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Abstract. In this note we study a new class of alignment models with self-propulsion and Rayleigh-
type friction forces, which describes the collective behavior of agents with individual characteristic
parameters. We describe the long time dynamics via a new method which allows us to reduce anal-
ysis from the multidimensional system to a simpler family of two-dimensional systems parametrized
by a proper Grassmannian. With this method we demonstrate exponential alignment for a large
(and sharp) class of initial velocity configurations confined to a sector of opening less than π.

In the case when characteristic parameters remain frozen, the system governs dynamics of opin-
ions for a set of players with constant convictions. Viewed as a dynamical non-cooperative game,
the system is shown to possess a unique stable Nash equilibrium, which represents a settlement
of opinions most agreeable to all agents. Such an agreement is furthermore shown to be a global
attractor for any set of initial opinions.

1. Introduction and preliminaries

In the mathematical theory of emergent dynamics it is often difficult to analyze systems that
incorporate several counteracting forces. Yet, it is imperative to study multi-forced dynamics
for application in complex biological or social systems. The famous C. Reynolds 3Zone model,
which includes a trinity of repulsion-alignment-attraction forces, lays a basis for realistic computer
simulation of flocks, [23]. A combination of self-propulsion, Rayleigh’s friction, and mutual attrac-
tion/repulsion proposed by D’Orsogna et al. [5] produces milling and double milling patterns –
natural formations in biological swarms such as schools of fish. Many other examples are discussed
in these comprehensive surveys [1, 2, 3, 5].

Inclusion of alignment mechanisms into multi-forced systems has become the subject of many
recent studies. The basic framework for alignment dynamics is provided by the classical Cucker-
Smale system introduced in [8, 9]:

(1)


ẋi = vi, xi ∈ Rn,

v̇i =
N∑
j=1

mjφ(xi − xj)(vj − vi) + Fi, vi ∈ Rn.

Here, xi’s are agents, mi’s are masses (which can be interpreted as influence strengths), vi’s are
velocities, and φ stands for a radial positive decreasing smooth function encoding communication
protocol between agents. For example,

φ(r) =
λ

(1 + r2)β/2
, λ, β > 0.

Singular kernels and more complex topological kernels have been studied in [4, 13, 19, 20, 28, 29].

Date: May 14, 2021.
1991 Mathematics Subject Classification. 92D25, 35Q35.
Key words and phrases. Cucker-Smale system, Rayleigh friction, Brouwer topological degree, Lojasiewicz’s gradi-

ent inequality, opinion dynamics, non-cooperative games, Nash equilibrium.
Acknowledgment. This work was supported in part by NSF grant DMS-1813351.

1



2 DANIEL LEAR, DAVID N. REYNOLDS, AND ROMAN SHVYDKOY

Dynamics under confinement or potential interaction forces Fi = − 1
N

∑
j ∇xiU(xi − xj) was

described in detail by Shu and Tadmor [24, 25], see also [27] for multi-scale flocks, where flocking
and aggregation was established for global convex attraction potentials U . Earlier, a repulsive force
with kinetic prefactor

Fi = − 1

N

√
V2

N∑
j=1

∇xiU(xi − xj), V2 =
1

N2

N∑
i,j=1

|vi − vj |2,

was proposed by Cucker and Dong [7] as a way to avoid collisions yet achieve flocking behavior.
We note that no N -independent results are known either for pure repulsive potentials or the 3Zone
model. However, alignment with an N -dependent rate (reflecting a small crowd case) can be
achieved for non-degenerate communication, see Kim and Peszek [17], and for degenerate commu-
nication, see Dietert and Shvydkoy [12] and text [26]. Closer to the subject of this present work,
S.Y. Ha, T. Ha and J.H. Kim [14], consider Cucker-Smale system (1) with self-propulsion and
Rayleigh’s friction force, Fi = (α − β|vi|2)vi, showing alignment of solutions lying in the positive
coordinate sector vi ∈ Rn+ under absolute communication inf φ > 0. This result will be broadly
extended in Theorem 1.1 below.

In this paper we consider the Cucker-Smale system with friction and self-propulsion forcing which
takes into account individual characteristics of agents:

(2) Fi = σ(θi − |vi|p)vi,

here σ is a strength parameter, θi > 0 is the characteristic parameter of the i’th agent which
reflects either a permanent or slowly changing property. The power p > 0 in the friction is kept
arbitrary to allow flexibility of interpretation of the parameters. For example, p = 1 corresponds to
characteristic speeds, p = 2 corresponds to energies, etc. We further supplement system (1) with
an alignment evolution of the characteristic parameters:

(3) θ̇i = κ
N∑
j=1

mjφ(xi − xj)(θj − θi), θi ∈ R+,

where κ is either 0 in the case of a model with permanent values of θ’s, or positive for changing
values. Although our analysis does not depend on the size of κ in the latter case, the particular
application we have in mind presumes κ small to reflect a slow change of θ’s compared to more
dynamical quantities vi.

Our study is split into two radically different cases: κ > 0 and κ = 0. In the case κ > 0 the
values of characteristic parameters are converging at a slow rate towards their conserved average

d

dt
θ̄ = 0, θ̄ =

N∑
i=1

miθi.

So, the forces themselves behave asymptotically similar to Fi ∼ σ(θ̄ − |vi|p)vi. These counter the
effects of alignment, however, when velocities point in opposite directions vi ∼ −vj . If communi-
cation φ is weak, the alignment force may never overcome the self-propulsion. Such limitation on
the dynamics of alignment for general solutions has already been recognized by Ha et al [14], see
Example 3.1 below. However, for solutions confined to a conical sector vi ∈ Σ lying above a hy-
perspace, i.e. of angular opening less than π (this condition is preserved by the sectorial maximum
principle, see Lemma 2.1), such configuration is not possible. Hence, the alignment effects become
dominant. Indeed, we prove exactly this statement under the classical Cucker-Smale assumption
on communication kernel.
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Theorem 1.1. Let κ > 0, and suppose the kernel satisfies

(4) φ(r) >
λ

(1 + r2)β/2
, β 6 1.

Then every sectorial solution to system (1)-(2)-(3) aligns and flocks exponentially fast to a pair

(v̄, θ̄) with |v̄| = θ̄1/p:

max
i

{
|vi(t)− v̄|+ |θi(t)− θ̄|

}
6 Ce−δt,

diam{xi(t)}Ni=1 6 D̄ <∞, and xi(t)− xj(t)→ x̄ij ,

where δ > 0 is proportional to κ.

Example 4.4 shows that the fat tail condition (4) is sharp for sectorial solutions, just as it is sharp
in the classical case, see [26]. Note that due to lack of conservation of momentum, the direction of
the vector v̄ cannot be determined from initial data, and is thus an emergent property of dynamics.

The proof of Theorem 1.1 is based on a new Grassmannian reduction method. We seek to
eliminate the longitudinal forcing Fi by considering a system for angles cos(γij) = vi · vj/|vi||vj |.
The resulting alignment term, however, loses the same diffusion property as the original one in
multi-D, but it does retain it in 2D. We thus project the system onto 2D planes Π, obtaining a
family of Cucker-Smale type systems, parametrized by a subgroup of the Grassmannian G(2, n).
We achieve angular alignment on each plane, and conclude by a geometric argument uplifting the
dynamics to the original system. With the angular alignment at hand we make another radial

reduction of the system by looking at the evolution of R = maxi′,i′′
|vi′′ |2
|vi′ |2

. Bootstrapping on the

rate of convergence R → 1 we achieve exponential radial alignment as well.
For permanent characteristic parameters, when κ = 0, the same Grassmannian reduction applies

to show that all sectorial solutions converge to a fixed ray vi/|vi| → ṽ ∈ Sn−1. Thus, the dynamics
becomes essentially 1-dimensional, tracking the values of speeds |vi| = yi > 0. The rest of the
dynamics becomes radically different from the k > 0 case. Since θi’s remain constant one does not
expect to obtain convergence to the same values yi → y∗i . Thus, the flock will inevitably spread out.
So, to preserve the balance of forces one is led to consider strong communication at a long range,
inf φ > 0. For simplicity we further strip the dependence on position variables xi by considering
uniform kernel φ = 1, in which case the system for the speeds of agents in the one-dimensional case
reduces to

(5) ẏi =

N∑
k=1

mk(yk − yi) + σ(θi − ypi )yi.

Notice that a remainder has to be added in higher dimension, see (23). This scalar system represents
a model of opinion dynamics in which opinions yi’s change to achieve the best agreement given a
set of fixed conviction values θi’s. Somewhat similar to the classical Hegselmann-Krause model [15]
(see also [10, 11]), our system differs substantially in that latter aspect – with varying conviction
values the limiting agreement may not necessarily be a full consensus y∗1 = · · · = y∗N . We will argue
that an agreement y∗ can be interpreted as a Nash equilibrium, see [21], for the non-cooperative
game of N players aiming to maximize the corresponding pay-offs

(6) pi(y) = σ

(
1

2
θiy

2
i −

1

p+ 2
yp+2
i

)
− M

2
(ȳ − yi)2 , ȳ =

1

M

∑
j

mjyj .

Our main result shows that y∗ exists, is unique, and is a global attractor for the system.

Theorem 1.2. For any positive set of parameters (θ,m, σ) ∈ RN+ × RN+ × R+ there exists a

unique stable Nash equilibrium y∗ ∈ RN+ of system (5). Moreover, any positive solution y(t) ∈ RN+
converges to y∗ as t→∞.
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In Theorem 5.1 we show that in fact (5) captures dynamics of the general multi-dimensional
case: any sectorial solution to (1) - (2) with κ = 0 and φ ≡ 1 settles along a ray with speeds given
by the values of the Nash equilibrium: vi → y∗i ṽ, ṽ ∈ Sn−1.

The proof incorporates several new tools in the context of collective behavior models including the
Brouwer topological degree and Lojasiewicz-Simon gradient method. We note that the convergence
is not a consequence of the classical Lyapunov theory as the orbits may undergo slow transient
dynamics before settling near the equilibrium.

The paper is organized as follows. In Section 2 we explore basic properties of the system and its
solutions, including the important Sectorial Maximum and Minimum Principles. In Section 3 we
consider the general case of absolute communication inf φ > 0 and positive coupling κ > 0, and show
unconditional alignment of any solution if the communication is strong enough to overcome adverse
velocity directions, see Theorem 3.4. Our scheme here follows that of [14] but with generalizations
related to arbitrary characteristic parameters and p > 0. The main result of Section 4 is alignment
of sectorial solutions and proof of Theorem 1.1 via Grassmannian reduction. Section 5 is devoted
to the study of opinion dynamics and proof of Theorem 1.2.

We commonly use bold notation for various vectorial quantities, such as v,x ∈ Rn, but also for
collective designation of parameters of the system

θ = (θ1, . . . , θN ), m = (m1, . . . ,mN ).

The following shortcuts are used throughout

xij = xi − xj , vij = vi − vj , φij = φ(xi − xj).

We denote by | · | the Euclidean norm on Rn for definiteness, although our results do not depend
on this particular choice. And we use ‖ · ‖ to denote the Euclidean norm on RN . We use tildes as
in r̃ = r

|r| to denote unit vectors.

2. Preliminaries, sectorial principles

Let us note a few basic properties of the system (1)-(2)-(3), which we will write in full here for
future reference

(7)



ẋi = vi, xi = 〈x1
i , . . . , x

n
i 〉 ∈ Rn,

v̇i =
N∑
j=1

mjφ(xi − xj)(vj − vi) + σ(θi − |vi|p)vi, vi = 〈v1
i , . . . , v

n
i 〉 ∈ Rn

θ̇i = κ

N∑
j=1

mjφ(xi − xj)(θj − θi), θi ∈ R+.

The system has mirror symmetry under transformation for each k = 1, . . . , n,

vki → −vki , θi → θi, xki → −xki , ∀i = 1, . . . , N.

The system is rotationally invariant: for any orthogonal transformation U ∈ O(n),

(8) vi → Uvi, xi → Uxi, θi → θi

is another solution.
Looking at other dynamically changing quantities, we note that the alignment force is dissipative,

but the self-propulsion mechanism can increase the energy if θ’s are high and |vi|’s are low, or
friction can decrease it if |vi|’s are high. The θ-equation clearly obeys the Maximum Principle,
while, again for the momentum equation it may fail. However, velocities do remain in certain
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bounds determined by initial conditions: denoting |v+| = maxi |vi|, and θ+ = maxi θi we see that
(by Rademacher’s Lemma)

d

dt
|v+| 6 σ(θ+(0)− |v+|p)|v+|,

and hence,

d

dt
|v+|p 6 pσ(θ+(0)− |v+|p)|v+|p.

Solving this inequality directly we obtain

|v+| 6 C,

where C depends only on the initial conditions and parameters of the system.
The system remains on one side of a hyperplane if initially so. Indeed, let ` ∈ Rn be a unit

functional whose kernel defines a hyperplane Π` = ker `. Suppose that all `(vi(0)) > 0. Let us find
an i = i(t) such that `(vi) = minj `(vj). Then by Rademacher’s Lemma we have

d

dt
`(vi) =

∑
k

mkφik(`(vk)− `(vi)) + σ`(vi)(θi − |vi|p) > σ`(vi)(θi − |vi|p).

Integrating we obtain

`(vi) > `(vi(0))ec(t) > 0.

An implication of this is the following principle.

Lemma 2.1 (Sectorial Maximum Principle). Any solution to (7) with initial velocities starting in
a sector

ΣF =
⋂
`∈F
{v : `(v) > 0}.

will remain in the same sector for all times. Therefore, ΣF is a positively invariant set.

An important family of solutions are solutions that lie strictly above one side of a hyperplane
`(vi) > 0. In this case, the velocities also belong to a slightly narrower sector defined by the span
of the initial velocity vectors:

conv{vi}Ni=1 ⊂ {v : `(v) > ε|v|}, for some ε > 0.

By rotation invariance (8) we can assume without loss of generality that the solution lies above the
coordinate plane Πn = {xn = 0}. Thus, we have

(9) vni > ε|vi|, ∀i = 1, . . . , N.

Definition 2.2. We call solutions satisfying (9) for some ε > 0 sectorial.

Lemma 2.3 (Sectorial Minimum Principle). All sectorial solutions stay bounded away from zero,
mini |vi| > c0, for all time.

Proof. Indeed, denote vni = mink v
n
k . Then

d

dt
vni =

∑
k

mkφik(v
n
k − vni ) + σvni (θi − |vi|p) > σvni (θ− − ε−p(vni )p).

Solving this ODE shows that vni remains bounded away from 0. �
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3. Dynamics under absolute communication

In this section we consider the case of absolute kernel with

φ∗ = inf
r>0

φ(r) > 0.

We define

A = max
i,j=1,N

|vij |, B = max
i,j=1,N

|θij |.

We often use the maximizing functional formulation for A:

A = max
|`|=1,i,j=1,N

`(vij).

First, looking at B we see that,

d

dt
B 6 −κφ∗MB, M = m1 + . . .+mN ,

which implies that θi → θ̄ exponentially fast.
Before we proceed let us review the following illustrative example, which essentially appeared

in [14].

Example 3.1. Let us assume that we have a global communication φ ≡ λ > 0, and consider a
two-agent system on the line where v = v1 = −v2 > 0. Then we have the system

ẋ = v, v̇ = −λv + σv(1− v2).

The equation can be solved explicitly. If the Cucker-Smale communication is weak, λ < σ, then
the solution is given by

v =

√
1− λ

σ√
1 + c2

0e
−2t(σ−λ)

.

So, as we can see even global communication is not sufficient to provide alignment in this case.
When λ = σ, we obtain

v(t) =
v0√

2σtv2
0 + 1

.

Hence, the solution aligns to 0, and does so only algebraically fast. It clearly does not converge to
the natural value v = 1. At the same time we can see that the agents diverge, x(t) ∼

√
t. So, no

flocking occurs either.
Finally, when λ > σ we obtain a positive alignment result

v =
c0e

(σ−λ)t
√

λ
σ − 1√

1− c2
0e

2t(σ−λ)
.

So, in this case v → 0 exponentially fast and flocking ensues.

This example sets the stage for what happens for general solutions of the system (7) with positive
coupling κ > 0.

Lemma 3.2. Let κ > 0 and φ∗M > σθ̄, then the system (7) aligns exponentially fast,

(10) A 6 C0e
−δt,

where C0, δ > 0 depend on the initial data and parameters of the system.
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Proof. We start by a traditional computation which leads to

d

dt
A 6 −φ∗MA+ σ`[vi(θi − |vi|p)− vj(θj − |vj |p)],

where `, i, and j are a maximizing triple for A. Now adding and subtracting θ̄ we get,

`[vi(θ̄ − |vi|p)− vj(θ̄ − |vj |p)] + `[vi(θi − θ̄)− vj(θj − θ̄)],
6 `[vi(θ̄ − |vi|p)− vj(θ̄ − |vj |p)] + CB.

Then considering the functional

G(w) = w(θ̄ − |w|p), with DwG(w) = θ̄Id− |w|pId− p|w|p−2w ⊗w.

Thus

`[vi(θ̄ − |vi|p)− vj(θ̄ − |vj |p)] = DwG(w)(vi − vj),

for some w on the segment [vi,vj ]. Considering ` =
vi−vj
|vi−vj | we can dismiss the entire negative

definite part of DwG, with the remaining part being θ̄Id. Therefore,

d

dt
A 6 (σθ̄ − φ∗M)A+ CB0e

−κφ∗Mt.

By Duhamel’s Principle we conclude the lemma. �

Note that exponential decay of velocity variations (10) always implies strong flocking

diam{xi(t)}Ni=1 6 D̄ <∞, and xi(t)− xj(t)→ x̄ij ,

which is a simple consequence of integration of ẋij = vij .
Under the assumptions of the previous lemma we can in fact deduce much more precise in-

formation about the long time behavior of velocity field. Let us denote by E = E(t) or E any
exponentially decaying quantity. We have so far

v̇i = σvi(θ̄ − |vi|p) + E.

Multiplying by pvi|vi|p−2 and denoting y = |vi|p we obtain the following ODE

(11) ẏ = pσy(θ̄ − y) + E.

Although the pure forceless logistic equation is easy to solve (all positive solutions converge to θ̄ or
stay 0 if initially zero) the analysis of the forced ODE requires elaboration. Let us keep in mind
that we have a solution y that is a priori non-negative.

Lemma 3.3. Any non-negative solution to (11) either converges to 0 or to θ̄. In the latter case,
convergence occurs exponentially fast.

Proof. Indeed, suppose y does not converge to 0. Then there exists a δ > 0 for which there exists
a sequence of times t1, t2, ...→∞ such that y(ti) > δ. For t large enough we have

pσδ(θ̄ − δ) + E(t) > 0.

Therefore, starting from some time t∗, y(t) will never cross δ again: y(t) > δ, t > t∗. Solving

d

dt
(θ̄ − y) = −pσy(θ̄ − y) + E,

by Duhamel’s Principle, we obtain

θ̄ − y(t) = (θ̄ − y(t∗)) exp

{
−pσ

∫ t

t∗
y(s) ds

}
+

∫ t

t∗
E(s) exp

{
−pσ

∫ t

s
y(τ) dτ

}
ds.

So, |θ̄ − y(t)| is an exponentially decaying quantity. �
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Since A → 0, we conclude from Lemma 3.3 that either all vi → 0 or all |vi| → θ̄1/p exponentially
fast. In the latter case we obtain v̇i = E, and hence all vi’s converge to a single vector on Sn−1.
We therefore have a full description of the dynamics under absolute communication.

Theorem 3.4. Let κ > 0, φ∗ = inf φ > 0, and φ∗M > σθ̄. Then A → 0 exponentially fast,
and either all vi → 0 or there exists a single vector v̄ ∈ Rn, |v̄| = θ̄1/p, to which all vi converge
exponentially fast.

It is easy to see that for sectorial solutions under the conditions of Theorem 3.4 convergence to
0 is eliminated. Indeed, suppose that all vi → 0. Let vni = minj v

n
j . Then

v̇ni =
∑
k

mkφik(v
n
k − vni ) + σvni (θi − |vi|p) > σvni (θi − |vi|p).

Since all |vi|p → 0, from some point on, we will find (θi − |vi|p) > θ̄/2. Then

v̇ni > c0v
n
i ,

which implies exponential growth, a contradiction.
In the next section we establish a much stronger result – sectorial solutions align for any commu-

nication with quantitatively defined heavy tail.

4. Sectorial solutions. Grassmannian reduction

In this section we study sectorial solutions as defined by (9). The goal here is to prove Theo-
rem 1.1 and introduce a new method of Grassmannian reduction.

The method actually applies to any Cucker-Smale system (1) with a longitudinal forcing Fi×vi =
0, and the nature of the force is not important. The initial step is to write down the system for the
direction-vectors, ṽi = vi/|vi|, which eliminates the force:

(12)
d

dt
ṽi =

N∑
k=1

mk
|vk|
|vi|

φik(id−ṽi ⊗ ṽi)ṽk.

We further write down the system for the angles cos(γij) = ṽi · ṽj :

d

dt
cos(γij) =

N∑
k=1

mk
|vk|
|vi|

φik(cos(γjk)− cos(γij) cos(γik))

+
N∑
k=1

mk
|vk|
|vj |

φjk(cos(γik)− cos(γij) cos(γjk)).

(13)

Let us note that this system in dimension 3 and higher does not have an explicit dissipative
structure. However in 2D there is one: for a planar arrangement of three angles in the upper half
plane where γij is the largest, and γij < 2 arccos(ε) we have

γik + γjk = γij < 2 arccos(ε).

Then

cos(γjk)− cos(γij) cos(γik) = cos(γij − γik)− cos(γij) cos(γik) = sin(γij) sin(γik) > 0,

and similarly,

cos(γik)− cos(γij) cos(γjk) > 0.

Consequently, all the terms in both sums of (13) are non-negative. This will be exploited in the
following lemma.
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Lemma 4.1. Let n = 2, γ = maxi,j γij, and D be the diameter of the flock. Then

(14)
d

dt
(1− cos(γ)) 6 −cMφ(D)(1− cos(γ)).

Proof. Note that φik > φ(D). Let i.j denote a pair of indices at each time t which achieve the
maximum of the angles γ = γij . Then by the Rademacher lemma, and since the velocities are also
bounded from above and below, we obtain

d

dt
cos(γij) > cφ(D)

N∑
k=1

mk(cos(γjk)− cos(γij) cos(γik) + cos(γik)− cos(γij) cos(γjk))

= cφ(D)

N∑
k=1

mk(cos(γik) + cos(γjk))(1− cos(γij)).

Now

cos(γik) + cos(γjk) = 2 cos
(γij

2

)
cos

(
γik − γjk

2

)
> c0,

due to the sectorial limitation on the angles. So,

d

dt
cos(γij) > cMφ(D)(1− cos(γij)),

or
d

dt
(1− cos(γij)) 6 −cMφ(D)(1− cos(γij)),

as desired. �

To recover similar inequality in arbitrary dimension, we will run the argument above for any
2D plane Π containing the xn-axis. The space of all such planes is homeomorphic to the compact
1-Grassmannian manifold G(1, n− 1). We denote

γ2D = max
Π∈G(1,n−1),i,j

γΠ
ij ,

and note that

γ2D > 2 arccos(ε),

thanks to sectoriality.

Lemma 4.2. Let n be arbitrary. Then

(15)
d

dt
(1− cos(γ2D)) 6 −cMφ(D)(1− cos(γ2D)).

Proof. Let us fix a 2D plane Π ∈ G(1, n− 1) as describe above, and let us consider the projection
of (12) onto Π:

d

dt
vΠ
i =

N∑
k=1

mkφik(v
Π
k − vΠ

i ) + σ(θi − |vi|p)vΠ
i .

Noting that the n’th coordinates of the projections remain the same as for the original vectors, all
norms of vΠ

i remain bounded above and below. Let us now write the system for unit vectors

(16)
d

dt
ṽΠ
i =

N∑
k=1

mk
|vΠ
k |
|vΠ
i |
φik(id−ṽΠ

i ⊗ ṽΠ
i )ṽΠ

k .
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ṽi

ṽj

(ṽi)
Π

(ṽj)
Π

Π

xn

γij
γΠ
ij

Figure 1. Isosceles triangles in the proof of Lemma 4.3

Let us keep in mind that φik = φ(xi − xk) still depend on the original agents’ coordinates. From
(16) we deduce the same system for the angles cos(γΠ

ij) = ṽΠ
i · ṽΠ

j as in the original variables:

d

dt
cos(γΠ

ij) =

N∑
k=1

mk
|vΠ
k |
|vΠ
i |
φik(cos(γΠ

jk)− cos(γΠ
ij) cos(γΠ

ik))

+
N∑
k=1

mk
|vΠ
k |
|vΠ
j |
φjk(cos(γΠ

ik)− cos(γΠ
ij) cos(γΠ

jk)).

(17)

Taking now the maximum over Π, i, j, writing (17) for a maximizing triple, and invoking Rademacher’s
Lemma we run the 2D computation above for the reduced system (17), which leads to (15). �

The last step of the method consists in connecting the maximal 2D-projected angles γ2D to the
maximal angle of the original system

γ = max
i,j

γij .

Lemma 4.3. We have the following inequality

(18) γ 6 γ2D.

Proof. Indeed, let us fix a maximizing index γij = γ. Consider the 2-dimensional plane Π spanned
by xn-axis and ṽi − ṽj , see Figure 1. Note that ṽi − ṽj = (ṽi)

Π − (ṽj)
Π, and the angle between

(ṽi)
Π and (ṽj)

Π is denoted γΠ
ij . So, considering the two isosceles triangles spanned on ṽi, ṽj and

(ṽi)
Π, (ṽj)

Π and applying the Cosine Theorem, we have

2(1− cos(γ)) = |ṽi − ṽj |2 = 2|(ṽi)Π|2(1− cos(γΠ
ij)) 6 2(1− cos(γΠ

ij)) 6 2(1− cos(γ2D)).

This proves (18). �

Let us note that the opposite inequality, although we will not need it, holds up to a constant
factor also

cγ2D 6 γ,

where c depends on the opening of the sector Σ.
The lemma above guarantees exponential shrinking of γ provided we can prove the same for γ2D.

However, since the diameter of the flock can potentially spread we still need to control it first in
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order to obtain such result from (15). So, we come back to the original system, and derive one
more equation for the maximal ratio

R = max
i′,i′′

|vi′′ |2

|vi′ |2
=
|vi(t)|2

|vj(t)|2
.

Note that R is a priori bounded from above and below. We write

1

2

d

dt
R =

1

|vj |2
N∑
k=1

mkφik(vk·vi−|vi|2)+
|vi|2

|vj |4
N∑
k=1

mkφjk(|vj |2−vk·vj)+σR(θi−θj+|vj |p−|vi|p).

The first sum is negative, so we simply dismiss it. In the second sum we use

|vj |2 − vk · vj 6 |vj |2 − |vk||vj | cos(γ) 6 |vj |2(1− cos(γ)) . (1− cos(γ)) 6 (1− cos(γ2D)).

For the friction term we observe (recall the notation B = maxij |θi − θj |)

σR(θi − θj + |vj |p − |vi|p) . B + (1−Rp/2) . B + (1−R).

Thus,

(19)
d

dt
(R− 1) 6 c1(1− cos(γ2D)) + c2B − c3(R− 1).

Finally, we complement the system with the B-equation

(20)
d

dt
B 6 −κφ(D)MB.

We are now ready to prove our main result for sectorial solutions.

Proof of Theorem 1.1. We will use a bootstrap argument. Suppose β < 1 first. Since all velocities
remain bounded, we have

D(t) . t.

Using this in (15) we obtain

(1− cos(γ2D)) + B . e−c〈t〉1−β , for 〈t〉 :=
√

1 + t2.

Plugging this into the R-equation (19), and using Duhamel’s Principle, we have

(R− 1) . e−c〈t〉
1−β

.

Taking a maximizing couple i, j ∈ {1, . . . , N} we get

A2 = |vj |2
(

1 +R− 2
√
R cos γ

)
. (R− 1) + (1− cos γ),

and consequently
d

dt
D 6 A .

√
(R− 1) + (1− cos(γ)) . e−c〈t〉

1−β
,

we now see that the diameter of the flock remains bounded D 6 D̄. Going back to the system
(15)-(19)-(20) we conclude exponential decay for (R− 1) + (1− cos(γ)) + B and hence for A.

Next, with the obtained information we can write the equations for extreme norms

d

dt
|v±|p = pσ|v±|p(θ̄ − |v±|p) + E(t).

Since c 6 |v±|p 6 C we conclude that θ̄ − |v±|p tend to zero exponentially fast. This immediately
implies that

d

dt
vi = Ei, ∀i,

where Ei is an exponentially decaying vectorial quantity. Hence, each vector has a limit, which is
common for all vi, as t→∞. This finishes the proof for the β < 1 case.
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Let us turn to the case β = 1. Here we make one more preliminary step: from D . t we deduce
that

(1− cos(γ)) + B . 1

〈t〉η
, η > 0.

Hence, due to the asymptotic formula e−ct ∗ 1
〈t〉η ∼

1
〈t〉η ,

R− 1 .
1

〈t〉η
.

This in turn implies

D . 〈t〉1−
η
2 .

Using this as a starting point in the argument above is equivalent to assuming that β < 1. Conse-
quently, repeating the previous steps finishes the theorem. �

Example 4.4. A modification of the classical example shows that the fat tail condition β 6 1 is
necessary. Indeed, let us consider a two-agent system with v′ = 〈v1, v2〉 and v′′ = 〈−v1, v2〉. We
assume that the kernel is given by the exact power law φ(r) = 1

rβ
for r > r0. Our initial condition

for coordinates of the agents x′ = 〈x1, x2〉, x′′ = 〈−x1, x2〉 will be such that x1(0) > 2r0. Then for
the time period when x1(t) > r0 we have the systemv̇1 = − v1

xβ1
+ σv1(1− |v′|p)

v̇2 = σv2(1− |v′|p).

Here we assumed that θ1 = θ2 = 1. Now, if |v′(0)| < 1, it will remain so by the maximum principle.
Then we obtain the system

v̇1 > −
v1

xβ1
, ẋ1 = v1.

The system has a Lyapunov function

L = v1 +
x1−β

1

1− β
,

which decays on trajectories. Thus, since β > 1,

v1(t) > L(t) > v1(0) +
x1−β

1 (0)

1− β
.

So, if r0 is sufficiently small, we can set 1 > v1(0) >
x1−β1 (0)
β−1 , and v2(0) is small too in order to

satisfy |v′(0)| < 1. The above computation then shows that v1(t) > c0 > 0. This in part implies
that x1(t) is increasing and hence the condition x1 > r0 will hold indefinitely. Hence, v1(t) > c0

holds indefinitely too. This establishes misalignment.

5. Friction with frozen parameters: opinion dynamics

We now focus on the case when κ = 0, i.e. the parameters remain constant for each agent. It is
clear that flocking itself is not possible in this case. As the agents settle to certain speeds, even if
unidirectional, the speeds are not expected to be equal. So, the spread of the flock will continue to
grow indefinitely. To disregard the spread of the flock, and we focus solely on the interesting part
of dynamics, we will assume in this section that the communication kernel is uniform φ ≡ 1, so the
system becomes a first order system of ODEs:

(21) v̇i =

N∑
j=1

mj(vj − vi) + σ(θi − |vi|p)vi.
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In particular, for the case of one-dimensional sectorial solutions, i.e. vi = yi > 0, the system (21)
becomes

(22)
d

dt
yi =

N∑
k=1

mk(yk − yi) + σ(θi − ypi )yi.

In fact, it is easy to see that (22) constitutes the core dynamics of any sectorial solution to the
general system (21). Indeed, the method of Grassmannian reduction implies exponential shrinking
of the angles:

1− cos γ 6 c0e
−Mt.

Since by the sectorial maximum principle the solution sector at time t is a nested family: Σ(t) ⊂
Σ(s), t > s, this necessarily implies that there exists a direction ṽ ∈ Sn−1, such that

|ṽi(t)− ṽ| 6 Ce−δt.

Thus the original nN -dimensional system of (21) reduces to an N -dimensional system on the speeds
yi = |vi|. Indeed, multiplying (21) with vi and dividing by yi we obtain a perturbation of (22):

(23)
d

dt
yi =

N∑
k=1

mk(yk − yi) + σ(θi − ypi )yi + Ei(t),

where Ei =
∑

kmkvk · (ṽi− ṽk) is an exponentially decaying function. It is therefore expected that
dynamics of solutions to (21) are determined by the dynamics of the one dimensional system (22).

The study of system (22) is interesting in its own right. It can be viewed as a model of opinion
games, where yi’s represent opinions and θi’s represent convictions. Convictions do not change in
time, while opinions are pushed towards consensus via the alignment forces. Long time dynamics,
therefore, are expected to lead to an “agreement”, i.e. a steady state of the system

(24)
N∑
k=1

mk(yk − yi) + σ(θi − ypi )yi = 0.

A solution to (24) can be interpreted as the Nash equilibrium of the opinion game, i.e. a settlement
for which no agent profits from shifting into another opinion (mixed strategy in terms of [21]). This
can be expressed in terms of payoff functions (6) as a solution to

pi(y
∗) = max

rp∈[min θk,max θk]
pi(y

∗
1, . . . , y

∗
i−1, r, y

∗
i+1, . . . , y

∗
N ), ∀i = 1, . . . , N.

The full justification of this interpretation will be evident from the a priori bounds on a possible

solution given by (25), and the fact that ∂2

∂y2i
pi(y

∗) < 0 for any such solution as a consequence of

(27).
Existence of Nash equilibrium is trivial in the case of consensus of convictions θ1 = . . . = θN .

Then yi = θi. Generally, however, it is not evident why an equilibrium exists as our payoff functions
do not satisfy the classical convexity assumptions. Instead we resort to the use of the Brouwer
topological degree, see [6] for background. Our main result is the following theorem.

Theorem 5.1. For any positive set of parameters (θ,m, σ) there exists a unique positive solution
y∗ to (24), which is a locally exponentially stable equilibrium of system (22). The map y∗ =
y∗(θ,m, σ) : RN+ ×RN+ ×R+ → RN+ is infinitely smooth. Moreover, any sectorial solution v(t) ∈ Σ
to (21) converges to the one dimensional set of vectors

vi(t)→ y∗i ṽ,

for some ṽ ∈ Sn−1.
In particular, any solution y ∈ RN+ to system (22) converges to y∗.
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The proof of this theorem involves several stages split in separate subsections below. We first
discuss uniqueness and stability.

5.1. Uniqueness and stability of Nash equilibria. A rough a priori estimate on the location
of any equilibrium can be obtained by simply evaluating at extreme point. Denoting by y+ the
maximal yi, and θ+ the corresponding θi with the same index we have

yp+ 6 θ+.

Similarly,

yp− > θ−.

This implies that for all i, the solutions settles between the extreme values of θ:

(25) min θk 6 y
p
i 6 max θk.

So, if all θ = θi = θj , then we obtain only one solution yi = θ1/p.
In what follows we will obtain a more subtle estimate on critical points. One immediate estimate

can be achieved by dropping the term
∑

kmkyk entirely from (24):

(σθi −M)yi 6 σy
p+1
i .

So,

(26) ypi > θi −
M

σ
.

Since the system is permutation invariant, we can assume without loss of generality that θ’s are
monotonically increasing

0 < θ1 6 . . . 6 θN .

Lemma 5.2. One has θ1 6 y
p
1 6 . . . 6 y

p
N 6 θN , with the following estimate holding for all i:

(27) ypi > θi +
m>i −M

σ
, m>i = mi + . . .+mN .

Moreover, θi = θj, for a pair i 6= j, if and only if yi = yj.

Proof. Let i > j. Subtracting two equations for θi and θj , we obtain

σ(θi − θj)yi + (σθj −M)(yi − yj) = σ(yp+1
i − yp+1

j ).

We then have

(28) σ(θi − θj)yi + (σθj −M)(yi − yj) = σ(p+ 1)(yi − yj)cp,

for some c between yj and yi. If yi < yj , we divide by yi − yj and get in view of (26)

(σθj −M) > σ(p+ 1)cp.

This necessarily implies that σθj −M > 0. Since yj > c > yi > 0, using (26) we obtain

(σθj −M) > (p+ 1)(σθi −M).

Now, by hypothesis i > j, which gives us that θi > θj and consequently

(σθj −M) > (p+ 1)(σθi −M) > (p+ 1)(σθj −M).

which is a contradiction. Thus, yi > yj .
Now, if yi = yj , then turning back to (28) we conclude θi = θj . If θi = θj , but yi 6= yj , we arrive

at equality

(σθj −M) = σ(p+ 1)cp,

and obtain a contradiction as before.
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To obtain the estimate (27) we drop the lower terms y1, ..., yi−1 from the average, and replace
all others with yi. We obtain

m>iyi + (σθi −M)yi 6 σy
p+1
i ,

which implies (27). �

We are now ready to prove existence and uniqueness of equilibria.

Proposition 5.3. For any positive set of parameters (θ,m, σ) there exists a unique positive solution
y∗ to (24), which is a locally exponentially stable equilibrium of system (22). The map y∗ =
y∗(θ,m, σ) : RN+ × RN+ × R+ → RN+ is infinitely smooth.

Proof. For a fixed set of positive parameters (θ,m, σ) ∈ RN+ ×RN+ ×R+ let us consider the mapping

F = Fθ,m,σ : RN+ → RN defined by

F(y) =

{
Myi −

N∑
k=1

mkyk − σ(θi − ypi )yi

}N
i=1

.

We claim that any solution to (24) is not critical for this map and it has positive Jacobian.
Indeed, let us compute the determinant of the matrix

DyF(y) = D − 1⊗m = diag{di}Ni=1 −

m1 m2 . . . mN
...

...
...

m1 m2 . . . mN

 ,

where

D = diag{di}Ni=1, 1 = (1, . . . , 1)>, m = (m1, . . . ,mN )>,

and the elements of the diagonal matrix are given by

di = M + σ(p+ 1)ypi − σθi.

Via routine algebra, since D is non-singular we compute the Jacobian as

detDyFθ(y) = det(D − 1⊗m) = det(D) det(I−D−11⊗m).

To conclude it is enough to check that the eigenvalues of I−D−11⊗m are 1−m>D−11, 1 . . . , 1.
Putting all together, we have

detDyFθ(y) =

N∏
i=1

di ×

(
1−

N∑
k=1

mk

dk

)
.

In order to determine the sign, let us first show that all di > 0. Assume that di 6 0 for some i.
Then

(p+ 1)ypi 6 θi −
M

σ
.

This, in turn, implies that θi − M
σ > 0. Now, using the bound (27) we obtain

(p+ 1)

(
θi +

m>i −M
σ

)
6 θi −

M

σ
,

which implies

p

(
θi −

M

σ

)
6 −m>i

σ
(p+ 1) < 0,

which is a contradiction with the above.
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Thus, the sign of the Jacobian is determined by the sign of 1 −
∑N

k=1
mk
dk

. Directly from the

equations (24) we obtain

1

di
=

yi
Mȳ
− pσ

yp+1
i

Mȳdi
, ȳ =

1

M

∑
i

miyi.

Then
N∑
i=1

mi

di
= 1− pσ

Mȳ

N∑
i=1

mi
yp+1
i

di
< 1,

which proves the desired.
Stability follows in the same fashion once we observe that the upper left minors Mn, n < N , are

given by a similar expression

Mn =

n∏
i=1

di ×

(
1−

n∑
k=1

mk

dk

)
.

We have in this case
n∑
k=1

mk

dk
<

1

ȳ

1

M

n∑
k=1

mkyk < 1.

We will now focus on the Brouwer topological degree of the map F at zero (see [6] for the
background material). To define the degree properly, we will restrict F to a wedge region W. Let
us denote

(29) 〈y, z〉 =

N∑
i=1

miyizi, ‖y‖pp =

N∑
i=1

miy
p
i .

We define

W = {y : yi > 0, ε 6 ‖y‖∞, ‖y‖p+1 6 R} ,
where R > 0 is large and ε is small to be determined momentarily. We verify that the image of the
boundary does not contain the origin, 0 6∈ F(∂W). Indeed, if yi = 0 for some i, then Fi = ȳ > 0.
Let us now compute the momentum

N∑
i=1

miFi(y) = −σ〈θ,y〉+ σ‖y‖p+1
p+1.

If ‖y‖p+1 = R, we have the bound

> σ‖y‖p+1
p+1 − σ‖y‖p+1‖θ‖ p+1

p
> 0,

provided R is large enough. If ‖y‖∞ = ε, then

6 −σθ−‖y‖1 + σεp‖y‖1 < 0,

provided ε is small enough.
Since the value 0 of the F-map is regular, the degree can be computed explicitly by

deg{F,W,0} =
∑

y∈F−1(0)

sgn (detDyF(y)) .

Since all the signs of the Jacobian are positive, the uniqueness can be obtained by showing that
deg{F,W,0} = 1. This is certainly true for any diagonal θ̂ = (θ, . . . , θ) as we have a unique

positively oriented solution in this case, see (25). Let us fix any such θ̂ and consider the homotopy
of maps

Fτ = Fτθ+(1−τ)θ̂,m,σ, 0 6 τ 6 1.
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We have verified above that 0 6∈ Fτ (∂W) for any τ . Thus, the Invariance under Homotopy Principle
applies. As a consequence,

deg{Fθ,m,σ,W,0} = deg{Fθ̂,m,σ,W,0} = 1,

and the proof of uniqueness is finished.
The smoothness of y∗ as a function of (θ,m, σ) follows directly from the non-degeneracy esta-

blished above and the Implicit Function Theorem. �

5.2. Gradient structure and convergence to the Nash equilibrium. As we already noted
in the beginning of this section, the long time behavior of any sectorial solution to the full system
(21) reduces to the study of positive solutions to (23). It is natural to expect that any solution
to (23) converges to the unique Nash equilibrium y∗. In fact, this would be a trivial application
of the Lyapunov classical theory and exponential stability established in Proposition 5.3 if the
initial conditions started in a small neighborhood of y∗ and if E(t) was already small. For general
solutions, however, we resort to a hidden gradient structure of (23).

First, let us establish boundedness. Indeed, by the energy estimates, and dropping the dissipation
term coming from the alignment entirely, we obtain

1

2

d

dt
‖y‖22 6 σθ+‖y‖22 − σ‖y‖

p+2
p+2 + E(t) + ‖y‖22 6 ‖y‖22

(
σθ+ + 1− σ

M
‖y‖4/p2

)
+ E(t),

where in the second inequality we have used Hölder’s inequality to get ‖y‖2 6 Mp/(2(p+2))‖y‖p/2p+2.

If at some point of time ‖y‖22 > (2M(θ+ + 1/σ))
p/2

, then

1

2

d

dt
‖y‖22 6 −(σθ+ + 1)‖y‖22 + E(t) 6 −c0 + E(t).

Thus, starting from some time T , when E(t) < c0/2, t > T , such an estimate would give a decaying
energy. The standard maximum principle argument concludes the proof.

To get a better understanding of the long time dynamics of solutions we rescale the system and
convert it to a perturbation of a gradient flow. Such structure, in fact, is apparent when all masses
are equal, say mi = 1

N . Then

(30)
d

dt
y = −∇Φ(y) + E(t),

for

Φ(y) = − 1

2N
(y1 + . . .+ yN )2 − 1

2

∑
i

(σθi − 1)y2
i +

σ

p+ 2

∑
i

yp+2
i .

For general case, we introduce new variables

zi =
√
miyi.

The new system takes form

d

dt
zi =

∑
j

√
mimjzj −Mzi +

σ

m
p/2
i

(m
p/2
i θi − zpi )zi + Ei(t).

The core of the right hand side is given by −∇Φ, where

Φ(z) = −1

2

∑
j

√
mjzj

2

+
1

2

∑
j

(σθj −M)z2
j +

σ

p+ 2

∑
j

zp+2
j

m
p/2
j

.

The original system is now converted into a perturbed gradient flow

(31)
d

dt
z = −∇Φ(z) + E(t).
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Note that the statement of Proposition 5.3 and boundedness of solutions to (31) translates into
the new system directly from the old one. Yet, the alignment structure of the new system has
been destroyed. Our key observation is that for the convergence result this structure is no longer
required.

We now proceed to proving that any positive solution to (31) converges to the unique equilibrium
z∗, z∗i =

√
miy

∗
i . The proof is based on Lojasiewicz’s gradient inequality, which we recall next.

The Lojasiewicz inequality has found rather striking applications in the theory of ordinary and
partial differential equations, in particular to gradient flows. For example, in [31], the Lojasiewicz
gradient method is used to study the long time dynamics of solutions for the Kuramoto synchro-
nization model.

Theorem 5.4 ([18]). Let Φ be a real analytic function in a neighborhood U . Then for any z0 ∈ U
there are constants c > 0 and δ ∈ (0, 1] and µ ∈ [1/2, 1) such that

(32) ‖∇Φ(z)‖ > c|Φ(z)− Φ(z0)|µ, ∀ z ∈ U such that ‖z− z0‖ 6 δ.

Our potential Φ is real analytic in the positive sector, so the result applies.
So, let us consider a positive solution z ∈ RN+ to (31). Since every such solution is bounded,

z(t) has an accumulation point z0. It is easy to see that z0 ∈ RN+ . Indeed, by the sectorial
maximum principle for the original system, the corresponding y-solution will remain in a smaller
sector Σ ⊂ RN+ which does not intersect the coordinate planes. The rescaled solution z will clearly
remain in the same sector. The computation in the proof of Proposition 5.3 also shows that y, and
hence z cannot approach 0. Hence, z0 ∈ Σ\{0}.

Let us consider an increasing sequence of times {tn : n > 1} for which z(tn)→ z0. We show that
z(t) eventually enters and remains in Br(z0) := {z ∈ RN : ‖z − z0‖ < r}. Since r is arbitrarily

small, it will imply that z(t) → z0. We will also show along the way that d
dt

z → 0 along some

sequence of times. This will establish that ∇Φ(z0) = 0, and hence z0 = z∗.
The proof goes by establishing a control over the length of the orbit z(t) near the accumulation

point z0. We proceed with an estimate on the arc-length functional, which is a local version of
Simon’s result [30].

Let us denote

H(t) := Φ(z(t)) +
3

4

∫ ∞
t
‖E(s)‖2 ds.

Lemma 5.5. As long as z(t) ∈ Bδ(z0) for t′ 6 t 6 t′′, we have∫ t′′

t′
‖ż(s)‖ ds 6 4

∫ H(t′)

H(t′′)

1

c|ξ − Φ(z0)|µ
dξ +

∫ t′′

t′
Ẽ(s) ds,

where Ẽ is an exponentially decaying quantity.

Proof. We have

(33) − Ḣ(t) = −〈∇Φ(z(t)), ż(t)〉+
3

4
‖E(t)‖2 > 1

4
‖∇Φ(z(t))‖‖ż(t)‖.

So, the function H(·) is non-increasing. To continue, we define another auxiliary function

Ψ(x) :=

∫ x

0

1

ψ(ξ)
dξ,

where
ψ(ξ) := c|ξ − Φ(z0)|µ.

Since µ < 1, we have

(34) ψ(H(t)) 6 c|Φ(z(t))− Φ(z0)|µ + c

(
3

4

∫ ∞
t
‖E(s)‖2 ds

)µ
.
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Let us compute

d

dt
Ψ(H(t)) = Ψ̇(H(t))Ḣ(t) =

Ḣ(t)

ψ(H(t))
.

Combining with (33) and (34),

−d

dt
Ψ(H(t)) >

1

4c
· ‖∇Φ(z(t))‖‖ż(t)‖
|Φ(z(t))− Φ(z0)|µ +

(
3
4

∫∞
t ‖E(s)‖2 ds

)µ ,
and thus, by the Lojasiewicz gradient inequality (32) we get

−d

dt
Ψ(H(t)) >

1

4
· ‖∇Φ(z(t))‖‖ż(t)‖
‖∇Φ(z(t))‖+ c

(
3
4

∫∞
t ‖E(s)‖2 ds

)µ for all t ∈ (t′, t′′).

Hence, for all t ∈ (t′, t′′) we obtain

(35) − 4
d

dt
Ψ(H(t)) > ‖ż(t)‖ − c

(
3

4

∫ ∞
t
‖E(s)‖2 ds

)µ ‖ż(t)‖
‖∇Φ(z(t))‖+ c

(
3
4

∫∞
t ‖E(s)‖2 ds

)µ .
To estimate the second term on the right-hand side we use the system (31) to get

(36)
‖ż(t)‖

‖∇Φ(z(t))‖+ c
(

3
4

∫∞
t ‖E(s)‖2 ds

)µ 6 1 +
‖E(t)‖

c
(

3
4

∫∞
t ‖E(s)‖2 ds

)µ .
Combining (35) and (36) gives

−4
d

dt
Ψ(H(t)) > ‖ż(t)‖ − c

(
3

4

∫ ∞
t
‖E(s)‖2 ds

)µ
− ‖E(t)‖ for all t ∈ (t′, t′′).

Denoting

Ẽ(t) := c

(
3

4

∫ ∞
t
‖E(s)‖2 ds

)µ
+ ‖E(t)‖,

we obtain

(37) ‖ż(t)‖ 6 −4
d

dt
Ψ(H(t)) + Ẽ(t) for all t ∈ (t′, t′′).

Integrating (37) over (t′, t′′) finishes the proof. �

Conclusion of the proof of Theorem 5.1. To conclude the proof of convergence we argue as follows.
Let us fix an arbitrary r < δ and consider a remote time tn � 1 such that

z(tn) ∈ B r
3
(z0), 4

∫ H(tn)

Φ(z0)

1

c|ξ − Φ(z0)|µ
dξ <

r

3
,

∫ ∞
tn

Ẽ(s) ds <
r

3
.

We show that the entire trajectory for t > tn lies in Br(z0). By contradiction, suppose not, and
let tn + t̃ be the smallest t̃ > 0 such that ‖z(tn + t̃) − z0‖ = r. Then z(t) lies in Br(z0) for all
t ∈ (tn, tn + t̃). So, applying Lemma 5.5 with t′ = tn and t′′ = tn + t̃ we obtain

‖z(tn + t̃)− z0‖ 6 ‖z(tn + t̃)− z(tn)‖+ ‖z(tn)− z0‖ 6
∫ tn+t̃

tn

‖ż(s)‖ ds+
r

3
< r

which is a contradiction. Thus z(t) remains in Br(z0) for all t ∈ [tn,∞).
To conclude that z0 is the equilibrium we note that the above argument implies that∫ ∞

tn

‖ż(s)‖ ds <∞.

Thus, ż(sn)→ 0, and hence ∇Φ(z(sn))→ 0 = ∇Φ(z0).
The proof of Theorem 5.1 is complete. �
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5.3. Further structural properties of Nash equilibria. Although we can not compute the
equilibrium y∗ explicitly, certain structural properties of it can be provided. First, there is an
order of shifts of yi’s relative to θi’s.

Lemma 5.6. There exists an index 1 6 i0 6 N such that

θ1 6 y
p
1 , . . . , θi0 6 y

p
i0
,

yi0 6 ȳ 6 yi0+1,

ypi0+1 6 θi0+1, . . . , y
p
N 6 θN .

In other words, the opinions below average undergo right shift from agent’s convictions, and
opinions above average undergo left shift.

Proof. The result follows by rewriting (24) as follows

Mȳ + σθiyi
M + σθi

=
M + σypi
M + σθi

yi.

So, if ypi 6 θi, then
Mȳ + σθiyi
M + σθi

6 yi,

which implies yi > ȳ. Similarly if ypi > θi, then yi 6 ȳ. So, both implications can be reversed as
well. By the monotonicity of yi’s, there exists a unique index i0 for which

y1 6 . . . 6 yi0 6 ȳ 6 yi0+1 6 . . . 6 yN .

Then the shift inequalities hold as stated. �

Next, asymptotic behavior of Nash equilibria can be described in the limit as the friction coeffi-
cient σ →∞ or σ → 0. Indeed, if σ →∞, directly from (24) we can see that any solution converges

to its conviction values y∗(σ)→ θ1/p.
On the other hand, as σ → 0, the alignment force becomes dominant as it is expected that the

opinions will reach a consensus. That consensus can be determined as follows. Since the coordinates
of y∗ remain within the fixed bounds of θ1, θN as we let σ → 0, we can see directly from (24) that
for all i = 1, . . . , N

|yi(σ)− ȳ(σ)| → 0.

It remains to determine the limit of ȳ(σ). So, adding up all the equations in system (24) premulti-
plied by the masses mi we obtain, in the notation of (29),

〈y∗(σ),θ〉 = ‖y∗(σ)‖p+1
p+1.

Thus, as σ → 0, we have

ȳ(σ)θ̄ = ȳ(σ)p+1 + o(1).

Since the average ȳ(σ) stays uniformly bounded from zero, we obtain

θ̄ = ȳ(σ)p + o(1),

and hence,

ȳ(σ)→ θ̄1/p.

We summarize the above in the following lemma.

Lemma 5.7. We have the following asymptotic behavior of the equilibrium values:

lim
σ→∞

yi(σ) = θ
1/p
i , ∀i = 1, . . . , N,

lim
σ→0

yi(σ) = θ̄1/p, ∀i = 1, . . . , N.
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