

(ii) For each x0 ∈M , any of the three equivalent conditions from Corollary 7.2
holds for this choice of x0.

(iii) [Xi,Xj ] =
∑q

k=1 c
k
i,jXk, 1 ≤ i,j ≤ q, where ∀x0 ∈ M , ∃V ⊆ M open

with x0 ∈ V such that cki,j
∣
∣
V
∈Cm,s

X (V ), 1 ≤ i,j,k ≤ q.
Furthermore, under these conditions, the Cm+2,s manifold structure on M in-

duced by the atlas from (i) is unique, in the sense that if there is another Cm+2,s

atlas on M , compatible with its C2 structure, and such that X1, . . . ,Xq are Cm+1,s

with respect to this second atlas, then the identity map M →M is a Cm+2,s dif-
feomorphism between these two Cm+2,s manifold structures on M .

Proof. With Corollary 7.2 in hand, the proof is nearly identical to the proof of
Theorem 2.7 and we leave the details to the reader. �

Appendix A. Elliptic PDEs. We require quantitative versions of some
standard results from elliptic PDEs. The proofs of these results are well known,
and the quantitative versions follow by keeping track of constants in the proofs.
We make no effort to present the results or proofs in greatest generality, and only
present what is needed for this paper.

A.1. Regularity of linear elliptic equations. Let E be a constant coeffi-
cient partial differential operator of order M ,

E : C∞(
R
n;Cm1

)−→ C∞(
R
n;Cm2

)
,

where m2 ≥m1. We may think of E as a m2 ×m1 matrix of constant coefficient
partial differential operators of order ≤M .

Fix D ∈ (0,∞). Let L=
∑

|α|≤M cα(x)∂
α
x where cα :Bn(D)→M

m2×m1(C).
For u :Bn(D)→ C

m1 and g : Bn(D)→ C
m2 we consider the equation

(E+L)u= g.(A.1)

PROPOSITION A.1. Suppose E is elliptic, and fix ε0 > 0. There exists γ =

γ(E) > 0 such that if u and g satisfy (A.1) and ‖cα‖L∞(Bn(D);Mm2×m1 ) ≤ γ, ∀α,
then the following holds for all s > s0 > 0, η ∈ (0,D),

u ∈ C s0+M(Bn(D);Cm1), g ∈ C s(Bn(D);Cm2),

cα ∈ C s+ε0(Bn(D);Mm2×n1) =⇒ u ∈ C s+M (Bn(η);Cm1).
(A.2)

Moreover we have

‖u‖C s+M (Bn(η);Cm1 ) ≤ C
(
‖g‖C s(Bn(D);Cm2 ) +‖u‖C s0+M (Bn(D);Cm1 )

)
,(A.3)
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where C can be chosen to depend only on s0, s, E , D, η, ε0, and upper bounds for
‖cα‖C s+ε0 (Bn(D);Mm2×m2 ), ‖u‖C s0+M (Bn(D)), and ‖g‖C s(Bn(D);Cm2 ).

Proof sketch. We sketch a proof of (A.2) using theory from [Tay11]. There are
many proofs of this result which are well known to experts. We use the theory from
[Tay11] because that reference uses Zygmund spaces, while many other references
only state results for Hölder spaces with non-integer exponents (even though many
of these proofs can be generalized to Zygmund spaces). The quantitative estimate,
(A.3), follows by keeping track of constants in this proof. For Zygmund spaces,
[Tay11] uses the notation Cs∗ instead of C s(Rn)—for this proof, we use this nota-
tion to help the reader make the connection with the results in that book.

Note that if γ = γ(E) > 0 is sufficiently small, E + L is uniformly el-
liptic on Bn(D). Let u ∈ C s0+M(Bn(D);Cm1), g ∈ C s(Bn(D);Cm2), and
cα ∈C s+ε0(Bn(D);Mm2×n1) satisfying (A.1). Fix η ∈ (0,D) and take φ1,φ2,φ3 ∈
C∞

0 (B
n(D)) such that φj ≡ 1 on a neighborhood of the support of φj−1 and φ1 ≡ 1

on a neighborhood of the closure of Bn(η). Since (E+L)u= g, we have

φ2(E+L)φ3u= φ2g.(A.4)

Using the notation of Chapter 13, Section 9 of [Tay11], we have φ2(E +L) =
a(x,D) where a(x,ξ) ∈ Cs+ε0∗ SM

1,0.
Set δ = min

{
ε0

s+ε0
, s−s0
s+ε0

}
so that δ ∈ (0,1). By Proposition 9.9 of Chapter 13

of [Tay11],

a(x,ξ) = a
(x,ξ)+a�(x,ξ), a
 ∈ SM
1,δ, a� ∈ Cs+ε0∗ S

M−(s+ε0)δ
1,δ .

Note that since E +L is elliptic on Bn(D), a is elliptic on a neighborhood of the
support of φ1, and the same is therefore true of a
.

Rewriting (A.4) we have

a
(x,D)φ3u= φ2g−a�(x,D)φ3u.(A.5)

Since φ3u ∈ Cs0+M∗ , by assumption, Proposition 9.10 of Chapter 13 of [Tay11]
implies a�(x,D)φ3u ∈ C

s0+min{ε0,s−s0}∗ . Combining this with φ2g ∈ Cs∗ we have

a
(x,D)φ3u ∈Cs0+min{ε0,s−s0}∗ .
Since a
 is elliptic on a neighborhood of the support of φ1, we conclude φ1u ∈

C
s0+M+min{ε0,s−s0}∗ , and therefore u∈C s0+M+min{ε0,s−s0}(Bn(η);Cm1). (A.2) fol-

lows by iterating this result. �

Remark A.2. In [Tay11] a different (but equivalent) norm is used in the defi-
nition of C s(Bn(η)) (see Remark 5.1). The constants in this eqivalence depend on
s, n, and η. This does not create a problem in Proposition A.1 since C is allowed
to depend on E (and therefore on n), s, s0, η, and D.
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A.2. Regularity for a nonlinear elliptic equation. Let E be a constant
coefficient, first order, partial differential operator,

E : C∞(Rn;Cm1)−→ C∞(Rn;Cm2),

where m2 ≥m1. We may think of E as a m2 ×m1 matrix of constant coefficient
partial differential operators of order ≤ 1.

Let Γ : Cm1 ×C
nm1 → C

m2 be a bilinear map. Fix D > 0, we consider the
equation, for b : Bn(D)→ C

m1 , c : Bn(D)→ C
m2 ,

Eb+Γ(b,∇b) = c.(A.6)

PROPOSITION A.3. Suppose E is elliptic. Then, there exists γ = γ(E ,Γ) > 0
such that if b and c satisfy (A.6), and if for some s1,s2 > 0 we have c ∈
C s2(Bn(D);Cm2), b ∈ C s1+1(Bn(D);Cm1), with ‖b‖L∞(Bn(D);Cm1 ) ≤ γ, then
for all η ∈ (0,D), b ∈ C s2+1(BN (η);Cm1). Moreover,

‖b‖C s2+1(Bn(η);Cm1 ) ≤ C
(
‖b‖C s1+1(Bn(D);Cm1 ) +‖c‖C s2 (Bn(D);Cm2 )

)
,

where C can be chosen to depend only on s1, s2, D, η, E , Γ, and upper bounds for
‖b‖C s1+1(Bn(D);Cm1 ) and ‖c‖C s2 (Bn(D);Cm2 ).

Proof. We will show, under the hypotheses of the proposition, that there exists
γ= γ(E ,Γ)> 0 such that if b and c are as in the proposition, we have for η ∈ (0,D),

b ∈ C min{s1+3/2,s2+1}(Bn(η);Cm1),(A.7)

and

‖b‖C min{s1+3/2,s2+1}(Bn(η);Cm1 ) ≤C
(
‖b‖C s1+1(Bn(D);Cm1 ) +‖c‖C s2 (Bn(D);Cm2 )

)
,

(A.8)

where C is as in the statement of the proposition. The result then follows by itera-
tion.

We use Proposition A.1 with M = 1, ε0 =
1
2 , s0 = s1, and s=min{s2,s1+

1
2}

applied to (A.6). With these choices, if γ = γ(E ,Γ)> 0 is sufficiently small, Propo-
sition A.1 applies to prove (A.7) and (A.8), completing the proof. �

A.3. Existence for a nonlinear elliptic equation. Fix D> 0,m1,m2 ∈N.
For functions A : Bn(D)→ R

m1 and B : Bn(D)→ R
m2 write

D1A= (∂αxA)|α|≤1, D2B = (∂αxB)|α|≤2, D2B = (∂αxB)|α|=2,

so that, for example, D2B is the vector of all partial derivatives of B up to order 2,
and D2B is the vector of all partial derivatives of B of order exactly 2.
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Fix a C∞ function g. We wish to consider the equation

g
(
D1A(x),D2B(x)

)
= 0.(A.9)

Here g is C∞ and defined on a neighborhood of the origin, takes values in R
m2 , and

satisfies g(0,0) = 0. Our goal is to give conditions on g so that givenA (sufficiently
small), we can find B = B(A) so that (A.9) holds; we further wish to understand
the regularity properties of B in a quantitative way.

Though it is not necessary for the results that follow, we assume (A.9) is quasi-
linear in B, which is sufficient for our purposes and simplifies the proof. That is,
we assume

g
(
D1A(x),D2B(x)

)
= g1

(
A(x),D1B(x)

)
D2B(x)+ g2

(
D1A(x),D1B(x)

)
,

(A.10)

where g1 and g2 are smooth on a neighborhood of the origin, g1 takes values in
matrices of an appropriate size, and g2(0,0) = 0.

Finally, let E2 denote the second order partial differential operator

E2B := g1(0,0)D2B,(A.11)

so that E2 is an m2 ×m2 matrix of constant, real coefficient partial differential
operators of order ≤ 2.

PROPOSITION A.4. Suppose E2 is elliptic. Fix s0 > 0 and a neigh-
borhood N ⊆ C 2+s0(Bn(D);Rm2) of 0. Then, there exists a neighborhood
W ⊆ C 1+s0(Bn(D);Rm2) of 0 and a map

B : W −→N

such that

g
(
D1A(x),D2B(A)(x)

)
= 0, x ∈Bn(D), A ∈W.(A.12)

This map satisfies D1B(A)(0) = 0, ∀A ∈W , and

‖B(A)‖C 2+s0 (Bn(D);Rm2 ) ≤C‖A‖C 1+s0(Bn(D);Rm1 ),(A.13)

where C does not depend on A ∈W . Finally, for η ∈ (0,D), let Rη denote the
restriction map Rη : f �→ f

∣
∣
Bn(η)

. Then, for s≥ s0, η ∈ (0,D),

Rη ◦B : C 1+s(Bn(D);Rm1)∩W → C 2+s(Bn(η);Rm2),(A.14)

and

‖Rη ◦B(A)‖C 2+s(Bn(η);Rm2 ) ≤ Cs,η,(A.15)
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where Cs,η can be chosen to depend on an upper bound for ‖A‖C 1+s(Bn(D);Rm1 )

and does not depend on A ∈W in any other way. It can depend on any of the other
ingredients in the problem.

The rest of this section is devoted to a sketch of a proof of Proposition A.4.
The proof is a standard application of the Inverse Function Theorem combined
with Proposition A.1; we include the proof as it gives the required quantitative
estimates, which are essential for our purposes.

By expanding g into a Taylor series, we have

g
(
D1A,D2B

)
= A A+EB+ q

(
D1A,D2B

)
,

where A is a first order linear differential operator with constant coefficients, E is a
second order linear differential operator with constant coefficients whose principal
symbol is E2, and q is smooth and vanishes to second order at (0,0).

Since E is elliptic (because E2 is), it is a standard fact that E has a continuous
right inverse

P : C s0(Bn(D);Rm2)−→ C 2+s0(Bn(D);Rm2),

where EP = I and for all |α| ≤ 1, ∂αxP(B)(x)
∣
∣
x=0 = 0.

Set

F (A,B)(x) :=
(
A(x),g

(
D1A(x),D2[−PA A+PB](x)

))
.

Fix (small) open neighborhoods N0,U0⊆C 1+s0(Bn(D);Rm1)×C s0(Bn(D);Rm2)

of (0,0), to be chosen later. We take U0 = U0(N0) small enough that F : U0 →N0.

LEMMA A.5. There exists an open neighborhood W0 ⊆N0 of (0,0) and a map
G :W0 → U0 such that F (G(A,B)) = (A,B) and

‖G(A,B)‖C 1+s0 (Bn(D);Rm1 )×C s0 (Bn(D);Rm2 )

≤ C‖(A,B)‖C 1+s0 (Bn(D);Rm1 )×C s0 (Bn(D);Rm2 ),
(A.16)

where C does not depend on the choice of (A,B) ∈W0.

Proof. It is clear that F is a C1 map F : U0 ⊆ C 1+s0 ×C s0 →N0 ⊆ C 1+s0 ×
C s0 with F (0) = 0 and dF (0) = I . The lemma now follows from the usual Inverse
Function Theorem on Banach spaces. �

Let W0 be as in Lemma A.5 and set W := {A : (A,0) ∈W0}. Note that W ⊆
C 1+s0(Bn(D);Rm2) is an open neighborhood of 0. Taking G as in Lemma A.5 it
is easy to see that G is of the form G(A,B) = (A,G̃(A,B)). We set

B(A) :=−PA A+PG̃(A,0).
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It is clear that B satisfies (A.12). By taking N0 small, we may take U0 and W as
small as we like. Thus, because the range of G is contained in U0, if N0, U0, and
W are chosen to be sufficiently small we have B : W → N . Furthermore, by the
choice of P we have D1B(A)(0) = 0. Also, (A.13) follows from (A.16) and the
continuity of P.

It remains to prove (A.14) and (A.15). For this, we use that we have the flexibil-
ity to take U0 and N0 as small as we like (though they must be chosen independent
of s).

Let γ = γ(E2) > 0 be as in Proposition A.1. By taking N0 and U0 sufficiently
small, and using the fact that g1 is smooth, we have for A∈W , every coefficient of
the differential operator L := (g1(A(x),D

1B(A)(x))− g1(0,0))D2 has L∞ norm
≤ γ; indeed, since W0 ⊆N0, taking N0 small forces W0, and therefore W , to be a
small neighborhood of 0. Setting B = B(A), we will apply Proposition A.1 (with
u=B) to the equation

(E2 +L)B = g1
(
A(x),D1B(x)

)
D2B(x) =−g2

(
D1A(x),D1B(x)

)
.(A.17)

Let 0 < η1 < η2 ≤D. We will show for s > s2 ≥ s0, A ∈W , B = B(A),

A ∈ C 1+s(Bn(D);Rm1), B ∈ C 2+s2(Bn(η2);R
m2)

=⇒B ∈ C 2+s2+min{ 1
2 ,s−s2}(Bn(η1);R

m2),
(A.18)

with

‖B‖
C 2+s2+min{ 1

2 ,s−s2}(Bn(η1);Rm2 )
≤Cs,s2,η1,η2 ,(A.19)

where Cs,s2,η1,η2 can be chosen to depend on ‖A‖C 1+s(Bn(D);Rm1 ) and
‖B‖C 2+s2 (Bn(η2);Rm2 ), but not depend on A or B in any other way. It can de-
pend on any other ingredient in the problem. (A.14) and (A.15) follow from (A.18)
and (A.19) via a simple iteration. Thus we prove (A.18) and (A.19) which will
complete the proof.

Since g1 and g2 are smooth, if A ∈ C 1+s and B ∈ C 2+s2 , we have
g1(A,D

1B) ∈ C s2+1 and g2(D
1A,D1B) ∈ C min{s,s2+1} ⊆ C min{s,s2+

1
2 } (see

Lemma 5.8). Furthermore, we have

‖g1(A,D
1B)‖C s2+1 ,‖g2(D

1A,D1B)‖
C min{s,s2+

1
2 }
≤ Cs,s2,η1,η2 ,(A.20)

where Cs,s2,η1,η2 is as above; in particular, the estimate on g1(A,D
1B) in (A.20)

shows that the coefficients of L are in C s2+1 with C s2+1 norms bounded by
Cs,s2,η1,η2 , where Cs,s2,η1,η2 is as above. Applying Proposition A.1 to (A.17) with
M = 2, s0 = s2, s = min{s,s2 +

1
2}, and ε0 = 1

2 , and using the estimate on
g2(D

1A,D1B) in (A.20), (A.18) and (A.19) follow, completing the proof.



COORDINATES ADAPTED TO VECTOR FIELDS II: SHARP RESULTS 1839

A.4. An elliptic operator. In this section, we discuss a particular first or-
der, overdetermined, constant coefficient, linear, elliptic operator which is needed
in this paper. For a function A= (A1, . . . ,An) ∈ C∞(Rn;Rn) we define

EA :=

⎛

⎝
(
∂

∂tj
Ak− ∂

∂tk
Aj

)

1≤j<k≤n

,
n∑

j=1

∂

∂tj
Aj

⎞

⎠ .

LEMMA A.6. E is elliptic.

Proof. It is easy to compute E∗E directly to see

E∗EA=−
n∑

j=1

∂2

∂t2j
A,

and the result follows. �

A more abstract way to see Lemma A.6 is as follows. We identify A with the
1-form A=A1dt1 +A2dt2 + · · ·+Andtn. Then,

dA=
∑

1≤j<k≤n

(
∂

∂tj
Ak− ∂

∂tk
Aj

)

dtj ∧dtk, δA =−
n∑

j=1

∂

∂tj
Aj ,

where δ denotes the codifferential on R
n. Hence, E can be written as EA =

(dA,−δA), and therefore E∗E = dδ + δd. I.e., E∗E is the Laplace-de Rham
operator acting on 1-forms, and is therefore elliptic.
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