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We investigate collective spin excitations in graphene with proximity-induced spin-orbit coupling
(S0C) of the Rashba and valley-Zeeman types, as it is the case, e.g., for graphene on transition-
metal-dichalcogenide substrates. It is shown that, even in the absence of an external magnetic field,
such a system supports collective modes, which correspond to coupled oscillations of the uniform
and valley-stageered magnetizations. These modes can be detected via both gero-field electron spin
resonance (ESR) and zero-field electric-dipole spin resonance (EDSR), with EDSR response coming
solely from Rashba S0OC. We analvze the effect of electron-electron interaction within the Fermi-
liquid kinetic equation and show that the interaction splits both the ESR and EDSR peaks into two.
The magnitude of splitting and the relative weights of the resonances can be used to extract the
spin-orbit coupling constants and many-body interaction parameters that may not be accessible by

other methods.
I. Imtroduction

A magnetic field applied to a system of interacting
formions gives rise to a collective mode: a Silin spin
wave,’ 77 in which spins precess coherently around
the direction of the magnetic field. (We will be referring
to the magnetic field acting on electron spins as to *“Zee-
man field”.) It has been shown in a number of theoretical
studies that a combination of SOC (of Rashba and Dres-
sclhaus types) and electron-electron interaction leads to
a new type of spin collective modes: chiral spin waves,
which occur even in the absence of the external magnetic
field” T 77T T If both the Zeeman field and SOC are
present, the collective modes are of the mixed Silin/chiral
wave type. Such mixed modes were observed by Ha-
man spectroscopy in 2D semiconductor heterostructures
in the regime when the magnetic field is stronger than
SOC," 777 In the absence of the Zeeman field, a collec-
tive spin mode was observed by Raman spectroscopy on
the surface state of a three-dimensional (3D topological
insulator.” The g = 0 end points of the spin waves' spec-
tra can be probed by electron spin resonance (ESR), if the
mode is driven by an ac magnetic field, and by electric-
dipole spin resonance (EDSR), if the mode is driven by
an ac electric field which couples to electron spins via
spin-orbit interaction.” 7 7

A freestanding graphene or graphene on a substrate
made of light elements (Si03, hBN) can have only an
intrinsic Kane-Mele (KM) type of SOC,T which is very
weak. However, a much stronger SOC can be induced in
a graphene layer deposited on a heavy-metal substrate

and /or intercacalated with heavy-metal atoms, see, e.g.,
Ref. 7 and references therein. First-principle cal-
culations and experiments have demonstrated that the
proximity-induced Rashba SOC in graphene on heavy-
metal substrates (Au, Ni, Pb, Ir, Co) can reach up
to 100 meV." 77 Another very popular platform is
monolayer and bilayer graphene on transition-metal-
dichaleogenide (TMD) substrates, such as WSa, WSes
and MoSs T TTTT7T7T7 7777 14 this case, the in-
duced SOC is expected to be a mixture of two types:? 7 7
of Rashba SOC, which leads to in-plane spin-momentum
textures, and of valley-Zeeman (VZ) or Ising SOC, which
acts as an out-of-plane magnetic field whose direction
alternates between the K and K' wvalleys of graphene.
EDSR in graphene with both Rashba and VZ types of
S0C has been predicted in a recent theoretical study,” in
which the Zeeman field was assumed to be much stronger
than both types of SOC. In this case, the frequency of the
modes is set by (renormalized) Zeeman energies in chan-
nels with different angular momenta, while spin-orbit in-
teraction provides a means to couple the driving electric
field to electron spins.

In this work, we study ESR and EDSR in doped
graphene with Rashba and VZ types of S0OC in the ab-
sonce of the Zeeman field. In this case, the resonance
frequencies are determined by spin-orbit energy scales,
renormalized by the electron-electron interaction. By
applying an extension of the Formi-liquid (FL) theory
to the case of two electron valleys,” we show that the
cigenmodes of the system correspond to coupled oscilla-
tions of the uniform and valley-staggered magnetizations.



The coupling between the two sectors is provided by VZ
SOC. If the latter is absent, two sectors are decoupled,
and both ESR and EDSR signals detect only the uni-
form magnetization mode. If both Rashba and VZ types
of S0OC are present, each of the ESR and EDSR signals
15 split into two peaks due to the coupling between the
two sectors. This coupling i1s mediated by the combined
offect of the electron-clectron interaction in the spin- and
spin-valley channels and of VZ SOC. Finally, if only VZ
S0OC iz present, ESR detects only one mode while EDSR
shows only a continuum due to transitions between the
spin-split valence and conduction bands, with a threshold
around w ~ 2u, where p is the chemical potential. In the
current literature, the relative strengths of Rashba and
VZ components of SOC in graphene on TMD is still an
open issue: while some studies indicate that Rashba SOC
is the dominant one,” 7 777 others find a stronger VZ
component.” 7 7 We analyze how the ESR and EDSR
spectra depend on the interplay between the two types
of SOC and propose to use ESR and EDSR experiments
as a direct way to resolve this controversy.

The rest of the paper is organized as follows. In
Secs. ITA, IIB, and II C, we describe our model and dis-
cuss the selection rules for ESR and EDSR in the absence
of electron-electron interaction. In Sec. IID, we derive a
low-energy Hamiltonian for the conduction band. Section
IIT deals with the effects of electron-electron interaction.
In Sec. IIT A, we introduce the two-valley FL theory. In
Sec. ITI B, we discuss the cigenmodes of a two-valley FL
with Rashba and VZ types of SOC. ESR and EDSR in
this system are described in Sees. [ITC and ITI D), respec-
tively. In Sec.IV, we present our conclusions and discuss
the feasibility of an experimental observation of the of-
focts predicted in this paper. Technical details of the
calculations are delegated to Appendices A and B.

II. Electron spin and electric-dipole spin
resonances in the non-interacting system

A. Single-particle Hamiltonian

We consider a monolayer graphene attached to a sub-
strate made of, e.g, TMD, or heavy metal. Strong SOC
in the substrate induces SOC in graphene, which can be
generically of both Rashba and VZ types. For complete-
ness, we also allow for an intrinsic KM term. Following
Refs. 7 77 7 7 7 |, we adopt the following low-energy
Hamiltonian:

Hy = vr(r:5062kz + Sodyky) + Adps; + o 1:8:6; +

where vp is the Dirac velocity; k is the electron mo-
mentum measured either from the K or K’ point of the
graphene Brillouin zone, Ay 7z g are the coupling con-
stants of the KM, VZ, and Rashba spin-orbit interac-
tions, respectively, A is the gap due to substrate-induced
asymmetry between the A and B sites of the honeyeomb

lattice, &y and §; are the Pauli matrices in the sublattice
(pseudospin) and spin spaces, respectively (with &y and
5p being the unity matrices in the corresponding spaces),
and T; = %1 labels the K and K' points.

The first three terms in Eq. (2.1) describe (massive)
Dirac fermions near the K and K' points, the rest of the
terms deseribe SOC. The intrinsic SOC present locally on
the sublattice sites of graphene gives rise to two terms in
the Hamiltonian, which are symmetric and antisymmet-
ric combinations of local SOCs on the A and B sites. Be-
cause free-standing graphene is invariant under sublattice
oxchange, only the symmetric combination, which was
identified by Kane and Mele,” survives. It couples spins,
sublattices (pseudo-spins), and valleys, as indicated by
the fourth term in Eq. (2.1). The presence of a substrate
brings about new features. First, the breaking of = —+ —2
inversion symmetry induces a Rashba-type SOC. At the
Kand K' points, the Rashba Hamiltonian contains the
leading, momentum-independent term [the fifth term in
Eq. (2.1)] and the subleading, linear-in-k term.” © We as-
sume that doping is low enough, 1.e., kg <€ Ag /o, where
v 15 the Rashba parameter for the ].inna.r—in—k coupling,
such that the latter can be neglected, and Rashba SOC
will be described by the fifth term in Eq. (2.1). Second,
if the substrate also breaks the sublattice symmetry, the
anti-symmetric combination of atomic SOCs gives rise to

a VZ SOC-the last term in Eq. (2.1).

The Hamiltonian in Eq. (2.1) can be simplified fur-
ther. First, it is well known that the KM coupling is
much weaker than other types of SOC. While theoret-
ical estimates li_lla.ce Akm in the range from 1peV??
to 25-50ueV," ¥ a recent ESR experiment reports the
value of 42.2 peV.? This is much smaller than typi-
cal values of 1-10 meV for Ag and Az for graphene on
TMD substrates” " 7777 and thus the KM term will
be ignored in what follows. Next, substrate-induced sub-
lattice asymmetry is expected to open a gap of magni-
tude A at the Dirac points. This gap endows graphene
with Berry curvature which, in combination with SOC,
leads to interesting consequences for EDSR, such as a
Hall component of the induced current, as discussed re-
cently in Ref. 7 . In the regime of Ag, Ay < p (where
the FL theory of Secs. ITI B-II1 D 15 valid), the presence of
the gap gives rise to the Hall conductivity but does not
qualitatively affect the collective modes, as it amounts
only to changes in the Fermi velocity and S0OC parame-
ters. Given also that angular-resolved photoemission of
graphene on TMD suhstratcs has not detected gaps in

{Ttg-etplra%s will neglect the asymmetry
gap in this stu . Zﬁﬁ: ose simplifications, the Hamil-
tonian is reduced to

Hy = vp(m: 5062k + S06yky) +

Az .. A . .
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B. Energy spectrum and selection rules for Rashba
spin-orbit coupling

If only Rashba SOC is present (Az = 0), the eigenval-
ues and eigenstates of the Hamiltonian (2.2) are given
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where &« = +1 denotes the conduction/valence band,
A = #£1 denotes the SOC-split chiral subbands, =, = +1
denotes the K /K" valleys, respectively, and # is the az
imuthal angle of k.

The energy spectrum for a realistic case of Ag < p is
shown in Fig. la, where we choose p > 0 without loss
of generality. The chiral nature of the bands 15 evident
from the expectation values of the spin operators in each
of the subbands:
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where & = $,4¢ are the components of the spin operator
and v = Ar/2vpk. It 1= clear from Eq. (2.4) that k-
& = 0, which means that the spin is perpendicular to
the momentum in each subband, as shown in Fig. lec.
Note that {(af;7:|S|aB;7:) is independent of 7. This
means that the chiral structure is the same at the K and
K’ points.

To determine which transitions can be excited by an ac
magnetic field in an ESR measurement, we also need the
intravalley matrix elements of the spin operator for off-
diagonal transitions between spin-split subbands. Using
the elgenstates from Eq. (2.3), we obtain
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A response to an in-plane ac magnetic field is controlled
by the matrix elements in Eqs. (2.5a) and (2.5h). These
vanish if €, 5 +€,:5 = 0, which can happen only if § = 5
and & = —o'. Thus transitions between conduction
and valence subbands of the same chirality are forbid-
den. From Fig. la, we sece that the frequencies of the
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FIG. 1. (a) Energy spectrum of graphene with Rashba spin-
orbit coupling for Ax < p. The blue (red) lines depict
i igns with gegative (positive) chirality, in the

fi ‘fﬁ’i%ﬁ. Vertical arrows indicate transitions in-
duced by an ac magnetic field. Solid and dashed arrows show
transitions induced by an in-plane and out-of-plane magnetic
field, respectively. b) Same spectrum as in (a) with arrows
showing transitions induced by an ac in-plane electric field.
) Spin textures for Rashba spin-orbit coupling in the absence
of the magnetic field. (d) Energy spectrum of graphene with
valley-Zeeman spin-orbit coupling for Az < p. The vertical
arrow shows a transition induced by an in-plane ac magnetic
field. An out-of-plane magnetic field does not induce any tran-
sitions in this case. (&) Same spectrum as in (d) with arrows
showing transitions induced by an ac in-plane electric field.
(f) Spin structure of the ground state for valley-Zeeman spin-
orbit coupling. The crosses (dots) represent spins polarized
into (out of) the plane.

allowed transitions for an in-plane field are {1 = Ag and
' = 2u + Ag. A response to an out-of-plane magnetic
field is controlled by the matrix element in Eq. (2.5¢),
which i1s non-zero if afa’8" # 1. This condition allows
for transitions between the states with opposite subband
{conduction vs valence) or chirality indices but not both.
As shown in Fig. la, the frequencies of the allowed tran-
sitions for an out-of-plane field are £t = Ag and 1 = 2p.

In an ESR cxperiment, one measures the imaginary
part of the spin susceptibility, which can be caleculated
using the Kubo formula, see Appendix A 3a. The results
are shown in Figs. 2a and 2b. In agreement with the
selection rules, there is a resonance at {2 = Ag both in
Imy 22(0?) and Imy;-(02), and onsets of continua at {1 =
2u+ A In Imy »2(?) and at © = 2p in Tmy ;- (12).

To understand the selection rules for transitions in-
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FIG. 2.  Non-interacting electrons. Imaginary parts of the
in-plane (a) and out-of-plane (b) spin susceptibilities for the
case of Rashba SOC only, showing the resonance at Ap and
ongets of continua of conduction-to-valence band transitions
at 2 = 2p + Ag and 2 = 2u. For the valley-Zeeman S0OC
case only (c), the out-of-plane susceptibility is zero. There
is a resonance at Ay in the in-plane susceptibility, but no
continua. To mimic the effect of spin-relaxation processes,
the electron states were broadened by = 0.0054.

duced by an in-plane ac electric field in an EDSR mea-
surement, we need the matrix elements of the velocity
operator, which coincides with the velocity operator for
Dirac fermions without SOC coupling:

¥ = ViHy = vpro foéz + vpdobyil.  (2.6)
Using the eigenstates from Eq. (2.3), we obtain
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FIG. 3. Non-interacting electrons. (a) Real part of optical
conductivity for Rashba SOC, showing the resonance at Ag
and continua starting at @ = 2p and Q = 2p £ Ag. The
resonance is the zero-field EDSR effect. For the VZ case (b),
there are continua starting at 2 = 2u + Az, but no resonance
at Ay, VE SOC does not lead to zero-field EDSR resonance.
In both cases, the Drude part of the conductivity is not shown.
Broadening is the same as in Fig. 2.

Hamlitonian (2.2) are given by
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spectrum is shown in Fig. 1h.
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In contrast to the case of magnetic driving, we see that
the matrix elements of the veloecity are finite for any com-
bination of v, 3, o, and 3', and thus transitions between
all the subbands can be excited by an ac electric field (ex-
copt for those within the valence bands, which are for-
bidden by the Pauli principle). Therefore, we expect to
see a resonance in the conductivity at @ = Ay and onsets
of continua at ¢ = 2u + Ag and Q0 = 2u, as shown in
Fig. 1b. In an EDSR experiment, one measures the real
part of the optical conductivity, which can be also ecal-
culated using the Kubo formula (see. Appendix A 3b).
The conductivity shown in Fig. 3a (without the Drude
part) indeed exhibits all the features following from the
selection rules.

C. Energy spectrum and selection rules for
valley-Feeman spin-orbit coupling

In the opposite limiting case, when only VZ S0C is
present (Ag = 0), the eigenvalues and eigenstates of the

1+ n'_-'i:nJ.JEIJ

1.'-r-': Z-I"—’I

In contrast to the case of Rashba SOC, spins are no longer
chiral but Ising-like, and are polarized in the opposite
directions in the SOC-split bands, see Fig. 1d. Within
a given electron or hole spin-split subband, the direction
of polarization is also opposite at the K and K' points.
This is expected as the system preserves time-reversal
symmetry.

To understand the selection rules for transitions
probed by ESH, we need the off-diagonal matrix elements
of the spin operator, which are given by

(@B |‘§:|‘1.35 Tz) = —baabp g, (o'

(2.10)
That {a'3"; Tz|-§z |ex3; 72} 15 purely diagonal implies that
an out-of-plane magnetic field cannot induce any inter-
band transitions; this is so because &. commutes with the
Hamiltonian. Furthermore, an in-plane magnetic field
can only induce a transition at £} = Ay between the spin-
split branches of the conduction band, but there are no
continua of spin-flip transitions, see Fig. 1d. Correspond-
mngly, Imy;-() = 0 while Imy;;(£?) exhibits a single
peak at (@ = Az, as shown in Fig. 2c.
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The selections rules for transitions probed by an ac

clectric field follow from the matrix elements of velocity,
given by

TUR

(2.2), where Ay = gupBoe ", g is the effective Landé-
factor, and pp is the Bohr magneton. An ac electric
field Ege " is accounted for by a gange transformation
k = k+(e/c)A in Eq. (2.2), where A = (¢/if}) Ege— ¥

(o' 8" 7z |bz|af; 72} = 1 [ﬂﬂmr’ o +e” ] (1+aa'B88'), is the vector-potential. In the new basis, and in the pres-
, . TR o ence of both magnetic and electric fields, the Hamiltonian

(a ,8’;1'5|1Jy|11,3;1'5} = 1 [&E = —ale ] (1+ ﬂﬂt&-&r”can be written as a 4 ® 4 block-matrx

It follows from the last equation that an in-plane ac elec- Fband _ B, H. 213

tric field can induee transitions only between the valence O T\ H, Hy, (2.13)

and conduction band, with a simultancous flip of chiral-

ity. As shown in Fig. le, the frequencies of these tran-  where the 2 x 2 blocks are given by

sitions are {} = 2u + Az, but there is no resonance peak A N A

at 2 = Az. Indeed, the corresponding conductivity in H.. = sqvpk + TR{E % 8)-%+ ?szgz ?zg.ﬁu + fp—

Fig. 3b shows no resonance but only a double step at
1 = 2u + Az, which is just a Pauli threshold at 2 = 2u
split by VZ S0C.

D. Low-energy Hamiltonian for the conduction
band in the presence of external electric and
magnetic flelds

As we saw In the previous sections, there are two
groups of transitions that can be excited by external
clectric and magnetic fields: 1) those between the spin-
split subbands of the conduction band at € = Ag, Az
and 11) those between the spin-split conduction and va-
lence bands at @ = 2p, 2u + Ag,2u + Az. Given that
Am, Az <€ p in real systems, the transition frequencies in
the second group are near the direct absorption threshold
at 1 72 2. If the Coulomb interaction between optically
cxcited holes and conduction electrons is accounted for,
absorption starts at the indirect threshold of = | via
the same mechanism as in Auger damping of photoex-
cited carriers in doped semiconductors.” 7 7 In addition,
the interaction between electrons in the conduction band
also leads to absorption for 0 < 2.7 and this contribu-
tion is comparable to Auger's one for  ~ p. For O = p,
the linewidth due to both types of damping is large, on
the order of g°u, where g is the dimensionless coupling
constant of the Coulomb interaction. Therefore, for mod-
erate and strong interaction, both Auger and intraband
damping are expected to smear the fine features near 2p,
induced by SOC. For this reason, we will ignore transi-
tions at I &= 2 and focus on the low-energy part of the
spectrum at 1 = Ag, Az < p.

For this range of frequencies, it makes sense to de-
rive an effective low-energy Hamiltonian for the spin-split
conduction band. We start by trmfurm.mg Eq. (2.2),
written in the sub-lattice basis {ﬂT:bT:ﬂhE"l-} to the
subband hasis {&, ¢, 04,4}, in which the Du'ac part
of Hy is diagonal. The transformation is effected via

. - A N
Cc + 1 G — 0 iT,

7 , b = 73 ° e =11 (212)

An ac magnetic field boBpe ™ is accounted for by
adding the Zeeman term E-Eu&uﬂzfﬂ to the Hamiltonian

-
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with k = k/k and % being the unit vector normal the
plane. Note that the coupling between the condue-
tion and valence bands arises via the electric field and
Rashba SOC. This is due to the selection rules discussed
in Secs. [IB and I1C, which say that, at 0 < p, only
Raszhba SOC allows for transitions between the conduc-
tion and valence bands. Note also that the Rashba terms
mHu a.ndH are almost the same as in a 2D electron
gas (up to the dependence on the magnitude of k).
Next, we project out the valence band via a standard
downfolding procedure. Namely, we find the Green's
function of HF*¥ in Eq. (2.13), G = (e — Hb“d}_
and read off its cc element. Thls s yields the effective ]GW—
onergy Ha.m]ltuma.nas?{ Hu+HW{£ Hw}_le
To leading order in the mctnrna.l fields and SOC, the
eigenvalue € can be replaced by vpk, leading to
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Note that the electric field couples to spins only due to
Rashba SOC, which 1= the origin of the EDSR effect. In

the ahsence of external fields, SOC splits the conduction
band into two subbands with energies

1
—)ﬁsgc, where Asgo = )"El + )k%,

.';':|:=‘I.Fj:'k:|::,Et

(2.16)

and the resonance occurs at 1 = Asoc.

III. Electron spin and electric-dipole spin
resonances in a two-valley Fermi liguid

A. Two-valley Fermi liguid

In this section, we investigate the effect of electron-
electron interaction on ESR and EDSR. As we shall

. EUF

= (k-A)+ 5 s

A),

(k-A

(2.1

'[



demonstrate, the most prominent effect of the interac-
tion is to split the resonances into two. This splitting
15 controlled by the coupling constants of the various in-
teraction channels, which enables one to extract these
important parameters from the measured spectra. Since
we are interested only in energies much smaller than the
Formi energy, the effect of electron-electron interaction
can be accounted for within a Fermi liquid (FL) theory
for conduction electrons only, while the interaction with
holes can be assumed to be absorbed into the coupling
constants of the FL theory.

First, we discuss the structure of the FL theory for a
two-valley system in the absence of SOC, developed re-
cently in Ref. 7 . The interaction vertices are shown
in Fig. 4. The solid and dashed lines depict electrons in
the K and K valleys, respectively. Diagrams a and b de-
scribe intra-valley scattering. Each of these diagrams has
an exchange partner (not shown), in which the outgoing
states are swapped. Diagram ¢ describes an inter-valley
scattering event, in which electrons stay in their respec-
tive valleys. The momentum transfer in such an event
18 less than or equal to 2kp. Diagram d is an exchange
partner to diagram e, in which electrons are swapped
between the walleys. The momentum transfer in such
an event 12 close to the distance between the K and K’
points, |K — K| ~ 1/a, where a is the lattice constant.
For kpa < 1, the matrix element of the Coulomb interac-
tion for diagram d is much smaller than that for diagram
¢, and will be neglected in what follows. In this case,
the valley index plays a role of conserved isospin, and
we have an SU(2) x SU(2)-invariant FL. The interaction
between quasiparticles of such a FL is described by the

a b c
k¢ k—q¢s ke k—-gg k¢ k—qs
> > e R > >
—<—H— —--em-Bl- g <--H-—<
k'+q¢ K. kK'+q¢ K.a k'+q¢ K.
FIG. 4. Interaction vertices for intra-valley (a and b) and

inter-valley (¢ and ) scattering processes. The solid (dashed)
lines refer to electrons in the K (K') valley. Diagrams a and
b also have exchange partners with outgoing states swapped
(not shown). Diagram d involves a large momentum transfer
ro |K — K'|, and is neglected in our model.

B. Collective modes of a two-valley Fermi liguid
with spin-orbit coupling

Accounting for the valley degree of freedom and in the
absonce of external fields, one can write the projected
Hamiltonian (2.15) becomes

?'iﬂuj = vpktpdo + J'lTH"ﬁ:;.I:l'E % 8) - %+ %ﬂﬁz. (3.2)
Accordingly, the quasiparticle energy can be written as
the sum of the equilibrium part (eq) and a correction due
to the Landan functional (LF), whereas the equilibrium
part iz further separated into a spin-independent part
and a correction due to SOC:

Landau interaction function £(k,t) = Eaglk) + drp(k, 1), (3.3a)
Zaq(k) = Tosovi(k — kp) + 6s0(k), (3.3b)
= o ~ AR A A%
v fl k') = F* K )y 0ugv Bcy 62 Ocaca + F (K K)o va 000 (8crca - S8ad (k) = gk x 8) -2+ ?z-?z.az? (3.3c)
+ Gﬂ{k: kij{"ﬁ-‘lvs ) +1-':'LJ.| }'5c1{s'5czn + H{ka ki}l:{.l-"l'l?s ) +1-':'LJ.| j{gﬁﬁa ) é&]}l dﬂpf -
dtr(k,t) =Tr' Wﬂ:k’ kKa(k',¢). (3.3d)

where v} 1s the renormalized density of states at the
Formi energy and v () labels valley (spin). Components
F?® and F*® which are present also in the single-valley
case, describe direct and exchange interaction between
formions in the same valley, respectively. Component
" describes exchange interaction between different val-
leys, which would be present even for spinless fermions.
Finally, component H describes exchange interaction be-
tween both spins and valleys. The components of the
Landau function are defined on the Fermi surface, ie.,
for K = ¥ = kg, depend only on angle ¥ between k
and k', and can be characterized by angular harmonics,
eg., FR = fdt?F“{'ﬂ}e’mﬂ,f?ﬂ', and the same for other

components,

As long as SOC can be treated as a perturbation, Le.,
for A, Ay < p, the Landau function in Eq. (3.1) can also
be used to describe dynamies of spins in the presence of
SOC, similar to how it was done in Refs. 7 7 7 fora
2D electron gas with Rashba and Dresselhans SOC.

Here, dii(k, t) 1= the density matrie, f(k, k') 1= given by
Eq. (3.1}, " indicates the valley /spin state of a quasiparti-
cle with momentum k', v% is the renormalized Fermi ve-
locity, and A%, = Ag/(1+ F§),7 A% = Az/(1 + Hp)? are
the renormalized spin-orbit coupling constants. Equa-
tions (3.3a)-(3.3d) need to be solved sclf-consistently
along with the kinetic equation for the density matrix

Bk, t)
ot

i

= [‘E{k:t:’?ﬁ(k?”]‘ (3.4)
[Our kinetic equation does not contain the effects of Berry
curvature because we neglected the asymmetry gap in the
single-particle spectrum.| As in Refs. 7 7 | we introduce
a set of rotated Pauli matrices in the spin space

=50, Ei(k)=—4:, Ea(k)=cosBiptsinfsy, &(k)=sinfé,

(3.5)



and parametrize §7i(p,t) as the sum of the equilibrium
(eq) and fluctuating (fl) parts:" 7

fi(k, 1) = fieq(k) + Sfin(k, 1),
neq(K) = fofonr + nkéso(k),
Sha(k, t) = nptolpa(k, t) + Sis (K, £),

Bitey (I, £) = e [foulle, ) - €0) + Wk, ) - 7o + Map (K, £)7aé

where np i1s the Fermi function, a,8 £ {1,2,3}, and
np = denp(£). Vector u and tensor Myg describe oscl-
lations of the uniform magnetization

.[ Ii‘jﬂ}“

and valley-staggered magnetization

42k
(2m)?

respectively, where N (k,t) = Ma,(k,t) withy=1...3.
Vector w describes cscillations in the valley occupancy,
which are decoupled from both magnetizations and will
not he considered below. Expanding u and A over the
set of angular harmonics as u(k,t) = ¥, ™ ul™(¢)

giR

GHB o
. 2

éﬂ 2 e = T

Tr [6fi(k, t) &

JER

2

_8eB

it = .

a =

EFBV*

Tr [5ia(k, t) 72 8a) = ZEE2E

T

The out-of-plane components of & and M are ex-
pressed via the m = 0 harmonics of u and A, which
satisfy a set of equations similar to Egs. (3.10a) and
(3! )with different combinations of the Landau pa-
ragehps [see Appendix (B)]. The mode frequencies in
th?g% a}nd M sectors are 2_ ; = AR/ f(fr+ f-) and
LY g hihy +h_), rcspectwc]y
Zecma.n S0C mixes up the & and M sectors.
The frequencies of the in-plane modes (with m = +1) for
A7 # 0 are given by

hh
0 (L e ) o (fehe+ £ ) 298,

f Hﬂ: (k,t)Tr [‘Eﬂsu] (3.12a)
Q3

2
2 =ELA.;‘{‘ (@) F NS by + B f)? + ARMR(FF + B

5o Nk, t)Tr [Epﬁ.]il (3.12b)

In assigning the + indices to the modes, we assumed
that ff, < hhy and f_hy +h —_ fi < 0. These two
conditions are satisfied in the most realistic case, when 1)
both the intra- and intervalley interactions are attractive,
Le., FR, Hy < 0; 11) the intravalley interaction is stronger
than the intervalley one, Le., |Ff| > [Hm|; and 1) both

8

and N(k,t) =3 ™ N™(t), we obtain for the com-  |F2| and |H,,| decrease with m monotonically. In this
ponents of & case, ﬂ+ =0_ for any ratio of Af to Af. The structure
af that for both modes & and
—1) +1 -1 (+1}I [—1}
+ the h b
R s e EEAL e Pl ] o s

The expressions for M, are obtained from the last equa-
tion by replacing uy (D ﬁ.'r{ilj

The equations of motion for (m){t} and N2™ (t) are
obtained by tracing out the corresponding components
of Eq. (3.4). The full system of equations is presented in
Appendix (B). To understand the dynamics of the sys-
tem, it is instructive to Dunsidcr first the case of A% =0,

when the equations for ua }{t} and M[m}{t} decouple.
The m = +1 harmonics, which enter the in-plane com-
ponents of & and M, sa.tisf:,r

aED — ax [hu_gin iif_uézl:l)] L alED — _ap fulY
Jrq:I.-l{;u} — A% [h+ﬁ."2[i1} :l:t'h_ﬁ.qﬂ}] : Mé:tlj __
where

f=1+Ff, fi =1+ (Fg + F5)/2, f_ = (F§ — F5)/2,
h=1+Hy, hy =1+ (Hy+ Hi)/2, h_ = (Ho — H3)JD)

Equations (3.10a) and (3.10b) describe independent
oscillations of the in-plane magnetization and valley-
staggered magnetization with frequencies 1_
A/ ffy and Qp = AR /hhy, respectively. From the
structure of eigenvectors, one can deduce that both
modes are linearly polarized.

Solving the equations of motion for the m = 0 harmon-
ics of uy and Ny, one finds that the out-of-plane modes
oscillate with frequencies

0% . =h[(hy +ho)AE + fFAFY] and Q2 = F[(fy + F)NT + B

(3.13)
respectively.

One can get a better insight into a general case by
using explicit forms of the Landau parameters, calcu-
lated to first order in the Hubbard interaction with am-
plitude [/.! The only non-zero Landau parameters in
this approximation are’ FZ Gi = Hy = —u, and
Ft =G = Hy —u/2, where u = vplp/8. Note

[ili:hatqg.ll ntrast to a conventional FL, where a weak
short-range interaction gives rise only to m = 0 Lan-

RWI(:I:IJ, dﬁé‘t(ﬁahﬁﬂ;ctms a Dirac FL in graphene has at least

the m = 0 and m = 1 harmonics. Correspondingly,
f=fir=h=h =1—uf2and f_ = h_ = —u/2,
and the in-plane mode frequencies are reduced to

Jnﬂ uldg
Qy =4/ AL + A3 (1+ 302+ }) :I:T.{E.ld}

A special feature of the weak Hubbard coupling is that
the inter- and intravalley interactions are the same in
this limit, and, therefore, the modes are degenerate at
Az = 0. This degeneracy is lifted by the second term in
Eq. (3.14), which is non-zero only if both VZ SOC and
electron-electron interaction are present.



C. Zoro-field electron spin resonance in a
two-valley Fermi liquid

To describe ESR, we assume that a weak, oscillatory
magnetic field is applied in the y-direction. Accordingly,
the quasiparticle energy in Eq. (3.3a) acquires an extra
term, dEg(t) = (A% /2)08y, where Ay = Ag /(1 +F§) 1s
the renormalized Zeeman energy. The spin susceptibility
is deduced from the relation S; = y4; By, where 5 is the
i'" component of the uniform magnetization, defined hy
Eq. (3.7). Due to the rotational invariance of our model
in the absence of the external field, the in-plane part of
X1y 1s diagonal and symmetric. Solving the equations of
motion for the density matrix (see Appendix B), we find
for the imaginary part of the in-plane spin susceptibility

Imx(£2) = xo [W™0,6(Q — 24

where the resonance frequencies are given by Eqgs. (3.12a)
and (3.12b), WESR are the oscillator strengths, and xo =
g ugvs /4(1+F¢) is the static spin susceptibility of a FL
in doped graphene. The most interesting feature of the
result in Eq. (3.15) iz that, in general, the ESR signal
consists of two peaks rather than one, with weights given
by W:ESR = +tWESR(Q, ), where

x 2 ﬂﬁ
WESR(Q) = BW[AJI-FEAZZ (hy +h_)|, and

ﬂﬂ
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FIG. 5. Zero-field electron spin resonance (ESE) and
electric-dipole spin resonance (EDSR) in graphene with
proximity-induced spin-orbit coupling (SOC). (a) ESR signal.
Vertical axis: the imaginary part of the dynamical spin sus-
ceptibility in units of xo, defined in Eq. (3.15). The frequency
on the horizontal axis is scaled with Al o = «,f}.‘ﬁg+}.§3,
where Ax and Az are (renormalized) couplings of the Rashba
and valley-Zeeman (VZ) types of SOC, respectively. 024 are

he resonance frequencies, given by Egs. (3.12a) and (3.12b).

: M +208%(hy +h_)

The splitting of the ESR signal occurs, first of all,
because of electron-electron interaction. Indeed, for a
non-interacting system, f = f, = h = hy = 1 and
f— = h_ =0, such that the frequency {1y in Eq. (3.12b)
vanishes, and 1, = 0_ = Agpc. This feature i1s demon-
strated in Fig. 5a, where the dashed line depicts the ESR
signal in the absence of interaction and the solid line de-
picts the same for a generic choice of the Landau pa-
rameters, as indicated in the figure caption. Splitting
of the resonance occurs as long as the Landau function
has more than just the F§ harmonic, which, as was men-
tioned in Sec. IT1 B, iz always the case for graphene. In a
real system, the widths of the resonances is controlled by
spin-relaxation processes. At low temperatures, the dom-
inant mechanism of spin-relaxation is scattering by dis-
order in the presence of either extrinsic or intrinsic SOC.
To account for this effect, we added a damping term,
—~dn(k, t), to the right-hand side of Eq. (3.4). In all pan-
els of Fig. 5, v = 0.04\55 o, where Moo = VA + AL
For Af; = 15.0meV and A = 7.5 meV, the corresponding
relaxation time v~ ! = 1 ps.

However, electron-electron interaction is a necessary
but not sufficient condition for observing two ESR peaks.
As shown in Fig. 5b, there i= only one ESR peak, if
only one of the two types of SOC is present. In this
case, the system still has two non-degenerate elgenmodes,
but one of them 1z ESH-silent because the correspond-
ing oscillator strength vanishes. For example, if Ay =0

Ton T

ashed line: non-interacting system. Red solid line: a two-
valley Fermi liquid (FL) with parameters Fy = —0.5500,
Ff = —0.2750, F§ = —0.1375, Hy = —0.5000, H; = —0.2500,
and Hz = —0.1250. The ratio Az /AR = 0.5. The choice of
FL parameters is the same for all panels of the fizure. (b)
ESR signal in a FL for several values of Az /AR, as indicated
in the legend. (c) Resonance frequencies 0, and 2_, given
by Egs. (3.12a) and (3.12b), as a function of angle y, defined
in Eq. (3.17). ¢ = 0(7/2) corresponds A = 0 (Az = 0).
(d) Oscillator strengths of ESR (left vertical axis) and EDSR
(right vertical axis) peaks as a function of angle ¢, as given
by Eqgs. (3.16) and (3.28), respectively. (e) EDSHE signal. Ver-
tical axis: the real part of the optical conductivity in units of
on, defined in Eq. (3.27). Dashed line: non-interacting sys-
tem. Solid line: FL. (f) EDSR signal in a FL for two values
of Az /AL, as indicated in the legend.

then, as we saw in Sec. III B, the two elgenmodes cor-
respond to decoupled oscillations of the uniform and
valley-staggered magnetizations. But the frequency 2
of the valley-staggered mode for A = 0 coincides with
1, in Eq. (3.16), and thus the corresponding oscillator
strength, WESR in (3.16), vanishes, leaving the va.]]ey—
staggered mode silent. Likewise, t]:ua 1, mode 15 also
silent if Af = 0.

The dependence of the resonance frequencies on the
ratio of the Rashba and VZ couplings is demonstrated in
Fig. 5c. Here, the angle ¢ € [0, 7/2] is defined as

Az _ M

oOS i = =

- (3.17)
}"SDC
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FIG. 6. Ratio of the oscillator strengths of the two modes

for ESR (a) and EDSR (b) as a function of angle ¢, as defined
by Eq. (3.17). In both panels, Ff = —0.556 = 2F} = 4F7,
Hy = aFy = 2Hy = 4H3. The values of a are shown in the
legend.

such that ¢ =0 for Ay =0 and ¢ = «/2 for A; = 0.

The oscillator strengths of the two ESR peaks as a
function of i are shown in Fig. 5d by the solid black lines.
As we see from panels (a) and (d), the valley-staggered
mode 1= much weaker than the uniform-magnetization
one: for a particular choice of the Landau parameters,
the oscillator strength of the former is about 20% of the
latter. The ratio of the two oscillator strengths is quite
sensitive to the choice of Landan parameters, in particu-
lar, to the comparative strength of the interaction in the
spin (F) and spin-valley ( Hpy,) sectors. In our case, the
Landau parameters form a 6-dimensional space. To re-
strict the parameter space, we choose Fjj = 2F} = 4F7,
Ho = 2Hy = 4Ho, and Hy = aFf with 0 < a < 1, and
plot the ratio WESRHWESR as a function of angle ¢ at
fixed F and for several values of a; cf. Fig. 6a. As we
see from the plot, the maximum value of the ratio starts
from 5% for a = 0 but increases towards 100% as a ap-
proaches 1. It needs to be kept in mind though that the
100% ratio is achieved only at ¢ = 7/2, Le., at A} =0,
when the two modes become degenerate. (For a > 1, the
modes are swapped: the frequency of the uniform mode
becomes (1, while the frequency of the valley-staggered
mode becomes 3_.)

D. Zero-field electric-dipole spin resonance in a
Fermi liguid

The electric current is derived in the usual way from
the continuity equation for the charge density p =
ET‘I’Idﬂkﬁf{E‘ﬂ'}ﬂ, see, e.g. Hefs. T 7 . For a spatially
non-uniform case, the kinetic equation reads as

on
— v

o + 3 {ViE,
where {8, 85} = A-8+4Hs-8y, and £ and n are still given
by Eqs. (3.3a)-(3.3d) and (3.6a)-(3.6d), respectively, ex-

,ﬁ}—%{vrf, Vii}+ilg, 7)) =0, (3.18)

2.0er ent parts now depeid also on
[ with respect to deviafions from
1.5¢
Piig 1 .
105 —— ¥V rdiLF; Vifieq} +il£, 7t
i (3.19)
0.5 1 - b:..r }\mteg jting over
Ik, Elang_ e trace, to unt] that the
trace of E.E_j"n mutato 2 dbtain the
u_n'xmtmu.lt}r equa.tlan ﬂ¢p+v -] = frwithilieurtent given
ﬂ:ﬁ 0.5 1. U 1.5
P
. dp . .. A
j=—€Tr 2n)? Veq (07tg — nipdELF), (3.20)

where Vog = Vifaq 15 the equilibrium quasiparticle ve-
locity. In our case, £5q 1s given by Eq. (3.3¢) and, corre-
spondingly, Vag = Tofovpk + Vso, where

V¥so = ‘;—gm(ﬁ. 8)(k x %) (3.21)
is the spin-dependent part of the velocity.

To describe EDSR, we assume that a weak, uniform,
oscillatory electric field, E = Ege ™, is applied in the
plane of the graphene layer. Aeccordingly, the kinetic
equation takes the form®

w — eE - Voqnk +1[8(k, t), n(k,t)] = 0. (3.22)
It is convenient to trace out an equation for the scalar

part of dng in Eq. (3.6¢), 1.e., for the function a(k, t):

Ba(k, t)

o — evpE - knlp =0,

(3.23)

which gives the spin-independent part of the current.
Solving for a(k,t) and substituting the result into
Eq. (3.20), we obtain the Drude part of the conductivity

A1+ F§ vty
U'Drude=‘i{ 5 ) g l (3.24)

Parenthetically, we note that because graphene is not a
Galilean-invariant system, the renormalized mass, m* =

.h:-fv%., 15 not expressed entirely via the parameter
Ff"? and the Drude weight is renormalized by the
interaction.”

Our main interest is the equation for the spin-valley
part of the density matrix, which satisfies

ddn,, (k. t)
ot

where Vg 1= given by Eq. (3.21). We now use Eqs. (3.3a)-
(3.3d) and (3.6a)-(3.6d) for £(k,t) and n(k,t), respec-
tively, and derive the equations of motion for the com-
ponents 11 and M; see Appendix B for technical details.

— eVso - Enf +i[E(k, ), t(k, )] = 0, (3.25)



The resonant part of the current 1= expressed via the so-
lutions of these equations as
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prediction for this type of systems amounts to single ESR
and EDSR peaks at the same frequency, of the order of
the Hashba sphttmg Depending on the system, Ap varies
511;9 ]:H[]J: and thus the resonance fre-

= =£}|.*RV;| u‘;l_u’éf _u.?T1+u:]if u‘ﬂ +%‘
JEDsR 2k 95 + 9 - 2 qu ftc:..r stradgles th
:| ran

where fi are defined in Eq. (3.11). From Eq. (3.26) we
obtain for the resonant part of the conductivity
Reoepsr($2) = codsoc

(3.27)
The strengths of oscillators for the two modes are found

as WEDSE — LWWEDSR(Q ) where
ﬂﬂ A%
weosk) _p, L0 M ug02 g, [hk}?
495 Moo
(3.28)
and fi,h and h, are dofined in Eq. (3.11). If both

Rashba and VZ types of SOC are present, and for a
generic choice of the Landau interaction parameters,
the EDSR signal consists of two peaks, as shown in
Fig. 50. Because the resonant part of the conductivity
in Eq. (3.27) is proportional to A}, the EDSR signal is
absent without Rashba SOC and weak for small Af. This
follows already from Eq. (2.15), which shows that elec-
tron spins couple to the electric field only due to Rashba
SOC. If A # 0 but A3 = 0, then WEPSR yanishes [for
the same constraints on the Landan parameters described
after Eq. (3.12b)|, and the EDSR signal consists of only
one peak, see Fig. 5f. For A% = 0, it 15 always the spin
mode that is active in both ESR and EDSR, while the
spin-valley mode remains silent. We see from panels (d)
and (e) of Fig. 5, as well as from panel (b) in Fig. 6, that,
in contrast to the ESR case, the two EDSR peaks are of
comparable amplitudes for a wide range of A7 /Ag.

IV. Discussion and conclusions

In this paper, we predicted that graphene with
proximity-induced spin-orbit coupling (SOC) exhibits
both a zero-field electron spin resonance (ESR), if probed
by an ac magnetic field, and a zero-field electric-dipole
spin resonance (EDSR), if probed by an in-plane ac elec-
tric field. The resonance frequencies are determined by
the coupling constants of spin-orbit interaction, as well
as by Fermi-liquid (FL) interaction in the spin exchange
and spin-valley exchange channels. The most important
result of our study is that, if both Rashba and valley-
Zoeman (VZ) types of SOC are present, the ESR and
EDSR signals consist of two peaks, which correspond
to coupled oscillations of the uniform and the wvalley-
staggered magnetizations.

For graphene grown on heavy-metal substrates and /or
intercalated with heavy-metal atoms, one expects (and
does ohserve) only the Rashba-type SOC. Therefore, our

[WEDSRS(Q — ) + WEPSRG(0 — (B
()

gﬁlbrval from THz to near infrared
e

Another promising platform is graphene on transition-
metal-dichalcogenide (TMD) substrates. SOC in these
systems 1= also strong, which is evidenced by a strong
reduction in the spin-relaxation time, as compared to
hm&lgb&]aﬁﬂnt substrates. Also, bea.tmgs
hubnikov-de Hazg-kBhdH) oscillations abservod in
high-mobility hilayer graphene on WSes provide a di-
rect confirmation of band splitting due to SOC. From
these beatings, one estimates the total SOC strength to
belsgg = 10—15meV,? which places the resonance fro-

nto the THz range. As to the relative strengths

hba and VZ components of SOC, the situation
13 more controversial. While experimental studms of weak
antilocalization in monolayer graphene on TMD find VZ
S0OC to be much stronger than the Rashba one,” 7 7 the
opposite conclusion is reached in, eg., Refs. 2 7 7 7
. On the other hand, strong evidence for Rashbha S0C
being the dominant type in bilayer graphene on WSes
follows from the dependence of the splitting of the ShdH
frequencies on the carrier number density.” At least par-
tially, therefore, this contradiction may arise from the
genuine difference between monolayer samples, used in
weak-antilocalization studies of Refs. T 7 7 | and hi-
layer samples, used in ShdH studies of Ref. 7 . Without
goetting deeper into this discussion, we emphasize that
the results of our paper can be used as an independent
tost for the dominant type of SOC. Indeed, the coupling
between the electric field and electron spins is possible
only due to Rashba S0C, see Eq. (2.15). Therefore, if
the experiment shows no EDSR signal, while the ESR
signal contains only a single peak, this would be a clear
indication that VZ 50C iz the dominant mechanism. On
the contrary, if single peaks (at the same frequency) are
observed both by EDSR and ESR, this would indicate
that Rashba SOC is the dominant mechanizsm. Finally,
if both ESR and EDSR signals are split into two peaks,
this would indicate that the Rashba and VZ types of SOC
are of comparable strength. A quantitative analysis of
the signal shape should allow one not only to obtain the
spin-orbit coupling constants (renormalized by the inter-
action), but also to extract up to six FL parameters in
the m = 0,1, 2 angular momentum channels, which are
hard, if at all possible, to be extracted from other types
of measurements.

From the experimental point of view, the main issue
1= how strongly ESR and EDSR peaks are smeared by
spin-relaxation mechanisms, which arise mostly from im-
purity scattering in the presence of SOC. There are three
main types of spin relaxation: 1) Mott-like scattering
from heavy impurities, which occurs for any kind of the
bandstructure; 11) Elliott-Yafet mechanism, which oceurs
if SOC affocts the bandstructure but inversion symme-



try 1= preserved, and i) D'yakonov-Perel mechanism,
which occurs if SOC affects the bandstructure and in-
version symmetry is broken. The contribution of the
first two mechanisms to the spin-relaxation rate Ts_c} 18
imversely proportional to the momentum relaxation time
(7p), whereas the D'yakonov-Perel contribution is linearly
proportional to 7p. Analyzing the dependence of '1'5_,::,l
on Tp, one can separate the Mott and Elliott-Yafet con-
tributions from the D’yakonov-Perel one.* For graphene
on TMD, both Rashba and VZ types of SOC contribute
to the IVyakonov-Perel mechanism, with VZ contribu-
tion being proportional to the intervalley scattering time
rather than to 7.7 The results of such an analysis differ
from study to study, which indicates that spin relaxation
15 sample-dependent. For example, Ref. 7 does not find
any correlation between 155 and 7;; Ref. 7 finds that
the D'vakonov-Perel mechanism is the dominant one; fi-
nally, Ref. 7 ?  find that the Mott and/or Elliott-
Yafet mechanisms are the dominant one. To be specific,
we adopt the last scenario, in which case Rashba and
VZ types of SOC determine the positions of the ESR
and EDSR peaks, while their widths are controlled by
the Mott and/or Elliott-Yafet mechanisms. The most
direct estimate for the strength of inversion-symmetry-
broken SOC follows from beating of ShdH oscillations,
cited above. On the other hand, Refs. 7 7 iden-
tify two distinet groups of graphene /TMD systems: with
Ton ~ 0.1 —1 meV and with 757 > 10 meV, respec-
tively. The first group contains graphene on monolayer
WSs and on bulk WSes, while the second group contains
graphene on monolayer MoSs and bulk WSa. Given that
Asoc ~ 10 — 15 meV,? 7 the quality factor for a reso-
nance on samples from the first group can be as high as
100.

Both ESR and EDSR techniques have their pros and
cons. Resistively detected ESR (RDESR) has been ob-
served in graphene with intrinsic (Kane-Mele) SOC.?
For magnetic fields up to 1T and with a g-factor of
72 2 for graphene, we get gupB < 0.1meV. This is still
small compared to typical Ar z so that one can consider
RDESR as a wviable technique for observing the zero-
field ESR predicted in this paper. On the other hand,
our model predicts that the amplitude of the 2, -mode
(which becomes the spin-valley mode at A; — 0) can be
significantly smaller than the amplitude of the 2_ peak
(which becomes the spin mode at A7 — 0), see Fig. 6.
This may hinder the observation of both mode splitting
by ESR. Turning now to EDSR, once Rashba SOC is
present, the ntensity of the EDSR signal exceeds that of
the ESR signal by many orders of magnitude,? 77777
which was clearly demonstrated by experiments on 2D
quantum wells; see, eg., Ref. 7 . On the other hand,
while the EDSR signal is strong, it occurs on top of
the Drude tail of the optical conductivity. Given a very
light effective mass of charge carriers in graphene, the
transport relaxation times are rather short, on the or-
der of a picosecond, even in the highest mobility sam-
ples. For a rough estimate, we replace the d-functions in

1

Eq. (3.27) by Lorentzians of width '1'5_,:,1T take the best-
case scenario, when Rashba and VZ types of SOC are of
comparable strength, Le., A ~ Aj ~ Afyo, assume that
AZocTp ¥ 1, and also replace all the FL parameters by
numbers of order one. Then the amplitude of the EDSR
peak can be estimated as Reoppsgp ~ eﬂlgccfsgfp,
whereas the Drude tail at the resonance frequency is re-
duced to Reoprude ~ €2p/A3pcTp. For the ratio of the
two parts of the conductivity we obtain

2
A
Reogpsr,/Rerprude ~( s;»c) AMocmsomp.  (41)

For Agsoc/p ~ 0.1, Asoc ~ 10 meV, TS_E; ~ (.1 meV, and
'J'!;,_1 ~ 1ps~! ~ 1 meV, we find Recgpsr,/Resprude ~ 10,
and thus in this case the EDSR peak should be distin-
guishable against the Drude background. Next, we con-
sider the worst-case scenario, when Rashba SOC 15 much
weaker than VZ one. In this case, the EDSR frequencies
and the frequency £y in Eq (3.28) are of order of A7,
while A only enters as an overall factor of the conduc-
tivity in Eq (3.27). In this case, Eq. (4.1) is replaced
by

Ar) (a2
Reogpsr/Reoprude ~ (Jk_]:) (f) Mot (4.2)

For Agfdzy = 01, M/p = 01, Ay = 10meV,
and the same 755 and 7,° as above, we find
Reogpsr/Reoprude ~ 1072, which makes the observa-
tion of the EDSR peak challenging. Therefore, the opti-
mal condition for observing the EDSR peak 1s Ag = Az.
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A. Electron spin and electric-dipole spin
resonances for non-interacting electrons

1. Definitions

It will be useful to introduce a complete set of s
teen 4x4 matrices defined as #;5 = sgop, where a b €
0, z,y,z, with the convention that

- 0 o N 0 —iog| . ag 0
Kﬂ-l]:[gu uu:|aﬁy0=|:igu 0 :|1nﬁzl]=|:ﬂu _G'D:|

ay 0 e |oz O
ay]’mz_[[] crz]'

The Hamiltonian in the sublattice basis, expressed in
terms of fgp, reads

Tz Rz 0-

(A1)

. N A . . A
Hﬂ = ?-’F{Tz ﬁﬂ:k::'i'ﬁﬂuk‘y} +?R{Tz Hyr — K‘Iy:l + ?Z

2. Green’s functions

The single-particle Green's function for the case of
Rashba SOC 1= evaluated as
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3. Correlation functions

Using the Green's functions presented in Sec. A2, one
can caleulate the correlation functions of spins and cur-
rents, etc. with the help of the Kubo formula. It is

convenient to separate out the contributions from the K
and K’ points. To this end, we introduce the correlation

functions in the Matsubara domain:
42k
Zji’ceww (2m)? [X G (itm, k) Xo G (i +ico
(A7)

where a,b € {r,y,z}. The matrix X, denotes the a'h
Cartesian component of either the spin S, = #nég or cur-
rent J; = efi; operators, where ¥ is the velocity operator
given by Eq. (2.6). Any correlation function is the sum
of the contributions from the K and K’ points.

I/ (i) =

a. Spin susceptibility
The spin susceptibility tensor can be expressed as
) — ~LHB 1K _ (i0,) + 1K', (i0 A8
Xablifls) = 1 5.5, (1) +11g s,'[‘i- n)|. (A8)

If only Rashba SOC iz present, we find

" 2
e i k) = i |3} {af A9 K.l"K 0 K}K i) B JLR 2u+ Ap -
(dtim, k) azﬁwm+#—Eaﬂ(kl’ (42) - (i€) (0 il.'15,1+/‘1;2 8y 2u + Ap 4
: . 222 i A3 2u — iy,
her the Matsub . Explicit] s/ i0,) = - 2£| R N,
TREre fm 18 subara frequency. Explicitly, . (i) 4192 +A%  2u(0 +23) B 2+ iy |
G (itwm, k) = Zﬂﬂﬁ{k}gﬂ'-ﬂ{i[“l’"’k}’ (A3)  Ghere vp = 2u/mvi the total density of states at the
a.p Fermi surface. Upon analytic continuation, and adding
where the K /K" contributions we obtain (for T = 0 and p >
AR):
. 1 1 — (eag)? 2ens
o (k) =—{[::;m+—-r R ] 4B (ko cos 0+ Aoy sin ) — 2.:43 _ #yocos) 2
1 5!1 Fleas) T T T s iy () = Imxw F:”E Q= Ar) + g ) X {e Q-2
(Eﬂ_ﬂ} . - -
taff————(Tzhyr — fpy) — af—————— =in 28(1: £ [ T,
P (e e~ ) — P ':ﬁu;:z =) —T—-E ang)f2 — 3&{ zﬂ}‘“#ﬁﬁ"] (ﬂ—ARH—ﬂ
A 02
(A4) 2p—Ar a(
e, 5 (i, k) = 1 (A5) As discussed in Sec. ITB, the selection rules indicate that

Haly + b — Eaﬁ{kj

where €45 are the dimensionless eigenvalues defined in
Eq. (2.3) and all notations are the same as in Sec. [TB of
the main text. The single-particle Green's function for
the case of VZ S0OC iz given by

N ” 1
G (iwm, k) = Y Qap(k)-
o,

iwm + p — Sap(k)’

ﬂﬁﬁ{kj = 1 [(ﬁm + affTzfiz0) + TRy cos 8 4+ Koy sinf) + ,H{H.z%CDBE + Tzfizy sfl?;g
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where the eigenvalues £,5(K) are given by Eq. (2.8).

there should be a resonance at @0 = Ap, which arises
from the transitions between the spin-split branches of
the conduction band, and also continua of excitations,
starting at {} = 2u + Ag (for the in-plane magnetic field)
and 2 = 2u (for the out-of-plane magnetic field), due to
transitions between the spin-split branches of the condue-
tion and valence bands. All of these features are clearly
present in Eq. (A10).
A similar caleulation for VZ SOC gives:

VF EAZ

SS{HII 4!1’3 /'HLZ?

15/ (i) = 0.

(A11)

{gi'jn}

(A12)



In real frequencies and on adding the K and K' contri-

butions, we got
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B. Eqguations of motion

In this appendix, we provide technical details of the

2 2 v - - - -
Tmy e () = Imyyy () = g HRTUR Az8(0—Az), Tmy==(0) —dgrivation and solution of the equations of motion for

16
(A13)

In agreement with the selection rules discussed in
Sec. IIC, only the resonance at £} = Ay is present.

The spin susceptibilities for both types of SOCs are
plotted in Fig. 2 of the main text.

b, Optical conductivity

The real part of optical conductivity is related to the

current-current correlation function via
Uﬂ ]
Reoz () = —-[ImIlG 7 () + Iml1G_ 5 ()], (A14)

where ImIT%/ %" (0)) is obtained by analytic continuation
of /X" (i0),,). For the case of Rashba SOC, we get

8 il N

density matrix. We follow the procedure of Refs. T 7
?  to obtain the system of equations for the dynamical
variables u(k,t), w(k,t), and Mys(k.t), parametrizing
the spin-valley part of density matrix (3.6d). We also in-
clude an ac magnetic field, applied along y-direction, in
our caleulation. This corresponds to adding the (time-
dependent) Zeeman term, dfp = AZ &, /2, to Eq. (3.3a).
From here and onwards, we will be suppressing the unity
matrices in the spin and valley spaces for brevity. Sub-
stituting 4£(k) and &i(k) from Egs. (3.3a)-(3.3d) and
(3.6a)-(3.6d), respectively, into Eq. (3.4), and linearizing
with respect to u, w, Myg and Az, we obtain an equation
for the spin-valley part of the density matrix:

i (u-€ +w- 1+ Magfals) = [08s0,u- € + W - + Magfals] + [

i

+ [5.-250, iTr’ d9

x {50’ - £) + W' .+ + M

(2p + Ap — i) (2p — Ag — illy)

. 2. TA
mE/E L - Ben _ Bi
P.p. (i) ETH.FFE 2u dp " 2p+ily Billpp (2p 4+ Ap + i) (2 — A + i) (B)
N iﬂn}t%_ 2u 4+ il | where 8850 =  dfsolk) 1 pen by Eq.o (3.3c),
4u (02 + JLE,_} 2u — iy {u,w, Mags} = { ), W(f, 1), Mag(8, 1)},

where A is the ultraviolet energy-cutoff of the Dirac spec-
trum. This results in

2 Ju+Ap 20— 2)2)

L=
Reoss(0) = [Amﬁiﬂ A5+ e

{w',w' Mz} = {u(@ i), w(#' i), Mos(#,£)}, and
# = 8 — &. The first, second and third terms on the
RHS of Eq. (BE1) can be written as

e{%ﬁsg%rm = [ — %Eg — %-szl?u . f +w-T+ Muﬁl'ﬁ:éﬂ]

}I.%_ -At = _ = M L. &
+@{e (2 — 2 — Ar) + © (@ — % + MR NR (S2ur — &z + Magfacapnty)
— iﬁ;{‘?zéguz — ‘Jtzfﬂuz + ‘Jﬁyfiwl — ‘?'151102 + Maﬁz'ﬁlfi

By rotational symmetry, o2.(12) = oyy(f}). In agreement
with the selection rules, the optical conductivity exhibits
a resonance at {} = A and continua starting at 0 =
2+ Ag,2u. For Ay = 0, the last equation 1= reduced
to the universal conductivity of ideal graphene equal to
(e2/4)0(2 — 2u).

For VZ S0C,
2 - B .
K/K' . ep | A il 2u+ Ay —id, iy
I/ (10, = — ot | L By

(A1T)
and the resulting optical conductivity is

2

Roozz(§2) = Rooyy () = - [0(2 — 2 — A7) + ©(2 — 25 +(82H)

In contrast to the case of Rashba SOC, there 1= no reso-
nance at {2 = Az but only continua at € = 2u + Az. For
Az = 0, the last equation is again reduced to the uni-
versal conductivity of ideal graphene. The conductivities
for both types of SOC are plotted in Fig. 3 of the main
text.

(B2a)

A . = AL . A5 .
Second term = Tz [€25in0 — €3 cos, —HEs — 4284

5o 18- 8)F2(@) + (- )G () + (+- '

aﬁlﬁgéfs }] 1

= —i).“ﬁ%.fi sin f + i3 %E_‘mﬂ (&3 5in 8 + £ cos @),

(B2b)
I — Az —ifly,

Dt rz+il, 8 3tz — il |

*.« ®
Third term = M Az

[ Ré-End, [ 5 {w P @+ v ne
6 .
S+ f E{(ui.fg — uf cos(F)€; + uf sin()é ) F(d)

+ (M} 7als — Mbg cos(9)faés + Mg sin

—iN f g{ ((uh cos() — b sin(#):€s — (upsin(9) + v cos(9))

+ (wityés — wité )G () + (2
(B2c)

'
a
A 7,

'Fu[él:a'ffls]



where en5y 1s the Levi-Civita symbol. At the next
step, we expand {u, w, Mag}(#.t) and {F*, G* H}#)
over a basis of angular harmonics, {u, w, M.z}, f) =
L €™ {u™, w™, MIP}(E) and {F*,G*,H}@) =
S €M FS G2 Hp}, to obtain a system of equations
for uEmj, 'wfm} and Mi?j. The subset of equations that

couples to an ac magnetic field reads

- If‘-'l'rt,—l
24 !

7 = g f ™ 405 RS — A,

, _ AN
a™ s [;{;"Ju;"ﬂ +1f£"‘3u;'"}] - R Om,1

g™ = = [RPM +in ™M

NP = 3[R + MG

14

R™ and R{™.

In the absence of the external magnetic field (A =
0), we obtain a 6 x 6 elgensystem for the frequencies
of coupled oscillations in the spin and valley-staggered
spin channels. Since the driving term contains only the
m = =1 harmonics, only the m = 41 modes can be
excited. Noting that F®_ = F} (and the same for H),
we only need to solve the system for one of the modes,
e.g., m= 1. The m = —1 mode is obtained from the m =
1 by changing i —+ —i. For the special case of A7 = 0,
when the spin and spin-valley sectors are decoupled, we
recover Eqs. (3.10a) and (3.10b) of the main text. The
full result for the frequencies of the m = +1 modes are
given in Eq. (3.12a) and (3.12b) of the main text. We see
that the dynamics of the m = +1 modes is controlled by
six Landau parameters: Fiy' 5 and Hp 4 o.

In EDSR, the system is perturbed by a weak, oscilla-

A% Mofy, jnplane electric field. The equations of motion are

R = XM 435 [ £ — i) 4

ME — [ ) ) fim)uém)]

2 2%
(B3)

where, for brevity, we introduced f'™ = 1+ F2 and
f™ =14 (F&%_, £ F%_,)/2, and similar definitions for

9 the samp as i Eq. (B3), except for now the A} terms
4 A3A; dm1 — 8,1 in equations for ™ MY and M{J" are absent, while

"the equation for ﬁ;m} acquires a driving term

*
B eAg

ﬁml_ﬁm—l
—2\E 2 1
2k

Em, 1+ *5111.,— 1
’ 2i ’

2

~ E, (B4)

! The range of the interaction is assumed to be smaller than
the Fermi wavelength but larger that the lattice constant,
such that electrons are not transferred between the valleys.

% Note that in the presence of an electromagnetic field, k

entering the kinetic equation is the canonical rather than
kinematic momentum?® .

* In recent literature, the sum of the Mott and Elliott-Yafet
contributions is often referred to as just “the Elliott-Yafet
contribution, which is not correct.
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