
Z e r o- fi el d s pi n r e s o n a n c e i n g r a p h e n e
wi t h p r o xi mi t y-i n d u c e d s pi n- o r bi t c o u pli n g

A b hi s h e k K u m ar
C e nt e r f o r M at e ri al s T h e o r y, D e p a rt m e nt of P h y si c s a n d A st r o n o m y,

R ut g e r s U ni v e r sit y, Pi s c at a w a y, N J 0 8 8 5 4, U S A a n d
D e p a rt m e nt of P h y si c s, U ni v e r sit y of Fl o ri d a, G ai n e s vill e, Fl o ri d a, 3 2 6 1 1, U S A

S a ur a b h M aiti
D e p a rt m e nt of P h y si c s a n d C e nt r e f o r R e s e a r c h i n M ol e c ul a r M o d eli n g,

C o n c o r di a U ni v e r sit y, M o nt r e al, Q C H 4 B 1 R 6, C a n a d a

D mitrii L. M a sl o v
D e p a rt m e nt of P h y si c s, U ni v e r sit y of Fl o ri d a, G ai n e s vill e, Fl o ri d a, 3 2 6 1 1, U S A

( D a t e d: J u n e 1, 2 0 2 2 )

We i n v e s ti g a t e c oll e c ti v e s pi n e x ci t a ti o n s i n g r a p h e n e wi t h p r o xi mi t y-i n d u c e d s pi n- o r bi t c o u pli n g
( S O C ) of t h e R a s h b a a n d v all e y- Z e e m a n t y p e s, a s i t i s t h e c a s e, e. g., f o r g r a p h e n e o n t r a n si ti o n-
m e t al- di c h al c o g e ni d e s u b s t r a t e s. I t i s s h o w n t h a t, e v e n i n t h e a b s e n c e of a n e x t e r n al m a g n e ti c fi el d,
s u c h a s y s t e m s u p p o r t s c oll e c ti v e m o d e s, w hi c h c o r r e s p o n d t o c o u pl e d o s cill a ti o n s of t h e u nif o r m
a n d v all e y- s t a g g e r e d m a g n e ti z a ti o n s. T h e s e m o d e s c a n b e d e t e c t e d vi a b o t h z e r o- fi el d el e c t r o n s pi n
r e s o n a n c e ( E S R ) a n d z e r o- fi el d el e c t ri c- di p ol e s pi n r e s o n a n c e ( E D S R ), wi t h E D S R r e s p o n s e c o mi n g
s ol el y f r o m R a s h b a S O C. We a n al y z e t h e e ff e c t of el e c t r o n- el e c t r o n i nt e r a c ti o n wi t hi n t h e Fe r mi-
li q ui d ki n e ti c e q u a ti o n a n d s h o w t h a t t h e i nt e r a c ti o n s pli t s b o t h t h e E S R a n d E D S R p e a k s i nt o t w o.
T h e m a g ni t u d e of s pli t ti n g a n d t h e r el a ti v e w ei g ht s of t h e r e s o n a n c e s c a n b e u s e d t o e x t r a c t t h e
s pi n- o r bi t c o u pli n g c o n s t a nt s a n d m a n y- b o d y i nt e r a c ti o n p a r a m e t e r s t h a t m a y n o t b e a c c e s si bl e b y
o t h e r m e t h o d s.

I. I n t r o d u c ti o n

A m a g n eti c fi el d a p pli e d t o a s y st e m of i nt er a cti n g
f er mi o n s gi v e s ri s e t o a c oll e cti v e m o d e: a Sili n s pi n
w a v e, ? ? ? ? i n w hi c h s pi n s pr e c e s s c o h er e ntl y ar o u n d
t h e dir e cti o n of t h e m a g n eti c fi el d. ( We will b e r ef erri n g
t o t h e m a g n eti c fi el d a cti n g o n el e ctr o n s pi n s a s t o “ Z e e-
m a n fi el d ”.) It h a s b e e n s h o w n i n a n u m b er of t h e or eti c al
st u di e s t h at a c o m bi n ati o n of S O C ( of R a s h b a a n d Dr e s-
s el h a u s t y p e s) a n d el e ctr o n- el e ctr o n i nt er a cti o n l e a d s t o
a n e w t y p e of s pi n c oll e cti v e m o d e s: c hir al s pi n w a v e s,
w hi c h o c c ur e v e n i n t h e a b s e n c e of t h e e xt er n al m a g n eti c
fi el d. ? ? ? ? ? ? ? If b ot h t h e Z e e m a n fi el d a n d S O C ar e
p r e s e nt, t h e c oll e cti v e m o d e s ar e of t h e mi x e d Sili n / c hir al
w a v e t y p e. S u c h mi x e d m o d e s w er e o b s er v e d b y R a-
m a n s p e ctr o s c o p y i n 2 D s e mi c o n d u ct or h et er o str u ct ur e s
i n t h e r e gi m e w h e n t h e m a g n eti c fi el d i s str o n g er t h a n
S O C, ? ? ? ? I n t h e a b s e n c e of t h e Z e e m a n fi el d, a c oll e c-
ti v e s pi n m o d e w a s o b s er v e d b y R a m a n s p e ctr o s c o p y o n
t h e s urf a c e st at e of a t hr e e- di m e n si o n al ( 3 D) t o p ol o gi c al
i n s ul at or.? T h e q = 0 e n d p oi nt s of t h e s pi n w a v e s’ s p e c-
t r a c a n b e pr o b e d b y el e ctr o n s pi n r e s o n a n c e ( E S R), if t h e
m o d e i s dri v e n b y a n a c m a g n eti c fi el d, a n d b y el e ctri c-
di p ol e s pi n r e s o n a n c e ( E D S R), if t h e m o d e i s dri v e n b y
a n a c el e ctri c fi el d w hi c h c o u pl e s t o el e ctr o n s pi n s vi a
s pi n- or bit i nt er a cti o n. ? ? ?

A fr e e- st a n di n g gr a p h e n e or gr a p h e n e o n a s u b str at e
m a d e of li g ht el e m e nt s ( Si O 2 , h B N) c a n h a v e o nl y a n
i ntri n si c K a n e- M el e ( K M) t y p e of S O C,? w hi c h i s v er y
w e a k. H o w e v er, a m u c h str o n g er S O C c a n b e i n d u c e d i n
a gr a p h e n e l a y er d e p o sit e d o n a h e a v y- m et al s u b str at e

a n d / or i nt er c a c al at e d wit h h e a v y- m et al at o m s, s e e, e. g.,
R ef. ? a n d r ef er e n c e s t h er ei n.  Fir st- pri n ci pl e c al-
c ul ati o n s a n d e x p eri m e nt s h a v e d e m o n str at e d t h at t h e
pr o xi mit y-i n d u c e d R a s h b a S O C i n gr a p h e n e o n h e a v y-
m et al s u b str at e s ( A u, Ni, P b, Ir, C o) c a n r e a c h u p
t o 1 0 0 m e V. ? ? ? A n ot h er v er y p o p ul ar pl atf or m i s
m o n ol a y er a n d bil a y er gr a p h e n e o n tr a n siti o n- m et al-
di c h al c o g e ni d e ( T M D) s u b str at e s, s u c h a s W S 2 , W S e2
a n d M o S 2 .? ? ? ? ? ? ? ? ? ? ? ? ? ? I n t hi s c a s e, t h e i n-
d u c e d S O C i s e x p e ct e d t o b e a mi xt ur e of t w o t y p e s: ? ? ?

of R a s h b a S O C, w hi c h l e a d s t o i n- pl a n e s pi n- m o m e nt u m
t e xt ur e s, a n d of v all e y- Z e e m a n ( V Z) or I si n g S O C, w hi c h
a ct s a s a n o ut- of- pl a n e m a g n eti c fi el d w h o s e dir e cti o n
alt er n at e s b et w e e n t h e K a n d K v all e y s of gr a p h e n e.
E D S R i n gr a p h e n e wit h b ot h R a s h b a a n d V Z t y p e s of
S O C h a s b e e n pr e di ct e d i n a r e c e nt t h e or eti c al st u d y, ? i n
w hi c h t h e Z e e m a n fi el d w a s a s s u m e d t o b e m u c h str o n g er
t h a n b ot h t y p e s of S O C. I n t hi s c a s e, t h e fr e q u e n c y of t h e
m o d e s i s s et b y (r e n or m ali z e d) Z e e m a n e n er gi e s i n c h a n-
n el s wit h di ff er e nt a n g ul ar m o m e nt a, w hil e s pi n- or bit i n-
t er a cti o n pr o vi d e s a m e a n s t o c o u pl e t h e dri vi n g el e ctri c
fi el d t o el e ctr o n s pi n s.

I n t hi s w or k, w e st u d y E S R a n d E D S R i n d o p e d
gr a p h e n e wit h R a s h b a a n d V Z t y p e s of S O C i n t h e a b-
s e n c e of t h e Z e e m a n fi el d. I n t hi s c a s e, t h e r e s o n a n c e
fr e q u e n ci e s ar e d et er mi n e d b y s pi n- or bit e n er g y s c al e s,
r e n or m ali z e d b y t h e el e ctr o n- el e ctr o n i nt er a cti o n.  B y
a p pl yi n g a n e xt e n si o n of t h e Fe r mi-li q ui d ( F L) t h e or y
t o t h e c a s e of t w o el e ctr o n v all e y s, ? w e s h o w t h at t h e
ei g e n m o d e s of t h e s y st e m c orr e s p o n d t o c o u pl e d o s cill a-
ti o n s of t h e u nif or m a n d v all e y- st a g g er e d m a g n eti z ati o n s.
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T h e c o u pli n g b et w e e n t h e t w o s e ct or s i s pr o vi d e d b y V Z
S O C. If t h e l att er i s a b s e nt, t w o s e ct or s ar e d e c o u pl e d,
a n d b ot h E S R a n d E D S R si g n al s d et e ct o nl y t h e u ni-
f or m m a g n eti z ati o n m o d e. If b ot h R a s h b a a n d V Z t y p e s
of S O C ar e pr e s e nt, e a c h of t h e E S R a n d E D S R si g n al s
i s s plit i nt o t w o p e a k s d u e t o t h e c o u pli n g b et w e e n t h e
t w o s e ct or s. T hi s c o u pli n g i s m e di at e d b y t h e c o m bi n e d
e ff e ct of t h e el e ctr o n- el e ctr o n i nt er a cti o n i n t h e s pi n- a n d
s pi n- v all e y c h a n n el s a n d of V Z S O C. Fi n all y, if o nl y V Z
S O C i s pr e s e nt, E S R d et e ct s o nl y o n e m o d e w hil e E D S R
s h o w s o nl y a c o nti n u u m d u e t o tr a n siti o n s b et w e e n t h e
s pi n- s plit v al e n c e a n d c o n d u cti o n b a n d s, wit h a t hr e s h ol d
a r o u n d ω ∼ 2 µ , w h er e µ i s t h e c h e mi c al p ot e nti al. I n t h e
c urr e nt lit er at ur e, t h e r el ati v e str e n gt h s of R a s h b a a n d
V Z c o m p o n e nt s of S O C i n gr a p h e n e o n T M D i s still a n
o p e n i s s u e: w hil e s o m e st u di e s i n di c at e t h at R a s h b a S O C
i s t h e d o mi n a nt o n e,? ? ? ? ? ot h er s fi n d a str o n g er V Z
c o m p o n e nt. ? ? ? We a n al y z e h o w t h e E S R a n d E D S R
s p e ctr a d e p e n d o n t h e i nt er pl a y b et w e e n t h e t w o t y p e s
of S O C a n d pr o p o s e t o u s e E S R a n d E D S R e x p eri m e nt s
a s a dir e ct w a y t o r e s ol v e t hi s c o ntr o v er s y.

T h e r e st of t h e p a p e r i s or g a ni z e d a s f oll o w s. I n
S e c s. II A, II B, a n d II C, w e d e s cri b e o ur m o d el a n d di s-
c u s s t h e s el e cti o n r ul e s f or E S R a n d E D S R i n t h e a b s e n c e
of el e ctr o n- el e ctr o n i nt er a cti o n. I n S e c. II D, w e d eri v e a
l o w- e n er g y H a milt o ni a n f or t h e c o n d u cti o n b a n d. S e cti o n
III d e al s wit h t h e e ff e ct s of el e ctr o n- el e ctr o n i nt er a cti o n.
I n S e c. III A, w e i ntr o d u c e t h e t w o- v all e y F L t h e or y. I n
S e c. III B, w e di s c u s s t h e ei g e n m o d e s of a t w o- v all e y F L
wit h R a s h b a a n d V Z t y p e s of S O C. E S R a n d E D S R i n
t hi s s y st e m ar e d e s cri b e d i n S e c s. III C a n d III D, r e s p e c-
ti v el y. I n S e c. I V, w e pr e s e nt o ur c o n cl u si o n s a n d di s c u s s
t h e f e a si bilit y of a n e x p eri m e nt al o b s er v ati o n of t h e ef-
f e ct s pr e di ct e d i n t hi s p a p er. Te c h ni c al d et ail s of t h e
c al c ul ati o n s ar e d el e g at e d t o A p p e n di c e s A a n d B .

I I.  El e c t r o n s pi n a n d el e c t ri c - di p ol e s pi n
r e s o n a n c e s i n t h e n o n -i n t e r a c ti n g s y s t e m

A.  Si n gl e - p a r ti cl e H a mil t o ni a n

We c o n si d er a m o n ol a y er gr a p h e n e att a c h e d t o a s u b-
str at e m a d e of, e. g, T M D, or h e a v y m et al. Str o n g S O C
i n t h e s u b str at e i n d u c e s S O C i n gr a p h e n e, w hi c h c a n b e
g e n eri c all y of b ot h R a s h b a a n d V Z t y p e s. F or c o m pl et e-
n e s s, w e al s o all o w f or a n i ntri n si c K M t er m. F oll o wi n g
R ef s. ? ? ? ? ? ? , w e a d o pt t h e f oll o wi n g l o w- e n er g y
H a milt o ni a n:

ˆH 0 = v F (τ z ŝ 0 σ̂ x k x + ŝ 0 σ̂ y k y ) + ∆ ŝ 0 σ̂ z +
λ K M

2
τ z ŝ z σ̂ z +

λ R

2
(τ z ŝ y σ̂ x − ŝ x σ̂ y ) +

λ Z

2
τ z ŝ z σ̂ 0 ,( 2. 1)

w h er e v F i s t h e Dir a c v el o cit y; k i s t h e el e ctr o n m o-
m e nt u m m e a s ur e d eit h er fr o m t h e K or K p oi nt of t h e
g r a p h e n e Brill o ui n z o n e, λ K M ,Z ,R ar e t h e c o u pli n g c o n-
st a nt s of t h e K M, V Z, a n d R a s h b a s pi n- or bit i nt er a c-
ti o n s, r e s p e cti v el y, ∆ i s t h e g a p d u e t o s u b str at e-i n d u c e d
a s y m m etr y b et w e e n t h e A a n d B sit e s of t h e h o n e y c o m b

l atti c e, ˆσ i a n d ŝ i ar e t h e P a uli m atri c e s i n t h e s u bl atti c e
( p s e u d o s pi n) a n d s pi n s p a c e s, r e s p e cti v el y ( wit h σ̂ 0 a n d
ŝ 0 b ei n g t h e u nit y m atri c e s i n t h e c orr e s p o n di n g s p a c e s),
a n d τ z = ± 1 l a b el s t h e K a n d K p oi nt s.

T h e fir st t hr e e t er m s i n E q. ( 2. 1 ) d e s cri b e ( m a s si v e)
Dir a c f er mi o n s n e ar t h e K a n d K p oi nt s, t h e r e st of t h e
t er m s d e s cri b e S O C. T h e i ntri n si c S O C pr e s e nt l o c all y o n
t h e s u bl atti c e sit e s of gr a p h e n e gi v e s ri s e t o t w o t er m s i n
t h e H a milt o ni a n, w hi c h ar e s y m m etri c a n d a nti s y m m et-
ri c c o m bi n ati o n s of l o c al S O C s o n t h e A a n d B sit e s. B e-
c a u s e fr e e- st a n di n g gr a p h e n e i s i n v ari a nt u n d er s u bl atti c e
e x c h a n g e, o nl y t h e s y m m etri c c o m bi n ati o n, w hi c h w a s
i d e nti fi e d b y K a n e a n d M el e,? s ur vi v e s. It c o u pl e s s pi n s,
s u bl atti c e s ( p s e u d o- s pi n s), a n d v all e y s, a s i n di c at e d b y
t h e f o urt h t er m i n E q. ( 2. 1 ). T h e pr e s e n c e of a s u b str at e
bri n g s a b o ut n e w f e at ur e s. Fir st, t h e br e a ki n g of z → − z
i n v er si o n s y m m etr y i n d u c e s a R a s h b a-t y p e S O C. At t h e
K a n d K p oi nt s, t h e R a s h b a H a milt o ni a n c o nt ai n s t h e
l e a di n g, m o m e nt u m-i n d e p e n d e nt t er m [t h e fift h t er m i n
E q. ( 2. 1 )] a n d t h e s u bl e a di n g, li n e ar-i n- k t er m. ? ? We a s-
s u m e t h at d o pi n g i s l o w e n o u g h, i. e., k F λ R / α , w h er e
α i s t h e R a s h b a p ar a m et er f or t h e li n e ar-i n-k c o u pli n g,
s u c h t h at t h e l att er c a n b e n e gl e ct e d, a n d R a s h b a S O C
will b e d e s c ri b e d b y t h e fift h t er m i n E q. ( 2. 1 ). S e c o n d,
if t h e s u b str at e al s o br e a k s t h e s u bl atti c e s y m m etr y, t h e
a nti- s y m m etri c c o m bi n ati o n of at o mi c S O C s gi v e s ri s e t o
a V Z S O C –t h e l a st t er m i n E q. ( 2. 1 ).

T h e H a milt o ni a n i n E q. ( 2. 1 ) c a n b e si m pli fi e d f ur-
t h er. Fir st, it i s w ell k n o w n t h at t h e K M c o u pli n g i s
m u c h w e a k er t h a n ot h er t y p e s of S O C. W hil e t h e or et-
i c al e sti m at e s pl a c e λ K M i n t h e r a n g e fr o m 1 µ e V ? ?

t o 2 5- 5 0 µ e V, ? ? a r e c e nt E S R e x p eri m e nt r e p ort s t h e
v al u e of 4 2 .2 µ e V. ? T hi s i s m u c h s m all er t h a n t y pi-
c al v al u e s of 1- 1 0 m e V f or λ R a n d λ Z f or gr a p h e n e o n
T M D s u b str at e s, ? ? ? ? ? ? a n d t h u s t h e K M t er m will
b e i g n or e d i n w h at f oll o w s. N e xt, s u b str at e-i n d u c e d s u b-
l atti c e a s y m m etr y i s e x p e ct e d t o o p e n a g a p of m a g ni-
t u d e ∆ at t h e Dir a c p oi nt s. T hi s g a p e n d o w s gr a p h e n e
wit h B e rr y c ur v at ur e w hi c h, i n c o m bi n ati o n wit h S O C,
l e a d s t o i nt er e sti n g c o n s e q u e n c e s f or E D S R, s u c h a s a
H all c o m p o n e nt of t h e i n d u c e d c urr e nt, a s di s c u s s e d r e-
c e ntl y i n R ef. ? . I n t h e r e gi m e of λ R , λZ µ ( w h er e
t h e F L t h e or y of S e c s. III B-III D i s v ali d), t h e pr e s e n c e of
t h e g a p gi v e s ri s e t o t h e H all c o n d u cti vit y b ut d o e s n ot
q u alit ati v el y a ff e ct t h e c oll e cti v e m o d e s, a s it a m o u nt s
o nl y t o c h a n g e s i n t h e Fer mi v el o cit y a n d S O C p ar a m e-
t er s. Gi v e n al s o t h at a n g ul ar-r e s ol v e d p h ot o e mi s si o n of
gr a p h e n e o n T M D s u b str at e s h a s n ot d et e ct e d g a p s i n
t h e Dir a c s p e ctr u m, ? ? ? w e will n e gl e ct t h e a s y m m etr y
g a p i n t hi s st u d y. Wit h t h e s e si m pli fi c ati o n s, t h e H a mil-
t o ni a n i s r e d u c e d t o

ˆH 0 = v F (τ z ŝ 0 σ̂ x k x + ŝ 0 σ̂ y k y ) +
λ Z

2
τ z ŝ z σ̂ 0 +

λ R

2
(τ z ŝ y σ̂ x − ŝ x σ̂ y ).( 2. 2)
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B.  E n e r g y s p e c t r u m a n d s el e c ti o n r ul e s f o r R a s h b a
s pi n - o r bi t c o u pli n g

If o nl y R a s h b a S O C i s pr e s e nt ( λ Z = 0), t h e ei g e n v al-
u e s a n d ei g e n st at e s of t h e H a milt o ni a n ( 2. 2 ) ar e gi v e n
b y ? ?

ε α β ;τ z (k ) = α



 v 2
F k 2 +

λ R

2

2

+ β
λ R

2



 ;

|α β ; τ z =
1

2( 1 + ( α β ) 2 τ z )







− i α β τz e − i ( 1 + τ z ) θ

− i α β e− i θ ( α β ) τ z

τ z e − i τ z θ ( α β ) τ z

1





 , α β = ε α β ;τ z

(k )/ v F k,

( 2. 3)

w h er e α = ± 1 d e n ot e s t h e c o n d u cti o n / v al e n c e b a n d,
β = ± 1 d e n ot e s t h e S O C- s plit c hir al s u b b a n d s, τ z = ± 1
d e n ot e s t h e K / K v all e y s, r e s p e cti v el y, a n d θ i s t h e a z-
i m ut h al a n gl e of k .

T h e e n er g y s p e ctr u m f or a r e ali sti c c a s e of λ R < µ i s
s h o w n i n Fi g. 1 a, w h er e w e c h o o s e µ > 0 wit h o ut l o s s
of g e n er alit y. T h e c hir al n at ur e of t h e b a n d s i s e vi d e nt
f r o m t h e e x p e ct ati o n v al u e s of t h e s pi n o p er at or s i n e a c h
of t h e s u b b a n d s:

α β ; τ z |Ŝ x |α β ; τ z = −
β si n θ

√
1 + r 2

, α β ; τ z |Ŝ y |α β ; τ z =
β c o s θ

√
1 + r 2

, α β ; τ z |Ŝ z |α β ; τ z = 0 ,

( 2. 4)

w h er e Ŝ a ≡ ŝ a σ̂ 0 ar e t h e c o m p o n e nt s of t h e s pi n o p er at or
a n d r ≡ λ R / 2 v F k . It i s cl e ar fr o m E q. (2. 4 ) t h at k ·

Ŝ = 0, w hi c h m e a n s t h at t h e s pi n i s p er p e n di c ul ar t o
t h e m o m e nt u m i n e a c h s u b b a n d, a s s h o w n i n Fi g. 1 c.
N ot e t h at α β ; τ z |Ŝ i |α β ; τ z i s i n d e p e n d e nt of τ z . T hi s
m e a n s t h at t h e c hir al str u ct ur e i s t h e s a m e at t h e K a n d
K p oi nt s.

T o d et er mi n e w hi c h tr a n siti o n s c a n b e e x cit e d b y a n a c
m a g n eti c fi el d i n a n E S R m e a s ur e m e nt, w e al s o n e e d t h e
i ntr a v all e y m atri x el e m e nt s of t h e s pi n o p er at or f or o ff-
di a g o n al tr a n siti o n s b et w e e n s pi n- s plit s u b b a n d s. U si n g
t h e ei g e n st at e s fr o m E q. ( 2. 3 ), w e o bt ai n

α β ; τ z |Ŝ x |α β ; τ z =
i α β e i θ − α β e − i θ ( α β + α β )

2 1 + 2
α β 1 + 2

α β

,( 2. 5 a)

α β ; τ z |Ŝ y |α β ; τ z =
α β e i θ + α β e − i θ ( α β + α β )

2 1 + 2
α β 1 + 2

α β

,( 2. 5 b)

α β ; τ z |Ŝ z |α β ; τ z =
(α β α β − 1) ( 1 + α β α β )

2 1 + 2
α β 1 + 2

α β

. ( 2. 5 c)

A r e s p o n s e t o a n i n- pl a n e a c m a g n eti c fi el d i s c o ntr oll e d
b y t h e m atri x el e m e nt s i n E q s. ( 2. 5 a ) a n d ( 2. 5 b ). T h e s e
v a ni s h if α β + α β = 0, w hi c h c a n h a p p e n o nl y if β = β
a n d α = − α .  T h u s tr a n siti o n s b et w e e n c o n d u cti o n
a n d v al e n c e s u b b a n d s of t h e s a m e c hir alit y ar e f or bi d-
d e n. Fr o m Fi g. 1 a, w e s e e t h at t h e fr e q u e n ci e s of t h e
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FI G. 1. ( a ) E n e r g y s p e c t r u m of g r a p h e n e wi t h R a s h b a s pi n-
o r bi t c o u pli n g f o r λ R < µ .  T h e bl u e ( r e d ) li n e s d e pi c t
s u b b a n d di s p e r si o n s wi t h n e g a ti v e ( p o si ti v e ) c hi r ali t y, i n t h e
ri g ht- h a n d e d n o t a ti o n. Ve r ti c al a r r o w s i n di c a t e t r a n si ti o n s i n-
d u c e d b y a n a c m a g n e ti c fi el d. S oli d a n d d a s h e d a r r o w s s h o w
t r a n si ti o n s i n d u c e d b y a n i n- pl a n e a n d o u t- of- pl a n e m a g n e ti c
fi el d, r e s p e c ti v el y. b ) S a m e s p e c t r u m a s i n ( a ) wi t h a r r o w s
s h o wi n g t r a n si ti o n s i n d u c e d b y a n a c i n- pl a n e el e c t ri c fi el d.
c ) S pi n t e x t u r e s f o r R a s h b a s pi n- o r bi t c o u pli n g i n t h e a b s e n c e
of t h e m a g n e ti c fi el d. ( d ) E n e r g y s p e c t r u m of g r a p h e n e wi t h
v all e y- Z e e m a n s pi n- o r bi t c o u pli n g f o r λ Z < µ . T h e v e r ti c al
a r r o w s h o w s a t r a n si ti o n i n d u c e d b y a n i n- pl a n e a c m a g n e ti c
fi el d. A n o u t- of- pl a n e m a g n e ti c fi el d d o e s n o t i n d u c e a n y t r a n-
si ti o n s i n t hi s c a s e. ( e ) S a m e s p e c t r u m a s i n ( d ) wi t h a r r o w s
s h o wi n g t r a n si ti o n s i n d u c e d b y a n a c i n- pl a n e el e c t ri c fi el d.
(f ) S pi n s t r u c t u r e of t h e g r o u n d s t a t e f o r v all e y- Z e e m a n s pi n-
o r bi t c o u pli n g. T h e c r o s s e s ( d o t s ) r e p r e s e nt s pi n s p ol a ri z e d
i nt o ( o u t of ) t h e pl a n e.

all o w e d tr a n siti o n s f or a n i n- pl a n e fi el d ar e Ω = λ R a n d
Ω = 2 µ ± λ R . A r e s p o n s e t o a n o ut- of- pl a n e m a g n eti c
fi el d i s c o ntr oll e d b y t h e m atri x el e m e nt i n E q. ( 2. 5 c ),
w hi c h i s n o n- z er o if α β α β = 1. T hi s c o n diti o n all o w s
f or tr a n siti o n s b et w e e n t h e st at e s wit h o p p o sit e s u b b a n d
( c o n d u cti o n v s v al e n c e) or c hir alit y i n di c e s b ut n ot b ot h.
A s s h o w n i n Fi g. 1 a, t h e fr e q u e n ci e s of t h e all o w e d tr a n-
siti o n s f or a n o ut- of- pl a n e fi el d ar e Ω = λ R a n d Ω = 2 µ .

I n a n E S R e x p eri m e nt, o n e m e a s ur e s t h e i m a gi n ar y
p art of t h e s pi n s u s c e pti bilit y, w hi c h c a n b e c al c ul at e d
u si n g t h e K u b o f or m ul a, s e e A p p e n di x A 3 a . T h e r e s ult s
ar e s h o w n i n Fi g s. 2 a a n d 2 b. I n a gr e e m e nt wit h t h e
s el e cti o n r ul e s, t h er e i s a r e s o n a n c e at Ω = λ R b ot h i n
I mχ x x ( Ω) a n d I m χ z z ( Ω), a n d o n s et s of c o nti n u a at Ω =
2 µ ± λ R i n I mχ x x ( Ω) a n d at Ω = 2 µ i n I mχ z z ( Ω).

T o u n d er st a n d t h e s el e cti o n r ul e s f or tr a n siti o n s i n-
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FI G. 2. N o n-i nt e r a cti n g el e ct r o n s . I m a gi n a r y p a r t s of t h e
i n- pl a n e ( a ) a n d o u t- of- pl a n e ( b ) s pi n s u s c e p ti bili ti e s f o r t h e
c a s e of R a s h b a S O C o nl y, s h o wi n g t h e r e s o n a n c e a t λ R a n d
o n s e t s of c o nti n u a of c o n d u c ti o n- t o- v al e n c e b a n d t r a n si ti o n s
a t Ω = 2 µ ± λ R a n d Ω = 2 µ . F o r t h e v all e y- Z e e m a n S O C
c a s e o nl y ( c ), t h e o u t- of- pl a n e s u s c e p ti bili t y i s z e r o. T h e r e
i s a r e s o n a n c e a t λ Z i n t h e i n- pl a n e s u s c e p ti bili t y, b u t n o
c o nti n u a. T o mi mi c t h e e ff e c t of s pi n- r el a x a ti o n p r o c e s s e s,
t h e el e c t r o n s t a t e s w e r e b r o a d e n e d b y γ = 0 .0 0 5 µ .

d u c e d b y a n i n- pl a n e a c el e ctri c fi el d i n a n E D S R m e a-
s ur e m e nt, w e n e e d t h e m atri x el e m e nt s of t h e v el o cit y
o p er at or, w hi c h c oi n ci d e s wit h t h e v el o cit y o p er at or f or
Dir a c f er mi o n s wit h o ut S O C c o u pli n g:

v̂ = ∇ k
ˆH 0 = v F τ z ŝ 0 σ̂ x x̂ + v F ŝ 0 σ̂ y ŷ. ( 2. 6)

U si n g t h e ei g e n st at e s fr o m E q. ( 2. 3 ), w e o bt ai n

α β ; τ z |v̂ x |α β ; τ z = τ z v F
α β e − i θ τ z + α β e i θ τ z + α α β β α β e i θ τ z + α β e − i θ τ z

2 1 + 2
α β 1 + 2

α β

,

α β ; τ z |v̂ y |α β ; τ z = i τz v F
α β e − i θ τ z − α β e i θ τ z − α α β β α β e i θ τ z − α β e − i θ τ z

2 1 + 2
α β 1 + 2

α β

.( 2. 7)

I n c o ntr a st t o t h e c a s e of m a g n eti c dri vi n g, w e s e e t h at
t h e m atri x el e m e nt s of t h e v el o cit y ar e fi nit e f or a n y c o m-
bi n ati o n of α , β , α , a n d β , a n d t h u s tr a n siti o n s b et w e e n
all t h e s u b b a n d s c a n b e e x cit e d b y a n a c el e ctri c fi el d ( e x-
c e pt f or t h o s e wit hi n t h e v al e n c e b a n d s, w hi c h ar e f or-
bi d d e n b y t h e P a uli pri n ci pl e). T h er ef or e, w e e x p e ct t o
s e e a r e s o n a n c e i n t h e c o n d u cti vit y at Ω = λ R a n d o n s et s
of c o nti n u a at Ω = 2 µ ± λ R a n d Ω = 2 µ , a s s h o w n i n
Fi g. 1 b. I n a n E D S R e x p eri m e nt, o n e m e a s ur e s t h e r e al
p art of t h e o pti c al c o n d u cti vit y, w hi c h c a n b e al s o c al-
c ul at e d u si n g t h e K u b o f or m ul a ( s e e. A p p e n di x A 3 b ).
T h e c o n d u cti vit y s h o w n i n Fi g. 3 a ( wit h o ut t h e Dr u d e
p art) i n d e e d e x hi bit s all t h e f e at ur e s f oll o wi n g fr o m t h e
s el e cti o n r ul e s.

C.  E n e r g y s p e c t r u m a n d s el e c ti o n r ul e s f o r
v all e y - Z e e m a n s pi n - o r bi t c o u pli n g

I n t h e o p p o sit e li miti n g c a s e, w h e n o nl y V Z S O C i s
p r e s e nt ( λ R = 0), t h e ei g e n v al u e s a n d ei g e n st at e s of t h e
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FI G. 3. N o n-i nt e r a cti n g el e ct r o n s . ( a ) R e al p a r t of o p ti c al
c o n d u c ti vi t y f o r R a s h b a S O C, s h o wi n g t h e r e s o n a n c e a t λ R

a n d c o nti n u a s t a r ti n g a t Ω = 2 µ a n d Ω = 2 µ ± λ R . T h e
r e s o n a n c e i s t h e z e r o- fi el d E D S R e ff e c t. F o r t h e V Z c a s e ( b ),
t h e r e a r e c o nti n u a s t a r ti n g a t Ω = 2 µ ± λ Z , b u t n o r e s o n a n c e
a t λ Z . V Z S O C d o e s n o t l e a d t o z e r o- fi el d E D S R r e s o n a n c e.
I n b o t h c a s e s, t h e D r u d e p a r t of t h e c o n d u c ti vi t y i s n o t s h o w n.
B r o a d e ni n g i s t h e s a m e a s i n Fi g. 2 .

H a mlit o ni a n ( 2. 2 ) ar e gi v e n b y

ε α β ;τ z
(k ) = α v F k + β

λ Z

2
,

|α β ; τ z =
1

2
√

2







1 + τ z α β
(τ z α + β )e i τ z θ

1 − τ z α β
(τ z α − β )e i τ z θ







( 2. 8)

wit h t h e s a m e n ot ati o n s a s i n E q. ( 2. 3 ). T h e c orr e s p o n d-
i n g s p e ctr u m i s s h o w n i n Fi g. 1 b.

T h e e x p e ct ati o n v al u e s of t h e s pi n o p er at or s ar e

α β ; τ z |Ŝ x |α β ; τ z = 0 , α β ; τ z |Ŝ y |α β ; τ z = 0 , α β ; τ z |Ŝ z |α β ; τ z = τ z α β.
( 2. 9)

I n c o ntr a st t o t h e c a s e of R a s h b a S O C, s pi n s ar e n o l o n g er
c hir al b ut I si n g-li k e, a n d ar e p ol ari z e d i n t h e o p p o sit e
dir e cti o n s i n t h e S O C- s plit b a n d s, s e e Fi g. 1 d. Wit hi n
a gi v e n el e ctr o n or h ol e s pi n- s plit s u b b a n d, t h e dir e cti o n
of p ol ari z ati o n i s al s o o p p o sit e at t h e K a n d K p oi nt s.
T hi s i s e x p e ct e d a s t h e s y st e m pr e s er v e s ti m e-r e v er s al
s y m m etr y.

T o u n d er st a n d t h e s el e cti o n r ul e s f or tr a n siti o n s
pr o b e d b y E S R, w e n e e d t h e o ff- di a g o n al m atri x el e m e nt s
of t h e s pi n o p er at or, w hi c h ar e gi v e n b y

α β ; τ z |Ŝ x |α β ; τ z = − δ α α δ β, − β , α β ; τ z |Ŝ y |α β ; τ z = i τz α β δ α α δ β, − β , α β ; τ z |Ŝ z |α β ; τ z = τ z α β δ α α δ β β .
( 2. 1 0)

T h at α β ; τ z |Ŝ z |α β ; τ z i s p ur el y di a g o n al i m pli e s t h at
a n o ut- of- pl a n e m a g n eti c fi el d c a n n ot i n d u c e a n y i nt er-
b a n d tr a n siti o n s; t hi s i s s o b e c a u s e Ŝ z c o m m ut e s wit h t h e
H a milt o ni a n. F urt h er m or e, a n i n- pl a n e m a g n eti c fi el d
c a n o nl y i n d u c e a tr a n siti o n at Ω = λ Z b et w e e n t h e s pi n-
s plit br a n c h e s of t h e c o n d u cti o n b a n d, b ut t h er e ar e n o
c o nti n u a of s pi n- fli p tr a n siti o n s, s e e Fi g. 1 d. C orr e s p o n d-
i n gl y, I mχ z z ( Ω) = 0 w hil e I m χ x x ( Ω) e x hi bit s a si n gl e
p e a k at Ω = λ Z , a s s h o w n i n Fi g. 2 c.
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T h e s el e cti o n s r ul e s f or tr a n siti o n s pr o b e d b y a n a c
el e ctri c fi el d f oll o w fr o m t h e m atri x el e m e nt s of v el o cit y,
gi v e n b y

α β ; τ z |v̂ x |α β ; τ z =
τ z v F

4
α e i θ τ z α + e − i θ τ z ( 1 + α α β β ),

α β ; τ z |v̂ y |α β ; τ z =
τ z v F

4 i
α e i θ τ z − α e − i θ τ z ( 1 + α α β β ).( 2. 1 1)

It f oll o w s fr o m t h e l a st e q u ati o n t h at a n i n- pl a n e a c el e c-
t ri c fi el d c a n i n d u c e tr a n siti o n s o nl y b et w e e n t h e v al e n c e
a n d c o n d u cti o n b a n d, wit h a si m ult a n e o u s fli p of c hir al-
it y. A s s h o w n i n Fi g. 1 e, t h e fr e q u e n ci e s of t h e s e tr a n-
siti o n s ar e Ω = 2 µ ± λ Z , b ut t h er e i s n o r e s o n a n c e p e a k
at Ω = λ Z . I n d e e d, t h e c orr e s p o n di n g c o n d u cti vit y i n
Fi g. 3 b s h o w s n o r e s o n a n c e b ut o nl y a d o u bl e st e p at
Ω = 2 µ ± λ Z , w hi c h i s j u st a P a uli t hr e s h ol d at Ω = 2µ
s plit b y V Z S O C.

D.  L o w - e n e r g y H a mil t o ni a n f o r t h e c o n d u c ti o n
b a n d i n t h e p r e s e n c e of e x t e r n al el e c t ri c a n d

m a g n e ti c fi el d s

A s w e s a w i n t h e pr e vi o u s s e cti o n s, t h e r e ar e t w o
g r o u p s of tr a n siti o n s t h at c a n b e e x cit e d b y e xt er n al
el e ctri c a n d m a g n eti c fi el d s: i) t h o s e b et w e e n t h e s pi n-
s plit s u b b a n d s of t h e c o n d u cti o n b a n d at Ω = λ R , λZ
a n d ii) t h o s e b et w e e n t h e s pi n- s plit c o n d u cti o n a n d v a-
l e n c e b a n d s at Ω = 2µ, 2 µ ± λ R , 2 µ ± λ Z . Gi v e n t h at
λ R , λZ µ i n r e al s y st e m s, t h e tr a n siti o n fr e q u e n ci e s i n
t h e s e c o n d gr o u p ar e n e ar t h e dir e ct a b s or pti o n t hr e s h ol d
at Ω ≈ 2 µ . If t h e C o ul o m b i nt e r a cti o n b et w e e n o pti c all y
e x cit e d h ol e s a n d c o n d u cti o n el e ctr o n s i s a c c o u nt e d f or,
a b s or pti o n st art s at t h e i n dir e ct t hr e s h ol d of Ω = µ , vi a
t h e s a m e m e c h a ni s m a s i n A u g er d a m pi n g of p h ot o e x-
cit e d c arri er s i n d o p e d s e mi c o n d u ct or s. ? ? ? I n a d diti o n,
t h e i nt er a cti o n b et w e e n el e ctr o n s i n t h e c o n d u cti o n b a n d
al s o l e a d s t o a b s or pti o n f or Ω < 2 µ ,? a n d t hi s c o ntri b u-
ti o n i s c o m p ar a bl e t o A u g e r’ s o n e f or Ω ∼ µ . F or Ω µ ,
t h e li n e wi dt h d u e t o b ot h t y p e s of d a m pi n g i s l ar g e, o n
t h e or d er of g 2 µ , w h er e g i s t h e di m e n si o nl e s s c o u pli n g
c o n st a nt of t h e C o ul o m b i nt er a cti o n. T h er ef or e, f or m o d-
e r at e a n d str o n g i nt er a cti o n, b ot h A u g er a n d i ntr a b a n d
d a m pi n g ar e e x p e ct e d t o s m e ar t h e fi n e f e at ur e s n e ar 2 µ ,
i n d u c e d b y S O C. F or t hi s r e a s o n, w e will i g n or e tr a n si-
ti o n s at Ω ≈ 2 µ a n d f o c u s o n t h e l o w- e n er g y p art of t h e
s p e ctr u m at Ω ≈ λ R , λZ µ .

F or t hi s r a n g e of fr e q u e n ci e s, it m a k e s s e n s e t o d e-
ri v e a n e ff e cti v e l o w- e n er g y H a milt o ni a n f or t h e s pi n- s plit
c o n d u cti o n b a n d. We st art b y tr a n sf or mi n g E q. ( 2. 2 ),

w ritt e n i n t h e s u b-l atti c e b a si s { â ↑ , b̂ ↑ , â ↓ , b̂ ↓ } T , t o t h e
s u b b a n d b a si s { ĉ ↑ , ĉ ↓ , v̂ ↑ , v̂ ↓ } T , i n w hi c h t h e Dir a c p art

of ˆH 0 i s di a g o n al. T h e tr a n sf or m ati o n i s e ff e ct e d vi a

â ς =
ĉ ς + v̂ ς√

2
, bς =

ĉ ς − v̂ ς√
2

τ z e i τ z θ , ς = ↑ , ↓ . ( 2. 1 2)

A n a c m a g n eti c fi el d b̂ 0 B 0 e − i Ω t i s a c c o u nt e d f or b y

a d di n g t h e Z e e m a n t e r m ŝ ·b̂ 0 σ̂ 0 ∆ Z / 2 t o t h e H a milt o ni a n

(2. 2 ), w h er e ∆ Z = g µ B B 0 e − i Ω t , g i s t h e e ff e cti v e L a n d é-
f a ct o r, a n d µ B i s t h e B o hr m a g n et o n. A n a c el e ctri c
fi el d E 0 e − i Ω t i s a c c o u nt e d f or b y a g a u g e tr a n sf or m ati o n
k → k + ( e / c )A i n E q. (2. 2 ), w h er e A = ( c /i Ω) E 0 e − i Ω t

i s t h e v e ct or- p ot e nti al. I n t h e n e w b a si s, a n d i n t h e pr e s-
e n c e of b ot h m a g n eti c a n d el e ctri c fi el d s, t h e H a milt o ni a n
c a n b e writt e n a s a 4 × 4 bl o c k- m atri x

ˆH b a n d
0 =

ˆH c c
ˆH c v

ˆH v c H v v
, ( 2. 1 3)

w h er e t h e 2 × 2 bl o c k s ar e gi v e n b y

ˆH c c = ŝ 0 v F k +
λ R

2
( k̂ × ŝ ) · ẑ +

λ Z

2
τ z ŝ z +

∆ Z

2
ŝ · b̂ 0 + ŝ 0

e v F

c
( k̂ · A ) ,

ˆH v v = − ŝ 0 v F k −
λ R

2
( k̂ × ŝ ) · ẑ +

λ Z

2
τ z ŝ z +

∆ Z

2
ŝ · b̂ 0 − ŝ 0

e v F

c
( k̂ · A ) ,

ˆH c v = i τz ŝ 0
e v F

c
( k̂ × A ) · ẑ − i

λ R

2
τ z ( k̂ · ŝ )

ˆH v c = − ˆH c v , ( 2. 1 4)

wit h k̂ = k / k a n d ẑ b ei n g t h e u nit v e ct or n or m al t h e
pl a n e.  N ot e t h at t h e c o u pli n g b et w e e n t h e c o n d u c-
ti o n a n d v al e n c e b a n d s ari s e s vi a t h e el e ctri c fi el d a n d
R a s h b a S O C. T hi s i s d u e t o t h e s el e cti o n r ul e s di s c u s s e d
i n S e c s. II B a n d II C, w hi c h s a y t h at, at Ω µ , o nl y
R a s h b a S O C all o w s f or tr a n siti o n s b et w e e n t h e c o n d u c-
ti o n a n d v al e n c e b a n d s. N ot e al s o t h at t h e R a s h b a t er m s
i n ˆH c c a n d ˆH v v ar e al m o st t h e s a m e a s i n a 2 D el e ctr o n
g a s ( u p t o t h e d e p e n d e n c e o n t h e m a g nit u d e of k ).

N e xt, w e pr oj e ct o ut t h e v al e n c e b a n d vi a a st a n d ar d
d o w nf ol di n g pr o c e d ur e.  N a m el y, w e fi n d t h e Gr e e n’ s
f u n cti o n of ˆH b a n d

0 i n E q. (2. 1 3 ), G = ( − ˆH b a n d
0 ) − 1 ,

a n d r e a d o ff it s c c el e m e nt. T hi s yi el d s t h e e ff e cti v e l o w-
e n er g y H a milt o ni a n a s ˆH p r o j

c c = ˆH c c + ˆH c v ( − ˆH v v ) − 1 ˆH v c .
T o l e a di n g or d er i n t h e e xt er n al fi el d s a n d S O C, t h e
ei g e n v al u e c a n b e r e pl a c e d b y v F k , l e a di n g t o

ˆH p r o j
c c = ŝ 0 v F k +

λ R

2
( k̂ × ŝ ) ·ẑ +

λ Z

2
τ z ŝ z +

∆ Z

2
ŝ ·b̂ 0 + ŝ 0

e v F

c
( k̂ ·A ) +

e λ R

2 c k
(A × k̂ ) ·ẑ ( k̂ ·̂s ) .

( 2. 1 5)
N ot e t h at t h e el e ctri c fi el d c o u pl e s t o s pi n s o nl y d u e t o
R a s h b a S O C, w hi c h i s t h e ori gi n of t h e E D S R e ff e ct. I n
t h e a b s e n c e of e xt er n al fi el d s, S O C s plit s t h e c o n d u cti o n
b a n d i nt o t w o s u b b a n d s wit h e n er gi e s

ε ± = v F k ±
1

2
λ S O C , w h er e λ S O C = λ 2

R + λ 2
Z , ( 2. 1 6)

a n d t h e r e s o n a n c e o c c ur s at Ω = λ S O C .

I I I.  El e c t r o n s pi n a n d el e c t ri c - di p ol e s pi n
r e s o n a n c e s i n a t w o - v all e y F e r mi li q ui d

A.  T w o - v all e y F e r mi li q ui d

I n t hi s s e cti o n, w e i n v e sti g at e t h e e ff e ct of el e ctr o n-
el e ctr o n i nt er a cti o n o n E S R a n d E D S R. A s w e s h all
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d e m o n str at e, t h e m o st pr o mi n e nt e ff e ct of t h e i nt er a c-
ti o n i s t o s plit t h e r e s o n a n c e s i nt o t w o. T hi s s plitti n g
i s c o ntr oll e d b y t h e c o u pli n g c o n st a nt s of t h e v ari o u s i n-
t er a cti o n c h a n n el s, w hi c h e n a bl e s o n e t o e xtr a ct t h e s e
i m p ort a nt p ar a m et er s fr o m t h e m e a s ur e d s p e ctr a. Si n c e
w e ar e i nt er e st e d o nl y i n e n er gi e s m u c h s m all er t h a n t h e
Fer mi e n er g y, t h e e ff e ct of el e ctr o n- el e ctr o n i nt er a cti o n
c a n b e a c c o u nt e d f or wit hi n a Fer mi li q ui d ( F L) t h e or y
f or c o n d u cti o n el e ctr o n s o nl y, w hil e t h e i nt er a cti o n wit h
h ol e s c a n b e a s s u m e d t o b e a b s or b e d i nt o t h e c o u pli n g
c o n st a nt s of t h e F L t h e or y.

Fir st, w e di s c u s s t h e str u ct ur e of t h e F L t h e or y f or a
t w o- v all e y s y st e m i n t h e a b s e n c e of S O C, d e v el o p e d r e-
c e ntl y i n R ef. ? . T h e i nt er a cti o n v erti c e s ar e s h o w n
i n Fi g. 4 . T h e s oli d a n d d a s h e d li n e s d e pi ct el e ctr o n s i n
t h e K a n d K v all e y s, r e s p e cti v el y. Di a gr a m s a a n d b d e-
s cri b e i ntr a- v all e y s c att eri n g. E a c h of t h e s e di a gr a m s h a s
a n e x c h a n g e p art n er ( n ot s h o w n), i n w hi c h t h e o ut g oi n g
st at e s ar e s w a p p e d. Di a gr a m c d e s cri b e s a n i nt er- v all e y
s c att eri n g e v e nt, i n w hi c h el e ctr o n s st a y i n t h eir r e s p e c-
ti v e v all e y s. T h e m o m e nt u m tr a n sf er i n s u c h a n e v e nt
i s l e s s t h a n or e q u al t o 2k F . Di a gr a m d i s a n e x c h a n g e
p art n er t o di a gr a m c , i n w hi c h el e ctr o n s ar e s w a p p e d
b et w e e n t h e v all e y s. T h e m o m e nt u m tr a n sf er i n s u c h
a n e v e nt i s cl o s e t o t h e di st a n c e b et w e e n t h e K a n d K
p oi nt s, |K − K | ∼ 1 / a , w h er e a i s t h e l atti c e c o n st a nt.
F or k F a 1, t h e m atri x el e m e nt of t h e C o ul o m b i nt er a c-
ti o n f or di a gr a m d i s m u c h s m all er t h a n t h at f or di a gr a m
c , a n d will b e n e gl e ct e d i n w h at f oll o w s. I n t hi s c a s e,
t h e v all e y i n d e x pl a y s a r ol e of c o n s er v e d i s o s pi n, a n d
w e h a v e a n S U ( 2) × S U ( 2)-i n v ari a nt F L. T h e i nt er a cti o n
b et w e e n q u a si p arti cl e s of s u c h a F L i s d e s cri b e d b y t h e
L a n d a u i nt er a cti o n f u n cti o n

ν ∗
F f̂ ( k , k ) = F s (k , k )δ υ 1 υ 3

δ υ 2 υ 4
δ ς 1 ς 3

δ ς 2 ς 4
+ F a (k , k )δ υ 1 υ 3

δ υ 2 υ 4
( ŝ ς 1 ς 3

· ŝ ς 2 ς 4
)

+ G a (k , k )( τ̂ υ 1 υ 3
· τ̂ υ 2 υ 4

)δ ς 1 ς 3
δ ς 2 ς 4

+ H (k , k )( τ̂ υ 1 υ 3
· τ̂ υ 2 υ 4

)( ŝ ς 1 ς 3
· ŝ ς 2 ς 4

),( 3. 1)

w h er e ν ∗
F i s t h e r e n or m ali z e d d e n sit y of st at e s at t h e

Fer mi e n er g y a n d v (ς ) l a b el s v all e y ( s pi n). C o m p o n e nt s
F s a n d F a , w hi c h ar e pr e s e nt al s o i n t h e si n gl e- v all e y
c a s e, d e s cri b e dir e ct a n d e x c h a n g e i nt er a cti o n b et w e e n
f er mi o n s i n t h e s a m e v all e y, r e s p e cti v el y. C o m p o n e nt
G a d e s cri b e s e x c h a n g e i nt er a cti o n b et w e e n di ff er e nt v al-
l e y s, w hi c h w o ul d b e pr e s e nt e v e n f or s pi nl e s s f er mi o n s.
Fi n all y, c o m p o n e nt H d e s cri b e s e x c h a n g e i nt er a cti o n b e-
t w e e n b ot h s pi n s a n d v all e y s. T h e c o m p o n e nt s of t h e
L a n d a u f u n cti o n ar e d e fi n e d o n t h e Fer mi s urf a c e, i. e.,
f or k = k = k F , d e p e n d o nl y o n a n gl e ϑ b et w e e n k
a n d k , a n d c a n b e c h ar a ct eri z e d b y a n g ul ar h ar m o ni c s,
e. g., F a

m = d ϑ F a (ϑ )e i m ϑ / 2 π , a n d t h e s a m e f or ot h e r
c o m p o n e nt s.

A s l o n g a s S O C c a n b e tr e at e d a s a p ert ur b ati o n, i. e.,
f or λ R , λZ µ , t h e L a n d a u f u n cti o n i n E q. (3. 1 ) c a n al s o
b e u s e d t o d e s c ri b e d y n a mi c s of s pi n s i n t h e pr e s e n c e of
S O C, si mil ar t o h o w it w a s d o n e i n R ef s. ? ? ? f or a
2 D el e ctr o n g a s wit h R a s h b a a n d Dr e s s el h a u s S O C.

𝐁 ,𝐁 𝐄

𝐄 ",𝑹 𝑹

𝑹 − 𝑹 ,𝒁 𝒁

𝒁 " + 𝒁 ,𝐧 𝐢

b
𝐭 ,𝐬 𝐨

𝐟 ",𝝁 𝟐

𝝅 − 𝒗 ,𝑭 𝟐

𝛀 " + 𝝁 ,𝐚 𝝀

a
𝑹 ,𝟎 𝟓

𝝁 ",𝝌 𝒛

𝒛 − 𝛀 ,𝐢 𝐧

𝐮 " + 𝐧 ,𝐢 𝐭

d
𝐬 ,𝐨 𝐟

𝝁 ",𝟐 𝝅

𝒗 − 𝑭 ,𝟐 𝛀

𝝁 " + 𝐛 ,𝛀 𝝁

c

FI G. 4. I nt e r a c ti o n v e r ti c e s f o r i nt r a- v all e y ( a a n d b ) a n d
i nt e r- v all e y (c a n d d ) s c a t t e ri n g p r o c e s s e s. T h e s oli d ( d a s h e d )
li n e s r ef e r t o el e c t r o n s i n t h e K ( K ) v all e y. Di a g r a m s a a n d
b al s o h a v e e x c h a n g e p a r t n e r s wi t h o u t g oi n g s t a t e s s w a p p e d
( n o t s h o w n ). Di a g r a m d i n v ol v e s a l a r g e m o m e nt u m t r a n sf e r
∼ | K − K |, a n d i s n e gl e c t e d i n o u r m o d el.

B. C oll e c ti v e m o d e s of a t w o - v all e y F e r mi li q ui d
wi t h s pi n - o r bi t c o u pli n g

A c c o u nti n g f or t h e v all e y d e gr e e of fr e e d o m a n d i n t h e
a b s e n c e of e xt er n al fi el d s, o n e c a n writ e t h e pr oj e ct e d
H a milt o ni a n ( 2. 1 5 ) b e c o m e s

ˆH p r o j
c c = v F k τ̂ 0 ŝ 0 +

λ R

2
τ̂ 0 ( k̂ × ŝ ) · ẑ +

λ Z

2
τ̂ z ŝ z . ( 3. 2)

A c c or di n gl y, t h e q u a si p arti cl e e n er g y c a n b e writt e n a s
t h e s u m of t h e e q uili bri u m p art ( e q) a n d a c orr e cti o n d u e
t o t h e L a n d a u f u n cti o n al ( L F), w h er e a s t h e e q uili bri u m
p art i s f urt h er s e p ar at e d i nt o a s pi n-i n d e p e n d e nt p art
a n d a c orr e cti o n d u e t o S O C:

ε̂ ( k , t) = ε̂ e q (k ) + δ ε̂ L F (k , t), ( 3. 3 a)

ε̂ e q (k ) = τ̂ 0 ŝ 0 v ∗
F (k − k F ) + δ ε̂ S O (k ), ( 3. 3 b)

δ ε̂ S O (k ) =
λ ∗

R

2
τ̂ 0 ( k̂ × ŝ ) · ẑ +

λ ∗
Z

2
τ̂ z ŝ z , ( 3. 3 c)

δ ε̂ L F (k , t) = Tr
d 2 p

( 2π ) 2
f̂ ( k , k ) n̂ ( k , t). ( 3. 3 d)

H er e, δ n̂ ( k , t) i s t h e d e n sit y m atri x, f (k , k ) i s gi v e n b y
E q. ( 3. 1 ), i n di c at e s t h e v all e y / s pi n st at e of a q u a si p arti-
cl e wit h m o m e nt u m k , v ∗

F i s t h e r e n or m ali z e d Fer mi v e-
l o cit y, a n d λ ∗

R = λ R / ( 1 + F a
1 ), ? λ ∗

Z = λ Z / ( 1 + H 0 ) ? ar e
t h e r e n or m ali z e d s pi n- or bit c o u pli n g c o n st a nt s. E q u a-
ti o n s ( 3. 3 a )-(3. 3 d ) n e e d t o b e s ol v e d s elf- c o n si st e ntl y
al o n g wit h t h e ki n eti c e q u ati o n f or t h e d e n sit y m atri x

i
∂ n̂ ( k , t)

∂ t
= [ ε̂ ( k , t), n̂ ( k , t)]. ( 3. 4)

[ O ur ki n eti c e q u ati o n d o e s n ot c o nt ai n t h e e ff e ct s of B err y
c ur v at ur e b e c a u s e w e n e gl e ct e d t h e a s y m m etr y g a p i n t h e
si n gl e- p arti cl e s p e ctr u m.] A s i n R ef s. ? ? , w e i ntr o d u c e
a s et of r ot at e d P a uli m atri c e s i n t h e s pi n s p a c e

ξ̂ 0 = ŝ 0 , ξ̂ 1 (k ) = − ŝ z , ξ̂ 2 (k ) = c o s θ ŝ x + si n θ ŝ y , ξ̂ 3 (k ) = si n θ ŝ x − c o s θ ŝ y ,
( 3. 5)
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a n d p ar a m etri z e δ n̂ ( p , t ) a s t h e s u m of t h e e q uili bri u m
( e q) a n d fl u ct u ati n g ( fl) p art s: ? ?

n̂ ( k , t) = n̂ e q (k ) + δ n̂ fl (k , t), ( 3. 6 a)

n e q (k ) = τ̂ 0 ξ̂ 0 n F + n F ε̂ S O (k ), ( 3. 6 b)

δ n̂ fl (k , t) = n F τ̂ 0 ξ̂ 0 a (k , t) + δ n̂ s v (k , t), ( 3. 6 c)

δ n̂ s v (k , t) = n F τ̂ 0 u (k , t) · ξ̂ ( k ) + w (k , t) · τ̂ ξ̂ 0 + M α β (k , t) τ̂ α ξ̂ β (k ) ,( 3. 6 d)

w h er e n F i s t h e Fer mi f u n cti o n, α, β ∈ { 1 , 2 , 3 } , a n d
n F ≡ ∂ ε n F (ε ). Ve ct or u a n d t e n s or M α β d e s cri b e o s cil-
l ati o n s of t h e u nif or m m a g n eti z ati o n

S̃ α = −
g µ B

2
S α = −

g µ B

2

d 2 k

( 2π ) 2
Tr [ δ n̂ ( k , t) ŝ α ] =

g µ B ν ∗
F

8

d θ k

2 π
u β (k , t) Tr ξ̂ β ŝ α

( 3. 7)
a n d v all e y- st a g g er e d m a g n eti z ati o n

˜M α = −
g µ B

2
M α = −

g µ B

2

d 2 k

( 2π ) 2
Tr [ δ n̂ ( k , t) τ z ŝ α ] =

g µ B ν ∗
F

8

d θ k

2 π
N β (k , t) Tr ξ̂ β ŝ α ,( 3. 8)

r e s p e cti v el y, w h er e N γ (k , t) ≡ M 3 γ (k , t) wit h γ = 1 . . . 3.
Ve ct or w d e s cri b e s o s cill ati o n s i n t h e v all e y o c c u p a n c y,
w hi c h ar e d e c o u pl e d fr o m b ot h m a g n eti z ati o n s a n d will
n ot b e c o n si d er e d b el o w. E x p a n di n g u a n d N o v er t h e
s et of a n g ul ar h ar m o ni c s a s u (k , t) = m e i m θ u ( m ) (t)

a n d N (k , t) = m e i m θ N ( m ) (t), w e o bt ai n f or t h e c o m-
p o n e nt s of S

S x = ν ∗
F

u
( − 1 )
2 + u

( + 1 )
2

2
+

u
( − 1 )
3 − u

( + 1 )
3

2 i
, S y = ν ∗

F

u
( − 1 )
2 − u

( + 1 )
2

2 i
−

u
( − 1 )
3 + u

( + 1 )
3

2
, S z = − ν ∗

F u
( 0 )
1 .( 3. 9)

T h e e x pr e s si o n s f or M i ar e o bt ai n e d fr o m t h e l a st e q u a-

ti o n b y r e pl a ci n g u
( ± 1 )
γ → N

( ± 1 )
γ .

T h e e q u ati o n s of m oti o n f or u
( m )
α (t) a n d N

( m )
α (t) ar e

o bt ai n e d b y tr a ci n g o ut t h e c orr e s p o n di n g c o m p o n e nt s
of E q. ( 3. 4 ). T h e f ull s y st e m of e q u ati o n s i s pr e s e nt e d i n
A p p e n di x ( B ). T o u n d er st a n d t h e d y n a mi c s of t h e s y s-
t e m, it i s i n str u cti v e t o c o n si d e r fir st t h e c a s e of λ ∗

Z = 0,

w h e n t h e e q u ati o n s f or u
( m )
α (t) a n d N

( m )
α (t) d e c o u pl e.

T h e m = ± 1 h ar m o ni c s, w hi c h e nt er t h e i n- pl a n e c o m-
p o n e nt s of S a n d M , s ati sf y

u̇
( ± 1 )
1 = λ ∗

R f + u
( ± 1 )
2 ± i f− u

( ± 1 )
3 , u̇

( ± 1 )
2 = − λ ∗

R f u
( ± 1 )
1 , u̇

( ± 1 )
3 = 0;( 3. 1 0 a)

˙N
( ± 1 )
1 = λ ∗

R h + N
( ± 1 )
2 ± i h− N

( ± 1 )
3 , ˙N

( ± 1 )
2 = − λ ∗

R h N
( ± 1 )
1 , ˙N

( ± 1 )
3 = 0 ,( 3. 1 0 b)

w h er e

f = 1 + F a
1 , f+ = 1 + ( F a

0 + F a
2 )/ 2 , f− = ( F a

0 − F a
2 )/ 2 ,

h = 1 + H 1 , h+ = 1 + ( H 0 + H 2 )/ 2 , h− = ( H 0 − H 2 )/ 2 .( 3. 1 1)

E q u ati o n s ( 3. 1 0 a ) a n d ( 3. 1 0 b ) d e s cri b e i n d e p e n d e nt
o s cill ati o n s of t h e i n- pl a n e m a g n eti z ati o n a n d v all e y-
st a g g er e d  m a g n eti z ati o n  wit h fr e q u e n ci e s  Ω − =
λ ∗

R f f + a n d Ω + = λ ∗
R h h + , r e s p e cti v el y. Fr o m t h e

str u ct ur e of ei g e n v e ct or s, o n e c a n d e d u c e t h at b ot h
m o d e s ar e li n e arl y p ol ari z e d.

T h e o ut- of- pl a n e c o m p o n e nt s of S a n d M ar e e x-
pr e s s e d vi a t h e m = 0 h ar m o ni c s of u a n d N , w hi c h
s ati sf y a s et of e q u ati o n s si mil ar t o E q s. ( 3. 1 0 a ) a n d
(3. 1 0 b ) wit h di ff er e nt c o m bi n ati o n s of t h e L a n d a u p a-
r a m et er s [ s e e A p p e n di x ( B )]. T h e m o d e fr e q u e n ci e s i n

t h e S a n d M s e ct or s ar e Ω − , z = λ ∗
R f (f + + f − ) a n d

Ω + , z = λ ∗
R h (h + + h − ), r e s p e cti v el y.

V all e y- Z e e m a n S O C mi x e s u p t h e S a n d M s e ct or s.
T h e fr e q u e n ci e s of t h e i n- pl a n e m o d e s ( wit h m = ± 1) f or
λ ∗

Z = 0 ar e gi v e n b y

Ω 2
± = λ ∗ 2

R

f f + + h h +

2
+ λ ∗ 2

Z f + h + + f − h − ± Ω 2
0 ,

( 3. 1 2 a)

w h er e

Ω 2
0 = λ ∗ 4

R

f f + − h h +

2

2

+ λ ∗ 4
Z (f − h + + h − f + ) 2 + λ ∗ 2

R λ ∗ 2
Z (f f − + h h − )( f − h + + h − f + )

1 / 2

.

( 3. 1 2 b)

I n a s si g ni n g t h e ± i n di c e s t o t h e m o d e s, w e a s s u m e d
t h at f f + < h h + a n d f − h + + h − − f + < 0. T h e s e t w o
c o n diti o n s ar e s ati s fi e d i n t h e m o st r e ali sti c c a s e, w h e n i)
b ot h t h e i ntr a- a n d i nt er v all e y i nt er a cti o n s ar e attr a cti v e,
i. e., F a

m , Hm < 0; ii) t h e i ntr a v all e y i nt er a cti o n i s str o n g e r
t h a n t h e i nt er v all e y o n e, i. e., |F a

m | > |H m |; a n d iii) b ot h
|F a

m | a n d |H m | d e cr e a s e wit h m m o n ot o ni c all y. I n t hi s
c a s e, Ω + > Ω − f or a n y r ati o of λ ∗

R t o λ ∗
Z . T h e str u ct ur e

of t h e ei g e n st at e s i n di c at e s t h at f or b ot h m o d e s S a n d
M ar e p er p e n di c ul ar t o e a c h ot h e r a n d p h a s e l a g g e d b y
π / 2.

S ol vi n g t h e e q u ati o n s of m oti o n f or t h e m = 0 h ar m o n-
i c s of u α a n d N α , o n e fi n d s t h at t h e o ut- of- pl a n e m o d e s
o s cill at e wit h fr e q u e n ci e s

Ω 2
+ , z = h (h + + h − )λ ∗ 2

R + f λ ∗ 2
Z a n d Ω 2

− , z = f (f + + f − )λ ∗ 2
R + h λ ∗ 2

Z ,
( 3. 1 3)

r e s p e cti v el y.
O n e c a n g et a b ett er i n si g ht i nt o a g e n er al c a s e b y

u si n g e x pli cit f or m s of t h e L a n d a u p ar a m et er s, c al c u-
l at e d t o fir st or d er i n t h e H u b b ar d i nt er a cti o n wit h a m-
plit u d e U 0 .1 T h e o nl y n o n- z er o L a n d a u p ar a m et er s i n
t hi s a p pr o xi m ati o n ar e ? F a

0 = G a
0 = H 0 = − u, a n d

F a
1 = G a

1 = H 1 = − u / 2, w h er e u ≡ ν F U 0 / 8. N ot e
t h at, i n c o ntr a st t o a c o n v e nti o n al F L, w h er e a w e a k
s h ort-r a n g e i nt er a cti o n gi v e s ri s e o nl y t o m = 0 L a n-
d a u p ar a m et er s, a Dir a c F L i n gr a p h e n e h a s at l e a st
t h e m = 0 a n d m = 1 h ar m o ni c s. C orr e s p o n di n gl y,
f = f + = h = h + = 1 − u / 2 a n d f − = h − = − u / 2,
a n d t h e i n- pl a n e m o d e fr e q u e n ci e s ar e r e d u c e d t o

Ω ± = λ 2
R + λ 2

Z 1 +
u λ 2

Z

2( λ 2
R + λ 2

Z )
±

u λ Z

2
. ( 3. 1 4)

A s p e ci al f e at ur e of t h e w e a k H u b b ar d c o u pli n g i s t h at
t h e i nt er- a n d i ntr a v all e y i nt er a cti o n s ar e t h e s a m e i n
t hi s li mit, a n d, t h er ef or e, t h e m o d e s ar e d e g e n er at e at
λ Z = 0. T hi s d e g e n er a c y i s lift e d b y t h e s e c o n d t er m i n
E q. ( 3. 1 4 ), w hi c h i s n o n- z er o o nl y if b ot h V Z S O C a n d
el e ctr o n- el e ctr o n i nt er a cti o n ar e pr e s e nt.
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C.  Z e r o - fi el d el e c t r o n s pi n r e s o n a n c e i n a
t w o - v all e y  F e r mi li q ui d

T o d e s c ri b e  E S R,  w e a s s u m e t h at a  w e a k, o s cill at or y
m a g n eti c fi el d i s a p pli e d i n t h e y - di r e cti o n.  A c c or di n gl y,
t h e q u a si p arti cl e e n er g y i n  E q. ( 3. 3 a ) a c q ui r e s a n e xt r a
t er m, δ ε̂ B ( t) = ( ∆ ∗

Z / 2) τ̂ 0 ŝ y ,  w h e r e  ∆∗Z = ∆ Z / ( 1  + F a
0 ) i s

t h e r e n o r m ali z e d  Z e e m a n e n er g y.  T h e s pi n s u s c e pti bilit y
i s d e d u c e d f r o m t h e r el ati o n S̃ i = χ i j B j ,  w h e r e S̃ i i s t h e
it h c o m p o n e nt of t h e u nif or m  m a g n eti z ati o n, d e fi n e d b y
E q. ( 3. 7 ).  D u e t o t h e r ot ati o n al i n v ari a n c e of o ur  m o d el
i n t h e a b s e n c e of t h e e xt er n al fi el d, t h e i n- pl a n e p art of
χ i j i s di a g o n al a n d s y m m etri c. S ol vi n g t h e e q u ati o n s of
m oti o n f or t h e d e n sit y  m at ri x ( s e e  A p p e n di x B ),  w e fi n d
f or t h e i m a gi n ar y p art of t h e i n- pl a n e s pi n s u s c e pti bilit y

I mχ ( Ω)  = χ 0 W E S R
+ Ω + δ ( Ω − Ω + ) + W E S R

− Ω − δ ( Ω − Ω − ) ,( 3. 1 5)

w h e r e t h e r e s o n a n c e f r e q u e n ci e s ar e gi v e n b y  E q s. ( 3. 1 2 a )
a n d ( 3. 1 2 b ), W E S R

± a r e t h e o s cill at or st r e n gt h s, a n d χ 0 =
g 2 µ 2

B ν ∗
F / 4( 1 + F a

0 ) i s t h e st ati c s pi n s u s c e pti bilit y of a  F L
i n d o p e d gr a p h e n e.  T h e  m o st i nt er e sti n g f e at ur e of t h e
r e s ult i n  E q. ( 3. 1 5 ) i s t h at, i n g e n er al, t h e  E S R si g n al
c o n si st s of t w o p e a k s r at h er t h a n o n e,  wit h  w ei g ht s gi v e n
b y W E S R

± = ± W E S R ( Ω ± ),  w h e r e

W E S R ( Ω)  =
π

8

Ω 2 − Ω 2
s

Ω 2 Ω 2
0

[λ ∗ 2
R f + 2 λ ∗ 2

Z ( h + + h − )] , a n d

Ω 2
s =

[λ ∗ 2
R f h + + λ ∗ 2

Z ( h 2
+ − h 2

− )][ λ ∗ 2
R h + 2 λ ∗ 2

Z ( f + − f − )]

λ ∗ 2
R f + 2 λ ∗ 2

Z ( h + + h − )
.( 3. 1 6)

T h e s plitti n g of t h e  E S R si g n al o c c u r s, fi r st of all,
b e c a u s e of el e ct r o n- el e ct r o n i nt er a cti o n. I n d e e d, f or a
n o n-i nt er a cti n g s y st e m, f = f + = h = h + = 1 a n d
f − = h − = 0, s u c h t h at t h e f r e q u e n c y  Ω 0 i n  E q. (3. 1 2 b )
v a ni s h e s, a n d  Ω + = Ω − = λ S O C .  T hi s f e at u r e i s d e m o n-
st r at e d i n  Fi g. 5 a,  w h er e t h e d a s h e d li n e d e pi ct s t h e  E S R
si g n al i n t h e a b s e n c e of i nt er a cti o n a n d t h e s oli d li n e d e-
pi ct s t h e s a m e f or a g e n eri c c h oi c e of t h e  L a n d a u p a-
r a m et er s, a s i n di c at e d i n t h e fi g u r e c a pti o n. S plitti n g
of t h e r e s o n a n c e o c c u r s a s l o n g a s t h e  L a n d a u f u n cti o n
h a s  m or e t h a n j u st t h e F a

0 h a r m o ni c,  w hi c h, a s  w a s  m e n-
ti o n e d i n S e c. III  B, i s al w a y s t h e c a s e f or gr a p h e n e. I n a
r e al s y st e m, t h e  wi dt h s of t h e r e s o n a n c e s i s c o nt r oll e d b y
s pi n-r el a x ati o n p r o c e s s e s.  At l o w t e m p e r at u r e s, t h e d o m-
i n a nt  m e c h a ni s m of s pi n-r el a x ati o n i s s c att eri n g b y di s-
or d er i n t h e p r e s e n c e of eit h er e xt ri n si c or i nt ri n si c S O C.
T o a c c o u nt f or t hi s e ff e ct,  w e a d d e d a d a m pi n g t er m,
− γ δ n̂ ( k , t), t o t h e ri g ht- h a n d si d e of  E q. ( 3. 4 ). I n all p a n-

el s of  Fi g. 5 , γ = 0 .0 4 λ ∗
S O C ,  w h e r e λ ∗

S O C = λ ∗ 2
R + λ ∗ 2

Z .
F o r λ ∗

R = 1 5 .0  m e V a n d λ ∗
Z = 7 .5  m e V, t h e c or r e s p o n di n g

r el a x ati o n ti m e γ − 1 = 1 p s.
H o w e v e r, el e ct r o n- el e ct r o n i nt er a cti o n i s a n e c e s s ar y

b ut n ot s u ffi ci e nt c o n diti o n f or o b s er vi n g t w o  E S R p e a k s.
A s s h o w n i n  Fi g. 5 b, t h er e i s o nl y o n e  E S R p e a k, if
o nl y o n e of t h e t w o t y p e s of S O C i s p r e s e nt. I n t hi s
c a s e, t h e s y st e m still h a s t w o n o n- d e g e n er at e ei g e n m o d e s,
b ut o n e of t h e m i s  E S R- sil e nt b e c a u s e t h e c or r e s p o n d-
i n g o s cill at or st r e n gt h v a ni s h e s.  F or e x a m pl e, if λ ∗

Z = 0
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FI G. 5.  Z e r o- fi el d el e c t r o n s pi n r e s o n a n c e ( E S R ) a n d
el e c t ri c- di p ol e s pi n r e s o n a n c e ( E D S R ) i n g r a p h e n e  wi t h
p r o xi mi t y-i n d u c e d s pi n- o r bi t c o u pli n g ( S O C ). ( a )  E S R si g n al.
Ve r ti c al a xi s: t h e i m a gi n a r y p a r t of t h e d y n a mi c al s pi n s u s-
c e p ti bili t y i n u ni t s of χ 0 , d e fi n e d i n  E q. (3. 1 5 ).  T h e f r e q u e n c y

o n t h e h o ri z o nt al a xi s i s s c al e d  wi t h λ ∗
S O C = λ ∗ 2

R + λ ∗ 2
Z ,

w h e r e λ ∗
R a n d λ ∗

Z a r e ( r e n o r m ali z e d ) c o u pli n g s of t h e  R a s h b a
a n d v all e y- Z e e m a n ( V Z ) t y p e s of S O C, r e s p e c ti v el y.  Ω ± a r e
t h e r e s o n a n c e f r e q u e n ci e s, gi v e n b y  E q s. ( 3. 1 2 a ) a n d ( 3. 1 2 b ).
D a s h e d li n e: n o n-i nt e r a c ti n g s y s t e m.  R e d s oli d li n e: a t w o-
v all e y  Fe r mi li q ui d ( F L )  wi t h p a r a m e t e r s F a

0 = − 0 .5 5 0 0,
F a

1 = − 0 .2 7 5 0, F a
2 = − 0 .1 3 7 5, H 0 = − 0 .5 0 0 0, H 1 = − 0 .2 5 0 0,

a n d H 2 = − 0 .1 2 5 0.  T h e r a ti o λ ∗
Z / λ ∗

R = 0 .5.  T h e c h oi c e of
F L p a r a m e t e r s i s t h e s a m e f o r all p a n el s of t h e fi g u r e. ( b )
E S R si g n al i n a  F L f o r s e v e r al v al u e s of λ ∗

Z / λ ∗
R , a s i n di c a t e d

i n t h e l e g e n d. ( c )  R e s o n a n c e f r e q u e n ci e s  Ω+ a n d  Ω − , gi v e n
b y  E q s. ( 3. 1 2 a ) a n d ( 3. 1 2 b ), a s a f u n c ti o n of a n gl e ϕ , d e fi n e d
i n  E q. (3. 1 7 ). ϕ =  0 ( π / 2 ) c o r r e s p o n d s λ ∗

R = 0  ( λ ∗
Z = 0 ).

( d )  O s cill a t o r s t r e n g t h s of  E S R (l ef t v e r ti c al a xi s ) a n d  E D S R
( ri g ht v e r ti c al a xi s ) p e a k s a s a f u n c ti o n of a n gl e ϕ , a s gi v e n
b y  E q s. ( 3. 1 6 ) a n d ( 3. 2 8 ), r e s p e c ti v el y. ( e )  E D S R si g n al.  Ve r-
ti c al a xi s: t h e r e al p a r t of t h e o p ti c al c o n d u c ti vi t y i n u ni t s of
σ 0 , d e fi n e d i n  E q. (3. 2 7 ).  D a s h e d li n e: n o n-i nt e r a c ti n g s y s-
t e m. S oli d li n e:  F L. (f )  E D S R si g n al i n a  F L f o r t w o v al u e s
of λ ∗

Z / λ ∗
R , a s i n di c a t e d i n t h e l e g e n d.

t h e n, a s  w e s a w i n S e c. III  B, t h e t w o ei g e n m o d e s c or-
r e s p o n d t o d e c o u pl e d o s cill ati o n s of t h e u nif or m a n d
v all e y- st a g g e r e d  m a g n eti z ati o n s.  B ut t h e f r e q u e n c y  Ω +

of t h e v all e y- st a g g er e d  m o d e f or λ ∗
Z = 0 c oi n ci d e s  wit h

Ω s i n  E q. (3. 1 6 ), a n d t h u s t h e c or r e s p o n di n g o s cill at or
st r e n gt h, W E S R

− i n (3. 1 6 ), v a ni s h e s, l e a vi n g t h e v all e y-
st a g g er e d  m o d e sil e nt.  Li k e wi s e, t h e  Ω + m o d e i s al s o
sil e nt if λ ∗

R = 0.
T h e d e p e n d e n c e of t h e r e s o n a n c e f r e q u e n ci e s o n t h e

r ati o of t h e  R a s h b a a n d  V Z c o u pli n g s i s d e m o n st r at e d i n
Fi g. 5 c.  H er e, t h e a n gl e ϕ ∈ [ 0,  π /2] i s d e fi n e d a s

c o s ϕ =
λ ∗

Z

λ ∗ 2
R + λ ∗ 2

Z

≡
λ ∗

Z

λ ∗
S O C

, ( 3. 1 7)
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FI G. 6.  R a ti o of t h e o s cill a t o r s t r e n g t h s of t h e t w o  m o d e s
f o r  E S R ( a ) a n d  E D S R ( b ) a s a f u n c ti o n of a n gl e ϕ , a s d e fi n e d
b y E q. ( 3. 1 7 ). I n b o t h p a n el s, F a

0 = − 0 .5 5  = 2 F a
1 = 4 F a

2 ,
H 0 = a F 0 = 2 H 1 = 4 H 2 .  T h e v al u e s of a a r e s h o w n i n t h e
l e g e n d.

s u c h t h at ϕ = 0 f or λ ∗
R = 0 a n d ϕ = π / 2 f or λ ∗

Z = 0.
T h e o s cill at o r str e n gt h s of t h e t w o  E S R p e a k s a s a

f u n cti o n of ϕ ar e s h o w n i n  Fi g. 5 d b y t h e s oli d bl a c k li n e s.
A s  w e s e e f r o m p a n el s ( a) a n d ( d), t h e v all e y- st a g g er e d
m o d e i s  m u c h  w e a k er t h a n t h e u nif or m- m a g n eti z ati o n
o n e: f or a p arti c ul ar c h oi c e of t h e  L a n d a u p ar a m et er s,
t h e o s cill at or st r e n gt h of t h e f or m er i s a b o ut 2 0 % of t h e
l att er.  T h e r ati o of t h e t w o o s cill at or st r e n gt h s i s q uit e
s e n siti v e t o t h e c h oi c e of  L a n d a u p ar a m et e r s, i n p arti c u-
l ar, t o t h e c o m p ar ati v e st r e n gt h of t h e i nt er a cti o n i n t h e
s pi n ( F a

m ) a n d s pi n- v all e y ( H m ) s e ct o r s. I n o u r c a s e, t h e
L a n d a u p ar a m et er s f or m a 6- di m e n si o n al s p a c e.  T o r e-
st ri ct t h e p ar a m et er s p a c e,  w e c h o o s e F a

0 = 2 F a
1 = 4 F a

2 ,
H 0 = 2 H 1 = 4 H 2 , a n d H 0 = a F a

0 wi t h 0 < a < 1, a n d
pl ot t h e r ati o W E S R

+ / W E S R
− a s a f u n cti o n of a n gl e ϕ at

fi x e d F a
0 a n d f o r s e v e r al v al u e s of a ; cf.  Fi g. 6 a.  A s  w e

s e e f r o m t h e pl ot, t h e  m a xi m u m v al u e of t h e r ati o st art s
f r o m 5 % f or a = 0 b ut i n cr e a s e s t o w ar d s 1 0 0 % a s a a p-
p r o a c h e s 1. It n e e d s t o b e k e pt i n  mi n d t h o u g h t h at t h e
1 0 0 % r ati o i s a c hi e v e d o nl y at ϕ = π / 2, i. e., at λ ∗

Z = 0,
w h e n t h e t w o  m o d e s b e c o m e d e g e n er at e. ( F or a > 1, t h e
m o d e s ar e s w a p p e d: t h e f r e q u e n c y of t h e u nif or m  m o d e
b e c o m e s  Ω + w hil e t h e f r e q u e n c y of t h e v all e y- st a g g er e d
m o d e b e c o m e s  Ω − . )

D.  Z e r o - fi el d el e c t ri c - di p ol e s pi n r e s o n a n c e i n a
F e r mi li q ui d

T h e el e ct ri c c u r r e nt i s d eri v e d i n t h e u s u al  w a y f r o m
t h e c o nti n uit y e q u ati o n f or t h e c h ar g e d e n sit y ρ =
e Tr d 2 k n̂ / ( 2 π ) 2 , s e e, e. g.  R ef s. ? ? .  F or a s p ati all y
n o n- u nif or m c a s e, t h e ki n eti c e q u ati o n r e a d s a s

∂ n̂

∂ t
+

1

2
{ ∇ k ε̂, ∇ r n̂ } −

1

2
{ ∇ r ε̂, ∇ k n̂ } + i[ ˆε, n̂ ] = 0, ( 3. 1 8)

w h e r e { â 1 , â 2 } = â 1 ·â 2 + â 2 ·â 1 , a n d ˆε a n d n̂ a r e still gi v e n
b y  E q s. ( 3. 3 a )-( 3. 3 d ) a n d ( 3. 6 a )-( 3. 6 d ), r e s p e cti v el y, e x-

c e pt f or t h at t h ei r t- d e p e n d e nt p art s n o w d e p e n d al s o o n
r .  Li n e ari zi n g  E q. (3. 1 8 )  wit h r e s p e ct t o d e vi ati o n s f r o m
e q uili b ri u m,  w e o bt ai n

∂ δ n̂ fl

∂ t
+

1

2
{ ∇ k ε̂ e q , ∇ r δ n̂ fl } −

1

2
{ ∇ r δ ε̂ L F , ∇ k n̂ e q } + i[ ˆε, n̂ ] = 0.

( 3. 1 9)
M ulti pl yi n g t h e e q u ati o n a b o v e b y − e , i nt e gr ati n g o v er
k , t a ki n g t h e t r a c e, a n d t a ki n g i nt o a c c o u nt t h at t h e
t r a c e of a n y c o m m ut at or i s e q u al t o z er o,  w e o bt ai n t h e
c o nti n uit y e q u ati o n ∂ t ρ + ∇ ·j = 0  wit h t h e c u r r e nt gi v e n
b y

j = − e Tr
d 2 p

( 2π ) 2
v̂ e q ( δ n̂ fl − n F δ ε̂ L F ) , ( 3. 2 0)

w h e r e v̂ e q = ∇ k ε̂ e q i s t h e e q uili b ri u m q u a si p arti cl e v e-
l o cit y. I n o u r c a s e, ˆε e q i s gi v e n b y  E q. (3. 3 c ) a n d, c or r e-

s p o n di n gl y, v̂ e q = τ̂ 0 ξ̂ 0 v ∗
F k̂ + v̂ S O ,  w h e r e

v̂ S O =
λ ∗

R

2 k
τ 0 ( k̂ · ŝ ) ( k̂ × ẑ ) ( 3. 2 1)

i s t h e s pi n- d e p e n d e nt p art of t h e v el o cit y.
T o d e s cri b e  E D S R,  w e a s s u m e t h at a  w e a k, u nif or m,

o s cill at or y el e ct ri c fi el d, E = E 0 e − i Ω t , i s a p pli e d i n t h e
pl a n e of t h e gr a p h e n e l a y er.  A c c or di n gl y, t h e ki n eti c
e q u ati o n t a k e s t h e f or m 2

∂ n̂ ( k , t)

∂ t
− e E · v̂ e q n F + i[ ˆε (k , t), n̂ ( k , t)]  = 0 . ( 3. 2 2)

It i s c o n v e ni e nt t o t r a c e o ut a n e q u ati o n f or t h e s c al ar
p art of δ n̂ fl i n  E q. (3. 6 c ), i. e., f or t h e f u n cti o n a (k , t):

∂ a (k , t)

∂ t
− e v ∗

F E · k̂ n F = 0 , ( 3. 2 3)

w hi c h gi v e s t h e s pi n-i n d e p e n d e nt p art of t h e c u r r e nt.
S ol vi n g f or a (k , t) a n d s u b stit uti n g t h e r e s ult i nt o
E q. ( 3. 2 0 ),  w e o bt ai n t h e  D r u d e p art of t h e c o n d u cti vit y

σ D r u d e = i
( 1  + F s

1 )

2

e 2 v ∗ 2
F ν ∗

F

Ω
. ( 3. 2 4)

P a r e nt h eti c all y,  w e n ot e t h at b e c a u s e gr a p h e n e i s n ot a
G alil e a n-i n v ari a nt s y st e m, t h e r e n or m ali z e d  m a s s, m ∗ =
k F / v ∗

F , i s n ot e x p r e s s e d e nti r el y vi a t h e p ar a m et er
F s

1 ,? ? a n d t h e  D r u d e  w ei g ht i s r e n or m ali z e d b y t h e
i nt er a cti o n.?

O u r  m ai n i nt er e st i s t h e e q u ati o n f or t h e s pi n- v all e y
p art of t h e d e n sit y  m at ri x,  w hi c h s ati s fi e s

∂ δ n̂ s v ( k , t)

∂ t
− e v̂ S O · E n F + i[ ˆε (k , t), n̂ ( k , t)] = 0, ( 3. 2 5)

w h er e v̂ S O i s gi v e n b y  E q. (3. 2 1 ).  We n o w u s e  E q s. ( 3. 3 a )-
(3. 3 d ) a n d ( 3. 6 a )-( 3. 6 d ) f or ε̂ ( k , t) a n d n̂ ( k , t), r e s p e c-
ti v el y, a n d d eri v e t h e e q u ati o n s of  m oti o n f or t h e c o m-
p o n e nt s u a n d ˆM ; s e e  A p p e n di x B f or t e c h ni c al d et ail s.
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T h e r e s o n a nt p art of t h e c urr e nt i s e x pr e s s e d vi a t h e s o-
l uti o n s of t h e s e e q u ati o n s a s

jE D S R =
e λ ∗

R ν ∗
F

2 k F

u − 1
2 − u 1

2

2 i
f + −

u − 1
3 + u 1

3

2
f − x̂ −

u − 1
2 + u 1

2

2
f + +

u − 1
3 − u 1

3

2 i
f − ŷ ,

( 3. 2 6)

w h e r e f ± ar e d e fi n e d i n E q. ( 3. 1 1 ). Fr o m E q. ( 3. 2 6 ) w e
o bt ai n f or t h e r e s o n a nt p art of t h e c o n d u cti vit y

R e σ E D S R ( Ω) = σ 0 λ ∗
S O C W E D S R

+ δ ( Ω − Ω + ) + W E D S R
− δ ( Ω − Ω − ) , w h er e σ 0 =

e 2

4

λ ∗
R

v ∗
F k F

.

( 3. 2 7)
T h e str e n gt h s of o s cill at or s f or t h e t w o m o d e s ar e f o u n d
a s W E D S R

± = ± W E D S R ( Ω ± ), w h er e

W E D S R ( Ω) = f +
Ω 2 − Ω 2

a

4 Ω 2
0

λ ∗
R

λ ∗
S O C

, a n d Ω 2
a = h + h λ ∗ 2

R +
f 2

+ − f 2
−

f +
λ ∗ 2

Z ,

( 3. 2 8)
a n d f ± , h a n d h + ar e d e fi n e d i n E q. ( 3. 1 1 ). If b ot h
R a s h b a a n d V Z t y p e s of S O C ar e pr e s e nt, a n d f or a
g e n eri c c h oi c e of t h e L a n d a u i nt er a cti o n p a r a m et er s,
t h e E D S R si g n al c o n si st s of t w o p e a k s, a s s h o w n i n
Fi g. 5 e. B e c a u s e t h e r e s o n a nt p art of t h e c o n d u cti vit y
i n E q. (3. 2 7 ) i s pr o p orti o n al t o λ ∗ 2

R , t h e E D S R si g n al i s
a b s e nt wit h o ut R a s h b a S O C a n d w e a k f or s m all λ ∗

R . T hi s
f oll o w s alr e a d y fr o m E q. (2. 1 5 ), w hi c h s h o w s t h at el e c-
t r o n s pi n s c o u pl e t o t h e el e ctri c fi el d o nl y d u e t o R a s h b a
S O C. If λ ∗

R = 0 b ut λ ∗
Z = 0, t h e n W E D S R

+ v a ni s h e s [f or
t h e s a m e c o n str ai nt s o n t h e L a n d a u p ar a m et er s d e s cri b e d
aft er E q. ( 3. 1 2 b )], a n d t h e E D S R si g n al c o n si st s of o nl y
o n e p e a k, s e e Fi g. 5 f. F or λ ∗

Z = 0, it i s al w a y s t h e s pi n
m o d e t h at i s a cti v e i n b ot h E S R a n d E D S R, w hil e t h e
s pi n- v all e y m o d e r e m ai n s sil e nt. We s e e fr o m p a n el s ( d)
a n d ( e) of Fi g. 5 , a s w ell a s fr o m p a n el ( b) i n Fi g. 6 , t h at,
i n c o ntr a st t o t h e E S R c a s e, t h e t w o E D S R p e a k s ar e of
c o m p ar a bl e a m plit u d e s f or a wi d e r a n g e of λ ∗

Z / λ ∗
R .

I V.  Di s c u s si o n a n d c o n cl u si o n s

I n t hi s p a p er, w e pr e di ct e d t h at gr a p h e n e wit h
p r o xi mit y-i n d u c e d s pi n- or bit c o u pli n g ( S O C) e x hi bit s
b ot h a z er o- fi el d el e ctr o n s pi n r e s o n a n c e ( E S R), if pr o b e d
b y a n a c m a g n eti c fi el d, a n d a z er o- fi el d el e ctri c- di p ol e
s pi n r e s o n a n c e ( E D S R), if pr o b e d b y a n i n- pl a n e a c el e c-
t ri c fi el d. T h e r e s o n a n c e fr e q u e n ci e s ar e d et er mi n e d b y
t h e c o u pli n g c o n st a nt s of s pi n- or bit i nt er a cti o n, a s w ell
a s b y Fer mi-li q ui d ( F L) i nt er a cti o n i n t h e s pi n e x c h a n g e
a n d s pi n- v all e y e x c h a n g e c h a n n el s. T h e m o st i m p ort a nt
r e s ult of o ur st u d y i s t h at, if b ot h R a s h b a a n d v all e y-
Z e e m a n ( V Z) t y p e s of S O C ar e pr e s e nt, t h e E S R a n d
E D S R si g n al s c o n si st of t w o p e a k s, w hi c h c orr e s p o n d
t o c o u pl e d o s cill ati o n s of t h e u nif or m a n d t h e v all e y-
st a g g er e d m a g n eti z ati o n s.

F or gr a p h e n e gr o w n o n h e a v y- m et al s u b str at e s a n d / or
i nt er c al at e d wit h h e a v y- m et al at o m s, o n e e x p e ct s ( a n d
d o e s o b s er v e) o nl y t h e R a s h b a-t y p e S O C. T h er ef or e, o ur

pr e di cti o n f or t hi s t y p e of s y st e m s a m o u nt s t o si n gl e E S R
a n d E D S R p e a k s at t h e s a m e fr e q u e n c y, of t h e or d er of
t h e R a s h b a s plitti n g. D e p e n di n g o n t h e s y st e m, λ R v ari e s
fr o m 1 5 t o 1 0 0 m e V,? ? ? a n d t h u s t h e r e s o n a n c e fr e-
q u e n c y str a d dl e s t h e i nt er v al fr o m T H z t o n e ar i nfr ar e d
r a n g e.

A n ot h er pr o mi si n g pl atf or m i s gr a p h e n e o n tr a n siti o n-
m et al- di c h al c o g e ni d e ( T M D) s u b str at e s. S O C i n t h e s e
s y st e m s i s al s o str o n g, w hi c h i s e vi d e n c e d b y a str o n g
r e d u cti o n i n t h e s pi n-r el a x ati o n ti m e, a s c o m p ar e d t o
gr a p h e n e o n li g ht- el e m e nt s u b str at e s.  Al s o, b e ati n g s
of S h u b ni k o v- d e H a a s ( S h d H) o s cill ati o n s o b s er v e d i n
hi g h- m o bilit y bil a y er gr a p h e n e o n W S e 2 pr o vi d e a di-
r e ct c o n fir m ati o n of b a n d s plitti n g d u e t o S O C. Fr o m
t h e s e b e ati n g s, o n e e sti m at e s t h e t ot al S O C str e n gt h t o
b e λ S O C = 1 0 − 1 5 m e V, ? w hi c h pl a c e s t h e r e s o n a n c e fr e-
q u e n c y i nt o t h e T H z r a n g e. A s t o t h e r el ati v e str e n gt h s
of t h e R a s h b a a n d V Z c o m p o n e nt s of S O C, t h e sit u ati o n
i s m or e c o ntr o v er si al. W hil e e x p eri m e nt al st u di e s of w e a k
a ntil o c ali z ati o n i n m o n ol a y er gr a p h e n e o n T M D fi n d V Z
S O C t o b e m u c h str o n g er t h a n t h e R a s h b a o n e, ? ? ? t h e
o p p o sit e c o n cl u si o n i s r e a c h e d i n, e. g., R ef s. ? ? ? ?
. O n t h e ot h er h a n d, str o n g e vi d e n c e f or R a s h b a S O C
b ei n g t h e d o mi n a nt t y p e i n bil a y er gr a p h e n e o n W S e 2

f oll o w s fr o m t h e d e p e n d e n c e of t h e s plitti n g of t h e S h d H
fr e q u e n ci e s o n t h e c arri er n u m b er d e n sit y.? At l e a st p ar-
ti all y, t h er ef or e, t hi s c o ntr a di cti o n m a y ari s e fr o m t h e
g e n ui n e di ff er e n c e b et w e e n m o n ol a y er s a m pl e s, u s e d i n
w e a k- a ntil o c ali z ati o n st u di e s of R ef s. ? ? ? , a n d bi-
l a y er s a m pl e s, u s e d i n S h d H st u di e s of R ef. ? . Wit h o ut
g etti n g d e e p er i nt o t hi s di s c u s si o n, w e e m p h a si z e t h at
t h e r e s ult s of o ur p a p er c a n b e u s e d a s a n i n d e p e n d e nt
t e st f or t h e d o mi n a nt t y p e of S O C. I n d e e d, t h e c o u pli n g
b et w e e n t h e el e ctri c fi el d a n d el e ctr o n s pi n s i s p o s si bl e
o nl y d u e t o R a s h b a S O C, s e e E q. ( 2. 1 5 ). T h er ef or e, if
t h e e x p eri m e nt s h o w s n o E D S R si g n al, w hil e t h e E S R
si g n al c o nt ai n s o nl y a si n gl e p e a k, t hi s w o ul d b e a cl e ar
i n di c ati o n t h at V Z S O C i s t h e d o mi n a nt m e c h a ni s m. O n
t h e c o ntr ar y, if si n gl e p e a k s ( at t h e s a m e fr e q u e n c y) ar e
o b s er v e d b ot h b y E D S R a n d E S R, t hi s w o ul d i n di c at e
t h at R a s h b a S O C i s t h e d o mi n a nt m e c h a ni s m. Fi n all y,
if b ot h E S R a n d E D S R si g n al s ar e s plit i nt o t w o p e a k s,
t hi s w o ul d i n di c at e t h at t h e R a s h b a a n d V Z t y p e s of S O C
ar e of c o m p ar a bl e str e n gt h. A q u a ntit ati v e a n al y si s of
t h e si g n al s h a p e s h o ul d all o w o n e n ot o nl y t o o bt ai n t h e
s pi n- or bit c o u pli n g c o n st a nt s (r e n or m ali z e d b y t h e i nt er-
a cti o n), b ut al s o t o e xtr a ct u p t o si x F L p ar a m et er s i n
t h e m = 0 , 1 , 2 a n g ul ar m o m e nt u m c h a n n el s, w hi c h ar e
h ar d, if at all p o s si bl e, t o b e e xtr a ct e d fr o m ot h er t y p e s
of m e a s ur e m e nt s.

Fr o m t h e e x p eri m e nt al p oi nt of vi e w, t h e m ai n i s s u e
i s h o w str o n gl y E S R a n d E D S R p e a k s ar e s m e ar e d b y
s pi n-r el a x ati o n m e c h a ni s m s, w hi c h ari s e m o stl y fr o m i m-
p urit y s c att eri n g i n t h e pr e s e n c e of S O C. T h er e ar e t hr e e
m ai n t y p e s of s pi n r el a x ati o n: i) M ott-li k e s c att eri n g
fr o m h e a v y i m p uriti e s, w hi c h o c c ur s f or a n y ki n d of t h e
b a n d str u ct ur e; ii) Elli ott- Y af et m e c h a ni s m, w hi c h o c c ur s
if S O C a ff e ct s t h e b a n d str u ct ur e b ut i n v er si o n s y m m e-
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t r y i s pr e s er v e d, a n d iii) D’ y a k o n o v- P er el m e c h a ni s m,
w hi c h o c c ur s if S O C a ff e ct s t h e b a n d str u ct ur e a n d i n-
v er si o n s y m m etr y i s br o k e n. T h e c o ntri b uti o n of t h e
fi r st t w o m e c h a ni s m s t o t h e s pi n-r el a x ati o n r at e τ − 1

S O i s
i n v er s el y pr o p orti o n al t o t h e m o m e nt u m r el a x ati o n ti m e
(τ p ), w h er e a s t h e D’ y a k o n o v- P er el c o ntri b uti o n i s li n e arl y

p r o p orti o n al t o τ p . A n al y zi n g t h e d e p e n d e n c e of τ − 1
S O

o n τ p , o n e c a n s e p ar at e t h e M ott a n d Elli ott- Y af et c o n-
t ri b uti o n s fr o m t h e D’ y a k o n o v- P er el o n e. 3 F or gr a p h e n e
o n T M D, b ot h R a s h b a a n d V Z t y p e s of S O C c o ntri b ut e
t o t h e D’ y a k o n o v- P er el m e c h a ni s m, wit h V Z c o ntri b u-
ti o n b ei n g pr o p orti o n al t o t h e i nt er v all e y s c att eri n g ti m e
r at h er t h a n t o τ p .? T h e r e s ult s of s u c h a n a n al y si s di ff er
f r o m st u d y t o st u d y, w hi c h i n di c at e s t h at s pi n r el a x ati o n
i s s a m pl e- d e p e n d e nt. F or e x a m pl e, R ef. ? d o e s n ot fi n d
a n y c orr el ati o n b et w e e n τ S O a n d τ p ; R ef. ? fi n d s t h at
t h e D’ y a k o n o v- P er el m e c h a ni s m i s t h e d o mi n a nt o n e; fi-
n all y, R ef. ? ? fi n d t h at t h e M ott a n d / or Elli ott-
Y af et m e c h a ni s m s ar e t h e d o mi n a nt o n e. T o b e s p e ci fi c,
w e a d o pt t h e l a st s c e n ari o, i n w hi c h c a s e R a s h b a a n d
V Z t y p e s of S O C d et er mi n e t h e p o siti o n s of t h e E S R
a n d E D S R p e a k s, w hil e t h eir wi dt h s ar e c o ntr oll e d b y
t h e M ott a n d / or Elli ott- Y af et m e c h a ni s m s. T h e m o st
dir e ct e sti m at e f or t h e str e n gt h of i n v er si o n- s y m m etr y-
b r o k e n S O C f oll o w s fr o m b e ati n g of S h d H o s cill ati o n s,
cit e d a b o v e. O n t h e ot h er h a n d, R ef s. ? ? i d e n-
tif y t w o di sti n ct gr o u p s of gr a p h e n e / T M D s y st e m s: wit h
τ − 1

S O ∼ 0 .1 − 1 m e V a n d wit h τ − 1
S O > 1 0 m e V, r e s p e c-

ti v el y. T h e fir st gr o u p c o nt ai n s gr a p h e n e o n m o n ol a y er
W S 2 a n d o n b ul k W S e 2 , w hil e t h e s e c o n d gr o u p c o nt ai n s
g r a p h e n e o n m o n ol a y e r M o S 2 a n d b ul k W S 2 . Gi v e n t h at
λ S O C ∼ 1 0 − 1 5 m e V, ? ? t h e q u alit y f a ct or f or a r e s o-
n a n c e o n s a m pl e s fr o m t h e fir st gr o u p c a n b e a s hi g h a s
1 0 0.

B ot h E S R a n d E D S R t e c h ni q u e s h a v e t h eir pr o s a n d
c o n s. R e si sti v el y d et e ct e d E S R ( R D E S R) h a s b e e n o b-
s er v e d i n gr a p h e n e wit h i ntri n si c ( K a n e- M el e) S O C. ?

F or m a g n eti c fi el d s u p t o 1 T a n d wit h a g -f a ct or of
≈ 2 f or gr a p h e n e, w e g et g µ B B 0 .1 m e V. T hi s i s still
s m all c o m p ar e d t o t y pi c al λ R ,Z s o t h at o n e c a n c o n si d er
R D E S R a s a vi a bl e t e c h ni q u e f or o b s er vi n g t h e z er o-
fi el d E S R pr e di ct e d i n t hi s p a p er. O n t h e ot h er h a n d,
o ur m o d el pr e di ct s t h at t h e a m plit u d e of t h e Ω + - m o d e
( w hi c h b e c o m e s t h e s pi n- v all e y m o d e at λ ∗

Z → 0) c a n b e
si g ni fi c a ntl y s m all er t h a n t h e a m plit u d e of t h e Ω − p e a k
( w hi c h b e c o m e s t h e s pi n m o d e at λ ∗

Z → 0), s e e Fi g. 6 .
T hi s m a y hi n d er t h e o b s er v ati o n of b ot h m o d e s plitti n g
b y E S R. T ur ni n g n o w t o E D S R, o n c e R a s h b a S O C i s
p r e s e nt, t h e i nt e n sit y of t h e E D S R si g n al e x c e e d s t h at of
t h e E S R si g n al b y m a n y or d er s of m a g nit u d e, ? ? ? ? ? ?

w hi c h w a s cl e arl y d e m o n str at e d b y e x p eri m e nt s o n 2 D
q u a nt u m w ell s; s e e, e. g., R ef. ? . O n t h e ot h er h a n d,
w hil e t h e E D S R si g n al i s str o n g, it o c c ur s o n t o p of
t h e Dr u d e t ail of t h e o pti c al c o n d u cti vit y. Gi v e n a v er y
li g ht e ff e cti v e m a s s of c h ar g e c arri er s i n gr a p h e n e, t h e
t r a n s p ort r el a x ati o n ti m e s ar e r at h er s h ort, o n t h e or-
d er of a pi c o s e c o n d, e v e n i n t h e hi g h e st m o bilit y s a m-
pl e s. F or a r o u g h e sti m at e, w e r e pl a c e t h e δ -f u n cti o n s i n

E q. ( 3. 2 7 ) b y L or e nt zi a n s of wi dt h τ − 1
S O , t a k e t h e b e st-

c a s e s c e n ari o, w h e n R a s h b a a n d V Z t y p e s of S O C ar e of
c o m p ar a bl e str e n gt h, i. e., λ ∗

R ∼ λ ∗
Z ∼ λ ∗

S O C , a s s u m e t h at
λ ∗

S O C τ p 1, a n d al s o r e pl a c e all t h e F L p ar a m et er s b y
n u m b er s of or d er o n e. T h e n t h e a m plit u d e of t h e E D S R
p e a k c a n b e e sti m at e d a s R e σ E D S R ∼ e 2 λ 2

S O C τ S O / µ ,
w h er e a s t h e Dr u d e t ail at t h e r e s o n a n c e fr e q u e n c y i s r e-
d u c e d t o R e σ D r u d e ∼ e 2 µ / λ 2

S O C τ p . F or t h e r ati o of t h e
t w o p art s of t h e c o n d u cti vit y w e o bt ai n

R e σ E D S R / R e σ D r u d e ∼
λ S O C

µ

2

λ 2
S O C τ S O τ p . ( 4. 1)

F or λ S O C / µ ∼ 0 .1, λ S O C ∼ 1 0 m e V, τ − 1
S O ∼ 0 .1 m e V, a n d

τ − 1
p ∼ 1 p s − 1 ∼ 1 m e V, w e fi n d R e σ E D S R / R e σ D r u d e ∼ 1 0,

a n d t h u s i n t hi s c a s e t h e E D S R p e a k s h o ul d b e di sti n-
g ui s h a bl e a g ai n st t h e Dr u d e b a c k gr o u n d. N e xt, w e c o n-
si d er t h e w or st- c a s e s c e n ari o, w h e n R a s h b a S O C i s m u c h
w e a k e r t h a n V Z o n e. I n t hi s c a s e, t h e E D S R fr e q u e n ci e s
a n d t h e fr e q u e n c y Ω a i n E q (3. 2 8 ) ar e of or d er of λ ∗

Z ,
w hil e λ ∗

R o nl y e nt er s a s a n o v er all f a ct or of t h e c o n d u c-
ti vit y i n E q ( 3. 2 7 ). I n t hi s c a s e, E q. ( 4. 1 ) i s r e pl a c e d
b y

R e σ E D S R / R e σ D r u d e ∼
λ R

λ Z

2
λ Z

µ

2

λ 2
Z τ S O τ p . ( 4. 2)

F or λ R / λ Z = 0 .1, λ Z / µ = 0 .1, λ Z = 1 0 m e V,
a n d t h e s a m e τ − 1

S O a n d τ − 1
p a s a b o v e,  w e fi n d

R e σ E D S R / R e σ D r u d e ∼ 1 0 − 2 , w hi c h m a k e s t h e o b s er v a-
ti o n of t h e E D S R p e a k c h all e n gi n g. T h er ef or e, t h e o pti-
m al c o n diti o n f or o b s er vi n g t h e E D S R p e a k i s λ R λ Z .

A c k n o wl e d g m e n t s

We t h a n k H. B o u c hi at, C. R. B o w er s, L. Gl a z m a n, A.
G o y al, S. G u er o n, L. L e vit o v, Z. R ai n e s, P. S h ar m a, a n d
T. W a k a m ur a f or sti m ul ati n g di s c u s si o n s, a n d A. M a c-
d o n al d f or bri n gi n g R ef. ? t o o ur att e nti o n. T hi s w or k
w a s s u p p ort e d b y t h e N ati o n al S ci e n c e F o u n d ati o n u n d er
Gr a nt N o. N S F D M R- 1 7 2 0 8 1 6 ( A. K. a n d D. L. M.), U ni-
v er sit y of Fl ori d a u n d e r O p p ort u nit y F u n d O R- D R P D-
R O F 2 0 1 7 ( A. K. a n d D. L. M.), a n d t h e N at ur al S ci e n c e s
a n d E n gi n e eri n g R e s e ar c h C o u n cil of C a n a d a ( N S E R C)
Gr a nt N o. R G PI N- 2 0 1 9- 0 5 4 8 6 ( S. M.). D. L. M. a c k n o wl-
e d g e s t h e h o s pit alit y of t h e K a vli I n stit ut e f or T h e or et-
i c al P h y si c s, S a nt a B ar b ar a, C alif or ni a a n d of L a b or a-
t oir e d e P h y si q u e d e s S oli d e s, U ni v er sit y P ari s- S u d, Or-
s a y, Fr a n c e. T h e K a vli I n stit ut e f or T h e or eti c al P h y si c s
i s s u p p ort e d b y t h e N ati o n al S ci e n c e F o u n d ati o n u n d er
Gr a nt N o. N S F P H Y- 1 7 4 8 9 5 8.
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A.  El e c t r o n s pi n a n d el e c t ri c - di p ol e s pi n
r e s o n a n c e s f o r n o n -i n t e r a c ti n g el e c t r o n s

1.  D e fi ni ti o n s

It will b e u s ef ul t o i ntr o d u c e a c o m pl et e s et of si x-
t e e n 4 × 4 m atri c e s d e fi n e d a s κ̂ a b = s a σ b , w h er e a, b ∈
0 , x, y, z, wit h t h e c o n v e nti o n t h at

κ̂ x 0 =
0 σ 0

σ 0 0
, κ̂ y 0 =

0 − i σ0

i σ0 0
, κ̂ z 0 =

σ 0 0
0 − σ 0

a n d

κ̂ 0 x =
σ x 0
0 σ x

, κ̂ 0 y =
σ y 0
0 σ y

, κ̂ 0 z =
σ z 0
0 σ z

.

T h e H a milt o ni a n i n t h e s u bl atti c e b a si s, e x pr e s s e d i n
t er m s of κ̂ a b , r e a d s

ˆH 0 = v F (τ z κ̂ 0 x k x + κ̂ 0 y k y ) +
λ R

2
(τ z κ̂ y x − κ̂ x y ) +

λ Z

2
τ z κ z 0 .

( A 1)

2.  G r e e n’ s f u n c ti o n s

T h e si n gl e- p arti cl e Gr e e n’ s f u n cti o n f or t h e c a s e of
R a s h b a S O C i s e v al u at e d a s

Ĝ 0 (i ωm , k ) =
α, β

|α β α β |

i ωm + µ − ε α β (k )
, ( A 2)

w h er e ω m i s t h e M at s u b ar a fr e q u e n c y. E x pli citl y,

Ĝ 0 (i ωm , k ) =
α, β

Ω̂ α, β (k )g α, β (i ωm , k), ( A 3)

w h er e

Ω̂ α, β (k ) =
1

4
κ̂ 0 0 +

1 − ( α β ) 2

1 + ( α β ) 2
τ z κ̂ z z +

2 α β

1 + ( α β ) 2
(τ z κ̂ 0 x c o s θ + κ̂ 0 y si n θ ) − 2 α β

α β

1 + ( α β ) 2
( κ̂ x 0 si n θ − κ̂ y 0 c o s θ )

+ α β
( α β ) 2

1 + ( α β ) 2
(τ z κ̂ y x − κ̂ x y ) − α β

1

1 + ( α β ) 2
si n 2 θ (τ z κ̂ x x − κ̂ z z ) + α β

1

1 + ( α β ) 2
c o s 2 θ (τ z κ̂ y x + κ̂ x y ) ,

( A 4)

g α, β (i ωm , k) =
1

i ωm + µ − ε α β (k )
, ( A 5)

w h er e α β ar e t h e di m e n si o nl e s s ei g e n v al u e s d e fi n e d i n
E q. ( 2. 3 ) a n d all n ot ati o n s ar e t h e s a m e a s i n S e c. II B of
t h e m ai n t e xt. T h e si n gl e- p arti cl e Gr e e n’ s f u n cti o n f or
t h e c a s e of V Z S O C i s gi v e n b y

Ĝ 0 (i ωm , k ) =
α, β

Ω̂ α β (k )
1

i ωm + µ − ε α β (k )
,

Ω̂ α β (k ) =
1

4
( κ̂ 0 0 + α β τ z κ̂ z 0 ) + α (τ z κ̂ 0 x c o s θ + κ̂ 0 y si n θ ) + β ( κ̂ z x c o s θ + τ z κ̂ z y si n θ ) ,

( A 6)

w h er e t h e ei g e n v al u e s ε α β (k ) ar e gi v e n b y E q. ( 2. 8 ).

3.  C o r r el a ti o n f u n c ti o n s

U si n g t h e Gr e e n’ s f u n cti o n s pr e s e nt e d i n S e c. A 2 , o n e
c a n c al c ul at e t h e c orr el ati o n f u n cti o n s of s pi n s a n d c ur-
r e nt s, et c. wit h t h e h el p of t h e K u b o f or m ul a. It i s
c o n v e ni e nt t o s e p ar at e o ut t h e c o ntri b uti o n s fr o m t h e K
a n d K p oi nt s. T o t hi s e n d, w e i ntr o d u c e t h e c orr el ati o n
f u n cti o n s i n t h e M at s u b ar a d o m ai n:

Π
K / K
X a X b

(iΩ n ) = T
ω n

k ∈ K / K

d 2 k

( 2π ) 2
Tr ˆX a Ĝ 0 (i ωm , k ) ˆX b Ĝ

0 (iΩ n + i ωm , k ) ,

( A 7)

w h er e a, b ∈ { x, y, z } . T h e m atri x ˆX a d e n ot e s t h e a t h

C art e si a n c o m p o n e nt of eit h er t h e s pi n Ŝ a = τ̂ 0 ŝ a or c ur-
r e nt ˆJ a = e v̂ a o p er at or s, w h er e v̂ i s t h e v el o cit y o p er at or
gi v e n b y E q. ( 2. 6 ). A n y c orr el ati o n f u n cti o n i s t h e s u m
of t h e c o ntri b uti o n s fr o m t h e K a n d K p oi nt s.

a. S pi n s u s c e pti bilit y

T h e s pi n s u s c e pti bilit y t e n s or c a n b e e x pr e s s e d a s

χ a b (iΩ n ) = −
g 2 µ 2

B

4
Π K

S a S b
(iΩ n ) + Π K

S a S b
(iΩ n ) . ( A 8)

If o nl y R a s h b a S O C i s pr e s e nt, w e fi n d

Π
K / K
S x S x

(iΩ n ) = Π
K / K
S y S y

(iΩ n ) = −
ν F

4

λ 2
R

Ω 2
n + λ 2

R

−
λ 2

R

8 iΩ n µ
l n

2 µ + λ R − iΩ n

2 µ + λ R + iΩ n
−

λ 2
R

8 iΩ n µ
l n

2 µ − λ R − iΩ n

2 µ − λ R + iΩ n
,

Π
K / K
S z S z

(iΩ n ) = −
ν F

4

2 λ 2
R

Ω 2
n + λ 2

R

+
iΩ n λ 2

R

2 µ ( Ω 2
n + λ 2

R )
l n

2 µ − iΩ n

2 µ + iΩ n
, ( A 9)

w h er e ν F = 2 µ / π v 2
F t h e t ot al d e n sit y of st at e s at t h e

Fer mi s urf a c e. U p o n a n al yti c c o nti n u ati o n, a n d a d di n g
t h e K / K c o ntri b uti o n s w e o bt ai n (f or T = 0 a n d µ >
λ R ):

I mχ x x ( Ω) = I m χ y y ( Ω) =
g 2 µ 2

B π ν F

1 6
λ R δ ( Ω − λ R ) +

λ 2
R

4 Ω µ
Θ ( Ω − 2 µ − λ R ) + Θ ( Ω − 2 µ + λ R ) ,

I mχ z z ( Ω) =
g 2 µ 2

B π ν F

1 6
λ R 2 −

λ R

2 µ
l n

2 µ + λ R

2 µ − λ R
δ ( Ω − λ R ) +

Ω λ 2
R

µ ( Ω 2 − λ 2
R )

Θ ( Ω − 2 µ ) ,

( A 1 0)

A s di s c u s s e d i n S e c. II B, t h e s el e cti o n r ul e s i n di c at e t h at
t h er e s h o ul d b e a r e s o n a n c e at Ω = λ R , w hi c h ari s e s
fr o m t h e tr a n siti o n s b et w e e n t h e s pi n- s plit br a n c h e s of
t h e c o n d u cti o n b a n d, a n d al s o c o nti n u a of e x cit ati o n s,
st arti n g at Ω = 2 µ ± λ R (f or t h e i n- pl a n e m a g n eti c fi el d)
a n d Ω = 2 µ (f or t h e o ut- of- pl a n e m a g n eti c fi el d), d u e t o
tr a n siti o n s b et w e e n t h e s pi n- s plit br a n c h e s of t h e c o n d u c-
ti o n a n d v al e n c e b a n d s. All of t h e s e f e at ur e s ar e cl e arl y
pr e s e nt i n E q. ( A 1 0 ).

A si mil ar c al c ul ati o n f or V Z S O C gi v e s:

Π
K / K
S x S x

(iΩ n ) = Π
K / K
S y S y

(iΩ n ) = −
ν F

4

2 λ 2
Z

Ω 2
n + λ 2

Z

,( A 1 1)

Π
K / K
S z S z

(iΩ n ) = 0 . ( A 1 2)
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I n r e al fr e q u e n ci e s a n d o n a d di n g t h e K a n d K c o ntri-
b uti o n s, w e g et

I mχ x x ( Ω) = I m χ y y ( Ω) =
g 2 µ 2

B π ν F

1 6
λ Z δ ( Ω − λ Z ), I mχ z z ( Ω) = 0 .

( A 1 3)
I n a gr e e m e nt wit h t h e s el e cti o n r ul e s di s c u s s e d i n
S e c. II C, o nl y t h e r e s o n a n c e at Ω = λ Z i s pr e s e nt.

T h e s pi n s u s c e pti biliti e s f or b ot h t y p e s of S O C s ar e
pl ott e d i n Fi g. 2 of t h e m ai n t e xt.

b.  O pti c al c o n d u cti vit y

T h e r e al p art of o pti c al c o n d u cti vit y i s r el at e d t o t h e
c urr e nt- c urr e nt c orr el ati o n f u n cti o n vi a

R e σ x x ( Ω) = −
v 2

F

Ω
[I m ΠKJ x J x

( Ω) + I m Π K
J x J x

( Ω)] , ( A 1 4)

w h er e I m Π
K / K
J x J x

( Ω) i s o bt ai n e d b y a n al yti c c o nti n u ati o n

of Π
K / K
J x J x

(iΩ n ). F or t h e c a s e of R a s h b a S O C, w e g et

Π
K / K
P x P x

(iΩ n ) = −
e 2 µ

2 π v 2
F

Λ

2 µ
− 1 −

iΩ n

4 µ
l n

2 µ − iΩ n

2 µ + iΩ n
−

λ 2
R

8 iΩ n µ
l n

( 2µ + λ R − iΩ n )( 2 µ − λ R − iΩ n )

( 2µ + λ R + iΩ n )( 2 µ − λ R + iΩ n )

+
iΩ n λ 2

R

4 µ ( Ω 2
n + λ 2

R )
l n

2 µ + iΩ n

2 µ − iΩ n
, ( A 1 5)

w h er e Λ i s t h e ultr a vi ol et e n er g y- c ut o ff of t h e Dir a c s p e c-
t r u m. T hi s r e s ult s i n

R e σ x x ( Ω) =
e 2

8
λ R δ ( Ω − λ R ) l n

2 µ + λ R

2 µ − λ R
+

2( Ω 2 − 2 λ 2
R )

Ω 2 − λ 2
R

Θ ( Ω − 2 µ )

+
λ 2

R

Ω 2
Θ ( Ω − 2 µ − λ R ) + Θ ( Ω − 2 µ + λ R ) .( A 1 6)

B y r ot ati o n al s y m m etr y, σ x x ( Ω) = σ y y ( Ω). I n a gr e e m e nt
wit h t h e s el e cti o n r ul e s, t h e o pti c al c o n d u cti vit y e x hi bit s
a r e s o n a n c e at Ω = λ R a n d c o nti n u a st arti n g at Ω =
2 µ ± λ R , 2 µ . F or λ R = 0, t h e l a st e q u ati o n i s r e d u c e d
t o t h e u ni v e r s al c o n d u cti vit y of i d e al gr a p h e n e e q u al t o
(e 2 / 4) Θ( Ω − 2 µ ).

F or V Z S O C,

Π
K / K
P x P x

(iΩ n ) = −
e 2 µ

2 π v 2
F

Λ

2 µ
− 1 −

iΩ n

8 µ
l n

2 µ + λ Z − iΩ n

2 µ + λ Z + iΩ n
−

iΩ n

8 µ
l n

2 µ − λ Z − iΩ n

2 µ + λ Z − iΩ n
,

( A 1 7)
a n d t h e r e s ulti n g o pti c al c o n d u cti vit y i s

R e σ x x ( Ω) = R e σ y y ( Ω) =
e 2

8
Θ( Ω − 2 µ − λ Z ) + Θ( Ω − 2 µ + λ Z ) .( A 1 8)

I n c o ntr a st t o t h e c a s e of R a s h b a S O C, t h er e i s n o r e s o-
n a n c e at Ω = λ Z b ut o nl y c o nti n u a at Ω = 2 µ ± λ Z . F or
λ Z = 0, t h e l a st e q u ati o n i s a g ai n r e d u c e d t o t h e u ni-
v er s al c o n d u cti vit y of i d e al gr a p h e n e. T h e c o n d u cti viti e s
f or b ot h t y p e s of S O C ar e pl ott e d i n Fi g. 3 of t h e m ai n
t e xt.

B.  E q u a ti o n s of m o ti o n

I n t hi s a p p e n di x, w e pr o vi d e t e c h ni c al d et ail s of t h e
d eri v ati o n a n d s ol uti o n of t h e e q u ati o n s of m oti o n f or
d e n sit y m atri x. We f oll o w t h e pr o c e d ur e of R ef s. ? ?
? t o o bt ai n t h e s y st e m of e q u ati o n s f or t h e d y n a mi c al
v ari a bl e s u (k , t), w (k , t), a n d M α β (k , t), p ar a m etri zi n g
t h e s pi n- v all e y p art of d e n sit y m atri x ( 3. 6 d ). We al s o i n-
cl u d e a n a c m a g n eti c fi el d, a p pli e d al o n g y - dir e cti o n, i n
o ur c al c ul ati o n. T hi s c orr e s p o n d s t o a d di n g t h e (ti m e-
d e p e n d e nt) Z e e m a n t er m, δ ε̂ B = ∆ ∗

Z ŝ y / 2, t o E q. ( 3. 3 a ).
Fr o m h er e a n d o n w ar d s, w e will b e s u p pr e s si n g t h e u nit y
m atri c e s i n t h e s pi n a n d v all e y s p a c e s f or br e vit y. S u b-
stit uti n g δ ε̂ ( k ) a n d δ n̂ ( k ) f r o m E q s. ( 3. 3 a )-(3. 3 d ) a n d
(3. 6 a )-( 3. 6 d ), r e s p e cti v el y, i nt o E q. ( 3. 4 ), a n d li n e ari zi n g
wit h r e s p e ct t o u , w , M α β a n d ∆ Z , w e o bt ai n a n e q u ati o n
f or t h e s pi n- v all e y p art of t h e d e n sit y m atri x:

i ∂t (u · ξ̂ + w · τ̂ + M α β τ̂ α ξ̂ β ) = δ ε̂ S O , u · ξ̂ + w · τ̂ + M α β τ̂ α ξ̂ β + δ ε̂ B , δε̂ S O

+ δ ε̂ S O ,
1

4
Tr

d θ

2 π
( ŝ · ŝ ) F a (ϑ ) + ( τ̂ · τ̂ ) G a (ϑ ) + ( τ̂ · τ̂ ) ( ŝ · ŝ ) H ( ϑ )

× τ̂ 0 (u · ξ̂ ) + w · τ̂ + M α β τ̂ α ξ̂ β ,

( B 1)

w h er e δ ε̂ S O ≡ δ ε̂ S O (k ) i s gi v e n b y E q. ( 3. 3 c ),
{ u , w , Mα β }  ≡ { u (θ, t ), w (θ, t ), Mα β (θ, t )} ,
{ u , w , Mα β }  ≡ { u (θ , t), w (θ , t), Mα β (θ , t)} , a n d

ϑ = θ − θ . T h e fir st, s e c o n d a n d t hir d t er m s o n t h e
R H S of E q. ( B 1 ) c a n b e writt e n a s

Fir st t er m = −
λ ∗

R

2
ξ̂ 3 −

λ ∗
Z

2
τ̂ z ξ̂ 1 , u · ξ̂ + w · τ̂ + M α β τ̂ α ξ̂ β

= − i λ∗
R ξ̂ 2 u 1 − ξ̂ 1 u 2 + M α β τ̂ α 3 β γ ξ̂ γ

− i λ∗
Z τ̂ z ξ̂ 3 u 2 − τ̂ z ξ̂ 2 u 3 + τ̂ y ξ̂ 1 w 1 − τ̂ 1 ξ̂ 1 w 2 + M α β τ̂ z τ̂ α 1 β γ ξ̂ γ + M α β 3 α γ τ̂ γ ξ̂ β ξ̂ 1 ,

( B 2 a)

S e c o n d t er m =
∆ Z

2
ξ̂ 2 si n θ − ξ̂ 3 c o s θ, −

λ ∗
R

2
ξ̂ 3 −

λ ∗
Z

2
τ̂ z ξ̂ 1

= − i λ∗
R

∆ Z

2
ξ̂ 1 si n θ + i λ∗

Z

∆ Z

2
e − i Ω t τ̂ z ( ξ̂ 3 si n θ + ξ̂ 2 c o s θ ),

( B 2 b)

T hir d t er m = −
λ ∗

R

2
ξ̂ 3 −

λ ∗
Z

2
τ̂ z ξ̂ 1 ,

d θ

2 π
(u · ξ̂ ) F a (ϑ ) + ( w · τ̂ ) G a (ϑ ) + M α β τ̂ α ξ̂ β H (ϑ )

= − i λ∗
R

d θ

2 π
u 1 ξ̂ 2 − u 2 c o s( ϑ ) ξ̂ 1 + u 3 si n( ϑ ) ξ̂ 1 F a (ϑ )

+ M α 1 τ̂ α ξ̂ 2 − M α 2 c o s( ϑ ) τ̂ α ξ̂ 1 + M α 3 si n( ϑ ) τ̂ α ξ̂ 1 H (ϑ )

− i λ∗
Z

d θ

2 π
(u 2 c o s( ϑ ) − u 3 si n( ϑ )) τ̂ z ξ̂ 3 − (u 2 si n( ϑ ) + u 3 c o s( ϑ )) τ̂ z ξ̂ 2 F a (ϑ )

+ ( w 1 τ̂ y ξ̂ 1 − w 2 τ̂ x ξ̂ 1 )G a (ϑ ) +
M α β

2 i
τ̂ z τ̂ α [ξ̂ 1 , ξ̂ β ] + M α β 3 α γ τ̂ γ ξ̂ β ξ̂ 1 H (ϑ ) ,

( B 2 c)
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w h er e α β γ i s t h e L e vi- Ci vit a s y m b ol.  At t h e n e xt
st e p, w e e x p a n d { u , w , Mα β } (θ, t ) a n d { F a , Ga , H} (θ )
o v er a b a si s of a n g ul ar h ar m o ni c s, { u , w , Mα β } (θ, t ) =

m e i m θ { u ( m ) , w ( m ) , M
( m )
α β } (t) a n d { F a , Ga , H} (θ ) =

m e i m θ { F a
m , Gam , Hm } , t o o bt ai n a s y st e m of e q u ati o n s

f or u
( m )
i , w

( m )
i a n d M

( m )
α β . T h e s u b s et of e q u ati o n s t h at

c o u pl e s t o a n a c m a g n eti c fi el d r e a d s

u̇
( m )
1 = λ ∗

R f
( m )
+ u

( m )
2 + i f

( m )
− u

( m )
3 −

∆ ∗
Z λ ∗

R

2

δ m, 1 − δ m, − 1

2 i
,

u̇
( m )
2 = − λ ∗

R f ( m ) u
( m )
1 + λ ∗

Z h
( m )
+ M

( m )
3 3 − i h

( m )
− M

( m )
3 2 ,

u̇
( m )
3 = − λ ∗

Z h
( m )
+ M

( m )
3 2 + i h

( m )
− M

( m )
3 3 ,

˙M
( m )
3 1 = λ ∗

R h
( m )
+ M

( m )
3 2 + i h

( m )
− M

( m )
3 3 ,

˙M
( m )
3 2 = − λ ∗

R h ( m ) M
( m )
3 1 + λ ∗

Z f
( m )
+ u

( m )
3 − i f

( m )
− u

( m )
2 +

∆ ∗
Z λ ∗

Z

2

δ m, 1 + δ m, − 1

2
,

˙M
( m )
3 3 = − λ ∗

Z f
( m )
+ u

( m )
2 + i f

( m )
− u

( m )
3 +

∆ ∗
Z λ ∗

Z

2

δ m, 1 − δ m, − 1

2 i
,

( B 3)

w h er e, f or br e vit y, w e i ntr o d u c e d f ( m ) ≡ 1 + F a
m a n d

f
( m )
± ≡ 1 + ( F a

m − 1 ± F a
m + 1 )/ 2, a n d si mil ar d e fi niti o n s f or

h ( m ) a n d h
( m )
± .

I n t h e a b s e n c e of t h e e xt er n al m a g n eti c fi el d ( ∆ ∗
Z =

0), w e o bt ai n a 6 × 6 ei g e n s y st e m f or t h e fr e q u e n ci e s
of c o u pl e d o s cill ati o n s i n t h e s pi n a n d v all e y- st a g g er e d
s pi n c h a n n el s. Si n c e t h e dri vi n g t e r m c o nt ai n s o nl y t h e
m = ± 1 h ar m o ni c s, o nl y t h e m = ± 1 m o d e s c a n b e
e x cit e d. N oti n g t h at F a

− m = F a
m ( a n d t h e s a m e f or H ),

w e o nl y n e e d t o s ol v e t h e s y st e m f or o n e of t h e m o d e s,
e. g., m = 1. T h e m = − 1 m o d e i s o bt ai n e d fr o m t h e m =
1 b y c h a n gi n g i → − i. F or t h e s p e ci al c a s e of λ ∗

Z = 0,
w h e n t h e s pi n a n d s pi n- v all e y s e ct or s ar e d e c o u pl e d, w e
r e c o v e r E q s. ( 3. 1 0 a ) a n d ( 3. 1 0 b ) of t h e m ai n t e xt. T h e
f ull r e s ult f or t h e fr e q u e n ci e s of t h e m = ± 1 m o d e s ar e
gi v e n i n E q. ( 3. 1 2 a ) a n d ( 3. 1 2 b ) of t h e m ai n t e xt. We s e e
t h at t h e d y n a mi c s of t h e m = ± 1 m o d e s i s c o ntr oll e d b y
si x L a n d a u p ar a m et er s: F a

0 ,1 ,2 a n d H 0 ,1 ,2 .
I n E D S R, t h e s y st e m i s p ert ur b e d b y a w e a k, o s cill a-

t or y, i n- pl a n e el e ctri c fi el d. T h e e q u ati o n s of m oti o n ar e
t h e s a m e a s i n E q. ( B 3 ), e x c e pt f or n o w t h e ∆ ∗

Z t er m s

i n e q u ati o n s f or u̇
( m )
1 , ˙M

( m )
3 2 , a n d ˙M

( m )
3 3 ar e a b s e nt, w hil e

t h e e q u ati o n f or u̇
( m )
2 a c q uir e s a dri vi n g t er m

−
e λ ∗

R

2 k
E x

δ m, 1 − δ m, − 1

2 i
− E y

δ m, 1 + δ m, − 1

2
. ( B 4)

1 T h e r a n g e of t h e i nt e r a c ti o n i s a s s u m e d t o b e s m all e r t h a n
t h e Fe r mi w a v el e n g t h b u t l a r g e r t h a t t h e l a t ti c e c o n s t a nt,
s u c h t h a t el e c t r o n s a r e n o t t r a n sf e r r e d b e t w e e n t h e v all e y s.

2 N o t e t h a t i n t h e p r e s e n c e of a n el e c t r o m a g n e ti c fi el d, k

e nt e ri n g t h e ki n e ti c e q u a ti o n i s t h e c a n o ni c al r a t h e r t h a n
ki n e m a ti c m o m e nt u m ? .

3 I n r e c e nt li t e r a t u r e, t h e s u m of t h e M o t t a n d Elli o t t- Y af e t
c o nt ri b u ti o n s i s of t e n r ef e r r e d t o a s j u s t “ t h e Elli o t t- Y af e t
c o nt ri b u ti o n, w hi c h i s n o t c o r r e c t.


	Zero-field spin resonance in graphene with proximity-induced spin-orbit coupling
	Abstract
	I Introduction
	II Electron spin and electric-dipole spin resonances in the non-interacting system
	A Single-particle Hamiltonian
	B Energy spectrum and selection rules for Rashba spin-orbit coupling
	C Energy spectrum and selection rules for valley-Zeeman spin-orbit coupling
	D Low-energy Hamiltonian for the conduction band in the presence of external electric and magnetic fields

	III Electron spin and electric-dipole spin resonances in a two-valley Fermi liquid
	A Two-valley Fermi liquid
	B Collective modes of a two-valley Fermi liquid with spin-orbit coupling
	C Zero-field electron spin resonance in a two-valley Fermi liquid
	D Zero-field electric-dipole spin resonance in a Fermi liquid

	IV Discussion and conclusions
	A Electron spin and electric-dipole spin resonances for non-interacting electrons
	1 Definitions
	2 Green's functions
	3 Correlation functions
	a Spin susceptibility
	b Optical conductivity


	B Equations of motion
	 References




