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Let α > 0, β > α, and let X1, . . . , Xq be Cα
loc vector fields 

on a Cα+1 manifold which span the tangent space at every 
point, where C s denotes the Zygmund-Hölder space of order 
s. We give necessary and sufficient conditions for when there is 
a C β+1 structure on the manifold, compatible with its C α+1

structure, with respect to which X1, . . . , Xq are C β
loc. This 

strengthens previous results of the first author which dealt 
with the setting α > 1, β > max{α, 2}.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Fix α > 0 and let X1, . . . , Xq be C α
loc vector fields on a C α+1 manifold M of dimension 

n, which span the tangent space at every point, where Cα denotes the Zygmund-Hölder 
space of order α.2 In this paper, we investigate the following:
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Question 1. Fix β ∈ [α, ∞). When is there a C β+1 manifold structure on M, compatible 
with its C α+1 structure, respect to which X1, . . . , Xq are C β

loc?

Question 1 is local in nature, so we focus instead on the following local version:

Question 2. Fix β ∈ [α, ∞) and x ∈ M. When is there a neighborhood U ⊆ M of x and 
a C α+1

loc diffeomorphism Φ : Bn ∼−→ U , such that Φ∗X1, . . . , Φ∗Xq are C β vector fields on 
Bn? Here, Bn denotes the open unit ball in Rn.

We give necessary and sufficient conditions on X1, . . . , Xq for when Question 2 has 
an affirmative answer; and therefore give necessary and sufficient conditions for when 
Question 1 has an affirmative answer.

When α > 1 and β > 2, Questions 1 and 2 were completely answered in work of 
the first author and Stovall [11,14,15]; which also proved stronger quantitative results 
(see Section 1.3 for our distinction between quantitative and qualitative results). In this 
paper, by focusing only on the qualitative Questions 1 and 2 we are able to prove results 
for all α > 0, β ≥ α, and the proof is simpler. Our methods can also be used to improve 
the quantitative results of [11,14,15]: see Section 9.

1.1. Informal statement of results

Much of the difficulty in this paper comes from working with α and β small. In this 
section, we informally describe the results without worrying about such difficulties.

We begin with the case when β = ∞ and X1, . . . , Xq are C1
loc vector fields on a C2

manifold M of dimension n, which span the tangent space at every point. This is a 
special case of results in [14].

Because X1, . . . , Xq are C1 vector fields which span the tangent space at every point, 
we may write

[Xi, Xj ] =
q∑

k=1

cki,jXk, cki,j : M → R is continuous.

Theorem 1.1 ([14]). Fix x ∈ M. The following are equivalent:

(i) There is a neighborhood U ⊆ M of x and a C2
loc diffeomorphism Φ : Bn ∼−→ U , 

such that Φ∗X1, . . . , Φ∗Xq are C∞
loc vector fields on Bn.

(ii) The functions cki,j can be chosen so that the following holds. There is a neighborhood 
V ⊆ M of x such that for every L ∈ N and every list l1, . . . , lL ∈ {1, . . . , q}, 
the functions Xl1Xl2 · · ·XlLc

k
i,j

∣∣
V

: V → R are continuous. We will write this 
condition as cki,j

∣∣
V
∈ C∞

X (V ).

In this paper, X1, . . . , Xq are C α
loc vector fields on a C α+1 manifold, M. Informally, 

we wish our main result to say that the following are equivalent:
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(a) There is a neighborhood U ⊆ M of x and a C α+1
loc diffeomorphism Φ : Bn ∼−→ U , 

such that Φ∗X1, . . . , Φ∗Xq are C β
loc vector fields on Bn.

(b) The cki,j can be chosen such that clj,k
∣∣
V
∈ C β−1

X (V ) for some neighborhood V ⊆ M

of x, where C β−1
X (V ) is an appropriate Zygmund-Hölder space with respect to the 

vector fields X1, . . . , Xq.

When α > 1 and β > 2, this equivalence was proved in [14]; the main result of this 
paper gives an extension of this result to all β ≥ α > 0. Unfortunately, for α > 0 small, 
the commutator of [Xj, Xk] does not even immediately make sense and many of the usual 
operations on M do not make immediate sense. Thus, much of this paper is devoted to 
making sense of conditions similar to (b) in such low regularity. As we will see, this is a 
bit easier when α > 1/2 and so our results take a different form depending on whether 
α ∈ (0, 1/2] or α > 1/2.

1.2. Relation to results of DeTurck and Kazdan

The results in this paper may be reminiscent of the celebrated results of DeTurck 
and Kazdan [3] regarding a coordinate system in which a Riemannian metric tensor has 
optimal regularity. It seems that there are no direct implications between our results 
and their results; however there are many similarities. We present this in more detail in 
Section 8; there the following ideas are discussed.

DeTurck and Kazdan showed that a Riemannian metric tensor has optimal regularity 
in harmonic coordinates [3, Lemma 1.2]. Analogously, we present a natural Riemannian 
metric associated to vector fields X1, . . . , Xn (which form a basis of the tangent space at 
every point) such that X1, . . . , Xn have optimal regularity in harmonic coordinates with 
respect to this metric.

DeTurck and Kazdan also showed that a Riemannian metric tensor may not have 
optimal regularity in geodesic normal coordinates [3, Example 2.3]. Analogously, we 
show that vector fields may not have optimal regularity in canonical coordinates of the 
first kind.

However, the heart of our main result is not just to provide a coordinate system in 
which vector fields have optimal regularity. Instead, we provide a test to determine what 
that optimal regularity is. This test can be carried out in any coordinate system and 
does not require solving any differential equations.

Both this work and [3] use methods introduced by Malgrange [8].

Remark 1.2. It may be somewhat unexpected that vector fields may not have optimal 
regularity in canonical coordinates of the first kind. Indeed, there is a long history of 
writing vector fields in these coordinates because they provide a coordinate system in 
which the vector fields are often particularly easy to study. In the theory of Lie groups 
this is classical (see, for example, [2, page 115]). Outside of the setting of Lie groups, 
canonical coordinates have been used in the quantitative study of sub-Riemannian ge-
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ometry, beginning with the work of Nagel, Stein, and Wainger [10], and later used by 
Tao and Wright [16], the first author [12], Montanari and Morbidelli [9], and the first 
author and Stovall [11], among others. In [14], the first author moved beyond canonical 
coordinates to strengthen these theories. We see now that this is necessary: sharp results 
like the ones in this paper and in [14] cannot be obtained using canonical coordinates.

Remark 1.3. If X is a nonzero C1 vector field on a one dimensional manifold M, then 
canonical coordinates with respect to X, near the point x0, is the map Φx0(t) = etXx0. 
Since Φ∗

x0
X = ∂t, we see that the canonical coordinate system do provide optimal regu-

larity in this simple setting. However, once we move to two dimensions, with two vector 
fields, Lemma 8.6 shows that canonical coordinate system may not give the optimal 
regularity.

1.3. Qualitative versus quantitative

Most of the results in this paper are qualitative in the following sense. We give nec-
essary and sufficient conditions so that a map Φ as in Question 2 exists. If one traces 
through the proof, the C β norms of the coefficients of Φ∗X1, . . . , Φ∗Xq depend on (among 
other things) quantities like:

• Upper bounds for C α norms of the coefficients of X1, . . . , Xq in some fixed coordinate 
system near x.

• A lower bound, > 0, for the quantity:

max
j1,...,jn∈{1,...q}

|det(Xj1(x)| . . . |Xjn(x))|, (1.1)

where in the above expression X1, . . . , Xq are written as column vectors in the same 
fixed coordinate system near x.

Unfortunately, both above quantities depend on the choice of the original coordinate 
system. Thus, if the vector fields are given in a coordinate system where the above 
upper and lower bounds are bad, the estimates our proof gives are bad; even if there 
exists a different (unknown) choice of coordinate system where the above estimates are 
better. Thus, while our results are qualitatively optimal (we give necessary and sufficient 
conditions for each β), the estimates which follow from our proofs may be far from 
optimal unless one happens to know a good coordinate system in which to write the 
vector fields in the first place.

In the papers [11,14,15], the first author and Stovall give such estimates on 
Φ∗X1, . . . , Φ∗Xq in terms of quantities which are invariant under arbitrary C2 diffeomor-
phisms (we call such estimates quantitative). Thus, they do not depend on any choice 
of coordinate system. This is useful for questions from partial differential equations and 
harmonic analysis, where Φ can be used as a scaling map. Such scaling maps originated 
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in the smooth setting in the foundational work of Nagel, Stein, and Wainger [10] and 
were later worked on by Tao and Wright [16], the first author [12], and in the above-
mentioned series of papers by the first author and Stovall [11,14,15]. Similar scaling in 
a non-smooth setting was studied by Montanari and Morbidelli [9], though they do not 
address questions like the ones in this paper.

In Section 9, we use the main methods of this paper, combined with the methods of 
[11,14] to improve the main quantitative result of [14] (and also the main quantitative 
result of [13]).

2. Function spaces

To state our main result, we need to introduce several function spaces related to the 
classical Zygmund-Hölder spaces. Because we are working in low regularity, some care is 
needed in the definitions.

2.1. Classical Zygmund-Hölder spaces

In this section, we describe the classical Zygmund-Hölder spaces, and the correspond-
ing spaces on a manifold; see Section 4 for proofs of the results stated here.

In what follows, U will either be equal to Rn or equal to an bounded open set with 
smooth boundary in Rn–we will usually be interested in the case when U is either 
Rn or an open ball in Rn. We define the Zygmund-Hölder space C s(U) := Bs

∞,∞(U), 
where Bs

∞,∞ denotes the classical Besov space (see, [20, Section 2.3] for Bs
∞,∞(U) when 

U = Rn, and [18, Chapter 5] or [19, Chapter 1.11] when U is an bounded smooth 
domain).3 We similarly define the vector valued space C s(U ; Rm). The space C s(U) has 
some particularly concrete characterizations:

Remark 2.1. For U = Rn or U an bounded open set with smooth boundary in Rn, we 
have

(i) s ∈ (0, 2): C s(U) consists of those continuous functions f : U → R such that the 
following norm is finite

sup
x∈U

|f(x)| + sup
x∈U

h∈Rn,h�=0
x+h,x+2h∈U

|h|−s|f(x + 2h) − 2f(x + h) + f(x)|.

Moreover, the above expression gives a norm equivalent to ‖f‖C s(U). See [20, 
Theorem 2.5.7 (ii)] and [20, (3.4.2/6)].

3 Many results concerning C s(U), where U is a bounded smooth domain, follow from the corresponding 
results concerning C s(Rn) via the theory described in [18, Chapter 5].
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(ii) s ∈ (0, 1): C s(U) consists of those continuous functions f : U → R such that the 
following norm is finite

sup
x∈U

|f(x)| + sup
x,y∈U
x�=y

|x− y|−s|f(x) − f(y)|.

Moreover, the above expression gives a norm equivalent to ‖f‖C s(U). See [20, 
Remark 2.2.2/3] and [20, (3.4.2/6)].

(iii) s ∈ (1, ∞]: C s(U) consists of those continuous f : U → Rn, such that f, ∂xj
f ∈

C s−1(U), 1 ≤ j ≤ n. We have ‖f‖C s(U) ≈ ‖f‖C s−1(U) +
∑n

j=1 ‖∂xj
f‖C s−1(U). See 

[20, Theorem 2.5.7 (ii)] and [20, Theorem 3.3.5(i)].
(iv) s ∈ (−∞, 0]: C s(U) consists of those distributions f ∈ D ′(U) such that 

f = g0 +
∑n

j=1 ∂xj
gj for some g0, . . . , gn ∈ C s+1(U). We have ‖f‖C s(U) ≈

inf
∑n

j=0 ‖gj‖C s+1(U), where the infimum is taken over all such choices of g0, . . . , gn. 
When U = Rn, this can be seen by letting g0 = (I + 
)−1f and gj =
−∂xj

(I + 
)−1f , for j = 1, . . . n. See [20, Theorem 2.3.8].
(v) When m ∈ N and r ∈ (0, 1), then Cm+r(U) = Cm,r(U), with equivalence of 

norms. See [19, Theorem 1.118 (i)]. However, when r ∈ {0, 1} these spaces differ.

Lemma 2.2. Let r, s ∈ R with r + s > 0, r ≥ s. The product map (f, g) �→ fg can be 
defined as a continuous map C r(U) × C s(U) → C s(U).

Proof. This is a special case of [20, Theorem 2.8.2(i)] when U = Rn and [20, Theorem 
3.3.2(ii)] when U is bounded open set with smooth boundary. �
Definition 2.3. Let U ⊆ Rn be an open set. For s ∈ R, we define C s(U ; TU), to be the 
space of vector fields (with distribution coefficients) Y =

∑n
j=1 aj∂xj

, where aj ∈ C s(U). 
We identify Y with the distribution (a1, . . . , an) ∈ C s(U ; Rn) and define

‖Y ‖C s(U) := ‖(a1, . . . , an)‖C s(U ;Rn).

Definition 2.4. Let U ⊆ Rn be an open set. For s ∈ R and k ∈ N, we de-
fine C s

(
U ;
∧k

T ∗U
)
, to be the space of k-forms (with distribution coefficients) ω =∑

1≤i1<i2<···<ik≤n ωi1,...,ikdx1 ∧ · · · ∧ dxk, where ωi1,...,ik ∈ C s(U). We identify ω with 
the distribution (ωi1,...,ik)1≤i1<i2<...<ik≤n, and define

‖ω‖C s(U) := ‖(ωi1,...,ik)‖C s(U ;RQn,k ),

where Qn,k = dim
∧kRn.

Definition 2.5. Let U ⊆ Rn be an open set. For s ∈ R, we define C s
loc(U) to be the space 

of distributions f ∈ D ′(U), such that for every x ∈ U , there exists an open ball U ′ ⊆ U

containing x with f
∣∣

′ ∈ C s(U ′). We similarly define C s
loc(U ; TU) and C s

loc

(
U ;
∧k

T ∗U
)
.

U
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For α > 0, we define C α+1 manifolds in the usual way: the transition functions are 
assumed to be C α+1

loc (see [14, Section 5.4] for some comments on this). Such manifold 
are, in particular, C1 manifolds, and so it makes sense to talk about, for example, vector 
fields on such manifolds.

Remark 2.6. On a C α+1 manifold M, it makes sense to talk about functions in C s
loc(M)

for s ∈ (−α, α + 1], vector fields in C s
loc(M; TM) for s ∈ (−α, α], and k-forms in 

C s
loc

(
M;
∧k

T ∗M
)

for s ∈ (−α, α]. See Lemma 4.1 and Definition 4.2.

Let ιY denote the interior product with respect to the vector field Y and let LieY
denote the Lie derivative with respect to Y .

Proposition 2.7. Let M be a C α+1 manifold for some α > 0.

(i) For β ∈ (−α, α], the map (Y, ω) �→ ιY ω is a continuous map

C α
loc(M;TM) × C β

loc

(
M;
∧k

T ∗M
)
→ C β

loc

(
M;
∧k−1

T ∗M
)
.

(ii) For β ∈ (−α, α], the map (η, ω) �→ η ∧ ω is a continuous map

C α
loc(M;

∧l
T ∗M) × C β

loc

(
M;
∧k

T ∗M
)
→ C β

loc

(
M;
∧k+l

T ∗M
)
.

(iii) If α > 1/2 and β ∈ (−α + 1, α], the map ω �→ dω is continuous

C β
loc

(
M;
∧k

T ∗M
)
→ C β−1

loc

(
M;
∧k+1

T ∗M
)
.

(iv) For β ∈ (−α + 1, α + 1], the map

(Y, f) �→ Y f =: LieY f

is continuous

C α
loc(M;TM) × C β

loc(M) → C β−1
loc (M).

(v) If α > 1/2, then for β ∈ (−α + 1, α], the map

(Y,Z) �→ [Y,Z] =: LieY Z

is continuous

C α
loc(M;TM) × C β

loc(M;TM) → C β−1
loc (M;TM).
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(vi) If α > 1/2, then for β ∈ (−α + 1, α], the map

(Y, ω) �→ dιY ω + ιY dω =: LieY ω

is continuous

C α
loc(M;TM) × C β

loc(M;TM) → C β−1
loc (M;TM).

As can be seen in Section 1.1, our main results are in terms of the commutators 
of vector fields: i.e., the Lie derivative of one vector field with respect to another. 
Proposition 2.7 (v) shows that such Lie derivatives, LieY , only make sense when 
Y ∈ C α

loc(M; TM) for α > 1/2. Because of this, when α > 1/2, the characterizations 
in our main result can be made somewhat simpler. However, it is still possible to make 
sense of some of these ideas when α ∈ (0, 1/2], as we now make precise.

Proposition 2.8. Let α > 0 and β, γ ∈ (−α, α + 1]. Let U, V ⊆ Rn be open and let 
F : U ∼−→ V be a C α+1

loc diffeomorphism. Fix a k-form θ ∈ C γ
loc

(
U ;
∧k

T ∗U
)
. Then, the 

following are equivalent:

(i) dθ ∈ C β−1
loc

(
U ;
∧k+1

T ∗U
)
.

(ii) d(F∗θ) ∈ C β−1
loc

(
V ;
∧k+1

T ∗V
)
.

Moreover, in this case, for all p ∈ U , there is a neighborhood V ′ ⊆ V of F (p) and 

τ ∈ C β
loc

(
V ′;
∧k

T ∗V ′
)

such that d(F∗θ)
∣∣
V ′ = dτ .

For the remainder of this section, let M be a C α+1 manifold for some α > 0.

Definition 2.9. Let γ ∈ (−α, α], β ∈ [γ, α + 1], and θ ∈ C γ
loc

(
M;
∧k

T ∗M
)
. We say 

dθ has regularity C β−1
loc (M), if for any p ∈ M, there is a C α+1

loc coordinate system F :
V

∼−→ U , where V is a neighborhood of p and U ⊆ Rn is open, such that dF∗θ ∈
C β−1

loc

(
U ;
∧k+1

T ∗U
)
.

Proposition 2.8 shows that Definition 2.9 is well-defined: it does not depend on the 
choice of the coordinate system F . However, we do not define the form dθ itself: we 
only define its regularity. Indeed, if β − 1 ≤ −α, the space C β−1

loc

(
M;
∧k+1

T ∗M
)

is not 
well-defined. However, when β − 1 > −α, the form dθ is well-defined, as the next result 
shows.

Lemma 2.10. Let γ ∈ (−α, α] and β ∈ (−α + 1, α + 1]. Suppose θ ∈ C γ
loc

(
M;
∧k

T ∗M
)

is such that dθ has regularity C β−1
loc (M). Then, dθ is given by a well-defined form in 

C β−1
loc

(
M;
∧k+1

T ∗M
)
. I.e., there is a unique form τ ∈ C β−1

loc

(
M;
∧k+1

T ∗M
)

such that 
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in every coordinate system F : V
∼−→ U , where V ⊆ M and U ⊆ Rn are open, we 

have F∗τ = d(F∗θ). Furthermore, this form τ is closed in the sense that in every such 
coordinate system, we have dF∗τ = 0.

Definition 2.11. For γ ∈ (−α, α], β ∈ (−α + 1, α + 1], and θ ∈ C γ
loc

(
M;
∧k

T ∗M
)
, we 

write dθ ∈ C β−1
loc

(
M;
∧k+1

T ∗M
)

to mean dθ has regularity C β−1
loc (M), and we identify 

dθ with the unique closed form in C β−1
loc

(
M;
∧k+1

T ∗M
)

given in Lemma 2.10.

Convention 2.12. For β ∈ R, we say θ ∈ C β+

loc

(
M;
∧k

T ∗M
)
, if θ ∈ C β+ε

loc

(
M;
∧k

T ∗M
)

for some ε > 0.

2.2. Zygmund-Hölder spaces with respect to vector fields

Let M be a C α+1 manifold for some α > 0, and let X1, . . . , Xq ∈ C α
loc(M; TM) be C α

loc
vector fields which span the tangent space to M at every point. Since M is only a C α+1

manifold, it does not make sense to talk about whether a function on M has regularity 
higher than C α+1

loc . However, we can make sense of higher regularity with respect to the 
vector fields X1, . . . , Xq.

Definition 2.13 (C β
X,loc-functions). For β > −α, we let C β

X,loc(M) be the space of those 
functions M → R defined recursively by:

• If β ∈ (−α, 1], C β
X,loc(M) := C β

loc(M).
• If β > 1, C β

X,loc(M) consists of those f ∈ C β−1
X,loc(M) 

⋂
C1

loc(M) such that LieXj
f =

Xjf ∈ C β−1
X,loc(M), for 1 ≤ j ≤ q.

We can make a similar definition for vector fields and forms, so long as α > 1/2:

Definition 2.14 (C β
X,loc-vector fields). Suppose α > 1/2. For β > −α, we let

C β
X,loc(M; TM) be the space of those vector fields on M defined recursively by:

• If β ∈ (−α, 12 ], C β
X,loc(M; TM) = C β

loc(M; TM).
• If β > 1

2 , C β
X,loc(M; TM) consists of those Y ∈ C β−1

X,loc(M; TM) 
⋂

C
1
2

loc(M; TM) such 

that LieXj
Y = [Xj , Y ] ∈ C β−1

X,loc(M; TM), for 1 ≤ j ≤ q.

Definition 2.15 (C β
X,loc-forms). Suppose α > 1/2 and k ≥ 1. For β > −α, we let 

C β
X,loc

(
M;
∧k

T ∗M
)

be the space of those k-forms on M defined recursively by:

• If β ∈ (−α, 1 ], C β
X,loc

(
M;
∧k

T ∗M
)

= C β
loc

(
M;
∧k

T ∗M
)
.
2
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• If β > 1
2 , C β

X,loc

(
M;
∧k

T ∗M
)

consists of those θ ∈ C β−1
X,loc

(
M;
∧k

T ∗M
)⋂

C
1
2

loc

(
M;∧k

T ∗M
)

such that LieXj
θ = (dιXj

+ ιXj
d)θ ∈ C β−1

X,loc

(
M;
∧k

T ∗M
)
, for 1 ≤ j ≤ q.

When α ∈ (0, 1/2], we cannot use Definition 2.15. However, we can make an appro-
priate analog of Definition 2.9 with respect to the vector fields X1, . . . , Xq:

Definition 2.16 (C β
X,loc for differentials). Suppose α > 0. Let β > −α, 1 ≤ k ≤ n − 1 and 

let θ ∈ C
(−α)+
loc

(
M;
∧k

T ∗M
)
. We say dθ has regularity C β−1

X,loc(M) if:

• If β ∈ (−α, 1], we assume dθ has regularity C β−1
loc (M).

• If β ∈ (1, 2], we assume dθ ∈ C 0+

loc

(
M;
∧k+1

T ∗M
)

and LieXj
dθ = dιXj

dθ has regu-
larity C β−2

loc (M), for 1 ≤ j ≤ q.
• If β > 2, we assume dθ has regularity C β−2

X,loc(M), and LieXj
dθ = dιXj

dθ has regularity 

C β−2
X,loc(M), for 1 ≤ j ≤ q.

Remark 2.17. Note that if β ≥ 0, Definitions 2.13 and 2.16 do not depend on α. Similarly, 
when β ≥ −1

2 , Definitions 2.14 and 2.15 do not depend on α.

3. The main result

Theorem 3.1. Let α, β > 0, and let X1, . . . , Xq be C α
loc vector fields on a C α+1 manifold 

M of dimension n, which span the tangent space at every point. Fix a point p ∈ M, and 
re-order X1, . . . , Xq so that X1(p), . . . , Xn(p) form a basis for TpM. Let λ1, . . . , λn be 
the dual basis for X1, . . . , Xn, defined on a neighborhood of p. Then, the following are 
equivalent:

(a) There is a neighborhood U ⊆ M of p and a C α+1
loc diffeomorphism Φ : Bn ∼−→ U , 

such that Φ(0) = p and Φ∗X1, . . . , Φ∗Xq ∈ C β(Bn; TBn).
(b) There is a neighborhood U of p such that for 1 ≤ j ≤ n, dλj has regularity C β−1

X,loc(U), 
and for 1 ≤ j ≤ n, n + 1 ≤ k ≤ q, 〈λj , Xk〉 ∈ C β

X,loc(U).

If α > 1/2, then in addition we have the following equivalent conditions:

(c) There is a neighborhood U of p such that for 1 ≤ j ≤ n, λj ∈ C β
X,loc(U, T ∗U), and 

for 1 ≤ j ≤ n, n + 1 ≤ k ≤ q, 〈λj , Xk〉 ∈ C β
X,loc(U).

(d) There is a neighborhood U of p such that for 1 ≤ j ≤ q, Xj ∈ C β
X,loc(U ;TU).

Remark 3.2. (a) ⇔ (d) is the conclusion alluded to in Section 1.1.
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4. Classical function spaces, revisited

In this section, we prove the basic results we require about Zygmund-Hölder spaces. 
In particular, we prove the results from Section 2. We begin by discussing the main result 
we need to help understand the various objects under consideration on Cα+1-manifolds.

Lemma 4.1. Fix α > 0, let U, V ⊆ Rn be open sets, and let Φ : U
∼−→ V be a C α+1

loc
diffeomorphism.

(i) For β ∈ (−α, α + 1] and f ∈ C β
loc(V ), f ◦ Φ is defined as a distribution and we 

have f ◦ Φ ∈ C β
loc(U).

(ii) For β ∈ (−α, α] and X ∈ C β
loc(V ; TV ), Φ∗X is defined and Φ∗X ∈ C β

loc(U ; TU).
(iii) For β ∈ (−α, α] and ω ∈ C β

loc

(
V ;
∧k

T ∗V
)
, then Φ∗ω is defined and Φ∗ω ∈

C β
loc

(
U ;
∧k

T ∗U
)

Proof. We give U coordinates x1, . . . , xn and V coordinates y1, . . . , yn. We begin with 
(i). For β > 0, f is a continuous function and the regularity of f ◦ Φ is classical. See 
[14, Lemma 5.15] for a discussion of this classical case. For nonpositive β, we proceed by 
induction. We prove the result for β ∈ (−l + 1, −l] ∩ (−α, α + 1], for l = −1, 0, 1, 2, . . .. 
The base case, l = −1, follows from the above discussion for β > 0. For l ∈ N, we assume 
the result for l − 1 and prove it for l.

Fix a point y0 ∈ V , and let By0 ⊆ V be an open ball centered at y0 with By0 ⊆ V . 
By Remark 2.1 (iv), we may write f = g0 +

∑n
j=1 ∂yjgj , where g0, . . . , gn ∈ C β+1(By0). 

Letting Ψ = (ψ1, . . . ψn) := Φ−1, we have

(∂yjgj) ◦ Φ =
n∑

k=1

(∂xj (gj ◦ Φ))
((
∂yjψk

)
◦ Φ
)
.

By the already proved case β = α, we have 
(
∂ykψk

)
◦ Φ ∈ C α

loc(Ψ(By0)) and by the 
inductive hypothesis ∂xk(gj◦Φ) ∈ C β

loc(Ψ(By0)). Also, by the inductive hypothesis g0◦Φ ∈
C β+1

loc (Ψ(By0)) ⊆ C β
loc(Ψ(By0)). Using Lemma 2.2, we conclude f ◦Φ = g0◦Φ +

∑
(∂yjgj) ◦

Φ ∈ C β
loc(Ψ(By0)). It is easy to see that the distribution obtained in this way does not 

depend on the choice of g0, . . . , gn with f = g0 +
∑n

j=1 ∂yjgj . Since y0 ∈ V was arbitrary, 
this completes the proof of (i).

For (ii), write X =
∑n

j=1 aj∂yj , where aj ∈ C β
loc(V ). Then, if Ψ = (ψ1, . . . , ψn) = Φ−1,

Φ∗X =
n∑

k=1

n∑
j=1

(aj ◦ Φ)
(
(∂yjψk) ◦ Φ

)
∂xk .

By (i), aj ◦ Φ ∈ C β
loc(U), and (∂xjφk) ◦ Φ ∈ C α

loc(U). Since β ∈ (−α, α], by hypothesis, 
Lemma 2.2 implies Φ∗X ∈ C β

loc(U ; TU).
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The proof of (iii) is very similar to the proof of (ii), and follows easily by combining 
(i) with Lemma 2.2. We leave the details to the reader. �

Lemma 4.1 establishes Remark 2.6: On a C α+1 manifold M, it makes sense to 
talk about functions in C s

loc(M) for s ∈ (−α, α + 1], vector fields in C s
loc(M; TM) for 

s ∈ (−α, α], and k-forms in C s
loc

(
M;
∧k

T ∗M
)

for s ∈ (−α, α]. This is because these 

properties are invariant under C α+1
loc diffeomorphisms. By a similar proof, one can show 

that the more general concept of a C β
loc tensor is well-defined for β ∈ (−α, α], though 

the only tensors we use in this paper are vector fields and forms.
For completeness we put the definition of functions, vector fields and differential forms 

on manifold as below, which is the obvious analog of the standard definitions (see, for 
example, [7, Definition 6.3.3]):

Definition 4.2. Let α > 0, β ∈ (−α, α] and γ ∈ (−α, α + 1]. Let M be a n-dimensional 
C α+1-manifold equipped with the maximal C α+1-atlas A = {φ : Uφ ⊆ M → Rn}. 
Namely, each φ ∈ A is a homeomorphism φ : Uφ

∼−→ φ(Uφ) ⊆ Rn; φ ◦ ψ−1 ∈
C α+1

loc (ψ(Uψ ∩ Uφ); Rn) whenever φ, ψ ∈ A satisfy Uψ ∩ Uφ �= ∅; and A is maximal 
with these properties.

• A C γ
loc-function is a collection f = {fφ ∈ C γ

loc(φ(Uφ))}φ∈A , such that

fφ = fψ ◦ (ψ ◦ φ−1), on φ(Uφ ∩ Uψ) whenever Uφ ∩ Uψ �= ∅.

• A C β
loc-vector field is a collection X = {Xφ ∈ C β

loc(φ(Uφ); TRn)}φ∈A , such that

Xφ = (ψ ◦ φ−1)∗Xψ, on φ(Uφ ∩ Uψ) whenever Uφ ∩ Uψ �= ∅. (4.1)

• Let 1 ≤ k ≤ n. A C β
loc k-form is a collection ω =

{
ωφ ∈ C β

loc

(
φ(Uφ);

∧k
T ∗Rn

)}
φ∈A

, 
such that

ωψ = (ψ ◦ φ−1)∗ωφ, on φ(Uφ ∩ Uψ) whenever Uφ ∩ Uψ �= ∅. (4.2)

Remark 4.3. By Lemma 4.1 we are able to pullback functions, vector fields, and differ-
ential forms using C α+1-transition maps. Thus, the above objects are well-defined.

To prove Proposition 2.7 we use the following:

Lemma 4.4. Let α > 0, let U, V ⊆ Rn be two open sets and let Φ : U
∼−→ V be a 

C α+1-diffeomorphism.

(i) For β ∈ (−α, α], if Y ∈ C α
loc(V ; TV ) and ω ∈ C β

loc

(
V ;
∧k

T ∗V
)

then Φ∗(ιY ω) =

ιΦ∗Y Φ∗ω, and their common value is in C β
loc

(
U ;
∧k−1

T ∗U
)
.
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(ii) For β ∈ (−α, α], if σ ∈ C α
loc

(
V ;
∧l

T ∗V
)

and ω ∈ C β
loc

(
V ;
∧k

T ∗V
)

then Φ∗(σ ∧

ω) = Φ∗σ ∧ Φ∗ω, and their common value is in C β
loc

(
U ;
∧k+l

T ∗U
)
.

(iii) For α > 1
2 and β ∈ (1 − α, α], if ω ∈ C β

loc

(
V ;
∧k

T ∗V
)

then Φ∗dω = dΦ∗ω, and 

their common value is in C β−1
loc

(
U ;
∧k+1

T ∗U
)
.

(iv) For β ∈ (1 − α, α + 1], if Y ∈ C α
loc(V ; TV ) and f ∈ C β

loc(V ) then Φ∗(Y f) =
(Φ∗Y )(Φ∗f), and their common value is in C β−1

loc (U).
(v) If α > 1

2 and β ∈ (1 − α, α], if Y ∈ C α
loc(V ; TV ) and Z ∈ C β

loc(V ; TV ) then 
Φ∗[Y, Z] = [Φ∗Y, Φ∗Z], and their common value is in C β−1

loc (U ; TU).
(vi) If α > 1

2 and β ∈ (1 − α, α], if Y ∈ C α
loc(V ; TV ) and ω ∈ C β

loc

(
V ;
∧k

T ∗V
)

then 

Φ∗LieY ω = LieΦ∗Y Φ∗ω, and their common value is in C β−1
loc

(
U ;
∧k

T ∗U
)
.

Proof. The formal computations are standard in differential geometry. What we need to 
be careful is that the products and compositions are defined, due to the low regularity 
of the objects involved.

We only prove (i) and (iii), since the arguments for the others are similar. We endow 
V ⊆ Rn with the standard coordinate system (x1, . . . , xn), and write Φ =: (φ1, . . . , φn)
where φj ∈ C α+1

loc (U).
(i): We write Y =

∑n
i=1 a

i ∂
∂xi and ωj1...jk := ω( ∂

∂xj1 , . . . , 
∂

∂xjk
) for 1 ≤ j1, . . . , jk ≤ n. 

By Lemma 2.2, aiωij1...jk−1 ∈ C β
loc(V ) and therefore

ιY ω = 1
(k − 1)!

n∑
i=1

n∑
j1,...,jk−1=1

aiωij1...jk−1dx
j1 ∧ · · · ∧ dxjk−1 ∈ C β

loc

(
U ;
∧k−1

T ∗U
)
.

(4.3)

Note that ∂
∂φi = Φ∗ ∂

∂xi , i = 1, . . . , n, are C α-vector fields on U that satisfy4

dφj( ∂
∂φi ) = ∂φj

∂φi = δji for 1 ≤ i, j ≤ n. By Lemma 4.1 (i), ai ◦ Φ, ωij1...jk−1 ◦
Φ, (aiωij1...jk−1) ◦Φ ∈ C β

loc(U) are all defined. Therefore we have the following, where all 
the products and compositions are defined.

ιΦ∗Y (Φ∗ω) = 1
k!

n∑
j0,...,jk−1=1

ι∑n
i=1(ai◦Φ) ∂

∂φi

(
(ωj0...jk−1 ◦ Φ) · dφj0 ∧ · · · ∧ dφjk−1

)

= 1
k!

n∑
i=1

n∑
j0,j1,...,jk−1=1

k−1∑
ρ=0

(ai ◦ Φ) · (ωj0...ĵρ...jk
◦ Φ)

· (−1)ρ ∂φ
jρ

∂φi
dφj0 ∧ · · · ∧ dφjρ−1 ∧ dφjρ+1 ∧ · · · ∧ dφjk−1

4 We write δji for the Kronecker delta functions (see (5.6)).
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= 1
(k − 1)!

n∑
i=1

n∑
j1,...,jk−1=1

((aiωj1...jk−1) ◦ Φ) · dφj1 ∧ · · · ∧ dφjk−1 = Φ∗(ιY ω).

The equality holds in C β
loc

(
V ;
∧k−1

T ∗V
)
, completing the proof.

(iii): By passing to linear combinations it suffices to consider the form ω = fdxi1 ∧
· · · ∧ dxik where f ∈ C β

loc(V ).
By Lemma 4.1, f ◦ Φ ∈ C β

loc(U) and ∂f
∂xj ◦ Φ ∈ C β−1

loc (U). Since we also have 
dφi1 , . . . , dφik ∈ C α

loc(U), Lemma 2.2 shows that all below products are defined. We 
have,

Φ∗d(fdxi1 ∧ · · · ∧ dxik) = Φ∗
n∑

j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

=
n∑

j=1

( ∂f

∂xj
◦ Φ
)
dφj ∧ dφi1 ∧ · · · ∧ dφik ,

(4.4)

dΦ∗(fdxi1 ∧ · · · ∧ dxik) = d(f ◦ Φ) ∧ dφi1 ∧ · · · ∧ dφik =
n∑

l=1

∂(f ◦ Φ)
∂xl

∧ dφi1 ∧ · · · ∧ dφik

=
n∑

l,j=1

( ∂f

∂xj
◦ Φ
)∂φj

∂xl
dxl ∧ dφi1 ∧ · · · ∧ dφik .

(4.5)

Since 
∑n

l=1
∂φj

∂xl dx
l = dφj , we have that (4.4) and (4.5) are equal, completing the 

proof. �
Proof of Proposition 2.7. We only prove (i), since the arguments for the other parts are 
similar.

By Definition 4.2, we can write Y = {Yφ ∈ C α
loc(φ(Uφ); TRn)}φ∈A and ω ={

ωφ ∈ C β
loc

(
φ(Uφ);

∧k
T ∗Rn

)}
φ∈A

, where A is the maximal C α+1-atlas for M.
For each φ ∈ A , by applying Lemma 2.2 on the coordinate components of Yφ and 

ωφ, we see that the map (Yφ, ωφ) �→ ιYφ
ωφ is a continuous map C α

loc(φ(Uφ); TRn) ×
C β

loc

(
φ(Uφ);

∧k
T ∗Rn

)
→ C β

loc

(
φ(Uφ);

∧k−1
T ∗Rn

)
.

By (4.1) and (4.2) we have (ψ ◦φ−1)∗Yψ = Yφ and (ψ ◦φ−1)∗ωψ = ωφ on φ(Uφ ∩Uψ). 
By Lemma 4.4 (i) we see that

(ψ ◦ φ−1)∗(ιYψ
ωψ) = ι(ψ◦φ−1)∗Yψ

(
(ψ ◦ φ−1)∗ωψ

)
= ιYφ

ωφ,

on φ(Uφ ∩ Uψ), whenever Uφ ∩ Uψ �= ∅.

Therefore {ιYφ
ωφ}φ∈A is a collection of (k − 1)-forms satisfying (4.2), and therefore 

defines a (k − 1)-form on M, which is denoted by ιY ω.
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Finally, the continuity of (Y, ω) �→ ιY ω comes from the fact that (Yφ, ωφ) �→ ιYφ
ωφ is 

continuous for each φ ∈ A . �
We now turn to the proofs of Proposition 2.8 and Lemma 2.10. For these, we require 

several standard objects and results.

Notation 4.5. We use the co-differential, ϑ = ϑRn , which is a linear operator taking k
forms to k − 1 forms, satisfying for 1 ≤ i1 < i2 < · · · < ik ≤ n,

ϑ
(
fdxi1 ∧ · · · ∧ dxik

)
=

k∑
l=1

∂f

∂xil
(−1)ldxi1 ∧ · · · ∧ dxil−1 ∧ dxil+1 ∧ · · · ∧ dxik .

In particular on 1-forms, −ϑ is the divergence operator, namely

For θ =
n∑

i=1
θidx

i, ϑθ = −
n∑

i=1

∂θi
∂xi

.

For any form ω, we have d(ϑω) + ϑ(dω) = 
ω, where 
 = − 
∑n

i=1 ∂
2
xi is the positive 

Laplacian acting on the components of ω; in this setting 
 is called the Hodge Laplacian.
We will often convolve functions with k-forms. Formally, if ω =∑
1≤i1<···<ik≤n ωi1,...,ikdx

ik ∧ · · · ∧ dxik is a k-form, and φ is a function, we set 
φ ∗ ω =

∑
1≤i1<···<ik≤n(φ ∗ ωi1,...,ik)dxik ∧ · · · ∧ dxik .

We will make use of the classical Newtonian potential. Let

G(x) :=

⎧⎪⎪⎨⎪⎪⎩
− |x|

2 , n = 1,
− 1

2π log |x|, n = 2,
|Sn−1|−1|x|2−n, n ≥ 3.

(4.6)

Lemma 4.6. Let ω =
∑

1≤i1<···<ik≤n ωi1,...,ikdx
ik ∧ · · · ∧ dxik be a k-form where each 

ωi1,...,ik is a compactly supported distribution on Rn. Then, σ := G ∗ ω is a distribution 
on Rn satisfying 
σ = ω. Moreover, if for some open set U ⊆ Rn and β ∈ R we have 
ω
∣∣
U
∈ C β

loc

(
U ;
∧k

T ∗U
)
, then σ

∣∣
U
∈ C β+2

loc

(
U ;
∧k

T ∗U
)
.

Proof. The convolution G ∗ ω makes sense because ωi1,...,ik is a compactly supported 
distribution and G is a distribution. Since G is well-known to be a fundamental solution 
for the Laplacian 
, we have 
(G ∗ ω) = (
G) ∗ ω = ω. Since 
σ = ω, the classical 
interior regularity for elliptic equations shows that if ω

∣∣
U

∈ C β
loc

(
U ;
∧k

T ∗U
)
, then 

σ
∣∣
U
∈ C β+2

loc (U ; 
∧k

T ∗U); see, for example, [17, Proposition 4.1]. �
Lemma 4.7. Let 0 ≤ k ≤ n, γ ∈ R and let U ⊂ Rn be a bounded open set, then there 
is a CU,γ > 0 such that ‖G ∗ ω‖Cγ+2(U ;∧kT∗U) ≤ CU,γ‖ω‖Cγ(U ;∧kT∗U) for all compactly 

supported k-forms ω ∈ C γ
c

(
U ;
∧k

T ∗U
)
.
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Proof. Set X to be the completion of C γ
c

(
U ;
∧k

T ∗U
)

under the C γ-norm. Thus, X is 

a closed subspace of C γ
(
Rn;

∧k
T ∗Rn

)
and ‖ω‖X = ‖ω‖Cγ for all ω ∈ X .

When ω ∈ X , we have that suppω ⊆ U so ω ∈ C γ
c

(
Rn;

∧k
T ∗Rn

)
. By Lemma 4.6, 

G ∗ ω ∈ C γ+2
loc

(
Rn;

∧k
T ∗Rn

)
is well-defined. By restricting it to U we get (G ∗ ω)

∣∣
U

∈

C γ+2
(
U ;
∧k

T ∗U
)
.

By the closed graph theorem we have ‖G ∗ ω‖Cγ+2(U ;∧kT∗U) ≤ C‖ω‖X =
C‖ω‖Cγ(U ;∧kT∗U) for some C that does not depend on ω.

Therefore, for the same constant C we have ‖G∗ω‖Cγ+2(U ;∧kT∗U) ≤ C‖ω‖Cγ(U ;∧kT∗U)

for all ω ∈ C γ
c

(
U ;
∧k

T ∗U
)
. �

Lemma 4.8. Let 0 ≤ k ≤ n, γ ∈ R, β > γ − 1 and let U ′ � U ⊆ Rn be two open 
sets.5 Suppose θ ∈ C γ

loc

(
U,
∧k

T ∗U
)

satisfies dθ ∈ C β−1
loc

(
U,
∧k+1

T ∗U
)
. Then, there 

exist ρ ∈ C β
loc

(
U ′;
∧k

T ∗U
)

and ξ ∈ C γ+1
loc

(
U ′;
∧k−1

T ∗U ′
)

such that

θ
∣∣
U ′ = ρ + dξ.

Note that the case β ≤ γ − 1 holds automatically if we pick ρ := θ and ξ := 0.

Proof. Let χ ∈ C∞
c (U) satisfy χ ≡ 1 on a neighborhood over U ′. Define

ρ̂ := G ∗ ϑd(χθ), ξ̂ := G ∗ ϑ(χθ), ρ := ρ̂
∣∣
U ′ , ξ := ξ̂

∣∣
U ′ .

Since χθ∈C γ , Lemma 4.6 shows ρ̂∈C γ
loc

(
Rn;

∧k
T ∗Rn

)
and ξ̂ ∈C γ+1

loc

(
Rn;

∧k−1
T ∗Rn

)
. 

Thus, ξ ∈ C γ+1
loc

(
U ′;
∧k−1

T ∗U ′
)
. Also, 
ρ̂

∣∣
U ′ = ϑd(χθ)

∣∣
U ′ = ϑdθ

∣∣
U ′ ∈ C β−2

loc , by hy-
pothesis. Thus, by the interior regularity of elliptic PDEs (see [17, Proposition 4.1]), we 
have ρ = ρ̂

∣∣
U ′ ∈ C β

loc. We also have,

θ
∣∣
U ′ = 
(G ∗ (χθ))

∣∣
U ′ = (ϑd + dϑ)(G ∗ (χθ))

∣∣
U ′ = G ∗ ϑd(χθ)

∣∣
U ′ + dG ∗ ϑ(χθ)

∣∣
U ′

= ρ̂
∣∣
U ′ + dξ̂

∣∣
U ′ = ρ + dξ,

as desired. �
Finally, we require paraproduct decompositions. Let ψ0 ∈ S (Rn) be a Schwartz 

function whose Fourier transform, ψ̂0(ξ) =
∫
ψ0(x)e2πix·ξ dx, satisfies supp ψ̂0 ⊆ {ξ :

|ξ| < 8/3} and ψ̂0(ξ) ≡ 1 for |ξ| ≤ 3/2. Set

ψj(x) :=
{

2njψ0(2jx) j > 0,
0 j ≤ −1.

5 Here, and in the rest of the paper, A � B denotes that A is a relatively compact subset of B.
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Associated to ψ0, we define two bilinear operators each taking a k form σ and an l-form 
ω and outputting a (k + l)-form,

P(σ, ω) :=
∞∑
j=0

((ψj − ψj−1) ∗ σ) ∧ (ψj−2 ∗ ω),

R(σ, ω) :=
∑

|j−k|≤1

((ψj − ψj−1) ∗ σ) ∧ ((ψk − ψk−1) ∗ ω).

Lemma 4.9. We have the following properties of P and R. Fix k, l ∈ {0, . . . n}.

(i) For α ∈ R, P defines a continuous bilinear map P : C α
(
Rn;

∧k
T ∗Rn

)
×

L∞
(
Rn;

∧l
T ∗Rn

)
→ C α

(
Rn;

∧k+l
T ∗Rn

)
.

(ii) For α∈R and β < 0, P defines a continuous bilinear map P : C α
(
Rn;

∧k
T ∗Rn

)
×

C β
(
Rn;

∧l
T ∗Rn

)
→ C α+β

(
Rn;

∧k+l
T ∗Rn

)
.

(iii) For α, β ∈ R with α + β > 0, R defines a continuous bilinear map R :
C α
(
Rn;

∧k
T ∗Rn

)
× C β

(
Rn;

∧l
T ∗Rn

)
→ C α+β

(
Rn;

∧k+l
T ∗Rn

)
.

(iv) σ ∧ ω = P(σ, ω) + (−1)klP(ω, σ) + R(ω, σ) holds for σ ∈ C α
(
Rn;

∧k
T ∗Rn

)
and 

ω ∈ C β
(
Rn;

∧l
T ∗Rn

)
, where α + β > 0.

(v) P satisfies dP(σ, ω) = P(dσ, ω) + (−1)kP(σ, dω), for k-forms σ and l-forms ω.

Proof. For 0 forms, (i) and (ii) can be found in [1, Theorem 2.82] and (iii) can be found 
in [1, Theorem 2.85]. By passing to their coordinate components we obtain the results for 
arbitrary forms. (iv) follows easily from the fact that 

∑N
j=0(ψj−ψj−1) ∗ω = ψN ∗ω N→∞−−−−→

ω. (v) follows directly from the definitions. �
Proof of Proposition 2.8. Let θ∈C γ

loc

(
U ;
∧k

T ∗U
)

be such that dθ∈C β−1
loc

(
U ;
∧k

T ∗U
)
. 

We will show, for any point p ∈ U , there is a neighborhood V ′ ⊆ V of F (p) and 

τ ∈ C β
loc

(
V ′;
∧k

T ∗V ′
)
, with d(F∗θ)

∣∣
V ′ = dτ . This will prove (i)⇒(ii) and the existence 

of τ as claimed in the proposition. The reverse implication follows by reversing the roles 
of F∗θ and θ.

Let U ′ � U be an open neighborhood of p. By Lemma 4.8, there are ρ ∈
C β

loc

(
U ′,
∧k

T ∗U ′
)

and ξ ∈ C γ+1
loc

(
U ′,
∧k−1

T ∗U ′
)

such that θ
∣∣
U ′ = ρ +dξ. By Lemma 4.4

(iii), dF∗dξ = d2F∗ξ = 0, so

dF∗θ
∣∣
F (U ′) = dF∗ρ

∣∣
F (U ′) + dF∗dξ

∣∣
F (U ′) = dF∗ρ

∣∣
F (U ′). (4.7)

Since ρ ∈ C β
loc

(
U ′,
∧k

T ∗U ′
)

and F is a C α+1
loc diffeomorphism, Lemma 4.1 shows 

F∗ρ ∈ C
min{α,β}
loc

(
F (U ′),

∧k
T ∗Rn

)
. If β ≤ α, then we have dF∗ρ ∈ C β−1

loc , completing 

the proof with V ′ := F (U ′) and τ := F∗ρ.
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However, if β > α, this does not imply the desired result. To show dF∗ρ ∈ C β−1
loc

near F (p), we construct a new k-form τ ∈ C β such that dF∗ρ = dτ near F (p). The 
construction requires paraproducts.

Let U ′′ � U ′ be a smaller open neighborhood of p. We claim that there exist ρ̃i1···ik ∈
C β(Rn) and μ̃i1···ik ∈ C α+1

(
Rn;

∧k−1
T ∗Rn

)
, with compact supports and such that

F∗ρ
∣∣
F (U ′′) =

∑
1≤i1<···<ik≤n

ρ̃i1...ikdμ̃
i1...ik

∣∣
F (U ′′). (4.8)

Write ρ =
∑

1≤i1<···<ik≤n ρi1...ikdx
i1 ∧ · · · ∧ dxik and denote Φ := F−1 : V ∼−→ U . Take 

χ1 ∈ C∞
c (F (U ′)) such that χ1

∣∣
F (U ′′) ≡ 1. Define (φ̃1, . . . , φ̃n) := χ1Φ, so that each φ̃j is 

compactly supported and φ̃j ∈ C α+1(Rn). Let ρ̃i1...ik := χ1(ρi1...k ◦ Φ) ∈ C β(Rn). We 
have ρi1...ik ◦ Φ

∣∣
F (U ′′) = ρ̃i1...ik

∣∣
F (U ′′) and φj

∣∣
F (U ′′) = φ̃j

∣∣
F (U ′′), so

F∗ρ
∣∣
F (U ′′) =

∑
1≤i1<···<ik≤n

ρ̃i1...ikdφ̃
i1 ∧ · · · ∧ dφ̃ik

∣∣
F (U ′′). (4.9)

Using Lemma 4.6, we set μi1···ik := G ∗ ϑ(dφ̃i1 ∧ · · · ∧ dφ̃ik) ∈ C α+1
loc

(
Rn;

∧k−1
T ∗Rn

)
. 

Since dφ̃i1 ∧ · · · ∧ dφ̃ik is closed, we have

dμi1···ik = dϑG ∗ (dφ̃i1 ∧ · · · ∧ dφ̃ik) + ϑG ∗ d(dφ̃i1 ∧ · · · ∧ dφ̃ik)

= 
G ∗ (dφ̃i1 ∧ · · · ∧ dφ̃ik) = dφ̃i1 ∧ · · · ∧ dφ̃ik .
(4.10)

Setting μ̃i1···ik := χ1μ
i1···ik ∈ C α+1

(
Rn;

∧k−1
T ∗Rn

)
, (4.8) follows by combining (4.9)

and (4.10).
Define

τ :=
∑

1≤i1<···<ik≤n

P(ρ̃i1...ik , dμ̃i1...ik) + (−1)kP(μ̃i1...,ik , dρ̃i1...ik) + R(ρ̃i1...ik , dμ̃i1...ik).

(4.11)

We will show τ ∈ C β
(
Rn;

∧k
T ∗Rn

)
and dτ

∣∣
F (U ′′) = dF∗ρ

∣∣
F (U ′′); this will complete the 

proof with V ′ := F (U ′′) and we have used (4.7).
We turn to showing dτ

∣∣
F (U ′′) = dF∗ρ

∣∣
F (U ′′). Since μ̃i1...ik is a (k−1)-form, Lemma 4.9

(v) shows dP(μ̃i1...ik , ρ̃i1...ik) = P(dμ̃i1...ik , ρ̃i1...ik) + (−1)k−1P(μ̃i1...ik , dρ̃i1...ik). Apply-
ing differential to both sides of this equation and using d2 = 0, we obtain

dP(dμ̃i1...ik , ρ̃i1...ik) = (−1)kdP(μ̃i1...ik , dρ̃i1...ik). (4.12)

Using Lemma 4.9 (iv) in the case l = 0, (4.12), and (4.8), we have
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dτ
∣∣
F (U ′′) =

∑
1≤i1<···<ik≤n

dP(ρ̃i1...ik , dμ̃i1...ik) + (−1)kdP(μ̃i1...ik , dρ̃i1...ik)

+ dR(ρ̃i1...ik , dμ̃i1...ik)
∣∣
F (U ′′)

=
∑

1≤i1<···<ik≤n

dP(ρ̃i1...ik , dμ̃i1...ik) + dP(dμ̃i1...ik , ρ̃i1...ik) + dR(ρ̃i1...ik , dμ̃i1...ik)
∣∣
F (U ′′)

=
∑

1≤i1<···<ik≤n

d
(
ρ̃i1...ikdμ̃

i1...ik
)∣∣

F (U ′′)

= dF∗ρ
∣∣
F (U ′′),

as desired.
Finally, we show τ ∈ C β

(
Rn;

∧k
T ∗Rn

)
, which will complete the proof. Using that 

ρ̃i1...ik ∈ C β(Rn; T ∗Rn) and dμ̃i1...ik ∈ C α
(
Rn;

∧k
T ∗Rn

)
⊂ L∞, Lemma 4.9 (i) shows 

P(ρ̃i1...ik , dμ̃i1...ik) ∈ C β
(
Rn;

∧k
T ∗Rn

)
and Lemma 4.9 (iii) shows R(ρ̃i1...ik , dμ̃i1...ik) ∈

C α+β
(
Rn;

∧k
T ∗Rn

)
� C β .

Thus, the proof will be complete once we show P(μ̃i1...ik , dρ̃i1...ik) ∈C β
(
Rn;

∧k
T ∗Rn

)
. 

If β > 1, then dρ̃i1...ik ∈ L∞. Using that μ̃i1...ik ∈ C α+1, Lemma 4.9 (i) then im-
plies P(μ̃i1...ik , dρ̃i1...ik) ∈ C α+1 ⊆ C β . If β ≤ 1, then dρ̃i1...ik ∈ C β � C β−1−α. 
Since β − 1 − α < 0 and μ̃i1...ik ∈ C α+1, Lemma 4.9 (ii) shows P(μ̃i1...ik , dρ̃i1...ik) ∈
C α+1+β−1−α = C β . This completes the proof. �
Proof of Lemma 2.10. Let A = {φ : Uφ ⊆ M → Rn} be the C α+1-atlas of M. By 

Definition 4.2, θ ∈ C γ
loc

(
M;
∧k

T ∗M
)

is the collection 
{
θφ ∈ C γ

loc

(
Uφ;
∧k

T ∗Uφ

)}
φ∈A

which satisfies (φ ◦ ψ)∗θψ
∣∣
φ(Uφ∩Uψ) = θφ

∣∣
φ(Uφ∩Uψ) whenever Uφ ∩ Uψ �= ∅.

We claim that 
{
dθφ
}
φ∈A

defines a C β−1
loc (k + 1)-form on M (see Definition 4.2). 

Namely, we claim

(φ ◦ ψ−1)∗dθψ
∣∣
φ(Uφ∩Uψ) = dθφ

∣∣
φ(Uφ∩Uψ), whenever φ, ψ ∈ A satisfy Uφ ∩ Uψ �= ∅,

(4.13)

and their common value on φ(Uφ ∩ Uψ) is C β−1
loc .

Indeed, once (4.13) is shown, then τ = {dθφ}φ∈A is the desired (k + 1)-form. To see 
that this τ is closed in the sense of the statement of the lemma, note that if F ∈ A is a 
C α+1-coordinate chart on M, then F∗τ = dθF and therefore dF∗τ = d2θF = 0.

First, we claim that dθφ is C β
loc for every φ ∈ A . The assumption that dθ has 

regularity C β−1
loc (M) (see Definition 2.9) says that we can find a covering of coor-

dinate charts {φj : Uφj
⊆ M → Rn}j∈I ⊆ A (that is 

⋃
j Uφj

= M) such that 
d(φj)∗θ ∈ C β−1

loc

(
Uφj

;
∧k+1

T ∗(Uφj
)
)
, i.e. dθφj

∈ C β−1
loc

(
Uφj

;
∧k+1

T ∗(Uφj
)
)

for each 
j ∈ I.
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Let ψ ∈ A . For each p ∈ Uψ ⊆ M, we can find a j0 ∈ I such that p ∈ Uφj0
. By Propo-

sition 2.8 we see that d(ψ ◦φj0)∗θφj0

∣∣
ψ(Uψ∩Uφj0

) ∈ C β−1
loc

(
ψ(Uψ ∩ Uφj0

);
∧k+1

T ∗Rn
)
. By 

(4.2), dθψ
∣∣
ψ(Uψ∩Uφj0

) = d(ψ ◦ φj0)∗θφj0

∣∣
ψ(Uψ∩Uφj0

) so dθψ is C β−1
loc near p ∈ Uψ. Since p

is arbitrary, we know dθψ ∈ C β−1
loc

(
ψ(Uψ);

∧k+1
T ∗Rn

)
. Therefore, {dθφ} is a collection 

of C β−1
loc -forms.

We turn to proving (4.13). Let p ∈ Uφ, and let V � Uφ be a neighborhood of p. We 
will show:

(φ ◦ ψ−1)∗dθψ
∣∣
φ(V ∩Uψ) = dθφ

∣∣
φ(V ∩Uψ) whenever ψ ∈ A satisfies V ∩ Uψ �= ∅. (4.14)

Since φ(V ) � φ(Uφ), by Lemma 4.8 there exists a ρ ∈ C β
loc

(
φ(V );

∧k
T ∗Rn

)
and 

ξ ∈ C γ+1
loc

(
φ(V );

∧k−1
T ∗Rn

)
such that θφ

∣∣
φ(V ) = ρ + dξ, and therefore dθφ

∣∣
φ(V ) = dρ.

By Lemma 4.4 (iii), since β > 1 − α and γ + 1 > 1 − α,

d(ψ ◦ φ−1)∗ρ = (ψ ◦ φ−1)∗dρ, d(ψ ◦ φ−1)∗ξ = (ψ ◦ φ−1)∗dξ, on ψ(V ∩ Uψ).

Therefore on ψ(V ∩ Uψ),

(ψ ◦ φ−1)∗dθφ = (ψ ◦ φ−1)∗dρ = d(ψ ◦ φ−1)∗ρ = d(ψ ◦ φ−1)∗θφ − d(ψ ◦ φ−1)∗dξ

= dθψ − d2(ψ ◦ φ−1)∗ξ = dθψ.

This proves (4.14). Since p ∈ Uφ was arbitrary, (4.13) follows, completing the proof. �
In the proof of Theorem 3.1, we need a version of Proposition 2.8 on 1-forms where 

we keep track of various estimates. We are concerned with the case when F is a C α+1-
diffeomorphism on Bn and is close to the identity map, and our 1-form θ defined on Bn

is such that ‖θ‖Cα + ‖dθ‖Cβ−1 is small.

Proposition 4.10. Let α > 0 and β ∈ [α, α + 1] be two real numbers, then there is a 
constant C0 = C0(n, α, β) > 1 satisfying the following:

Suppose R ∈ C α+1(Bn; Rn) satisfies R
∣∣
∂Bn = 0 and ‖R‖Cα+1 ≤ C−1

0 , then the map 
F := id + R : Bn → Rn is a C α+1-diffeomorphism of Bn. Moreover,

(i) Let Φ = (φ1, . . . , φn) : Bn ∼−→ Bn be the inverse map of F . Then,

‖g ◦ Φ‖Cβ(Bn) ≤ C0‖g‖Cβ(Bn), ∀g ∈ C β(Bn). (4.15)

In particular ‖Φ‖Cα+1(Bn;Rn) ≤ C0.
(ii) ‖∇Φ − In‖Cα(Bn;Mn×n) ≤ C0‖R‖Cα+1(Bn;Rn).
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(iii) If θ ∈ C α
c (Bn;T ∗Bn) satisfies supp θ � 1

2B
n and dθ ∈ C β−1

(
Bn;
∧2

T ∗Bn
)
, then 

suppF∗θ � 3
4B

n and

‖d(F∗θ)‖Cβ−1(Bn;∧2T∗Bn) ≤ C0‖dθ‖Cβ−1(Bn;∧2T∗Bn). (4.16)

In the proof of Proposition 4.10 we need to follow convention for matrix-valued func-
tions.

Convention 4.11. For matrix-valued map A = (aji ) : Bn → Mn×n, we use the matrix 
norm

|A(x)|Mn×n := sup
v∈Rn\{0}

|A(x) · v|
|v| , ‖A‖C0(Bn;Mn×n) = sup

x∈Bn

|A(x)|Mn×n . (4.17)

For Zygmund-Hölder norms of A we use the component-wise norm; namely, 
‖A‖Cα(Bn;Mn×n) := ‖(a1

1, . . . , a
n
n)‖Cα(Bn;Rn2 ).

Remark 4.12. Let α > 0, and let U ⊆ Rn be an open set. It follows from Lemma 2.2
that there is a C̃U,α > 0, such that

‖AB‖Cα(U ;Mn×n) ≤ C̃U,α‖A‖Cα(U ;Mn×n)‖B‖Cα(U ;Mn×n), ∀A,B ∈ C α(U ;Mn×n).
(4.18)

Lemma 4.13. Let α > 0, and let B ⊂ Rn be an open ball. There is a c̃B,α > 0, such 
that if ‖A‖Cα(B;Mn×n) < c̃B,α, then I +A(x) is an invertible matrix for every x ∈ B. In 
addition, the map

A �→ (I + A)−1 : {M ∈ C α(B;Mn×n) : ‖M‖Cα < c̃B,α} → C α(B;Mn×n),

is continuous and satisfies ‖(I + A)−1 − I‖Cα(B;Mn×n) ≤ 2‖A‖Cα(B;Mn×n).

Proof. We take c̃B,α = 1
2 min{C̃−1

B,α, 1/2} < 1
2 where C̃B,α is in (4.18).

When ‖A‖Cα < c̃B,α, we have ‖Ak‖Cα ≤ C̃B,α‖A‖Cα‖Ak−1‖Cα ≤ 1
2‖Ak−1‖Cα for all 

k ∈ Z+. Therefore, for such A we have ‖Ak‖Cα ≤ 21−k‖A‖Cα ≤ 2−k.
We know (I + A)−1 =

∑∞
k=0(−1)kAk whenever the right hand side absolutely 

converges. This power series has C α-norm convergent radius larger than c̃B,α and is 
continuous in the domain {‖A‖Cα < c̃B,α}.

Finally we have

‖(I +A)−1 − I‖Cα =
∥∥∥ ∞∑

(−1)kAk
∥∥∥

Cα
≤

∞∑
‖Ak‖Cα ≤

∞∑
21−k‖A‖Cα ≤ 2‖A‖Cα . �
k=1 k=1 k=1
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Proof of Proposition 4.10. We let C0 be a large constant which may change from line 
to line. In particular, we will choose C0 large enough such that ‖R‖Cα+1 ≤ C−1

0 implies 
‖R‖C0 + ‖∇R‖C0 ≤ 1

4 and ‖∇R‖Cα ≤ c̃Bn,α, where c̃Bn,α is in Lemma 4.13.
By Lemma 4.13, ∇F (x) = I + ∇R(x) is an invertible matrix for every x ∈ Bn, and 

we have

‖(∇F )−1 − I‖Cα = ‖(I + ∇R)−1 − I‖Cα ≤ 2‖∇R‖Cα . (4.19)

Since ‖∇R‖C0 ≤ 1
4 , we have |R(x1) −R(x2)| ≤ ‖∇R‖C0 |x1 − x2| ≤ 1

4 |x1 − x2|, which 
implies

|F (x1) − F (x2)| ≥ |x1 − x2| − |R(x1) −R(x2)| ≥ 3
4 |x1 − x2|. (4.20)

This implies F is injective. By the Inverse Function Theorem, we know F : Bn ∼−→
F (Bn) is a C α+1-diffeomorphism.

The assumption R
∣∣
∂Bn = 0 gives F (∂Bn) = ∂Bn. Since F (Bn) is contractible and 

F (Bn) ⊃ ∂Bn, we get that F (Bn) = Bn. We conclude F is a C α+1-diffeomorphism on 
Bn.

(i): First, we claim that there is a C1(n, α, β) > 0, which does not depend on R, such 
that whenever R satisfies the assumptions of the proposition, we have

‖Φ‖Cα+1(Bn;Rn) ≤ C1. (4.21)

Since Φ is the inverse map of F , by [14, Lemma 5.9], we know ‖Φ‖Cα+1(Bn;Rn)
only depends on n, α, ‖F‖Cα+1(Bn;Rn), and ‖(∇F )−1‖C0(Bn;Mn×n). We will show that 
‖F‖Cα+1(Bn;Rn) and ‖(∇F )−1‖C0(Bn;Mn×n) have bounds that do not depend on R.

We have ‖F‖Cα+1(Bn;Rn) ≤ ‖id‖Cα+1(Bn) + ‖R‖Cα+1(Bn;Rn) ≤ ‖id‖Cα+1(Bn) + 1
4 . The 

right hand side of this inequality does not depend on R.
By (4.20), |F (x1) − F (x2)| ≥ 3

4 |x1 − x2| implies sup
x∈Bn

|(∇F (x))−1| ≤ 4
3 , so 

‖(∇F )−1‖C0(Bn;Mn×n) ≤ 4
3 , which does not depend on R as well. This establishes (4.21).

By [14, Lemma 5.8], we know for every C̃1 > 0 there is a C2 = C2(α, β, C̃1) > 0
such that ‖g ◦ Φ‖Cβ(Bn) ≤ C2‖g‖Cβ(Bn) holds when ‖Φ‖Cα+1(Bn;Rn) ≤ C̃1. By possibly 
increasing C0 so that C0 ≥ C2(α, β, C1), we obtain ‖g ◦Φ‖Cβ(Bn) ≤ C0‖g‖Cβ(Bn), which 
is (4.15).

(ii): Note that the identity matrix I can be viewed as a constant function defined on the 
unit ball. Since Φ is a C α+1-diffeomorphism on Bn, we get the equality I = I ◦ Φ as a 
matrix function on Bn.

By the chain rule I = ∇(F ◦ Φ) = ((∇F ) ◦ Φ) · ∇Φ, so ∇Φ − I = (∇F )−1 ◦ Φ − I =
((∇F )−1 − I) ◦ Φ. By (4.19) and (i), we have

‖∇Φ − I‖Cα(Bn;Mn×n) = ‖((∇F )−1 − I) ◦ Φ‖Cα ≤ C0‖(∇F )−1 − I‖Cα

≤ 2C ‖∇R‖ α n n×n ,
0 C (B ;M )
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and we obtain (ii) by replacing C0 with 2C0.

(iii): Let θ ∈ C α
c (Bn; T ∗Bn) be as in the assumption of (iii). In particular, supp θ � 1

2B
n.

By the assumption ‖R‖C0 ≤ 1
4 , we have F (1

2B
n) ⊆ 1

2B
n + 1

4B
n = 3

4B
n, so suppF∗θ =

F (supp θ) ⊆ 3
4B

n.
Similar to the proof of Lemma 4.8, we define a 1-form ρ and a function ξ by (see (4.6))

ρ =
n∑

i=1
ρidx

i := G ∗ ϑdθ, ξ := G ∗ ϑθ.

ρ and ξ are globally defined in Rn because θ is compactly supported in 1
2B

n.
By Lemma 4.6, we have ρ ∈ C β

loc(Rn;T ∗Rn), ξ ∈ C α+1
loc (Rn), and ρ + dξ = G ∗ (ϑd +

dϑ)θ = θ. Moreover, by Lemma 4.7 with γ = β − 2 and the assumption suppϑdθ ⊆
supp θ ⊆ 3

4B
n � Bn, we have

‖ρ‖Cβ(Bn;T∗Bn) �β ‖ϑdθ‖Cβ−2 �β ‖dθ‖Cβ−1 . (4.22)

By Lemma 4.4 (iii), d(F∗dξ) = d2F∗ξ = 0 on Bn, so we have that

d(F∗θ) = d
(
F∗ρ
∣∣
Bn

)
+ d
(
F∗dξ

∣∣
Bn

)
= d
(
F∗ρ
∣∣
Bn

)
= d

(
n∑

i=1
(ρi ◦ Φ)dφi

)
, on Bn.

(4.23)

Thus, to prove (4.16), by (4.22) it suffices to show

‖d(F∗θ)‖Cβ−1( 3
4B

n;∧2T∗Rn) � ‖ρ‖Cβ(Bn;T∗Bn). (4.24)

Fix χ ∈ C∞
c (Bn) such that χ| 3

4B
n ≡ 1. For each 1 ≤ i ≤ n, set

ρ̃i := χ(ρi ◦ Φ), φ̃i := χφi.

So ρ̃i ∈ C β
c (Bn) and dφ̃i ∈ C α

c (Bn;T ∗Bn) are globally defined 1-forms for each i, such 
that

n∑
i=1

(ρ̃idφ̃i)
∣∣
3
4B

n =
n∑

i=1

(
(ρi ◦ Φ)dφi

) ∣∣
3
4B

n = (F∗ρ)
∣∣
3
4B

n . (4.25)

By (4.25) and (4.23) we have

‖d(F∗θ)‖Cβ−1( 3
4B

n;∧2T∗Rn) =
∥∥∥ n∑

i=1
d(ρ̃idφ̃i)

∥∥∥
Cβ−1( 3

4B
n;∧2T∗Rn)

≤
n∑

‖d(ρ̃idφ̃i)‖Cβ−1(Rn;∧2T∗Rn).

i=1
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By Lemma 2.2 we have ‖ρ̃i‖Cβ(Rn) �β ‖χ‖Cβ(Bn)‖ρi ◦ Φ‖Cβ(Bn) and ‖φ̃i‖Cα+1(Rn) �α

‖χ‖Cα+1(Bn)‖Φ‖Cα+1(Bn), by (4.15) we have ‖ρi ◦ Φ‖Cβ(Bn) � ‖ρi‖Cβ(Bn) and
‖Φ‖Cα+1(Bn;Rn) � 1. Combining them we get

‖ρ̃i‖Cβ(Rn) �α,β ‖ρi‖Cβ(Bn), ‖φ̃i‖Cα+1(Rn) �α 1, 1 ≤ i ≤ n. (4.26)

Thus, to obtain (4.24) and complete the proof, it suffices to show

‖d(ρ̃idφ̃i)‖Cβ−1(Rn;∧2T∗Rn) �α,β ‖ρ̃i‖Cβ(Bn), 1 ≤ i ≤ n. (4.27)

Similar to (4.11), we define 1-form τi on Rn by

τi :=
n∑

i=1
P(ρ̃i, dφ̃i) −P(φ̃i, dρ̃i) + R(ρ̃i, dφ̃i), 1 ≤ i ≤ n.

By Lemma 4.9 (iv) and (v), we have ρ̃idφ̃i = P(ρ̃i, dφ̃i) +P(dφ̃i, ρ̃i) +R(ρ̃i, dφ̃i) and 
dP(φ̃i, ρ̃i) = P(dφ̃i, ρ̃i) + P(φ̃i, dρ̃i). Therefore for 1 ≤ i ≤ n,

dτi = dP(ρ̃i, dφ̃i) − dP(φ̃i, dρ̃i) + dR(ρ̃i, dφ̃i) = dP(ρ̃i, dφ̃i) + dP(dφ̃i, ρ̃i) + dR(ρ̃i, dφ̃i)

= d(ρ̃idφ̃i), on Rn.

(4.28)

We claim

‖τi‖Cβ(Rn;T∗Rn) � ‖ρ̃i‖Cβ(Rn;T∗Rn), 1 ≤ i ≤ n. (4.29)

By Lemma 4.9 (i) and (iii), along with the fact that ‖φ̃i‖Cα+1 � 1, we get 
‖P(ρ̃i, dφ̃i)‖Cβ � ‖ρ̃i‖Cβ and ‖R(ρ̃i, dφ̃i)‖Cβ � ‖R(ρ̃i, dφ̃i)‖Cα+β � ‖ρ̃i‖Cβ .

To complete the proof of (4.29), we need to show

‖P(φ̃i, dρ̃i)‖Cβ(Rn;T∗Rn) �α,β ‖ρ̃i‖Cβ(Rn;T∗Rn), 1 ≤ i ≤ n. (4.30)

We separate the proof of (4.30) into two cases: β > 1 and 0 < β ≤ 1.
For the case β > 1, (4.30) follows from Lemma 4.9 (i) with (4.26) that φ̃i ∈ C α+1 ⊆ C β

and dρ̃i ∈ C β−1 � L∞. For the case β ≤ 1, our assumption 0 < α ≤ β implies that 
α ∈ (0, 1]. So β −α− 1 < β − 1 ≤ 0 and we have dρ̃i ∈ C β−1 � C β−α−1. By Lemma 4.9
(ii) along with φ̃i ∈ C α+1 from (4.26), we get P(φ̃i, dρ̃i) ∈ C (α+1)+(β−α−1) = C β , which 
gives (4.30) and establishes (4.29).

Using (4.28) and (4.29), we see ‖d(ρ̃idφ̃i)‖Cβ−1(Rn;∧2T∗Rn) = ‖dτi‖Cβ−1 � ‖τi‖Cβ �
‖ρ̃i‖Cβ , establishing (4.27) and completing the proof (by possibly increasing C0). �
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5. The key estimate

Let α > 0 and β ∈ [α, α+1]. Suppose λ1, . . . , λn are C α 1-forms on an open set U ⊆ Rn

which span the cotangent space at every point of U . If we know that dλj ∈ C β−1
loc for 

each j, it is not necessarily true that λj ∈ C β
loc. However, it is a consequence of our main 

result (Theorem 3.1) that near each point, one can always change coordinates so that 
the forms are in C β

loc (see also Corollary 5.17 and Remark 5.18).
The next result is a special case of this idea, where we present an initial setting where 

we may find a C α+1-diffeomorphism such that F∗λ
j ∈ C β

loc.

Theorem 5.1. Let α > 0 and β ∈ [α, α + 1]. Let x = (x1, . . . , xn) and y = (y1, . . . , yn)
be two coordinate systems for Rn. There exists c = c(n, α, β) > 0 such that the following 
holds.

Suppose λi, i = 1, . . . , n ∈ C α(Bn; T ∗Bn) are 1-forms on Bn such that supp(λi −
dxi) � 1

2B
n for each i, and

n∑
i=1

(‖λi − dxi‖Cα(Bn;T∗Bn) + ‖dλi‖Cβ−1(Bn;∧2T∗Bn)) ≤ c. (5.1)

Then, there exists a C α+1-diffeomorphism F : Bn
x

∼−→ Bn
y , such that Bn(F (0), 16 ) ⊆

F (1
3B

n) ∩ 3
4B

n, F∗λ
i ∈ C β(Bn; T ∗Bn) for i = 1, . . . , n, and moreover

‖F − id‖Cα+1(Bn;Rn) +
n∑

i=1
‖F∗λ

i − dyi‖Cβ(Bn;T∗Bn)

≤ c−1
n∑

i=1

(
‖λi − dxi‖Cα(Bn;T∗Bn) + ‖dλi‖Cβ−1(Bn;∧2T∗Bn)

)
.

(5.2)

5.1. Outline of the proof: the dual Malgrange method

The proof of Theorem 5.1 is inspired by Malgrange’s proof of the Newlander-Nirenberg 
Theorem [8].

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two coordinate systems on the unit ball 
Bn ⊂ Rn. In this section, we write 1-forms λ1, . . . , λn, η1, . . . , ηn as

λi = dxi +
n∑

j=1
aijdx

j , ηi = dyi +
n∑

j=1
bijdy

j , i = 1, . . . , n, (5.3)

and define coefficient matrices

A := (aij)n×n =

⎛⎜⎝a1
1 · · · a1

n
...

. . .
...

an · · · an

⎞⎟⎠ , B := (bij)n×n =

⎛⎜⎝ b11 · · · b1n
...

. . .
...

bn · · · bn

⎞⎟⎠ . (5.4)

1 n 1 n
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In this section, λ1, . . . , λn are given C α 1-forms on Bn ⊂ Rn which span the cotangent 
space at every point. And ηi := F∗λ

i are the push-forward 1-forms by the unknown 
C α+1-diffeomorphism F : Bn ∼−→ Bn, which we are solving for. Thus, η1, . . . , ηn are also 
C α 1-forms defined on Bn which span the cotangent space at every point.

As in Malgrange’s work [8], the main idea is to choose F so that the matrix B satisfies 
a nonlinear elliptic PDE. That η = F∗λ ∈ C β will follow from the classical interior 
regularity of elliptic PDEs. We will show such an F exists by showing that it suffices for 
F to satisfy a different elliptic PDE, whose solution is guaranteed by classical elliptic 
theory.

Given collections (λ1, . . . , λn) and (η1, . . . , ηn) of 1-forms on B1, as above, that both 
span their co-tangent spaces at every point, we define Riemannian metrics g and h by

g =
n∑

i,j=1
gijdx

idxj :=
n∑

i,j,k=1

(δki + aki )(δkj + akj )dxidxj ,

h =
n∑

i,j=1
hijdy

idyj :=
n∑

i,j,k=1

(δki + bki )(δkj + bkj )dyidyj .
(5.5)

Here, δji , δij , δij are the Kronecker delta functions:

δji = δij = δij =
{

1, i = j,

0, i �= j.
(5.6)

We use the following notations from classical Riemannian differential geometry:

gij := g(dxi, dxj),
√

det g :=
∣∣∣∣ λ1 ∧ · · · ∧ λn

dx1 ∧ · · · ∧ dxn

∣∣∣∣ ,
hij := h(dyi, dyj),

√
deth :=

∣∣∣∣ η1 ∧ · · · ∧ ηn

dy1 ∧ · · · ∧ dyn

∣∣∣∣ .
(5.7)

Remark 5.2.

(a) We can write h =
∑n

i=1 η
i · ηi. It is non-degenerate since η1, . . . , ηn span the cotan-

gent space at every point. Moreover η1, . . . , ηn form an orthogonal basis with respect 
to this metric h. Similar remarks hold for g =

∑n
i=1 λ

i · λi.
(b) Using matrix notations in (5.3) we have (hij)n×n = (I + B)
(I + B) and so we 

know (hij)n×n = (hij)−1 = (I + B)−1 ((I + B)−1)
 and 
√

deth = det(I + B). 
Similarly, we have (gij) = (I + A)
(I + A) = (gij)−1 and 

√
det g = det(I + A). 

More importantly, we have the following lemma.

Lemma 5.3. Let B, hij and 
√

deth be as above. Then hij and 
√

deth are rational func-
tions of the components of B. Moreover for every γ > 0, there is a cn,γ > 0 such that
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hij ,
√

deth :
{
B ∈ C γ(Bn;Mn×n) : ‖B‖Cγ < cn,γ

}
→ C γ(Bn), 1 ≤ i, j ≤ n,

are norm continuous maps, with

n∑
i,j=1

‖hij − δij‖Cγ(Bn) ≤ c−1
n,γ‖B‖Cγ(Bn;Mn×n),

‖
√

deth− 1‖Cγ(Bn) ≤ c−1
n,γ‖B‖Cγ(Bn;Mn×n).

Remark 5.4. The same results hold for gij and 
√

det g. Namely, ‖gij−δij‖Cα +‖
√

det g−
1‖Cα ≤ c−1

n,α‖A‖Cα holds with the same constant cn,α > 0.

Proof. By Lemma 2.2, the space C γ(Bn; Mn×n) is closed under matrix multiplication. 
By Remark 5.2 (b)

√
deth = det(I + B) is a polynomial in the components of B, so in 

particular is a norm continuous function on C γ(Bn; Mn×n). Note that det(I + 0) = 1 so 
we have ‖

√
deth− 1‖Cγ(Bn) �γ ‖B‖Cγ(Bn;Mn×n) when the right hand side is small.

By Lemma 4.13, by choosing cn,γ < c̃Bn,γ where c̃Bn,γ is the constant in Lemma 4.13, 
we see that the map B �→ (I + B)−1 is C γ-norm continuous with ‖(I + B)−1 −
I‖Cγ(Bn;Mn×n) ≤ 2‖B‖Cγ(Bn;Mn×n).

Thus, in the domain ‖B‖Cγ < cn,γ , the map B �→ (I + B)−1 ((I + B)−1)
 is also 

continuous and satisfies ‖(I +B)−1 ((I + B)−1)
 − I‖Cγ � ‖(I +B)
(I +B) − I‖Cγ �
‖B‖Cγ . It follows with (hij)n×n = (hij)−1

n×n = (I +B)−1 ((I + B)−1)
, we have that hij

are norm continuous and ‖hij − δij‖Cγ � ‖B‖Cγ .
By possibly shrinking cn,γ we get ‖

√
deth − 1‖Cγ ≤ c−1

n,γ‖B‖Cγ and 
∑n

i,j=1 ‖hij −
δij‖Cγ ≤ c−1

n,γ‖B‖Cγ . �
Convention 5.5. Given a Riemannian metric h, we use the co-differential ϑh as the adjoint 
of differential with respect to h. That is, for any k-form φ and any compactly supported 
(k − 1)-form ψ,

(ϑhφ, ψ)h := (φ, dψ)h =
∫

h(φ, dψ) d volh,

where d volh is the Riemannian volume density induced by h. In local coordinates, 
d volh =

√
deth d volRn , where d volRn is the usual Lebesgue density on Rn. We write 

ϑRn for the usual co-differential with respect to the flat metric 
∑n

i,j=1 δijdy
idyj on 

Rn.

Lemma 5.6. Let α > 0, and let λ1, . . . , λn be C α 1-forms defined on Bn that span the 
cotangent space at every point, with (aji ), g, (gij), and 

√
det g given in (5.4), (5.5), and 

(5.7).
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Suppose F = id + R : Bn
x → Bn

y is a C α+1-diffeomorphism that satisfies

n∑
i,j=1

∂

∂xj

(√
det g · gij ∂R

k

∂xi

)
=

n∑
i,j=1

∂

∂xj

(√
det g · gijaki

)
, in Bn

x , k = 1, . . . , n.

(5.8)

Then for the pushforward 1-forms ηk = F∗λk, k = 1, . . . , n, the coefficients (bji ) defined 
in (5.4) satisfy

n∑
i,j=1

∂

∂yi

(√
dethhijbkj

)
= 0, in Bn

y , k = 1, . . . , n. (5.9)

Proof. Note that the composition of a C1-function and a C α+1-diffeomorphism is still 
C1, and being compactly supported is preserved under homeomorphism, so we have

C1
c (Bn

x) = {v ◦ F : v ∈ C1
c (Bn

y )}. (5.10)

By assumption R ∈ C α+1(Bn; Rn), and aki , g
ij , 

√
det g ∈ C α(Bn), so (5.8) makes 

sense in C α−1
loc (Bn

x) � C1
c (Bn

x)′ and the equality can be viewed as elements of the dual of 
C1

c (Bn).
For any u ∈ C1

c (Bn), integrating by parts, we obtain

0 =
〈

n∑
i,j=1

∂

∂xj

(√
det g · gij

(∂Rk

∂xi
− aki

))
, u

〉
Bn

x

= −
∫
Bn

n∑
i,j=1

gij
(
∂Rk

∂xi
− aki

)
∂u

∂xj

√
det gdx

= −〈dRk − (λk − dxk), du〉Bn
x ;g = −〈dF k − λk, du〉Bn

x ;g

Here 〈·, ·〉Bn
x ;g are the dual pairs for linear functionals and test functions induced by g. 

Namely, for u, v ∈ C0(Bn) and φ, ψ ∈ C0(Bn; T ∗Bn), 〈u, v〉Bn;g =
∫
Bn uv

√
det gdx and 

〈φ, ψ〉Bn;g =
∫
Bn g(φ, ψ)

√
det gdx.

Using (5.8), we get 〈dF k − λk, du〉Bn
x ;g = 0 for all u ∈ C1

c (Bn). By (5.10) we have 
〈dF k − λk, d(v ◦ F )〉Bn

x ;g = 0 for all v ∈ C1
c (Bn

y ).
Note that F∗(g(φ, ψ)) = (F∗g)(F∗φ, F∗ψ) = h(F∗φ, F∗ψ) for all φ, ψ ∈ C0

loc(Bn; T ∗Bn), 
and F∗

√
det g =

√
detF∗g =

√
deth, so we have, for every v ∈ C1

c (Bn
y ),

0 = 〈dF k − λk, d(v ◦ F )〉Bn
x ;g = 〈F∗(dF k − λk), F∗F

∗dv〉Bn
y ;h = 〈dyk − ηk, dv〉Bn

y ;h

=
∫ n∑

i,j=1
hijbkj

∂v

∂yi

√
dethdy.
Bn
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Integrating by parts, we obtain (5.9). �
We will choose a coordinate chart F so that (5.8) is satisfied, and therefore (5.9) will 

be satisfied as well.
To prove Theorem 5.1 we will prove the following:

• There exists a R ∈ C α+1(Bn; Rn) satisfying (5.8) with boundary condition R
∣∣
∂Bn = 0. 

Moreover, we can choose R with ‖R‖Cα+1 �α,β ‖A‖Cα . Thus, by taking c > 0 small, 
we may take ‖R‖Cα+1 small.

• When ‖R‖Cα+1 is small, F = id + R is a C α+1-diffeomorphism of Bn. And under 
the assumption suppA � 1

2B
n, we have ‖B‖Cβ(∂Bn) �α,β ‖A‖Cα and ‖dη‖Cβ−1 �α,β

‖dλ‖Cβ−1 . In particular, by taking c > 0 small, we may take ‖B‖Cβ(∂Bn) + ‖dη‖Cβ−1

small.
• Using that B ∈ C α(∂Bn; Mn×n) satisfies (5.9), if ‖B‖Cβ(∂Bn) +‖dη‖Cβ−1 is small, we 

will show B ∈ C β(Bn; Mn×n) and ‖B‖Cβ �α,β ‖A‖Cα .

The last step above requires the Zygmund-Hölder well-posedness for the Dirichlet 
problem.

Lemma 5.7 (The Dirichlet problem). Let γ > 0, and let U be a bounded domain with 
smooth boundary. Then for f ∈ C γ−2(U) and g ∈ C γ(∂U) there is a unique u ∈ C γ+2(U)
such that 
u = f and u

∣∣
∂U

= g.
Moreover, the solution map (f, g) �→ u is continuous bilinear map C γ−2(U) ×

C γ(∂U) → C γ(U).

See [5, Theorem 15] for a proof of Lemma 5.7.

Definition 5.8 (Dirichlet solution on ball). Let γ > 0 and f ∈ C γ−2(Bn), we write D(f)
for the unique solution u ∈ C γ(Bn) such that 
u = f and u

∣∣
∂Bn = 0. For a C γ−2-vector 

valued function g = (g1, . . . , gm) on Bn, we let D(g) := (D(g1), . . . , D(gm)).

Remark 5.9. In Lemma 5.7, for γ > 0, C γ(∂Bn) is the Zygmund-Hölder space on the 
sphere Sn−1 = ∂Bn. One can use Definition 4.2 to define C γ-functions on it. Note that 
the sphere is a compact manifold, and therefore C γ

loc(Sn−1) = C γ(Sn−1). The norm can 
be defined using any finite atlas, and the equivalence class of the norm does not depend 
on the choice of atlas. Moreover we have

‖f‖Cγ(∂Bn) ≈γ inf{‖f̃‖Cγ(Bn) : f̃
∣∣
∂Bn = f}, (5.11)

since the trace operator (·)|∂Bn : C γ(Bn) → C γ(∂Bn) is continuous and surjective; 
see [20, Theorem 2.7.2]. In fact given a function f ∈ C γ(Sn−1), we can take f̃(x) =
f( x

|x| )χ(|x|) where χ ∈ C∞
c (−1

2 , 2) such that χ(1) = 1, then we have f̃
∣∣
Sn−1 = f and 

‖f̃‖Cγ(Bn) ≈γ ‖f‖Cγ(Sn−1).
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5.2. The existence proposition

In this section, we show that there exists a C α+1-diffeomorphism F = id +R solving 
(5.8) and which satisfies good estimates.

Proposition 5.10. Let α > 0 and let β ∈ [α, α + 1]. There is a c1 = c1(n, α, β) ∈ (0, 1)
such that, if A = (akj )n×n : Bn → Mn×n satisfies

- A ∈ C α
c (1

2B
n; Mn×n) and ‖A‖Cα < c1,

then the matrix (I + A)(x) is invertible for every x ∈ Bn, and there is a C α+1-map 
F = id + R on Bn such that

(i) R solves the equation

n∑
i,j=1

∂

∂xj

(√
det g · gij ∂R

k

∂xi

)
=

n∑
i,j=1

∂

∂xj

(√
det g · gijaki

)
, in Bn

x , k = 1, . . . , n,

(5.8)

with boundary condition R
∣∣
∂Bn = 0, and we have

‖R‖Cα+1(Bn;Rn) + ‖∇R‖Cβ(Bn\ 3
4B

n;Rn) ≤ c−1
1 ‖A‖Cα . (5.12)

(ii) F : Bn
x → Bn

y is a C α+1-diffeomorphism such that Bn(F (0), 16 ) ⊆ F (1
3B

n) ∩ 3
4B

n.
(iii) Let Φ = F−1 : Bn

y → Bn
x be its inverse map, then

‖∇Φ − I‖Cα(Bn;Mn×n) + ‖∇Φ − I‖Cβ(∂Bn;Mn×n) ≤ c−1
1 ‖A‖Cα . (5.13)

In particular ‖Φ‖Cα+1(Bn;Rn) ≤ c−1
1 .

Remark 5.11. The map F in Proposition 5.10 is uniquely determined by A. This is due 
to the well-posedness of the Dirichlet problem for the second order elliptic equations, 
since R satisfies (5.8) with R

∣∣
∂Bn = 0.

Remark 5.12. As we will see in the proof of Theorem 5.1, the map F from Proposition 5.10
is the map of the same name in Theorem 5.1.

Proof. We let c1 be a small constant which may change from line to line. Note that if 
(5.12) and (5.13) are valid for some c̃1, then they are also valid for any 0 < c1 ≤ c̃1.

First pick c1 < c̃Bn,α where c̃Bn,α is the constant in Lemma 4.13. By Lemma 4.13, 
the assumption ‖A‖Cα < c1(< c̃Bn,α) implies that I + A is invertible at every point 
and (I +A)−1 ∈ C α(Bn; Mn×n). Therefore, g given in (5.5) is indeed a C α-Riemannian 
metric.
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By the assumption suppA � 1
2B

n, we have 
√

det g · gij
∣∣
Bn\ 1

2B
n = δij . Since 

(
√

det ggij(x))n×n is an invertible matrix for x ∈ 1
2B

n, the second order operator ∑n
i,j=1 ∂xj (

√
det g · gij∂xi) is uniformly elliptic on Bn. Classical existence theorems 

(for example, [6, Theorem 8.3]) show that for each k = 1, . . . , n there exists6 a 
Rk ∈ H1(Bn) that satisfies (5.8) with Dirichlet boundary condition Rk

∣∣
∂Bn = 0, since ∑n

i,j=1
∂

∂xj

(√
det ggijaki

)
∈ C α−1(Bn) ⊂ H−1(Bn). By a classical regularity estimate 

(see [6, Theorem 8.34] or [5, Theorem 15]), we know Rk ∈ C α+1(Bn; Rn).
To show ‖R‖Cα+1 � ‖A‖Cα , we write (5.8) as


Rk =
n∑

i,j=1

∂

∂xj

((
δij −

√
det ggij

) ∂Rk

∂xi

)
+

n∑
i,j=1

∂

∂xj

(√
det ggijaki

)
,

in Bn
x , k = 1, . . . , n.

(5.14)

By Remark 5.4 (see also Lemma 5.3), we see that ‖δij −
√

det ggij‖Cα(Bn) �α ‖A‖Cα . 
Therefore we have

‖ 
R‖Cα−1 �α

n∑
i,j,k=1

(
‖δij −

√
det ggij‖Cα‖∂xiRk‖Cα + ‖

√
det ggijaki ‖Cα

)
� ‖A‖Cα‖R‖Cα+1 + ‖A‖Cα ,

(5.15)

where the implicit constants depend only on n and α but not A or R.
The assumption R

∣∣
∂Bn = 0 implies that R = D(
R), where D is the zero 

Dirichlet boundary solution operator given in Definition 5.8. Since, by Lemma 5.7, 
D : C α−1(Bn) → C α+1(Bn) is bounded, (5.15) implies

‖R‖Cα+1(Bn;Rn) ≤ C̃1‖A‖Cα(Bn;Mn×n)‖R‖Cα+1(Bn;Rn) + C̃1‖A‖Cα(Bn;Mn×n), (5.16)

where C̃1 = C̃1(n, α) > 1 is a constant depending only on n and α but not A or R.
Choosing c1 small enough so that c1C̃1 ≤ 1

3 , then we get ‖R‖Cα+1 ≤ 1
3‖R‖Cα+1 +

C̃1‖A‖Cα when A satisfies the assumption ‖A‖Cα < c1. Therefore

‖R‖Cα+1(Bn;Rn) ≤ 3
2 C̃1‖A‖Cα ≤ 1

2c
−1
1 ‖A‖Cα , when ‖A‖Cα < c1 ≤ (3C̃1)−1.

(5.17)

This is part of the estimate in (5.12).

Next we show ‖R‖Cβ+1(Bn\ 3
4B

n) � ‖A‖Cα . Note that by the support assumption 
suppA � 1

2B
n we have 

√
det ggij

∣∣
Bn\ 1

2B
n = δij and aki

∣∣
Bn\ 1

2B
n = 0, so the right hand 

side of (5.14) is zero in Bn\1
2B

n. Therefore each Rk is a harmonic function in the domain 
Bn\1

2B
n.

6 Here H1(Bn) stands for the classical L2-Sobolev space of order 1, and H−1(Bn) = H1
0 (Bn)∗ is the 

L2-Sobolev space of order −1.



32 B. Street, L. Yao / Journal of Functional Analysis 283 (2022) 109537
The estimate ‖R‖Cα+1(Bn) �α ‖A‖Cα implies ‖R‖Cα+1(∂( 1
2B

n)) �α ‖A‖Cα since the 
trace map C α+1(Bn) → C α+1(∂(1

2B
n)) is bounded (see Remark 5.9). By classical interior 

estimates of harmonic functions (for example, [6, Theorem 2.10]) since 
R
∣∣
Bn\ 1

2B
n = 0, 

we have

‖R‖Cβ+1(∂ 3
4B

n) � ‖R‖C�β�+1(∂ 3
4B

n) � ‖R‖C0(Bn\ 2
3B

n) � ‖A‖Cα . (5.18)

Therefore, along with the fact that R
∣∣
∂Bn = 0, R

∣∣
∂(Bn\ 3

4B
n) = R

∣∣
∂ 3

4B
n ∪ R

∣∣
∂Bn has 

C β+1 norm bounded by a constant times ‖A‖Cα . By classical regularity estimates of 
harmonic functions (also see Lemma 5.7) on Bn\3

4B
n we know

‖R‖Cβ+1(Bn\ 3
4B

n) �β ‖R‖Cβ+1
(
∂(Bn\ 3

4B
n)
) �α,β ‖A‖Cα .

In particular, there is a C̃2 = C̃2(n, α, β) > 0 that depends on neither A nor R such that

‖∇R‖Cβ(Bn\ 3
4B

n) ≤ C̃2‖A‖Cα . (5.19)

Taking c1 < 1
2 C̃

−1
2 we have ‖∇R‖Cβ(Bn\ 3

4B
n) ≤ 1

2c
−1
1 ‖A‖Cα . Combining this with 

(5.17), completes the proof of (5.12).

We can take c1 > 0 possibly smaller so that c1 < 1
3 (C0C̃1)−1, where C0 is the constant 

in Proposition 4.10 and C̃1 is the constant in (5.16). By (5.17) we know ‖R‖Cα+1 ≤ C−1
0 . 

So by Proposition 4.10, the map F = id +R has C α+1-inverse. We conclude Φ = F−1 ∈
C α+1(Bn; Rn).

Since ‖R‖C1(Bn;Mn×n) �α ‖R‖Cα+1(Bn;Rn), by possibly shrinking c1 we can ensure 
‖R‖C0 + ‖∇R‖C0 ≤ 1

2 . So F (0) = R(0) ∈ Bn(0, 12 ), which implies Bn(F (0), 16 ) ⊆
Bn(0, 12 + 1

6 ) ⊂ 3
4B

n, and |F (x1) −F (x2)| ≥ |x1 − x2| − |R(x1) −R(x2)| ≥ 1
2 |x1 − x2| for 

x1, x2 ∈ Bn. Thus, if |F (x) − F (0)| < 1
6 then |x − 0| < 1

3 ; i.e., Bn(F (0), 16 ) ⊆ F (1
3B

n). 
So Bn(F (0), 16 ) ⊆ F (1

3B
n) ∩ 3

4B
n finishing the proof of (ii).

Finally we prove (iii). Note that by Proposition 4.10 (i), (5.13) gives ‖Φ‖Cα+1(Bn;Rn) �
1, which is ‖Φ‖Cα+1 ≤ c−1

1 by choosing c1 small.
By Proposition 4.10 (ii) and using that c1 < 1

3 (C0C̃1)−1, we get ‖∇Φ − I‖Cα ≤
C0‖R‖Cα+1 ≤ C0C̃1‖A‖Cα ≤ 1

2c
−1
1 ‖A‖Cα , which proves half of (5.13).

To show the second half of (5.13), we need to show ‖∇Φ − I‖Cβ(∂Bn) � ‖A‖Cα .
The assumption R

∣∣
∂Bn = 0 implies F

∣∣
∂Bn = id

∣∣
∂Bn = Φ

∣∣
∂Bn and therefore

(∇Φ − I)
∣∣
∂Bn = ((∇Φ) ◦ Φ−1)

∣∣
∂Bn − I = (∇F )−1∣∣

∂Bn − I.

Fix χ ∈ C∞
c (2Bn\3

4B
n) such that χ ≡ 1 in a neighborhood of ∂Bn, so ∇R(x) =

χ(x)∇R(x) for x ∈ Bn near ∂Bn.
We shrink c1 > 0 so that c1 < c̃Bn,β · (C̃Bn,β · C̃2‖χ‖Cβ )−1, where C̃Bn,β is in (4.18), 

C̃2 is in (5.19), and c̃Bn,β is in Lemma 4.13. Then the assumption ‖A‖Cα < c1 implies
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‖χ∇R‖Cβ(Bn) ≤ C̃Bn,β‖χ‖Cβ
c (Bn\ 3

4B
n)‖∇R‖Cβ(Bn\ 3

4B
n) ≤ C̃Bn,β ·C̃2‖A‖Cα

c ( 1
2B

n) < c̃Bn,β .

Therefore we can apply Lemma 4.13 to χ∇R ∈ C β(Bn; Mn×n) to obtain ‖(I+χ∇R)−1−
I‖Cβ ≤ 2‖χ∇R‖Cβ . Hence, along with (5.11),

‖(I + ∇R)−1 − I‖Cβ(∂Bn) � ‖(I + χ∇R)−1 − I‖Cβ(Bn) � ‖χ∇R‖Cβ(Bn)

�χ ‖R‖Cβ+1(Bn\ 3
4B

n) � ‖A‖Cα .

So by possibly shrinking c1 > 0, we get ‖∇Φ −I‖Cβ(∂Bn) ≤ 1
2c

−1
1 ‖A‖Cα , which completes 

the second half of (5.13). �
We now have pushforward 1-forms η1 = F∗λ1, . . . , ηn = F∗λn. Their norms admit 

some control, as the next lemma shows.

Lemma 5.13. Let α > 0 and let β ∈ [α, α + 1]. There is a c2 = c2(n, α, β) > 0 such that 
the following holds. Let A ∈ C α

c (1
2B

n, Mn×n) be the coefficient matrix for λ1, . . . , λn (see 
(5.3)) satisfying the assumptions of Proposition 5.10 and also satisfying

(a) ‖A‖Cα(Bn;Mn×n) < c2.
(b) For k = 1, . . . , n, dλk ∈ C β−1

(
Bn;
∧2

T ∗Bn
)

with 
∑n

k=1 ‖dλk‖Cβ−1(Bn;∧2T∗Bn) <

c2.

Suppose Φ = F−1 : Bn
y → Bn

x satisfies the conclusions of Proposition 5.10. Then, for 
the 1-forms ηk = Φ∗λk (k = 1, . . . , n) with coefficient matrix B = (bij)n×n (see (5.3)), 
we have:

(i) B satisfies the PDE system (5.9).
(ii) ‖B‖Cα(Bn;Mn×n) + ‖B‖Cβ(∂Bn;Mn×n) < c−1

2 ‖A‖Cα .
(iii) dηk ∈ C β−1

(
Bn;
∧2

T ∗Bn
)

for k = 1, . . . , n, with ‖dηk‖Cβ−1(Bn;∧2T∗Bn) <

c−1
2 ‖dλk‖Cβ−1 .

Proof. Part (i) is obtained in Lemma 5.6.
For part (ii), write Φ = (φ1, . . . , φn), where φk ∈ C α+1(Bn), k = 1, . . . , n. Therefore

ηk = Φ∗
(
dxk +

n∑
i=1

aki dx
i
)

= dφk +
n∑

i=1
(aki ◦ Φ)dφi,

bkj = ∂(φk − yk)
∂yj

+
n∑

i=1
(aki ◦ Φ)∂φ

i

∂yj
, 1 ≤ j, k ≤ n.

(5.20)

From (5.20) we know that ‖B‖Cα � ‖∇Φ − I‖Cα + ‖A ◦ Φ‖Cα‖∇Φ‖Cα . By Proposi-
tion 5.10 (iii) we know ‖Φ‖Cα+1 � 1 and ‖∇Φ − I‖Cα � ‖A‖Cα . By Proposition 4.10 (i)
we get ‖A ◦ Φ‖Cα � ‖A‖Cα . Combining these we get
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‖B‖Cα � ‖∇Φ − I‖Cα + ‖A ◦ Φ‖Cα‖∇Φ‖Cα � ‖A‖Cα . (5.21)

Since we have A ≡ 0 outside 1
2B

n in particular A
∣∣
∂Bn = 0, it follows that ηk = dφk

on ∂Bn. Therefore ‖B‖Cβ(∂Bn) = ‖∇Φ − I‖Cβ(∂Bn). So by Proposition 5.10 (iii)

‖B‖Cβ(∂Bn) = ‖∇Φ − I‖Cβ(∂Bn) � ‖A‖Cα (5.22)

By choosing c2 > 0 small, (5.21) and (5.22) complete the proof of (ii).

Finally, for (iii), we apply Proposition 4.10 (iii) with θ = λk, for each k = 1, . . . , n. 
Since d(F∗θ) = d(F∗λ

k) = dηk, by (4.16) we get ‖dηk‖Cβ−1(Bn;∧2T∗Bn) � ‖dλk‖Cβ−1 . 
Taking c2 smaller, we complete the proof. �
5.3. The regularity proposition

In this part, we show that the 1-forms η1, . . . , ηn are indeed C β , by using the interior 
regularity theory for elliptic PDEs.

Proposition 5.14. Let α > 0 and β ∈ [α, α + 1]. There is a c3 = c3(n, α, β) > 0, such 
that if η1, . . . , ηn ∈ C α(Bn; T ∗Bn) with coefficient matrix B ∈ C α(Bn; Mn×n) (see (5.3)) 
such that B solves the PDE (5.9), B

∣∣
∂Bn ∈ C β(∂Bn; Mn×n) with

‖B‖Cα(Bn;Mn×n) + ‖B‖Cβ(∂Bn;Mn×n) +
n∑

l=1

‖dηl‖Cβ−1(Bn;∧2T∗Bn) < c3, (5.23)

then B ∈ C β(Bn; Mn×n). Moreover

‖B‖Cβ(Bn;Mn×n) ≤ c−1
3

(
‖B‖Cα(Bn;Mn×n)+‖B‖Cβ(∂Bn;Mn×n)+

n∑
l=1

‖dηl‖Cβ−1(Bn;∧2T∗Bn)

)
.

(5.24)

Proof. We can write B = D(
B) + (B −D(
B)), where D is defined in Definition 5.8
and is the zero Dirichlet boundary solution operator to the Laplacian equation on the 
unit ball.

Note that B − D(
B) is the harmonic function whose boundary value equals to 
B
∣∣
∂Bn (which might not be zero). By Lemma 5.7 using the assumption B

∣∣
∂Bn ∈

C β(∂Bn; Mn×n), we get B −D(
B) ∈ C β(Bn; Mn×n) and

‖B −D(
B)‖Cβ(Bn) � ‖B‖Cβ(∂Bn). (5.25)

We can rewrite (5.9) as

−
n∑ ∂

∂yi
bki =

n∑ ∂

∂yi

((√
dethhij − δij

)
bkj

)
, in Bn

y , k = 1, . . . , n. (5.26)

i=1 i,j=1
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The left hand side of (5.26) is ϑRnηk. By Lemma 5.3, the right hand side of (5.26) is the 
derivatives of rational functions of the components of B, which vanish to second order 
at B = 0. More precisely, using Lemma 5.3, we can rewrite (5.26) as

ϑRnηk = −
n∑

i=1

∂

∂yi
bki =

n∑
i=1

∂

∂yi
Rk

i (B), in Bn
y , k = 1, . . . , n. (5.27)

Here Rk
i are rational functions (see Lemma 5.3) defined in a neighborhood of origin in 

Mn×n with |Rk
i (u)| � |u|2Mn×n for suitably small matrices u ∈ Mn×n, and we have

|Rk
i (u1)−Rk

i (u2)|� (|u1|Mn×n + |u2|Mn×n)|u1 −u2|Mn×n , when u1, u2 ∈Mn×n small.

(5.28)

We can pass this fact from matrices to matrix-valued functions. Indeed, Rk
i has con-

vergent power expansion in a neighborhood of 0 as

Rk
i (u) =

∞∑
r=2

n∑
j1,...,jr,l1,...,lr=1

ak;j1...jr
i,r;l1...lru

l1
j1
. . . ulr

jr
, converging when |u|Mn×n is small.

(5.29)

Here ak;j1...jr
i,r;l1...lr ∈ R. The power expansion starts at r = 2 since the zero and the first 

order terms all vanish.
By Lemma 2.2, we can replace u ∈ Mn×n in (5.29) by f ∈ C γ(Bn; Mn×n), and 

as in (5.28), for γ > 0 there is a C̃R,γ > 0, such that when ‖f1‖Cγ(Bn;Mn×n) +
‖f2‖Cγ(Bn;Mn×n) ≤ C̃−1

R,γ ,

‖Rk
i (f1) −Rk

i (f2)‖Cγ(Bn)

≤ C̃R,γ(‖f1‖Cγ(Bn;Mn×n) + ‖f2‖Cγ(Bn;Mn×n))‖f1 − f2‖Cγ(Bn;Mn×n), 1 ≤ i, k ≤ n.

(5.30)

Using the fact that 
ηk = dϑRnηk + ϑRndηk, we further have


ηk = d

n∑
i=1

∂

∂yi
Rk

i (B) + ϑRndηk =
n∑

i,j=1

∂2

∂yj∂yi
Rk

i (B)dyj +
n∑

j=1

〈
ϑRndηk,

∂

∂yj

〉
dyj .

Here 〈·, ·〉 denotes the pairing between 1 forms and vector fields.
On the other hand, 
ηk =

∑n
j=1 
(δkj + bkj )dyj =

∑n
j=1 
bkj dy

j , therefore


bkj =
〈

ηk,

∂

∂yj

〉
=

n∑
i,j=1

∂2

∂yj∂yi
Rk

i (B) +
〈
ϑRndηk,

∂

∂yj

〉
, in Bn

y , k = 1, . . . , n.

(5.31)
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Let ξ̃0 := min(C̃−1
R,α, C̃

−1
R,β) where C̃R,γ is the constant in (5.30). Let ξ = ξB ∈

(0, ξ̃0] to be determined. We define metric spaces Xγ,ξ and an operator TB : Xα,ξ̃0
→

C α(Bn; Mn×n) by

Xγ,ξ := {f ∈ C γ(Bn;Mn×n) : ‖f‖Cγ ≤ ξ} ⊂ C γ(Bn;Mn×n),
for γ ∈ {α, β} and ξ ∈ (0, ξ̃0].

TB [f ]kj := bkj −D(
bkj ) +
〈
D(ϑRndηk), ∂

∂yj

〉
+

n∑
i=1

D

(∂2Rk
i (f)

∂yj∂yi

)
, 1 ≤ j, k ≤ n.

(5.32)

We endow Xγ,ξ with the metric induced by the norm ‖ · ‖Cγ , which makes Xγ,ξ a 
complete metric space.

Note that from (5.32) and (5.31) we have B = TB [B]. Our goal is to show that when 
c3 and ξ are both suitably small, we have B ∈ Xα,ξ and that TB is a contraction mapping 
on both Xα,ξ and Xβ,ξ, thus by uniqueness of the fixed point we conclude that B is a 
C β-matrix and ‖B‖Cβ < ξ.

By Lemma 5.7, D : C γ−2(Bn; Mn×n) → C γ(Bn; Mn×n) is bounded for γ ∈ {α, β}. 
By (5.30), we know for every f1, f2 ∈ Xγ,ξ,

‖TB[f1] − TB [f2]‖Cγ ≤ ‖D‖Cγ−2→Cγ‖∇2‖Cγ→Cγ−2

n∑
k=1

‖Rl
k(f1) −Rl

k(f2)‖Cγ

≤ ξC ′
R,γ‖f1 − f2‖Cγ ,

(5.33)

where C ′
R,γ > 1 is a constant that only depends on n, (Rk

j ), γ but not on B, ξ, f1, f2.
On the other hand TB[0]kj = bkj − D(
bkj ) +

〈
D(ϑRndηk), ∂

∂yj

〉
. By (5.25), for γ ∈

{α, β},

‖TB[0]‖Cγ ≤ ‖TB [0]‖Cβ ≤ ‖B −D(
B)‖Cβ(Bn) +
n∑

k=1

‖D(ϑRndηk)‖Cβ

� ‖B‖Cβ(∂Bn) +
n∑

k=1

‖dηk‖Cβ−1 .

(5.34)

So by possibly increasing C ′
R,γ , we have, for f1 ∈ Xγ,ξ, using (5.33) and (5.34),

‖TB[f1]‖Cγ ≤ ‖TB [f1] − TB [0]‖Cγ + ‖TB [0]‖Cγ

≤ C ′
R,γ

(
‖B‖Cβ(∂Bn) +

n∑
‖dηl‖Cβ−1 + ξ‖f1‖Cγ

)
.

(5.35)
l=1



B. Street, L. Yao / Journal of Functional Analysis 283 (2022) 109537 37
Take c3 > 0 satisfying c3 < 1
4 max(1, C ′

R,α, C
′
R,β)−2, and take

ξ = ξB := 2 max(C ′
R,α, C

′
R,β)

(
‖B‖Cα(Bn;Mn×n) + ‖B‖Cβ(∂Bn) +

n∑
k=1

‖dηk‖Cβ−1

)
.

(5.36)

By the assumption (5.23), ξB ≤ 1
2 max(C ′

R,α, C
′
R,β)−1 < ξ̃0, so TB is defined on Xα,ξ̃0

and by (5.35) TB maps Xγ,ξB into Xγ,ξB for γ ∈ {α, β}.
Since ξBC ′

R,γ < 1
2 for γ ∈ {α, β}, using (5.33), TB is a contraction mapping on the 

domain Xγ,ξB , for γ ∈ {α, β}.
Note that ξB ≥ ‖B‖Cα , and so B ∈ {f ∈ C α(Bn; Mn×n) : ‖f‖Cα ≤ ξB} = Xα,ξB . 

Therefore, B is a fixed point for TB in Xα,ξB , which is unique since TB is a contraction 
mapping on Xα,ξB .

On the other hand TB also has a unique fixed point in Xβ,ξB � Xα,ξB . Therefore, by 
uniqueness, B ∈ Xβ,ξB = {f ∈ C β(Bn; Mn×n) : ‖f‖Cβ ≤ ξB}. In particular, ‖B‖Cβ ≤
ξB . Thus by (5.36),

‖B‖Cβ(Bn) ≤ ξB �α,β ‖B‖Cα(Bn) + ‖B‖Cβ(∂Bn) +
n∑

l=1

‖dηl‖Cβ−1 .

Thus, we have established (5.24) which completes the proof. �
5.4. The proof of Theorem 5.1 and an improvement

Using Propositions 5.10 and 5.14 we can prove Theorem 5.1.

Proof of Theorem 5.1. Let c1, c2, c3 > 0 be the small constants in Proposition 5.10, 
Lemma 5.13, and Proposition 5.14. We take c = 1

2n2 min(c1, c2c3) in the assumption of 
Theorem 5.1.

Let F , R = F − id, Φ = F−1, A, B and ηi = F∗λi be as in Proposition 5.10. Recall 
ηi and B = (bji ) are given in (5.3) and (5.4).

When the assumption (5.1) is satisfied, by Proposition 5.10 (ii) we have that F is 
C α+1-diffeomorphism and satisfies Bn(F (0), 16 ) ⊆ F (1

3B
n) ∩ 3

4B
n. And by (5.12), we 

have ‖F − id‖Cα+1 = ‖R‖Cα+1 ≤ c−1
1 ‖A‖Cα ≤ 1

2nc
−1∑n

i=1 ‖λi − dxi‖Cα . This implies 
half of the estimate (5.2).

By Lemma 5.13 (ii) and (iii), we have ‖B‖Cα(Bn) + ‖B‖Cβ(∂Bn) < c−1
2 ‖A‖Cα and 

‖dηk‖Cβ−1 < c−1
2 ‖dλk‖Cβ−1 , k = 1, . . . , n.

Thus, ‖B‖Cα(Bn)+‖B‖Cβ(∂Bn)+
∑n

k=1 ‖dηk‖Cβ−1 < c−1
2 ‖A‖Cα+c−1

2
∑n

k=1 ‖dλk‖Cβ−1

< 2c−1
2 c < c3. By (5.24) in Proposition 5.14, we get

n∑
‖ηk − dyk‖Cβ ≤ n‖B‖Cβ(Bn) ≤ nc−1

3

(
‖B‖Cα + ‖B‖Cβ(∂Bn) +

n∑
‖dηk‖Cβ−1

)

k=1 k=1
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≤ nc−1
3 · c−1

2

(
‖A‖Cα +

n∑
k=1

‖dλk‖Cβ−1

)
≤ n2(c2c3)−1

n∑
k=1

(
‖λk − dxk‖Cα + ‖dλk‖Cβ−1

)
.

This gives the second half of the estimate (5.2) since n2(c2c3)−1 ≤ 1
2c

−1. �
In Theorem 5.1, we assumed (5.1) which is a smallness assumption. When (5.1) is not 

satisfied, we may use a scaling argument to transfer to a setting where it is satisfied, as 
the next result shows.

Proposition 5.15 (The scaling argument). Let α > 0, β ∈ [α, α+ 1] and let μ0, ̃c, M > 0. 
There exists a κ0 = κ0(α, β, μ0, ̃c, M) ∈ (0, μ0] that satisfies the following:

Suppose θ1, . . . , θn ∈ C α(μ0Bn; T ∗Rn) such that θi
∣∣
0 = dxi

∣∣
0 for i = 1, . . . , n and 

dθ1, . . . , dθn ∈ C β−1
(
μ0Bn;

∧2
T ∗Rn

)
with estimate

n∑
i=1

‖θi‖Cα(μ0Bn;T∗Rn) + ‖dθi‖Cβ−1(μ0Bn;∧2T∗Rn) < M. (5.37)

Then there are 1-forms λ1, . . . , λn ∈ C α(Bn; T ∗Bn) such that

(i) λi
∣∣
1
3B

n = 1
κ0

· (φ∗
κ0
θi)
∣∣
1
3B

n , i = 1, . . . , n, where φκ0(x) := κ0 · x is the scaling map.
(ii) λ1, . . . , λn satisfy the assumptions of Theorem 5.1 with the constant c = c̃. That 

is,

• λ1, . . . , λn span the cotangent space at every point in Bn.
• supp(λi − dxi) � 1

2B
n.

•
∑n

i=1(‖λi − dxi‖Cα + ‖dλi‖Cβ−1) ≤ c̃.

The key to Proposition 5.15 is the next lemma.

Lemma 5.16. Let γ > 0, then for any μ0 > 0 there is a Cγ,μ0 > 0 such that,

‖f(κ·)‖Cγ(Bn) ≤ Cγ,μ0κ
min(γ, 12 )‖f‖Cγ(μ0Bn),

∀κ ∈ (0, μ0], f ∈ C γ(μ0B
n) such that f(0) = 0.

(5.38)

Proof. By taking a scaling x �→ μ0x, we can assume μ0 = 1 without loss of generality. 
Thus, f is defined on the unit ball. To prove the result, we use the characterizations of 
Zygmund-Hölder norms in Remark 2.1.

For κ ∈ (0, 1] set fκ(x) := f(κx). For x ∈ Bn and κ ∈ (0, 1], by Remark 2.1 (ii), for 
x ∈ Bn,

|fκ(x)| = |f(κx) − f(0)| � ‖f‖
Cmin(γ, 12 )(Bn)

|κx− 0|min(γ, 12 ) � ‖f‖Cγ(Bn)κ
min(γ, 12 ).

(5.39)
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When γ ∈ (0, 2), using Remark 2.1 (i), for x1, x2 ∈ Bn,

| fκ(x1)+fκ(x2)
2 − fκ(x1+x2

2 )| =
∣∣∣ f(κx1)+f(κx2)

2 − f(κx1+x2
2 )

∣∣∣
�γ ‖f‖

Cmin(γ, 12 ) |κ(x1 − x2)|γ ≤ κγ‖f‖Cγ |x1 − x2|γ .
(5.40)

Combining (5.39) and (5.40), we get (5.38) for the case 0 < γ < 2, since

‖fκ‖Cγ(Bn) ≈ sup
x∈Bn

|fκ(x)| + sup
x1,x2∈Bn

|x1 − x2|−γ
∣∣∣ fκ(x1)+fκ(x2)

2 − fκ(x1+x2
2 )

∣∣∣
�γ κmin(γ, 12 )‖f‖Cγ(Bn).

For γ ≥ 2, we proceed by induction. We prove the result for γ ∈ [l, l + 1), for l ∈
{1, 2, . . .}. The base case, l = 1 was shown above. We assume the result for l − 1 and 
prove it for l.

Assume γ ∈ [l, l + 1) where l ≥ 2. Note that ∇fκ(x) = κ(∇f)(κx), so
‖∂xj (fκ)‖Cγ−1(Bn) = κ‖(∂xjf)κ‖Cγ−1(Bn) ≤ ‖(∂xjf)κ‖Cγ−1(Bn) for j = 1, . . . , n. Here 
(∂xjf)κ(x) = (∂xjf)(κx).

By the inductive hypothesis ‖fκ‖Cγ−1(Bn) ≤ Cγ−1κ
1
2 ‖f‖Cγ−1(Bn) and

‖(∂xjf)κ‖Cγ−1(Bn) ≤ Cγ−1κ
1
2 ‖∂xjf‖Cγ−1(Bn) for j = 1, . . . , n. So by Remark 2.1 (iii)

we get

‖fκ‖Cγ(Bn) ≈ ‖fκ‖Cγ−1(Bn) +
n∑

j=1
‖∂xj (fκ)‖Cγ−1(Bn)

� κ
1
2

(
‖f‖Cγ−1(Bn) +

n∑
j=1

‖∂xjf‖Cγ−1(Bn)

)
≈ κ

1
2 ‖f‖Cγ(Bn) = κmin(γ, 12 )‖f‖Cγ(Bn),

completing the proof. �
Proof of Proposition 5.15. First we construct 1-forms ρ1, . . . , ρn ∈ C β(μ0Bn; T ∗Rn)
such that for i = 1, . . . , n,

(a) ρi
∣∣
0 = 0 and dρi

∣∣
μ0
2 Bn = dθi

∣∣
μ0
2 Bn .

(b) There is a C0 = C0(n, α, β, μ0) > 0 that does not depend on θi, such that

‖ρi‖Cβ(μ0Bn;T∗Rn) ≤ C0(‖θi‖Cα(μ0Bn;T∗Rn) + ‖dθi‖Cβ−1(μ0Bn;∧2T∗Rn)). (5.41)

Take a χ0 ∈ C∞
c (μ0Bn) such that χ0

∣∣
μ0
2 Bn ≡ 1. Define

ρ̃i := G ∗ ϑd(χ0θ
i) = G ∗ ϑ(χ0 · dθi + dχ0 ∧ θi), ρi := ρ̃i − (ρ̃i

∣∣
0), i = 1, . . . , n.

(5.42)
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Recall ϑ is the codifferential from Notation 4.5, and G is the fundamental solution of 
Laplacian as in (4.6). The convolution is defined in Rn using Lemma 4.6, since the 
support suppϑd(χ0θ

i) ⊆ suppχ0 � μ0Bn is compact.
Clearly ρi

∣∣
0 = 0. Similar to the proof of Lemma 4.8, since χ0

∣∣
μ0
2 Bn ≡ 1, we have

dθi
∣∣
μ0
2 Bn = d(χ0θ

i)
∣∣
μ0
2 Bn = (ϑd + dϑ)(G ∗ d(χ0θ

i))
∣∣
μ0
2 Bn = (G ∗ dϑd(χ0θ

i))
∣∣
μ0
2 Bn

= dρ̃i
∣∣
μ0
2 Bn = dρi

∣∣
μ0
2 Bn .

So condition (a) is satisfied.
By Lemma 4.7 we have, for every μ > 0,

‖G ∗ ϑω‖Cβ(μBn;∧2T∗Rn) �β,μ ‖ω‖Cβ−1(μBn;T∗Rn), ∀ω ∈ C β−1
c (μBn;T ∗Rn). (5.43)

Take ω = ϑ(χ0 · dθi + dχ0 ∧ θi), μ = μ0 in (5.43) and by Lemma 2.2, we have

‖ρi‖Cβ(μ0Bn;T∗Rn) ≤ ‖ρ̃i‖Cβ(μ0Bn;T∗Rn) + |ρ̃i(0)| ≤ 2‖ρ̃i‖Cβ(μ0Bn;T∗Rn)

�β,μ0 ‖ϑ(χ0 · dθi + dχ0 ∧ θi)‖Cβ−2(μ0Bn;∧2T∗Rn)

�β,μ0 ‖χ0‖Cα+1‖dθi‖Cβ−1 + ‖dχ0‖Cα‖θi‖Cβ−1

�α,β,μ0,χ0 ‖dθi‖Cβ−1(μ0Bn;∧2T∗Rn) + ‖θi‖Cα(μ0Bn;T∗Rn).

(5.44)

(5.44) gives us the C0 for condition (b). This completes the proof of (a) and (b) and 
we get ρ1, . . . , ρn as desired.

Fix χ1 ∈ C∞
c (1

2B
n) such that χ1

∣∣
1
3B

n ≡ 1. For κ > 0, let φκ(x) := κ · x, so φκ

maps 1
2B

n into μ0
2 Bn when κ ∈ (0, μ0]. For κ ∈ (0, μ0], we define 1-forms λ1

κ, . . . , λ
n
κ and 

τ1
κ , . . . , τ

n
κ by

λi
κ := dxi + 1

κχ1 · φ∗
κ(θi − dxi), τ iκ := 1

κχ1 · (φ∗
κρ

i) + 1
κG ∗ ϑ

(
dχ1 ∧ φ∗

κ(θi − dxi)
)
,

i = 1, . . . , n.
(5.45)

Since θi ∈ C α and ρi ∈ C β , we have λi
κ ∈ C α(Bn; T ∗Rn), τ iκ ∈ C β(Bn; T ∗Rn) (by 

(5.43)) and supp(λi
κ − dxi) ⊆ suppχ1 � 1

2B
n. And since χ1

∣∣
1
3B

n ≡ 1 and φ∗
κdx = κdx,

λi
κ

∣∣
1
3B

n = dxi + 1
κ · φ∗

κ(θi − dxi)
∣∣
1
3B

n = 1
κ(φ∗

κθ
i)
∣∣
1
3B

n . (5.46)

We write θi and ρi, i = 1, . . . , n as

θi = dxi +
n∑

j=1
aij(x)dxj , ρi =

n∑
j=1

bij(x)dxj , where aij ∈ C α(μ0B
n), bij ∈ C β(μ0B

n).

(5.47)
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By assumption θi
∣∣
0 = dxi

∣∣
0 and ρi

∣∣
0 = 0 for i = 1, . . . , n, so aij(0) = bij(0) = 0 for all 

1 ≤ i, j ≤ n. And we have

λi
κ = dxi +

n∑
j=1

χ1(x)aij(κx)dxj , τ iκ =
n∑

j=1

(
χ1(x)bij(κx)dxj + G ∗ ϑ

(
aij(κx)dχ1 ∧ dxj

))
,

i = 1, . . . , n.
(5.48)

Since φκ(1
2B

n) ⊆ μ0
2 Bn and suppχ1 � 1

2B
n, by condition (a) we have χ1 · φ∗

κdρ
i =

χ1 · φ∗
κdθ

i for i = 1, . . . , n. It follows that dλi
κ = dτ iκ for i = 1, . . . , n; indeed,

dλi
κ − dτ iκ = 1

κdχ1 ∧ φ∗
κ(θi − dxi) + 1

κχ1 · φ∗
κdθ

i − 1
κdχ1 ∧ φ∗

κ(θi − dxi) − 1
κχ1 · φ∗

κdρ
i

= 1
κχ1 · φ∗

κ(dθi − dρi) = 0.
(5.49)

Applying Lemmas 2.2 and 5.16 to aij we have

‖χ1 · aij(κ·)‖Cα(Bn) �α ‖χ1‖Cα‖aij(κ·)‖Cα(Bn) �α,μ0 κmin(α, 12 )‖χ1‖Cα‖aij‖Cα(μ0Bn),

∀κ ∈ (0, μ0].
(5.50)

Using (5.48) and (5.50), we deduce that

n∑
i=1

‖λi
κ − dxi‖Cα ≤

n∑
i,j=1

‖χ1(x)aij(κx)‖Cα �α,μ0 κmin(α, 12 )‖χ1‖Cα

n∑
i,j=1

‖aij‖Cα(μ0Bn).

(5.51)

By (5.49) we have dλi
κ = dτ iκ, and therefore

‖dλi
κ‖Cβ−1(Bn;∧2T∗Bn) = ‖dτ iκ‖Cβ−1(Bn;∧2T∗Bn) �β ‖τ iκ‖Cβ(Bn;T∗Bn), i = 1, . . . , n.

(5.52)

Applying Lemma 5.16 to aij and bij we get that for 0 < κ < μ0,

‖χ1 · bij(κx)‖Cβ(Bn) �β ‖χ1‖Cβ‖bij(κx)‖Cβ(Bn) �β κmin(β, 12 )‖χ1‖Cβ‖bij‖Cβ

≤ κmin(α, 12 )‖χ1‖Cβ‖bij‖Cβ(μ0Bn).
(5.53)

‖aij(κx)dχ1‖Cα(Bn;T∗Rn) �α ‖aij(κx)‖Cα(Bn)‖χ1‖Cα+1

�α κmin(α, 12 )‖χ1‖Cα+1‖aij‖Cα(μ0Bn).
(5.54)

Letting ω = aij(κx)dχ1∧dxj ∈ C α(Bn; T ∗Bn) ⊆ C β−1(Bn; T ∗Bn) and μ = 1 in (5.43), 
we see that



42 B. Street, L. Yao / Journal of Functional Analysis 283 (2022) 109537
n∑
i=1

‖dλi
κ‖Cβ−1(Bn;∧2T∗Bn) =

n∑
i=1

‖dτ iκ‖Cβ−1(Bn;∧2T∗Bn) �β

n∑
i=1

‖τ iκ‖Cβ(Bn;T∗Bn) by (5.52)

≤
n∑

i,j=1

(
‖χ1(x)bij(κx)dxj‖Cβ +

∥∥G ∗ ϑ
(
aij(κx)dχ1 ∧ dxj

)∥∥
Cβ

)
by (5.48)

�β

n∑
i,j=1

(
‖χ1(x)bij(κx)‖Cβ(Bn) + ‖aij(κx)dχ1 ∧ dxj

∥∥
Cβ−1(Bn;∧2T∗Bn)

)
by (5.43)

�α,β ‖χ1‖Cα+1

n∑
i,j=1

(
‖bij(κx)‖Cβ(Bn) + ‖aij(κx)dχ1

∥∥
Cα(Bn;T∗Bn)

)
since α ≥ β − 1

�α,β κmin(α, 12 )‖χ1‖Cα+1

n∑
i,j=1

(
‖aij‖Cα(μ0Bn) + ‖bij‖Cβ(μ0Bn)

)
by (5.53) and (5.54).

(5.55)

Note that χ1 is a fixed cut-off function whose C α and C α+1-norms depend only on 
n, α. So combining (5.51) and (5.55) we have

n∑
i=1

(‖λi
κ − dxi‖Cα + ‖dλi

κ‖Cβ−1)

�α,β,μ0 κmin(α, 12 )
n∑

i,j=1

(
‖aij‖Cα(μ0Bn;T∗Rn) + ‖bij‖Cβ(μ0Bn;∧2T∗Rn)

)
.

(5.56)

By (5.47) we have 
∑n

i,j=1 ‖aij‖Cα � 1 +
∑n

i=1 ‖θi‖Cα and 
∑n

i,j=1 ‖bij‖Cβ �∑n
i=1 ‖ρi‖Cβ . And combining (5.56) with (5.41), we can find a C1 = C1(n, α, β, μ0) > 0

that does not depend on the other quantities, such that

n∑
i=1

‖λi
κ − dxi‖Cα + ‖dλi

κ‖Cβ−1

≤C1 ·κmin(α, 12 )
n∑

i=1

(
1 + ‖θi‖Cα(μ0Bn;T∗Rn) + ‖dθi‖Cβ−1(μ0Bn;∧2T∗Rn)

)
, ∀κ∈ (0, μ0].

(5.57)

Now applying assumption (5.37) to (5.57) we have

n∑
i=1

‖λi
κ − dxi‖Cα + ‖dλi

κ‖Cβ−1 ≤ κmin(α, 12 )C1 · (M + n).

Since ‖(〈λi
κ − dxi, ∂

∂xj 〉)n×n‖C0(Bn;Mn×n) �α

∑n
i=1 ‖λi

κ − dxi‖Cα(Bn), we can find a 
c̃′ = c̃′(n, α) > 0 such that
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n∑
i=1

‖λi
κ − dxi‖Cα ≤ c̃′ implies ‖(〈λi

κ − dxi, ∂
∂xj 〉)n×n‖C0(Bn;Mn×n) ≤ 1

2 .

In particular 
(
〈λi

κ,
∂

∂xj 〉
)
n×n

= I +
(
〈λi

κ − dxi, ∂
∂xj 〉

)
n×n

is invertible at every point in 
Bn, which means (λ1

κ, . . . , λ
n
κ) span the tangent space at every point in Bn.

We take κ0 = κ0(n, α, β, μ0, M, ̃c) > 0 such that

0 < κ0 < μ0 and κ
min(α, 12 )
0 C1 · (M + n) ≤ min(c̃, c̃′).

Take λi = λi
κ0

for i = 1, . . . , n. We have 
∑n

i=1 ‖λi − dxi‖Cα + ‖dλi‖Cβ−1 ≤ min(c̃, ̃c′). 
By our assumption on c̃′, λ1, . . . , λn span the tangent space at every point in Bn. Note 
that by (5.48) supp(λi

κ0
− dxi) ⊆ suppχ1 � 1

2B
n. This shows conclusion (ii) is satisfied.

By (5.46) we get conclusion (i), finishing the proof. �
We can now prove a special case of the Theorem 3.1:

Corollary 5.17. Let α > 0 and let β ∈ [α, α + 1]. Let λ1, . . . , λn be C α 1-forms on a 
C α+1-manifold M of dimension n, which span the cotangent space at every point. Then 
the following are equivalent:

(1) For every p ∈ M there exist a neighborhood U ⊆ M of p and a C α+1
loc -diffeomorphism 

Φ : Bn ∼−→ U ⊆ M such that Φ(0) = p and Φ∗λ1, . . . , Φ∗λn ∈ C β(Bn; T ∗Bn).
(2) dλ1, . . . , dλn have regularity C β−1

loc (see Definition 2.9).

Remark 5.18. This is the special case of Theorem 3.1 when β ∈ [α, α+1] and q = n: given 
C α-vector fields X1, . . . , Xn that span the n-dimensional tangent space at every point, 
we take 1-forms λ1, . . . , λn to be the corresponding dual basis that span the cotangent 
space at every point.

Proof. By passing to a local coordinate system, we can assume M to be an open subset 
of Rn, since by Proposition 4.10 both conditions (1) and (2) are invariant under C α+1

loc -
diffeomorphisms.

(1)⇒(2): For such Φ, we have d(Φ∗λi) ∈ C β−1
loc (Bn; T ∗Bn) for i = 1, . . . , n. So 

Φ−1 : U ⊆ M → Rn is the desired coordinate chart that shows dλ1, . . . , dλn fulfill 
the conditions for dλ1, . . . , dλn to have regularity in C β−1

loc (see Definition 2.9).
(2)⇒(1): Let p ∈ M.
By passing to local coordinate system and applying an invertible linear transforma-

tion we can find a μ0 > 0 and a C α+1-coordinate chart F0 : U0 ⊆ M ∼−→ μ0Bn
x such 

that

• F0(p) = 0.
• ((F0)∗λi)

∣∣ = dxi
∣∣ for i = 1, . . . , n.
0 0
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Take c > 0 be the small constant in Theorem 5.1. By Proposition 5.15 with c̃ = c, 
we can find a κ0 ∈ (0, μ0] and 1-forms λ̃1, . . . , ̃λn ∈ C α(Bn; T ∗Bn) such that for scaling 
map φκ0 : Bn → μ0Bn, φκ0(x) = κ0x, we have

(a) λ̃1, . . . , ̃λn span the cotangent space at every point.
(b) supp(λ̃i − dxi) � 1

2B
n for i = 1, . . . , n.

(c) (λ̃1, . . . , ̃λn)
∣∣
1
3B

n = 1
κ0

· ((F−1
0 ◦ φκ0)∗λ1, . . . , (F−1

0 ◦ φκ0)∗λn)
∣∣
1
3B

n .
(d)

∑n
i=1 ‖λ̃i − dxi‖Cα + ‖dλ̃i‖Cβ−1 < c.

We set F1 := φ−1
κ0

.
Applying Theorem 5.1 to λ̃1, . . . , ̃λn we obtain a C α+1-chart F2 : Bn ∼−→ Bn

such that F2(1
3B

n) ⊇ Bn(F2(0), 16 ), ‖F2 − id‖Cα+1 < c and (F2)∗λ̃1, . . . , (F2)∗λ̃n ∈
C β(Bn; T ∗Bn).

By (c), 
(
(F2 ◦ F1 ◦ F0)∗λi

) ∣∣
F2( 1

3B
n) = 1

κ0
· (F2)∗λ̃i

∣∣
F2( 1

3B
n) ∈ C β for i = 1, . . . , n. We 

can take an affine linear transformation F3 : Rn → Rn such that F3(F2(0)) = 0 and 
F3(Bn(F2(0), 16 )) ⊇ Bn.

Now we have F0(U0) ⊇ μ0Bn, F1(μ0Bn) ⊇ Bn, F2(1
3B

n) ⊇ Bn(F2(0), 16 ) and 
F3(Bn(F2(0), 16 ) ⊇ Bn. Take Φ := (F3 ◦ F2 ◦ F1 ◦ F0)−1 : Bn → M. Since F0, F1, F2, F3
are all C α+1-diffeomorphism onto their images, we know Φ : Bn ∼−→ Φ(Bn) ⊆ M is 
a C α+1 diffeomorphism. Moreover, we have Φ(0) = p because F0(p) = 0, F1(0) = 0, 
F3(F2(0)) = 0. Thus, Φ is the diffeomorphism we desire with U := Φ(Bn), completing 
the proof. �
6. Function spaces along vector fields, revisited

Let α > 0, β > 1 − α, and let Φ : N ∼−→ M be a C α+1-diffeomorphism between two 
C α+1-manifolds N and M. Let X ∈ C α

loc(M; TM), f ∈ C β
loc(M), Y ∈ C β

loc(M; TM) and 

θ ∈ C β
loc

(
M;
∧k

T ∗M
)
. We have the following

• Φ∗(Xf) = (Φ∗X)(Φ∗f) on N.
• Φ∗[X, Y ] = [Φ∗X, Φ∗Y ] and Φ∗(LieXθ) = LieΦ∗XΦ∗θ on N, provided that α > 1

2 .

In fact Lemma 4.4 establishes the above facts on open subsets in Rn. And since these 
results are local, they hold in manifolds as well.

Remark 6.1. Let α, γ > 0, β ∈ (− min(α, γ), ∞), and let M and N be two C max(α,γ)+1-
manifolds. Assume Φ : N → M is a C γ+1-diffeomorphism. Let X1, . . . , Xq be C α

loc-vector 
fields on M that span the tangent space at every point. We write Φ∗X for the list of 
pullback vector fields (Φ∗X1, . . . , Φ∗Xq) defined on N. The following properties follow 
easily from Definitions 2.13, 2.14, 2.15 and 2.16:

(i) If f ∈ C β
X,loc(M), then Φ∗f ∈ C β

Φ∗X,loc(N).
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(ii) If Y ∈ C β
X,loc(M; TM), then Φ∗Y ∈ C β

Φ∗X,loc(N; TN), provided that α, γ > 1
2 .

(iii) Let 1 ≤ k ≤ n. If θ ∈ C β
X,loc

(
M;
∧k

T ∗M
)
, then Φ∗θ ∈ C β

Φ∗X,loc

(
N;
∧k

T ∗N
)
, 

provided that α, γ > 1
2 .

(iv) Let 1 ≤ k ≤ n − 1 and let θ ∈ C
(−α)+
loc

(
M;
∧k

T ∗M
)

(see Convention 2.12). If dθ
has regularity in C β−1

X,loc(M), then dΦ∗θ has regularity in C β−1
Φ∗X,loc(N).

When the vector fields X1, . . . , Xq are sufficiently smooth, our C β
X,loc-spaces coincide 

with the standard C β
loc-spaces, as the next result shows.

Proposition 6.2. Let α > 0 and let X1, . . . , Xq be C α
loc-vector fields on a C α+1-manifold 

M that span the tangent space at every point. Then

(i) C β
X,loc(M) = C β

loc(M) for all β ∈ (−α, α + 1].
(ii) When α > 1

2 , C β
X,loc(M; TM) = C β

loc(M; TM) for all β ∈ (−α, α].
(iii) When α > 1

2 , for 1 ≤ k ≤ n, C β
X,loc

(
M;
∧k

T ∗M
)

= C β
loc

(
M;
∧k

T ∗M
)

for all 
β ∈ (−α, α].

(iv) Assume α ≥ 1. Let β ∈ (1 −α, 1 +α] and 1 ≤ k ≤ n. Let θ ∈ C
(−α)+
loc

(
M;
∧k

T ∗M
)

be a k-form, then dθ has regularity C β−1
X,loc(M) if and only if dθ ∈ C β−1

loc

(
M;∧k+1

T ∗M
)
.

To prove Proposition 6.2 we need a simple result concerning Hölder-Zygmund spaces:

Lemma 6.3. Let U ⊆ Rn be an open subset, let β ∈ R and f ∈ D ′(U). Then f ∈ C β
loc(U)

if and only if f, ∂x1f, . . . , ∂xnf ∈ C β−1
loc (U).

Proof. When β > 1, the result follows from Remark 2.1 (iii). Thus, we consider only the 
case β ≤ 1.

Let V � U be an arbitrary precompact open subset of U . We fix χ ∈ C∞
c (U) such 

that χ
∣∣
V
≡ 1 so χf is defined in Rn. Since we have ∂xjf

∣∣
V

= ∂xj (χf)
∣∣
V

, j = 1, . . . , n, it 
is enough to prove that f̃ := χf ∈ C β(Rn) if and only if f̃ , ∂x1 f̃ , . . . , ∂xn f̃ ∈ C β−1(Rn).

Clearly f̃ ∈ C β(Rn) implies ∂x1 f̃ , . . . , ∂xn f̃ ∈ C β−1(Rn).
Conversely, suppose f̃ , ∂x1 f̃ , . . . , ∂xn f̃ ∈ C β−1(Rn) hold, we have (I + 
)f̃ = f̃ −∑n
j=1 ∂xj (∂xj f̃) ∈ C β−2(Rn). Since I + 
 : C β(Rn) → C β−2(Rn) is a isomorphism of 

Banach spaces for every β ∈ R (see [20, Theorem 2.3.8]), we have f̃ = (I+
)−1(I+
)f̃ ∈
C β(Rn), completing the proof. �
Proof of Proposition 6.2 (i), (ii), and (iii). By passing to a local coordinate chart it suf-
fices to prove the results on an open subset M = U ⊆ Rn endowed with the standard 
coordinate system (x1, . . . , xn). In this coordinate system we write
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Xi =
n∑

j=1
aji

∂

∂xj
, with aji ∈ C α

loc(U). (6.1)

The assumption that X1, . . . , Xq span the tangent space at every point shows that the 
matrix function (aji )n×q ∈ C α

loc(U ; Mn×q) has full rank n at every point. So we can find 
a matrix (bij)q×n ∈ C α

loc(U ; Mq×n) such that

q∑
i=1

bija
k
i = δkj =

{
1, j = k,

0, j �= k.
(6.2)

(i): By Definition 2.13, C β
X,loc(U) = C β

loc(U) holds for β ∈ (−α, 1]. For β ∈ (0, α + 1] we 
proceed by induction on r = �β�. The base case r = 1, which is β ∈ (0, 1], follows from the 
definition. Let r ≥ 2 and suppose we have the case �β� = r− 1, i.e. C β

X,loc(U) = C β
loc(U)

for all β ∈ (r − 1, r], we wish to prove it for β ∈ (r, min(r + 1, α + 1)].
Let f ∈ C β

loc(U), so f ∈ C1
loc ∩ C β−1

loc (U) and by Proposition 2.7 (iv), X1f, . . . , Xqf ∈
C β−1

loc (U). By the inductive hypothesis f ∈ C1
loc ∩ C β−1

X,loc(U) and X1f, . . . , Xqf ∈
C β−1
X,loc(U), so f ∈ C β

X,loc(U).
Conversely, suppose f ∈ C β

X,loc(U), so f ∈ C1
loc ∩ C β−1

X,loc(U) and X1f, . . . , Xqf ∈
C β−1
X,loc(U). By the inductive hypothesis f, X1f, . . . , Xqf ∈ C β−1

loc (U). Using (6.2) and 

Lemma 2.2 we have ∂jf =
∑q

i=1
∑n

k=1 b
i
ja

k
i ∂kf =

∑q
i=1 b

i
jXif ∈ C β−1

loc (U) for j =
1, . . . , n. By Lemma 6.3 we obtain f ∈ C β

loc(U).

(ii): Here α > 1
2 and Definition 2.14 imply that C β

X,loc(U ; TU) = C β
loc(U ; TU) holds for 

β ∈ (−α, 12 ].
For β ∈ (−1

2 , α] we prove C β
X,loc(U ; TU) = C β

loc(U ; TU) by induction on r = �β + 1
2�. 

The base case r = 1, which is β ∈ (−1
2 , 

1
2 ], was established above. Let r ≥ 2 and suppose 

we have the case �β+ 1
2� = r−1, i.e. C β

X,loc(U ; TU) = C β
loc(U ; TU) for all β ∈ (r− 3

2 , r−
1
2 ], 

we wish to prove it for β ∈ (r − 1
2 , min(r + 1

2 , α)].
Suppose Y ∈ C β

loc(U ; TU), so Y ∈ C
1
2

loc ∩ C β−1
loc (U ; TU) and by Proposition 2.7

(v), [X1, Y ], . . . , [Xq, Y ] ∈ C β−1
loc (U ; TU). By the inductive hypothesis Y ∈ C

1
2

loc ∩
C β−1
X,loc(U ; TU) and [X1, Y ], . . . , [Xq, Y ] ∈ C β−1

X,loc(U ; TU), which is the definition of 
Y ∈ C β

X,loc(U ; TU) (see Definition 2.14).
Conversely, suppose Y ∈ C β

X,loc(U ; TU), so Y ∈ C
1
2

loc ∩C β−1
X,loc(U ; TU) and [X1, Y ], . . . ,

[Xq, Y ] ∈ C β−1
X,loc(U ; TU). By the inductive hypothesis Y ∈ C

max( 1
2 ,β−1)

loc (U ; TU) and 

[X1, Y ], . . . , [Xq, Y ] ∈ C β−1
loc (U ; TU).

Write Y =
∑n

j=1 ρ
j ∂
∂xj where ρj ∈ C

min( 1
2 ,β−1)

loc (U). By Lemma 2.2 we know the 
equation below is defined.

[Xi, Y ] =
n∑(

aji
∂ρk

∂xj
− ρj

∂aki
∂xj

)
∂

∂xk
=

n∑
(Xiρ

k) ∂

∂xk
+ Li(Y ), 1 ≤ i ≤ q. (6.3)
j,k=1 k=1
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Here L1, . . . , Lq are multiplication operators (0-th order differential operators) with 
C α−1

loc -coefficients.
By Lemma 2.2, since max(1

2 , β − 1) > 1 − α, we have Li(Y ) ∈ C β−1
loc (U ; TU), so 

ρk ∈ C β−1
loc (U) and Xiρ

k ∈ C β−1
loc (U) for 1 ≤ i ≤ q, 1 ≤ k ≤ n. Using (6.2) and 

Lemma 2.2 we have ∂jρk =
∑q

i=1 b
i
j · (Xiρ

k) ∈ C β−1
loc (U), for j = 1, . . . , n. By Lemma 6.3

we obtain ρk ∈ C β
loc(U) for all 1 ≤ k ≤ n, which means Y ∈ C β

loc(U ; TU). This finishes 
the induction argument and hence the proof of (ii).

The proof of (iii) is the same as (ii). Indeed, similar to (6.3), we can write

LieXi
θ =

n∑
1≤j1<···<jk≤n

(Xiθj1...jk)dxj1 ∧ · · · ∧ dxjk + L′
i(θ), 1 ≤ i ≤ q,

where L′
1, . . . , L

′
n are product operators on k-forms with C α−1

loc -coefficients. Using 
the same method as for (ii) we can prove that θj1...jk ∈ C β

X,loc(U) if and only if 
θj1...jk , X1θj1...jk , . . . , Xnθj1...jk ∈ C β−1

loc (U) if and only if θj1...jk ∈ C β
loc(U). We omit 

the details. �
Corollary 6.4. Let α ≥ 1 and let X1, . . . , Xq be C α

loc-vector fields on a C α+1-manifold M
that span the tangent space at every point. Let β > 1 − α and 1 ≤ k ≤ n.

(i) Let θ ∈ C
(−α)+
loc

(
M;
∧k

T ∗M
)

be a k-form. Then dθ has regularity C β−1
X,loc(M) if 

and only if dθ ∈ C β−1
X,loc

(
M;
∧k+1

T ∗M
)
.

(ii) Let θ ∈ C β
X,loc

(
M;
∧k

T ∗M
)
, then dθ ∈ C β−1

X,loc

(
M;
∧k+1

T ∗M
)
.

Proof. By passing to a local coordinate chart it suffices to prove the results on an open 
subset M = U ⊆ Rn.
(i): First we prove the case β ∈ (1 − α, 1]. By Definition, 2.16, dθ having regular-
ity C β−1

X,loc(U) is equivalent as dθ having regularity C β−1
loc (U) when β ∈ (−α, 1]. By 

Lemma 2.10, dθ having regularity C β−1
loc (U) is equivalent as dθ ∈ C β−1

loc

(
U ;
∧k+1

T ∗U
)

for 

β ∈ (1 −α, α+1]. By Proposition 6.2 (iii), C β−1
loc

(
U ;
∧k+1

T ∗U
)

= C β−1
X,loc

(
U ;
∧k+1

T ∗U
)
. 

So dθ has regularity C β−1
loc (U) if and only if dθ ∈ C β−1

loc

(
U ;
∧k+1

T ∗U
)
.

For β ∈ (0, ∞) we proceed by induction on r = �β�. The base case r = 1, which is 
the case β ∈ (0, 1] ⊆ (1 − α, 1], was established above. Let r ≥ 2 and suppose we have 
the case �β� = r − 1, i.e. (i) holds for all β ∈ (r − 1, r] and we wish to prove it for 
β ∈ (r, r + 1].

Suppose dθ ∈ C β−1
X,loc

(
U ;
∧k+1

T ∗U
)
. By Definition 2.15, dθ ∈ C 0+

loc ∩ C β−1
X,loc and 

dιXi
dθ = LieXi

dθ ∈ C β−2
X,loc

(
U ;
∧k+1

T ∗U
)

for all i = 1, . . . , q. By the inductive hy-
pothesis dθ, dιX1dθ, . . . , dιXq

dθ have regularity C β−2
X,loc(U), which is the definition of dθ

having regularity C β−1
X,loc(U) by Definition 2.15.
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Conversely, suppose dθ has regularity C β−1
X,loc(U), i.e. dθ ∈ C 0+

loc

(
U ;
∧k+1

T ∗U
)

and 

dθ, dιX1dθ, . . . , dιXq
dθ have regularity C β−2

X,loc(U). Applying the inductive hypothesis to 

θ, ιX1dθ, . . . , ιXq
dθ we have dθ, dιX1dθ, . . . , dιXq

dθ ∈ C β−2
X,loc

(
U ;
∧k+1

T ∗U
)
. Note that 

dθ ∈ C 0+

loc implies dθ ∈ C ε
loc for some ε > 0, and by assumption Xi ∈ C α

loc ⊆ C 1
loc, so by 

Proposition 2.7 (vi), LieXi
dθ is defined and LieXi

dθ = dιXi
dθ ∈ C β−2

X,loc

(
U ;
∧k+1

T ∗U
)
. 

By Definition 2.15 we get dθ ∈ C β−1
X,loc

(
U ;
∧k+1

T ∗U
)
, finishing the induction argument.

(ii): For the case β ∈ (1 − α, 1], by Proposition 6.2 (iii), since α > 1, we have 

C β
X,loc

(
U ;
∧k

T ∗U
)
=C β

loc(U ; 
∧k

T ∗U) and C β−1
X,loc

(
U ;
∧k+1

T ∗U
)
= C β−1

loc

(
U ;
∧k+1

T ∗U
)
. 

Therefore θ ∈ C β
X,loc implies dθ ∈ C β−1

X,loc.
For β ∈ (0, ∞) we proceed the induction on r = �β�. The base case r = 1, i.e. 

β ∈ (0, 1], was established above. Let r ≥ 2 and suppose we have the case �β� = r − 1, 
i.e. β ∈ (r − 1, r], we wish to prove the case β ∈ (r, r + 1].

Let θ ∈ C β
X,loc

(
U ;
∧k

T ∗U
)
, so by assumption θ, LieX1θ, . . . , LieXq

θ ∈ C β−1
X,loc

(
U ;∧k

T ∗U
)
. By the inductive hypothesis dθ, dLieX1θ, . . . , dLieXq

θ ∈ C β−2
X,loc

(
U ;
∧k+1

T ∗U
)
. 

Since β > 1 and dθ ∈ C β−1
X,loc � C 0+

loc , by Proposition 2.7 (vi), LieXi
dθ is defined, and 

therefore LieXi
dθ = dLieXi

θ ∈ C β−2
X,loc. So by Proposition 6.2 (iii) if β ≤ 3

2 , or by Defini-
tion 2.15 if β ≥ 3

2 , we get dθ ∈ C β−1
X,loc

(
U ;
∧k+1

T ∗U
)
. �

Proof of Proposition 6.2 (iv). By passing to a local coordinate chart it suffices to prove 
the result on an open subset M = U ⊆ Rn.

By Corollary 6.4 (i), dθ has regularity C β−1
X,loc(U) if and only if dθ ∈ C β

X,loc

(
U ;∧k+1

T ∗U
)
. By Proposition 6.2 (iii), since β − 1 ∈ (−α, α], C β−1

X,loc

(
U ;
∧k+1

T ∗U
)

=

C β−1
loc

(
U ;
∧k+1

T ∗U
)
. So dθ has regularity C β−1

X,loc(U) if and only if dθ ∈ C β−1
loc

(
U ;∧k+1

T ∗U
)
. �

Remark 6.5. Proposition 6.2 (iv) and Corollary 6.4 (i) and (ii) also hold for general 
α > 0. However, the proof is more complicated and is not used in the proof of our main 
results. Because of this, we do not include these more general results.

7. The proof of the main theorem

In this section, we prove Theorem 3.1.

Lemma 7.1. Let α, β, γ > 1
2 . Let X1, . . . , Xq be C α

loc-vector fields on a manifold M that 
span the tangent space at every point, and let Φ : N → M be a C γ+1-diffeomorphism.

Let f ∈ C β
X,loc(M), Y ∈ C β

X,loc(M; TM) and θ ∈ C β
X,loc(M; T ∗M), then fθ ∈

C β
X,loc(M; T ∗M), 〈θ, Y 〉 ∈ C β

X,loc(M), and 〈Φ∗θ, Φ∗Y 〉 ∈ C β
Φ∗X,loc(N).
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Proof. First we prove 〈θ, Y 〉 ∈ C β
X,loc(M). The argument to show fθ ∈ C β

X,loc(M) is 
similar and we omit the details.

Consider first β ∈ (1
2 , 

3
2 ]. By assumption (see Definitions 2.14 and 2.15) we see that 

Y, θ ∈ C
1
2

loc and LieX1Y, LieX1θ, . . . , LieXq
Y, LieXq

θ ∈ C β−1
loc . So by Proposition 2.7 (i), 

〈θ, Y 〉 = ιY θ ∈ C
1
2

loc(M) satisfies

Xi〈θ, Y 〉 = 〈θ,LieXi
Y 〉 + 〈LieXi

θ, Y 〉 ∈ C β−1
loc (M), for all i = 1, . . . , q.

By Proposition 6.2 (i), since β ≤ α + 1, we get 〈θ, Y 〉 ∈ C β
loc(M) = C β

X,loc(M).
For β ∈ (1

2 , ∞), we proceed by induction on r = �β + 1
2�. The base case, r = 2, is 

established above. Let r ≥ 3 and suppose the result is true for �β + 1
2� = r − 1, i.e. for 

β ∈ (r − 3
2 , r −

1
2 ], we wish to prove it for β ∈ (r − 1

2 , r + 1
2 ].

By assumption Y, θ ∈ C β−1
X,loc and Y, θ, LieX1Y, LieX1θ, . . . , LieXq

Y, LieXq
θ ∈ C β−1

X,loc. By 

the inductive hypothesis 〈θ, Y 〉, 〈θ, LieXi
Y 〉, 〈LieXi

θ, Y 〉 ∈ C β−1
X,loc(M) for all i = 1, . . . , q. 

So Xi〈θ, Y 〉 = 〈θ, LieXi
Y 〉 + 〈LieXi

θ, Y 〉 ∈ C β−1
X,loc(M) for all i = 1, . . . , q as well. 

By Definition 2.13 we get 〈θ, Y 〉 ∈ C β
X,loc(M). This completes the induction argu-

ment.
Finally, we show 〈Φ∗θ, Φ∗Y 〉 ∈ C β

Φ∗X,loc(N). Note that 〈θ, Y 〉 = ιY θ. So by Lemma 4.4
(i) and Remark 6.1 (i) we get 〈Φ∗θ, Φ∗Y 〉 = ιΦ∗Y Φ∗θ = Φ∗(ιY θ) = Φ∗〈θ, Y 〉 and their 
common value is in C β

Φ∗X,loc(N). �
Lemma 7.2. Let α > 1

2 and β ∈ [α, α+ 1]. Assume that λ1, . . . , λn form a C α-local basis 
for the cotangent bundle of a manifold M. Let X1, . . . , Xn be its dual basis.

Suppose λ1, . . . , λn ∈ C β
X,loc(M; T ∗M) then dλ1, . . . , dλn ∈ C β−1

loc

(
M;
∧2

T ∗M
)
.

Proof. The inverse of a C α
loc-matrix is a C α

loc-matrix, so as the dual basis of (λ1, . . . , λn), 
we know X1, . . . , Xn are C α

loc-vector fields on M.
Write ckij := 〈LieXi

λk, Xj〉 for 1 ≤ i, j, k ≤ n. Since X1, . . . , Xn and λ1, . . . , λn are 
dual bases, we have

dλk(Xi, Xj) = Xi〈λk, Xj〉 − 〈λk, [Xi, Xj ]〉 −Xj〈λk, Xi〉 = 〈LieXi
λk, Xj〉 − 0 = ckij

⇒ dλk =
∑

1≤i<j≤n

ckijλ
i ∧ λj .

(7.1)

Note that the products in (7.1) are all defined due to Lemma 2.2.
By Definition 2.15, LieXi

λk ∈ C β−1
X,loc(M; T ∗M). By Proposition 6.2 (iii), since β −

1 ≤ α, we have C β−1
X,loc(M; T ∗M) = C β−1

loc (M; T ∗M), so LieXi
λk ∈ C β−1

loc (M; T ∗M). 
Since X1, . . . , Xn ∈ C α

loc, by Proposition 2.7 (i), 〈LieXi
λk, Xj〉 ∈ C β−1

loc (M); i.e. ckij ∈
C β−1

loc (M). By Proposition 2.7 (ii), since β − 1 + α > 0, we know 
∑

1≤i<j≤n ckijλ
i ∧
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λj ∈ C β−1
loc

(
M;
∧2

T ∗M
)
, so by (7.1), we conclude that dλk ∈ C β−1

loc

(
M;
∧2

T ∗M
)

for 
1 ≤ k ≤ n. �
Remark 7.3. Lemma 7.2 is similar to Corollary 6.4 (ii). However, it does not follow from 
Corollary 6.4 (ii) as we require α ≥ 1 in Corollary 6.4 (ii).

Proof of Theorem 3.1. The case β ≤ α, for each condition is trivial. Indeed, fix p ∈ M, 
take any C α+1-coordinate chart Φ−1 : U ⊆ M ∼−→ Bn near p. We have Φ∗X1, . . . , Φ∗Xq ∈
C α

loc(Bn; TBn) ⊆ C β
loc(Bn; TBn) and Φ∗λ1, . . . , Φ∗λn ∈ C α

loc(Bn; T ∗Bn). By shrinking 
the domain and scaling, we can make replace C β

loc by C β . In other words, we have 
Φ∗X1, . . . , Φ∗Xq ∈ C β(Bn; TBn) and Φ∗λ1, . . . , Φ∗λn ∈ C α(Bn; T ∗Bn). Therefore, (a)
and (b) are automatically satisfied for α > 0, and the same for (c) and (d) when α > 1

2 . 
For the remainder of the proof, we assume β > α.

We will show (a) ⇔ (b) for arbitrary α > 0, and (a) ⇒ (d) ⇒ (c) ⇒ (b) when α > 1
2 .

We first prove that (a)⇒(b) for arbitrary α > 0.
Suppose (a) holds, and thus there exists a neighborhood U ⊆ M of p and a dif-

feomorphism Φ : Bn ∼−→ U ⊆ M as in (a). Since by assumption Φ∗X1, . . . , Φ∗Xn ∈
C β(Bn; TBn) and the inverse of C β

loc-matrix is still C β
loc-matrix, we see that the dual 

basis Φ∗λ1, . . . , Φ∗λn ∈ C β
loc(Bn; T ∗Bn). So dΦ∗λi ∈ C β−1

loc and 〈Φ∗λi, Φ∗Xj〉 ∈ C β
loc for 

1 ≤ i ≤ n, 1 ≤ j ≤ n.
By Proposition 6.2 (i), since β < β + 1, we have C β

loc(Bn) = C β
Φ∗X,loc(Bn). Thus, 

〈Φ∗λi, Φ∗Xj〉 ∈ C β
Φ∗X,loc(Bn) for 1 ≤ i ≤ n, 1 ≤ j ≤ q.

By Definition 2.11, dΦ∗λi ∈ C β−1
loc (Bn; T ∗Bn) is the same as dΦ∗λi having regularity 

C β−1
loc (Bn). By Proposition 6.2 (iv), if β ≥ 1 (where we use α = β and Φ∗X ∈ C β

loc in the 
proposition) or by Definition 2.16 if β ≤ 1 (where β − 1 ≤ 0), dΦ∗λi having regularity 
C β−1

loc (Bn) is the same as dΦ∗λi having regularity C β−1
Φ∗X,loc(Bn).

Now dΦ∗λi has regularity C β−1
Φ∗X,loc(Bn) and 〈Φ∗λi, Φ∗Xj〉 ∈ C β

Φ∗X,loc(Bn) for 1 ≤
i ≤ n, 1 ≤ j ≤ q. Note that Φ∗ = (Φ−1)∗. By Remark 6.1 (iv), dλi = dΦ∗Φ∗λi has 
regularity C β−1

Φ∗Φ∗X,loc(U) = C β−1
X,loc(U) for 1 ≤ i ≤ n. And by Lemma 7.1, 〈λi, Xj〉 =

〈Φ∗Φ∗λi, Φ∗Φ∗Xj〉 ∈ C β
Φ∗Φ∗X,loc(U) = C β

X,loc(U), finishing the direction (a) ⇒ (b).
Next we prove (a)⇒(d) by assuming α > 1

2 .
By assumption of (a) Φ∗X1, . . . , Φ∗Xq ∈ C β(Bn; TBn). By Proposition 6.2 (ii), 

C β
loc(Bn; TBn) = C β

Φ∗X,loc(Bn; TBn), so Φ∗X1, . . . , Φ∗Xq ∈ C β
Φ∗X,loc. By Remark 6.1

(ii), where we use Φ∗ = (Φ−1)∗, we have Xj = Φ∗Φ∗Xj ∈ C β
Φ∗Φ∗X(U ; TU) = C β

X(U ; TU)
for 1 ≤ j ≤ q. Therefore, we get (a) ⇒ (d).

We now prove (b)⇒(a) for all α > 0. Fix p ∈ M. We proceed by induction on 
r = �β�.

We start with the base case r = 1, i.e. β ∈ (0, 1]. And as mentioned in the be-
ginning of the proof we assume β > α and therefore α < 1. By Definition 2.16, (b)
is equivalent to dλ1, . . . , dλn having regularity C β−1

loc (M). By Corollary 5.17 there is a
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C α+1-diffeomorphism Φ : Bn ∼−→ U ⊆ M such that Φ(0) = p and Φ∗X1, . . . , Φ∗Xn ∈
C β(Bn; TBn).

We let X0 denote the sub-collection of X given by

X0 = (X1, . . . , Xn).

So C β
X,loc(U) ⊆ C β

X0,loc(U). By assumption 〈λi, Xj〉 ∈ C β
X,loc(U) ⊆ C β

X0,loc(U) for all 
1 ≤ i ≤ n and 1 ≤ j ≤ q. Applying Lemma 7.1 to 〈λi, Xj〉 with X = (X1, . . . , Xq) in 
that lemma replaced by X0 = (X1, . . . , Xn), we get 〈Φ∗λi, Φ∗Xj〉 ∈ C β

Φ∗X0,loc(B
n). By 

Definition 2.13, we have C β
Φ∗X0,loc(B

n) = C β
loc(Bn) since β ≤ 1. Therefore 〈Φ∗λi, Φ∗Xj〉 ∈

C β
loc(Bn) and thus

Φ∗Xj =
n∑

i=1
〈Φ∗λi,Φ∗Xj〉Φ∗Xi ∈ C β

loc(B
n;TBn), n + 1 ≤ j ≤ q. (7.2)

Now let r ≥ 1 and suppose (b) ⇒ (a) is true for the case �β� ≤ r, i.e. for β ∈ (0, r], 
we wish to prove the case β ∈ (r, r + 1].

By the inductive hypothesis, there is a neighborhood U0 ⊆ M of p and a C r+1-
diffeomorphism Φ0 : Bn ∼−→ U0 ⊆ M such that Φ0(0) = p and Φ∗

0X1, . . . , Φ∗
0Xq ∈

C r(Bn; TBn). Since the inverse of C r
loc-matrix is still a C r

loc-matrix and Φ∗
0X1, . . . , Φ∗

0Xn ∈
C r

loc, for the dual basis we have Φ∗
0λ

1, . . . , Φ∗
0λ

n ∈ C r
loc(Bn; T ∗Bn).

By assumption, dλi has regularity C β−1
X,loc(U0), so by Remark 6.1 (iv), dΦ∗

0λ
i has 

regularity C β−1
Φ∗

0X,loc(Bn) for i = 1, . . . , n. By Proposition 6.2 (iv), since Φ∗
0X ∈ C r

loc and 

β ≤ r+1, we know that dΦ∗
0λ

1, . . . , dΦ∗
0λ

n have regularity C β−1
loc (Bn). By Definition 2.11, 

this is to say dΦ∗
0λ

1, . . . , dΦ∗
0λ

n ∈ C β−1
loc

(
Bn;
∧2

T ∗Bn
)
.

Applying Corollary 5.17 (2) ⇒ (1) to dΦ∗
0λ

1, . . . , dΦ∗
0λ

n ∈ C β−1
loc

(
Bn;
∧2

T ∗Bn
)
, 

since by assumption β − 1 ∈ (r − 1, r], we can find a map Φ1 : Bn → Bn that is 
C r+1-diffeomorphism onto its image, such that Φ1(0) = 0 and Φ∗

1Φ∗
0λ

1, . . . , Φ∗
1Φ∗

0λ
n ∈

C β(Bn; T ∗Bn). Since the inverse of C β
loc-matrix is still a C β

loc-matrix, see that the dual 
basis Φ∗

1Φ∗
0X1, . . . , Φ∗

1Φ∗
0Xn ∈ C β

loc(Bn; TBn).
Take Φ = Φ0 ◦ Φ1 and U = Φ(Bn) ⊆ M. So Φ(0) = Φ0(Φ1(0)) = Φ0(0) = p

and Φ∗X1, . . . , Φ∗Xn ∈ C β
loc(Bn; TBn). We are going to prove Φ∗Xn+1, . . . , Φ∗Xq ∈

C β
loc(Bn; TBn).
We still use X0 = (X1, . . . , Xn) as the sub-collection of X = (X1, . . . , Xq). By as-

sumption (b), 〈λi, Xj〉 ∈ C β
X,loc(U) ⊆ C β

X0,loc(U), so applying Lemma 7.1 to Φ and X0, 
we have 〈Φ∗λi, Φ∗Xj〉 ∈ C β

Φ∗X0,loc(B
n) for all 1 ≤ i ≤ n, 1 ≤ j ≤ q. By Proposition 6.2

(i), since Φ∗X0 ∈ C β
loc, we have 〈Φ∗λi, Φ∗Xj〉 ∈ C β

loc(Bn) for all 1 ≤ i ≤ n, 1 ≤ j ≤ q. 
Therefore using (7.2) we get Φ∗Xn+1, . . . , Φ∗Xq ∈ C β

loc(Bn; TBn).
We conclude Φ∗X1, . . . , Φ∗Xq ∈ C β

loc(Bn; TBn). Replacing Φ(t) by Φ(1
2 t) for t ∈ Bn, 

we can replace C β
loc by C β , finishing the induction argument and hence the proof of (b)

⇒ (a).
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Now assume α > 1
2 , we will show (d) ⇒ (c) ⇒ (b). As mentioned in the beginning of 

the proof we assume β > α. In particular, we assume β > 1
2 .

In the following proof, we fix a neighborhood U of p ∈ M where X1, . . . , Xn form a 
C α-local basis on U .

(d)⇒(c): By assumption X1, . . . , Xn ∈ C β
X,loc(U ; TU), by Definition 2.14 since β > 1

2 , we 

have X1, . . . , Xn ∈ C
1
2

loc(U ; TU). The inverse of C
1
2

loc-matrix is still a C
1
2

loc-matrix, so for 
the dual basis of (X1, . . . , Xn) we have λ1, . . . , λn ∈ C

1
2

loc(U ; T ∗U). To prove (c), by Defi-
nition 2.15, it remains to show λi, LieXk

λi ∈ C β−1
X,loc(U ; T ∗U) for 1 ≤ i ≤ n and 1 ≤ j ≤ q.

For 1 ≤ i, j ≤ n, 〈λi, Xj〉 = δij is a constant function, so 0 = LieXk
〈λi, Xj〉 =

〈LieXk
λi, Xj〉 + 〈λi, LieXk

Xj〉. Therefore

LieXk
λi =

n∑
k=1

〈LieXk
λi, Xj〉λj = −

n∑
k=1

〈λi,LieXk
Xj〉λj , for 1 ≤ i ≤ n, 1 ≤ k ≤ q.

(7.3)

We prove (d)⇒(c) by induction on r = �β + 1
2�, we work on the range β ∈ (1

2 , ∞).
We start with the base case r = 2 which is the case β ∈ (1

2 , 
3
2 ]. By assump-

tion (d) and Definition 2.14, since β − 1 ≤ 1
2 , we have LieXk

Xj ∈ C β−1
loc (U ; TU) for 

1 ≤ j, k ≤ q. Since λ1, . . . , λn ∈ C
1
2

loc(U ; T ∗U), by Proposition 2.7 (i) and (ii) we know 
〈λi, LieXk

Xj〉 ∈ C β−1
loc and 〈λi, LieXk

Xj〉λj ∈ C β−1
loc for 1 ≤ i, j ≤ n, 1 ≤ k ≤ q. Using 

(7.3) we get LieXk
λi ∈ C β−1

loc (U ; T ∗U) for 1 ≤ i ≤ n, 1 ≤ k ≤ q.
We have λi ∈ C

1
2

loc(U ; T ∗U) and LieXk
λi ∈ C β−1

loc (U ; T ∗U) for 1 ≤ i ≤ n, 
1 ≤ k ≤ q, so by Definition 2.15, λ1, . . . , λn ∈ C β

X,loc(U ; T ∗U). Note that by as-
sumption (d), X1, . . . , Xq ∈ C β

X,loc(U ; TU), so by Lemma 7.1, 〈λi, Xj〉 ∈ C β
X,loc(U)

for 1 ≤ i ≤ n, 1 ≤ j ≤ q.
Now let r ≥ 3 and suppose (d) ⇒ (c) holds for the case �β + 1

2� = r − 1 i.e. for 
β ∈ (r − 3

2 , r −
1
2 ], we wish to prove it for β ∈ (r − 1

2 , r + 1
2 ].

By Definition 2.14 X1, . . . , Xn ∈ C β
X,loc(U ; TU) implies LieXk

Xj ∈ C β−1
X,loc(U ; TU) for 

1 ≤ j, k ≤ q. By the inductive hypothesis we have λ1, . . . , λn ∈ C β−1
X,loc(U ; T ∗U). So by 

Lemma 7.1 we get 〈λi, LieXk
Xj〉 ∈ C β−1

X,loc(U) and 〈λi, LieXk
Xj〉λj ∈ C β−1

X,loc(U ; T ∗U). So 

by (7.3) we get LieXk
λi ∈ C β−1

X,loc(U ; T ∗U) for 1 ≤ i ≤ n, 1 ≤ k ≤ q.
We have λi, LieXk

λi ∈ C β−1
X,loc(U ; T ∗U) for 1 ≤ i ≤ n, 1 ≤ k ≤ q. By Definition 2.15 we 

get λ1, . . . , λn ∈ C β
X,loc(U ; T ∗U). Since X1, . . . , Xq ∈ C β

loc(U ; TU), by Lemma 7.1 again 

we get 〈λi, Xj〉 ∈ C β
X,loc(U) for 1 ≤ i ≤ n, 1 ≤ j ≤ q, finishing the induction argument 

and hence the proof of (d) ⇒ (c).

(c)⇒(b): The result 〈λi, Xj〉 ∈ C β
X,loc(U) follows from the assumption. We need is to 

show dλi has regularity C β−1
X,loc(U), for 1 ≤ i ≤ n.

First we assume α ≥ 1. By assumption (c), λ1, . . . , λn ∈ C β
X,loc(U ; T ∗U), so by Corol-

lary 6.4 (ii) we get dλ1, . . . , dλn ∈ C β−1
X,loc

(
U ;
∧2

T ∗U
)
.
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We next consider α ∈ (1
2 , 1]. First we assume β ≤ 1. Note that we only need to 

consider β ∈ (α, 1] otherwise it is trivial.
We use X0 = (X1, . . . , Xn) as the sub-collection of X = (X1, . . . , Xq). By as-

sumption of the theorem, X1, . . . , Xn ∈ C α
loc(U ; TU). Since the inverse of C α

loc-
matrix is a C α

loc-matrix, for the dual basis of (X1, . . . , Xn) we have λ1, . . . , λn ∈
C α

loc(U ; T ∗U).
Note that C β

X,loc(U ; T ∗U) ⊆ C β
X0,loc(U ; T ∗U). Since (X1, . . . , Xn) and (λ1, . . . , λn) are 

dual bases, applying Lemma 7.2 and using that λ1, . . . , λn ∈ C β
X0,loc(U ; T ∗U), we obtain 

dλ1, . . . , dλn ∈ C β−1
loc

(
U ;
∧2

T ∗U
)
. By Definition 2.11 this is the same as dλ1, . . . , dλn

having regularity C β−1
loc (U). By Definition 2.16, since β − 1 ≤ 0, this is the equivalent to 

dλ1, . . . , dλn having regularity C β−1
X,loc(U).

When β > 1, by the established case β = 1 from above we know that dλ1, . . . , dλn

have regularity C 0
X,loc(U). By assumption (c), 〈λi, Xj〉 ∈ C β

X,loc(U) ⊆ C 1
X,loc(U), for 

1 ≤ i ≤ n, 1 ≤ j ≤ q. Therefore, by the already proved implication (b) ⇒ (a) we can 
find a C 2-atlas on U such that X1

∣∣
U
, . . . , Xq

∣∣
U

are C 1 on this atlas. That is to say we 
can assume α = 1 in this case. Since we have already established the case α ≥ 1, we see 
that dλ1, . . . , dλn have regularity C β

X,loc(U), completing the proof. �
8. Harmonic coordinates and canonical coordinates

Given a non-smooth Riemannian metric g on a manifold, M, DeTurck and Kazdan 
showed that g has optimal regularity in harmonic coordinates [3, Lemma 1.2] (in the 
Zygmund-Hölder sense), but may not have optimal regularity in geodesic normal coor-
dinates [3, Example 2.3] (in fact, the regularity of g in geodesic normal coordinates may 
be two derivatives worse than the regularity in harmonic coordinates).

In this section, we present analogous results for vector fields. Let X1, . . . , Xn be C1
loc-

vector fields on a C2-manifold M that form a local basis for the tangent space at every 
point. In Section 5 we defined a Riemannian metric g =

∑n
i=1 λ

i ·λi where (λ1, . . . , λn) is 
the dual basis of (X1, . . . , Xn) (see Remark 5.2). With respect to this metric, X1, . . . , Xn

form an orthonormal basis at every point. Since X1, . . . , Xn ∈ C1, we can talk about the 
metric Laplacian 
g with respect to g.

Proposition 8.1. In harmonic coordinates with respect to g, X1, . . . , Xn have optimal 
regularity.

More precisely, let X1, . . . , Xn and g be as above, and let β > 1. Suppose there is 
a C β+1-atlas A which is compatible with the C2-atlas of M, such that X1, . . . , Xn

are C β on A , let ψ : U ⊆ M → V ⊆ Rn be a harmonic coordinate chart,7 then 
ψ∗X1, . . . , ψ∗Xn ∈ C β

loc(V ; Rn).

7 Such a harmonic coordinate chart ψ always exists locally when β > 1, see also [3, Lemma 1.2].
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Proof. It suffices to show that ψ is a C β+1
loc -map with respect to (M, A ). Once this is 

done, applying Lemma 4.1 (ii) on Φ = ψ−1 and using that X1, . . . , Xn are C β
loc with 

respect to (M, A ), we get that ψ∗X1, . . . , ψ∗Xn ∈ C β
loc.

Since the statement ψ ∈ C β+1
loc (U ; V ) is local, we may without loss of generality, shrink 

U . By doing so, the hypotheses of the proposition imply that there is a C β+1-coordinate 
chart x = (x1, . . . , xn) : U ⊆ M → Rn on U (respect to A ). In this coordinate chart we 
can write 
g = − 1√

det g
∑n

i,j=1
∂

∂xi (
√

det ggij ∂
∂xj ) where gij and 

√
det g are as in (5.7).

By assumption 
gψ
k = 0 for k = 1, . . . , n. Note that on (x1, . . . , xn), 
g is a second 

order divergent form elliptic operator with C β-coefficients. By a classical elliptic esti-
mates (for example, [17, Proposition 4.1]) we have that ψk are all C β+1

loc with respect to 
A , completing the proof. �
Remark 8.2. In fact the coordinate chart we construct in Proposition 5.10 (also see (5.8)) 
is closely related to harmonic coordinates.

Remark 8.3. While Proposition 8.1 shows that X1, . . . , Xn have optimal regularity with 
respect to harmonic coordinates, this fact along does not give a practical test for what 
the optimal regularity is. Theorem 3.1, on the other hand, provides such a test.

Remark 8.4. Proposition 8.1 shows that harmonic coordinates induce a C β+1-atlas with 
respect to which X1, . . . , Xn are C β

loc. It is possible that the harmonic coordinates induce 
some C γ+1-atlas for some γ > β while X1, . . . , Xn are only C β with respect to this atlas; 
see Example 8.5.

Example 8.5. Endow R2 with standard coordinates (x, y), and let θ ∈ C1(R2) be a 
function which is not smooth. Set X := cos(θ(x, y)) ∂

∂x + sin(θ(x, y)) ∂
∂y and Y :=

− sin(θ(x, y)) ∂
∂x + cos(θ(x, y)) ∂

∂x . The corresponding metric is g = dx2 + dy2 since 
X, Y form an orthonormal basis with respect to the standard Euclidean metric, thus 

g = 
 = −∂2

x − ∂2
y .

Therefore the singleton {(x, y) : R2 → R2} is an atlas of harmonic coordinates for 
R2, and since harmonic functions are real-analytic, we know the collection of harmonic 
coordinates with respect to 
g defines an real-analytic structure for R2 (which coin-
cides with the standard real-analytic structure). Even though the differential structure 
induced by the harmonic coordinates is real analytic, X and Y cannot be smooth un-
der any coordinate system (since they are not smooth with respect to these harmonic 
coordinates).

As mentioned before, DeTurck and Kazdan showed that a Riemannian metric may not 
have optimal regularity with respect to geodesic normal coordinates [3, Example 2.3]. A 
natural analog of geodesic normal coordinates for vector fields is canonical coordinates 
(of the first kind). Next, we show that vector fields may not have optimal regularity with 
respect to these canonical coordinates.



B. Street, L. Yao / Journal of Functional Analysis 283 (2022) 109537 55
Given C1-vector fields X1, . . . , Xn on M that form a basis on the tangent space 
at every point, the canonical coordinates at p ∈ M is the map Φp(t1, . . . , tn) :=
et

1X1+···+tnXnp defined via solving the ordinary differential equation, provided that it is 
solvable:

et·X(p) = E(1), where E : [0, 1] → M,

d

dr
E(r) = r

(
t1X1(E(r)) + · · · + tnXn(E(r))

)
, E(0) = p.

(8.1)

When X1, . . . , Xn ∈ C α for some α > 1, classical regularity theorems for ODEs show 
that Φp is at least C α. Therefore, Φ∗

pX1, . . . , Φ∗
pXn are at least C α−1; which is one 

derivative less than the original regularity of X1, . . . , Xn. The next result shows that 
this loss of one derivative is sometimes inevitable.

Lemma 8.6. Endow R2 with standard coordinate system (x, y). Let α > 1 and let X := ∂x
and Y := xf(y)∂x + ∂y where f(y) := αmax(0, y)α−1.

Then we can find a new C α+1 atlas A on R2 which is compatible with the standard 
C α-structure on R2, such that X, Y are C α

loc with respect to this the new atlas, but for 
the canonical coordinates Φ(t, s) := etX+sY (0) we have Φ∗Y /∈ C α−1+ε near (0, 0), in 
particular the collection (Φ∗X, Φ∗Y ) is not C α−1+ε.

Note that X and Y form a local basis of the tangent space at every point, and 
f ∈ C α−1

loc (R).

Proof. First we show the existence of the new atlas A with respect to which X and Y
are C α. In particular X, Y are C1 in A , so (8.1) is uniquely solvable and hence Φ is 
well-defined.

Note that [X, Y ] = f(y)∂x ∈ C α−1(R2; R2). Specifically, the dual basis of X, Y are 
1-forms λ = dx − xf(y)dy, η = dy which satisfy that dλ = f(y)dx ∧ dy and dη = 0 are 
both C α−1 2-forms, so the condition (b) in Theorem 3.1 is satisfied. By Theorem 3.1 we 
can find a C α+1-atlas A on R2 such that X, Y are both C α

loc on A .
Since X1, . . . , Xn are C α � C1 with respect to A , we see that Φ(t, s) is well-defined 

near (t, s) = (0, 0). We can compute Φ in terms of f .
Clearly Φ(t, s) = (∗, s) since es∂y(x, y) = (x, y+ s). We can write Φ(t, s) = (φ(t, s), s). 

Define Φ(t, s; r) for r ∈ R as the solution to the ODE ∂
∂rΦ(t, s; r) = tX(Φ(t, s; r)) +

sY (Φ(t, s; r)), Φ(t, s; 0) = 0. So Φ(t, s) = Φ(t, s; 1) and we have Φ(t, s; r) = (φ(t, s; r), rs)
where

∂

∂r
φ(t, s; r) = t + sf(rs)φ(t, s; r), φ(t, s; 0) = 0, t, s, r ∈ R.

Solving this ODE we have
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φ(t, s; r) = e
∫ r
0 sf(ρs)dρ

r∫
0

e−
∫ ρ
0 sf(μs)dμtdρ,

φ(t, s) = φ(t, s; 1) = t
e−

∫ s
0 f(ρ)dρ

s

s∫
0

e
∫ ρ
0 f(μ)dμdρ.

Now plug in

f(y) =
{
αyα−1, y ≥ 0,
0 y ≤ 0.

We have

φ(t, s) = t
e−sα

s

s∫
0

eρ
α

dρ when s > 0; φ(t, s) = t when s ≤ 0.

Thus, φ(t, s) = tg(s) where

g(s) =
{

e−sα

s

∫ s

0 eρ
α

dρ s > 0
1 s ≤ 0.

(8.2)

We are going to show Φ ∈ C α
loc(R2; R2) and Φ /∈ C α+ε near (0, 0). To see this, it 

suffices to show g ∈ C α
loc(R) and g /∈ C α+ε

loc near 0, for every ε > 0.
By Taylor’s expansion on the exponential function we have, when s > 0,

g(s) = e−sα 1
s

s∫
0

eρ
α

dρ =
∞∑
j=0

(−1)jsjα

j!
1
s

s∫
0

∞∑
k=0

ρkα

k! dρ =
∞∑

j,k=0

(−1)j

j!k!
sjαskα

kα + 1

=
∞∑
l=0

( l∑
k=0

(−1)l−k

kα + 1

)
slα = 1 −

(
1 − 1

α+1
)
sα + O(s2α).

In other words

g(s) =
∞∑
l=0

( l∑
k=0

(−1)l−k

kα + 1

)
max(s, 0)lα

= 1 −
(
1 − 1

α+1
)
max(s, 0)α +

∞∑
l=2

( l∑
k=0

(−1)l−k

kα + 1

)
max(s, 0)lα, ∀s ∈ R.

Note that for β > 0 the function max(s, 0)β =
{
sβ s ≥ 0
0 s ≤ 0

is C β
loc but not C β+ε near 0. 

Indeed when 0 < β < 1 we know that max(s, 0)β ∈ C0,β
loc = C β

loc and is not C0,β+ε = C β+ε
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near 0 for any 0 < ε < 1 − β, when β = 1 we know max(s, 0) ∈ C0,1
loc � C 1

loc and is not 
C1 near 0 so is not C 1+ε for any ε > 0. For β > 1 by passing to its derivatives we see 
that max(s, 0)β ∈ C β

loc and is not C β+ε near 0.
So the remainder 

∑∞
l=2
(∑l

k=0
(−1)l−k

kα+1
)
max(s, 0)lα is C 2α ⊂ C α+ε

loc for all 0 < ε ≤ α, 
while the main term 1 −

(
1 − 1

α+1
)
max(s, 0)α is C α

loc but not C α+ε near 0. Therefore we 
conclude that g ∈ C α(R), but g /∈ C α+ε near s = 0.

Now we know Φ ∈ C α
loc(R2; R2) but Φ /∈ C α+ε

loc near (t, s) = (0, 0). Consider the inverse 
function of Φ, and set (u(x, y), v(x, y)) := Φ−1(x, y); so that Φ∗Y = (Y u, Y v) ◦ Φ. We 
have v(x, y) = y and u(x, y) = 1

g(y)x. Note that g(s) > 0 for every s, so y �→ 1
g(y) is 

not C α+ε near y = 0, for any ε > 0. Therefore Y v = x · ∂y 1
g(y) is not C α+ε−1 near 

(x, y) = (0, 0). By composing with Φ which is a C α
loc ⊂ C α+ε−1

loc -diffeomorphism (for 
0 < ε < 1), we see that Φ∗Y is not C α+ε−1 near (t, s) = (0, 0), for every ε > 0. �
Remark 8.7. As a differentiable map Φ : (R2

t,s, std) → (R2, A ) between two C α+1-
manifolds, we see that Φ is not C α+ε near (0, 0) for any ε > 0. Otherwise since X and Y
are C α

loc on A , by Lemma 4.1 (ii) we have Φ∗Y ∈ C min(α,α−1+ε) = C α−1+min(ε,1) near 
(0, 0), contradicting to Lemma 8.6.

9. The quantitative result

Let M be an n-dimensional manifold and let α > 1
2 . If we are given C α

loc-vector 
fields X1, . . . , Xq that span the tangent space at every point, we can write [Xi, Xj ] =∑q

k=1 c
k
ijXk for some C α−1

loc -functions ckij . In Theorem 3.1 we show that, for s0 > α − 1
and near each point p the following are equivalent

• There exists a C α+1-parameterization Φ near p such that Φ∗X1, . . . , Φ∗Xq are C s0+1
loc .

• We may choose ckij with ckij ∈ C s0
X,loc near p.

By contrast the range of s0 in [14] is s0 > 1.
If one traces through the proof of Theorem 3.1, the size of the neighborhood of p and 

the C s0+1-norms of Φ∗X1, . . . , Φ∗Xq depend on the C α-norms of X1, . . . , Xq under some 
fixed initial coordinate system near p, and on a lower bound for (1.1) at x = p (in some 
fixed initial coordinate system). However, in [14], when X1, . . . , Xq ∈ C1 and s0 > 1, a 
similar coordinate system Φ was constructed, but where all of the estimates depend only 
on the diffeomorphic invariant quantities like the norms ‖ckij‖C

s0
X

(see [11, Section 5.1]).
Using the methods of this paper, we can extend the main results of [14] and [13]

(namely, [14, Theorem 2.14] and [13, Theorem 4.5]) from s0 > 1 to s0 > 0.

Theorem 9.1. [14, Theorem 2.14] and [13, Theorem 4.5] are still true with s0 > 1 replaced 
by s0 > 0, and leaving rest of the assumptions and statements unchanged.

In these papers, the assumption s0 > 1 is used in the following places:
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• In [11, Theorem 4.7], which is used to prove [14, Proposition 4.1], “1-admissible con-
stants” are used in order to obtain the results (d), (e), and (f) of [11, Theorem 4.7]. 
The proof of [11, Theorem 4.7 (d), (e), (f)] is done in [11, Proposition 9.22]. The 
1-admissible constants are allowed to depend on quantities like ‖ckij‖C1

X
.

We are going to show that in [11, Proposition 9.22], if we only need the conclusion 
that Φ is a C s0+1-diffeomorphism, then the assumption “1-admissible constants” can 
be replaced by “{s0}-admissible constants,” for a fixed s0 > 0 (which is possibly ≤ 1), 
where {s0}-admissible constants are defined in [14, Definition 2.13]. See Lemma 9.8.

• In [14, Proposition 6.8], the assumption s0 > 1 is used in order to set up some well-
defined elliptic PDEs.

In this paper we use different elliptic PDEs that are defined when 0 < s0 ≤ 1, 
as illustrated in Section 5.1. See Proposition 9.4 for the precise statement to the 
modification of [14, Proposition 6.8].

• In [14, Theorem 2.14], a map Φ is constructed, which depends on s0, such that 
Φ∗X1, . . . , Φ∗Xq ∈ C s0+1. Moreover, this map satisfies for s ≥ s0, that if ckij ∈ C s

X,loc, 
then Φ∗X1, . . . , Φ∗Xn ∈ C s+1, with appropriate bounds on their C s+1 norms. In [14, 
Theorem 2.14], these estimates required s ≥ s0 > 1; but by using the regularity theory 
of elliptic PDEs we will be able to extend this to s ≥ s0 > 0.

• Once we have established [14, Theorem 2.14 (a)-(j)] for s0 > 0, the proof from [14] of 
[14, Theorem 2.14 (k) and (l)] also establishes these results for s0 > 0.

• The only place that s0 > 1 is used in [13, Theorem 4.5] is when it refers to [14, 
Theorem 2.14]. Once [14, Theorem 2.14] is established for s0 > 0, the same is true of 
[13, Theorem 4.5].

[14, Theorem 2.14] begins with X1, . . . , Xq which are C1-vector fields on M such that 
[Xi, Xj ] =

∑q
k=1 c

k
ijXk for some ckij ∈ C0

loc(M). By passing to an immersed submanifold 
using [11, Proposition 3.1] we may assume that X1, . . . , Xq span the tangent space at 
every point.

Fix a point p ∈ M. We choose J0 = (j0
1 , . . . , j

0
n) ∈ {1, . . . , q}n such that Xj01

(p) ∧
. . . Xj0n

(p) �= 0 and

max
1≤j1<···<jn≤q

∣∣∣∣∣Xj1(p) ∧ · · · ∧Xjn(p)
Xj01

(p) ∧ · · · ∧Xj0n
(p)

∣∣∣∣∣ ≤ ζ−1. (9.1)

Here ζ > 0 is a constant which all of our estimates may depend on; one can always pick 
j0
1 , . . . , j

0
n so that the left hand side of (9.1) equals 1, though it is convenient in some 

applications to allow for ζ < 1.
In [11, Definition 4.1] “0-admissible constants” are defined to be constants that depend 

only on diffeomorphic invariant quantities like 
∑q

i,j,k=1 ‖ckij‖C0(BXJ0
(p,ξ)) where ξ > 0 is 

a small, given constant on which our estimates may depend, and XJ0 = (Xj01
, . . . , Xj0n

). 
See [11, Definition 4.1] for the precise definition.
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Fix s0 > 0. For s ≥ s0 we define {s}-admissible constants as in [14, Definition 2.13]
except we only require s0 > 0 rather than s0 > 1. These are constants which depend 
only on diffeomorphic invariant quantities like 

∑q
i,j,k=1 ‖ckij‖C s

XJ0
(C0(BXJ0

(p,ξ))). See [14, 
Definition 2.13] for the precise definition.

Recall that X1, . . . , Xq span the tangent space to M at every point. Moreover, by 
reordering X1, . . . , Xq so that j0

1 = 1, . . . , j0
n = n, we may assume that X1(p), . . . , Xn(p)

form a basis for TpM and (9.1) holds with X1(p) ∧ · · · ∧Xn(p) in the denominator.
We begin by considering the canonical coordinates Φ0(x1, . . . , xn) := ex1X1+···+xnXn(p). 

In the following lemma we prove an analog of [14, Proposition 4.1] when s0 > 0 (as op-
posed to s0 > 1). In this case, we only show that Φ0 is locally a C1-diffeomorphism 
rather than globally a C2-diffeomorphism. In particular, we only show that Φ0 is locally 
injective.

Lemma 9.2. There is an {s0}-admissible constant8 μ0 > 0, such that Φ0(x) := ex·X(p)
is defined for x ∈ Bn(μ0) and Φ0 : Bn(μ0) → M is a locally C1-diffeomorphism, so that 
we can pullback X1, . . . , Xq to Bn(μ0). Moreover, by writing Yj = Φ∗

0Xj for j = 1, . . . , q
and [Y1, . . . , Yn]
 = (I + A)∇, we have

(i) A(0) = 0, sup
x∈Bn(μ0)

|A(x)|Mn×n ≤ 1
2 and ‖A‖C s(Bn(μ0);Mn×n) �{s} 1 for s ≥ s0.

(ii) There exist blk ∈ C s0+1(Bn(μ0)), 1 ≤ l ≤ n < k ≤ q, such that Yk =
∑n

l=1 b
l
kYl for 

n + 1 ≤ k ≤ q. Moreover 
q∑

k=n+1

n∑
l=1

‖blk‖C s+1(Bn(μ0)) �{s} 1.

(iii) There exist c̃kij ∈ C s0(Bn(μ0)) for 1 ≤ i, j ≤ q and 1 ≤ k ≤ n such 
that Φ∗

0[Xi, Xj ] =
∑n

k=1 c̃
k
ij · Yk on Bn(μ0) for 1 ≤ i, j ≤ q. Moreover 

q∑
i,j,k=1

‖c̃kij‖C s(Bn(μ0)) �{s} 1.

Remark 9.3.

(a) The constant μ0 does not depend on ‖ckij‖C s0 . It is almost a 0-admissible constant 
(see [11, Definition 4.1]) except it also depends on the quantity η > 0 in [11, Section 
3.2].

(b) When Φ0 is locally C1-diffeomorphism, for any (continuous) vector field L on M
there is a unique vector field L̃ on Bn(μ0) such that dΦ0(x)L̃

∣∣
x

= L
∣∣
x
. So we define 

the pullback vector field as L̃ := Φ∗
0L.

(c) We cannot say [Yi, Yj ] =
∑n

k=1 c̃
k
ijYk yet, since Y1, . . . , Yq are C s0 and we may not be 

able to talk about commutators of C s0-vector fields when 0 < s0 ≤ 1
2 . Nevertheless 

[Yi, Yj ] can be thought of as Φ∗
0[Xi, Xj ].

8 In [11] and [14] a constant similar to μ0 was called η0.
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(d) When 0 < s < 1, by standard results from ODEs we only know that Φ0 is a C 1+s-
map and we do not expect Φ0 to be C2. Unfortunately, the proof of injectivity for 
Φ0 in [11, Proposition 9.15] requires Φ∗

0X1, . . . , Φ∗
0Xn to be C1 Nevertheless we will 

show that Φ0 is injective when restricted to a ball centered at 0 with a smaller 
radius, and this smaller radius is a {s0}-admissible constant. See Lemma 9.8 and 
Remark 9.9.

(e) Lemma 9.2 “loses one derivative” in the sense that it implies ‖Yj‖C s �{s} 1, but 
our main result gives ‖Yj‖C s+1 �{s} 1. Similar to the proof in [14], we will recover 
this lost derivative by composing with another map Φ1 in Proposition 9.4 (see also 
[14, Proposition 6.3]).

Proof of Lemma 9.2. Let η̃ > 0 be a number such that Φ0 is defined on Bn(η̃) and Φ0

cannot be defined on Bn(η̃′) for any η̃′ > η̃. Note that η̃ is bounded below by a positive 
{s0}-admissible constant (also see [11, Definitions 3.7 and 3.10]).

We first prove the result in the special case q = n. In this case, X1, . . . , Xn form a 
basis of the tangent space to M at every point. Thus, [Xi, Xj ] =

∑n
k=1 c

k
ijXk where 

(ckij)ni,j,k=1 are uniquely determined by X1, . . . , Xn.
By [11, Lemma 9.6] we know there is a unique9 Ã ∈ C0(Bn(0, η̃); Mn×n) such that

{
∂
∂r (rÃ(rθ)) = −Ã(rθ)2 − C(rθ)Ã(rθ) − C(rθ), for |r| < η̃ and θ ∈ Sn−1,

Ã(0) = 0,

where C(x)ji :=
n∑

k=1

xk · cjik(Φ0(x)), x ∈ Bn(0, η̃), 1 ≤ i, j ≤ n.

(9.2)

By [11, Proposition 9.4] there is a 0-admissible constant D > 0 (in fact, depending 
only on n and upper bounds for 

∑n
i,j,k=1 ‖ckij‖C0(M)), such that (see (4.17) in Convention 

4.11)

|Ã(x)|Mn×n ≤ D|x|, x ∈ Bn(0, η̃). (9.3)

Take μ0 := 1
2D , so ‖Ã‖C0(Bn(μ0);Mn×n) ≤ 1

2 . Therefore I + A(x) is invertible matrix 
at every point x ∈ Bn(μ0), which means Φ0 has non-degenerate tangent map at every 
point. By the Inverse Function Theorem, Φ0 is a locally C1-diffeomorphism.

Define the matrix A by Y =: (I +A)∇; where we are treating Y as the column vector 
of vector fields Y = [Y1, . . . , Yn]
, and ∇ is thought of as a column vector. It follows 
from [11, Proposition 9.18], that A = Ã in Bn(μ0) and ‖Ã‖C s(Bn(μ0);Mn×n) �{s} 1. Since 
Y = (I + A)∇, we have 

∑n
i=1 ‖Yi‖C s(Bn(μ0);Rn) �{s} 1, finishing the proof of (i) when 

n = q.

9 In [11, Section 9.3.1], what we call Ã is called A, and what we call A is called Â.
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Since ‖A‖C0(Bn(μ0);Mn×n) ≤ 1
2 , we have ‖(I + A)−1‖C0(Bn(μ0);Mn×n) ≤

∑∞
k=0(

1
2 )k =

3
2 < ∞, so by [14, Lemma 5.7] (applied to the cofactor representation of (I +A)−1) with 
‖A‖C s(Bn(μ0);Mn×n) �{s} 1, we get

‖(I + A)‖C s(Bn(μ0)) + ‖(I + A)−1‖C s(Bn(μ0)) �{s} 1. (9.4)

Take c̃kij := ckij◦Φ0 for 1 ≤ i, j, k ≤ n. We separate the proof of 
∑n

i,j,k=1 ‖c̃kij‖C s(Bn(μ0))
�{s} 1 into the case s > 1 and the case 0 < s ≤ 1.

When s > 1, we have Y1, . . . , Yn ∈ C s ⊂ C1. By [11, Lemma 9.24] we have ∑n
i,j,k=1 ‖c̃kij‖C s(Bn(μ0)) �{s} 1.
When 0 < s ≤ 1, we may not have Y1, . . . , Yn ∈ C1. In order to use previous results 

such as [11, Proposition 8.6], we need Φ0 to be (qualitatively) C2; though we do not 
require any estimates on any C2 norm of Φ0. To get around the fact that Φ0 is not 
C2, we introduce another atlas on Bn(μ0) with respect to which Φ0 is C2. Indeed, we 
say f : Bn(μ0) → R is C2

loc with respect to the atlas A , if for every open subset 
U ⊆ Bn(μ0) such that Φ0 : U → Φ0(U) is bijective, we have f ◦ Φ−1

0 : Φ0(U) ⊆ M → R

is C2
loc.

Since Y1, . . . , Yn are C s and span the tangent space at every point in Bn(μ0), we 
know A is compatible with the standard C s+1-structure on Bn(μ0). In particular both 
(Bn(μ0), A ) agrees with the standard C1,s/2-structure on Bn(μ0).

Now Φ0 : (Bn(μ0), A ) → M is C2. By [11, Proposition 8.6] we have

‖c̃kij‖C s
Y (Bn(μ0),A ) = ‖ckij ◦ Φ0‖C s

Y (Bn(μ0),A ) ≤ ‖ckij‖C s
X(M) 1 ≤ i, j, k ≤ n, 0 < s ≤ 1.

(9.5)

On the other hand by [11, Section 2.2], the definition of ‖ · ‖C s
Y

involves only the 
C1,s/2-structure of the manifold. Indeed for 0 < s ≤ 1, on the domain U = Bn(μ0),

‖f‖C s
Y

= ‖f‖C0 + sup
x,y∈U ;x�=y

|f(x) − f(y)|
distY (x, y) s

2

+ sup
γ∈PY, s2

(h)
h−s|f(γ(2h))− 2f(γ(h)) + f(γ(0))|, where

PY, s2
(h) =

{
γ ∈ C1, s2 ([0, 2h];U) : γ̇(t) =

n∑
j=1

dj(t)Yj(γ(t)), d1, . . . , dn ∈ C0, s2 [0, 2h],

n∑
j=1

‖dj‖2
C0, s2 [0,2h]

≤ 1
}
,

distY (x, y) = inf
{
T > 0 : ∃γ ∈ C0,1([0, T ];U), γ(0) = x, γ(T ) = y,

γ̇(t) =
n∑

j=1
dj(t)Yj(γ(t)),

n∑
j=1

‖dj‖2
L∞[0,T ] ≤ 1

}
.
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Here distY only depends on the Lipschitz structure of Bn(μ0) and PY, s2
(h) only depends 

on the C1, s2 -structure of Bn(μ0).
Since A is compatible with the standard C1, s2 -structure for Bn(μ0), we have

‖c̃kij‖C s
Y (Bn(μ0),A ) = ‖c̃kij‖C s

Y (Bn(μ0)), 1 ≤ i, j, k ≤ n, 0 < s ≤ 1. (9.6)

To show ‖c̃kij‖C s(Bn(μ0)) �{s} 1, it remains to show that ‖c̃kij‖C s(Bn(μ0)) �{s}
‖c̃kij‖C s

Y (Bn(μ0)).
Note that C s(Bn(μ0)) ⊂ C0,s/2(Bn(μ0)) with ‖f‖C0,s/2(Bn(μ0)) �n,s,μ0 ‖f‖C s(Bn(μ0))

for all f . Using (9.4) and [11, Proposition 8.12] we get ‖c̃kij‖C s(Bn(μ0)) �{s−1}
‖c̃kij‖C s

Y (Bn(μ0)), in particular ‖c̃kij‖C s(Bn(μ0)) �{s} ‖c̃kij‖C s
Y (Bn(μ0)). Here the implicit 

{s − 1}-admissible constant (that appears when we say “�{s−1}”) is given in [11, Defi-
nition 8.10], which depends on the upper bound of C0, s2 -norms of (c̃kij)ni,j,k=1.

Combining this with (9.5) and (9.6) we get 
∑n

i,j,k=1 ‖c̃kij‖C s(Bn(μ0)) �{s} 1 for 
0 < s ≤ 1, finishing the proof of (iii) when q = n.

The general case q > n can be reduced to the case q = n as in [11, Section 9.3.2]: we 
get (ii) from [11, Lemma 9.33] and (iii) from [11, Lemma 9.34]. �

Lemma 9.2 yields a local C1-diffeomorphism Φ0 : Bn(μ0) → M and c̃kij ∈ C0(Bn(μ0))
for 1 ≤ i, j, k ≤ n such that Φ∗

0[Xi, Xj ] =
∑n

k=1 c̃
k
ijYk for 1 ≤ i, j ≤ n and ∑q

i=1 ‖Φ∗
0Xi‖C s(Bn(μ0);Rn) +

∑n
i,j,k=1 ‖c̃kij‖C s(Bn(μ0)) �{s} 1 for s ≥ s0. Thus, we have 

reduced the problem to studying vector fields on Bn(μ0), which have estimates in terms 
of classical function spaces, instead of the abstract function spaces C s

X .
By Lemma 9.2 (ii), Φ∗

0Xn+1, . . . , Φ∗
0Xq are now linear combinations of Φ∗

0X1, . . . , Φ∗
0Xn

whose coefficients have C s0+1-norms bounded by a {s0}-admissible constant. So we can 
assume q = n, just as in the beginning of [14, Section 6].

When s0 > 1, the proof of [14, Theorem 2.14] is as follows. In [14, Proposition 6.3] it 
is shown that there is a map Φ2 : Bn → Bn(μ0) which is C s0+1-diffeomorphism onto its 
image such that Φ∗

2Y1, . . . , Φ∗
2Yn are C s0+1 and have C s0+1-norms bounded by a {s0}-

admissible constant. Meanwhile if Y1, . . . , Yn and (c̃kij)ni,j,k=1 are all C s for some s > s0, 
then Φ2 is automatically C s+1 and the C s+1-norms of the coefficients of Φ∗

2Y1, . . . , Φ∗
2Yn

are automatically bounded by a {s}-admissible constant. This completes the proof when 
s0 > 1. Our goal is to generalize this argument to s0 > 0.

Based on the techniques from Section 5, we can prove an analog of [14, Proposition 
6.3] in the setting of s0 > 0. We formulate the statement in the proposition below.

Let X1, . . . , Xn be C1-vector fields on a C2-manifold M that form a basis of the 
tangent space at every point. Near a fixed point p ∈ M we define Φ0(x) := ex·X(p). Write 
[Xi, Xj ] =

∑n
k=1 c

k
ijXk where ckij ∈ C0

loc(M) are uniquely determined by X1, . . . , Xn.
On the subset of the domain of Φ0 where ∇Φ0 is non-degenerate (so Φ0 is locally C1-

diffeomorphism on this set), we denote Yi := Φ∗
0Xi and c̃kij := Φ∗

0c
k
ij for 1 ≤ i, j, k ≤ n. 

And we write Y = [Y1, . . . , Yn]
 as Y = (I+A(x)) ∂
∂x where A is a Mn×n-valued function 

defined on the domain of Φ0.
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Proposition 9.4. Let s0, μ0 > 0, s ≥ s0 and M0, M1 > 0. There are constants K̂ =
K̂(n, s0, μ0, M0) > 0, K0 = K0(n, s0, μ0, M0) > 0, and K1 = K1(n, s0, s, μ0, M0, M1) >
0 that satisfy the following:

Let X1, . . . , Xn and Φ0(x) = ex·X(p) be as above. Suppose we have the following:

• Φ0 : Bn(0, μ0) → M is defined and is a locally C1-diffeomorphism onto its image (so 
that Y, A, ̃ckij are defined on Bn(0, μ0)).

• sup
|x|<μ0

|A(x)| ≤ 1
2 and

‖A‖C s0 (Bn(0,μ0);Mn×n) +
n∑

i,j,k=1

‖c̃kij‖C s0 (Bn(0,μ0)) < M0. (9.7)

Then

(i) There is a map Φ1 : Bn → Bn(0, μ0) such that

• Φ1(0) = 0 and Φ1 is C s0+1-diffeomorphism onto its image.
• Φ∗

1Y = [Φ∗
1Y1, . . . , Φ∗

1Yn]
 is a collection of C s0+1-vector fields on Bn that 
can be written as

Φ∗
1Y = K̂(I + Â)∇, where Â(0) = 0, ‖Â‖C0(Bn;Mn×n) ≤ 1

2 . (9.8)

Moreover, we have the estimate

‖Φ1‖C s0+1(Bn;Rn) + ‖Â‖C s0+1(Bn;Mn×n) ≤ K0. (9.9)

(ii) Suppose additionally A and c̃kij are all C s with

‖A‖C s(Bn(0,μ0);Mn×n) +
n∑

i,j,k=1

‖c̃kij‖C s(Bn(0,μ0)) < M1. (9.10)

Then Φ1 : Bn → Bn(0, μ0) is a C s+1-map and Â ∈ C s+1(Bn; Mn×n). Moreover

‖Φ1‖C s+1(Bn;Rn) ≤ K1, ‖Â‖C s+1(Bn;Mn×n) ≤ K1. (9.11)

Remark 9.5.

(a) For the proof of Theorem 9.1 we will apply Proposition 9.4 with Φ0 and μ0 as in 
Lemma 9.2. In this application, K̂ and K0 are {s0}-admissible constants and K1 is 
an {s}-admissible constant. In particular, in this application, we have ‖Φ1‖C s+1 �{s}
1 and ‖Â‖C s+1 �{s} 1.
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(b) A map similar to Φ1 in Proposition 9.4 is called Φ2 in [14, Proposition 6.3]. In the 
proof of [14, Proposition 6.3], Φ2 is decomposed as a C s0+1-diffeomorphism and a 
scaling map. In our setting the scaling is already done in Proposition 5.15. Also see 
Lemma 9.7.

We need some preliminary results to prove Proposition 9.4.
Suppose we have Proposition 9.4 (i), that is, we construct a Φ1 such that ‖Φ1‖C s0+1 +∑n
i=1 ‖Φ∗

1Yi‖C s0+1 �{s0} 1. Note that the Φ1 does not depend on the index s. In order 
to prove Proposition 9.4 (ii), i.e. ‖Φ1‖C s+1 +

∑n
i=1 ‖Φ∗

1Yi‖C s+1 �{s} 1 for every s > s0
(see also for [14, Theorem 2.14 (j)]), we need to give regularity estimate for Theorem 5.1.

Instead of vector fields, we proceed by using 1-forms.
Recall in Section 5.1 we start with 1-forms λi = dxi +

∑n
j=1 a

i
jdx

j , i = 1, . . . , n, 
defined on Bn ⊂ Rn such that A = (aij)n×n is supported in 1

2B
n. We let F = id + R :

Bn
x → Bn

y be the map in Proposition 5.10, which is a C1-diffeomorphism and solves (5.8)
with R

∣∣
∂Bn = 0. We write the pushforward 1-forms ηi = F∗λ

i, i = 1, . . . , n on Bn
y as 

ηi = dyi +
∑n

j=1 b
i
jdy

j . By Lemma 5.13 we know B = (bij)n×n : Bn → Mn×n solves 
(5.9), which can be rewritten as (5.27).

Proposition 9.6. Fix s0 > 0. There is a c′ = c′(n, s0) > 0, such that in additional to the 
results in Theorem 5.1 with α = s0, β = s0 + 1 and c(n, s0, s0 + 1) = c′(n, s0), we have 
the following:

(i) For the collection of 1-forms [F∗λ
1, . . . , F∗λ

n]
 = (I + B)dy we have
‖B‖C0(Bn;Mn×n) ≤ 1

4 .

And for any s ≥ s0, M ′ > 0, there is a K ′ = K ′(n, s, s0, M ′) > 0 such that if in 
addition to the assumptions of Theorem 5.1, we have λ1, . . . , λn, dλ1, . . . , dλn ∈ C s with

n∑
i=1

‖λi‖C s(Bn;T∗Bn) + ‖dλi‖C s(Bn;∧2T∗Bn) < M ′,

then:

(ii) The map F : Bn
x → Bn

y in Theorem 5.1 is C s+1 and its inverse Φ satisfies 
‖Φ‖C s+1(Bn;Rn) < K ′.

(iii) The 1-forms η1, . . . , ηn are all C s+1 and the coefficient matrix B : Bn → Mn×n

satisfies ‖B‖C s+1( 3
4B

n;Mn×n) < K ′.

Informally Proposition 9.6 (iii) is saying 
∑n

i=1 ‖ηi‖C s+1 �{s} 1.
Note that we require ‖λ‖C s0 and ‖dλ‖C s0 to be small (bounded by the constant c

from Theorem 5.1) in the assumption of Proposition 9.6. However, by taking M ′ large 
in Proposition 9.6, we can allow ‖λ‖C s and ‖dλ‖C s to be large for s > s0.
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Proof. For (i), let c = c(n, s0, s0 + 1) > 0 be the original constant in Theorem 5.1. 
By (5.2) we see that for any c′ ∈ (0, c], 

∑n
i=1 ‖λi − dxi‖C s0 + ‖dλi‖C s0 < c′ implies ∑n

i=1 ‖F∗λ
i − dyi‖C s0+1(Bn;T∗Bn) ≤ c′

c .
Recall the notation F∗λ = (I + B)dy. Since ‖B‖C0 �s0 ‖B‖C s0+1 ≈s0

∑n
i=1 ‖F∗λi −

dyi‖C s0+1 , by choosing c′ ∈ (0, c] small enough we can ensure ‖B‖C0(Bn;Mn×n) <
1
4 .

To prove (ii) and (iii), we choose c′(n, s0) ∈ (0, c] as follows.
Let c1 = c1(n, s0, s0 + 1) > 0, c2 = c2(n, s0, s0 + 1) > 0, and c3 = c3(n, s0, s0 + 1) > 0

be the constants in Proposition 5.10, Lemma 5.13, and Proposition 5.14, respectively.
In the proof of Theorem 5.1 we see that if 

∑n
i=1 ‖λi‖C s0 +‖dλi‖C s0 < 1

2n2 min(c1, c2c3)
then B ∈ C s0+1(Bn; Mn×n) ⊂ C1(Bn; Mn×n). We are going to find a smaller constant 
c′3(n, s0) ∈ (0, c3) and then take c′ ≤ 1

2n2 min(c1, c2c′3).
Recall Rk

i (B) =
∑n

j=1(
√

dethhij − δij)bkj , 1 ≤ i, k ≤ n in (5.27) (see (5.7) for hij and √
deth) are rational functions which are finite near the origin such that Rk

i (B) = O(|B|2)
near B = 0 ∈ Mn×n (see (5.5), (5.7), and Lemma 5.3). So when B ∈ C1, we can write 
∂yiRk

i (B) =
∑n

j,l=0 R̃
kj
il (B) · ∂yiblj where

R̃kl
il (v) := ∂Rk

i

∂vlj
(v), for 1 ≤ i, j, k, l ≤ n, defined for v ∈ Mn×n closed to 0.

So R̃kl
il (0) = 0 since |Rk

i (v)| � |v|2 for small v. The equation (5.27) can be rewritten as

n∑
i=1

∂

∂yi
bki +

n∑
i,j,l=0

R̃jk
il (B) ∂

∂yi
blj = 0 in Bn

y , k = 1, . . . , n. (9.12)

By the conclusions of Proposition 5.14 we have B ∈ C s0+1 ⊂ C1. And by the assump-
tions of Proposition 5.14 combined with (9.12), we know u = B is a C1-solution to the 
following system of equations in u = (uj

i )n×n:

∂ui
k

∂yj
−

∂ui
j

∂yk
= dηi

( ∂

∂yj
,

∂

∂yk

)
, i = 1, . . . , n, 1 ≤ j < k ≤ n.

n∑
i=1

∂

∂yi
uk
i +

n∑
i,j,l=0

R̃jk
il (B) ∂

∂yi
ul
j = 0, k = 1, . . . , n.

(9.13)

(9.13) is of the form

Eu + LBu = gB ,

where E : C∞(Bn; Rn2) → C∞(Bn; Rnn2−n+2
2 ) is a first order constant linear differential 

operator that does not depend on B, and LB is a first order linear differential operator 
with coefficients comes from R̃jk

il (B). Here, gB is the vector-valued function which is the 
right hand side of (9.13); i.e., gB = (dη1, . . . , dηn, 0).
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If we write ui =
∑n

j=1 u
i
jdy

j , i = 1, . . . , n, then we see that E(ui
j) = (dui, ϑRnui)ni=1. 

So E∗E = dϑ + ϑd = 
 is elliptic, which implies that E is an elliptic operator.
By classical elliptic theory (see [14, Proposition A.1]) there is a γ = γ(E) > 0 such 

that if 
∑n

i,j,k,l=1 ‖R̃
jk
il (B)‖L∞(Bn) < γ then R̃jk

il (B), gB ∈ C s implies u ∈ C s+1(Bn; Rn2)
with ‖u‖C s+1 �n,s0,s,‖ηi‖Cs ,‖dηi‖Cs ‖u‖C s0+1 + ‖gB‖C s0 .

Thus, for any σ̃ > 0 there is C ′
0 = C ′

0(n, s0, s, c3, γ, ̃σ) > 0 that does not depend on 
B, such that

if
n∑

i,j,k,l=1

‖R̃jk
il (B)‖L∞(Bn) < γ

and
n∑

i=1
‖ηi − dyi‖C s(Bn;T∗Bn) + ‖dηi‖C s(Bn;∧2T∗Bn) < σ̃,

then ‖B‖C s+1( 3
4B

n;Mn×n) ≤ C ′
0(n, s0, s, c3, γ, σ̃).

(9.14)

When ‖B‖L∞ suitably small we have

n∑
i,j,k,l=1

‖R̃jk
il (B)‖L∞ �R ‖B‖L∞ �

n∑
k=1

‖ηk − dyk‖L∞ �s0

n∑
k=1

‖ηk − dyk‖C s0 .

So we can take a c′3 ∈ (0, c3) (which still only depends on n, s0) such that

n∑
k=1

‖ηk − dyk‖C s0 + ‖dηk‖C s0 < c′3 ⇒
n∑

i,j,k,l=1

‖R̃jk
il (B)‖L∞(Bn) < γ. (9.15)

Using the same proof as Theorem 5.1 in Section 5.4, take c′ = 1
2n2 min(c1, c2c′3) and we 

see that 
∑n

k=1 ‖λk−dxk‖C s0 +‖dλk‖C s0 < c′ implies 
∑n

k=1 ‖ηk−dyk‖C s0 +‖dηk‖C s0 < c′3
and ‖F − id‖C s0+1(Bn;Rn) +

∑n
i=1 ‖ηi − dyi‖C s0+1(Bn;Rn) ≤ 1.

We then prove (ii) and (iii) using this constant c′.

(ii): Recall by assumption suppA � 1
2B

n, so 
R
∣∣
Bn\ 1

2B
n = 0 and thus similar to 

(5.18) we have

‖R‖C s+1(Bn\ 3
4B

n;Rn) �s,s0 ‖R‖C s0+1(Bn;Rn) �s0 ‖A‖C s0 . (9.16)

On the other hand by classical interior Schauder estimates we know that

‖R‖C s+1( 4
5B

n) ≤ C
n∑

i,j,k=1

‖
√

det ggijaki ‖C s(Bn), (9.17)

where C is a constant that only depends on n, s, the upper bounds of ‖I +
A‖C0(Bn;Mn×n), ‖(I + A)−1‖C0(Bn;Mn×n) and ‖

√
det ggij‖C s(Bn). For the precise form 
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of the interior Schauder’s estimate we use, see, for example, [4, Corollary 2.28] for 
s > 1, s /∈ Z and [6, Theorem 8.32] for 0 < s < 1. The proof for s ∈ Z+ is similar to 
these.

In Proposition 5.10 we chose c1 small so that ‖A‖C0 < 1
2 ; thus ‖I + A‖C0(Bn;Mn×n)

and ‖(I +A)−1‖C0(Bn;Mn×n) are already uniformly bounded. And since 
√

det ggijaki and √
det ggij are all polynomials of the components of A, by Lemma 2.2 their C s-norms 

are bounded by a constant depending only on the upper bound of ‖A‖C s. Therefore 
combining (9.16) and (9.17), since F = id + R, we have

‖F‖C s+1(Bn) ≤ C ′
1(n, s, s0, c1,M

′), (9.18)

for some C ′
1 > 0 that only depends on n, s, s0 and an upper bound for ‖A‖C s . Since 

‖A‖C s ≤ M ′, C ′
1 does not depend on ‖A‖C s , just on M ′.

By Proposition 5.10 (iii), we have Φ = F−1 : Bn ∼−→ Bn and ‖Φ‖C s0+1(Bn;Rn) < c−1
1 , 

where c1 = c1(n, s0, s0 + 1) is the constant from Proposition 5.10. So inf
x∈Bn

| det(∇F )(x)|
is bounded below by a constant depending only on n, s0, c1. Applying [14, Lemmas 5.9 
and 5.8] with ‖F‖C s+1(Bn) ≤ C ′

1 and ‖A‖C s(Bn;Mn×n) +
∑n

i=1 ‖dλi‖C s < M ′ we get 
Φ ∈ C s+1(Bn; Rn) with

‖Φ‖C s+1(Bn;Rn) + ‖A ◦ Φ‖C s(Bn;Mn×n) +
n∑

i,j,k=1

∥∥(dλi
(

∂
∂xj ,

∂
∂xk

))
◦ Φ
∥∥

C s(Bn) ≤ C ′
2,

(9.19)

for some C ′
2 > 0 that only depends on n, s, s0, C ′

1 and the upper bound of ‖A‖C s . Since 
‖A‖C s ≤ M ′ and C ′

1 depends only on n, s, s0, c1 and M ′, the same is true of C ′
2, i.e. 

C ′
2 = C ′

2(n, s, s0, c1, M ′). Taking ζ such that ζ−1 ≥ C ′
2 we complete the proof of (ii).

(iii): By a direct computation (also see (5.20)) we have

B = ∇Φ − I + (A ◦ Φ)∇Φ, dηi = Φ∗dλi =
∑

1≤j<k≤n

((
dλi
(

∂
∂xj ,

∂
∂xk

))
◦ Φ
)
· dφj ∧ dφk.

(9.20)

Applying Lemma 2.2 to (9.20) and using (9.19) we can find a C ′
3 = C ′

3(n, s, s0, c1, M ′)
such that,

‖B‖C s(Bn;Mn×n) +
n∑

i=1
‖dηi‖C s(Bn;∧2T∗Bn) < C ′

3(n, s, s0, c1,M
′). (9.21)

Applying (9.14) with σ̃ = C ′
3, where we recall that γ depends only on n, we see that 

C ′
0(n, s0, s, c′3, γ, C

′
3) is a constant depending only on n, s0, s, M ′.

Take K ′ = C ′
2(n, s, s0, c1, M ′) + C ′

0(n, s, s0, c′3, γ, C
′
3), since c1 and c′3 are constants 

that only depend on n, s0 we know K ′ = K ′(n, s, s0, M ′) depends only on n, s, s0, M ′, 
which completes the proof of (iii). �
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The proof of Proposition 5.15 gives a similar regularity estimate:

Lemma 9.7. Let α, β ∈ [α, α + 1], μ0, ̃c, M > 0 be as in Proposition 5.15. Let s ≥ α, 
M̃ > 1, there is a K̃ = K̃(n, α, β, s, μ0, ̃c, M, M̃) > 0 that satisfies the following:

Let θ1, . . . , θn ∈ C α(μ0Bn; T ∗Rn) be as in the assumptions of Proposition 5.15. Sup-
pose in addition to these assumptions we have θ1, . . . , θn ∈ C s, dθ1, . . . , dθn ∈ C s with 
estimate

n∑
i=1

‖θi‖C s(μ0Bn;T∗Rn) + ‖dθi‖C s(μ0Bn;∧2T∗Rn) < M̃. (9.22)

Then λ1, . . . , λn constructed in Proposition 5.15 satisfy λ1, . . . , λn ∈ C s, dλ1, . . . , dλn ∈
C s with estimate

n∑
i=1

‖λi‖C s(Bn;T∗Rn) + ‖dλi‖C s(Bn;∧2T∗Rn) < K̃.

Proof. In the proof of Proposition 5.15, we construct λ1, . . . , λn as follows: For i =
1, . . . , n,

ρ̃i := G ∗ ϑ(χ0 · dθi + dχ0 ∧ θi), ρi := ρ̃i − (ρ̃i
∣∣
0), (9.23)

λi := dxi + 1
κ0
χ1 · φ∗

κ0
(θi − dxi), τ i := 1

κ0
χ1 · (φ∗

κ0
ρi) + 1

κ0
G ∗ ϑ

(
dχ1 ∧ φ∗

κ0
(θi − dxi)

)
.

(9.24)

Here χ0 ∈ C∞
c (μ0Bn) satisfies χ0

∣∣
μ0
2 Bn ≡ 1; χ1 ∈ C∞

c (1
2B

n) satisfies χ1
∣∣
1
3B

n ≡ 1; G is 
the Newtonian potential; ϑ is the codifferential operator; κ0 = κ0(n, α, β, μ0, ̃c, M) > 0
is the scaling constant and φκ0(x) = κ0x.

By assumption θi, dθi ∈ C s with bound (9.22). Since φκ0 is a scaling map depending 
only on κ0, we have

‖λi‖C s(Bn;T∗Rn) �κ0,μ0,χ1 1 + ‖θi − dxi‖C s(μ0Bn;T∗Rn) �κ0,χ1 M̃ i = 1, . . . , n.
(9.25)

Applying Lemma 4.7 (see also (5.49)), with the same argument as (5.44), we have for 
i = 1, . . . , n,

‖ρi‖C s+1(μ0Bn;T∗Rn) �s,μ0,χ0 M̃.

Also, by a direct estimate,

‖τ i‖C s+1(μ0Bn;T∗Rn) �κ0,s,μ0,χ1 ‖ρi‖C s+1 + ‖θi − dxi‖C s �s,κ0,μ0,χ0,χ1 M̃.

In (5.49) it is shown that dλi = dτ i and therefore,
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‖dλi‖C s+1(μ0Bn;∧2T∗Rn) = ‖dτ i‖C s+1(μ0Bn;∧2T∗Rn)

�s ‖τ i‖C s+1(μ0Bn;T∗Rn) �s,κ0,μ0,χ0,χ1 M̃.
(9.26)

Combining (9.25) and (9.26), since χ0 and χ1 are fixed cut-off functions and κ0 =
κ0(n, α, β, μ0, ̃c, M), we get K̃ = K̃(n, s, μ0, κ0, M̃) = K̃(n, α, β, s, μ0, ̃c, M, M̃) as de-
sired. �

We can now prove Proposition 9.4 by applying Proposition 9.6 and Lemma 9.7.

Proof of Proposition 9.4. Let θ1, . . . , θn be the dual basis to Y1, . . . , Yn on Bn(0, μ0). 
Write θ = [θ1, . . . , θn]
 as θ = (I + B)dx where B = (I + A)−1 − I and dx =
[dx1, . . . , dxn]
.

Clearly B(0) = 0 because ∇Φ0(0) = I. So

‖(I + A)−1‖C0(Bn(0,μ0);Mn×n) ≤
∞∑
j=0

‖A‖jC0(Bn(0,μ0);Mn×n) ≤
∞∑
j=0

2−j ≤ 2,

implying inf
|x|<μ0

|det(I + A(x))| ≥ 2−n.

(9.27)

By assumption ‖I + A‖C s0 (Bn(0,μ0);Mn×n) ≤ ‖I‖C s0 (Bn(0,μ0);Mn×n) +
‖A‖C s0 (Bn(0,μ0);Mn×n) �n,s0,μ0,M0 1. Applying [14, Lemma 5.7] along with (9.27), we 
have ‖I + B‖C s0 (Bn(0,μ0);Mn×n) �n,s0,μ0,M0 1, which means

∃M̂1 = M̂1(n, s0, μ0,M0) > 0, such that
n∑

i=1
‖θi‖C s0 (Bn(0,μ0);T∗Rn) ≤ M̂1. (9.28)

By (7.1), [Xi, Xj ] =
∑n

k=1 c
k
ijXk implies that

d((Φ0)∗θk) =
∑

1≤i<j≤n

ckij((Φ0)∗θi) ∧ ((Φ0)∗θj),

so dθk =
∑

1≤i<j≤n

c̃kijθ
i ∧ θj , k = 1, . . . , n.

(9.29)

Note that we cannot say [Yi, Yj ] =
∑n

k=1 c̃
k
ijYk since we cannot define [Yi, Yj ] when 

s ∈ (0, 12 ], while dθk and c̃kijθ
i ∧ θj in (9.29) are defined due to Proposition 2.7 (ii) with 

the equality holding in the sense of distributions.
So by Lemma 2.2 we have

n∑
k=1

‖dθk‖C s0 (Bn(0,μ0);T∗Rn) �s0,μ0

n∑
i,j,k=1

‖c̃kij‖C s0‖θi‖C s0 ‖θj‖C s0

�n,s0,μ0 M2
0 M̂

2
1 �n,s0,μ0,M0 1.

(9.30)

In other words,
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∃M̂2 = M̂2(n, s0, μ0,M0) > 0, such that
n∑

i=1
‖dθi‖C s0 (Bn(0,μ0);T∗Rn) ≤ M̂2. (9.31)

Applying Lemma 9.7 with α = s0, β = s0 + 1, M = M̂1 + M̂2, μ0 = μ0 and c̃ = c′, 
where M̂1 is in (9.28), M̂2 is in (9.31) and c′ = c′(n, s0) is the constant in Proposition 9.6, 
we can find κ0 = κ0(n, s0, μ0, M0) ∈ (0, μ0] and 1-forms λ1, . . . , λn ∈ C s0(Bn; T ∗Bn) that 
satisfy the assumptions of Proposition 9.6 with constant c′, that is

(a) λ1, . . . , λn span the tangent space at every point in Bn.
(b) supp(λi − dxi) � 1

2B
n for i = 1, . . . , n.

(c) λi
∣∣
1
3B

n = 1
κ0

· (φ∗
κ0
θi)
∣∣
1
3B

n for i = 1, . . . , n. Here φκ0 : Bn → Bn(0, μ0), φκ0(x) =
κ0 · x.

(d)
∑n

i=1(‖λi − dxi‖C s0 + ‖dλi‖C s0 ) ≤ c′

By Proposition 9.6 with this c′ (see Theorem 5.1, with α = s0 and β = s0 + 1), we 
can find a map F : Bn ∼−→ Bn, such that F (1

3B
n) ⊇ Bn(F (0), 16 ) and by endowing the 

codomain of F with standard coordinate system y = (y1, . . . , yn),

‖F − id‖C s0+1(Bn;Rn) + ‖F∗λ− dy‖C s0+1(Bn;Mn×n)

≤ c′ −1
n∑

i=1

(
‖λi − dyi‖C s0 (Bn;Rn) + ‖dλi‖C s0 (Bn;∧2T∗Bn)

)
.

(9.32)

Write F∗λ =: (I + B̂)dy. Note that by condition (d), the right hand side of (9.32)
is bounded by 1 and therefore ‖F∗λ − dy‖C s0+1(Bn;Mn×n) ≤ 1, and there is a C1 =
C1(n, s0) > 0 such that

‖I + B̂‖C s0+1(Bn;Mn×n) ≤ C1(n, s0). (9.33)

And by Proposition 9.6 (i) we have ‖B̂‖C0(Bn;Mn×n) <
1
4 . So

|(I + B̂(F (0)))−1|Mn×n ≤ ‖(I + B̂)−1‖C0(Bn;Mn×n) ≤
∑∞

k=0(1/4)k = 4
3 . (9.34)

Define an affine linear map

ψ(t) := (I + B̂(F (0)))−1 · t
9 + F (0), t ∈ Bn. (9.35)

Note that by (9.34) we have ψ(Bn) ⊆ 4
3 · 1

9B
n + F (0) ⊂ Bn(F (0), 16 ).

Define Φ1 : Bn → Bn(0, μ0) by

Φ1(t) := φκ0 ◦ F−1 ◦ ψ(t) = κ0 · F−1
(
(I + B̂(F (0)))−1 · t

9 + F (0)
)
, t ∈ Bn. (9.36)

Here Φ1 is well-defined because ψ(Bn) ⊂ Bn(F (0), 16 ), Bn(F (0), 16 ) ⊆ F (1
3B

n) and 
φκ0(1Bn) ⊂ μ0Bn. Clearly Φ1(0) = κ0 · F−1(F (0)) = 0.
3
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By condition (c), λi
∣∣
1
3B

n = 1
κ0

· (φ∗
κ0
θi)
∣∣
1
3B

n , and the fact that F−1 ◦ ψ(Bn) ⊂ 1
3B

n, 
we have

(Φ∗
1θ)(t) = κ0ψ

∗(F∗λ) = κ0ψ
∗((I + B̂(y))dy) = κ0

(
I + B̂(ψ(t))

)
dψ(t)

= κ0
9

(
I + B̂(ψ(t))

)
·
(
I + B̂(F (0))

)−1
dt.

(9.37)

Since Φ∗
1Y1, . . . , Φ∗

1Yn and Φ∗
1θ

1, . . . , Φ∗
1θ

n are dual basis to each other, we can write

Φ∗
1Y =: 9

κ0
· (I + Â) ∂

∂t , where Â(t) = (I + B̂(F (0))) · (I + B̂(ψ(t)))−1 − I, t ∈ Bn.

(9.38)

Taking t = 0 in (9.38), since ψ(0) = F (0), we get Â(0) = 0.
Let K̂ := 9

κ0
, since κ0 = κ0(n, s0, μ0, M0), we have K̂ = K̂(n, s0, μ0, M0) is as desired 

for (i).
Since ‖B̂‖C0 < 1

4 and using the power series Â(t) = (I + B̂(F (0))) ·
∑∞

j=1 B̂(ψ(t))j , 
we have

‖Â‖C0(Bn;Mn×n) ≤ |(I + B̂(F (0)))|Mn×n

∞∑
j=1

‖B̂‖jC0 < 5
4

∞∑
j=1

(1
4)j = 5

3 <
1
2 ,

‖I + Â‖C0(Bn;Mn×n) <
3
2 .

(9.39)

This finishes the proof of (9.8).
To prove (9.9) we need to find the constant K0.
Applying [14, Lemma 5.7] to (9.39), (9.38), and (9.33), we see that there is a C2 =

C2(n, s0, C1) = C2(n, s0, μ0, M0) > 0 such that

‖I + Â‖C s0+1(Bn;Mn×n) ≤ C2(n, s0, μ0,M0). (9.40)

Since F is constructed in Proposition 5.10 (see Remark 5.12), by Proposition 5.10
(iii) we have ‖F−1‖C s0+1 ≤ c−1

1 where c1 = c1(n, s0, s0 + 1) is the constant 
in Proposition 5.10. Since by (9.36), Φ1 is an affine transform of F−1, we have 
‖Φ1‖C s0+1(Bn;Rn) �n,s0,κ0 ‖F−1‖C s0+1(Bn;Rn). So we can find a C3 = C3(n, s0, μ0) > 0
such that ‖Φ1‖C s0+1(Bn;Rn) ≤ C3.

Taking K0 = max(C2 + ‖I‖C s0+1(Bn;Mn×n), C3), we get (9.9) which completes the 
proof of (i).

We now focus on the proof of (ii), where we assume that additionally we have 
(9.10). By [14, Lemma 5.7] along with (9.27), we have ‖(I + A)−1‖C s �n,s,μ0,M0,M1

1, i.e. ‖θi‖C s �n,s,μ0 1. By (9.29) with the same argument as (9.30), we get 
‖dθi‖C s �n,s,μ0,M0,M1 1. In other words, where exists a M̃ = M̃(n, s, μ0, M0, M1) > 0
such that
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n∑
i=1

(
‖θi‖C s(Bn(0,μ0),T∗Rn) + ‖dθi‖C s(Bn(0,μ0),∧2T∗Rn)

)
≤ M̃.

By Lemma 9.7, the 1-forms λ1, . . . , λn ∈ C s0(Bn; T ∗Bn) constructed above are all C s

and satisfy dλ1, . . . , dλn ∈ C s with estimate

n∑
i=1

(
‖λi‖C s(B,T∗Rn) + ‖dλi‖C s(Bn,∧2T∗Rn)

)
≤ K̃(n, s, s0, μ0,M0,M1), (9.41)

where K̃ = K̃(n, s, s0, μ0, M0, M1) > 0 is the constant obtained in Lemma 9.7.
By Proposition 9.6 with assumption (9.41) (i.e. M ′ = K̃ in its assumption), we 

have F ∈ C s+1(Bn; Rn), F∗λ
1, . . . , F∗λ

n ∈ C s+1, and moreover there is a C4 =
C4(n, s0, s, μ0, M0, M1) > 0 (which is the K ′ in the conclusion of Proposition 9.6) that 
does not depend on F and λ1, . . . , λn, such that

‖F−1‖C s+1(Bn;Rn) + ‖F∗λ‖C s+1( 3
4B

n;Mn×n) ≤ C4(n, s0, s, μ0,M0,M1). (9.42)

Since we have Bn(F (0), 16 ) ⊆ F (1
3B

n) ∩ 3
4B

n from Theorem 5.1, combining (9.42) and 
(9.37) we can find a C5 = C5(n, s0, s, μ0, M0, M1) > 0 such that

‖Φ1‖C s+1(Bn;Rn) + ‖Φ∗
1θ‖C s+1(Bn;Mn×n) ≤ C5(n, s0, s, μ0,M0,M1). (9.43)

Applying [14, Lemma 5.7] on (9.43), (9.38) and (9.39) we see that ‖I + Â‖C s+1

�n,s0,s,μ0,M0,M1 1. So there is a C6 = C6(n, s0, s, μ0, M0, M1) such that

‖Â‖C s+1(Bn;Mn×n) ≤ C6(n, s0, s, μ0,M0,M1). (9.44)

Take K1 = max(C5, C6), we get (9.11) which completes the proof of (ii). �
Taking Φ = Φ1 ◦Φ0 nearly completes the proof of Theorem 9.1 (see also [14, Theorem 

2.14]) except we have not established the injectivity of Φ, since we have only shown Φ0 is 
a local C1-diffeomorphism rather than a global C1-diffeomorphism onto its image. This 
problem can be resolved through the next result:

Lemma 9.8. Let s0, μ0, M0 > 0 be as in Proposition 9.4. Then there is a μ1 =
μ1(n, s0, μ0, M0) ∈ (0, 1] depending only on n, s0, μ0, M0 and satisfying the following:

If C1-vector fields X1, . . . , Xn on M that satisfy the assumptions of Proposition 9.4
with addition that10:

• Let U := Φ0 ◦ Φ1(Bn) ⊆ M. For any point q ∈ U and μ ∈ (0, μ0], if the exponential 
t �→ et·X(q) is defined for t ∈ Bn(0, μ), then et·X(q) �= q holds for t ∈ Bn(0, μ)\{0}.

10 Also see the quantity η > 0 in [11, Section 3.2].
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Then Φ0 ◦ Φ1 is injective in Bn(0, μ1). Moreover Φ0 ◦ Φ1
∣∣
Bn(0,μ1)

: Bn(0, μ1) → M is 
C2-diffeomorphism onto its image.

Remark 9.9. By Proposition 9.6, Φ1 : Bn → Bn(μ0) is a C s0+1-diffeomorphism onto 
its image and satisfies Φ1(0) = 0. By (9.8), we have Φ∗

1(I + A)∇ = K̂(I + Â)∇ where 
‖A‖C0 , ‖Â‖C0 ≤ 1

2 , so

‖(∇Φ1)−1‖C0(Bn;Mn×n) = ‖Φ∗
1∇‖C0(Bn;Mn×n)

≤ K̂‖I + Â‖C0(Bn;Mn×n)‖(I + A)−1‖C0(μ0Bn;Mn×n) ≤ 3K̂.
(9.45)

Here K̂ is an {s0}-admissible constant. (9.45) implies Φ1(Bn(0, r)) ⊇ Bn(0, 3K̂r) for all 
r ∈ (0, 1], therefore Lemma 9.8 tells us that Φ0

∣∣
Bn((3K̂)−1μ1)

: Bn
(
0, (3K̂)−1μ1

)
→ M

is injective.

Proof. By Proposition 9.4, we have Y = Φ∗
0X = (I + A) ∂

∂x and Φ∗
1Y = K̂(I + Â) ∂

∂t

are such that ‖A‖C0(Bn(μ0);Mn×n), ‖Â‖C0(Bn;Mn×n) ≤ 1
2 and K̂ �n,s0,μ0,M0 1 (K̂ is an 

{s0}-admissible constant).
Clearly ‖(I + Â)−1‖C0(Bn;Mn×n) ≤ 2, so

inf
t∈Bn

det(Φ∗
1Y )(t) ≥ K̂‖(I + Â)−1‖−n

C0(Bn;Mn×n) ≥ 2−nK̂ �n,s0,μ0,M0 1.

On the other hand by (9.9) we have

‖Φ∗
1Y ‖C1(Bn;Mn×n) �n,s0 ‖Φ∗

1Y ‖C s0+1(Bn;Mn×n) = K̂‖I + Â‖C s0+1(Bn;Mn×n)

≤ K̂(1 + K0) �n,s0,μ0,M0 1.

And by (9.7) we have

n∑
i,j,k=1

‖(Φ0 ◦ Φ1)∗ckij‖C0(Bn) ≤
n∑

i,j,k=1

‖ckij‖C0(M) ≤ M0 �M0 1.

Therefore applying [11, Proposition 9.15] to the map Φ0 ◦Φ1(t) = et·Φ
∗
1Y (0) we can find 

a μ1 > 0 that depends only on n, s0, μ0 such that Φ0 ◦ Φ1 is injective on Bn(μ1).
Since (X1, . . . , Xn) and (Φ0 ◦Φ1)∗(X1, . . . , Xn) are both C1 and span their respective 

tangent spaces at every point, we know Φ0◦Φ1|Bn(0,μ1) is a C2-map with non-degenerate 
tangent map at every point in the domain. Since we have also shown it is injective, we 
conclude it is a C2-diffeomorphism onto its image. �

By combining Lemma 9.8, Propositions 9.4, and 9.6, we can prove Theorem 9.1:

Proof of Theorem 9.1. As mentioned before, once we establish [14, Theorem 2.14] for 
s, s0 > 0, the same follows for [13, Theorem 4.5]. Thus, we prove only [14, Theorem 2.14]
for s, s0 > 0.
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Fix x0 ∈ M. Since the results [14, Theorem 2.14 (a), (b), and (c)] do not depend on 
s0 and s, we do not need to change their proof.

Recall, we have reordered X1, . . . , Xq such that (9.1) holds with j0
1 = 1, . . . , j0

n = n. 
Set XJ0 := (X1, . . . , Xn). Let Φ0(t) := et1X1+···+tnXn(x0). By Lemma 9.2 we can find 
a 0-admissible constant μ0 such that Φ0 : Bn(μ0) → M is a local C1-diffeomorphism. 
And moreover by writing Yi := Φ∗

0Xi for i = 1, . . . , q and YJ0 =: (I + A)∇, we have 
‖A‖C0(Bn(μ0);Mn×n) ≤ 1

2 , ‖A‖C s(Bn(μ0);Mn×n) �{s} 1. And we can find (blk)1≤l≤n<k≤q

and (c̃kij)ni,j,k=1 such that Yk =
∑n

l=1 b
l
kYl, Φ∗

0[Xi, Xj ] =
∑n

l=1 c̃
l
ijYl for 1 ≤ i, j ≤ n <

k ≤ q with 
∑n

l=1
∑q

k=n+1 ‖blk‖C s+1(Bn(μ0)) +
∑n

i,j,l=1 ‖c̃lij‖C s(Bn(μ0)) �{s} 1.
Let Φ1 be the map given in Proposition 9.4, and let μ1 > 0 be the constant (which is 

{s0}-admissible) from Lemma 9.8. We define Φ : Bn(1) → M by

Φ(t) := Φ0 ◦ Φ1(μ1 · t). (9.46)

By Lemma 9.8, Φ is a C2-diffeomorphism onto its image and [14, Theorem 2.14 (d), 
(e) and (g)] follow.

By (9.8) and (9.46), (where we use X = XJ0 and Y = YJ0 in Proposition 9.4), we 
have (Φ0 ◦ Φ1)∗XJ0 = Φ∗

1YJ0 = K̂(1 + Â) ∂
∂t , so

Φ∗XJ0(t) = K̂
μ1

(I + Â(μ1 · t))∇, t ∈ Bn(1). (9.47)

Note that K̂
μ1

is bounded by a {s0}-admissible constant and by Proposition 9.4 (i) we 

have Â(0) = 0 and ‖Â(μ1·)‖C0(Bn;Mn×n) ≤ 1
2 and [14, Theorem 2.14 (h) and (i)] follow. 

In particular we have

K̂
2μ1

distΦ∗XJ0
(t1, t2) ≤ dist∇(t1, t2) ≤ 3K̂

2μ1
distΦ∗XJ0

(t1, t2), ∀t1, t2 ∈ Bn.

Since |t1−t2| = dist∇(t1, t2), taking pushforward of Φ we get BXJ0
(p, 2μ1

3K̂
) ⊆ Φ(Bn) ⊆

BXJ0
(p, 2μ1

K̂
).

By Lemma 9.2 (ii), we have Yk =
∑n

l=1 b
l
kYl for n + 1 ≤ k ≤ q such that 

‖blk‖C0(Bn(μ0)) �s0 ‖blk‖C s0+1(Bn(μ0)) �{s0} 1. So on the set Φ1(Bn(μ0)) (note that 
Φ0
∣∣
Φ1(Bn(μ0))

is injective), there is a {s0}-admissible constant C1 > 0 such that

distYJ0
(x1, x2) ≤ C1 distY (x1, x2), ∀x1, x2 ∈ Φ1(Bn(μ0)).

Taking pushforward of Φ0 we get BX(p, 2μ1
3C1K̂

) ⊆ BXJ0
(p, 2μ1

3K̂
). This proves [14, Theorem 

2.14 (f)].
Combining (9.47) and (9.44), since K̂

μ1
is {s0}-admissible which is {s}-admissible, we 

get [14, Theorem 2.14 (j)].
Finally the proof of [14, Theorem 2.14 (k) and (l)] is the same as in [14, Section 7]. �
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