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1. Introduction

Fix a > 0 and let Xq,..., X, be

1@ vector fields on a "' manifold 9 of dimension

n, which span the tangent space at every point, where * denotes the Zygmund-Hoélder

space of order a.? In this paper, we investigate the following:
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spaces differ: C10 C o™t ¢ g™
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Question 1. Fiz 3 € [, 00). When is there a €5+ manifold stmcture on 9, compatible
with its €Tt structure, respect to which Xi,...,X, are ¢P

loc

Question 1 is local in nature, so we focus instead on the following local version:

Question 2. Fiz B € [a,00) and x € M. When is there a neighborhood U C M of x and
a“ diffeomorphism ® : B™ = U, such that ®*X1,...,®*X, are €P wvector fields on
[B%"? Here, B™ denotes the open unit ball in R™.

We give necessary and sufficient conditions on Xj,..., X, for when Question 2 has
an affirmative answer; and therefore give necessary and sufficient conditions for when
Question 1 has an affirmative answer.

When o > 1 and 8 > 2, Questions 1 and 2 were completely answered in work of
the first author and Stovall [11,14,15]; which also proved stronger quantitative results
(see Section 1.3 for our distinction between quantitative and qualitative results). In this
paper, by focusing only on the qualitative Questions 1 and 2 we are able to prove results
for all & > 0, 5 > «, and the proof is simpler. Our methods can also be used to improve
the quantitative results of [11,14,15]: see Section 9.

1.1. Informal statement of results

Much of the difficulty in this paper comes from working with « and  small. In this
section, we informally describe the results without worrying about such difficulties.

We begin with the case when 8 = co and X, ..., X, are CL_ vector fields on a C?
manifold 9 of dimension n, which span the tangent space at every point. This is a
special case of results in [14].

Because X1, ..., X, are C'! vector fields which span the tangent space at every point,
we may write

(X5, X;] E c”Xk7 cfj : 9 — R is continuous.

Theorem 1.1 ([14]). Fiz x € M. The following are equivalent:

(i) There is a neighborhood U C M of x and a CZ,, diffeomorphism ® : B"® = U,
such that ®* Xy, ..., 0" X, are C, vector fields on B™.

(i) The functions cﬁj can be chosen so that the following holds. There is a neighborhood
V. C M of x such that for every L € N and every list ly,...,lp € {1,...,q},
the functions Xlle2 Xy, ck 74 V. — R are continuous. We will write this

e C¥(V).

v :

condition as cZ g |V

In this paper, Xi,...,X, are vector fields on a ¥*t! manifold, 9. Informally,

(e}
loc
we wish our main result to say that the following are equivalent:
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(a) There is a neighborhood U C 9t of = and a ‘glg‘jl diffeomorphism @ : B" = U,
such that ®*X;,..., ®* X, are ‘glgc vector fields on B".

(b) The cfyj can be chosen such that C§7k|v € ‘5)/?71(‘/) for some neighborhood V' C 9

of z, where %ﬁ_l(V) is an appropriate Zygmund-Hoélder space with respect to the

vector fields Xi,..., Xq.

When o > 1 and 8 > 2, this equivalence was proved in [14]; the main result of this
paper gives an extension of this result to all 3 > a > 0. Unfortunately, for o« > 0 small,
the commutator of [ X, X does not even immediately make sense and many of the usual
operations on 9 do not make immediate sense. Thus, much of this paper is devoted to
making sense of conditions similar to (b) in such low regularity. As we will see, this is a
bit easier when o > 1/2 and so our results take a different form depending on whether
a€(0,1/2) or a > 1/2.

1.2. Relation to results of DeTurck and Kazdan

The results in this paper may be reminiscent of the celebrated results of DeTurck
and Kazdan [3] regarding a coordinate system in which a Riemannian metric tensor has
optimal regularity. It seems that there are no direct implications between our results
and their results; however there are many similarities. We present this in more detail in
Section 8; there the following ideas are discussed.

DeTurck and Kazdan showed that a Riemannian metric tensor has optimal regularity
in harmonic coordinates [3, Lemma 1.2]. Analogously, we present a natural Riemannian
metric associated to vector fields Xy, ..., X,, (which form a basis of the tangent space at
every point) such that Xy, ..., X,, have optimal regularity in harmonic coordinates with
respect to this metric.

DeTurck and Kazdan also showed that a Riemannian metric tensor may not have
optimal regularity in geodesic normal coordinates [3, Example 2.3]. Analogously, we
show that vector fields may not have optimal regularity in canonical coordinates of the
first kind.

However, the heart of our main result is not just to provide a coordinate system in
which vector fields have optimal regularity. Instead, we provide a test to determine what
that optimal regularity is. This test can be carried out in any coordinate system and
does not require solving any differential equations.

Both this work and [3] use methods introduced by Malgrange [8].

Remark 1.2. It may be somewhat unexpected that vector fields may not have optimal
regularity in canonical coordinates of the first kind. Indeed, there is a long history of
writing vector fields in these coordinates because they provide a coordinate system in
which the vector fields are often particularly easy to study. In the theory of Lie groups
this is classical (see, for example, [2, page 115]). Outside of the setting of Lie groups,
canonical coordinates have been used in the quantitative study of sub-Riemannian ge-
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ometry, beginning with the work of Nagel, Stein, and Wainger [10], and later used by
Tao and Wright [16], the first author [12], Montanari and Morbidelli [9], and the first
author and Stovall [11], among others. In [14], the first author moved beyond canonical
coordinates to strengthen these theories. We see now that this is necessary: sharp results
like the ones in this paper and in [14] cannot be obtained using canonical coordinates.

Remark 1.3. If X is a nonzero C! vector field on a one dimensional manifold 9%, then
canonical coordinates with respect to X, near the point zg, is the map ®,,(t) = eXzy.
Since ®; X = 0;, we see that the canonical coordinate system do provide optimal regu-
larity in this simple setting. However, once we move to two dimensions, with two vector
fields, Lemma 8.6 shows that canonical coordinate system may not give the optimal

regularity.
1.3. Qualitative versus quantitative

Most of the results in this paper are qualitative in the following sense. We give nec-
essary and sufficient conditions so that a map ® as in Question 2 exists. If one traces
through the proof, the ¥ norms of the coefficients of ®* X1, ..., ®* X, depend on (among
other things) quantities like:

o Upper bounds for €* norms of the coeflicients of X1,..., X, in some fixed coordinate
system near x.
e A lower bound, > 0, for the quantity:

- omax [det(X, (2)] .. | X, ()], (1.1)
J1senin€{l,...q}

where in the above expression X,..., X, are written as column vectors in the same

fixed coordinate system near x.

Unfortunately, both above quantities depend on the choice of the original coordinate
system. Thus, if the vector fields are given in a coordinate system where the above
upper and lower bounds are bad, the estimates our proof gives are bad; even if there
exists a different (unknown) choice of coordinate system where the above estimates are
better. Thus, while our results are qualitatively optimal (we give necessary and sufficient
conditions for each ), the estimates which follow from our proofs may be far from
optimal unless one happens to know a good coordinate system in which to write the
vector fields in the first place.

In the papers [11,14,15], the first author and Stovall give such estimates on
®*Xyq,...,®* X, in terms of quantities which are invariant under arbitrary C? diffeomor-
phisms (we call such estimates quantitative). Thus, they do not depend on any choice
of coordinate system. This is useful for questions from partial differential equations and
harmonic analysis, where ® can be used as a scaling map. Such scaling maps originated
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in the smooth setting in the foundational work of Nagel, Stein, and Wainger [10] and
were later worked on by Tao and Wright [16], the first author [12], and in the above-
mentioned series of papers by the first author and Stovall [11,14,15]. Similar scaling in
a non-smooth setting was studied by Montanari and Morbidelli [9], though they do not
address questions like the ones in this paper.

In Section 9, we use the main methods of this paper, combined with the methods of
[11,14] to improve the main quantitative result of [14] (and also the main quantitative
result of [13]).

2. Function spaces

To state our main result, we need to introduce several function spaces related to the
classical Zygmund-Holder spaces. Because we are working in low regularity, some care is
needed in the definitions.

2.1. Classical Zygmund-Hélder spaces

In this section, we describe the classical Zygmund-Hoélder spaces, and the correspond-
ing spaces on a manifold; see Section 4 for proofs of the results stated here.

In what follows, U will either be equal to R™ or equal to an bounded open set with
smooth boundary in R"-we will usually be interested in the case when U is either
R™ or an open ball in R™. We define the Zygmund-Holder space ¢°(U) := %5, .. (U),
where %3, ., denotes the classical Besov space (see, [20, Section 2.3] for %5, . (U) when
U = R7", and [18, Chapter 5] or [19, Chapter 1.11] when U is an bounded smooth
domain).® We similarly define the vector valued space ¢*(U; R™). The space €*(U) has
some particularly concrete characterizations:

Remark 2.1. For U = R” or U an bounded open set with smooth boundary in R™, we
have

(i) s € (0,2): €°(U) consists of those continuous functions f : U — R such that the
following norm is finite

sup | f(z) + sup [h[7°1f (2 + 2h) = 2f(x + ) + f(2)].

zeU e
heR™ h#£0
z+h,x+2heU

Moreover, the above expression gives a norm equivalent to || f
Theorem 2.5.7 (ii)] and [20, (3.4.2/6)].

¢s(U)- See [20,

3 Many results concerning €°(U), where U is a bounded smooth domain, follow from the corresponding
results concerning ¢°(R™) via the theory described in [18, Chapter 5].
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(ii) s € (0,1): ¥*(U) consists of those continuous functions f : U — R such that the
following norm is finite

sup | f(z)[ + sup |z —y|”°|f(x) — f(y)-
zecU xég;éEUU

Moreover, the above expression gives a norm equivalent to || f||-). See [20,
Remark 2.2.2/3] and [20, (3.4.2/6)].

(iii) s € (1,00]: €*(U) consists of those continuous f : U — R", such that f,0, f €
G0, 1< < n. We have || llgew) ~ 1f g + 0y 102, f
[20, Theorem 2.5.7 (ii)] and [20, Theorem 3.3.5(i)].

(iv) s € (—00,0]: €*(U) consists of those distributions f € 2'(U) such that
f = g0+ >j_, 0s,9; for some go,...,g, € ¢ U). We have || fllgsw) ~
inf 327 [gjll%s+1 (0, where the infimum is taken over all such choices of go, . . ., gn-
When U = R™, this can be seen by letting g9 = (I + A)7'f and g; =
—0q, (I + N)7Lf, for j =1,...n. See [20, Theorem 2.3.8].

(v) When m € N and r € (0,1), then €™*"(U) = C™"(U), with equivalence of
norms. See [19, Theorem 1.118 (i)]. However, when r € {0, 1} these spaces differ.

Fs—1(U)- See

Lemma 2.2. Let r,s € R with r + s > 0, r > s. The product map (f,g) — fg can be
defined as a continuous map €"(U) x €*(U) — €°(U).

Proof. This is a special case of [20, Theorem 2.8.2(i)] when U = R™ and [20, Theorem
3.3.2(ii)] when U is bounded open set with smooth boundary. O

Definition 2.3. Let U C R™ be an open set. For s € R, we define €*(U;TU), to be the
space of vector fields (with distribution coefficients) Y = Z?zl a;j0y;, where a; € €°(U).
We identify Y with the distribution (ai,...,a,) € €*(U; R™) and define

1Y

€ (U) ‘= [(a1,...,an)l €= (U;R")-

Definition 2.4. Let U C R™ be an open set. For s € R and £ € N, we de-
fine € (U N TrU ), to be the space of k-forms (with distribution coefficients) w =

1<iy<ip<oiy<n Wit,ixdT1 A - A dzy, where wy, ., € ¢*(U). We identify w with
the distribution (wi, ... i, )1<i, <is<...<ix<n, and define

HWH%S(U) = ||(wi17---7ik)||<€S(U;RQ"J€)7
where @, = dim /\kR”.

Definition 2.5. Let U C R™ be an open set. For s € R, we define 4?_(U) to be the space
of distributions f € 9'(U), such that for every x € U, there exists an open ball U’ C U
p € € (U"). We similarly define 35, (U3 TU) and %3, (U; A*'T*U ).

containing z with f loc
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For a > 0, we define ¥>*! manifolds in the usual way: the transition functions are
assumed to be €21 (see [14, Section 5.4] for some comments on this). Such manifold
are, in particular, C' manifolds, and so it makes sense to talk about, for example, vector

fields on such manifolds.

Remark 2.6. On a ¢**! manifold 91, it makes sense to talk about functions in 4} (90)
for s € (—a,a + 1], vector fields in €75.(0; TO) for s € (—a,al, and k-forms in
C:. (SDT; /\kT*im) for s € (—a, a. See Lemma 4.1 and Definition 4.2.

Let 1y denote the interior product with respect to the vector field Y and let Liey
denote the Lie derivative with respect to Y.

Proposition 2.7. Let MM be a € manifold for some o > 0.

(i) For € (—a,al, the map (Y,w) — tyw is a continuous map

oo (LTI x 65, (M A T — 4,

(zm; /\’“‘1T*zm).
(ii) For B € (—a,a], the map (n,w) — N Aw is a continuous map

Cioe (M T 65 (00 \FT0m) — 6,

(sm; /\’““T*sm) .
(iii) If « >1/2 and 5 € (—a+ 1,a], the map w — dw is continuous

B
Cgloc loc

(zm; /\’“T*sm) gt (sm; /\’““T*sm).
(iv) For B € (—a+1,a+ 1], the map
(Y, f) = Y[ = Liey f

s continuous

G2 TM) x 67

loc

(M) = €271 m).

loc
(v) If a > 1/2, then for f € (—a+ 1,a], the map
(Y, Z) s Y, Z] =: Liey Z
18 continuous

Gl (M TIM) x G,

loc

(90 T90) — 1o (9 TOM).
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(vi) If a > 1/2, then for § € (—a+ 1,a], the map
(Y,w) = diyw + tydw =: Lieyw
s continuous

G2 (N TM) x 6.

foc (O TON) — G0 (0 TON).

As can be seen in Section 1.1, our main results are in terms of the commutators
of vector fields: i.e., the Lie derivative of one vector field with respect to another.
Proposition 2.7 (v) shows that such Lie derivatives, Liey, only make sense when
Y € 6. (O TI) for a > 1/2. Because of this, when a > 1/2, the characterizations
in our main result can be made somewhat simpler. However, it is still possible to make
sense of some of these ideas when « € (0,1/2], as we now make precise.

Proposition 2.8. Let « > 0 and 8,7 € (—a,a + 1]. Let U,V C R™ be open and let
F:UZSVbea ‘Klg‘jl diffeomorphism. Fiz a k-form 0 € €. (U; /\kT*U). Then, the
following are equivalent:

(i) do e €°7" (U; /\kHT*U).

loc

(ii) d(F.0) € €7 (v; /\’““T*v).

loc

Moreover, in this case, for all p € U, there is a neighborhood V' C V of F(p) and
reé’ (V’; /\kT*V’) such that d(F.0)

loc v = dr.

For the remainder of this section, let 9t be a €*+! manifold for some o > 0.

Definition 2.9. Let v € (—a,a], 8 € [y,a+ 1], and § €

loc

(S)ﬁ; /\kT*SDT> We say
df has regularity ¢ _1(9)?), if for any p € 9, there is a (flg‘jl coordinate system F' :

loc

V = U, where V is a neighborhood of p and U C R™ is open, such that dF,0 €
_ k «
6o (U N D).
Proposition 2.8 shows that Definition 2.9 is well-defined: it does not depend on the
choice of the coordinate system F. However, we do not define the form df itself: we
only define its regularity. Indeed, if 8 — 1 < —q, the space ‘Klfgl (im; /\k+1T*E)JT is not

well-defined. However, when § — 1 > —q, the form df is well-defined, as the next result
shows.

Lemma 2.10. Let v € (—a, ] and § € (—a + 1,a + 1]. Suppose 0 € 6. (W;AkT*Em)

is such that dO has regularity ‘5671(93?), Then, df is given by a well-defined form in

loc

¢h1 (931;/\k+1T*9ﬁ). Le., there is a unique form T € &Pt (sm; /\kHT*Qﬁ) such that

loc loc
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in every coordinate system F : V. =5 U, where V.C 9 and U C R™ are open, we
have F.r = d(F.0). Furthermore, this form 7 is closed in the sense that in every such
coordinate system, we have dF,m = 0.

Definition 2.11. For v € (—a,al, 8 € (—a+ 1,a+ 1], and 0 € %ZC(QJI;/\]CT*SDY), we
write df € € * (93?; /\kHT*Em) to mean df has regularity %°~ ' (9), and we identify

loc loc

loc

df with the unique closed form in €7 (Sﬁ; /\kHT*Sﬁ) given in Lemma 2.10.

loc

Convention 2.12. For 8 € R, we say 6 € ¢ (9)?; /\kT*im)7 if 0 € %g:a (9)?; /\kT*Em)
for some £ > 0.

2.2. Zygmund-Holder spaces with respect to vector fields

Let 9 be a €“*! manifold for some a > 0, and let X1,..., X, € 62

loc

(9 TN) be G5,
vector fields which span the tangent space to 9 at every point. Since 9 is only a € +!
manifold, it does not make sense to talk about whether a function on 97 has regularity
higher than %”100‘:1 However, we can make sense of higher regularity with respect to the

vector fields X1,...,X,.

Definition 2.13 (‘K)ﬁ( -functions). For g > —a, we let %§7IOC(W) be the space of those
functions M — R defined recursively by:

loc

e Ifpe (_aa 1]’ <g)g,loc(gﬁ) = %fc(m)
o If B8 >1, %ﬁ,loc(zm) consists of those f € %ﬁ‘l(}c(m) N Chhe (M) such that Liex, f =
Xjf € Crac(), for 1 <j <gq.

We can make a similar definition for vector fields and forms, so long as o > 1/2:

Definition 2.14 ((f)gyloc-vector fields). Suppose o > 1/2. For 8 > —a, we let
‘5)?100(9')?; TN) be the space of those vector fields on 9 defined recursively by:

o If B € (—a, 1], CX 1 (MGTO) = €L (M TN).
o If B> 1, 64100 (MG TIM) consists of those Y € €y 0 (M TM) 62, (M TN) such

that Liex,Y = [X;,Y] € €y 10 (M TM), for 1 < j < q.

Definition 2.15 ((fgyloc-forms). Suppose a > 1/2 and k > 1. For 8 > —a, we let
%fmoc (zm; /\kT*Sm) be the space of those k-forms on 91 defined recursively by:

o 1€ (—a, 3], 64 oo (M ATM) = 40, (M AFTeom).
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1
o 18> 3, @ 10 (M AT consists of those 0 € {0 (94 AT M) N2 (0

/\kT*Dﬁ) such that Liex 0 = (dvx,; + tx,;d)0 € %)ﬁ{lolc (zm; /\kT*Em), for 1 <j<gq.

When o« € (0,1/2], we cannot use Definition 2.15. However, we can make an appro-
priate analog of Definition 2.9 with respect to the vector fields Xi,..., X4:

Definition 2.16 (‘Kfmoc for differentials). Suppose a > 0. Let 8 > —a, 1 <k <n—1and
let 6 € %gaﬁ (zm; /\kT*im) We say dff has regularity %)B(I;C(Sm) if:
o If B € (—a,1], we assume df has regularity ‘5671(931).

loc
o If B € (1,2], we assume df € %1?,2 (sm; /\kHT*SDT) and Liex,df = dix,;df has regu-
larity %5‘2(971), for 1 <j<gq.

loc
o If B > 2, we assume df has regularity %ﬁ]ﬁc(m and Liex, df = dux,df has regularity
CLZ(M), for 1 < j < q.

Remark 2.17. Note that if § > 0, Definitions 2.13 and 2.16 do not depend on «. Similarly,
when § > —%, Definitions 2.14 and 2.15 do not depend on «.

3. The main result

Theorem 3.1. Let ., 3 > 0, and let X1, ..., X, be 6, vector fields on a €T manifold
M of dimension n, which span the tangent space at every point. Fixz a point p € M, and
re-order Xi,...,X, so that X1(p),...,Xn(p) form a basis for T,9M. Let \',... A" be
the dual basis for X1,...,X,, defined on a neighborhood of p. Then, the following are
equivalent:
(a) There is a neighborhood U C M of p and a ‘Klgjl diffeomorphism ® : B = U,
such that ®(0) = p and ®*X1,...,®*X, € €°(B"; TB").
(b) There is a neighborhood U of p such that for 1 < j < n, dN has regularity CKQIOIC(U),
and for 1 <j<n,n+1<k<gq, (M,X}) € ‘K)B(’IOC(U).

If « > 1/2, then in addition we have the following equivalent conditions:
(c) There is a neighborhood U of p such that for 1 < j <mn, M € Cgfmoc(m T*U), and
for1<j<n n+1<k<q (N Xy €y 0).

(d) There is a neighborhood U of p such that for 1 < j <gq, X; € %§7IOC(U; TU).

Remark 3.2. (a) < (d) is the conclusion alluded to in Section 1.1.
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4. Classical function spaces, revisited

In this section, we prove the basic results we require about Zygmund-Hélder spaces.
In particular, we prove the results from Section 2. We begin by discussing the main result
we need to help understand the various objects under consideration on € “*'-manifolds.

Lemma 4.1. Fiz o > 0, let U,V C R™ be open sets, and let ® : U = V be a €T

loc
diffeomorphism.

(i) For B € (—a,a+ 1] and f € ‘Klgc(V), fo® is defined as a distribution and we
have fo® € € (U).

loc

(ii) For B € (—a,a] and X € €

loc

(iii) For B € (—a,a] and w € %lfc
. (vnr)

(V;TV), ®*X is defined and ®*X € %QC(U; TU).

(V; /\kT*V), then ®*w is defined and ®*w €

Proof. We give U coordinates x!,...,2" and V coordinates 3", ..., y". We begin with
(i). For 8 > 0, f is a continuous function and the regularity of f o ® is classical. See
[14, Lemma 5.15] for a discussion of this classical case. For nonpositive 3, we proceed by
induction. We prove the result for 5 € (=l +1,-I]| N (—a,a + 1], for I = —1,0,1,2,....
The base case, [ = —1, follows from the above discussion for 8 > 0. For | € N, we assume
the result for [ — 1 and prove it for [.

Fix a point yo € V, and let By, € V be an open ball centered at o with Biyo cVv.
By Remark 2.1 (iv), we may write f = go + Z;L:I dyigj, where go, ..., gn € €°T1(By,).
Letting ¥ = (¢1,...1,) := ®~1, we have

n

(Oyigj) o ® = Z(azj (950 @))((Bijk) °© (I))'

k=1

By the already proved case 8 = «, we have (9,xty) o ® € 6% (¥(By,)) and by the
inductive hypothesis 0, (g;jo®) € <Klﬁc(\IJ(ByO)). Also, by the inductive hypothesis ggo® €
GO (W(B,,)) C €. .(W(B,,)). Using Lemma 2.2, we conclude fo® = goo®+3(d,:9;)0
® e ‘Klgc(\I/(ByO)) It is easy to see that the distribution obtained in this way does not
depend on the choice of gg, ..., g, with f = g+ Z?:l 0yig;. Since yo € V was arbitrary,
this completes the proof of (i).

For (ii), write X = 377, a;0

Y7o

where a; € G2.(V). Then, if @ = (41, ..., ¢,) = 71,

X =" (a0 ®)((Dysth) 0 D) Dy

k=1 j=1

By (i), aj o ® € € (U), and (3,561) 0 ® € €2.(U). Since 8 € (—a,al, by hypothesis,

Lemma 2.2 implies ®*X € ‘ﬁgc(U; TU).
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The proof of (iii) is very similar to the proof of (ii), and follows easily by combining
(i) with Lemma 2.2. We leave the details to the reader. O

Lemma 4.1 establishes Remark 2.6: On a €2t! manifold 9, it makes sense to
talk about functions in %.(9M) for s € (—a, a + 1], vector fields in %2 .(9; T9N) for
s € (—a,a], and k-forms in €2 (sm; /\kT*im> for s € (—a, a]. This is because these

properties are invariant under CK{;;H diffeomorphisms. By a similar proof, one can show
that the more general concept of a ‘Kﬁc tensor is well-defined for 8 € (—«, ], though
the only tensors we use in this paper are vector fields and forms.

For completeness we put the definition of functions, vector fields and differential forms
on manifold as below, which is the obvious analog of the standard definitions (see, for

example, [7, Definition 6.3.3]):

Definition 4.2. Let o > 0, § € (—a,a] and v € (—a, a + 1]. Let 9 be a n-dimensional
% “*1-manifold equipped with the maximal ¢€**!-atlas & = {¢ : U, C MM — R"}.
Namely, each ¢ € & is a homeomorphism ¢ : Uy — ¢(Us) C R ¢pop~t €
Cot (W(Uy N U,); R™) whenever ¢,1 € o satisfy Uy N Uy # @; and &/ is maximal

loc
with these properties.

o A % -function is a collection f = {fs € 6} .(¢(Us))}per, such that

oc
fo=feo@osd™h), on¢(UsnUy) whenever Uy N Uy # @.

e A ‘flgc—vector field is a collection X = {X, € ‘flgc(¢(U¢); TR™)}pecar, such that
Xyp=@Wo¢ Xy, on¢(UyNUy,) whenever Uy N Uy # @. (4.1)

e Let1<k<mn. A ‘Kﬁc k-form is a collection w = {w¢ € ‘gﬁc (¢(U¢); /\kT*R”)}
such that

peat’

wy = (oo HN*ws, on ¢(UsNUy) whenever Uy N U, # 2. (4.2)

Remark 4.3. By Lemma 4.1 we are able to pullback functions, vector fields, and differ-
ential forms using €**!-transition maps. Thus, the above objects are well-defined.

To prove Proposition 2.7 we use the following:

Lemma 4.4. Let o > 0, let U,V C R" be two open sets and let ® : U = V be a
¢t _diffeomorphism.

(i) For B € (—o,a], if Y € 62.(V;TV) and w € %lgc (V;/\kT*V> then ®*(1yw) =

Lte+y P w, and their common value is in ‘Klgc (U; /\k_lT*U>.
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(ii) For B € (—a,al, if 0 € €2, (V; /\lT*V) and w € €7 (V;/\kT*V) then ®* (o A

w) = ®*c A ®*w, and their common value is in %lgc (U; /\kHT*U).
(iii) For a > % and B € (1 —a,0], ifw € %ﬁc(V; /\kT*V> then ®*dw = d®*w, and
their common value is in 6" (U; /\kHT*U).

loc

(v) For € (1 —a,a+1], if Y € €5, (V;TV) and f € Cflfc(V) then ®*(Y f) =
(®*Y)(@* f), and their common value is in ‘flgc_l(U)

() Ifao >4 and B € (1 —a,al, if Y € €5 (V;TV) and Z € %fC(V;TV) then

O*Y, Z] = [®*Y, ®*Z], and their common value is in %lgc_l(U; TU).
(vi) Ifa > % and B € (1 —a,al, if Y € €2, (V;TV) and w € %P (V;/\kT*V) then

loc

d*Lieyw = Lieg«y ®*w, and their common value is in Cflggl (U; /\kT* U>,

Proof. The formal computations are standard in differential geometry. What we need to
be careful is that the products and compositions are defined, due to the low regularity
of the objects involved.

We only prove (i) and (iii), since the arguments for the others are similar. We endow
V C R™ with the standard coordinate system (z!,...,2"), and write ® =: (¢',...,¢")
where ¢/ € €2 (U).

(i): We write Y = Y1 a' 52 and wj, s, == w(gZr, - 5o) for 1< ji,...,jk < n.

By Lemma 2.2, a’'w;j, _j, , € ‘Klgc(V) and therefore

1 n n ' ' , -
lyw = WZ Z a'wijy . g dx?t A A dadR E%lgc(U; /\k 1T*U).

i=1 j1,e.jk—1=1

(4.3)
Note that 8%51 = @*%, i = 1,...,n, are ¥%vector fields on U that satisfy*
d¢j(825i> = gﬁ = 6? for 1 < 4,j < n. By Lemma 4.1 (i), a’ o ®,w;j, j, , ©

P, (d'wij,. o) 0P E Cﬁlgc(U ) are all defined. Therefore we have the following, where all
the products and compositions are defined.

n

L1
ey QW) = Y e (ien 2,

" Joseendk—1=1

((Wjo.‘.jkil o ®)-dgo A A d(bjk—l)

n n k—1
- %Z Z Z(al © (I)) ' (wjo-ujprjk © ‘I))

=1 jo,J1s--Jk—1=1 p=0

. (_1)9@

BYS d¢jo VANREIWAN d(bjf’—1 A d¢j/’+1 A A d(bjk—l

4 We write 87 for the Kronecker delta functions (see (5.6)).
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-1 (k= 1! Z Z ((aiwjbnjk—l) o ®) 'd¢jl JARRENA d¢jk71 = d*(Lyw).

=1 j1,..,jk—1=1

The equality holds in %}, (V /\IC Ty ) completing the proof.

(iii) By passing to linear combinations it suffices to consider the form w = fdz™ A

- A dz'* where f € IOC(V)

By Lemma 4.1, f o ® € %QC(U) and % od € ‘5@61( ). Since we also have
do™,...,d¢" € 62.(U), Lemma 2.2 shows that all below products are defined. We

have,

. ) "0 ) ) )
O*d(fda™ A-- Ada't) =D 8—fjdx] Adz™ A - A dat
— Jx

(8_f_oq)>d¢j/\d¢il/\.../\d¢ik’
= oxJ

d@*(fdx“A-~~Adz”k):d(foé)AdwlA-.-Adqs”k:ZMAW%.-.ACZW

Ox!
=1

_Z( )¢d NG A - A,

l,yj=1

(4.5)

Since >, gﬁ; dx! = d¢?, we have that (4.4) and (4.5) are equal, completing the
proof. O

Proof of Proposition 2.7. We only prove (i), since the arguments for the other parts are
similar.

By Definition 4.2, we can write ¥ = {Yy € €. (6(Up); TR")} pecr and w =
{‘% € %he (¢(U¢)§ /\kT*R") }¢>eg/ where </ is the maximal ¢ !-atlas for 9.

For each ¢ € <7, by applying Lemma 2.2 on the coordinate components of Yy and
wg, we see that the map (Yy,wy) — ty,wy is a continuous map 62 (¢(Uy); TR™) x
Goe (6 NTR™) = 60 (0 <U¢>-/\’“‘1T*R")

By (4.1) and (4.2) we have (o ¢™1)*Yy, = Y, and (o ¢~ 1) *wy = wy on ¢p(Uy NUy).
By Lemma 4.4 (i) we see that

(Yo ¢71)*(’/wa¢) = L(god—1)*Y,, (Yoo~ Y*w v) = Ly, ws,
on ¢(Uy NUy), whenever U, N U, # @.

Therefore {ty,wy}g¢cor is a collection of (k — 1)-forms satisfying (4.2), and therefore
defines a (k — 1)-form on 9, which is denoted by tyw.
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Finally, the continuity of (Y,w) + tyw comes from the fact that (Yy,wg) — vy, wy is
continuous for each ¢ € &/. O

We now turn to the proofs of Proposition 2.8 and Lemma 2.10. For these, we require
several standard objects and results.

Notation 4.5. We use the co-differential, ¥ = Jg~, which is a linear operator taking k
forms to k — 1 forms, satisfying for 1 <1y <19 <+ < i <n,

Vda™ A Adzt=r AdztH A A dat

19(fd:vi1 ARERWA da:““

x”

HM;?

In particular on 1-forms, —¢ is the divergence operator, namely

00;
oz’

For =Y 0;da’, 90 =—

i=1 i=1

For any form w, we have d(dw) + 9(dw) = Aw, where A = — 31" | 02, is the positive

Laplacian acting on the components of w; in this setting A is called the Hodge Laplacian.

We will often convolve functions with k-forms. Formally, if w =

21§i1<---<ik§n wil,m’ikdm"’“ A - Adx'™ is a k-form, and ¢ is a function, we set

Q*w = Zl§i1<~--<ik§n(¢ * Wiy i )dT A A datE

We will make use of the classical Newtonian potential. Let
\;\7 n = 1,

G(z) :=  —5= log|z|, n=2, (4.6)
ISPt~ a2, 0> 3.

Lemma 4.6. Let w = o, . i <, Wi iwdx® Ao A dxt be a k-form where each

.....

Wiy ,...ir 15 a compactly supported distribution on R™. Then, 0 := G *xw is a distribution
on R™ satisfying No = w. Moreover, if for some open set U C R™ and 8 € R we have
wly € Goc(UNT*U), then o, € %iff(U; AT

Proof. The convolution G * w makes sense because w;, .. ; is a compactly supported
distribution and G is a distribution. Since G is well-known to be a fundamental solution
for the Laplacian A, we have A(G * w) = (AG) * w = w. Since AU = w, the classical

interior regularity for elliptic equations shows that if w’ v € Cloc (U /\ ™U ) then
‘ € €2 (U \*T*U); see, for example, [17, Proposition 4.1]. O

loc
Lemma 4.7. Let 0 < k < n, v € R and let U C R™ be a bounded open set, then there
is a Cy > 0 such that ||G * wllgr+2arrevy < Cuqllwllerwiarr=uvy for all compactly
supported k-forms w € € (U; /\kT* U).
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Proof. Set 2 to be the completion of € (U; /\kT* U) under the ¥7-norm. Thus, 2" is
a closed subspace of €7 (R”; /\kT*R”) and |lw|l o = [[w||¢~ for all w € 2.
When w € 27, we have that suppw C U so w € € (]R”; /\kT*R"). By Lemma 4.6,
loc
Gr+2 (U; /\kT*U> .
By the closed graph theorem we have |G * wllgvizarrry < Cllwllz =

Grwe 6 (R"; /\kT*R”) is well-defined. By restricting it to U we get (G * w)|U €

Cllwll~w;arr=uy for some C that does not depend on w.
Therefore, for the same constant C' we have ||G*w|lgv+2marre0y < Cllwlley winer=u)

for all w € %Q(U; /\kT*U). O

Lemma 4.8. Let 0 < k < n,y € R, 8 >v—1and let U € U C R™ be two open
U7/\kT*U) satisfies df € €1 (U, /\kHT*U). Then, there

loc

exist p € Cglgc (U'; /\kT*U> and € € €7 (U’; /\kilT*U’) such that

loc

sets.” Suppose 6 € 6],

|

0

o = p+dé.
Note that the case § < vy — 1 holds automatically if we pick p := 0 and £ := 0.

Proof. Let y € C>°(U) satisfy x = 1 on a neighborhood over U’. Define

U/’ § :: aU’ N

(R A"T*R") and Ee 61 (R AV TOR")).
o = 0d(x0)|,, = vdb|,, € €7, by hy-

pothesis. Thus, by the interior regularity of elliptic PDEs (see [17, Proposition 4.1]), we

have p = ﬁ{U, e’

loc*

pi=G#0d(x), &:=G=9(x0), p=p

Since 0 € €7, Lemma 4.6 shows p€ €/

loc

Thus, £ € %W(U';/\’HT*U'). Also, Ap|

loc

We also have,

0

v = DG x (x0))| = (Wd+dI) (G * (x0))
o+ €|, = p+ de,

g = G *0d(x0)

g +dG * ﬁ(x@){U,

=D
as desired. O

Finally, we require paraproduct decompositions. Let 1y € #(R™) be a Schwartz
function whose Fourier transform, (&) = [ to(z)e* ¢ dz, satisfies suppy C {€ :
|€] < 8/3} and (&) =1 for [€] < 3/2. Set

o (2myg(2in) >0,
¥;(x) = {O j< -1

5 Here, and in the rest of the paper, A € B denotes that A is a relatively compact subset of B.
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Associated to 1y, we define two bilinear operators each taking a k form ¢ and an [-form
w and outputting a (k + I)-form,

o0

= (W5 = 1) ¥ 0) A (-2 ¥ w),
7=0
R(o,w) = ((j —bj—1) x o) A (Y1 — Yr—1) * w).
li—k|<1

Lemma 4.9. We have the following properties of B and R. Fix k,l € {0,...n}.

(i) For o« € R, P defines a continuous bilinear map P : €° (R"; /\kT*R”) X
L® (R”; /\lT*R”) ¢ (R"; /\kHT*R”).
(ii) Fora€R and 5<0, P defines a continuous bilinear map P : €* (R"; /\kT*R"> X
%" (R”; /\ZT*R") — goth (R”; NHTR?).
(ii) For o, € R with a + f > 0, R defines a continuous bilinear map R :
¢ (R AMTRY) x 67 (R A'T'R™ ) = 6248 (R AMHTVR™).
(iv) o Aw = P(o,w) + (=1)*P(w, o) + R(w, o) holds for o € € (R”; /\kT*R") and
weeh (R”; /\lT*]R{”), where o+ > 0.
(v) B satisfies dP(o,w) = P(do,w) + (—1)*P(o, dw), for k-forms o and I-forms w.

Proof. For 0 forms, (i) and (ii) can be found in [1, Theorem 2.82] and (iii) can be found

in [1, Theorem 2.85]. By passing to their coordinate components we obtain the results for

arbitrary forms. (iv) follows easily from the fact that Z] o(Wj—1j_1)*w = Yn*w Noee,

w. (v) follows directly from the definitions. O
Proof of Proposition 2.8. Let 6 € 4 (U N T U) be such that df € €° ! (U; NT*U

We will show, for any point p € U, there is a neighborhood V' C V of F(p) and
re¢’ (V’; /\’“T*V’), with d(F.0)

loc

of 7 as claimed in the proposition. The reverse implication follows by reversing the roles
of F,0 and 6.

Let U &€ U be an open neighborhood of p. By Lemma 4.8, there are p €

G0 (U NP0 ) and € € 61 (0, N0 = p+dg. By Lemma 4.4

(iii), dFyd€ = d’F.£ =0, so

v+ = dr. This will prove (i)=(ii) and the existence

dF*9|F(U,) = dF*p|F(U,) + dF*dgyF(U,) = dF*p|F(U,). (4.7)

Since p € Cglgc loc

(U’ /\kT*U’> and F is a €' diffeomorphism, Lemma 4.1 shows

F.p e %lmm{a -1 (F(U’) /\kT*R") If p < «, then we have dF,p € CKI completing

the proof with V' := F(U’) and 7 := F,p.

oc’



18 B. Street, L. Yao / Journal of Functional Analysis 283 (2022) 109537

However, if 8 > «, this does not imply the desired result. To show dF.p € ¢ !

loc

near F(p), we construct a new k-form 7 € %7 such that dF.p = dr near F(p). The
construction requires paraproducts.
Let U” € U’ be a smaller open neighborhood of p. We claim that there exist p;,...;, €

€P(R™) and i € ot (}R{"; /\k_lT*]R{”), with compact supports and such that

F*p|F(U’/) = Z ﬁilmikdﬁhmlk FU")" (48)

1<iy < <ip<n
Write p = Zl§i1<~~<ik§n pil___ikdx“ A--- Adz* and denote ® := F~1:V = U. Take
X1 € C°(F(U")) such that x1|F(U,,) = 1. Define (¢',...,¢") := x1®, so that each ¢ is
compactly supported and ¢/ € EFtL(R™). Let piy i, = X1(pi,... 0 ®) € €P(R™). We

haVe p’Lllk o (P|F(U//) = ﬁzl’bk {F(U//) a’nd ¢J ’F(U//) = ¢J‘F(U//)7 S0

F*p|F(U”) = Z ﬁil...ikdq’;il VAR /\dQNS“"F(U,,) (49)

1<ip < <ixg<n

Using Lemma 4.6, we set ™t % := G+ 9(dp™ A --- A dp™) € €O (R”;/\k_lT*R”>.

loc
Since d¢™ A --- A dg'™ is closed, we have

Qi = dOG + (A A -+ A dF) +9G x (" A -+ A dG)

. . . . (4.10)
=AGx (dp™ N+ Ndp™) = dd™ N+ Adp'*.

Setting it = ypuitik € gotl (R";/\kflT*Rn)v (4.8) follows by combining (4.9)

and (4.10).
Define
7= BB, A" ) + (DB dpiy - iy) + R(Piy i, A7),
Piy...igs G K > APy .. iy, Piy..ig G
1< << <n
(4.11)
We will show 7 € €7 (R"; /\kT*R") and dT|F(U,,) = dF*p‘F(U,/); this will complete the

proof with V' := F(U") and we have used (4.7).
We turn to showing dT‘F(U,,) =dF.p P Since fi‘t* is a (k—1)-form, Lemma 4.9

(V) shows dm(ﬂ“lkvﬁhtk) = m(dﬂ“lkvﬁhlk) + (_1)k_1(’p(ﬂilmikadﬁil---ik)' Apply-
ing differential to both sides of this equation and using d? = 0, we obtain

AB(dip" ", iy i) = (1) FdB(E" ™, dpi, i) (4.12)

Using Lemma 4.9 (iv) in the case { = 0, (4.12), and (4.8), we have
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dT}F(U”) = Z dm(ﬁil...ikadﬂilmik) + (_1)kdm(ﬂ“zk7dﬁzlzk)

1<iy < <ip<n

+ AR (P i A7)

= Z dfp(ﬁ“%,dﬂhlk) +d($(d/1““7p~112k) +dm(plllmdﬂlllk)|F(U”)

1<ip < <ig<n

_ E = Anteik

- d(pll...lk d)u’ ) |F(U”)
1<ip < <ig<n

= dF*p|F(U“)’

as desired.

Finally, we show 7 € €# (]R"; /\kT*R”), which will complete the proof. Using that
Pir iy, € €P(R™; T*R™) and dji"+ - € € (R”; /\kT*R"> C L*, Lemma 4.9 (i) shows
B(piy..ir,, A %) € ¢’ (Rn3 /\kT*Rn) and Lemma 4.9 (iii) shows R(p;, i, ,df" ) €
wots (R \MTORY) € 67,

Thus, the proof will be complete once we show (" dp;,. ;) €€ (R”; /\kT*]R") .
If B > 1, then dp;, ;. € L°°. Using that i € €2 Lemma 4.9 (i) then im-
plies P(ahr . dp;, ;) € €T C €°. If B < 1, then dp;,.;, € €7 C €172,
Since B —1—a < 0 and i € € Lemma 4.9 (ii) shows P(a % dp;, ) €
EotitP—1—a — @B This completes the proof. O

Proof of Lemma 2.10. Let & = {¢ : Uy C M — R"} be the ¥*Tl-atlas of M. By
Definition 4.2, § € 4}, (9271; /\kT*i)ﬁ> is the collection {9¢, € €. (U¢,;/\kT*U¢)}
which satisfies (¢ow)*9¢|¢(U¢mUw) = 0¢|¢(U¢OU¢) whenever Uy NUy, # @.

We claim that {d9¢}¢€d defines a €' (k + 1)-form on 9M (see Definition 4.2).

loc

peA

Namely, we claim

(po ¢71)*d9'¢‘¢(U¢muw) = d9¢]¢(U¢mUw), whenever ¢, € o7 satisty Uy N Uy # O,
(4.13)

and their common value on ¢(Uy N Uy) is 67"

Indeed, once (4.13) is shown, then 7 = {dfy}scor is the desired (k + 1)-form. To see
that this 7 is closed in the sense of the statement of the lemma, note that if F' € & is a
€ “*1-coordinate chart on 9, then F,7 = dfr and therefore dF, 7 = d%0r = 0.

First, we claim that dfy is ‘5{20 for every ¢ € /. The assumption that df has
regularity %ﬁ;l(sm) (see Definition 2.9) says that we can find a covering of coor-
dinate charts {¢; : Uy, € M — R"}jer C & (that is J;Us, = M) such that
A(6:).0 € G (Uas N T (U,)), en by, € 60 (Usys NPT (U,) ) for each
jel
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Let ¢ € & For each p € Uy, C M, we can find a jo € I such that p € Uy, . By Propo-

sition 2.8 we see that d(10650) 05, | 1,0, ) € G (¢(U¢ NUs,, ); /\kHT*R”). By
_ . : - epB—1 -

(4.2), d@w’d}wwm}%) = d( o ¢j,)* 0y, |¢(UwﬂU¢j0) so dfy is €);. " near p € Uy. Since p

is arbitrary, we know df,;, € ‘flgg ! (U’(Uw); /\kHT*R”). Therefore, {df,} is a collection

of %lgc_l—forms.
We turn to proving (4.13). Let p € Uy, and let V' € Uy be a neighborhood of p. We
will show:

(¢po ¢71)*d9‘/’|¢(VﬁU¢) = d9¢|¢(vaw) whenever ¢ € o satisfies VNU, # @.  (4.14)

Since ¢(V) € ¢(Uy), by Lemma 4.8 there exists a p € ‘Klﬁc <¢(V);AkT*R"> and
cegr ! (QS(V); /\k_lT*]R”) such that 9¢,’¢(V) = p+ d¢, and therefore d9¢‘¢(v) = dp.

loc

By Lemma 4.4 (iii), since 8 > 1 —aand y+1> 1 — q,

Ao~ ) p= oo ) dp, do¢ ') E=(pod )dE,  onp(VNUy).

Therefore on ¢¥(V N Uy),

(oo ) diy= (Yod )dp=d(od™)'p=dpod )0y —d(tho¢")d¢
= dOy — d*(1p o ¢~ 1) € = dby.

This proves (4.14). Since p € U, was arbitrary, (4.13) follows, completing the proof. O

In the proof of Theorem 3.1, we need a version of Proposition 2.8 on 1-forms where
we keep track of various estimates. We are concerned with the case when F is a €“t!-
diffeomorphism on B"™ and is close to the identity map, and our 1-form 6 defined on B"™
is such that [|8]|¢e + ||df||4s-1 is small.

Proposition 4.10. Let a« > 0 and 8 € [o, a0 + 1] be two real numbers, then there is a
constant Cy = Cy(n,a, B) > 1 satisfying the following:

Suppose R € €°T1(B"; R") satisfies R‘(mn =0 and |R||ga+1 < C'O_l, then the map
F:=id+ R:B" — R" is a €' -diffeomorphism of B™. Moreover,

(i) Let ® = (¢',...,¢") : B® = B" be the inverse map of F. Then,
lg o @ll4smny < Collgllwsmny, Vg€ €7 (B"). (4.15)

In particular ||®||ga+1@rrny < Co.
(’LZ) HV‘I) - In”(ga(Bn;Mnxn) < COHR”(goH»l(]Bn;Rn).
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(iii) If 0 € €>(B"; T*B") satisfies supp6 C B" and df € ¢°~* (]B"; /\QT*B"), then
supp Fi.6 C %B” and

1d(FL0) |-+ (g iporemn) < Colldo

@F—1(Br;A2T+Bn)- (4.16)

In the proof of Proposition 4.10 we need to follow convention for matrix-valued func-
tions.

Convention 4.11. For matrix-valued map A = (a{) : B" — M"™*" we use the matrix
norm

Ax) v
|A($)|Mn><n = sup M7 ||A||CO(Bn7Man) = sup ‘A(x)‘Man (4.17)
veR”\{0} v zeBn
For Zygmund-Holder norms of A we use the component-wise norm; namely,

HAH%O‘(B";M"X"‘) = H(a%, ey a:{)H%a(Bn;an).

Remark 4.12. Let o > 0, and let U C R™ be an open set. It follows from Lemma 2.2
that there is a C’U’a > 0, such that

|AB|lgeumnxny < CuallAllge s | Blgawmpnxny, VA, B € €*(U;M™*™).
(4.18)

Lemma 4.13. Let o > 0, and let B C R"™ be an open ball. There is a ép.o > 0, such
that if || A
addition, the map

o (B;Mrxn) < CB.a, then I+ A(x) is an invertible matriz for every x € B. In

A (I+ A {M € €(B;M™ ™) 1 |[M|lge < Epa} — €*(B;M™™™),
is continuous and satisfies ||[(I + A)™" — I||ga(pminxny < 2[|Allga(pmnxn)-

Proof. We take ¢ o = %min{é’ﬁ}a, 1/2} < 1 where Cp.o is in (4.18).

When ||Age < &p,a, we have ||A¥||ga < Cp ol Allga|| Ao < 2[|AFY|go for all
k € Z . Therefore, for such A we have ||A¥||ga < 217F||A||4a < 27F.

We know (I + A)~! = 72 (—1)*A* whenever the right hand side absolutely
converges. This power series has € “-norm convergent radius larger than ¢p, and is

continuous in the domain {||Alj¢ < ég,a}-
Finally we have

-1 _ k Ak k 1-k
I+ 4) wﬁ\;um\(%as;m lge < D27 Allee <2 Allge. O

k=1
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Proof of Proposition 4.10. We let Cj be a large constant which may change from line
to line. In particular, we will choose Cj large enough such that ||R||ger1 < Cy* implies
[R||co + [[VR|co < § and |VR| g < Egn o, where égn o is in Lemma 4.13.

By Lemma 4.13, VF(z) = I + VR(z) is an invertible matrix for every z € B”, and
we have

I(VE) ™ = Illge = (I + VR)™" — I|lge < 2[[VR]eo. (4.19)

Since ||VR||co < %, we have |R(z1) — R(z2)| < ||VR||colx1 — 22| < i\xl — x3|, which

implies

|F(21) = F(2)| > a1 — 22| — |R(z1) — R(x2)| > |1 — 2. (4.20)

This implies F is injective. By the Inverse Function Theorem, we know F : B” =
F(B") is a ¥“*l-diffeomorphism.

The assumption R|aan = 0 gives F(0B™) = 0B". Since F(B™) is contractible and
F(B") D 0B", we get that F(B") = B". We conclude F is a ¢“"!-diffeomorphism on
B™.

(i): First, we claim that there is a Ci(n,«,8) > 0, which does not depend on R, such
that whenever R satisfies the assumptions of the proposition, we have

|@]|ga+1@nrny < Ci. (4.21)

Since ® is the inverse map of F, by [14, Lemma 5.9], we know [®|ga+1(@n;rn)
only depends on n, o, ||F|go+1@nrn), and [[(VF) ™| cognmnxn). We will show that
| F||lgat1@nrn) and |[[(VF) ™| co(gn mnxn) have bounds that do not depend on R.

We have ||F|go+1@nrn) < [lid|lgo+1@n) + | Rl|lgo+1@nrny < [lid||lgo+1@n) + 3. The
right hand side of this inequality does not depend on R.

By (4.20), |F(z1) — F(z2)| > 3|z1 — 22| implies su]]%) (VF(z))7! < 3, so

relb™
[(VE)~!|co®nmnxny < 5, which does not depend on R as well. This establishes (4.21).

By [14, Lemma 5.8], we know for every C; > 0 there is a Co = Cs(e,3,C1) > 0
such that [|g o ®||s@n) < Callgll¢s@n) holds when [|®|lgati(gnrn) < C\. By possibly
increasing Cy so that Co > Ca(a, 3, C1), we obtain [|go ®||s@n) < Collgll¢e®n), which
is (4.15).

(ii): Note that the identity matrix I can be viewed as a constant function defined on the
unit ball. Since ® is a ¥**!-diffeomorphism on B", we get the equality I = I o ® as a
matrix function on B".

By the chain rule I = V(Fo®) = ((VF)o®) -V, soV® — [ = (VF) lod -] =
(VF)™! —1)o®. By (4.19) and (i), we have

IV® — Illga@npnxny = [(VE) ™ = 1) 0 @lga < Col[(VE) ™! —I]lge
< 2G|V R||ga B mnxny,
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and we obtain (ii) by replacing Cy with 2C.
(iii): Let 6 € €(B"; T*B") be as in the assumption of (iii). In particular, supp§ C 1B".
By the assumption ||R||co < 1, we have F(1B") C 1B" + 1B™ = 2B", so supp F.0 =
F(supp6) C 3B™.
Similar to the proof of Lemma 4.8, we define a 1-form p and a function £ by (see (4.6))

p=Y pida’ =G #9db, &:=Gx00.
=1

p and £ are globally defined in R™ because 6 is compactly supported in %[B%”.
By Lemma 4.6, we have p € € (R™; T*R™), £ € €>TH(R"), and p + d€ = G = (9d +

loc loc

d®)0 = 0. Moreover, by Lemma 4.7 with v = § — 2 and the assumption supp ddf C
supp 6 C %IB%” € B", we have

plls @By Sp l[0d0llgs-> Sp [|d0]l o1 (4.22)

By Lemma 4.4 (iii), d(F.d¢) = d*F.¢ = 0 on B", so we have that

g) T A(Fud|g,) = d(Fuplg,) =d <Z(pi o q>)d¢i> , onB"
=1

(4.23)

Thus, to prove (4.16), by (4.22) it suffices to show

[d(Fb)llgs-1(3mniper-rny S lolls BrrBn).- (4.24)

Fix x € C2°(B") such that x|sg. = 1. For each 1 <i < n, set

pii=x(pio®), ¢ =x¢"
So p; € €°(B") and d¢' € €~ (B™; T*B") are globally defined 1-forms for each i, such
that

n n

> (7idd")] sg. = ((pi 0 2)dd") | s, = (Fup)| s (4.25)

=1 i=1

By (4.25) and (4.23) we have

|AEO) g1 (38msnor-ery = | D d(psdd)

i=1

%571(%Bn;A2T*Rn)

< Z 1d(pidd" )|l s—1 Rmsp2T+R)-

i=1
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pi © ®|lgs@ny and |||l gatin) Sa
X |lga+1(Bn)||®l|gati@n), by (4.15) we have [p; o ®[gsmn)y < |pillgsmr) and
D||ga+1@nrr) S 1. Combining them we get

@[ gars(@nrr) S g g

By Lemma 2.2 we have ||p;|lxs®n) Sp lIXll¢s@n)

15ills ®n) Sans lpilles@nys 1 lgarimny Sal, 1<i<n. (4.26)

Thus, to obtain (4.24) and complete the proof, it suffices to show

1d(5idd") |l gs—1 ®msperern) Sas Ihillgs@ny, 1<i<n. (4.27)
Similar to (4.11), we define 1-form 7, on R™ by
7=y P(pi,dd") —R(', dpi) + R(pi,dd"), 1<i<n.
i=1

By Lemma 4.9 (iv) and (v), we have p;d¢" = P(p;, dd') + B(do, ;) + R(ps, dp?) and
dB(F, pi) = P(dd', p;) + P(&', dp;). Therefore for 1 < i < n,
dr; = dP(pi, d¢") — dB(¢', dpi) + dR(pi, d') = dB(pi, dP') + dR(dS', pi) + dR(ps, do')
= d(p;d$’), on R™.
(4.28)

We claim

17illgs ®nirere) S 1Pill s ®nirrny, 1 <d < (4.29)

By Lemma 4.9 (i) and (iii), along with the fact that [[¢'[garr < 1, we get

~

1B (7i: d6") g S llpillogn and [R(5i, o) s S [R(Bis D) | gers S l1Billgs-

To complete the proof of (4.29), we need to show

IB(6", dpi) | w5 RrsrRA) Sas |Pill s ®rrorny, 1< <. (4.30)

We separate the proof of (4.30) into two cases: > 1and 0 < § < 1.

For the case 8 > 1, (4.30) follows from Lemma 4.9 (i) with (4.26) that ¢* € €+ C €7
and dp; € €°~1 C L. For the case # < 1, our assumption 0 < a < S implies that
a€(0,1.% B—a—1<B—1<0and we have dp; € €°~1 C ¥°~>~1. By Lemma 4.9
(ii) along with ¢* € €11 from (4.26), we get P(¢', dp;) € €@TV+HB—a—1) — B which
gives (4.30) and establishes (4.29).

Using (4.28) and (4.29), we see [[d(#dd") g5 mmnar-rr) = [d7ilgor S lrilles <
|l7i]|«#, establishing (4.27) and completing the proof (by possibly increasing Cp). O
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5. The key estimate

Let a > 0and 3 € [a, a+1]. Suppose AL, ..., \" are € 1-forms on an open set U C R"
which span the cotangent space at every point of U. If we know that d\ € ‘5@;1 for
each j, it is not necessarily true that A/ € ‘Klfc However, it is a consequence of our main
result (Theorem 3.1) that near each point, one can always change coordinates so that

the forms are in % (see also Corollary 5.17 and Remark 5.18).

loc
The next result is a special case of this idea, where we present an initial setting where
we may find a ¥**!-diffeomorphism such that F,\/ € ‘@ﬂfe
Theorem 5.1. Let o > 0 and 8 € [, + 1]. Let x = (z,...,2") and y = (y*,...,y")
be two coordinate systems for R™. There exists ¢ = c(n,a, ) > 0 such that the following
holds.
Suppose Xt i = 1,...,n € €“(B";T*B") are 1-forms on B"™ such that supp(\’ —
dz') C iB" for each i, and

n

> (N = da’

i=1

@ (Bn;T*Bn) T ||d)\iH<gﬁfl(3n;/\2T*]Bn)) <ec (51)

Then, there exists a €' -diffeomorphism F : B} — B, such that B"(F(0), 3 C

F(%]B") N %B”, F ' € €8(B™; T*B") fori=1,...,n, and moreover

IF — id]|gesr@nmmy + Y 1PN = dy' s @rir-Bn)
=1

(5.2)

<c! Z (IN* = da’||ga @By + AN [l g8-1 Brin2T+Br)) -
=1

5.1. Outline of the proof: the dual Malgrange method

The proof of Theorem 5.1 is inspired by Malgrange’s proof of the Newlander-Nirenberg
Theorem [8].

Let x = (z1,...,2") and y = (y!,...,y") be two coordinate systems on the unit ball
B” C R”. In this section, we write 1-forms A\!,..., A", o', ..., 0" as
n n
)\szmz—l—ZaEdaﬂ, nzzdyz—i—Zb}dy], i=1,...,n, (5.3)
j=1 j=1

and define coefficient matrices

S+

A= (aé)an = .. |, B:= (b;)nx” =1 .. . (5.4)
N
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In this section, A',..., A" are given €* 1-forms on B” C R™ which span the cotangent
space at every point. And n' := F,\" are the push-forward 1-forms by the unknown
¢ **1-diffeomorphism F : B® =5 B", which we are solving for. Thus, n',...,n" are also
€* 1-forms defined on B™ which span the cotangent space at every point.

As in Malgrange’s work [8], the main idea is to choose F' so that the matrix B satisfies
a nonlinear elliptic PDE. That n = F,A € €? will follow from the classical interior
regularity of elliptic PDEs. We will show such an F' exists by showing that it suffices for
F to satisfy a different elliptic PDE, whose solution is guaranteed by classical elliptic
theory.

Given collections (A,...;A") and (n',...,n") of 1-forms on B!, as above, that both
span their co-tangent spaces at every point, we define Riemannian metrics g and h by

9= gyda’dal == N (6F +a})(3} + af)da'da,
1,j=1 i,5,k=1
h = Z hijdy'dy’ = Z (0F + bF)(6F + bF)dy'dy.
1,j=1 i,5,k=1
Here, 65 , 8ij, 0% are the Kronecker delta functions:
j i7 ]-7 | = .a
0, 7#7].

We use the following notations from classical Riemannian differential geometry:

g S ALA AN
= g(da’, da? detg :=|————|,
g” =g(da',da’), +/detg ’dml/\u-/\dx"
WA A (5.7)
Wi = h(dy',dy’), Vdeth:=|——"—"T |
(dy*, dy’) e ‘dyl/\~~~/\dy"
Remark 5.2.
(a) We can write h =Y. | n*-n’. It is non-degenerate since n*,..., 7" span the cotan-
gent space at every point. Moreover n',. .., n™ form an orthogonal basis with respect

to this metric h. Similar remarks hold for g = Y | A"+ A"

(b) Using matrix notations in (5.3) we have (hij)nxn = (I + B)" (I + B) and so we
know (hid),up = (hij)™' = (I+ B)~' (I +B)™")" and vdeth = det(I + B).
Similarly, we have (g;;) = (I + A)T(I + A) = (¢")~! and /detg = det(I + A).
More importantly, we have the following lemma.

Lemma 5.3. Let B, h"J and v/det h be as above. Then h¥ and +/det h are rational func-
tions of the components of B. Moreover for every v > 0, there is a ¢, > 0 such that
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K, NVdeth: {B € €7 (B";M"*") : [|Bllgr < cny} — €'(B"), 1<i,j<n,

are norm continuous maps, with

5 o

ij=1

[Vdeth — 1lgr @) < || Bllv @npanxn)-

€ (]B'n) S C;}Y ||B||<g'y(Bn;Mn><n),

Remark 5.4. The same results hold for ¢* and \/det g. Namely, ||g* — 0% ||ga +||/det g —
1

o < ¢ 4|l Allge holds with the same constant ¢, o > 0.

Proof. By Lemma 2.2, the space €7 (B™; M"*") is closed under matrix multiplication.
By Remark 5.2 (b) Vdet h = det(I + B) is a polynomial in the components of B, so in
particular is a norm continuous function on €7 (B™; M"™*™). Note that det(I +0) = 1 so
we have [[vdeth — 1|l @n) Sy [[Bllgr ®rmnxn)y when the right hand side is small.

By Lemma 4.13, by choosing ¢, < ¢gn, Where ¢gnr  is the constant in Lemma 4.13,
we see that the map B — (I + B)~! is ¢7-norm continuous with ||(I + B)~! —
I~ @nsmnxny < 2[| Bl @npanxn).-

Thus, in the domain ||Bj¢+ < ¢y, the map B — (I + B)~* ((I + B)_l)T is also
continuous and satisfies ||( + B)~! ((I + B)_l)T ~Iler SNT+B)TI+B) —I||¢v <

~

%~ . 1t follows wit ”anZ ii)own = (L +DB)" + - , we have that i
1Bl 16 follows with (h)nscn = (his)yiky = (1+B)~* (I + B)™) ", we have that 4

nxn
are norm continuous and ||h% — 69 ||x~ < || B4~ -
By possibly shrinking ¢, , we get [[Vdeth — 1llg~ < ¢, Bllg~ and 3275 |7 —

e < c LB

ij
0 Y

¢v. 0O

Convention 5.5. Given a Riemannian metric h, we use the co-differential 1}, as the adjoint
of differential with respect to h. That is, for any k-form ¢ and any compactly supported
(k — 1)-form 4,

(Ind, B 1= (&, dib)n = / h(é, dup) d voly,

where dvoly is the Riemannian volume density induced by h. In local coordinates,
dvoly, = v/deth dvolgn, where dvolgs is the usual Lebesgue density on R™. We write

n

Urn for the usual co-differential with respect to the flat metric ) ; =1 8iidy'dy’ on

R™.

Lemma 5.6. Let o > 0, and let \',..., A" be € 1-forms defined on B™ that span the
cotangent space at every point, with (al), g, (¢*), and \/detg given in (5.4), (5.5), and
(5.7).
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Suppose F' =id + R: By — By is a ¢t -diffeomorphism that satisfies

i;( Videtg ) iai detg-g7af), inBy, k=1,...n
_ _ (5.8)

Then for the pushforward 1-forms n* = F ¥, k= 1,...,n, the coefficients (bf) defined
in (5.4) satisfy

n
P - )
3 5 (\/det hh”bj) —0, B, k=1,..n. (5.9)

ij=1
Proof. Note that the composition of a C'-function and a ¢**!-diffeomorphism is still
C', and being compactly supported is preserved under homeomorphism, so we have

Ci(B}) ={voF:veCi(B]))} (5.10)

By assumption R € €**1(B";R"), and af,¢", \/detg € €*(B"), so (5.8) makes
sense in 6%, ' (B?) C CL(B™)’ and the equality can be viewed as elements of the dual of
CL(B™).

For any u € C}(B™), integrating by parts, we obtain

n k
- (82 2 (i (2 ).

i,j=1

ORk ) Ou
/Z < —ai>%\/detgdx

1,j=1

Bz

—(dR" — (A" — da®), du)gn .,y = —(dF" — ¥, du)gn 4

Here (-, )n,, are the dual pairs for linear functionals and test functions induced by g.
Namely, for u,v € C°(B") and ¢, € C°(B™;T*B"), (u,v)gn;y = [g. uwvy/det gdz and
(b w Brg — I]Bn ¢ ¢ \/de

Using (5.8), we get (dF* — ¥ du)gr,, = 0 for all u € C}(B"). By (5.10) we have
(dFF — Xk, d(v o F))gn.g = 0 for all v € CL(By).

Note that F(g(, 1)) = (F.g) (Fué, Futb) = h(F.g, F.) for all 6,3 € CO, (B"; T*B),
and F,\/det g = \/det F.g = v/det h, so we have, for every v € C} (By),

0= (dF" = \*,d(vo F))gng = (Fu(dF" = \*), F.F*dv)gp. = (dy" — 1", dv)gy.n

-/ niipk 2 ot hdy.
J ayz

B Hi=1
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Integrating by parts, we obtain (5.9). O

We will choose a coordinate chart F' so that (5.8) is satisfied, and therefore (5.9) will
be satisfied as well.
To prove Theorem 5.1 we will prove the following:

o There exists a R € €T (B"; R") satisfying (5.8) with boundary condition R|alB" =0.
Moreover, we can choose R with ||R||ga+1 Sa,8 [|A] . Thus, by taking ¢ > 0 small,

we may take ||R||ga+1 small.

o When ||R||ga+1 is small, F = id + R is a €**!-diffeomorphism of B". And under
the assumption supp A C 5B", we have || Bl|4s oB7) Sa.s |Allg~ and ||dn|lgs-—1 Sa,s
1dA
small.

o Using that B € € (0B"; M"*") satisfies (5.9), if || B|«s aBn) + [|dn|¢s-1 is small, we
will show B € €7 (B"; M"™*") and || Bll¢s Sa.s || Al

@s-1. In particular, by taking ¢ > 0 small, we may take || B|s@opn) + [|dnllgs-

The last step above requires the Zygmund-Ho6lder well-posedness for the Dirichlet
problem.

Lemma 5.7 (The Dirichlet problem). Let v > 0, and let U be a bounded domain with
smooth boundary. Then for f € €7=2(U) and g € €7(dU) there is a unique u € €7+ ?(U)
such that Au = f and “|aU =g.

Moreover, the solution map (f,g) ~ wu is continuous bilinear map €7~2(U) x

¢7(0U) - ¢7(U).
See [5, Theorem 15] for a proof of Lemma 5.7.

Definition 5.8 (Dirichlet solution on ball). Let v > 0 and f € €7~2(B"), we write D(f)
for the unique solution u € €7(B™) such that Au = f and u|aBn = 0. For a €7~ 2-vector
valued function g = (g1,...,9m) on B, we let D(g) := (D(g1),..-,D(gm))-

Remark 5.9. In Lemma 5.7, for v > 0, €7 (0B") is the Zygmund-Hoélder space on the
sphere S"~! = 9B"™. One can use Definition 4.2 to define ¥”-functions on it. Note that
the sphere is a compact manifold, and therefore 6]} _(S"~') = €7 (S"!). The norm can
be defined using any finite atlas, and the equivalence class of the norm does not depend
on the choice of atlas. Moreover we have

£ le 0By = f{|| fllgr @) : flogn = [} (5.11)

since the trace operator (-)|sg» : €7(B") — €7(0B") is continuous and surjective;
see [20, Theorem 2.7.2]. In fact given a function f € €7(S"!), we can take f(z) =
f(Z)x(|z|) where x € C°(—3,2) such that x(1) = 1, then we have ﬂSn,l = f and

[z]

171l @y = | fllig(snr)-
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5.2. The existence proposition

In this section, we show that there exists a ¥’**!-diffeomorphism F = id + R solving
(5.8) and which satisfies good estimates.

Proposition 5.10. Let « > 0 and let 5 € [, + 1]. There is a ¢ = c1(n,a, ) € (0,1)
such that, if A= (af)nx” :B™ — MI"*"™ satisfies

- A€ EY(EB" M) and ||Alge < 1,

then the matriz (I + A)(x) is invertible for every x € B™, and there is a € -map
F =id+ R on B" such that

(i) R solves the equation

;L_:l %(m.gw%};) = Jzn_: %( detg-gak), B, k=1,...,n,
(5.8)

with boundary condition R|8Bn — 0, and we have
[Rllgo+r@nre) + [|VR|gs@n\ 2BmrR) < T Y|A] e (5.12)

(it) F : B} — By is a €T -diffeomorphism such that B"(F(0),§) C F(3B™) N 2B".
(iii) Let ® = F~1: By — B be its inverse map, then

[V® — I||ga®nmnxn) + [|[ VR = I|lgs(oBnmnxn) < 1 || Al g (5.13)

In particular ||®||ga+1@nrey < c; '

Remark 5.11. The map F in Proposition 5.10 is uniquely determined by A. This is due
to the well-posedness of the Dirichlet problem for the second order elliptic equations,
since R satisfies (5.8) with R’a]B" =0.

Remark 5.12. As we will see in the proof of Theorem 5.1, the map F' from Proposition 5.10
is the map of the same name in Theorem 5.1.

Proof. We let ¢; be a small constant which may change from line to line. Note that if
(5.12) and (5.13) are valid for some ¢, then they are also valid for any 0 < ¢1 < ;.

First pick ¢; < ¢gn o Where ¢gn o is the constant in Lemma 4.13. By Lemma 4.13,
the assumption [|Aljge < ¢1(< égn o) implies that I + A is invertible at every point
and (I + A)~! € €*(B"; M"*"). Therefore, g given in (5.5) is indeed a ¢*-Riemannian
metric.
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By the assumption suppA C iB", we have \/detg - gij|Bn\%Bn = 6. Since
(v/det gg” (z))nxn is an invertible matrix for € 1B"™, the second order operator
>ij=1 0zi (Vdet g - gY0,:) is uniformly elliptic on B". Classical existence theorems
(for example, [6, Theorem 8.3]) show that for each k = 1,...,n there exists’ a
RF € H'(B™) that satisfies (5.8) with Dirichlet boundary condition Rk|aﬂ3n = 0, since
dij=1 2 (Vdetggal) € €271(B") c H~(B"™). By a classical regularity estimate
(see [6, Theorem 8.34] or [5, Theorem 15]), we know RF € €“+1(B";R").

To show ||R||gat+r S ||Allge, we write (5.8) as

o= S o (o0 vawar) 5 )+ 52 g (vaaeat).

by ] (5.14)

s n
in B,

k=1,...,n.

By Remark 5.4 (see also Lemma 5.3), we see that |6 —/det gg"7 || g @n) Sa [|Allg--
Therefore we have

| A R|lga-1 Sq Z (||6ij — /det gg || ga||0yi R¥|| o + | detggijaf|\<ga)
N (5.15)

@at+1 + ||A||<ga,

S [[Allg=||R

where the implicit constants depend only on n and « but not A or R.

The assumption R|8Bn = 0 implies that R = D(AR), where D is the zero
Dirichlet boundary solution operator given in Definition 5.8. Since, by Lemma 5.7,
D¢ Y(B") - €*1(B") is bounded, (5.15) implies

|R||gesr@n ey < Chl|Allga@nmnxn) | Rl o+ @nrn) + Cil|Allga@nmnxny,  (5.16)

where C; = C (n,a) > 11is a constant depending only on n and « but not A or R.
Choosing ¢; small enough so that ¢;C; < %, then we get ||R|gos1 < 2||R|jga+s +
C1||Al|lg« when A satisfies the assumption || Az« < ¢;. Therefore

IR]|ge+i@nin) < 3C1[[Allgn < e[| Allga, when [|Allga < e < (3C1) 7
(5.17)

This is part of the estimate in (5.12).

Next we show |R|gs+1(gn\2n) S [|Alle. Note that by the support assumption
supp A C %[B%” we have /det gg¥ Br\1Bn = 5% and a¥ Br\lBr = 0, so the right hand
2 2
side of (5.14) is zero in B™\ $B". Therefore each R¥ is a harmonic function in the domain
B"\1B".

5 Here H'(B™) stands for the classical L?-Sobolev space of order 1, and H™'(B™) = Hy(B™)* is the
L2-Sobolev space of order —1.
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The estimate || R||ga+1n) Sa [|Allge implies ||[R[|ga+1(o1pn)) Sa [|Allge since the
trace map ¢+ (B") — €71 (9(3B")) is bounded (see Remark 5.9). By classical interior
estimates of harmonic functions (for example, [6, Theorem 2.10]) since AR|Bn\ ign =0,

2
we have

[Rllgs+103mm) S [ Rllororiaspny S [ Rllco@n2Bny S 1 Allge- (5.18)

Therefore, along with the fact that R|8]B =0, R|a \2Br) = R}BQBH U R|alB" has
4

%P*! norm bounded by a constant times || All¢a. By clasmcal regularity estimates of
harmonic functions (also see Lemma 5.7) on B™\3B"™ we know

[Rllgs+1@m\ 38y S8 |1 Bllgssi(o@n2Bny) Sas [[Allen
In particular, there is a Cy = Cs (n,a, 8) > 0 that depends on neither A nor R such that

VRl gs@n\ 2Bn) < Co Allgo. (5.19)

Taking ¢; < 3C;' we have IVR|l4s@r\ 2Bm) < 2c7!|Alle. Combining this with

(5.17), completes the proof of (5.12).

We can take ¢; > 0 possibly smaller so that ¢; < (CQCI) , where Cj is the constant
in Proposition 4.10 and C is the constant in (5.16). By (5.17) we know || R||ga+1 < Cyt.
So by Proposition 4.10, the map F = id + R has €“*!-inverse. We conclude ® = F~! ¢
CrLH (B R™).

Since ||R[|¢1@r;Mrxny Sa || Rllge+1@nrny, Dy possibly shrinking ¢; we can ensure
|R|lco + |[VR|lco < L. So F(0) = R(0) € B™(0,%), which implies B"(F(0),%) C
B™(0,4+ %) C 3B, and |F(z1) — F(x2)| > |21 — 22| — \R(xl) R(x2)| > $|wy — m,] for
z1,x2 € B". Thus, if |[F(z) — F(0)] < % then [z — 0] < %; ie., B*(F(0),%) C F(3B).
So B"(F(0), %) C F(3B") N 3B" ﬁmshlng the proof of (11).

Finally we prove (iii). Note that by Proposition 4.10 (i), (5.13) gives || ®|go+1@nrn) S
1, which is || ®[|¢a+1 < ¢;* by choosing ¢; small.
By Proposition 4.10 (ii) and using that ¢; < %(Coél)_l, we get [|[V® — I]|ga <

Col|R||ga+1 < CoChl|Allge < iei'||A|l4e, which proves half of (5.13).
To show the second half of (5.13), we need to show [[V® — I|l4s@apr) S || Al
The assumption R| spn — U implies F | oBr = id| oBr = <I>| opn and therefore
I=(VF)~

(VO —1)| 5. = (VR) 0 @~ —1I.

)|aan B 1|6]B"

Fix x € C2°(2B"\3B") such that y = 1 in a neighborhood of dB", so VR(z) =
X(x)VR(z) for x € B"™ near IB™.

We shrink ¢; > 0 so that ¢; < égn_g - (Cpng - Col|x|lgs) ", where Cpn g is in (4.18),
Cy is in (5.19), and égn g is in Lemma 4.13. Then the assumption ||Al|ze < ¢; implies



B. Street, L. Yao / Journal of Functional Analysis 283 (2022) 109537 33

IXVR|gs®ny < C~'Bn,ﬁ||X||<gcff(13n\g13n)||VR €5 B\ 3Br) = Cgn p-Cs) A o (1Bn) < CBnB-

Therefore we can apply Lemma 4.13 to YVR € €#(B"; M"*") to obtain ||(I+xVR) ™1 —
I|l¢s < 2||xVR|¢s. Hence, along with (5.11),

[(I+VR)™ = Illgs@omny ST+ XVR) ™ = Illgs@ny S IXVR|ws@n

Sx |Bllgsri@n 2By S (|4l

So by possibly shrinking ¢; > 0, we get [|[V® — 1|45 spn) < 1c7 Y| Al|e, which completes
the second half of (5.13). O

We now have pushforward 1-forms n' = F, ! ... n® = F,\". Their norms admit
some control, as the next lemma shows.

Lemma 5.13. Let o > 0 and let § € [, + 1]. There is a ca = ca(n,a, 5) > 0 such that
the following holds. Let A € ‘gf‘(%B”, M"™*") be the coefficient matriz for A\*, ..., A" (see

(5.3)) satisfying the assumptions of Proposition 5.10 and also satisfying

(a) ||Allge@nmnxny < ca.
() Fork =1,...om, e (Bn;/\QT*Bn) with 22:1 ||d/\kH<€ﬁfl(Bn;/\2T*]Bn) <
Co.

Suppose & = F~1: By — By satisfies the conclusions of Proposition 5.10. Then, for

the 1-forms n* = ®*\F (k = 1,...,n) with coefficient matriz B = (b;)nxn (see (5.3)),

we have:

(i) B satisfies the PDE system (5.9).
(ii) || Bllge @ panxn) + | Bllgs (omrpanxny < 5 '[|Allge-
(iii) dn* € %ﬁ—l(B”;/\QT*B") for k = 1,...,n, with ||dy*

e AN g

€B—1(B™;A2T*B") <

Proof. Part (i) is obtained in Lemma 5.6.
For part (ii), write ® = (¢!, ..., #"), where ¢* € €*t1(B"), k = 1,...,n. Therefore

n* = o* (dmk + Zafdmi) =do* + Z(af o ®)dg',
o7 o (5.20)
A" —v*) | ¢ ¢’ ,
k _ k -
bj = a7 +;(aioq))8yj’ 1<j4,k<n.

From (5.20) we know that || B|lge < ||[V® — I||ga + ||A 0o @||ga||VP||¢=. By Proposi-
tion 5.10 (iii) we know || ®|gat+r S 1 and |[V® — I||g« < ||A|l¢=. By Proposition 4.10 (i)
we get ||A o ®||ge < ||A]lg~. Combining these we get



34 B. Street, L. Yao / Journal of Functional Analysis 283 (2022) 109537

1B

¢ SIIVE —Illga + [[Ac @ga|[VO[ga S Al (5.21)

Since we have A = 0 outside %B” in particular A|8B" = 0, it follows that n* = d¢*
on JB"™. Therefore || Bl|4s@ogny = |[V® — I|l%ssBn)- So by Proposition 5.10 (iii)

| Blls @By = [IV® — Iz o) S |4

. (5.22)

By choosing ¢ > 0 small, (5.21) and (5.22) complete the proof of (ii).

Finally, for (iii), we apply Proposition 4.10 (iii) with # = A*, for each k = 1,...,n.
Since d(F,0) = d(F.\F) = dn®, by (4.16) we get [|dn®|lgs-1@np2repn) S AN |go-1.
Taking co smaller, we complete the proof. 0O

5.3. The reqularity proposition

In this part, we show that the 1-forms n',...,n"™ are indeed €”, by using the interior
regularity theory for elliptic PDEs.

Proposition 5.14. Let o > 0 and 8 € [o,a + 1]. There is a c3 = c3(n,a, ) > 0, such
that if n*,...,n" € €(B™; T*B") with coefficient matriz B € €*(B"; M"™*") (see (5.3))
such that B solves the PDE (5.9), B’aan € €8 (OB™; M"™ ") with

n

| Bll¢e®n:mnxny + || Bllgs (oBnmnxn) + Z ldn' |l s—1Bn;p2reBn) < €3, (5.23)
=1

then B € €°(B"™; M™*"). Moreover

| Bllegs nsmnxny <5 (||B|\<ga(Bn;Man)JrHBH%ﬂ(aBn;MnM)JFZ Hdnl”(vﬂﬁ*l(B";/\zT*B"))-
=1
(5.24)

Proof. We can write B = D(AB) + (B — ©(AB)), where © is defined in Definition 5.8
and is the zero Dirichlet boundary solution operator to the Laplacian equation on the
unit ball.

Note that B — ©(AB) is the harmonic function whose boundary value equals to
B‘aan (which might not be zero). By Lemma 5.7 using the assumption B|6B” €
€P(OB™; M"*"), we get B — D(AB) € €°(B"; M"*") and

B —D(AB)|lgsmry < | Bllsosr)- (5.25)

We can rewrite (5.9) as

0 k— ~ 0 ij ij\pk . n .
_;ayibi—g_:la—w((\/dethw_aj)bj), B, k=1....n.  (526)



B. Street, L. Yao / Journal of Functional Analysis 283 (2022) 109537 35

The left hand side of (5.26) is Yg»n*. By Lemma 5.3, the right hand side of (5.26) is the
derivatives of rational functions of the components of B, which vanish to second order
at B = 0. More precisely, using Lemma 5.3, we can rewrite (5.26) as

Irnit == a—yibf => ayin(B)’ inB!, k=1,...,n (5.27)
i=1 i=1

Here RY are rational functions (see Lemma 5.3) defined in a neighborhood of origin in
M™*" with |R¥(u)| < |ul3.x. for suitably small matrices u € M™ ", and we have

IR (u1) — RE(u2)| < (Jug|pinsn + || ninxn )1 — ta|ppnxn,  when ug, uy € M™*™ small.

(5.28)

We can pass this fact from matrices to matrix-valued functions. Indeed, R has con-
vergent power expansion in a neighborhood of 0 as

ksji...gr 1 lr : :
E E a; )ty oo ug, converging when |tt|pgnxn is small.
=2 j1,....5m,01,...,lr=1
(5.29)
k . .
Here al;fll 7 77 € R. The power expansion starts at r = 2 since the zero and the first

order terms all vanish.
By Lemma 2.2, we can replace u € M™ ™ in (5.29) by f € €7(B™;M"*"), and
as in (5.28), for v > 0 there is a Cr, > 0, such that when | f1ller Brimnxny +

| f2ll6 Bripanxny < Crls

IRF(f1) — RE(f2) 6 B

< Cry (Il filler @rpancny + [ f2llgr@amnsm)llf1 = fallgr@nmansny, 1<ik <n.

(5.30)
Using the fact that An* = ddgnn* 4+ Ir~dn*, we further have
Ank:di a.R’-“(B)+z9Rndn Z dyﬂ+z Orndn® 0 dy’.
P oyt 8y3 ay = " Oy
Here (-, -) denotes the pairing between 1 forms and vector fields.
On the other hand, An* = 37" | A(0F +bf)dy? = >27_) Abldy’, therefore
AV = (Ank, — Z (B) + ﬁRndnki inB', k=1,...,n.
Nl ) 8y] ay ) 8y] ) Yo ) )

(5.31)
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Let & = min(é’fz}a,é’fz’lﬁ) where Cx - is the constant in (5.30). Let £ = &p €
(0,&o] to be determined. We define metric spaces 27 ¢ and an operator Tp : 2, ¢ —

‘%[’775 = {f S Cg’Y(Bn;Man): ||f||<g», < €} C %V(BH;MW‘X”)’
for Y € {aaﬂ} and 5 € (0,60]
” 82R§<f>)

0
TolJ§ += b~ D(AH) + (DWendn®), 55 ) + 3 (T 75

=1

1<4,k<n.

(5.32)

We endow 27, ¢ with the metric induced by the norm | - ||¢~, which makes 2 ¢ a
complete metric space.

Note that from (5.32) and (5.31) we have B = Tp[B]. Our goal is to show that when
cs3 and § are both suitably small, we have B € £, ¢ and that Tp is a contraction mapping
on both 2, ¢ and Zp ¢, thus by uniqueness of the fixed point we conclude that B is a
€P-matrix and || Blls < €.

By Lemma 5.7, ® : €7~2(B"; M"*") — €7(B"; M"*") is bounded for v € {a, 3}.
By (5.30), we know for every fi, fo € 27 ¢,

o S |Dlgr-2001 |V g1 mgr-2 Y IRL(F) = Ri(f2)llen
k=1 (5.33)

| T5[f1] — Tslf2]

< ECR LN f1 = fallen,

where C’kﬁ > 1 is a constant that only depends on n, (Rf), ~ but not on B, &, f1, fa.
On the other hand T5[0]% = b — D(AY) + (D(Wandn®), 22 ). By (5.25), for 7 €
{a7 B}?

ITz0]ll¢r < ITa0ll¢s < |IB—D(AB)|gs@n) + Y D (Wrndn”)|s
: ht (5.34)
S IBllgsomny + 3 lldn*|lgo-1.
k=1
So by possibly increasing Cr, , we have, for fi € 27 ¢, using (5.33) and (5.34),
ITalf1)lle+ < I TBlf1] = TBl0ll%+ + [ TB[0]ll¢~
(5.35)

< ey (I1Bllsomey + D ldnfllgo-r + €l fill )-
=1
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Take c3 > 0 satisfying c3 < 1 max(1, (I 0427,8)_2’ and take

§ =¢p = 2max(Cx 4, Cx ) <|B||<ga(1Bn;Mnxn) +[1Bllgs o) + Y ||d77k<gﬁ—1> :
k=1

(5.36)

By the assumption (5.23), £5 < %max(Céz,a, ;aﬁ)’l < &, so Tg is defined on ok
and by (5.35) Tp maps 25 ¢, into 27 ¢, for v € {«a, 5}.

Since {pCx ., < 3 for v € {a, B}, using (5.33), Tp is a contraction mapping on the
domain £, ¢, for v € {o, 5}.

Note that £g > ||B||l¢=, and so B € {f € €*(B™";M"*") : ||fllg~ < &} = Zagy-
Therefore, B is a fixed point for Tp in &4 ¢,, which is unique since 7p is a contraction
mapping on Zu ¢

On the other hand 7 also has a unique fixed point in 23 ¢, C Zo ¢, Therefore, by
uniqueness, B € 23¢, = {f € €P(B";M™ ") : ||fll¢s < g} In particular, || B
¢p. Thus by (5.306),

@ <

w58 < B Sap |1Blga@n + | Blws@osny + Y ldn'|gs-1.
=1

1B

Thus, we have established (5.24) which completes the proof. O
5.4. The proof of Theorem 5.1 and an improvement
Using Propositions 5.10 and 5.14 we can prove Theorem 5.1.

Proof of Theorem 5.1. Let c¢1,c3,c3 > 0 be the small constants in Proposition 5.10,
Lemma 5.13, and Proposition 5.14. We take ¢ = # min(cq, cae3) in the assumption of
Theorem 5.1.

Let F, R=F —id, ® = F~!, A, B and ' = F,\’ be as in Proposition 5.10. Recall
n* and B = (b]) are given in (5.3) and (5.4).

When the assumption (5.1) is satisfied, by Proposition 5.10 (ii) we have that F' is
% 1-diffeomorphism and satisfies B"(F(0),+) € F(3B") N 3B™. And by (5.12), we
have ||F —id[|ge+1 = ||R|jgarr < ' [|Allge < 5=t S07 AT — da||e. This implies
half of the estimate (5.2).

By Lemma 5.13 (ii) and (iii), we have ||B||ga®n) + |Bllws@mny < ¢3'[|Allge and
k|l go—r < c5 ' |dNF |l go—r, k=1,...,n.

Thus, || Bllga @)+ | Blles o)+ > ks 1dn¥lgs -1 < 3 | Allgatca Yoiy [|dAF [l gs-
< 2¢y'c < ¢3. By (5.24) in Proposition 5.14, we get

Do ln" = dyFllgs < nl|Bllgsgny < nes’t (IIBII%Q + || Bllgs omny + Y IIdn’“lw—1>
k=1 k=1
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<neg e (IIAIW +Z [ PP 1) < n®(cae3) Tt Y (I = da¥ o + [|[dN"|ipa-1).
k=1 k=1

This gives the second half of the estimate (5.2) since n?(coc3)™! < 3¢7!. O

In Theorem 5.1, we assumed (5.1) which is a smallness assumption. When (5.1) is not
satisfied, we may use a scaling argument to transfer to a setting where it is satisfied, as
the next result shows.

Proposition 5.15 (The scaling argument). Let « > 0, 8 € [o, e + 1] and let po,é, M > 0.
There exists a ko = ko(a, B, 1o, ¢, M) € (0, po] that satisfies the following:
Suppose O1,....0" € € (uoB™; T*R™) such that 0°

= d:vi‘o fori=1,...,n and
dot,...,dom € €51 (uOB”; /\2T*R”) with estimate

o

D 1615w (uoBn -rr) + 146 | 651 (o p2emmy < M. (5.37)

i=1

Then there are 1-forms \',... A" € €*(B"; T*B") such that

(i) )\Z‘ 1B T R (o% 91)|%Bn, i=1,...,n, where ¢.,(x) := Ko - x is the scaling map.
(ii) AY,..., A" satisfy the assumptions of Theorem 5.1 with the constant ¢ = ¢. That
is,
e AL ..., \" span the cotangent space at every point in B™.

e supp(\' — dz?) C $B™.
o Yimi(IN = da'[lge + |dN[lgs-1) < &

The key to Proposition 5.15 is the next lemma.

Lemma 5.16. Let v > 0, then for any po > 0 there is a Cy ,, > 0 such that,

£ ()l By < Coyopao K™D Fllegr (B

(5.38)
Vi € (0, po), f € €7 (noB™) such that f(0) =0

Proof. By taking a scaling z — poz, we can assume pg = 1 without loss of generality.
Thus, f is defined on the unit ball. To prove the result, we use the characterizations of
Zygmund-Holder norms in Remark 2.1.

For k € (0,1] set fi(x) := f(kz). For x € B” and x € (0,1], by Remark 2.1 (ii), for
r e B,

(s (@) = [f(rz) = FO)] < I /]

) oy 52 = OB S | gy ™).

(5.39)
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When ~ € (0,2), using Remark 2.1 (i), for 21,22 € B,

‘fn(wl);fm($2) _fﬁ(m;zz” — f(ml);f(mz) _ f(,{wlgzz)
(5.40)

Sy I1£]

g [E(@1 = 22) [N < KT fllgn|wy — o).

Combining (5.39) and (5.40), we get (5.38) for the case 0 < v < 2, since

Hflﬁ”‘g"f(]Bn) ~ Su]BP |f,€(l‘)| + sup |JJ1 —x2|*’y fn(m)gfm(m) _ fﬂ(zﬂzrm)
zeb™

x1,x2€B™

Sy "Gmin(%%)||f||<fv(13n)-

For v > 2, we proceed by induction. We prove the result for v € [I,1 + 1), for [ €
{1,2,...}. The base case, I = 1 was shown above. We assume the result for  — 1 and
prove it for [.

Assume v € [I,l + 1) where | > 2. Note that Vfi.(z) = &(Vf)(kz), so
1025 (fe)lln-1Bn) = Ell(Ops [lrller-1Bn) < [1(02s [)rllgr-1(mny for j = 1,...,n. Here
(Qcif)fi(x) = (8x]f>(l'€$) L

By the inductive hypothesis | feller—1@ny < CryflK}E”chg'y—l(]Bn) and
10z frllgr-1ny < Cy- 152 |0

we get

¢v-1@n) for j = 1,...,n. So by Remark 2.1 (iii)

€v-1(B")

I fsller @y = I faller-1 @) + D 1055 (i)

=1

n
1 1 min(~v, %
5 K2 (||f||(g'yfl(B’n) —+ Z ||axij<g»y—1(Bn)) ~ K2 Hf||<g~,(]3n) = K (%2)”.}0“%’7(3”)’
j=1

completing the proof. O

Proof of Proposition 5.15. First we construct 1-forms p',...,p" € €#(uoB™;T*R"™)
such that fori =1,...,n,

(a) p|o—0anddp|Jan
(b) There is a Cy = Co(n o, B, Mo) > 0 that does not depend on ¢, such that

¢5 (uoBr k) < Co([|0°lge (uoBrn R “1(uoBmina2TeRn))-  (541)

Take a xo € C°(puoB™) such that XO‘&BTL = 1. Define
2

pli= G x9d(x0b") = G I(xo - dO' +dxo N0, p'i=pt — (ﬁi|0), i=1,...,n.
(5.42)
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Recall ¥ is the codifferential from Notation 4.5, and G is the fundamental solution of
Laplacian as in (4.6). The convolution is defined in R™ using Lemma 4.6, since the
support supp 9d(xo0*) C supp xo € poB™ is compact.

Clearly pi|0 = (. Similar to the proof of Lemma 4.8, since XO‘ o = 1, we have

0" | sp g = A(x00") [ s g = (P + dO)(G * d(x00") | o g = (G * AIA(x00")) | o s

= dp

_ %
Bogn = dp ’%Q]Bn'

So condition (a) is satisfied.
By Lemma 4.7 we have, for every p > 0,

Hg * 19W||<gﬁ(#Bn;/\2T*Rn) S@)H ||W||<M&B71(#Bn;T*Rn), Yw € (gf_l(u[ﬂgn; T*Rn) (543)
Take w = J(xo - dO + dxo A 0%), = o in (5.43) and by Lemma 2.2, we have

16148 (uoBr:m Ry < 18" l22 (uoBr: Ry + 157 (0)] < 201" 108 (puoBrsTR)

Sao 19(x0 - d0° + dxo A 0)|| g2 (B pzr-R) (5.44)
SBuio IX0llgat1]|dO|lgo-1 + lldxollge 6]l o—1

SaBioixe 140" lg-1(uoBrnzrrr) + (10" |5 (uoBryTR)-

(5.44) gives us the Cy for condition (b). This completes the proof of (a) and (b) and

we get pl,...,p" as desired.
Fix x; € C(3B") such that X1|1Bn = 1. For k > 0, let ¢.(z) := Kk -z, s0 ¢,
3
maps $B" into £2B" when & € (0, uo]. For & € (0, o), we define 1-forms AL, ..., A? and

1
T -

ST by

N dat + Ly L0 —do?), 7= Ly (600) + LG+ 0 (dya A GL(8 — da'))
1=1,...,n.
(5.45)

Since #' € € and p' € €7, we have \i, € €*(B"; T*R"), 7. € €°(B"; T*R") (by
(5.43)) and supp(X\, — da’) C supp x1 € $B". And since x| =1 and ¢} dr = kdz,

3B"
We write 6% and p*, i =1,...,n as
0" = da’ + Za?(m)dxj, pl = Z bi(x)dz?, where a;- € € (uoB"), b;- € €° (uoB™).
j=1

(5.47)
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By assumption 9i’0 = dmi|0 and pi|0 =0fori=1,...,n,so a’(0) = b5(0) = 0 for all
1 <i,7 <n. And we have

)\fi =dzt + Zn:xl(x)a;(/{ 2": ( bl (kx)d :Ej + G * 19( “(kx)dx1 A dxj)),

j=1
1=1,...,n.
(5.48)
Since ¢.(3B") C LB" and suppx1 € 3B", by condition (a) we have x; - ¢jidp’" =
X1 - ¢5d for i = 1,...,n. It follows that d\! = dr¢ for i = 1,...,n; indeed,

dNL —drl = Ldxy A @L(0" — da’) + L1 - ¢rdf’ — 2dxa AgL(07 — da') — Ly - ¢dp’
= 1x1 - ¢(d0" — dp’) =
(5.49)

Applying Lemmas 2.2 and 5.16 to aé» we have

min(a, %

Ix1 - @ (k) lga@n) Sa xtllellal(5)lge@r) Samo & 2| x| [0l 5o (uoBn),

Vk € (0, po)-
(5.50)

Using (5.48) and (5.50), we deduce that

n
ZIW — da'||gn < Z I (@)ai (k) o Saun £ P Ixallen > lladleauobn)-

1,j=1 i,j=1
(5.51)
By (5.49) we have d\. = dr’, and therefore
||d)\2‘|<g/371(3n;/\2T*]Bn) = HdT,i”(gﬂfl(]Bn;/\QT*Bn) Sﬁ ||T;||CKB(BH;T*]BH)7 1= 17 R N
(5.52)
Applying Lemma 5.16 to a} and b} we get that for 0 < k < py,
i i min(B, % ]
D 05 (k) g5 @) S Ixallees 05 (52) [lwm@my So ™2 xa[lgn b5 (553)
min(a,1 i ’
< min 72)||X1||<€ﬁ”bj”‘gﬁ(ung")'
||ai.(li.’E)dX1||<ga(]Bn;T*Rn) Sa ||ai-(lix)||<ga([3n) X1||<€a+1
’ ’ (5.54)

. 1 i
,ga Kmm(oé, 2)HX1 ||<w&a+1 ||a; H%Q(HOB")'

Letting w = af(kx)dxi Adz? € €*(B™; T*B") C €7~ (B™; T*B") and = 1 in (5.43),
we see that
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n n n
> AN llgs-1@nnzreBey = D _lldTillgs-1@rinerBry So 3 _IThllgs @nirepry by (5.52)
i=1 i— —

i_ (Ihca (@B (x2) e g + |G = 9(a} (se)xs A de?) ) by (5.48)

Zn:: lIx1(x /m) ¢ @) T ||a (kx)dx1 A dx? H%B L (BT ]Bn)) by (5.43)

Sos g Z (155 5) oo ey + N (<) o grigegey) SO 2 A1
ij=1

Sa.p R0 x|t i (Ha’;H(g“(uoB") + ||b§"|<55(u013n)> by (5.53) and (5.54).

o (5.55)

Note that y; is a fixed cut-off function whose ¥€® and ¥“*!-norms depend only on
n, . So combining (5.51) and (5.55) we have

n

> (I = datloga + [|dXL]|ga-1)
i=1
0 (5.56)
Sapopo K2 Z (a5 llea uoBrrereny + 195l (uoBm; n2=Rmy ) -

By (547) we have 377, [lajllee < 1+ 3L [10°lge and 3575 [Bller <
S P ll¢s. And combining (5.56) with (5.41), we can find a Cy = Ci(n, a, B8, 19) > 0
that does not depend on the other quantities, such that

DXL = da o + [ldN [lga-:
i=1
<(C;- Hmin(a,%) Z (1 + H0i||<€“t(uolB";T*R") + Hdai‘|%/3—1(M0Bn;/\2T*Rn)>7 Vk € (O, ,uo].
i=1
(5.57)
Now applying assumption (5.37) to (5.57) we have
S IAL = dallige + [l lgs-r < wPEDC - (M ),

i=1

Since [|((X% — dz?, 5325 ) ) nxnllco@nmnxn)y Sa Dory AL — dat|lga@ny, we can find a
¢ =& (n,a) > 0 such that
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Z |AE — da’|jga < & implies ||((\. — da?, %>)an||CO(Bn;Man) <3
i=1
In particular ((AL, 52
B", which means (\L,...,A") span the tangent space at every point in B™.
We take ko = ko(n, a, B, po, M, €) > 0 such that

Do = L4 (AL = dat, azj))nxn is invertible at every point in

min(a,
0<kg<po and kK (a"")Cl (M +n) < min(,&).

Take A" = X, fori=1,...,n. We have }.7" | A" — da*|ga 4 ||[dN||s-1 < min(E,&).
By our assumption on &, A!,..., A" span the tangent space at every point in B"™. Note
that by (5.48) supp(\%, — da’) C supp x1 € 3B". This shows conclusion (ii) is satisfied.

By (5.46) we get conclusion (i), finishing the proof. O

We can now prove a special case of the Theorem 3.1:

Corollary 5.17. Let o > 0 and let 3 € [a,a + 1]. Let A1 ..., A" be €% 1-forms on a
€T L-manifold M of dimension n, which span the cotangent space at every point. Then
the following are equivalent:

(1) For every p € M there exist a neighborhood U C M of p and a Cflg‘j‘ -diffeomorphism
®:B" = U C M such that <I>( ) =p and ®*AL, ..., ®*\" € €P(B™; T*B").

(2) dX\, ..., d\" have regularity %, loc b (see Deﬁmtwn 2.9).

Remark 5.18. This is the special case of Theorem 3.1 when 8 € [, a+1] and ¢ = n: given

€ *-vector fields Xy, ..., X, that span the n-dimensional tangent space at every point,

we take 1-forms A!,..., A" to be the corresponding dual basis that span the cotangent

space at every point.

Proof. By passing to a local coordinate system, we can assume 9t to be an open subset
of R™, since by Proposition 4.10 both conditions (1) and (2) are invariant under €%
diffeomorphisms.

(1)=(2): For such ®, we have d(®*)\') € €. '(B";T*B") for i = 1,...,n. So
&1 . U C M — R” is the desired coordinate chart that shows dA!,...,dA" fulfill
the conditions for dA!,...,d\" to have regularity in Célgc (see Definition 2.9).

(2)=(1): Let p € M.

By passing to local coordinate system and applying an invertible linear transforma-
tion we can find a pg > 0 and a ¢ t!-coordinate chart Fy : Uy C MM = oBZ such

that

 Io(p) =0. '
o ((Fo)sA ’O—dxz‘o fori=1,...,n.
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Take ¢ > 0 be the small constant in Theorem 5.1. By Proposition 5.15 with ¢ = ¢,
we can find a kg € (0, ug] and 1-forms X!, ..., \* € €*(B™; T*B") such that for scaling
map ¢n, : B” — poB", ¢x, (z) = Koz, we have

) 5\ )\” span the cotangent space at every point.

) sup ( —dx?) C 1]B3nfor1—1

c) (A ")Ilm = (Fy 0%) L (B 0 o)A
(d) ZZ 1IIA’ Al + AN qgams < c.

(a
(b
(

We set I} := qb;ol.

Applying Theorem 5.1 to Al,...,A\" we obtain a €“tl-chart F, : B" = B"
such that Fy(3B") 2 B"(F»(0),2), |F> —id|lgerr < c and (F2)\!,..., (F2)\" €
€5 (B™; T*B").

By (c), ((Fa o Fy o Fy).\Y) ‘F (1Br) = %0 : (F2)*5\i|F2(é]B") €¢P fori=1,...,n. We
can take an affine linear transformation F3 : R™ — R™ such that F5(F3(0)) = 0 and
F3(B"(F3(0), 5)) 2 B".

Now we have Fo(Up) 2 poB™, Fi(uoB™) 2 B", Fa(3B") 2 B"(Fy(0),3) and
F3(B"(F2(0), ) 2 B". Take ® := (F3 0 Fy 0 Fy o Fy)~' : B® — 9. Since Fy, F1, F, F3
are all ¥**!-diffeomorphism onto their images, we know ® : B" = ®(B") C 90 is
a €t diffeomorphism. Moreover, we have ®(0) = p because Fy(p) = 0, F1(0) = 0,
F5(F5(0)) = 0. Thus, @ is the diffecomorphism we desire with U := ®(B™), completing
the proof. O

6. Function spaces along vector fields, revisited

Let « >0,8>1—q,and let ®: 0N = M be a ‘5“+1-diﬁeomorphism between two
‘KC‘H manifolds 91 and M. Let X € €2 . (M; TM), f € IOC( ), Y € €5 (9; T9M) and

loc loc
‘glfc (im; AT *E)JT) We have the following

o (X f) = (P*X)(®*f) on M.
o O*[X,Y]=[0*X,®*Y] and ®*(Liex#) = Lieg-x ®*6 on N, provided that o > 3.

In fact Lemma 4.4 establishes the above facts on open subsets in R™. And since these
results are local, they hold in manifolds as well.

Remark 6.1. Let a,7 > 0, 8 € (— min(a, ), 00), and let 9t and N be two FPx(@7)+1
manifolds. Assume ® : 91 — M is a €7 !-diffeomorphism. Let Xi,..., X, be €2

loc~vector

fields on 91 that span the tangent space at every point. We write <I)*X for the list of
pullback vector fields (®*X7,...,2*X,) defined on 9. The following properties follow
easily from Definitions 2.13, 2.14, 2.15 and 2.16:

(i) If f € €Y 10c(M), then &* f € Cg. 1,0 (M)
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(i) fY € %)ﬂ(,loc(im; T9N), then P*Y € %g*X,loc(m; TN), provided that o,y > 3

(it)) Let 1 < k < n. 160 € €7 (M AMTM), then 070 € €7 . (M A7),
provided that o,y > %

(iv) Let 1 <k <n-—1andlet§ € g” (zm;/\kT*zm) (see Convention 2.12). If df

loc

has regularity in %X 1Oc(im), then d®*6 has regularity in %g:);loc(m).

When the vector fields X3, ..., X, are sufficiently smooth, our Cf)ﬁ( loe-SPaces coincide
with the standard CKIOC spaces, as the next result shows.

Proposition 6.2. Let oo > 0 and let X1,..., X, be €

@ ~vector fields on a €T -manifold

N that span the tangent space at every poznt. Then

(i) €y 100 (M) = €L (M) for all B € (—a,a + 1.
(ii) When o> %, €3 1, (04 TM) = €L (M TM) for all B € (—a, 0.

loc

(iii) When a > L, for 1 < k < n, %X,IOC (E)ﬁ,/\ T*Sm) ‘Klgc (93?; /\kT*Sﬁ> for all

27
B € (—a,al. N
(iv) Assume > 1. Let € (1—a,14+a] and1 <k <n. Let 0 € ‘gloca) (DJI/\kT*{m)

be a k-form, then df has regularity ‘K)B(IOIC(SDT) if and only if d € ‘Klfc 1(
/\’““T*im).

To prove Proposition 6.2 we need a simple result concerning Hélder-Zygmund spaces:

Lemma 6.3. Let U C R"™ be an open subset, let 5 € R and f € 9'(U). Then f € €,
if and only if f,0p1 f,..., 00 f € €21 (U).

loc

oc(0)

loc

Proof. When 8 > 1, the result follows from Remark 2.1 (iii). Thus, we consider only the
case 0 < 1.

Let V' € U be an arbitrary precompact open subset of U. We fix x € C°(U) such
that X’V 1 so xf is defined in R™. Since we have 8xjf‘v = xj(xf)’V, j=1,...,n,it
is enough to prove that f := yf € %5(]1%”) if and only if f,8,1f,...,0;m f € %ﬁ 1(IR”)

Clearly f € €°(R™) implies 0,1 f,...,0un f € €P~1(R™).

Conversely, suppose f,0,1f,...,0umf € €°~1(R") hold, we have (I + A)f = f —
> =1 Oni (8,5 f) € €P~2(R™). Since I 4+ A : €F(R™) — €P~2(R™) is a isomorphism of
Banach spaces for every 3 € R (see [20, Theorem 2.3.8]), we have f = (I+A)"Y(I+A)f €
%P (R™), completing the proof. O

Proof of Proposition 6.2 (i), (ii), and (iii). By passing to a local coordinate chart it suf-
fices to prove the results on an open subset 9t = U C R™ endowed with the standard
coordinate system (z',...,2™). In this coordinate system we write
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9 ,
X; =Y al—, withal € 62.(U). (6.1)
— " O

n
Jj=

The assumption that Xi,..., X, span the tangent space at every point shows that the

matrix function (a{)nxq € 62.(U; M™*9) has full rank n at every point. So we can find

a matrix (b5)gxn € Glo.(U; M7*™) such that

L, j=k,

0 (6.2)

q

ik _ <k __
ijai5j{
=1

(i): By Definition 2.13, <f}ﬁmoc(U) =<7

1o.(U) holds for g € (—a, 1]. For g € (0,a + 1] we
proceed by induction on r = []. The base case r = 1, which is 8 € (0, 1], follows from the
definition. Let » > 2 and suppose we have the case [] =7 —1, i.e. Cﬁfgloc(U) = ‘fﬁc(U)
for all 8 € (r — 1,r], we wish to prove it for 5 € (r,min(r + 1, + 1)].

Let f €€ (U),so f e CL NE 1 (U) and by Proposition 2.7 (iv), X1 f,...,X,f €
%g;l(U) By the inductive hypothesis f € CL_ N ‘KQI;C(U) and Xif,..., X,f €
Cr0c(U), 50 f € €5 10 (U).

Conversely, suppose f € ‘KQVIOC(U), so feCL. N ‘fgfolc(U) and Xqf,...,X,f €
%)é_lolc(U) By the inductive hypothesis f, Xif,..., X, f € Sﬁfc_l(U) Using (6.2) and

Lemma 2.2 we have 0;f = Y7 >0 blakopf = Y1 biX;f € %g;l(U) for j =
1,...,n. By Lemma 6.3 we obtain f € €° ().

loc

(ii): Here o > £ and Definition 2.14 imply that €y ,,.(U; TU) = €},
B e (—a, 3l

For 3 € (—%,a] we prove %)B(JOC(U;TU) = %lgc(U;TU) by induction on r = [3 + 1].
The base case r = 1, which is 8 € (=2, ], was established above. Let 7 > 2 and suppose

T 202
we have the case [+3] =r—1, i.e. <K)I?’IOC(U;TU) =€ (U;TU) forall § € (r—2,r—13],

loc
we wish to prove it for 8 € (r — 3, min(r + 3, &)].

Suppose Y € %ﬁC(U;TU), so Y € ‘5% N CKﬁfl(U;TU) and by Proposition 2.7

loc loc

(v), [X1,Y],...,[X,,Y] € ‘ﬁg;l(U;TU). By the inductive hypothesis Y € ‘Kéc N
Chroe(UsTU) and [X1,Y],...,[X,, Y] € €4 .. (U;TU), which is the definition of
Y e ‘K)ﬁmoc(U; TU) (see Definition 2.14).

(U;TU), s0 Y € 62 NEEL(U; TU) and (X4, Y], ...,

(U;TU) holds for

Conversely, suppose Y € ‘5)5(

loc loc
[X,.Y] € €4,0.(U;TU). By the inductive hypothesis ¥ € &GP0 (. Ty and
[X1,Y),....[X,, Y] € 60 (U; TU). »
Write ¥ = >0, P’ 5% where p? € ‘Kl?én(é’ﬁfl)(U). By Lemma 2.2 we know the

equation below is defined.

(Xi,Y] = Z(aja—pk— '8af)£=Z(Xip’“)ik+Li<Y), 1<i<gq (63)

} © i 0xJ ) Ox* ox
7,k=1 k=1
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Here Li,...,L, are multiplication operators (0-th order differential operators) with
Croe Lcoefficients.

By Lemma 2.2, since max(1,8 — 1) > 1 — «, we have L;(Y) € %g;l(U;TU), o
ok e ‘flggl(U) and X;pF € %ﬁ;l(U) for 1 < i< g¢q 1 <k < n. Using (6.2) and

Lemma 2.2 we have 9;p% = Y7 bi - (X;p*) € €°~1(U), for j=1,...,n. By Lemma 6.3

i=1"7 loc
we obtain p* € ‘KlfC(U) for all 1 < k < n, which means Y € €°_(U;TU). This finishes

loc
the induction argument and hence the proof of (ii).
The proof of (iii) is the same as (ii). Indeed, similar to (6.3), we can write

n

Liey,6 = > (Xiby, g )dal A Adatt £ L), 1<i<q,
1<ji1<+<jr<n
where Lf,...,L! are product operators on k-forms with Cfl(é‘c_l—coeﬁicients. Using

the same method as for (ii) we can prove that 6;, ., € CK)?]OC(U) if and only if
01 ins X105, s Xy, . € C27H(U) if and only if 65, j, € €2 (U). We omit
the details. O

Corollary 6.4. Let o > 1 and let Xy,..., X, be 6

loc

-vector fields on a €T -manifold M
that span the tangent space at every point. Let § >1—«a and 1 <k <n.

(i) Let 0 € %E;aﬁ (Sﬁ; /\kT*im> be a k-form. Then df has regularity ‘KQTC}C(XDT) if
and only if df € %)g_lolc (zm; /\k+1T*£m .
(i1) Let 0 € 63 1o (M AFT™I), then do € 6 (2 A 7o),

Proof. By passing to a local coordinate chart it suffices to prove the results on an open
subset M =U C R™.

(i): First we prove the case § € (1 — «,1]|. By Definition, 2.16, df having regular-
ity %)B(_l (U) is equivalent as df having regularity %B_l(U) when 8 € (—a,1]. By

loc loc

Lemma 2.10, d6 having regularity €° (U) is equivalent as df € &Pt (U; /\kHT* U) for

loc loc

B € (1—a, a+1]. By Proposition 6.2 (iii), ¢! (U; /\kHT*U) = %ﬁ;&c (U; /\kHT*U).

loc

So df has regularity %g;l(U) if and only if df € ‘ﬁg;l (U; /\kHT*U).
For 8 € (0,00) we proceed by induction on r = [3]. The base case r = 1, which is
the case 8 € (0,1] C (1 — a, 1], was established above. Let r > 2 and suppose we have
the case [B] = r — 1, i.e. (i) holds for all B € (r — 1,r] and we wish to prove it for
B e (r,r+1].
B=1 (77 AR+1s T o+
Suppose df € ‘KXJOC (U,/\ T U). By Definition 2.15, df € €

loc
dix,do = Liex,d9 € 4,2 (Us A\ T*U) for all i = 1,...,¢. By the inductive hy-
pothesis df), dux, df), ..., dix, df have regularity ‘Kgﬁc(U), which is the definition of df
having regularity ‘55_1 (U) by Definition 2.15.

,loc

N ‘Kg_lolc and
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Conversely, suppose df has regularity ‘5)/?_1 (U), ie. do € %0! (U;/\kHT*U) and

Jloc loc
df,dvx,do, ..., dux, df have regularity %)5(_2 (U). Applying the inductive hypothesis to

,Jloc

0,0x,d6,...,1x,d9 we have df, duix,db, ... dix,d9 € 4,2 (U; N"HT*U). Note that
de e ‘Klgz implies df € ¢, for some € > 0, and by assumption X; € €. C 6., so by

Proposition 2.7 (vi), Liex,d# is defined and Liex,dfl = duvx,df € %ﬁfc (U; /\kHT*U).
By Definition 2.15 we get df € ‘gfé_lolc (U; /\k+1T* U), finishing the induction argument.

(ii): For the case 8 € (1 — a,1], by Proposition 6.2 (iii), since « > 1, we have
G 10e (Ui N0 ) =60 (U N'T*U) and 600 (Us AV 0 ) =60 (0 A0
Therefore 6 € ngloc implies df € ‘K)ﬁ{lolc

For f € (0,00) we proceed the induction on r = [8]. The base case r = 1, i.e.
B € (0, 1], was established above. Let r > 2 and suppose we have the case [f] =7 — 1,
ie. B € (r—1,r], we wish to prove the case § € (r,r + 1].

Let 0 € ‘K)ﬁ(’loc (U; /\kT*U), so by assumption 6, Liex,0,...,Liex, 0 € ‘5)’8{1010 (U;
/\kT*U). By the inductive hypothesis dfl, dLiex, 0, ..., dLiex 0 € ‘K)ﬁ{loi (U; /\kHT*U).
Since § > 1 and df € %)g]()lc C ‘51?;, by Proposition 2.7 (vi), Liex,df is defined, and

therefore Liex,df = dLiex,0 € ‘K)’(?_lfc So by Proposition 6.2 (iii) if 8 < %, or by Defini-
tion 2.15 if g > %, we get df € ‘Kg_lolc (U; /\kHT*U). m]

Proof of Proposition 6.2 (iv). By passing to a local coordinate chart it suffices to prove
the result on an open subset 9t = U C R".
By Corollary 6.4 (i), df has regularity %ET;C(U) if and only if df € ‘@”ﬁ’loc (U;

/\k+lT*U>. By Proposition 6.2 (iii), since § — 1 € (—a,a], %)B(I;C<U; /\kHT*U) =
&Pt (U;/\kHT*U). So df has regularity CK)B(TOIC(U) if and only if df € ¢! (U;

loc loc

/\’““T*U). O

Remark 6.5. Proposition 6.2 (iv) and Corollary 6.4 (i) and (ii) also hold for general
« > 0. However, the proof is more complicated and is not used in the proof of our main
results. Because of this, we do not include these more general results.

7. The proof of the main theorem

In this section, we prove Theorem 3.1.

Lemma 7.1. Let o, 3,7 > % Let Xq,..., X, be €. .-vector fields on a manifold M that

span the tangent space at every point, and let ® : N — M be a €+ -diffeomorphism.
Let f € C10e(M), Y € €L 0e(MGTM) and 0 € €y, (WG THM), then fO €
Ch 1o MGETM), (0,Y) € €y 100 (M), and (2%0,2*Y) € €. 0. (N).



B. Street, L. Yao / Journal of Functional Analysis 283 (2022) 109537 49

Proof. First we prove (,Y) € %ﬁyloc(sm). The argument to show f6 € ‘5)/?
similar and we omit the details.

Consider first 8 € (1, 2]. By assumption (see Definitions 2.14 and 2.15) we see that
Y, 0 € ‘Kéc and Liex,Y,Liex,0,...,Liex, Y, Liex 0 € ‘Klgc_l So by Proposition 2.7 (i),
0,Yy=1y0 € %2 (M) satisfies

loc

(M) is

loc

Xi(0,Y) = (0, Liex,Y) + (Liex,0,Y) € €21 (M), foralli=1,...,q.

loc

By Proposition 6.2 (i), since § < o+ 1, we get (0,Y) € %{jc(sm) = %§7IOC(W).

For 3 € (%, 00), we proceed by induction on r = [5 + %] The base case, r = 2, is
established above. Let r > 3 and suppose the result is true for [+ 3] =r —1, i.e. for
Be(r— %,7‘ — %], we wish to prove it for 8 € (r — %,r—i— %]

By assumption Y, 0 € ‘5}’(2_1016 and Y, 0, Liex, Y, Liex, 0, ..., Liex, Y, Liex 0 € ‘K}ﬂ(_lolc By
the inductive hypothesis (0,Y), (0, Liex,Y), (Liex,0,Y) € ‘5)@]()16(931) foralli=1,...,q.
So Xi(0,Y) = (0,Liex,Y) + (Liex,0,Y) € €y 0. (9M) for all i = 1,....q as well.
By Definition 2.13 we get (0,Y) € ‘5)@710(:(937). This completes the induction argu-
ment.

Finally, we show (®*0, ®*Y) € ‘Kg*x’loc(fﬁ). Note that (6,Y) = 1y6. So by Lemma 4.4
(i) and Remark 6.1 (i) we get (D*0, *Y) = 15y P*0 = ®*(1y0) = ®*(0,Y) and their
common value is in %g*XJOC(‘ﬁ). O

Lemma 7.2. Let o > % and B € [a,a + 1]. Assume that A, ... A" form a €*-local basis
for the cotangent bundle of a manifold M. Let X1,..., X, be its dual basis.

Suppose A, ..., A" € %ﬁ,loc(m T*IM) then d\, ..., d\" € %’gc_l (Sﬁ; /\QT*Sﬁ).
Proof. The inverse of a 42 .-matrix is a 4%.-matrix, so as the dual basis of (A, ..., A"),
we know Xi,..., X, are €%.-vector fields on 9.

Write ¢f; := (Liex, A", X;) for 1 < i,j,k < n. Since X1,..., X, and A',... A" are
dual bases, we have

d)‘k(Xian) = Xi<)‘kan> - <)‘k7 [XMXJD - Xj<>‘k7Xi> = <LieX1:)‘kan> -0= Ci'cj
= d\F = > BN

1<i<j<n
(7.1)

Note that the products in (7.1) are all defined due to Lemma 2.2.
By Definition 2.15, Liex, \* € %ﬁ;jc(zm, T*9). By Proposition 6.2 (iii), since § —
1 < a, we have %jﬁ;jc(mt;T*mt) = EPH M T*M), so Liex, \F € €271 (m; T*m).

loc loc

Since Xi,...,X, € €., by Proposition 2.7 (i), (Liex,\*, X;) € (55‘1(931); ie ck €

oc? loc 1]

€71 (M). By Proposition 2.7 (ii), since 8 — 1 + a > 0, we know di<ici<n CHAEN

loc
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N o€ ‘to”lgc_l (fm; /\QT*‘I}I), so by (7.1), we conclude that d\* € ‘Klfc_l (zm; /\QT*DJI) for
1<k<n. O

Remark 7.3. Lemma 7.2 is similar to Corollary 6.4 (ii). However, it does not follow from
Corollary 6.4 (ii) as we require « > 1 in Corollary 6.4 (ii).

Proof of Theorem 3.1. The case 8 < «, for each condition is trivial. Indeed, fix p € 90,
take any € “*!-coordinate chart =1 : U C 9 = B" near p. We have ®*X1,...,®*X, €
¢o.(B"TB") C %ﬁc(B"; TB") and ®*A!,... ®*\" € 42 (B";T*B"). By shrinking
the domain and scaling, we can make replace ‘flgc by €7. In other words, we have
O*X1,..., "X, € €°(B™;TB") and ®*\!,... , &*\" € €*(B"; T*B"). Therefore, (a)
and (b) are automatically satisfied for o > 0, and the same for (¢) and (d) when o > 1.

For the remainder of the proof, we assume 8 > a.

N[

We will show (a) < (b) for arbitrary a > 0, and (a) = (d) = (¢) = (b) when a >

We first prove that (a)=-(b) for arbitrary « > 0.

Suppose (a) holds, and thus there exists a neighborhood U C 9 of p and a dif-
feomorphism ® : B” = U C 9 as in (a). Since by assumption ®*Xy,...,®*X,, €
€5 (B™; TB") and the inverse of ‘flgc—matrix is still Cgf)c—matfix, we see that the dual
basis ®*AL,..., ®*\" € € (B"; T*B"). So d®*\' € €. " and (®*\,8*X;) € €, for
1<i<n, 1<53<n.

By Proposition 6.2 (i), since 8 < 8+ 1, we have %lfc(]B") = %g*XJOC([B%"). Thus,
(PN, D*X ) € (fg*XJOC(B”) for1<i<n,1<j<gq.

By Definition 2.11, d®*\¢ € %lfc_l(]]i%"; T*B") is the same as d®*\* having regularity
‘Klfc_l([ﬂﬁn) By Proposition 6.2 (iv), if 8 > 1 (where we use « = 8 and ®*X € ‘Klﬁc in the
proposition) or by Definition 2.16 if 3 < 1 (where 8 — 1 < 0), d®*\? having regularity
‘5@;1([53”) is the same as d®*\! having regularity ‘Kgfé,loc(B").

Now d®*\’ has regularity %g*_;’loc([f%”) and (®*\', ®*X;) € %g*X)IOC(B") for 1 <
i <mn,1<j<gq. Notethat &, = (®71)*. By Remark 6.1 (iv), d\* = d®,®*\’ has
regularity %£:<I}*X710C(U) = ‘K)'@(_IC}C(U) for 1 < i < n. And by Lemma 7.1, (\, X;) =
(D, DN, D, 9*X;) € ng*q)*XJoc(U) = %§7IOC(U), finishing the direction (a) = (b).

Next we prove (a)=(d) by assuming o > 1.

By assumption of (a) ®*Xy,...,®*X, € ¥°(B";TB"). By Proposition 6.2 (ii),
Ch (B TB") = €. x10.(B";TB"), so ®*Xy,..., "X, € €f.x .. By Remark 6.1
(ii), where we use @, = (&~1)*, we have X; = ,8*X; € €y g.(U;TU) = €5 (U; TU)
for 1 < j < q. Therefore, we get (a) = (d).

We now prove (b)=-(a) for all o > 0. Fix p € . We proceed by induction on
r =181,

We start with the base case r = 1, i.e. 8 € (0,1]. And as mentioned in the be-
ginning of the proof we assume 5 > « and therefore o < 1. By Definition 2.16, (b)
is equivalent to d\!,...,d\" having regularity &’ _1(9171). By Corollary 5.17 there is a

loc
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¢+l diffeomorphism @ : B" = U C 9 such that ®(0) = p and ®*X,...,®*X,, €
€5 (B"; TB™).

We let X° denote the sub-collection of X given by

X0 =(X1,...,Xn).

So ‘5)’?100(U) - CKQU,IOC(U)' By assumption (A, X;) € Cﬁg’loc(U) C ‘K)ﬁw’loc(U) for all
1 <i<mnandl<j<gq Applying Lemma 7.1 to (A%, X;) with X = (X1,...,X,) in
that lemma replaced by X° = (X1,...,X,,), we get (P*\!, *X;) € ng*xo 1oc(B™). By
Definition 2.13, we have (fg*xo loc(B™) = %lgc(]B") since 3 < 1. Therefore (P*\?, ®*X ) €
%€° (B™) and thus

loc

X =) (@N, O X;) P X; € 6, (B TBY), n+1<j<q. (7.2)

i=1

Now let r > 1 and suppose (b) = (a) is true for the case [8] < r, i.e. for 8 € (0, ],
we wish to prove the case 8 € (r,r + 1].

By the inductive hypothesis, there is a neighborhood Uy C 9 of p and a €7 -
diffeomorphism @y : B" = Uy C 9 such that ®¢(0) = p and ®FX;,...,P5X, €
€T (B™; TB"™). Since the inverse of 4], .-matrix is still a ]) -matrix and ®§X1,..., D5X,, €
% ., for the dual basis we have ®5AL, ... PA" € € (B™; T*B").

By assumption, d\’ has regularity (f)gjlgc(Uo), so by Remark 6.1 (iv), d®jA" has

regularity %55;7100(13”) for i = 1,...,n. By Proposition 6.2 (iv), since ®5X € 4}, and

B < r+1, we know that d®FAL, ... dP5A™ have regularity ‘5@;1(]3") By Definition 2.11,
this is to say dOIAL,...,dBEN € €71 (B"; /\ZT*IB%”).

loc

Applying Corollary 5.17 (2) = (1) to d®FAL,...,dPA" € ‘5150_1 (B”;/\QT*B"),
since by assumption 8 — 1 € (r — 1,7], we can find a map ®; : B® — B” that is
¢ +1-diffeomorphism onto its image, such that ®1(0) = 0 and ®;PFAL, ... PIPIA" €
€5 (B"™; T*B™). Since the inverse of Cgf)c—matrix is still a fﬁlgc—matrix, see that the dual
basis @15 X1, ..., B1;X, € 6 (B"; TB").

Take & = Py o P; and U = P(B") C M. So ¢(0) = Pp(P1(0)) = Pp(0) = p
and ®*X4,...,9*X,, € %ﬁc(B";TIB%”). We are going to prove ®*X,,q,...,®*X, €
Go(B"; TB").

We still use X° = (Xi,...,X,,) as the sub-collection of X = (Xi,...,X,). By as-
sumption (b), (A%, X;) € (ng (U) C %50,1%
we have (®*\!, ®*X;) € ng*Xo,loc(Bn) forall 1 <i<n,1<j<q. By Proposition 6.2
(i), since ®*X° € (ﬁlgc, we have (@*\', d*X;) € ‘Klgc(B”) forall1<i<mn,1<j<gq.
Therefore using (7.2) we get ®*X,,11,...,2*X, € %ﬁC(B";T]B").

We conclude ®*X1,...,0*X, € ‘Klgc(IB”;T[B%”). Replacing ®(t) by ®(5t) for t € B",
we can replace ‘flgc by €7, finishing the induction argument and hence the proof of (b)
= (a).

(U), so applying Lemma 7.1 to ® and X©,

loc
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Now assume a > 3, we will show (d) = (c¢) = (b). As mentioned in the beginning of
the proof we assume 8 > «. In particular, we assume § > %

In the following proof, we fix a neighborhood U of p € 9t where X1,...,X,, form a
¢ “-local basis on U.

(d)=(c): By assumption X1,...,Xp € CKX 1oe Us TU) by Definition 2.14 since 8 > 3, we
have Xi,..., X, € % (U;TU) The inverse of € matrlx is still a €2

loc loc loc

the dual basis of (X1,...,X,) we have A\l,... A" € %”lgc(U; T*U). To prove (c), by Defi-
nition 2.15, it remains to show A%, Liex, \* € %ﬁ;;C(U,T*U) forl<i<mnand1l <j<g.
For 1 < i,j < n, (\',X;) = &% is a constant function, so 0 = Liex, (\, X;) =

(Liex, A", X;) + (X%, Liex, X;). Therefore

-matrix, so for

Liex, A" = Y (Liex, X', X;)M = = > (M, Liex, X;)M, for1<i<n,1<k<gq.
k=1 k=1
(7.3)
We prove (d)=(c) by induction on 7 = [ + 3], we work on the range /3 € (3, c0).
We start with the base case r = 2 which is the case 3 € (3,3]. By assump-

tion (d) and Definition 2.14, since ﬁ —1 < £, we have Liex, X; € %gc YU;TU) for
1 <j,k<gq Since A\',...,\" € Cflgc(U;T*U), by Proposition 2.7 (i) and (ii) we know
(N, Liex, X;) € %lfc_ and (N, Liex, X;)N € %f;l for 1 <i,5 <mn,1<k<q. Using
(7.3) we get Liex, \* € ‘fﬁ YU;T*U) for 1 <i<n, 1<k <gq.

loc
We have \' € ‘flgc(U T*U) and Liex X € €°'(U;T*U) for 1 < i < n,

1 < k < g, so by Definition 2.15, \',...,\" € %E:OC(U,T*U). Note that by as-
sumption (d), Xi,..., X, € Cf)ﬂ(yloc(U;TU), so by Lemma 7.1, (\', X;) € %ﬁyloc(U)
for1<i<n,1<j<q.

Now let r > 3 and suppose (d) = (c) holds for the case [3+ 1] = r — 1 ie. for
B e (r—2,r— 1], we wish to prove it for g € (r — 1,7 + 1J.

By Deﬁnltlon 214 Xq,..., X, € %”)ﬁmoc(U;TU) implies Liex, X; € ‘KQIOIC(U; TU) for
1 < j,k < q. By the inductive hypothesis we have A!,...,\" € %QI;C(U;T*U). So by
Lemma 7.1 we get (A, Liex, X;) € ‘5)5( L (U) and (N Liex, X;)\ € cK)ﬁ{lolc(U;T"kU). So
by (7.3) we get Liex, \* € %ﬁ}lolc(U,T*U) for1<i<n,1<k<gq.

We have A\, Liex, \! € CK)B(EOIC(U;T*U) for 1 <i <n, 1<k <gq.By Definition 2.15 we
get AL, ... A" € %)’?IOC(U;T*U). Since X1,..., X, € %ﬁC(U;TU), by Lemma 7.1 again
we get (A, X;) € ‘ﬁ;lOC(U) for 1 <i<mn,1<j<gq, finishing the induction argument
and hence the proof of (d) = (c).

(c)=(b): The result (\’, j> € %ﬁ 1oc(U) follows from the assumption. We need is to
show d\’ has regularity <€X (U), for 1 <i<n.
First we assume a > 1. By assumption (c), Al,...,\" € ‘Kg

lary 6.4 (if) we get dAL,...,d\" € €73 (Us AT°U ).

loc

(U;T*U), so by Corol-

,loc
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We next consider a € (%,1]. First we assume 3 < 1. Note that we only need to

27
consider 8 € («, 1] otherwise it is trivial.

We use X° = (X1,...,X,) as the sub-collection of X = (Xy,...,X,). By as-
sumption of the theorem, Xi,...,X, € %% (U;TU). Since the inverse of €2
matrix is a ¢2.-matrix, for the dual basis of (Xi,...,X,) we have AL A €
Cloc(Us T*U).

Note that €y 1. (U; T*U) C €y
dual bases, applying Lemma 7.2 and using that A\',..., \" € ‘K)ﬁ(

(U;T*U). Since (X1, ..., X,) and (A\},...,A\") are
0 10c(U; T*U), we obtain
AN, ... A\ € %5_1(U; /\QT*U). By Definition 2.11 this is the same as dAL,. .., dA"

loc

0 loc

having regularity Cfﬁgl(U ). By Definition 2.16, since § — 1 < 0, this is the equivalent to
d\',...,d\" having regularity %QYJC(U)

When 3 > 1, by the established case 3 = 1 from above we know that d\!,...,d\"
(U). By assumption (c), (\}, X;) € ‘Kng(U) C Cx10c(U), for
1 <i<mn,1<j<gq. Therefore, by the already proved implication (b) = (a) we can
find a €?-atlas on U such that X1’U7 ..
can assume « = 1 in this case. Since we have already established the case a > 1, we see

that d\!,. .., d\™ have regularity CKJ%IOC(U), completing the proof. O

have regularity €%

loc loc

"X‘?|U are ¢! on this atlas. That is to say we

8. Harmonic coordinates and canonical coordinates

Given a non-smooth Riemannian metric ¢ on a manifold, 9%, DeTurck and Kazdan
showed that g has optimal regularity in harmonic coordinates [3, Lemma 1.2] (in the
Zygmund-Hoélder sense), but may not have optimal regularity in geodesic normal coor-
dinates [3, Example 2.3] (in fact, the regularity of ¢ in geodesic normal coordinates may
be two derivatives worse than the regularity in harmonic coordinates).

In this section, we present analogous results for vector fields. Let X1,..., X, be C’lloc—
vector fields on a C2-manifold 91 that form a local basis for the tangent space at every
point. In Section 5 we defined a Riemannian metric g = Y., A*-\* where (A', ... \") is
the dual basis of (X1,...,X,,) (see Remark 5.2). With respect to this metric, Xy,..., X,
form an orthonormal basis at every point. Since X7, ..., X, € C', we can talk about the
metric Laplacian Ay with respect to g.

Proposition 8.1. In harmonic coordinates with respect to g, Xi,...,X, have optimal
regularity.

More precisely, let X1,...,X, and g be as above, and let § > 1. Suppose there is
a €Pt'-atlas of which is compatible with the C*-atlas of M, such that Xi,..., X,
are €° on of, letp : U C M — V C R™ be a harmonic coordinate chart,” then
VX1, 0 X € EP (ViR™).

loc

7 Such a harmonic coordinate chart v always exists locally when 8 > 1, see also [3, Lemma 1.2].
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Proof. It suffices to show that v is a %ﬁ:l—map with respect to (9, 7). Once this is
done, applying Lemma 4.1 (ii) on ® = %! and using that X1,..., X, are ‘flfc with
respect to (M, &), we get that . X1,..., 9. X, € ‘Klﬁc

Since the statement ¢ € €1
U. By doing so, the hypotheses of the proposition imply that there is a ?*'-coordinate
chart z = (x!,...,2") : U C9M — R™ on U (respect to o). In this coordinate chart we
can write A, = —ﬁ szzl %(\/det ag" %) where ¢/ and y/det g are as in (5.7).

By assumption Agyp* =0 for k = 1,...,n. Note that on (z!,...,2"), A, is a second

(U; V) is local, we may without loss of generality, shrink

order divergent form elliptic operator with @”-coefficients. By a classical elliptic esti-
mates (for example, [17, Proposition 4.1]) we have that 1* are all ‘Kﬁjl with respect to
o/, completing the proof. O

Remark 8.2. In fact the coordinate chart we construct in Proposition 5.10 (also see (5.8))
is closely related to harmonic coordinates.

Remark 8.3. While Proposition 8.1 shows that X1,..., X, have optimal regularity with
respect to harmonic coordinates, this fact along does not give a practical test for what
the optimal regularity is. Theorem 3.1, on the other hand, provides such a test.

Remark 8.4. Proposition 8.1 shows that harmonic coordinates induce a €7+ !-atlas with
respect to which X, ..., X, are ‘Klfc It is possible that the harmonic coordinates induce
some €7 1-atlas for some v > § while X1, ..., X,, are only €” with respect to this atlas;
see Example 8.5.

Example 8.5. Endow R? with standard coordinates (z,y), and let § € C'(R?) be a
function which is not smooth. Set X := cos(@(x,y))% + sin(@(m,y))a% and Y :=
—sin(ﬁ(x,y))a% + cos(@(x,y))a%. The corresponding metric is g = dx? + dy? since
X,Y form an orthonormal basis with respect to the standard Euclidean metric, thus
Ag:A:—aﬁ—aj.

Therefore the singleton {(z,y) : R? — R?} is an atlas of harmonic coordinates for
R2, and since harmonic functions are real-analytic, we know the collection of harmonic
coordinates with respect to A, defines an real-analytic structure for R? (which coin-
cides with the standard real-analytic structure). Even though the differential structure
induced by the harmonic coordinates is real analytic, X and Y cannot be smooth un-
der any coordinate system (since they are not smooth with respect to these harmonic
coordinates).

As mentioned before, DeTurck and Kazdan showed that a Riemannian metric may not
have optimal regularity with respect to geodesic normal coordinates [3, Example 2.3]. A
natural analog of geodesic normal coordinates for vector fields is canonical coordinates
(of the first kind). Next, we show that vector fields may not have optimal regularity with
respect to these canonical coordinates.
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Given C'-vector fields Xi,...,X,, on 9 that form a basis on the tangent space
at every point, the canonical coordinates at p € 90 is the map ®,(¢t!,...,t") =
et' X1+ 4" Xnyy defined via solving the ordinary differential equation, provided that it is

solvable:

e"X(p) = E(1), where E:[0,1] — 90,
d ) . (8.1)
B = r(t' X1 (E(r)) + -+ t"X,(E(r))), E(0)=p.
When Xi,...,X,, € €“ for some o > 1, classical regularity theorems for ODEs show
that @, is at least €“. Therefore, ®;X;,...,®;X,, are at least %>~ ', which is one
derivative less than the original regularity of Xi,...,X,. The next result shows that
this loss of one derivative is sometimes inevitable.

Lemma 8.6. Endow R? with standard coordinate system (z,y). Let a > 1 and let X := 9,
and Y =z f(y)0; + 9, where f(y) := amax(0,y)*"*.

Then we can find a new €°1 atlas o/ on R? which is compatible with the standard
€ -structure on R?, such that X,Y are €. with respect to this the new atlas, but for
the canonical coordinates ®(t,s) := XY (0) we have ®*Y ¢ €17 near (0,0), in

particular the collection (®*X,®*Y) is not €~ 17¢.

Note that X and Y form a local basis of the tangent space at every point, and
f €63 (R).

Proof. First we show the existence of the new atlas &7 with respect to which X and Y
are €. In particular X,Y are C' in &7, so (8.1) is uniquely solvable and hence ® is
well-defined.

Note that [X,Y] = f(y)0. € €* 1 (R? R?). Specifically, the dual basis of X,Y are
1-forms A = dz — xf(y)dy,n = dy which satisfy that dA = f(y)dx A dy and dn = 0 are
both ¢*~! 2-forms, so the condition (b) in Theorem 3.1 is satisfied. By Theorem 3.1 we
can find a ¥“*'-atlas & on R? such that X,Y are both 4%, on .

Since X1,..., X, are €% C C! with respect to <7, we see that ®(¢,s) is well-defined
near (t,s) = (0,0). We can compute ® in terms of f.

Clearly ®(t,s) = (*,s) since €% (z,y) = (z,y +5). We can write ®(t,s) = (¢(t, 5), 5).
Define ®(¢,s;7) for » € R as the solution to the ODE %@(t,s;r) = tX(D(t,8;7)) +
sY (®(t,s;1)), D(t,8;0) = 0. So ®(¢,s) = D(t, ;1) and we have D(t, s;7) = (¢(¢, s;7),75)
where

S oltsir) =tk sf(rs)o(t 7). B(t,50) =0, b e R

Solving this ODE we have
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T
¢(t, S; 'r) = ej(? sf(ps)dp / e jgp Sf(/"s)d.“'tdp7
0

—J$ f(p)dp 7
o(t,s) = plt,531) = t / el 1 g,

s
0
Now plug in
ay®~t, y >0,
fly) =
0 <0
We have
o(t,s) = $< /epadp when s > 0; ¢(t,s) =t when s <0.

0

Thus, ¢(t,s) = tg(s) where

e " e dp s>0
g<s>={ o (8.2

1 s <0.

We are going to show ® € 4% (R?% R?) and & ¢ €“*° near (0,0). To see this, it
suffices to show g € €2.(R) and g ¢ €,27° near 0, for every ¢ > 0.

loc
By Taylor’s expansion on the exponential function we have, when s > 0,

]s]a s (_1)3' gia gha
/Z dp= > Sk ka+1

S

S Y =
gs) = e g/pdp:

0 3=0 4,k=0
e l
(_l)l_k la e 20
= (Z ka+1>s =1—(1—-55)s" +O(s*).
1=0 k=0
In other words
(3 D l
— «
g(s) = Z (Z o1 ) max(s,0)
1=0 k=0
1 S !
=1-(1- a—_H) max(s,0) —|—; (kZ:O o+ 1 )max(s,O) , VseR.
s# 5>0 3
Note that for 3 > 0 the function max(s,0)% = 0 - 0 is 4. but not ¢°*¢ near 0.
s <

Indeed when 0 < 8 < 1 we know that max(s,0)? € 01007/3 P andisnot C08+e = ¢h+e

loc
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near 0 for any 0 < ¢ < 1 — 3, when 8 = 1 we know max(s,0) € ot C %! and is not

loc loc
C' near 0 so is not €1*¢ for any € > 0. For 3 > 1 by passing to its derivatives we see

that max(s,0)” € %7 and is not €°*¢ near 0.

loc
So the remainder 35%, (Yh_o G o s g% C GO for all 0 < & <
o the remainder Y%, (3, _, T ) max(s, 0)!* is C6oat forall0 <e <a,
while the main term 1— (1 — %ﬂ) max(s,0)* is €%, but not € near 0. Therefore we

conclude that g € €*(R), but g ¢ €**< near s = 0.
Now we know ® € €% (R?;R?) but ® ¢ 6,°° near (¢, s) = (0,0). Consider the inverse

loc loc

function of ®, and set (u(x,y),v(z,y)) := ®~(z,y); so that ®*Y = (Yu,Yv) o ®. We

have v(z,y) = y and u(z,y) = ﬁx. Note that g(s) > 0 for every s, so y — @ is

not €**¢ near y = 0, for any € > 0. Therefore Yv = x - Byﬁ is not €“*t¢~1 near
(z,y) = (0,0). By composing with ® which is a €%, C %2/ '-diffeomorphism (for

0 < e < 1), we see that ®*Y is not €“T¢~1 near (t,s) = (0,0), for every ¢ > 0. O

Remark 8.7. As a differentiable map @ : (R7,std) — (R? /) between two ¢**!-
manifolds, we see that ® is not € near (0,0) for any ¢ > 0. Otherwise since X and Y’
are €2, on o, by Lemma 4.1 (ii) we have ®*Y € gmin(ea—l+e) — ga—limin(e,l) pear
(0,0), contradicting to Lemma 8.6.

9. The quantitative result

1 : e’
5. If we are given €5 .-vector

fields X,..., X, that span the tangent space at every point, we can write [X;, X;] =

Let 9% be an n-dimensional manifold and let ¢ >

> i1 ¢k Xy, for some %2 '-functions ¢f;. In Theorem 3.1 we show that, for so > o — 1
and near each point p the following are equivalent

%504’1

o There exists a €“*!-parameterization ® near p such that ®*X;,..., ®*X, are 6",

e We may choose cfj with cfj € €10 DAL P.
By contrast the range of sg in [14] is sg > 1.

If one traces through the proof of Theorem 3.1, the size of the neighborhood of p and
the ¢’*oT1-norms of ®* X1, ..., ®* X, depend on the €*-norms of X1, ..., X, under some
fixed initial coordinate system near p, and on a lower bound for (1.1) at = p (in some
fixed initial coordinate system). However, in [14], when Xi,...,X, € C* and 59 > 1, a
similar coordinate system ® was constructed, but where all of the estimates depend only
on the diffeomorphic invariant quantities like the norms HC%H%;O (see [11, Section 5.1]).

Using the methods of this paper, we can extend the main results of [14] and [13]
(namely, [14, Theorem 2.14] and [13, Theorem 4.5]) from sy > 1 to s > 0.

Theorem 9.1. [1/, Theorem 2.14] and [13, Theorem 4.5] are still true with sg > 1 replaced
by so > 0, and leaving rest of the assumptions and statements unchanged.

In these papers, the assumption sg > 1 is used in the following places:
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e In [11, Theorem 4.7], which is used to prove [14, Proposition 4.1], “1-admissible con-
stants” are used in order to obtain the results (d), (e), and (f) of [11, Theorem 4.7].
The proof of [11, Theorem 4.7 (d), (e), (f)] is done in [11, Proposition 9.22]. The
l-admissible constants are allowed to depend on quantities like ||c}; e -

We are going to show that in [11, Proposition 9.22], if we only need the conclusion
that ® is a ¢*0t!-diffeomorphism, then the assumption “l-admissible constants” can
be replaced by “{sg}-admissible constants,” for a fixed so > 0 (which is possibly < 1),
where {so}-admissible constants are defined in [14, Definition 2.13]. See Lemma 9.8.

 In [14, Proposition 6.8], the assumption sy > 1 is used in order to set up some well-
defined elliptic PDEs.

In this paper we use different elliptic PDEs that are defined when 0 < sg < 1,
as illustrated in Section 5.1. See Proposition 9.4 for the precise statement to the
modification of [14, Proposition 6.8].

e In [14, Theorem 2.14], a map ® is constructed, which depends on sp, such that
O*Xy,..., 0" X, € €*0t1. Moreover, this map satisfies for s > sq, that if cfj € ‘ffﬂoc,
then ®*X1,...,®*X,, € "', with appropriate bounds on their **! norms. In [14,
Theorem 2.14], these estimates required s > sy > 1; but by using the regularity theory
of elliptic PDEs we will be able to extend this to s > sg > 0.

o Once we have established [14, Theorem 2.14 (a)-(j)] for so > 0, the proof from [14] of
[14, Theorem 2.14 (k) and (1)] also establishes these results for so > 0.

o The only place that sop > 1 is used in [13, Theorem 4.5] is when it refers to [14,
Theorem 2.14]. Once [14, Theorem 2.14] is established for sy > 0, the same is true of
[13, Theorem 4.5].

[14, Theorem 2.14] begins with X7, ..., X, which are C'-vector fields on 9 such that
(X, X;] = >1_ ¢f; X}, for some ¢f; € O

loc (). By passing to an immersed submanifold

using [11, Proposition 3.1] we may assume that X,..., X, span the tangent space at
every point.
Fix a point p € M. We choose Jo = (j7,...,Jy) € {1,...,¢}" such that X;o(p) A
.. Xjo(p) #0 and

max | @A AX ) (9.1)
1<ji<<in<a| Xj0(p) A -+ A Xjo (p)

Here ( > 0 is a constant which all of our estimates may depend on; one can always pick
39,...,7% so that the left hand side of (9.1) equals 1, though it is convenient in some
applications to allow for ¢ < 1.

In [11, Definition 4.1] “O-admissible constants” are defined to be constants that depend
only on diffeomorphic invariant quantities like ?7 k=1 HCZ‘HCO( Bx,, (n:€)) where £ > 0 is
a small, given constant on which our estimates may depend, and X ;, = (Xj‘f’ oy Xjo).
See [11, Definition 4.1] for the precise definition.
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Fix sop > 0. For s > sy we define {s}-admissible constants as in [14, Definition 2.13]
except we only require sg > 0 rather than sy > 1. These are constants which depend
only on diffeomorphic invariant quantities like 337 ., ||cfj||<g)s(J0 (CO(Bx,, (0:6))- See [14,
Definition 2.13] for the precise definition.

Recall that X;,...,X, span the tangent space to 91 at every point. Moreover, by
reordering X1,..., X, so that j9 =1,..., 5% = n, we may assume that X;(p),..., X, (p)
form a basis for T, and (9.1) holds with X;(p) A --- A X,,(p) in the denominator.

We begin by considering the canonical coordinates ®g (w1, . . ., ,) 1= XX+ T2 Xn(p),
In the following lemma we prove an analog of [14, Proposition 4.1] when sy > 0 (as op-
posed to so > 1). In this case, we only show that ®, is locally a C!-diffeomorphism
rather than globally a C2-diffeomorphism. In particular, we only show that ®; is locally
injective.

Lemma 9.2. There is an {so}-admissible constant® g > 0, such that ®y(z) := e X (p)
is defined for x € B"(uo) and ®¢ : B™(uo) — M is a locally C*-diffeomorphism, so that
we can pullback X1, ..., X, to B"(po). Moreover, by writing Y; = ®;X; forj=1,...,q
and [Yi,...,Y,]" = (I + A)V, we have

(i) A(0) =0, sup |A(@)|Mrxn <5 and ||Allgs(Bn(ue)mnxn) Sqsp 1 for s > so.
€B™ (ko)
x€B™(po
(i) There exist b}, € €01 (B"(uo)), 1 <1 <n <k <gq, such that Y}, =" b.Y] for
q n

n+ 1<k <gq. Moreover Z Z 1% |
k=n+11=1

w1 (B (o)) S{s) 1-

(7ii) There exist é?j € €°(B"()) for 1 < 4,j < g and 1 < k < n such
that ®F[X;, X;] = Y0 18 - Yi on B™(uo) for 1 < i,j < q. Moreover
q
Z 1255 16 (87 (o)) Sgsy 1-
ij, k=1
Remark 9.3.

(a) The constant pg does not depend on [|cf;[[=o. It is almost a 0-admissible constant
(see [11, Definition 4.1]) except it also depends on the quantity n > 0 in [11, Section
3.2].

(b) When @ is locally C'-diffeomorphism, for any (continuous) vector field L on 9t
there is a unique vector field L on B™ () such that d@o(x)ﬂx = L|x. So we define
the pullback vector field as L := ®{L.

(c) We cannot say [Y;, Y;] = >_,_; &Yy yet, since Y7,..., Yy are € and we may not be
able to talk about commutators of € *°-vector fields when 0 < s¢ < % Nevertheless
[Y;,Y;] can be thought of as ®§[X;, X;].

8 In [11] and [14] a constant similar to po was called 7o.
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(d) When 0 < s < 1, by standard results from ODEs we only know that ®¢ is a €175-
map and we do not expect ® to be C2. Unfortunately, the proof of injectivity for
® in [11, Proposition 9.15] requires ®§ X, ..., ®;X, to be C' Nevertheless we will
show that ®¢ is injective when restricted to a ball centered at 0 with a smaller
radius, and this smaller radius is a {sg}-admissible constant. See Lemma 9.8 and
Remark 9.9.

(e) Lemma 9.2 “loses one derivative” in the sense that it implies ||Yj[l¢s Sgsy 1, but
our main result gives ||Yj[l¢s+1 Sgp 1. Similar to the proof in [14], we will recover
this lost derivative by composing with another map ®; in Proposition 9.4 (see also
[14, Proposition 6.3]).

Proof of Lemma 9.2. Let 77 > 0 be a number such that ®¢ is defined on B"(7}) and ®q
cannot be defined on B™ (7)) for any 7 > 7. Note that 7] is bounded below by a positive
{50 }-admissible constant (also see [11, Definitions 3.7 and 3.10]).

We first prove the result in the special case ¢ = n. In this case, Xi,...,X,, form a
basis of the tangent space to 9 at every point. Thus, [X;, X;] = Y77_, ¢f; X} where
(cfj)f i k=1 are uniquely determined by Xi,..., Xp.

By [11, Lemma 9.6] we know there is a unique’ A € C°(B™(0,7); M"*") such that

{

(rA(r0)) = —A(r0)> — C(r)A(r0) — C(r), for |r| <7 and § € S 1,
0) =0,

.

(9.2)

where C(z)] := Zxk - (®o(x)), xeB™0,7), 1<ij<n.
k=1

By [11, Proposition 9.4] there is a 0-admissible constant D > 0 (in fact, depending
only on n and upper bounds for 337, e lco (o)), such that (see (4.17) in Convention
4.11)

|A(@)|mnxn < Dlz|, 2 € B"(0,7). (9:3)

Take pg := %, SO HAHCO(BH(HO);MM,L) < % Therefore I + A(x) is invertible matrix
at every point © € B™(ug), which means ®( has non-degenerate tangent map at every
point. By the Inverse Function Theorem, ® is a locally C'-diffeomorphism.

Define the matrix A by Y =: (I + A)V; where we are treating Y as the column vector
of vector fields Y = [Y7,...,Y,]", and V is thought of as a column vector. It follows
from [11, Proposition 9.18], that A = A in B" (1) and ||A||<gs(3nw0);Man) Stsy 1. Since
Y = (I + A)V, we have 37" | || Yill4s (B (o)) Sysy 1, finishing the proof of (i) when
n=q.

9 In [11, Section 9.3.1], what we call A is called A, and what we call A is called A.
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Since || Allco(Bn (ug);mnxn) < 3, we have [|(I + A)~ Hleo(Bn (uoymnxny < D25 o(%
3 < 00, so by [14, Lemma 5.7] (applied to the cofactor representation of (1 + A4)~')
HA

@B (uo)Mnxm) sy 1, we get

17+ A)

(B (o)) + 1L+ A) Mg (B (uo)) Stsp 1 (9.4)

Take Efj = cfjoq)o for 1 <1, j, k < n. We separate the proof of sz,kzl ||Efj\
<{sy 1 into the case s > 1 and the case 0 < s < 1.

When s > 1, we have Yi,...,Y, € ¥° C C'. By [l1, Lemma 9.24] we have
gk 185l (7 (o)) Sgsp 1-

When 0 < s < 1, we may not have Y7,...,Y,, € C'. In order to use previous results
such as [11, Proposition 8.6], we need ® to be (qualitatively) C?; though we do not
require any estimates on any C? norm of ®y. To get around the fact that ®; is not

€= (B™ (o))

C?, we introduce another atlas on B"(ug) with respect to which ®q is C2. Indeed, we
say f : B"(po) — R is C2_ with respect to the atlas «, if for every open subset
U C B"™(po) such that ®q : U — ®y(U) is bijective, we have f o ®;' : ®o(U) C M — R
is Cfic-

Since Y7,...,Y, are €° and span the tangent space at every point in B™(ug), we
know &7 is compatible with the standard €T !-structure on B"™(ug). In particular both
(B™(po), o) agrees with the standard C1%/2-structure on B™(ug).

Now ® : (B"(uo), /) — M is C2. By [11, Proposition 8.6] we have

oy 1<id,5,k<n, 0<s<L
(9.5)

k
ij

2 (B (o),er) = €

~k )
ij i (B™(po),

On the other hand by [11, Section 2.2], the definition of || - |¢s involves only the
C"#/2_structure of the manifold. Indeed for 0 < s < 1, on the domain U = B"™(uo),

T 1) = FQ)l
| flles = I fllco + 7y23p#y sty (7.9)8
+ sup  ATE|f(v(2h)) = 2f(v(h)) + f(7(0))|, where
’YGPY,%(h)

n

Prs(h) = {7 € CHE(0,20:U) - 4(1) = S ds (Y (1(1)), dh, ., € COF [0, 2],

s

=1

ZHd HCO* 0,2h] = }’

disty (x,y) = inf {T >0:3ye % ([0,T];U),7(0) = z,¥(T) = v,

§() = D OY,00), 3 lds [ <1}
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Here disty only depends on the Lipschitz structure of B" (1) and Py, s (h) only depends
on the C13-structure of B"(jug).
Since &/ is compatible with the standard C'-structure for B™(ug), we have

||5fj||<g¢(3n(uo),g¢) = ||5fj||<€;(3n(uo)), 1<4,5,k<n, 0<s<1l (9.6)

To show Héfchgs(Bn(Ho)) Stsy 1, it remains to show that ||5fj|\<gs(3n(m)) Sty
125 g (B o) -

Note that 6*(B"™ (o)) € C%*/(B™ (o)) with || fllco.sr2(n(ue)) Snsio 15257 (o))
for all f. Using (9.4) and [11, Proposition 8.12] we get Héfj||<gs(3n(#o)) Sts—1}
(B (o)) 0 particular (185 [l uo)) Sesp 193]
{s — 1}-admissible constant (that appears when we say “S¢,—13”) is given in [11, Defi-
nition 8.10], which depends on the upper bound of C%2-norms of (6%)%%:1.

Combining this with (9.5) and (9.6) we get >0 ., |||
0 < s < 1, finishing the proof of (iii) when ¢ = n.

||E§j‘ €3 (B™(10))" Here the implicit

@ (Br () S{sp 1 for

The general case ¢ > n can be reduced to the case ¢ = n as in [11, Section 9.3.2]: we
get (ii) from [11, Lemma 9.33] and (iii) from [11, Lemma 9.34]. O

Lemma 9.2 yields a local C*-diffeomorphism ®q : B"(pg) — 99t and 6;“]- € C%(B™(uo))
for 1 < 4,5,k < n such that ®F[X;,X;] = >}, Eijk for 1 < 4,57 < n and

1 195X il 2= (B (o) Ry + 2205 ket &5 1= (B (uo)) Sgst 1 for s > so. Thus, we have
reduced the problem to studying vector fields on B™(pg), which have estimates in terms
of classical function spaces, instead of the abstract function spaces €%.

By Lemma 9.2 (ii), ®§ X, 41, . . ., D§X, are now linear combinations of ®§X1, ..., PX,
whose coefficients have %*°T!-norms bounded by a {s(}-admissible constant. So we can
assume ¢ = n, just as in the beginning of [14, Section 6].

When sg > 1, the proof of [14, Theorem 2.14] is as follows. In [14, Proposition 6.3] it
is shown that there is a map @5 : B™ — B"(ug) which is ¢*°T1-diffeomorphism onto its
image such that ®5Y7,..., @3V, are 0! and have €*°"!l-norms bounded by a {sg}-
admissible constant. Meanwhile if Y7,...,Y,, and (Ef])f k=1 are all %*° for some s > sy,
then @, is automatically €**! and the €**1-norms of the coefficients of ®5Y7,..., ®3Y,,
are automatically bounded by a {s}-admissible constant. This completes the proof when
S0 > 1. Our goal is to generalize this argument to sg > 0.

Based on the techniques from Section 5, we can prove an analog of [14, Proposition
6.3] in the setting of sy > 0. We formulate the statement in the proposition below.

Let Xi,...,X, be C'-vector fields on a C?-manifold 9 that form a basis of the
tangent space at every point. Near a fixed point p € M we define ®¢(x) := ¥ (p). Write
[Xi, X;] = Y on_y cf; Xy where ¢f; € Cf) (9M) are uniquely determined by X, ..., X,,.

On the subset of the domain of ®, where V& is non-degenerate (so ® is locally C*-
diffeomorphism on this set), we denote Y; := ®§X; and Ei?j = CDSC% for 1 <i,j,k <n.
And we write Y = [Y3,...,Y,]"T as Y = (I+A(z))Z where A is a M"*"-valued function
defined on the domain of ®g.
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Proposition 9.4. Let so, g > 0, s > sg and My, My > 0. There are constants K =
K(na‘SOvMOaMO) > O: KO = KO(na SOHU'O;MO) > 07 and Kl = Kl(na SOaSa,u'OvMOaMl) >
0 that satisfy the following:

Let Xi,..., X, and ®y(z) = e X(p) be as above. Suppose we have the following:

o Oy : B™(0,10) — M is defined and is a locally C*-diffeomorphism onto its image (so

that Y, A, Efj are defined on B™(0, 1) ).

e sup |A(z)] <3 and
|z|<po

IAll50 (B2 0,u0)dmxmy + D &5 le20(B70.0)) < Mo (9.7)
4,4,k=1
Then
(i) There is a map ®1 : B™ — B™(0, uo) such that
o ®1(0) =0 and @, is €T -diffeomorphism onto its image.

e OIY = [®1Y1,...,®1Y,]T is a collection of €*°F-vector fields on B™ that
can be written as

1Y = K(I+A)V, where A(0) = 0, || A]lgo@npnen) < 3. (9.8)
Moreover, we have the estimate

||q)1||<gso+1(]Bn;]Rn) + ||A||<gso+1(]Bn;Mn><n) < Kp. (9.9)

(i) Suppose additionally A and Efj are all €° with

e @ OuoyMny + O 18w (Bn0u0) < M. (9.10)

i\j,k=1

1A]

Then ®; : B™ — B™(0, po) is a € -map and A € €51 (B"; M"*"). Moreover

| @1]|s+1Brrm) < K1, [| Al

%s«#l(Bn;Man) S Kl. (9.11)
Remark 9.5.

(a) For the proof of Theorem 9.1 we will apply Proposition 9.4 with ®g and po as in
Lemma 9.2. In this application, K and K are {sg}-admissible constants and K is
an {s}-admissible constant. In particular, in this application, we have ||®1[|¢s+1 Sysy
1 and || Al|gs Spap 1.
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(b) A map similar to ®; in Proposition 9.4 is called ®5 in [14, Proposition 6.3]. In the
proof of [14, Proposition 6.3], ®, is decomposed as a €*°*!-diffeomorphism and a
scaling map. In our setting the scaling is already done in Proposition 5.15. Also see
Lemma 9.7.

We need some preliminary results to prove Proposition 9.4.

Suppose we have Proposition 9.4 (i), that is, we construct a ®; such that || ||so+1 +
S 1®@7Yil g0t Sysop 1- Note that the ®; does not depend on the index s. In order
to prove Proposition 9.4 (i), i.e. [|[®@1]jgs+1 + Y1 [[@]Yi[lgar1 Sqep 1 for every s > sg
(see also for [14, Theorem 2.14 (j)]), we need to give regularity estimate for Theorem 5.1.

Instead of vector fields, we proceed by using 1-forms.

Recall in Section 5.1 we start with 1-forms \* = da® + Zj lajdac] i=1,...,n,
defined on B™ C R”™ such that A = (a )an is supported in 1B" Welet F =id+ R :
By — B; be the map in Proposition 5 .10, which is a C* dlﬂeomorph1sm and solves (5.8)
With R’a]B" = 0. We write the pushforward 1-forms n* = F,\}, i = 1,...,n on B, as

=dy' + >0, bidy’. By Lemma 5.13 we know B = (b%)nxn : B" — M"™*" solves
(\).9), which can be rewritten as (5.27).

Proposition 9.6. Fiz so > 0. There is a ¢’ = c/(n, sg) > 0, such that in additional to the
results in Theorem 5.1 with o = sg, B = so+ 1 and ¢(n, sp, s0 + 1) = ' (n, sp), we have
the following:

(i) For the collection of I-forms [F\',...,F.\"]T = (I + B)dy we have

And for any s > sg, M' > 0, there is a K' = K'(n,s,so, M') > 0 such that if in
addition to the assumptions of Theorem 5.1, we have A\', ... X", d\!,...,d\" € €° with

Z ||)\i||<gs(3n;T*Bn) + ||dAi||<gs(Bn;/\2T*]Bn) < M/,

i=1

then:
(ii) The map F : B} — By in Theorem 5.1 is €°t' and its inverse ® satisfies
I|¢H<gs+1(]Bn;]Rn) < K'.

(iii) The 1-forms n',...,n™ are all €571 and the coefficient matriz B : B™ — M"*"
satisfies || Bllga+1(2pnmnxny < K.

Informally Proposition 9.6 (iii) is saying .1 | [[9"[l¢=+1 Sgep 1.

Note that we require | (bounded by the constant ¢
from Theorem 5.1) in the assumption of Proposition 9.6. However, by taking M’ large

in Proposition 9.6, we can allow ||\||¢s and ||dA|l¢= to be large for s > sq.
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Proof. For (i), let ¢ = ¢(n,so,80 + 1) > 0 be the original constant in Theorem 5.1.
By (5.2) we see that for any ¢ € (0,¢], Y0 [[A" — dz*|¢s0 + ||[d\|@s0 < ¢ implies
S 1 — dyil| g0t (Boopny < <

Recall the notation FA = (I 4+ B)dy. Since ||Bl/co Ss, || B]
dy'|

To prove (ii) and (iii), we choose ¢’(n, s9) € (0, c] as follows.

Let ¢y = ¢1(n, 80,80 +1) > 0, ca = ca(n, 89,80 + 1) > 0, and ¢3 = ¢3(n, s0,80 + 1) >0
be the constants in Proposition 5.10, Lemma 5.13, and Proposition 5.14, respectively.

In the proof of Theorem 5.1 we see that if Y7, [[A[|s0 +[[dA[|g0 < 5tz min(c1, cacs)
then B € ¢+ (B™; M"*") c C*(B"; M"*"). We are going to find a smaller constant
c(n, so) € (0,c¢3) and then take ¢ < 713 min(cy, cach).

Recall R¥(B) = Z?Zl(\/det hh'l —§U)bk 1 < i,k <nin (5.27) (see (5.7) for h”/ and
V/det h) are rational functions which are finite near the origin such that R¥(B) = O(|B|?)
near B =0 € M™ " (see (5.5), (5.7), and Lemma 5.3). So when B € C!, we can write
0y RE(B) = Y7 _ R (B) - 0,:b} where

w1 Rsg Dy [ LA —
@=0+1, by choosing ¢’ € (0, ] small enough we can ensure ||B||cognmnxn) < 3.

_oR!
ot

J

R (v) :

(v), for1l<4,5,k1<n, defined for v € M™*" closed to 0.

So RE(0) = 0 since |RF(v)| < |v]? for small v. The equation (5.27) can be rewritten as

Z;yib% > ﬁ{lk(B)aayibézo inB?, k=1,...,n (9.12)
=1

4,7,0=0

By the conclusions of Proposition 5.14 we have B € €*°*! C C'. And by the assump-
tions of Proposition 5.14 combined with (9.12), we know u = B is a C''-solution to the
following system of equations in u = (u? ), xp:

oul, Ol o 0

— —J —dn* = = < <

gy agk W (8y3’8yk)’ i=l..om 1<j<ks<n

n n 5 (9.13)
k jk I _ _

;:1 i —l—ijgl_ORZl (B>8y1u7 =0, kE=1,...,n

(9.13) is of the form

SU+EBU = 9B,

where € : C*(B"; R”2) — C>*°(B™;R" n2_2"+2) is a first order constant linear differential

operator that does not depend on B, and Lp is a first order linear differential operator

with coefficients comes from ﬁilk (B). Here, gp is the vector-valued function which is the
right hand side of (9.13); i.e., g5 = (dn?,...,dn",0).
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If we write u’ = > uidyl, i =1,...,n, then we see that £(u') = (du', Irnu')}.
So £*E = dY + Yd = A is elliptic, which implies that £ is an elliptic operator.

By classical elliptic theory (see [14, Proposition A.1]) there is a v = v(€) > 0 such
that if Y7 1 Hﬁglk(B)HLao(]Bn) < then RIF(B), gp € €* implies u € €5+ (B"; R™")
with [|ullgst1 Snso.s.lin e ldnilles [tz + 9B [l¢wo-

Thus, for any & > 0 there is C} = C{(n, so, s, ¢3,7,5) > 0 that does not depend on
B, such that

n

it > RS B)l~@ry <7

idikl=1
SRy ; ] (9.14)
and Z ||77 - dy H(gs(]Bn;T*]Bn) + ||d77 H(gs(]Bn;/\QT*Bn) <0,
i=1
then ||B||<gs+1(%]Bn;Mn><n) < C(IJ(TL, S0, S, C3,’}/,5').
When ||B||p= suitably small we have
<
Y IRE B~ SrIBlle= Y 10" = dy¥llo= Soo D In" = dy*[lg=o.
0,4,k l=1 k=1 k=1
So we can take a c¢§ € (0,c3) (which still only depends on 7, sg) such that
Dol = dyFligeo + ldn g0 <5 = Y |RE(B)llre@n) <v- (915)
k=1 4,4,k =1

Using the same proof as Theorem 5.1 in Section 5.4, take ¢’ = -3 min(c1, cocs) and we
see that Y| | A\¥—da¥ |0 +| N w0 < g’ implies >, |7 —dy*||4=0 +]|dn*
and HF — idH(gso‘Fl(Bn;Rn) + Z?:l H’l’]Z — dyl‘|<gso+l(]Bn;]Rn) S 1.

We then prove (ii) and (iii) using this constant ¢'.

gso < Cé

ii): Recall by assumption supp A C %B", SO AR|BH = 0 and thus similar to

(5.18) we have
[Blle+1 B\ 2Bn Rn) Sss0 [[Bllgwot1@rmn) Sso [Alleo- (9.16)
On the other hand by classical interior Schauder estimates we know that
[Rllgs+1(apny < C Z 1/ det g9 af |- B, (9.17)
4,5, k=1

where C is a constant that only depends on n,s, the upper bounds of |I +
Allco@nminxny, [|[(I + A) " co@n,mnxny and ||v/det gg ||« gn). For the precise form
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of the interior Schauder’s estimate we use, see, for example, [4, Corollary 2.28] for
s> 1,5 ¢ Z and [6, Theorem 8.32] for 0 < s < 1. The proof for s € Z is similar to
these.

In Proposition 5.10 we chose ¢; small so that [|Aljco < 3; thus [|I + Al cognmnxn)
and ||(I + A) || co(gn mnxn) are already uniformly bounded. And since v/det gg¥/a¥ and
V/det gg¥ are all polynomials of the components of A, by Lemma 2.2 their ¢*-norms
are bounded by a constant depending only on the upper bound of ||A|4s. Therefore
combining (9.16) and (9.17), since F' = id + R, we have

£

¢sr1Br) < C{(’ILS,SmChMI), (9.18)

for some C] > 0 that only depends on n,s, sy and an upper bound for ||A|ls. Since
|A]l¢s < M’, Cf does not depend on || Al|«%=, just on M.
By Proposition 5.10 (iii), we have ® = F~1 : B = B" and @50+ (BriRr) < et

where ¢; = ¢1(n, 80, 80 + 1) is the constant from Proposition 5.10. So iI}le | det(VE)(z)]
zelBm™

is bounded below by a constant depending only on n, sg, ¢;. Applying [14, Lemmas 5.9
and 58] with HF”(KS‘H(]B") < Ci and ||A|<gs(Bn;Mn><n) + Z?:l ||d/\l|<gs < M’ we get
® € ¢°TH(B";R") with

v @) + A0 lge@mny + Y [[(AV (55 50)) © @l gy < Cos
i k=1

2]

(9.19)

«s. Since

for some C% > 0 that only depends on n, s, sg, C] and the upper bound of ||A
|Allgs < M’ and C] depends only on n, s, sg,c; and M’, the same is true of C%, i.e.
Ch = Ch(n, s, s0,c1, M"). Taking ¢ such that (=1 > C% we complete the proof of (ii).

(iii): By a direct computation (also see (5.20)) we have
B=V®—-T+(Ac®)VO, dnf =d"dX' = > ((d\ (32, 5%)) 0 @) - dp’ A dg".

1<j<k<n

(9.20)
Applying Lemma 2.2 to (9.20) and using (9.19) we can find a C§ = C4(n, s, s, c1, M")
such that,

IBllss@nmnsny + 3 lldn’|
=1

€= (Bn;A2T*B") < Cé(’l’L,S,S(),Cl,M/). (921)

Applying (9.14) with & = C%, where we recall that v depends only on n, we see that
Cl(n, so, s, 5,7, C4) is a constant depending only on n, sg, s, M.

Take K' = C4(n,s, sgp,c1, M') + Cf(n, s, so, 5,7, C%), since ¢; and ¢4 are constants
that only depend on n, sy we know K’ = K'(n, s, sg, M’) depends only on n, s, sg, M’,
which completes the proof of (iii). O
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The proof of Proposition 5.15 gives a similar regularity estimate:

Lemma 9.7. Let o, 8 € o, + 1], po, &, M > 0 be as in Proposition 5.15. Let s > «,
M > 1, there is a K = K(n, a, B, 5, i, & M, M) > 0 that satisfies the following:
Let 0%, ...,0" € €%(uoB™; T*R™) be as in the assumptions of Proposition 5.15. Sup-

pose in addition to these assumptions we have 0L, ... 0" € €%, do',...,dO" € €° with
estimate
n
> 16 s (uoBrsrorn) + 16 | (uoBrsner-RR) < M. (9.22)
i=1

Then X', ..., \" constructed in Proposition 5.15 satisfy \*,...,\" € €%, d\',...,d\" €
€*° with estimate

D X s @rirrn) + AN |52 Brin2 TRy < K.

i=1

Proof. In the proof of Proposition 5.15, we construct \!,..., A" as follows: For i =
1,...,n,

pi=G*(xo-dO +dxo NOY), pli=p— (ﬁi|0), (9.23)

Noi=dat + Exa - ¢f (00— da'), 7= Ly (65,0°) + 2G 0 (dya A GL, (07 — dat)) .

(9.24)

Here xo € C°(1oB™) satisfies XO|@Bn, =1;x1 € Cgo(%[B%”) satisfies X1|an =1;Gis

2 3

the Newtonian potential; ¥ is the codifferential operator; kg = ko(n, a, 8, po, é M) > 0
is the scaling constant and ¢, (x) = kox.

By assumption 6%, df" € € with bound (9.22). Since ¢, is a scaling map depending
only on kg, we have

H)\iHCKS(]Bn;T*Rn) S"QO»M(MXI 1+ ||9Z — d‘riHCgs(MOBn;T*Rn) SKOaXl M i=1,...,n.

(9.25)

Applying Lemma 4.7 (see also (5.49)), with the same argument as (5.44), we have for
i=1,...,n,

167l +1 (BT R Sspox0 M-

Also, by a direct estimate,

”TiH(ferl(HoB";T*R") §ﬁ0»57u07X1 ||pi||‘ta”5+1 + ||01 - dxiH‘gs §57H07#07X07X1 M.

In (5.49) it is shown that d\" = dr’ and therefore,
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[AA [l g5 +1 (uoBrin2ToRr) = [1d7" lgo+1 (uoBr;n2+Rn)

(9.26)

7
SS HT ||‘%”S+1(HOB"§T*R”) SS,NOW«O,XO,Xl M.

Combining (9.25) and (9.26), since xo and x; are fixed cut-off functions and ko =
KO(”aa7ﬁaM0aéaM)7 we get K = K(”aSaMON‘iOaM) = K(naa7ﬁaSaM0aéaM7M> as de-
sired. O

We can now prove Proposition 9.4 by applying Proposition 9.6 and Lemma 9.7.

Proof of Proposition 9.4. Let 01,... 0" be the dual basis to Yi,...,Y, on B"(0, o).
Write § = [0*,...,0"]" as § = (I + B)dx where B = (I + A)™! — I and dr =
[dat, ... dz"]"

Clearly B(0) = 0 because V®,(0) = I. So

||(I+A) ”CO (B™(0,p0);Mmxm) Z ”AHCO(Bn(o o );Mmxny = Z
J=0 J=0 (9.27)
implying inf |det(] + A(x))| >27".
|z|<po
By  assumption ||I + A| €50 (B (0,110 );Mmx") < ||IH<gso(Bn(O’HO);Man) +

[ Allso (B (0,10)Mmxm) Snysouuo, Mo 1 Applying [14, Lemma 5.7] along with (9.27), we
have |

50 (B (0,0):M™* ™) Sm,so.p0,Mo 1, Which means

I, = ]\/Zl(n,so,uo,Mo) >0, such that Z 16Nl ¢50 (B (0,110):7*R) < M. (9.28)

i=1

By (7.1), [Xi, X;] = >_p_; ¢f; X}, implies that

d((®0)6") = Y chi((®0)8") A ((0).8),

1<i<j<n
4 , (9.29)
so doF = Y @AY, k=1,....n
1<i<j<n
Note that we cannot say [Y;,Y;] = Y/_, &Y} since we cannot define [Y;,Y;] when

s € (0, 3], while d0* and ;0" A 67 in (9.29) are defined due to Proposition 2.7 (ii) with
the equality holding in the sense of distributions.
So by Lemma 2.2 we have

n

n
. ~ . A
> 1d0* 550 (B2 00T R Ssomo D, 1 I%50 1671620 1167|5550
k=1 0,5, k=1 (9.30)

2712
Sn’so’ﬂo MO Ml §n7507p‘01M0 L.

In other words,
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n
EMQ = Mg(n, S0, 1O, Mo) > 0, such that Z ||d91| €0 (B™(0,u0);T*R™) < MQ. (931)

=1

Applying Lemma 9.7 with o = sy, 8 =so+ 1, M = Z/\J\l + 1\727 1o = po and ¢ = ¢/,
where M is in (9.28), M, is in (9.31) and ¢ = ¢/(n, so) is the constant in Proposition 9.6,
we can find kg = ko(n, S0, tto, Mo) € (0, o) and 1-forms AL, ... A" € €*(B™; T*B") that
satisfy the assumptions of Proposition 9.6 with constant ¢/, that is

(a) Al,..., A" span the tangent space at every point in B".

(b) supp(ki —dx') € %B” fori=1,...,n.

(c) )\Z|%Bn = %0 - ( 2091)|%Bn for i = 1,...,n. Here ¢, : B™ — B™(0, o), ¢r,(x) =
Ko - X.

(d) 2271 (1N = datllgeo + [dN|l=0) <

By Proposition 9.6 with this ¢’ (see Theorem 5.1, with a = sg and 8 = s¢9 + 1), we
can find a map F : B® = B", such that F(3B") 2 B"(F(0), ) and by endowing the
codomain of F with standard coordinate system y = (y*,...,y"),

||F — id”(gso-{—l(]Bn;Rn) + ||F*/\ — dy||<gso+1(Bn;Mn><n)

nooo , (9.32)
<Y (N = dyllgso @rire) + AN 50 Brin2TeB ) -
=1

Write FiA =: (I + E)dy Note that by condition (d), the right hand side of (9.32)
is bounded by 1 and therefore ||Fi\ — dy|gso+1@nmnxny < 1, and there is a O =
C4(n,s9) > 0 such that

[ + Bllgeos1 @npanrny < Ci(n, so). (9.33)
And by Proposition 9.6 (i) we have HE”CO(BH;MHXH) <1.So0
T+ BIPO)) g < I+ B leogmmparcny < S52p(1/4) = 4. (9.3)
Define an affine linear map

+ F(0), teB" (9.35)

<=
—~
~
=
I
—
~
+
oy
—~
T
—~
(=)
S~—"
S~—"
=
L
Ol

Note that by (9.34) we have ¢(B") C 3 - §B™ + F(0) C B"(F(0), ).
Define ®; : B™ — B™(0, uo) by

B(1) = Gy 0 FLop(t) = ko - FL ((1 +B(F(0)™!- & + F(O)), teB".  (9.36)

Here ®; is well-defined because #(B™) C B"™(F(0),3), B"(F(0),5) € F(3B") and
Do (3B™) C poB". Clearly ®1(0) = ko - F~1(F(0)) = 0.
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By condition (c), )\i|%Bn = %o ( :Oei)’%Bn, and the fact that F~! o ¢(B") C 3B",

we have
(0)(8) = Kkov" (FLA) = kot (I + B(y)dy) = ro (I + B (1)) ) du(t)

= (14 Bw) - (1+BEO)) . (937

Since ®3Y7,...,®1Y, and @30, ... ®30™ are dual basis to each other, we can write

~

QY = 2. (I+A)%, where A(t) = (I+ B(F(0)) (I+B()™'—1, teB"
(9.38)

Taking ¢ = 0 in (9.38), since ¥(0) = F(0), we get A( )=

Let K := , since kg = Ko (n, So, o, Mop), we have K= K(n S0, fto, Mp) is as desired
for (i).

Since HE”CO < 1 and using the power series A(t) = (I + B(F(0))) - PRy B(h(t)),
we have

o0

1Al co@npanxny < [(I+ B(F(0)))|pnxn Z IBllLe <35 (A) =3 <
=1 (9.39)

l\D\F—‘

_ 3
HI+A||CO(B";M”X") < 3

This finishes the proof of (9.8).

To prove (9.9) we need to find the constant K.

Applying [14, Lemma 5.7] to (9.39), (9.38), and (9.33), we see that there is a Cy =
Cy(n, s9,C1) = Ca(n, S0, po, Mg) > 0 such that

11+ A

G0+ (Bn;Mnxn) < 02 (TL, S0y M0, Mo). (940)

Since F' is constructed in Proposition 5.10 (see Remark 5.12), by Proposition 5.10
(iii) we have |[F71gso+1 < cfl where ¢ = c¢1(n,sp,80 + 1) is the constant
in Proposition 5.10. Since by (9.36), ®; is an affine transform of F~!, we have
[ @150 +1 (B R Snusorro |[F 7 g0+ @nrn)- So we can find a Cs = C(n, so, pg) > 0
such that ||®[|¢so+1(Brrn) < Ca.

Taking Ko = max(Cy + [[I|gso+1(Bnmnxn), Cs3), we get (9.9) which completes the
proof of (i).

We now focus on the proof of (ii), where we assume that additionally we have
(9.10). By [14, Lemma 5.7] along with (9.27), we have ||(I + A) " ws Snusopo,Mo, My
1, ie. |09 Snspo 1. By (9.29) with the same argument as (9.30), we get
1d07||¢: Snspo,Mo,ny 1. In other words, where exists a M = M(n, s, g, Mo, My) > 0
such that
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(lle"]

1

%s(B"(0,10),T*R") T ”dei||<53(B"(0,u0),/\2T*]R")) < M.

n
=

By Lemma 9.7, the 1-forms \!,..., A" € €% (B"; T*B") constructed above are all €
and satisfy d\!,...,d\" € €* with estimate

n

> (X = @ 7-rm) + ldN]

=1

@+ (B p2rR7)) < K(n, s, 50, 1o, Mo, My), (9.41)

where K = K(n, s, so, jto, Mo, M) > 0 is the constant obtained in Lemma 9.7.

By Proposition 9.6 with assumption (9.41) (i.e. M’ = K in its assumption), we
have F € ¢t (B™;R"), F.\!,...,F.A" € €°t! and moreover there is a Cy =
C4(n, so, 8, po, Mo, My) > 0 (which is the K’ in the conclusion of Proposition 9.6) that
does not depend on F and A',..., A", such that

[T

Gs+1(B™;R™) + ||F*>\ cgs+1(%]Bn;Mn><n) S C4(TL, So,S,Iuo,MQ,Ml). (942)

Since we have B"(F(0), ) € F(3B")N3B" from Theorem 5.1, combining (9.42) and
(9.37) we can find a C5 = Cs(n, so, s, po, Mo, M7) > 0 such that

1]

¢s+1(Bn;Rn) T HCI)TG @s+1(Bn;Mnxn) < C’5(TL7 S0, S, to, Mo, Ml) (943)

Applying [14, Lemma 5.7] on (9.43), (9.38) and (9.39) we see that [|[I + Afg«
Snyso,sup0, Mo, My 1. S0 there is a Cg = Cg(n, So, s, fto, Mo, My) such that

||1/4L\||<gs+1(Bn;Man) < CG(TL, S0, S, Ko, Mo, Ml) (944)
Take K; = max(Cs, Cg), we get (9.11) which completes the proof of (ii). O

Taking ® = ®; o & nearly completes the proof of Theorem 9.1 (see also [14, Theorem
2.14]) except we have not established the injectivity of @, since we have only shown @ is
a local C'-diffeomorphism rather than a global C'-diffeomorphism onto its image. This
problem can be resolved through the next result:

Lemma 9.8. Let sg, po, Mg > 0 be as in Proposition 9./. Then there is a pu; =
w1 (n, so, o, Mo) € (0,1] depending only on n, so, o, Mo and satisfying the following:

If C'-vector fields X1,..., X, on M that satisfy the assumptions of Proposition 9./
with addition that'?:

o Let U := ®go @ (B™) C M. For any point g € U and p € (0, uol, if the exponential
t = et X(q) is defined for t € B™(0, 1), then et X (q) # q holds for t € B™(0, u)\{0}.

10 Also see the quantity n > 0 in [11, Section 3.2].
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Then &g o 1 is injective in B™(0, u1). Moreover &g o &y s B™(0,p1) — M s

}B"(Oﬂh)
C?-diffeomorphism onto its image.

Remark 9.9. By Proposition 9.6, ®; : B® — B"(ug) is a ¢**1-diffeomorphism onto
its image and satisﬁes ®,(0) = 0. By (9.8), we have ®;(I + A)V = K(I + A)V where

| Allco, | Allco < 5, s0

_27

[(V®1) ™| co@nipanxny = |95 V| co@nmanxny (0.45)
< [?HI+ A\HCO(Bn;Man)H(I‘F A)71||CO(MO]Bn;Man) < 3[?

r € (0,1], therefore Lemma 9.8 tells us that ¢O|B”((3?)*1u1) : ( ul) — M
is injective.

Here K is an {50 }-admissible constant. (9.45) implies ®;(B™(0,r)) 2 B (O 3Kr) for all

AL

Proof. By Proposition 9.4, we have Y = ®§X = (I + A) +
K is an

I+ A)2 and }Y = K(I
are such that ||A||Co (B™ (o ); M X715 ||A||CO(Bn ;M xn) < nd (

a
% K 3 ~n,80,40,Mo 1
{so }-admissible constant).
Clearly ||(I + A)71||CD(Bn;Man) S 2, SO

inf det(@ Y)( ) I?H(I‘l’ A\)_l”E«r)n(Bn;Man) Z 2—n}—? zn,so,#o,Mo L.

teBn

On the other hand by (9.9) we have

||(I)*YH01 Br;Mnxn) Snso ||(PTY‘I(g‘s()-Fl(B’rL;M’ILX"L) = K| I+ AHCg‘S()-Fl(Bn;Man)
< K(l +Ko) S Sn.sospi0, Mo 1

And by (9.7) we have

n

n
k k
> (@00 @) chillcomny < D llellcoem < Mo Sar, 1.
ijk=1 i k=1

Therefore applying [11, Proposition 9.15] to the map ® o ®;(t) = e 1Y (0) we can find
a g1 > 0 that depends only on n, sg, g such that &g o ®; is injective on B™ (7).

Since (X1,...,X,) and (®go®1)*(X7,...,X,) are both C* and span their respective
tangent spaces at every point, we know ®50®1|gn (g ,,) is a C?-map with non-degenerate
tangent map at every point in the domain. Since we have also shown it is injective, we
conclude it is a C2-diffeomorphism onto its image. 0O

By combining Lemma 9.8, Propositions 9.4, and 9.6, we can prove Theorem 9.1:

Proof of Theorem 9.1. As mentioned before, once we establish [14, Theorem 2.14] for
8,80 > 0, the same follows for [13, Theorem 4.5]. Thus, we prove only [14, Theorem 2.14]
for s,s9 > 0.



74 B. Street, L. Yao / Journal of Functional Analysis 283 (2022) 109537

Fix xg € M. Since the results [14, Theorem 2.14 (a), (b), and (¢)] do not depend on
so and s, we do not need to change their proof.

Recall, we have reordered X1, ..., X, such that (9.1) holds with j9 =1,...,j = n.
Set Xy, := (X1,...,X,). Let ®g(t) := elrXrt+nXn () By Lemma 9.2 we can find
a 0-admissible constant jg such that ®g : B™(ug) — M is a local C'-diffeomorphism.
And moreover by writing Y; := ®§X; for i = 1,...,¢ and Yy, =: (I + A)V, we have
[Allco(anuoymanxny < 55 Al (Bn(uoymnxny Sgsy 1. And we can find (b))1<i<n<k<q
and (&)1, .y such that Y = Y bLY:, ®5[X;, X;] = YL &Y for 1 <i,j <n <
k< qwith 350 320 W0kl (mnuoy) + 220501 1835w (Br (o)) Sy 1

Let ®; be the map given in Proposition 9.4, and let uy > 0 be the constant (which is
{50 }-admissible) from Lemma 9.8. We define ® : B™(1) — 9 by

@(t) = (I)O o (1)1(/1,1 . t) (946)

By Lemma 9.8, ® is a C%-diffeomorphism onto its image and [14, Theorem 2.14 (d),
(e) and (g)] follow.

By (9.8) and (9.46), (where we use X = X, and Y = Y, in Proposition 9.4), we
have (®g 0 ®1)* X, = &Yy, = K(1+ A) 2, so

X, () = K (I + A 1)V, teB (1) (9.47)

Note that % is bounded by a {s¢}-admissible constant and by Proposition 9.4 (i) we
have A(0) = 0 and Hg(ul')HCO(Bn;Man) < 1 and [14, Theorem 2.14 (h) and (i)] follow.
In particular we have

ﬁ diStq>*XJO (tl, tg) < disty (tl, tg) < BTKl diSt(b*XJO (th tg), Vi, ty € B™.

Since [t —to| = disty (t1,t2), taking pushforward of ® we get By, (p, 23%) CP(B") C
BX,]0 (p7 2%)

By Lemma 9.2 (ii), we have Y, = ;" blY; for n +1 < k < ¢ such that
@0+ (Bn (o)) S{so} 1. So on the set ®;(B" (o)) (note that

[04llco (B (uo)) Sso 16|

(I)O’%(B"(uo)) is injective), there is a {so}-admissible constant C; > 0 such that

diStYJO (561,562) < disty($1,$2), Vxl,xg (S (bl(Bn(luo)).

Taking pushforward of & we get Bx (p, 325;1;5) C Bx,, (p, ?)’%) This proves [14, Theorem
2.14 ()].

Combining (9.47) and (9.44), since MKI is {so }-admissible which is {s}-admissible, we
get [14, Theorem 2.14 (j)].

Finally the proof of [14, Theorem 2.14 (k) and (1)] is the same as in [14, Section 7]. O
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