Spin-valley Silin modes in graphene with substrate-induced spin-orbit coupling
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In the presence of external magnetic field the Fermi-liquid state supports oscillatory spin modes
known as Silin modes. We predict the existence of the generalized Silin modes in a multivalley
system, monolayer graphene. A gauge- and Berry-gauge- invariant kinetic equation for a multivalley
Fermi liquid is developed and applied to the case of graphene with extrinsic spin-orbit coupling
(SOC). The interplay of SOC and Berry curvature allows for the excitation of generalized Silin modes
in the spin and valley-staggered-spin channels via an AC electric field. The resonant contributions
from these modes to the optical conductivity are calculated.

It has long been known that while spin waves in a
Fermi liquid are normally overdamped!, in the pres-
ence of a finite Zeeman field (a magnetic field acting
only on particle spins) there exist well-defined, gapped
spin collective modes of the Fermi-liquid state, the Silin
modes? 7. In multi-valley materials there may be ad-
ditional collective excitations of the Fermi liquid state,
beyond the charge and spin modes. These additional
modes are in general also diffusive in the time rever-
sal symmetric case®. However, in a finite Zeeman field
these modes may become oscillatory, generalizing the
notion of the Silin mode. The aim of this work is to
identify these combined spin-valley modes in graphene
and explore ways to excite them.

We predict a set of generalized Silin modes in
graphene, comprised of the spin density Silin mode as
well as a new valley-staggered Silin mode, which be-
come oscillatory in a finite in-plane magnetic field. The
mode frequencies differ from each other due to the dif-
ference between the corresponding Landau Fermi-liquid
constants. An effective coupling of an electromagnetic
wave to the new valley-staggered modes can be achieved
by engaging the spin-orbit coupling (SOC) induced by
a substrate, see, e.g.,”. Additionally, as is the case for
the usual Silin mode, SOC allows the generalized Silin
modes to be excited by the electric field of the wave; this
results in electric dipole spin resonance (EDSR) being
the dominant!'® '3 excitation mechanism.

We investigate the structure and frequencies of gen-
eralized Silin modes and find the corresponding reso-
nances in the conductivity tensor. The modes differ not
only by their frequency, but also by sensitivity to the
polarization of the EM wave exciting them, allowing
modes of different character to be selectively excited.

We consider a graphene sheet with spin-orbit cou-
pling induced by the substrate made, e.g., of a transition
metal dichalcogenide (TMD)?. In addition to SOC, the
substrate in general also induces gaps at Dirac points in
the graphene’s electronic spectrum. We assume the elec-
tron density is tuned away from the charge-neutrality
point, allowing us to apply the Fermi-liquid theory. The
system is subject to a static, in-plane magnetic field Hy

needed for the generalized Silin modes, and an AC field
E(t) probing them.

To describe the generalized Silin modes at long wave-
length we augment the theory of a multi-valley Fermi
liquid®'415 by including the effects of SOC and of the
external fields. To deduce the linear response to the
probe fields, we must first obtain the energy functional
with extrinsic spin-orbit coupling and applied Zeeman
field.

Model. In the presence of extrinsic spin-orbit cou-
pling, the single-particle Dirac Hamiltonian written
in the valley-sub-lattice basis (KA, KB,K'B,—K'A)
takes the form

Hy =vpp- S+ A%, 7, + A6, + Age. - (6 x2). (0.1)
Here 2, 7, and & are the vectors of Pauli matrices in
the spaces of sub-lattices (A, B), points K, K’ in the
Brillouin zone, and electron spin, respectively, and e, is
the unit vector in the z (out-of-plane) direction. In the
absence of SOC, the graphene spectrum is characterized
by the Dirac velocity vp and gap A; the valley-Zeeman
(M) and Rashba (AR) spin-orbit couplings arise from the
inversion symmetry breaking by and wave function hy-
bridization with the TMD substrate”. For definiteness,
we take the Fermi level to be in the upper band. If the
SOC couplings are small compared to the Fermi energy
(as measured from charged neutrality), we may perform
the projection onto the upper band perturbatively in A\g
and A, obtaining the effective single band Hamiltonian
(seel for details)
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with e, = \/v%p? + A? being the massive Dirac dis-
persion, ar(p) = vpAr/ep the effective Rashba cou-
pling, A(p) = A — )\%A/ef, the effecive valley-Zeeman
coupling, and where we have included the Zeeman en-
ergy due to external magnetic field H for particles with
effective Bohr magneton ps = gse/4m.c, where g; is the
Landé factor and m, is the free electron mass. A com-
plete description of the dynamics of the projected up-
per band also requires the evaluation of the Berry con-
nection, A, which consists of Abelian and non-Abelian



p@rts”:ls. To leading order in the Rashba term, we find
A=A,+A,+0 (a?j,-i), where Ay is the Abelian Berry
connection of gapped graphene, while the non-Abelian
part is given by

A; = —ar(p)2mv(ep) |5 (p) |6 .. (0.3)

Here, Q = Qfe, is the Berry curvature of gapped
graphene, Qf(p) = Fv)A/2€) with F corresponding to
the K (K') point, v(e) = ¢/2mv% is the density of states
of the graphene bands'®, and 0| = 0% + 6,y. The
tilde on apr indicates renormalization of the effective
Rashba strength which will be discussed below. The
valley-Zeeman term by itself does not give rise to a non-
Abelian Berry connection because it commutes with the
Dirac part of the Hamiltonian.

With Egs. (0.2) and (0.3) we are able to write a kinetic
equation for the projected upper band in the collision-
less limit2Y

L1 o 1. - s
0+ (VPV} + {DpF} +i[6,p] =0, (04)
where p is the density matrix, é is the (matrix) quasi-
particle energy functional, F is the total force (external
plus self-consistent) acting on a quasiparticle, and the
Berry covariant derivative is defined as!”:!®
Dj=V®§—1[A ] (0.5)
with V(®) denoting the gradient in momentum space.
The velocity and force appearing in Eq. (0.4) are gov-
erned by the quasiclassical equations of motion for the
band!®20,  As we are working in the 2D limit, the
non-Abelian Berry connection A is completely in plane,
while the non-abelian Berry curvature €2 is entirely out
of plane. Here, we will take take E, Hy to be in plane,
allowing the force and velocity terms to be simply writ-
ten as
vaDé FmeE - Ve (0.6)
Here we have noted that in Eq. (0.4) v multiplies V.
The latter appears in first order in E, so within the
linear response theory we can neglect terms of order E
in v.

The system of Egs. (0.4) and (0.6) provides a gauge-
and Berry-gauge-invariant description of the dynamics
of the system. As such, it is a convenient launching
point to incorporate the interplay between band topol-
ogy, spin orbit coupling, and Fermi-liquid effects.

The quasiparticle energy functional is found by com-
bining Eq. (0.2) with the interactions allowed by the
approximate SU(2) spin and U(1) valley symmetries of
gapped graphene® 419
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(0.7)

where 7 ; are the 7, and 7, components of 7, and index
1 is summed over ¢ = x,y. Here we have decomposed
the density matrix in terms of symmetry distinguished
channels,

pp="p+8p-0+Yp - T+M, 67, (0.8)
and fgp, are the Landau-Fermi liquid interaction func-
tions associated with the channel. The collective vari-
ables in Eq. (0.8) are the densities of: charge n, spin
s, valley pseudo-spin Y, and spin-triplet valley pseudo-
spin M*.

Before considering the collective modes, we must
identify the equilibrium density matrix. The equilib-
rium occupations in the spin and valley-spin channels
are due to the presence of the external Zeeman field and
Rashba coupling for the former, and valley-Zeeman cou-
pling for the latter. We consider the case where the ther-
mal, spin-orbit, and magnetic energy scales are small
compared to the Fermi energy with respect to the band
edge, T, usHo, \, \p < Er — A. In direct analogy with
the standard computation of the spin magnetic moment
of the Fermi liquid2':?2, the equilibrium density matrix
is given by Eq. (0.8) with!'¢

Neq,p = NF(€p), Yeqp =0

87’LF 1 ~ ~
Seap = T 5 (2M5H0 — ag(p)p X ez) , (0.9)
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Here, np is the Fermi function of the local excitation
energy in the absence of SOC and magnetic field given
by & = €p + 2y fimp(éy)?, and e is defined in
Eq. (0.2). fis, @(p), and A(p) are, respectively, the
renormalized by interaction effective spin magnetic mo-
ment, Rashba SOC strength??, and valley-Zeeman SOC
strength:

~ Hs ~ OéR(p) e A(p)
Ao = T Fe ar(p) T+ By (p) T e
(0.10)
The Landau Fermi-liquid parameters in Eq. (0.10) are
d¢ d¢’

Fl”:GSGUVF/ggf“(pp,p};)e_”(‘ﬁ_gﬁ), (0.11)
where ¢, ¢’ are the azimuths of the respective mo-
menta on the Fermi circles in valleys K and K’ and
w=d,s,v||,vz,m||,mz; also, vp is the density of states
at the Fermi surface, and G5 and G, are the spin and
valley degeneracy, respectively.

Following the above considerations, we write the equi-
librium energy €eq = €[Peq] as

-6+ A6,7,.
(0.12)

Linear response. To find the EDSR response of the
system, we need to keep only linear-order terms in the

R . 1. -
€eq = €p — <2IJSHO —agr(p)(p x eZ))



electric field. We thus linearize the kinetic equation
(0.4) in the deviation from equilibrium g = g + dp:

acéﬂ‘ 1+ E‘G" . [{1}’5,}} — {IEE,D;JHI]‘] + 'i'[Eeq?'EP]

— —eE-Dpog, (0.13)

where we have defined the first-order correction to
the quasiparticle energy from fluctuations in terms of
the the Fermi-liquid interactions 8¢ = é&pp[df] (cf
Eq. (0.7)), and the local deviation from equilibrium
dp = 8p — (Onp [Oe)dé.

From Eq. (0.13) we obtain the conductivity as follows.
First, by taking the trace of Eq. (0.13) and integrating

it over momentum, we find the continuity equation,
€Y tr8p+V-eY tr(Vpdp— 3Dpeg) =0, (0.14)
P P
which allows us to identify the longitudinal charge cur-

rent as

=€) tr(Vpdp— 6eDjeg) .
P

(0.15)

Using the equilibrium energy Eq. (0.12) and density ma-
trix of Eq. (0.9) allows us to write the spin contribution
to the longitudinal current (to order oF; and lowest or-
der in Afw;). Expanding the dynamic variables into the
angular harmonics on the Fermi surface,

in -
dsp = _T: Z 5",
(0.16)
MZ 1I¢
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we write the current as™

. - 1 2N
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o

where eg,; = e; + iey and

(=142 VEr 2
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"= (0.18)

Note that the presence of (3] in Eq. (0.17) indicates
the important role of the Berry curvature in driving the
valley-staggered modes (see also Fig. 1).

With an expression for the current in terms of 45 we
can solve the homogeneous q — 0 limit of Eq. (0.13)
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FIG. 1. (Color onling) Lefi: Electron dipole spin resonance
driven by an electromagnetic wave. The regular, jo o E, and
anomalous, jo o {2 = E, currents at the K (orange) and K'
(purple) points in the Brillouin zone, induced by the electric
field E of the incident electromagnetic wave. Here, {2 is the
valley-staggered Berry curvature. Right: Anomalous fields
and torques. Spins are initially polarized along the Zeeman
field Hy. The anomalous current-induced effective Rashba
fields, ha o age: ¥ jo. produce valley-specific torques Ta o
H; x h,, thus exciting the valleyv-staggered spin mode with
an intensity proportional to |E = H)|.

for 45, obtaining a linear relationship between j and
E, and thus read off the dissipative part of the optical
conductivity tensor.

In the ahsence of SOC and driving, the homogenecous
limit of Eq. (0.13) is simply

848 + i[Eaq, 67] = 0.

In the spin and valley-spin sectors, this gives the equa-

(0.19)

tions2®
- ~ 1+ FF
0:08 — waer X 05 y gl 1+F,§ |.f-"-5 DI: {Dm:l

ﬁ‘;ﬁf — Wpi€r X ﬁf =0, wm =mws.
Here 48 corresponds to long wave-length spin-density
modulations, while dM* describes spin-density modula-
tions on length scale |K — K'|~! corresponding to the
separation between wvalleys in the Brillouin zone. As
in the case of the conventional Silin mode?, the mode
frequencies are renormalized away from the Zeeman fre-
quency by the Fermi-liquid parameters, with the excep-
tion of the [ = () mode frequency, which is protected by
SU(2) symmetry (see Ref. 16, 24, and 27 for how this
1s modified by valley-Zeeman SOC).

Conductivity resonances. Without SOC, the reso-
nant finite frequency modes are not excited by an ex-
ternal electric field. However, upon introduction of the
Rashba coupling, three modes may be resonantly ex-
cited, namely, the | = 0 spin and valley-staggered spin
modes, and the | = £2 spin mode.

The mechanism of driving can be understood as fol-
lows. Initially, all particle spins are polarized along
the external Zeeman field, which we take to be along
the e; axis. Upon application of an external field E{f)



the particle spins feel an effective magnetic field due to
the Rashba term h o e, x j'®2® and therefore a spin
torque?®3°, T e, xh = e,j,. The 2 component of the
current j, is composed of regular and anomalous pieces,
shown in the left of Fig. 1,

e2NE,

2 z
o € NQGE,,

Jo(w) = — (0.21)
where N is the number density, m* = pp/vp and
VF = €plp=pr- The first of these terms creates iden-
tical torques in both valleys, while the second one, be-
ing proportional to the Berry curvature, yields valley-
staggered torques depicted in the right of Fig. 1. Thus,
the component of E along Hy causes a valley-uniform
torque on the spin, exciting the spin mode, s, while
the component of E transverse to Hy causes a valley-
staggered torque, and thus excites the valley-staggered
spin mode, dM?. Because the charge-to-spin conversion
in both cases is proportional to the Rashba coupling,
this leads to contributions to the conductivity propor-
tional to a%,/. Furthermore, the Sy mode contributes to

o®® while the Mg mode contributes to o¥¥.

In the interacting case, the basic physical picture re-
mains the same, but the quantities involved are renor-
malized. The resonant contributions to the dissipative
part of the conductivity can be written as (see Ref. 16)

| y
Reo? ziﬂeQGsG,UVFd%Wf’Aml (w?),

P | .
Reoy =§W62GSGUVF&%W51ASO(w2), (0.22)

1
Reoy :§7T€2GSGUVF&?%W2ASQ(W2)

where A,1(w?) = wud(w? —w?)) is the spectral func-
tion for the relevant mode and W}* is a dimensionless
peak weight (i = z,y). Here the lack of indices on
o9 indicates that the |l|] = 2 contribution is isotropic,
03" = 04¥ = 09, and it is understood that the total
conductivity is the sum of the three lines in Eq. (0.22).
Solving Eq. (0.13) in the homogeneous limit and sub-
stituting the result into Eq. (0.17) we find, to order o%
and without the valley-Zeeman term,

. i . Ws1
lim W{* =0, lim WJ* =
fule! " Abo 0 CQwso’
lim W¥ = (2rvp|QZ])° Wi _ 0.23
A—0 0 R W (0.23)

. s 1 Ws1
}\E}I%)W2 =2 <1 + F; 2() (1 2%2) .
Here we explicitly see that the contribution from the
I = 0 modes has the strong anisotropy discussed above,
while the |{| = 2 contribution is isotropic.

Experiment shows that valley-Zeeman coupling is
generally also present3!33.  The inclusion of the
valley-Zeeman coupling causes a valley-staggered spin
torque, which adds to the undriven equations of mo-
tion, Eq. (0.20), a term coupling 8; and éMj. This

leads to a modification of the weights in Eq. (0.23). Ad-
ditionally, the valley-Zeeman term allows to excite the
valley-staggered spin mode in the |I[| = 1 channel with
frequency wy,1. This is simply because there is now a
uniform net valley-staggered spin density (cf. Eq. (0.9))
thus |I] = 1 deformation of the Fermi surface caused by
the electric field also leads to an |I| = 1 modulation of
valley-staggered spin 3*. To lowest non-trivial order in
the valley-Zeeman coupling A, the weights in Eq. (0.22)
are modified to

Wit =2A(1 + Fy)2mvr Q)
1 | 1+F;
T S Nt U A
% ( + 271 1+Féﬂz>( 71)7
WY =2X(1+ F})2mve|Q3],
oot — o 1 _, 1+F}
——— (=) (1+5M T7m:
- |:Wm0wml+( %)( +2% 1 £

we :Q;Jls + 2X\2mvp|Q5]) (14 Ff — Q)

Ws

2
Wino

wyY :27TVF|QS|{27TVF|Q(Z)|HF8TLZ
Ws1 — Wmo N 1 <:| X
Wmo — Wm1 1+F(')mz '
(0.24)
while W5 remains unchanged. Note that there are two
qualitatively different contributions to Wj. One gives
Wi* and the second term in WY (which are identical)
and comes from coupling of the |I| = 1 6M? mode to
the |{| = 1 spin zero-mode 0§;—+1, with magnetization
parallel to Hy, via the valley-Zeeman SOC. The other
term, corresponding to the first term of W'Y, arises from

+2Xk1+ﬁrﬂ

conversion of the I = 0 {M? mode into the |I| = 1 mode
via the Rashba SOC, which carries angular momentum
1. Both of these processes can only occur in the pres-
ence of interactions — specifically when F{"* # F} and
Fm# £ Fi"# respectively®® — and arise due to the differ-
ent effective magnetic moments for Zeeman vs valley-
Zeeman fields.

Discussion. It should be noted that these modes may
be driven as well by an AC magnetic field. Indeed,
as discussed above, EDSR may be interpreted as being
due to an effective Zeeman field created by the exter-
nal electric field and Rashba coupling'®'3. The relative
strength of EDSR driving compared to driving by an AC
magnetic field is of the order of the ratio of atomic en-
ergy scale to driving frequency E,;/w >> 135, confirming
the leading role of SOC in driving the modes!!:?4.

The visibility of the generalized Silin modes in the op-
tical conductivity will be determined by the broadening
of the Silin mode peaks, as well as by the extent of the
Drude peak tail. In principle, this depends on two dif-
ferent relaxation times, the momentum relaxation time
7 and spin relaxation time 7,. We may approximate the
effect of the spin relaxation on the Silin mode peaks by
broadening the §-function peak to a Lorentizan of width
77 1. Doing so, one may compute the ratio of the absorp-



tion peak height to the background Drude conductivity.
Writing the latter as op(w) = €2G,G,vrD/(1 — iwT)
with diffusion constant D = v47(1+ F¢)/2, we can ex-
press the ratio of the resonant to Drude parts of the
conductivity as

Reopes(w = w;) 1+ (w;T)? d% 7. W;

v T 1+ Y

~

= 2
Reop(w = w;) 2 (025)

where W; is the weight of the J-function for a res-
onant mode, cf. Egs. (0.22) and (0.24). The ratio
Ts/Tp, extracted from weak anti-localization measure-
ments in graphene on TMD, varies between different
studies® 3173337 To be specific, we take 7, ~ 7 ~ 1 ps32.
Then the resonant contribution is enhanced by apply-
ing a strong in-plane magnetic field (Hy > 10T) and
also by choosing a material with larger &g. From the
beatings of Shubnikov-de Haas oscillations in bilayer
graphene on WSe, one extracts Ag = 10 — 15meV?;
then ar/vp ~ Agr/Er ~ 0.1.

To conclude, in this work we have shown that in the
presence of an external magnetic field the normally dif-

fusive spin-valley modes of graphene evolve into well-
defined oscillatory modes with frequency set by the
Larmor frequency, and Landau-Fermi liquid parame-
ters, see Eq. (0.20). The modes are a generalization
of the Silin mode to multi-valley materials. They can
be probed via electric dipole spin resonance (EDSR)
in the presence of extrinsic spin-orbit coupling. Fur-
thermore, certain modes may be selectively excited by
changing the polarization of applied F fields, leading to
anisotropy of the optical conductivity, see Eqgs. (0.22)-
(0.24).

ACKNOWLEDGMENTS

Authors acknowledge discussions with H. Bouchiat,
A. Kumar, S. Maiti, J. Meyer, O. Starykh, and T. Waka-
mura. This work was supported by NSF DMR-2002275
(LG), DMR-1720816 (DM), and the Yale Prize Post-
doctoral Fellowship in Condensed Matter Theory (ZR).
We acknowledge hospitality of KITP UCSB, supported
by NSF PHY-1748958, (LG, DM) and LPS, University
Paris-Sud, Orsay, France (DM).

! Evgenij M. Lifshitz and Lev P. Pitaevskii, Statistical

Physics. Part 2. Theory of the Condensed State, reprinted

ed., Course of Theoretical Physics No. by E. M. Lifshitz

and L. P. Pitaevskii; Vol. 9 (Elsevier, Oxford, 2006) p.

387.

V. P. Silin, “Oscillations of a Fermi-liquid in a magnetic

field,” Sov. Phys. JETP 6, 945-950 (1958).

3 P. M. Platzman and W. M. Walsh, “Fermi-liquid effects
on plasma wave propagation in alkali metals,” Phys. Rev.
Lett. 19, 514 (1967).

4 Sheldon Schultz and Gerald Dunifer, “Observation of spin
waves in sodium and potassium,” Phys. Rev. Lett. 18, 283
(1967).

5 D. Candela, N. Masuhara, D. S. Sherrill, and D. O. Ed-
wards, “Collisionless spin waves in normal and superfluid
3He,” J. Low Temp. Phys. 63, 369 (1986).

8 F. Baboux, F. Perez, C. A. Ullrich, I. D’Amico, G. Kar-
czewski, and T. Wojtowicz, “Coulomb-driven organiza-
tion and enhancement of spin-orbit fields in collective spin
excitations,” Phys. Rev. B 87, 121303(R) (2013).

7 F. Baboux, F. Perez, C. A. Ullrich, G. Karczewski, and
T. Wojtowicz, “Electron density magnification of the col-
lective spin-orbit field in quantum wells,” Phys. Rev. B
92, 125307 (2015).

8 Zachary M. Raines, Vladimir I. Fal’ko, and Leonid I.

Glazman, “Spin-valley collective modes of the electron

liquid in graphene,” Phys. Rev. B 103, 075422 (2021).

Zhe Wang, Dong-Keun Ki, Jun Yong Khoo, Diego Mauro,

Helmuth Berger, Leonid S. Levitov, and Alberto F. Mor-

purgo, “Origin and Magnitude of ‘Designer’ Spin-Orbit

Interaction in Graphene on Semiconducting Transition

Metal Dichalcogenides,” Phys. Rev. X 6, 041020 (2016).

E. I. Rashba, “Combined resonance in semiconductors,”

Sov. Phys. Uspekhi 7, 823 (1965).

1 B. I. Rashba and A. L. Efros, “Orbital mechanisms of

10

electron-spin manipulation by an electric field.” Phys Rev

Lett 91, 126405 (2003).

Mathias Duckheim and Daniel Loss, “Electric-dipole-

induced spin resonance in disordered semiconductors,”

Nat. Phys. 2, 195-199 (2006).

Saurabh Maiti, Muhammad Imran, and Dmitrii L.

Maslov, “Electron spin resonance in a two-dimensional

Fermi liquid with spin-orbit coupling,” Phys. Rev. B 93,

045134 (2016).

1 1. L. Aleiner, D. E. Kharzeev, and A. M. Tsvelik, “Spon-

taneous symmetry breaking in graphene subjected to an

in-plane magnetic field,” Phys. Rev. B 76, 195415 (2007).

Maxim Kharitonov, “Phase diagram for the N=0 quan-

tum Hall state in monolayer graphene,” Phys. Rev. B 85,

155439 (2012).

16 «Supplemental Material,” (2021).

7 Dimitrie Culcer, Yugui Yao, and Qian Niu, “Coherent
wave-packet evolution in coupled bands,” Phys. Rev. B
72, 085110 (2005).

8 Dj Xiao, Ming-Che Chang, and Qian Niu, “Berry phase

effects on electronic properties,” Rev. Mod. Phys. 82,

1959-2007 (2010).

The Berry connection will only enter the collective mode

equations of motion evaluated at the Fermi surface. Thus

in what follows, we set p = pr and suppress the momen-
tum arguments.

Eldad Bettelheim, “Derivation of one-particle semiclassi-

cal kinetic theory in the presence of non-Abelian Berry

curvature,” J. Phys. Math. Theor. 50, 415303 (2017).

21 P. Nozieres and D. Pines, Theory Of Quantum Liquids,

Advanced Books Classics (Avalon Publishing, 1999).

Gordon Baym and Christopher Pethick, Landau Fermi-

Liquid Theory: Concepts and Applications, 1st ed. (Wi-

ley, 1991).

Only interactions in the density channel contribute to this

12

13

15

19

20

22

23


http://dx.doi.org/ 10.1103/PhysRevLett.19.514
http://dx.doi.org/ 10.1103/PhysRevLett.19.514
http://dx.doi.org/ 10.1103/PhysRevLett.18.283
http://dx.doi.org/ 10.1103/PhysRevLett.18.283
http://dx.doi.org/ 10.1103/PhysRevB.87.121303
http://dx.doi.org/ 10.1103/PhysRevB.92.125307
http://dx.doi.org/ 10.1103/PhysRevB.92.125307
http://dx.doi.org/10.1103/PhysRevB.103.075422
http://dx.doi.org/10.1103/physrevx.6.041020
http://dx.doi.org/10.1103/PhysRevLett.91.126405
http://dx.doi.org/10.1103/PhysRevLett.91.126405
http://dx.doi.org/10.1038/nphys238
http://dx.doi.org/10.1103/physrevb.93.045134
http://dx.doi.org/10.1103/physrevb.93.045134
http://dx.doi.org/10.1103/physrevb.76.195415
http://dx.doi.org/10.1103/physrevb.85.155439
http://dx.doi.org/10.1103/physrevb.85.155439
http://dx.doi.org/ 10.1103/PhysRevB.72.085110
http://dx.doi.org/ 10.1103/PhysRevB.72.085110
http://dx.doi.org/10.1103/revmodphys.82.1959
http://dx.doi.org/10.1103/revmodphys.82.1959
http://dx.doi.org/10.1088/1751-8121/aa8899
http://dx.doi.org/10.1002/9783527617159
http://dx.doi.org/10.1002/9783527617159

24

25

26

27

28

29

30

31

term as in the absence of SOC and Zeeman fields np is
the only non-zero collective coordinate in Eq. (0.7).

A. Shekhter, M. Khodas, and A. M. Finkel’stein, “Chiral
spin resonance and spin-Hall conductivity in the presence
of the electron-electron interactions,” Phys. Rev. B 71,
165329 (2005).

As with the Berry connection Eq. (0.3) all functions of
the magnitude of the momentum are here evaluated at
p = pr. We have suppressed the momentum argument of
such functions for compactness, e.g. ar = ar(pr).
1
Note we use the relations 05, = (1 + F°)d8; , M, =
1+ Flmz)(SMf to write Eq. (0.20) entirely in terms of
unbarred quantities. The Fermi liquid parameters are
absorbed into the definition of the mode frequencies
Wsly Wml-

Dibya Kanti Mukherjee, Arijit Kundu, and H. A. Fer-
tig, “Spin response and collective modes in simple metal
dichalcogenides,” Phys. Rev. B 98, 184413 (2018).

D. A. Pesin and A. H. MacDonald, “Quantum kinetic the-
ory of current-induced torques in Rashba ferromagnets,”
Phys. Rev. B 86, 014416 (2012).

A. Manchon and S. Zhang, “Theory of spin torque due to
spin-orbit coupling,” Phys. Rev. B 79, 094422 (2009).

I. A. Ado, Oleg A. Tretiakov, and M. Titov, “Microscopic
theory of spin-orbit torques in two dimensions,” Phys.
Rev. B 95, 094401 (2017).

T. Wakamura, F. Reale, P. Palczynski, S. Guéron,
C. Mattevi, and H. Bouchiat, “Strong Anisotropic Spin-

32

33

34
35

36

37

Orbit Interaction Induced in Graphene by Monolayer
WS_{2}.” Phys Rev Lett 120, 106802 (2018).

Simon Zihlmann, Aron W. Cummings, Jose H. Garcia,
Mité Kedves, Kenji Watanabe, Takashi Taniguchi, Chris-
tian Schonenberger, and Péter Makk, “Large spin relax-
ation anisotropy and valley-Zeeman spin-orbit coupling
in WSe2/graphene/h-BN heterostructures,” Phys. Rev.
B 97, 075434 (2018).

T. Wakamura, F. Reale, P. Palczynski, M. Q. Zhao,
A. T. C. Johnson, S. Guéron, C. Mattevi, A. Ouerghi,
and H. Bouchiat, “Spin-orbit interaction induced in
graphene by transition metal dichalcogenides,” Phys.
Rev. B 99, 245402 (2019).

For a more technical treatment see Ref. 16.

The apparent divergence at wmo = wm1 is an artifact
of the perturbation theory in A\ breaking down, as it is
controlled by A/(wui — wprr).

The relative strength of the magnetic driving com-
pared to the electric driving is determined by the ra-
tio the magnetic and electric couplings®® (ear/w)/ps =
({c/vp¥AR]/w)(mevd /gsEr). The SOC constant Ag is
smaller than the characteristic atomic energy scale FEa
by the ratio of atomic velocity to speed of light, ~
vat/c. Therefore, the fraction (¢/vp)Ar/w is of the order
Eat/w > 1.

Zhe Wang, Dong-Keun Ki, Hua Chen, Helmuth Berger,
Allan H. MacDonald, and Alberto F. Morpurgo, “Strong
interface-induced spin-orbit interaction in graphene on
Ws2,” Nat. Commun. 6, 8339 (2015).


http://dx.doi.org/10.1103/PhysRevB.71.165329
http://dx.doi.org/10.1103/PhysRevB.71.165329
http://dx.doi.org/10.1103/PhysRevB.98.184413
http://dx.doi.org/10.1103/PhysRevB.86.014416
http://dx.doi.org/ 10.1103/PhysRevB.79.094422
http://dx.doi.org/ 10.1103/physrevb.95.094401
http://dx.doi.org/ 10.1103/physrevb.95.094401
http://dx.doi.org/ 10.1103/PhysRevLett.120.106802
http://dx.doi.org/ 10.1103/PhysRevB.97.075434
http://dx.doi.org/ 10.1103/PhysRevB.97.075434
http://dx.doi.org/10.1103/physrevb.99.245402
http://dx.doi.org/10.1103/physrevb.99.245402

	Spin-valley Silin modes in graphene with substrate-induced spin-orbit coupling
	Abstract
	Acknowledgments
	References




