

A Modeling Approach to Account for Unstable Stratification, Flow Acceleration, and Variable Thermophysical Properties for Supercritical Carbon Dioxide

Saad A. Jajja^a, Lindsey V. Randle^a, Brian M. Fronk^{a,*}

^a*School of Mechanical, Industrial and Manufacturing Engineering
Oregon State University
Corvallis, OR 97331 USA*

Abstract

A first of its kind reduced-order predictive heat transfer model is developed to account for the effects of unstable stratification, flow acceleration, and variable thermophysical properties for supercritical carbon dioxide. These phenomena govern thermal transport in the proximity of the pseudo-critical point when the applied heating is limited to the bottom wall of the flow channel. The reduced order model assumes two-dimensional thermal transport and involves the iterative solution of the turbulent Prandtl number. The predictions of this model were compared against experimental data. Out of a total of 16 test data sets, each comprising over 200 individual data points, the model was able to predict 14 data sets with a mean average percent error (*MAPE*) of less than 20%. Additionally, a heat transfer design correlation is proposed which can predict the experimental data with a *MAPE* of less than

*Corresponding author

Email address: brian.fronk@oregonstate.edu (Brian M. Fronk)

22%. The modeling approaches outlined in this work provide an alternative to using CFD to model coupled and counteracting phenomena that governs thermal transport for supercritical fluids in asymmetrically bottom heated ducts.

Keywords: Supercritical, Carbon Dioxide, Heat Transfer, Single Wall Heating, Turbulent Flow, Microchannel, Reduced Order Model

1. Introduction and Prior Work

Over the past decades, several heat transfer models have been proposed to predict thermal transport in the proximity of the pseudo-critical point for supercritical fluids [1, 2, 3]. These models were primarily developed to predict heat transfer of supercritical fluids in vertically oriented, macroscale, and uniformly heated geometries—representative of the operating conditions experienced in the nuclear power generation industry [4, 5]. Fluid could either be flowing against or along the direction of the gravity vector. Several authors reported sharp peaks in the wall temperature for supercritical fluid flows in an upward direction, whereas such peaks were absent for fluid flowing in a downward direction. A summary of these results can be found in [1].

The proposed models in [1, 2, 3] attributed these observations to the influence of transverse and axial density gradients in altering the shear stress distribution in the flow field. This change in stress distribution was then related to the heat transfer via the Reynolds analogy. Additionally, these models also account for the variation in the thermophysical properties across the boundary layer by using various property ratio terms, e.g. $\left(\frac{\mu_{bulk}}{\mu_{wall}}\right)^x$. While these models have been successful in predicting heat transfer for uniformly heated

19 vertical geometries, it is unclear if these models apply to applications where
20 the applied heating is non-uniform and non-circular microchannel based ge-
21 metries are used. These applications can include microchannel based heat
22 exchangers in solar thermal applications [6, 7], thermal management of high
23 heat fluxes [8, 9] or in cooling of gas turbine blades.

24 In our recent work [10], we designed and fabricated a test section in which
25 the flow channels were subjected to extreme asymmetry in applied heating.
26 Figure 1 shows the schematic of the test section, with dimensions shown in
27 Table 1. Inconel 718 formed the bottom wall of the flow channels while the
28 remainder of the flow channel walls were of a thermally and electrically insu-
29 lating material, Torlon. The heat flux boundary was applied by Joule heating
30 the Inconel-718 and the resulting surface temperatures were measured using
31 an infrared camera.

Table 1: Dimensions of the microchannel test section from [10]

Nomenclature	Description	Numerical value
Th_{BW}	Thickness of the Inconel sheet	$254 \mu m$
L_{ch}	Length of the flow channel	50 mm
H_{ch}	Height of the flow channel	$600 \mu m$
W_{ch}	Width of the flow channel	2 mm
N_{ch}	Number of flow channels	3
Th_{SW}	Thickness of the channel side wall	1.5 mm
Th_{OE}	Thickness of the outer edge	1.5 mm
$L_{Inconel}$	Total length of the Inconel sheet	64 mm
$W_{Inconel}$	Total width of the Inconel sheet	13 mm

32 Using this setup, experiments were conducted for a range of inlet mass

33 flux ($430 \leq G \leq 800 \text{ kg m}^{-2} \text{ s}^{-1}$), applied heat flux ($5.7 \leq q'' \leq 14.12 \text{ W}$
 34 cm^{-2}), inlet temperature ($31 \leq T_{in} \leq 32.9 \text{ }^{\circ}\text{C}$) and at a reduced pressure
 35 of 1.04. We found that the existing heat transfer models did not predict
 36 our experimental data well (Average $MAPE > 100\%$). For these conditions,
 37 unstable stratification, flow acceleration, and variable thermophysical prop-
 38 erties governed thermal transport. Two factors can be used to explain the
 39 inability of existing design correlations to predict the heat transfer for single
 40 wall heating boundary conditions.

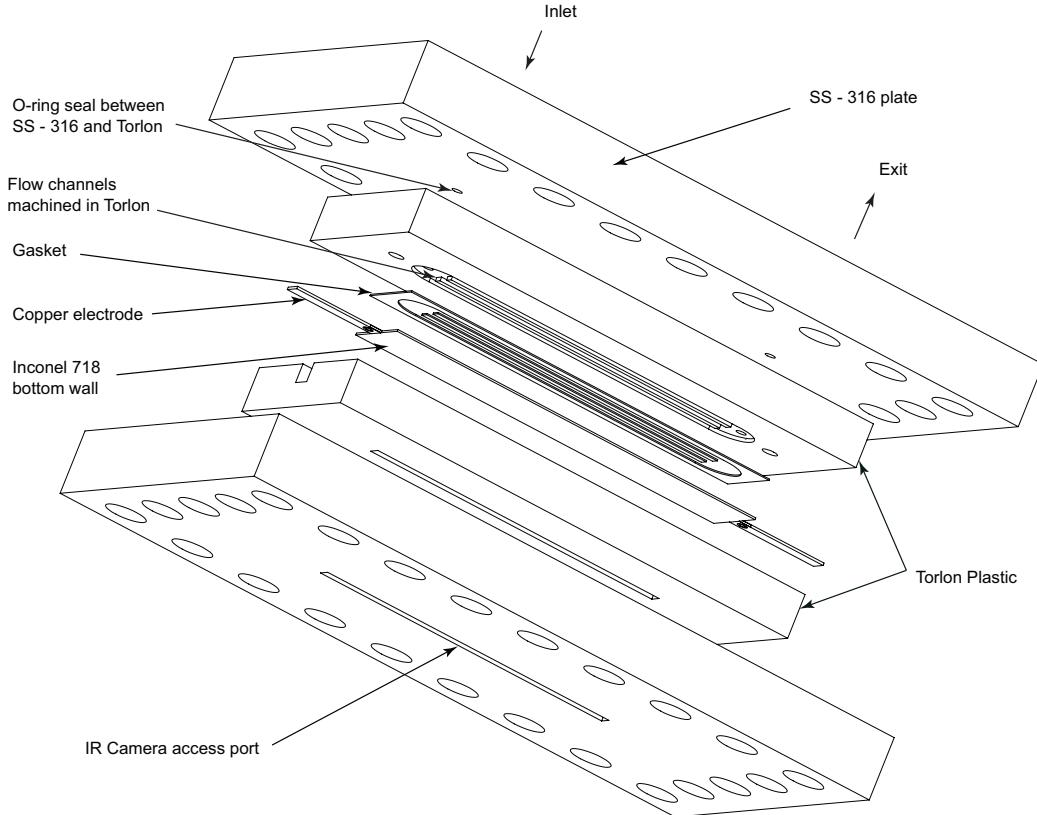


Figure 1: Exploded view of the test section showing sub-components [10].

41 Existing models, developed for uniformly heated ducts, account for un-

42 stable and stable stratification existing simultaneously in the flow channels.
43 This is not the case when the applied heat flux is limited to a single wall of
44 the flow channel. Additionally, regardless of the presence of buoyancy or flow
45 acceleration effects, asymmetric heating can also compromise the predictive
46 capability of existing models developed for uniform heating. Heat transfer
47 coefficients associated with a fluid in a channel with a single wall heated can
48 be lower than the case where all walls are uniformly heated. This has been
49 reported for sub-critical single-phase turbulent fluid flows [11].

50 With no existing models for asymmetric heating in horizontal operat-
51 ing conditions, thermal engineers must rely on computational fluid dynamics
52 (CFD) simulations to help with sizing the heat exchangers. These simula-
53 tions can be computationally expensive, and more importantly, the results
54 of such simulations have not been validated against local experimental heat
55 transfer data. Recently, Nabil and Rattner [9] used CFD to predict heat
56 transfer for supercritical fluids in asymmetrically heated ducts. Due to the
57 lack of availability of local heat transfer data, they instead used average ex-
58 perimental data from our previous study [12] for validation purposes. It is
59 not clear if these models can accurately predict local heat transfer. Accurate
60 prediction of local heat transfer is crucial to avoid local hot-spots forma-
61 tion which can be detrimental for device performance, such as in electronics
62 cooling applications.

63 To address these shortcomings, this study (1) provides empirical evidence
64 of buoyancy effects in non-uniformly heated microchannels, which established
65 the need to model unstable stratification effects in bottom heated microchan-
66 nels, (2) introduces a reduced order modeling framework that can predict the

67 local heat transfer of sCO₂ in the proximity of the pseudo-critical point when
68 the applied heating is limited to the bottom wall of the flow channel, and
69 (3) presents an easy to implement design correlation that can be used to
70 size microchannel devices using sCO₂.. The model and design correlation are
71 validated using the bottom heated experimental data obtained from the test
72 section developed in our previous work [10]. The tabulated data used for
73 comparison are publicly available in compiled form in [13].

74 The model and correlation developed in this study are for single-wall, bot-
75 tom heating configuration. This is an extreme case for asymmetric heating
76 and their predictions will provide a conservative estimate for varying degree
77 of asymmetry in applied heating.

78 **2. Evidence for Presence of Buoyancy Effects in Microchannels**

79 In our earlier work [10], transition criteria suggested that buoyancy ef-
80 fects were expected to be important for certain conditions in horizontal mi-
81 crochannels, but empirical evidence for the presence of stratification was not
82 presented. Since the modeling methodology presented in the later sections
83 will account for these effects, using the same test section, we conducted ad-
84 ditional experiments to obtain this empirical evidence. The details of these
85 experiments can be found in Randle and Fronk [14], however a brief summary
86 is provided here.

87 In these experiments, the test section was operated in a top heated con-
88 figuration and a bottom heated configuration for the same nominal inlet and
89 heat flux boundary conditions. The resulting surface temperatures of the
90 channel wall were measured and the local heat transfer coefficients were cal-

culated. These results are shown in Figure 2. In this comparison, the increase in the heat transfer coefficients in the final 10 mm length of the channel was ignored. This is because the more effective cooling in the exit header region influences the surface temperature in the final portion of the flow channel. Details of the channel design, validation of the experimental approach, and detailed uncertainty analysis are reported in [10].

Generally, the local heat transfer coefficients for the top heated configuration are lower compared to the bottom heated configuration. In the majority of the developed length segment (≥ 19 mm), this deviation is not within experimental uncertainty. On average, the heat transfer coefficients for the top heated configuration are 16% and 13.9% lower than the bottom heated configuration for an applied heat flux of 7.2 W cm^{-2} and 11.1 W cm^{-2} , respectively. This difference in the heat transfer coefficients for these two operating orientations confirms the presence of stratification and therefore its effects should be accounted for in a mechanistic heat transfer model.

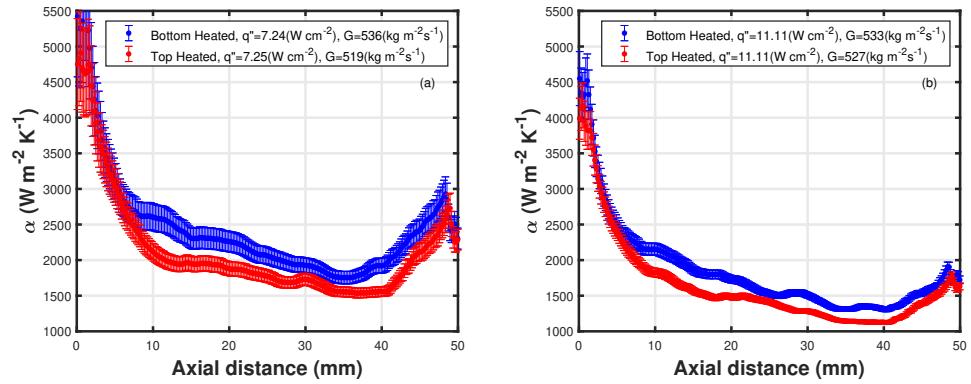


Figure 2: Comparison of local heat transfer coefficients for two different test section orientations. (a) Nominal Mass flux is $520 \text{ kg m}^{-2} \text{ s}^{-1}$ and nominal heat flux is 7.2 W cm^{-2} . (b) Nominal Mass flux is $520 \text{ kg m}^{-2} \text{ s}^{-1}$ and nominal heat flux is 11.1 W cm^{-2} .

106 **3. Modeling Methodology**

107 The flow channel geometry with heating limited to a single wall is modeled
108 as flow between two parallel plates. This assumes that the thermal transport
109 in the channel is a two-dimensional phenomena. Figure 3 shows the modeling
110 domain.

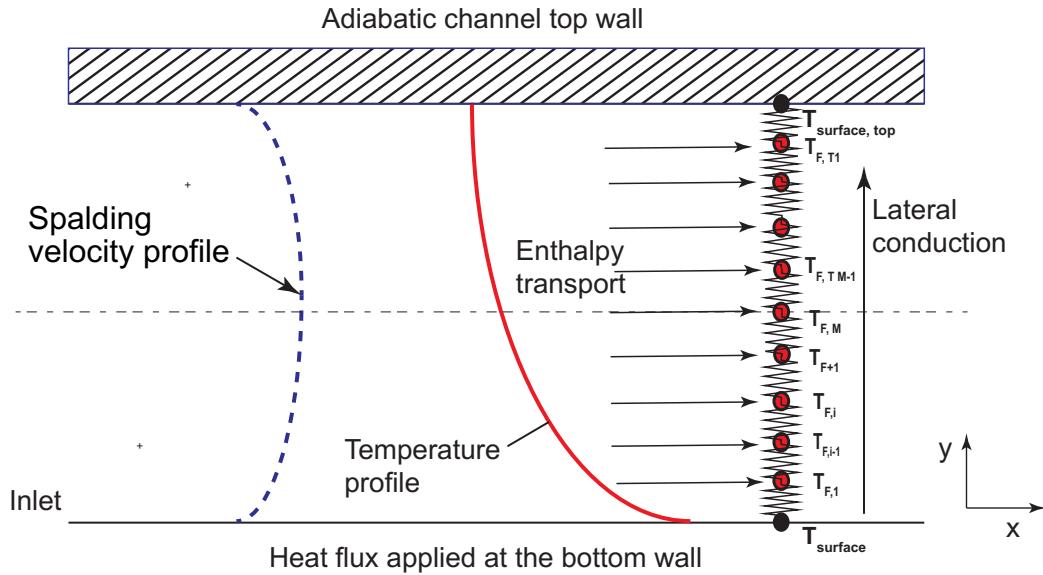


Figure 3: Schematic of the modeled channel flow geometry. This analysis assumes two-dimensional heat transfer between parallel plates.

111 For this domain, the energy equation for the boundary layer can be greatly
112 simplified by ignoring the effects of axial conduction in the fluid stream and
113 viscous dissipation. Additionally, by assuming steady and fully developed
114 flow conditions, the resulting equation is represented by Eq. (1) — a balance
115 between the enthalpy carried by the fluid stream and the lateral conduction
116 into the fluid stream. Here, the effective conductivity (k_{eff}) is accounting for

117 both molecular and turbulent transport mechanisms, as shown in Eq. (2).

$$\rho c u \frac{\delta T}{\delta x} = k_{eff} \frac{\delta^2 T}{\delta y^2} \quad (1)$$

$$k_{eff} = k_{mol} + \frac{\nu \rho c}{Pr_{turb}} \left(\frac{\sigma_m}{\nu} \right) \quad (2)$$

118 The influence of bulk flow acceleration on turbulent thermal conductivity
 119 can be accounted for by using the Van-Driest expression for eddy diffusivity,
 120 shown in Eq. (3). In this expression for eddy diffusivity, A^+ is the effec-
 121 tive viscous sub-layer thickness and is expressed by Eq. (5), and adapted
 122 from [15]. The effects of the axial pressure gradient on the viscous sub-layer
 123 thickness are accounted for by P^+ , which is negative for favorable pressure
 124 gradients.

$$\frac{\sigma_m}{\nu} = \left[\kappa y^+ \left(1 - e^{-\frac{y^+}{A^+}} \right) \right]^2 \left| \frac{du^+}{dy^+} \right| \quad (3)$$

$$\frac{du^+}{dy^+} = \frac{1}{1 + \frac{\sigma_m}{\nu}} \quad (4)$$

$$A^+ = \frac{25.0}{7.1 \left[4.25(p^+) \right] + 1} \quad (5)$$

$$p^+ = \frac{\mu_{wall} \frac{dp}{dx}}{\rho^{\frac{1}{2}} \tau_s^{\frac{3}{2}}} \quad (6)$$

126
 127 Unstable stratification in the channel will tend to enhance the eddy dif-
 128 fusivity of heat compared to that of momentum [16]. This enhancement can
 129 be accounted for by using the appropriate value of the turbulent Prandtl
 130 number, defined in Eq. (7). The methodology to calculate the turbulent
 131 Prandtl number is presented in Section 3.2

$$Pr_{turb} = \frac{\frac{\sigma_m}{\nu}}{\frac{\sigma_H}{\nu}} \quad (7)$$

132 Numerical solution of the simplified energy equation requires two bound-
 133 ary conditions across the y-coordinate (channel height) and an initial con-
 134 dition in the x-coordinate. The boundary condition at the channel bottom
 135 wall is that of the uniform heat flux, while an adiabatic boundary condition
 136 is assumed at the channel top wall. The inlet bulk fluid temperature is used
 137 as an initial condition in the x-coordinate. With the two-dimensional fluid
 138 temperature and the channel bottom wall temperature known, the local heat
 139 transfer coefficient and Nusselt number can be evaluated. The fluid domain
 140 can be discretized by using a resistance network based approach as shown in
 141 Figure 3.

142 To model the enthalpy transport through these fluid nodes, the velocity
 143 distribution in the channel needs to be defined. In this model, it is assumed
 144 that buoyancy and flow acceleration are not affecting the velocity profile,
 145 which is consistent with the assumption of hydrodynamically fully developed
 146 flow conditions. The limitation of this assumption is discussed in Section
 147 4.1. To obtain the velocity distribution across the flow channel, the turbulent
 148 velocity profile proposed by Spalding [17] was used. This expression, shown
 149 in Eq. (8), represents the non-dimensional velocity distribution from the wall
 150 to the center of the flow channel. By assuming a symmetric velocity profile,
 151 the same distribution can be assumed to exist in the upper half of the flow
 152 channel.

$$y^+ = u^+ + 0.11408 \left[e^{(\kappa u^+)} - 1 - \kappa u^+ - \frac{(\kappa u^+)^2}{2} - \frac{(\kappa u^+)^3}{6} - \frac{(\kappa u^+)^4}{24} \right] \quad (8)$$

153 Using this non-dimensional velocity profile, dimensional velocity through
 154 each node was calculated by determining the appropriate friction velocity—
 155 calculated in an iterative fashion. This was done by requiring the calculated

156 mean velocity, Eq. (9) and the specified mean velocity (based on mass flux),
 157 Eq. (10) to be equal to each other. This methodology was adopted from [18].

$$u_{mean} = \frac{1}{H_{eq}} \left[\sum_{i=1}^N (u[i] L_{cv}[i]) + \sum_{i=1}^{N-1} (u_{tha}[i] L_{cv,tha}[i]) \right] \quad (9)$$

158

$$u_{mean} = \frac{G_{chan}}{\rho_{in}} \quad (10)$$

159 A total of 50 nodes were used to span a distance of 461.54 μm (equiva-
 160 lent height between the plates $D_h = 2 \times H_{eq}$ [19], where D_h is that of the
 161 microchannel). With a total of 50 nodes across the flow channel, the spacing
 162 between adjacent nodes in the near wall region, was smaller compared to the
 163 thickness of the sub-layer—allowing to obtain a high resolution temperature
 164 distribution in that region. Additionally, these nodes were distributed in a
 165 logarithmic fashion, with more nodes concentrated in the near wall region
 166 where the steepest gradients are to be expected. With the specified uniform
 167 heat flux, the wall temperature can be obtained from Eq. (11).

$$q''_{flux} = k_{eff}[1] \left(\frac{T_{w,b} - T_F[1]}{y[1]} \right) \quad (11)$$

168 The differential equation, used to obtain the axial temperature evolution of
 169 the first fluid node is given by Eq. (12)

$$\frac{dT_F[1]}{dx} = \left\{ k_{eff}[1] \left(\frac{T_{w,b} - T_F[1]}{y[1]} \right) - \left[\left(\frac{k_{eff}[1] + k_{eff}[2]}{2} \right) \left(\frac{T_F[1] - T_F[2]}{y[2] - y[1]} \right) \right] \right\} \frac{1}{\rho[1] L_{cv}[1] u[1] c_p[1]} \quad (12)$$

170 The differential equations for the interior fluid nodes for the bottom half of
 171 the channel, located between the first and channel center line node are as

¹⁷² follows:

$$\frac{dT_F[i]}{dx} = \left\{ \left[\left(\frac{k_{eff}[i-1] + k_{eff}[i]}{2} \right) \left(\frac{T_F[i-1] - T_F[i]}{y[i] - y[i-1]} \right) \right] - \left[\left(\frac{k_{eff}[i] + k_{eff}[i+1]}{2} \right) \left(\frac{T_F[i] - T_F[i+1]}{y[i+1] - y[i]} \right) \right] \right\} \frac{1}{\rho[i] L_{cv}[i] u[i] c_p[i]} \quad (13)$$

¹⁷³ The differential equation for the fluid node located at the channel center line

¹⁷⁴ is as follows:

$$\frac{dT_F[N]}{dx} = \left\{ \left[\left(\frac{k_{eff}[N-1] + k_{eff}[N]}{2} \right) \left(\frac{T_F[N-1] - T_F[N]}{y[N] - y[N-1]} \right) \right] - \left(\frac{(k_{eff}[N] + K_{eff,th}[N-1]}{2} \right) \left(\frac{T_F[N] - T_{F,th}[N-1]}{y[N] - y[N-1]} \right) \right\} \frac{1}{\rho[N] L_{cv}[N] u[N] c_p[N]} \quad (14)$$

¹⁷⁵ The differential equations for the interior nodes in the channel top half, with

¹⁷⁶ the direction of heat transfer from bottom to top half, are as follows:

$$\frac{dT_{F,th}}{dx} = \left\{ \left[\left(\frac{k_{eff,th}[i+1] + k_{eff,th}[i]}{2} \right) \left(\frac{T_{F,th}[i+1] - T_{F,th}[i]}{y[i+1] - y[i]} \right) \right] - \left(\frac{(k_{eff,th}[i] + K_{eff,th}[i-1]}{2} \right) \left(\frac{T_{F,th}[i] - T_{F,th}[i-1]}{y[i] - y[i-1]} \right) \right\} \frac{1}{\rho_{tha}[i] L_{cv,tha}[i] u_{tha}[i] c_{p,tha}[i]} \quad (15)$$

¹⁷⁷ Finally, the differential equation for the fluid node adjacent to the top wall

¹⁷⁸ of the channel is as follows:

$$\frac{dT_{F,th}[1]}{dx} = \left(\frac{k_{eff,th}[2] + k_{eff,th}[1]}{2} \right) \left(\frac{T_{F,th}[2] - T_{F,th}[1]}{y[2] - y[1]} \right) \times \frac{1}{u_{tha}[1] L_{cv,tha}[1] \rho_{tha}[1] c_{p,tha}[1] L_{cv,tha}[1]} \quad (16)$$

179 The adiabatic boundary condition at the channel top wall implies that the
 180 temperature of the fluid node adjacent to the top wall is equal to the channel
 181 top wall temperature, i.e.:

$$T_{F,th}[1] = T_{w,t} \quad (17)$$

182 These differential equations can then be integrated to obtain the local
 183 heat transfer coefficients. In this study, the calculation procedure was carried
 184 out using the Engineering Equation Solver (EES) [20] platform with the
 185 channel inlet temperature as the initial condition. During this integration
 186 process, the temperature dependent thermophysical properties for the current
 187 integration step are taken from those calculated at the previous step. This
 188 allows the iterative solver to converge when there is a drastic change in the
 189 thermophysical properties of sCO₂ in the proximity of the pseudo-critical
 190 point. After obtaining the thermal profile across the channel, the bulk fluid
 191 temperature can be calculated as shown in Eq. (20). Using the bulk fluid
 192 temperature, the local heat transfer coefficient and the Nusselt number is
 193 obtained according to Eq (21) and (22), respectively.

$$T_F[i] = T_{ch,in} + \int_{x=0}^{x=L_{ch}} \left(\frac{dT_F[i]}{dx} \right) dx \quad (18)$$

$$T_{F,th}[i] = T_{ch,in} + \int_{x=0}^{x=L_{ch}} \left(\frac{dT_{F,th}[i]}{dx} \right) dx \quad (19)$$

$$T_{bulk} = \frac{1}{u_{mean} H_{eq}} \left[\sum_{i=1}^N (u[i] T_F[i] L_{cv}[i]) + \sum_{i=1}^{N-1} (u_{tha}[i] T_{F,th}[i] L_{cv,tha}[i]) \right] \quad (20)$$

$$\alpha = \frac{q_{flux}}{T_{w,b} - T_{bulk}} \quad (21)$$

$$Nu_{bulk} = \frac{q_{flux} D_h}{k_{bulk} (T_{w,b} - T_{bulk})} \quad (22)$$

198 *3.1. Evaluation of the Prediction Scheme*

199 To gain confidence in the accuracy of the technique implemented in the
200 previous section, the predicted heat transfer results are compared against a
201 canonical case with a similar geometry and heat flux boundary conditions.
202 Here, we consider an asymmetrically heated annulus formed between two
203 concentric tubes, shown in Figure 4. In this configuration, the bottom wall
204 of the flow channel, i.e., the inner tube wall, can be heated while the external
205 tube wall can be kept adiabatic— mimicking the boundary conditions of
206 interest in the current study. Additionally, in the limiting case of the radius
207 of the internal tube approaching that of the external tube, the flow in the
208 annulus can be treated as flow between parallel plates [15].

209 Heat transfer data for this particular configuration were published by
210 Kays and Leung [21]. They developed a computational scheme to predict the
211 turbulent heat transfer for a range of annular flow geometries. One of these
212 cases reported data as $\frac{r_{outer}}{r_{inner}} \rightarrow 1$ with heating limited to a single wall. These
213 computational investigations were validated by using experimental data for
214 air (Prandtl number = 0.7).

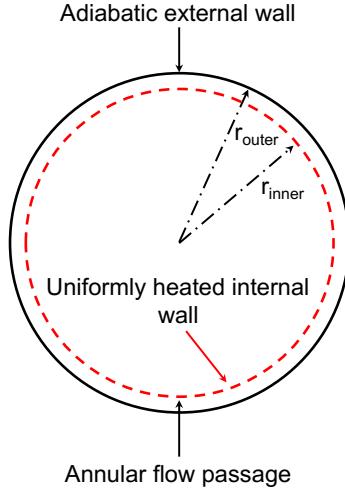


Figure 4: As $\frac{r_{outer}}{r_{inner}} \rightarrow 1$, the annular flow geometry approaches that of parallel flat plates.

215 Using the model developed in our study, the local Nusselt numbers for
 216 sCO_2 were calculated for operating conditions away from the pseudo-critical
 217 point. For these conditions, no significant density gradients would be present
 218 in the flow channel, therefore the effects of both buoyancy and flow accelera-
 219 tion on eddy diffusivity are ignored. A turbulent Prandtl number of 0.9 was
 220 chosen, the same as that used by Kays and Leung [21] in their calculations.
 221 All other calculation details were similar to those described in the section 3.
 222 The inputs used for this evaluation of the model are summarized in Table 2.
 223 Using these inputs, the model is solved, providing a two-dimensional tem-
 224 perature distribution across the channel. A few of these temperature profiles
 225 are shown in Figure 5.

Table 2: Inputs to the predictive model to calculate the local Nusselt number for conditions away from the pseudo-critical point.

Nomenclature	Description	Numerical value
P_{inlet}	Absolute pressure of sCO ₂	8900 kPa
Re_{inlet}	Reynolds number at inlet	3×10^4
T_{pc}	Pseudo-critical temperature	39.48°C
T_{inlet}	Channel inlet temperature	45°C
D_H	Hydraulic diameter for parallel plates	$2 \times H_{\text{eq}}$
RR	Relative Roughness	0
ΔP_{fric}	Channel frictional pressure drop	1352 Pa
Pr_{inlet}	Inlet Prandtl number	1.62
Pr_{turb}	Turbulent Prandtl number	0.9

Figure 5: Temperature profiles obtained from the resistance network model developed for flow between parallel plates with asymmetric heating.

226 The Nusselt number data provided by Kays and Leung [21] are a function
 227 of Prandtl number. This data set was fitted with a third order polynomial and
 228 then used to obtain the Nusselt number variations along the channel length as
 229 a function of Prandtl evaluated at the wall temperature. Figure 6 shows the
 230 the results of the comparison of calculated local Nusselt numbers and those
 231 reported by Kays and Leung [21]. In the developing region, the maximum
 232 error between the model and the results of Kays and Leung is 57.1%. This
 233 difference decreases, on average, to is 3.3% in the fully developed region. The
 234 maximum deviation observed in the fully developed region is 3.81%. The
 235 average difference between these is 3.3% in the thermally fully developed
 236 region, giving credibility to the approach used to setup the predictive model.

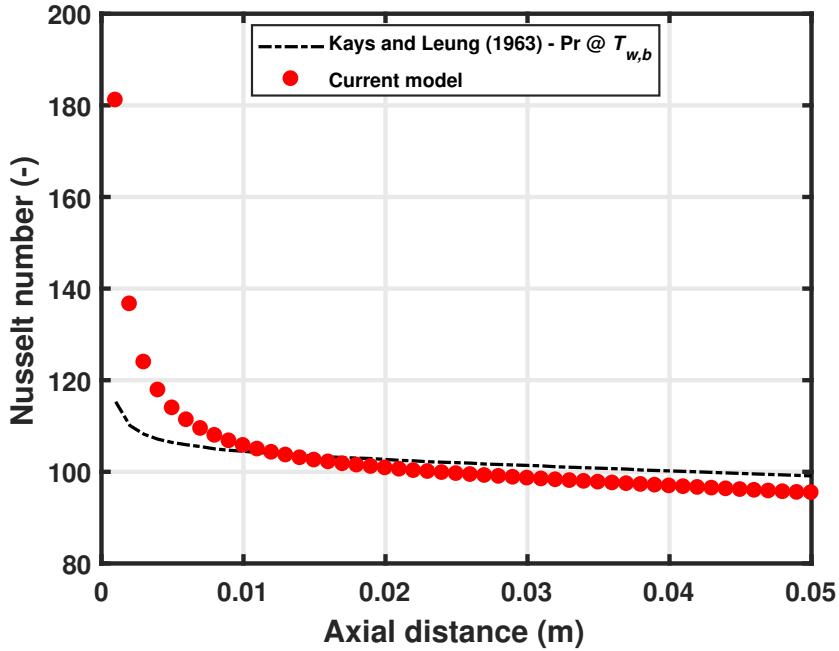


Figure 6: Comparison of local Nusselt numbers. In the thermally developed region (> 0.029 m), the average difference between the two trends is 3.3%.

237 3.2. Determining the Turbulent Prandtl Number

238 Turbulent Prandtl number can be a function of several flow parameters
239 — velocity and temperature gradients, turbulent shear stress, turbulent heat
240 flux, and stratification. Additionally, turbulent Prandtl number is not con-
241 stant within the flow field, with the highest values observed close to the wall
242 and can be as high as 2 for air ($Pr = 0.7$) [15]. Several authors have reported
243 using variable values of turbulent Prandtl numbers to model the heat transfer
244 of supercritical carbon dioxide in the proximity of the pseudo-critical point
245 [22, 23, 24]. With many different factors influencing the turbulent Prandtl
246 number, it is not possible to know the exact value before starting the calcu-
247 lation procedure. Therefore, the value of turbulent Prandtl number, used in

248 the bottom half of the channel, was determined in an iterative fashion.

249 The values of the turbulent Prandtl number were changed in the model
250 until the numerically predicted bulk temperature profile matched those pre-
251 dicted by a first law balance on the flow channel (within 0.1°C). This process
252 is illustrated in the flow chart shown in Figure 7 and can be summarized in
253 the following steps:

254 1. The inputs of heat flux, mass flux, absolute pressure, inlet bulk tem-
255 perature, pseudo-critical temperature, and an estimate of the turbulent
256 Prandtl number are entered in the model.

257 2. The model solves equations (1) through (22) to obtain the wall tem-
258 perature and the bulk fluid temperature.

259 3. The bulk fluid temperature is compared to that obtained by the first
260 law balance on the channel.

261 4. If the numerically predicted bulk temperature is within 0.1 °C of that
262 obtained by the first law, the calculation procedure proceeds. If this is
263 not the case, steps 1 through 4 are repeated with an updated value of
264 the turbulent Prandtl number.

265 5. The calculation then proceeds to determine the heat transfer coeffi-
266 cients and the Nusselt number

267 Since the top half of the channel is not expected to be significantly affected by
268 unstable stratification, a constant value was used there. Turbulent Prandtl
269 number varies across the boundary layer and can be as high as 2 in the near
270 wall region [15]. Therefore, a value of 1.9 was chosen to account for the

271 limiting resistance of the near wall region in the top portion of the channel.
 272 Tang *et al.* [22] also reported, for supercritical carbon dioxide, increasing
 273 values of turbulent Prandtl number in the near wall region.

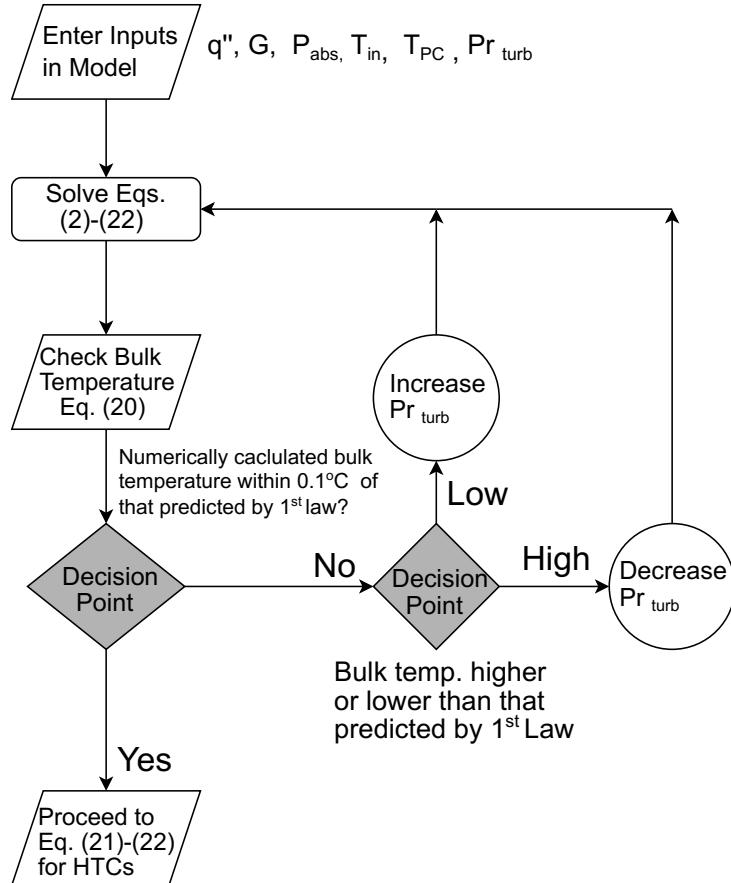


Figure 7: Flow chart illustrating the iterative scheme used to determine the correct turbulent Prandtl number used in the bottom half of the channel.

274 4. Comparison with Experimental Data

275 The predictions of the reduced order model are compared against data
 276 reported in [10]. In this comparison, the nominal channel mass flux ranges

277 from 700 to 430 $\text{kg m}^{-2} \text{ s}^{-1}$ whereas the heat flux ranges from 5.7 to 11.1 W
278 cm^{-2} . Unstable stratification and flow acceleration effects are expected to be
279 present for channel mass fluxes below 500 $\text{kg m}^{-2} \text{ s}^{-1}$ and heat flux values
280 higher than 7 W cm^{-2} , as predicted by the transition criteria of Petukhov
281 [25] and Jackson [1].

282 Figure 8 shows the comparison for a nominal channel mass flux of 700
283 $\text{kg m}^{-2} \text{ s}^{-1}$. The associated values of the turbulent Prandtl number and the
284 *MAPE* values are shown in Table 3. The comparison was started at an axial
285 position of 2.4 mm. This was done to avoid comparison with the extremely
286 high values of the heat transfer coefficients predicted by the model in the very
287 first time steps of the solution. These very high heat transfer coefficients are
288 not physical but rather an artifact of the numerical scheme used to solve the
289 coupled set of ordinary differential equations.

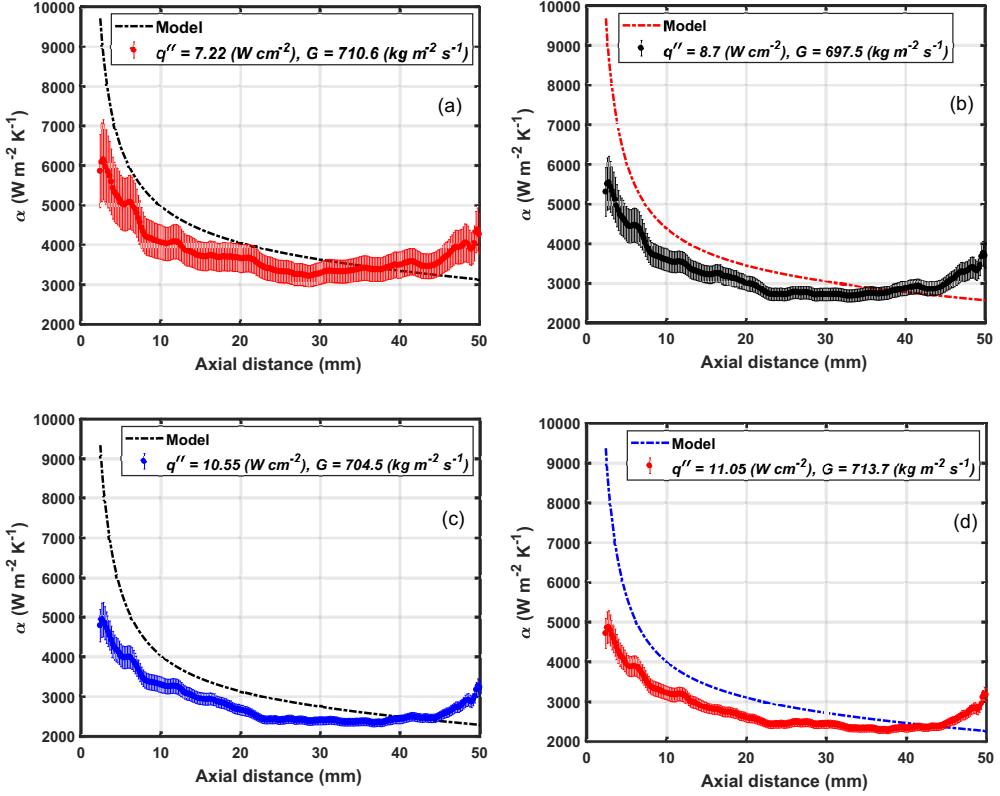


Figure 8: Comparison of the predictions of the reduced order model against the experimental data with a nominal channel mass flux of $700 \text{ kg m}^{-2} \text{ s}^{-1}$ and a nominal inlet temperature of 32.8°C . The comparison is started at an axial position of 2.4 mm instead of 0 mm.

Table 3: *MAPE* values and turbulent Prandtl number details for nominal mass flux of 700 $\text{kg m}^{-2} \text{ s}^{-1}$.

G_{chan} ($\text{kg m}^{-2} \text{ s}^{-1}$)	q'' (W cm^{-2})	Average <i>MAPE</i> %	Pr_{turb} (-)
710.6	7.22	13.9	1.9 IF $\left(\frac{T_{Bulk}}{T_{PC}} < 0.999\right)$ ELSE 1.8
697.5	8.7	16.19	1.45 $\left(\frac{T_{Bulk}}{T_{PC}} > 0.999\right)$
704.4	10.55	17.7	1.15 $\left(\frac{T_{Bulk}}{T_{PC}} > 0.999\right)$
713.7	11.09	18.12	1.1 $\left(\frac{T_{Bulk}}{T_{PC}} > 0.999\right)$

290 The comparison of the model with the experimental data with a nominal
 291 channel mass flux of $460 \text{ kg m}^{-2} \text{ s}^{-1}$ is shown in Figure 9 and the details of the
 292 *MAPE* and turbulent Prandtl number are summarized in Table 4. Again,
 293 as the heat flux is increased or the ratio, $\frac{T_{Bulk}}{T_{PC}}$ approaches unity, the values
 294 of the turbulent Prandtl number drop. Additionally, the *MAPE*, for all the
 295 cases in this data set, is below 20 %.

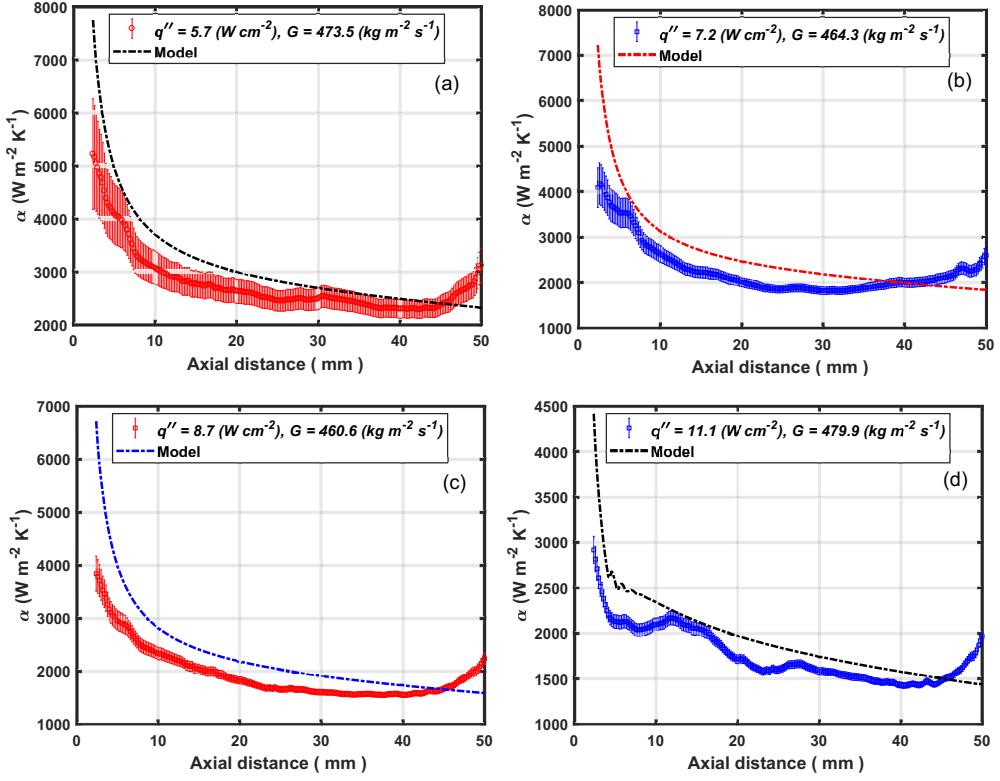


Figure 9: Comparison of the predictions of the reduced order model against the experimental data with a nominal channel mass flux of 460 kg m⁻² s⁻¹ and a nominal inlet temperature of 32.8°C . The comparison is started at an axial position of 2.4 mm instead of 0 mm.

Table 4: *MAPE* values and turbulent Prandtl number details for nominal mass flux of 460 $\text{kg m}^{-2} \text{ s}^{-1}$.

G_{chan} ($\text{kg m}^{-2} \text{ s}^{-1}$)	q'' (W cm^{-2})	Average <i>MAPE</i> %	Pr_{turb} (-)
473.5	5.7	13.3	$1.4 \left(\frac{T_{Bulk}}{T_{PC}} > 0.999 \right)$
464.3	7.2	17.6	$1.05 \left(\frac{T_{Bulk}}{T_{PC}} > 0.999 \right)$
460.6	8.7	18.9	$0.8 \left(\frac{T_{Bulk}}{T_{PC}} > 0.999 \right)$
479.9	11.1	11.59	1.8 IF $\left(\frac{T_{Bulk}}{T_{PC}} < 0.999 \right)$ ELSE 0.57

296 The predictive capability of the model is compared against the experimen-
 297 tal results with a nominal channel mass flux of $430 \text{ kg m}^{-2} \text{ s}^{-1}$. The results
 298 are shown in Figure 10 and the *MAPE* and turbulent Prandtl number values
 299 are summarized in Table 5. The *MAPE* for all the cases in this data set was
 300 below 25%. Additionally, the turbulent Prandtl number values dropped as
 301 the heat flux was increased and the ratio, $\frac{T_{Bulk}}{T_{PC}}$ approached unity.

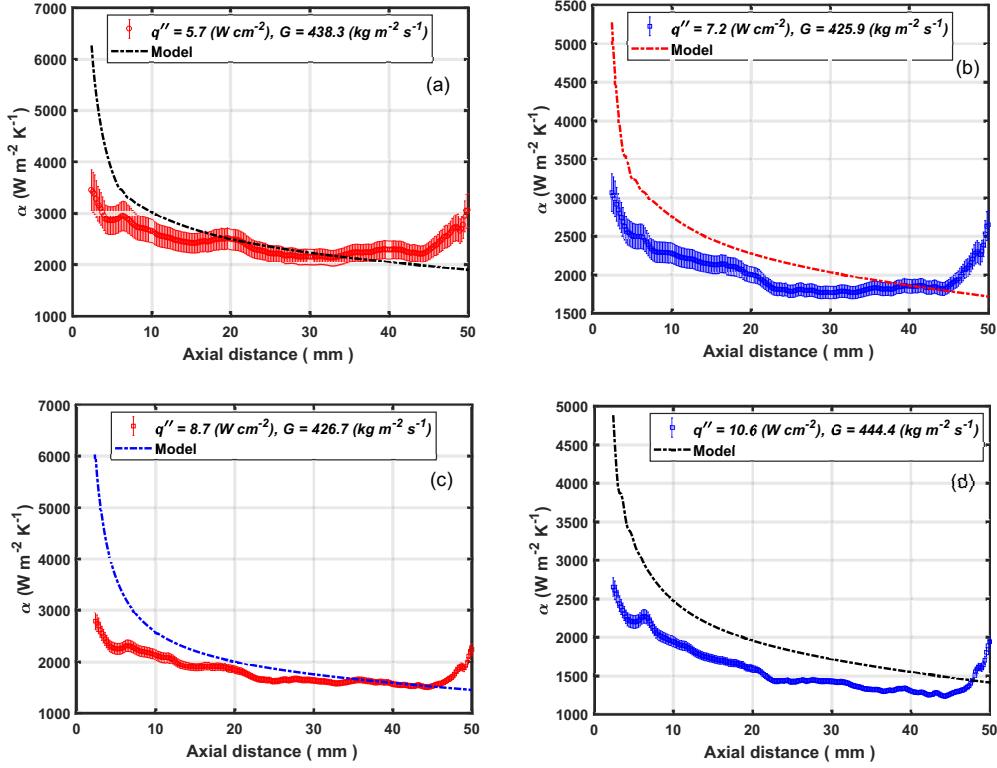


Figure 10: Comparison of the predictions of the reduced order model against the experimental data with a nominal channel mass flux of $430 \text{ kg m}^{-2} \text{ s}^{-1}$ and a nominal inlet temperature of 32.8°C . The comparison is started at an axial position of 2.4 mm instead of 0 mm.

Table 5: *MAPE* values and turbulent Prandtl number details for nominal mass flux of 430 $\text{kg m}^{-2} \text{ s}^{-1}$.

G_{chan} ($\text{kg m}^{-2} \text{ s}^{-1}$)	q'' (W cm^{-2})	Average <i>MAPE</i> %	Pr_{turb} (-)
438.3	5.7	12.4	1.9 IF $\left(\frac{T_{Bulk}}{T_{PC}} < 0.999\right)$ ELSE 1.4
425.9	7.2	15.49	1.9 IF $\left(\frac{T_{Bulk}}{T_{PC}} < 0.999\right)$ ELSE 0.89
426.7	8.7	16.11	0.7 $\left(\frac{T_{Bulk}}{T_{PC}} > 0.999\right)$
444.4	10.6	24.7	1.9 IF $\left(\frac{T_{Bulk}}{T_{PC}} < 0.999\right)$ ELSE 0.52

302 The results of the comparison against the final experimental data set are
 303 shown in Figure 11. The *MAPE* and the values of the turbulent Prandtl
 304 number for each individual case in this data set are summarized in Table 6.
 305 Apart from one case, the remaining cases in this data set had *MAPE* values
 306 under 20%. Similar to the cases in the previous subsection, as the heat flux
 307 is increased or the ratio, $\frac{T_{Bulk}}{T_{PC}}$ approaches unity, the values of the turbulent
 308 Prandtl number drop.

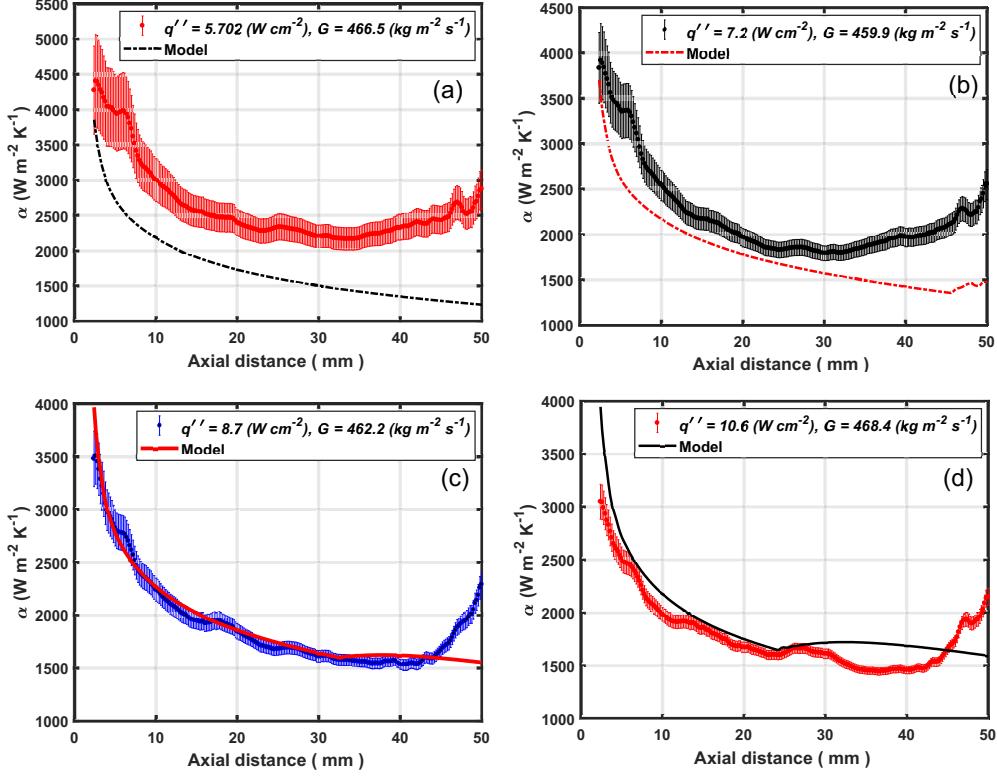


Figure 11: Comparison of the predictions of the reduced order model against the experimental data with a nominal mass flux of $460 \text{ kg m}^{-2} \text{ s}^{-1}$.

Table 6: *MAPE* values and turbulent Prandtl number details for test cases with a nominal mass flux of $460 \text{ kg m}^{-2} \text{ s}^{-1}$.

G_{chan} ($\text{kg m}^{-2} \text{ s}^{-1}$)	q'' (W cm^{-2})	Average <i>MAPE</i> %	Pr_{turb} (-)
466.5	5.7	34.18	$2.4 \left(\frac{T_{Bulk}}{T_{PC}} < 0.999 \right)$
459.9	7.2	18.9	$1.3 \text{ IF } \left(\frac{T_{Bulk}}{T_{PC}} < 0.999 \right) \text{ ELSE } 0.9$
462.2	8.7	4.1	$0.85 \text{ IF } \left(\frac{T_{Bulk}}{T_{PC}} < 0.999 \right) \text{ ELSE } 0.75$
468.4	10.6	9.1	$0.6 \text{ IF } \left(\frac{T_{Bulk}}{T_{PC}} < 0.999 \right) \text{ ELSE } 0.5$

Figure 12: Comparison of the all the experimental data against the predictions of the model. The data has been split into two categories, the first 10 mm of the channel and the final 40 mm. In general, the model is able to predict the data with greater accuracy in the final 40 mm length of the channel

309 Generally, as the applied heat flux increased and the mass flux reduced,
 310 there was a reduction in the values of the turbulent Prandtl number. Also
 311 for each case, as the bulk fluid temperature approached the pseudo-critical
 312 temperature, the value of the turbulent Prandtl number dropped. Values
 313 specific to each case are tabulated along with the comparison results. A
 314 decreasing turbulent Prandtl number is an indication that the eddy diffusivity
 315 of heat is larger than the eddy diffusivity of momentum. Eddy diffusivity

316 of heat is expected to increase as unstable stratification increases [16] and
317 the molecular Prandtl number becomes larger which explains the observed
318 reduction in the turbulent Prandtl number. Bazargan and Mohseni [24]
319 report similar trends in the variations of the turbulent Prandtl number when
320 buoyancy effects become significant. Additionally, the model developed in
321 this section is able to predict the data with greater accuracy in the final 40
322 mm length of the channel. This can be seen in Figure 12.

323 *4.1. Limitations of the Model*

324 Although the current model provides an alternative to using CFD to
325 model the supercritical heat transfer, there are some limitations inherent in
326 the approach used. First, this methodology cannot be extended for constant
327 temperature boundary conditions. For a constant temperature boundary
328 condition, the turbulent Prandtl number cannot be calculated in an iterative
329 fashion. Second, it was assumed that buoyancy and flow acceleration are
330 not influencing the shape of the velocity profile. This is not accurate, par-
331 ticularly at high heat flux and low mass flux conditions. Mixed convective
332 effects are known to distort the shape of the velocity profiles [25]. Finally,
333 the current modeling approach can prove impractical when used to size a
334 heat sink. Solving for the turbulent Prandtl number in an iterative fashion,
335 as the operating conditions change, is computationally expensive and time
336 consuming. On the other hand, a heat transfer correlation, as introduced
337 below, is straightforward to implement and allows a thermal engineer to size
338 a heat exchanger with ease.

339 **5. Correlation Development**

340 The correlation proposed here accounts for the following factors:

341 1. Developing length

342 2. Uniform single wall heating.

343 3. Variable thermophysical properties.

344 4. Flow acceleration.

345 5. Unstable stratification.

346 The correlation uses the Dittus and Boelter correlation [26] as a start-
347 ing point, which captures the effect of Reynolds and Prandtl numbers on
348 single-phase turbulent transport. However, due to varying thermophysical
349 properties across the flow field, using bulk fluid temperature to evaluate
350 the thermophysical properties is not appropriate. Reynolds number is to be
351 evaluated as a function of the film temperature whereas the fluid thermal
352 conductivity used in the Nusselt number should be evaluated as a function
353 of wall temperature. The Prandtl number will be evaluated as a function of
354 both the bulk fluid temperature and the wall temperature with the lowest of
355 these values used in the correlation. Evaluating the thermal conductivity as a
356 function of wall temperature and choosing the minimum value of the Prandtl
357 number captures the effects of the near-wall diffusive region on the turbulent
358 thermal transport. Minimum value of the Prandtl number has been used in
359 the correlations proposed by Miropolskiy and Shitsman [27] and Ornatsky
360 *et al.* [28].

361 A reduction in heat transfer coefficients has been reported for single-phase
 362 sub-critical turbulent flows in asymmetrically heated rectangular ducts [11].
 363 A maximum reduction of 11% was reported in B.K. Rao's [11] study and
 364 therefore a constant of 0.89 is applied to the correlation developed in the
 365 current work. Additionally a factor, adopted from Nellis and Klein [18], is
 366 used to account for the effect of developing region on the predicted Nusselt
 367 number. This factor is defined in Eq. (23)

$$F_{dev} = \left[1 + \left(\frac{L_{ax}}{D_h} \right)^{-0.7} \right] \quad (23)$$

368 Flow acceleration is a consequence of an axial drop in the bulk fluid
 369 density under heating conditions. Since density depends upon temperature, if
 370 the axial temperature distribution is known, the magnitude of the thermally
 371 induced bulk flow acceleration can be determined. McEligot and Jackson
 372 [29] proposed a thermal loading parameter that accounts for the effect of
 373 flow acceleration on heat transfer. It is derived in the following fashion.

374 The bulk fluid temperature distribution inside a heated duct can be ob-
 375 tained by applying the first law balance on a control volume of length dx .
 376 This is shown in Eq. (24).

$$G_{chan}h_x + q''_{wall} = G_{chan}h_{x+dx} \quad (24)$$

$$G_{chan}h_x + q''_{wall} = G_{chan}h_x + G_{chan} \frac{dh_x}{dx} dx \quad (25)$$

$$q''_{wall} = G_{chan} \frac{dh_x}{dx} \quad (26)$$

377
 378 Assuming that the fluid behaves as an ideal gas allows us to approximate
 379 $dh = c_p dT$, resulting in Eq. (27) which describes the change in fluid temper-
 380 ature for given value of channel mass flux and applied heat flux. Since, the
 381

382 axial density drop depends upon the bulk fluid temperature, this equation is
 383 also indicative of the expected flow acceleration for a given value of applied
 384 heat flux and channel mass flux. Dividing Eq. (27) by T_{bulk} on both sides,
 385 non-dimensionalizes the equation and results in a non-dimensional parameter,
 386 q^+ .

$$\frac{q''_{wall}}{G_{chan}c_p} = dT \quad (27)$$

$$q^+ = \frac{q''_{wall}}{G_{chan}c_p T_{bulk}} \quad (28)$$

388 With the assumption that the fluid is behaving as an ideal gas, we can
 389 substitute Eq. (29) into Eq. (28), resulting in Eq. (30) which is called the
 390 thermal loading parameter [29].

$$\beta = \frac{1}{T_{bulk}} \quad (29)$$

$$q^+ = \frac{q''_{wall}\beta}{G_{chan}c_p} \quad (30)$$

392 Since in the current work, the heat flux is only limited to a single wall of
 393 the flow channel, the thermal loading parameter can be modified as shown in
 394 Eq. (31) [29]. The ratio of the heated to wetted perimeter accounts for the
 395 fact that the wall heat flux is not uniform across the channel periphery. The
 396 absolute magnitude of q^+ is indicative of the thermal acceleration expected
 397 to be present in the flow field.

$$q^+ = \frac{\beta q''_{wall}}{G_{chan}c_p} \left(\frac{Per_h}{Per_{wet}} \right) \quad (31)$$

398 Effects of unstable stratification on heat transfer will be accounted for by
 399 using the Richardson number as one of the non-dimensional numbers in the

400 correlation. The Richardson number is defined in Eq.(32)

$$401 \quad Ri = \frac{Gr_q}{Re_{film}^2} \quad (32)$$

$$402 \quad Gr_q = \frac{g\bar{\beta}q''_{wall}D_h^4}{\nu^2 k_{bulk}} \quad (33)$$

$$403 \quad \bar{\beta} = \frac{1}{\rho_{film}} \frac{\rho_{bulk} - \rho_{wall}}{T_{wall} - T_{bulk}} \quad (34)$$

403 Since flow acceleration and unstable stratification have the opposite influence
 404 on turbulent thermal transport, a single factor describing this relationship is
 405 defined in Eq.(35).

$$406 \quad F_{Acc,Bo} = \frac{Ri}{q^+} \quad (35)$$

406 Based on the above discussion the correlation will take the form shown in
 407 Eq. (36) where x is an undetermined exponent, correlated from experimental
 408 data. A total of 15 experimental data sets with a unique combination of
 409 channel mass flux and heat flux, each consisting of 242 data points, were used
 410 to determine the value of the empirical exponent, x . The total error between
 411 the experimentally determined Nusselt number, defined in Eq. (37), and the
 412 one predicted by Eq. (36) was minimized using the method of quadratic
 413 approximations. The average value of x across all these data sets is 0.036
 414 and therefore, the final form of the correlation is given in Eq. (38).

$$415 \quad Nu_{wall} = F_{dev} \times 0.89 \times 0.023 Re_{film}^{0.8} Pr_{min}^{0.4} F_{Acc,Bo}^x \quad (36)$$

$$416 \quad Nu_{exp} = \frac{\alpha_{exp} D_h}{k_{wall}} \quad (37)$$

$$417 \quad Nu_{wall} = F_{dev} \times 0.89 \times 0.023 Re_{film}^{0.8} Pr_{min}^{0.4} F_{Acc,Bo}^{0.036} \quad (38)$$

417 Experimental data is available which was not used to determine the value
 418 of the exponent, x . This data can be used to assess the predictive capability

419 of the proposed correlation. Four data sets, each with over 200 data points,
 420 were used for this comparison. The results of this comparison, and the *MAPE*
 421 values for each data set, are shown in Figure 13. For all four data sets, the
 422 correlation predicted the experimental data with a *MAPE* of under 22%.

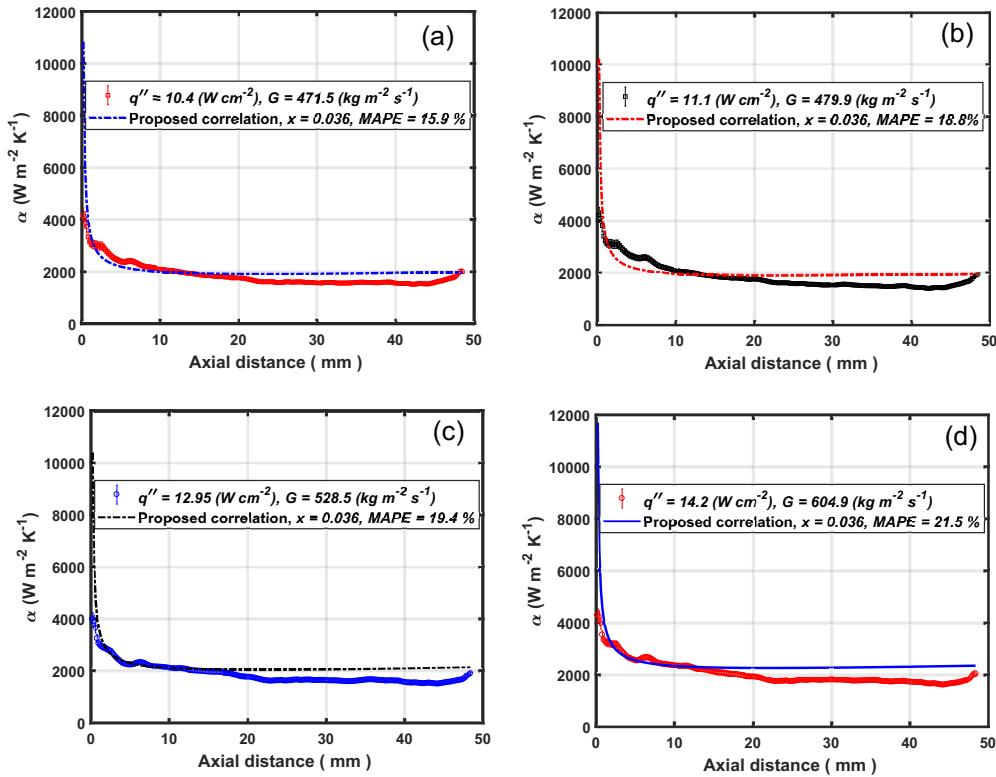


Figure 13: Comparison of the proposed correlation against local experimental data.

423 **6. Conclusions**

424 A reduced order model was developed to account for variable thermo-
 425 physical property variations, flow acceleration, and unstable stratification.
 426 Variable thermophysical property variations across the boundary layer were

427 accounted for by discretizing the resistance network model across and along
428 the flow channel. Effects of flow channel acceleration were considered by using
429 the Van-Driest expression for eddy diffusivity. Finally, the effects of unstable
430 stratification manifested in the decreasing values of turbulent Prandtl num-
431 ber as the applied heat flux increased and channel mass flux decreased. The
432 turbulent Prandtl number in the top half of the channel was kept constant
433 at 1.9 while the one associated with the bottom half was allowed to vary.

434 The reduced order model was able to predict 14 out of 16 cases with a
435 *MAPE* of less than 20%. Generally, as the applied heat flux was increased
436 and the channel mass flux reduced, the values of turbulent Prandtl number
437 used in the model dropped. The lowest value used was 0.5. This is inline
438 with the observations regarding the behavior of turbulent Prandtl number
439 for unstable stratification conditions, as reported by Ueda *et al.* [16]. Ad-
440 ditionally, within the flow channel, as the bulk temperature approached the
441 pseudo-critical point and the molecular Prandtl number increased, the value
442 of turbulent Prandtl number dropped.

443 This reduced order model can also be extended to predict the behavior of
444 supercritical fluids, other than carbon dioxide, for similar operating condi-
445 tions. However, a major limitation of the current modeling approach is that
446 the iterative scheme used to calculate the turbulent Prandtl number will not
447 work for constant temperature boundary condition. Additionally, if mixed
448 convective effects were to become significant, the use of Spalding velocity
449 profile might not be justified.

450 This study concludes with proposing a heat transfer design correlation
451 that can be used to size heat sinks for use in electronics cooling applications.

452 This correlation accounts for the asymmetry in applied heating, unstable
453 stratification, flow acceleration, and the effects of the developing region on
454 supercritical heat transfer. The correlation predicted the experimental data
455 with a *MAPE* of under 22%.

456 **7. Acknowledgements**

457 The material presented in this paper is based upon work supported by
458 the National Science Foundation under Grant No. 1604433. The authors
459 also like to thank Greyson Termini for his help during the fabrication of the
460 test section used in this study.

461 **References**

- 462 [1] J. D. Jackson, Fluid flow and convective heat transfer to fluids at su-
463 percritical pressure, Nuclear Engineering and Design 264 (2013) 24–40.
- 464 [2] J. D. Jackson, Heat transfer deterioration in tubes caused by bulk flow
465 acceleration due to thermal and frictional influences (2012) 223–230.
- 466 [3] J. D. Jackson, Models of heat transfer to fluids at supercritical pres-
467 sure with influences of buoyancy and acceleration, Applied Thermal
468 Engineering 124 (2017) 1481–1491.
- 469 [4] I. L. Pioro, R. B. Duffey, Heat Transfer and Hydraulic Resistance at Su-
470 percritical Pressures in Power-Engineering Applications, ASME, 2007.
- 471 [5] I. L. Pioro, H. F. Khatabil, R. B. Duffey, Heat transfer to supercritical
472 fluids flowing in channels - Empirical correlations (survey), Nuclear
473 Engineering and Design 230 (2004) 69–91.

474 [6] M. B. Hyder, B. M. Fronk, Simulation of thermal hydraulic performance
475 of multiple parallel micropin arrays for concentrating solar thermal ap-
476 plications with supercritical carbon dioxide, *Solar Energy* 164 (2018)
477 327–338.

478 [7] K. R. Zada, M. B. Hyder, M. Kevin Drost, B. M. Fronk, Numbering-Up
479 of Microscale Devices for Megawatt-Scale Supercritical Carbon Dioxide
480 Concentrating Solar Power Receivers, *Journal of Solar Energy Engi-
481 neering* 138 (2016) 061007.

482 [8] B. M. Fronk, A. S. Rattner, High-Flux Thermal Management With
483 Supercritical Fluids, *Journal of Heat Transfer* 138 (2016) 124501.

484 [9] M. Nabil, A. S. Rattner, Large eddy simulations of high-heat-flux super-
485 critical CO₂ convection in microchannels: Mixed convection and non-
486 uniform heating, *International Journal of Heat and Mass Transfer* 145
487 (2019) 118710.

488 [10] S. A. Jajja, B. M. Fronk, Investigation of near-critical heat transfer in
489 rectangular microchannels with single wall heating using infrared ther-
490 mography, *International Journal of Heat and Mass Transfer* 177 (2021)
491 121470.

492 [11] B. K. Rao, Turbulent heat transfer performance of newtonian fluids in
493 asymmetrically heated rectangular channels, *Experimental Heat Trans-
494 fer* 2 (1989) 227–236.

495 [12] S. A. Jajja, K. R. Zada, B. M. Fronk, Experimental investigation of su-
496 percritical carbon dioxide in horizontal microchannels with non-uniform

497 heat flux boundary conditions, International Journal of Heat and Mass
498 Transfer 130 (2019) 304–319.

499 [13] S. A. Jajja, B. M. Fronk, Experimental Data for Near Critical Turbu-
500 lent Heat Transfer of Supercritical Carbon Dioxide in Rectangular Mi-
501 crochannels subject to Uniform Single Wall Heating, Figshare - (2020)
502 <https://doi.org/10.6084/m9.figshare.13262615.v1>.

503 [14] L. V. Randle, B. M. Fronk, Investigation of Buoyancy Effects in Asym-
504 metrically Heated Near-Critical Flows of Carbon Dioxide in Horizontal
505 Microchannels Using Infrared Thermography, Proceedings of the ASME
506 2021 Heat Transfer Summer Conference June 16-18, Virtual, Online
507 (2021) V001T11A0021 – V001T11A0027.

508 [15] W. M. Kays, M. Crawford, Convective Heat and Mass Transfer,
509 McGraw-Hill, 2 edition, 1980.

510 [16] U. Hiromasa, S. Mitsumoto, S. Komoroi, Buoyancy effects on the tur-
511 bulent transport processes in the lower atmosphere, Quarterly Journal
512 of the Royal Meteorological Society 107 (1981) 561–578.

513 [17] D. B. Spalding, A single formula for the “law of the wall”, Journal of
514 Applied Mechanics, Transactions ASME 28 (1960) 455–458.

515 [18] G. Nellis, S. A. Klein, Heat Transfer, Cambridge University Press, 2012.

516 [19] A. Bejan, Convective Heat Transfer, John Wiley & Sons, 4 edition, 2013.

517 [20] S. Klein, F-Chart Software: EES, V10.104, 2016.

518 [21] W. Kays, E. Leung, Heat transfer in annular passages. Hydrodynamically developed laminar flow with arbitrarily prescribed wall temperatures or heat fluxes, International Journal of Heat and Mass Transfer 6
519 (1963) 537–557.

522 [22] H. S. Y. W. J. L. Z. L. Q. L. Tang, Guoli, H. Zhang, A variable turbulent
523 Prandtl number model for simulating supercritical pressure CO₂ heat
524 transfer, International journal of heat and mass transfer 102 (2016)
525 1082–1092.

526 [23] Z. L. X. Y. M. C. J. Z. Y. R. Q. Q. Du, Xin, X. Zhu., Heat transfer
527 of supercritical CO₂ in vertical round tube: A considerate turbulent
528 Prandtl number modification, Energy 192 (2020) 116612.

529 [24] M. Bazargan, M. Mohseni, Effect of turbulent Prandtl number on con-
530 vective heat transfer to turbulent upflow of supercritical carbon dioxide.,
531 In Heat Transfer Summer Conference 43574 (2009) pp. 295–302.

532 [25] B. Petukhov, A. Polyakov, Heat Transfer in Turbulent Mixed Convec-
533 tion, Hemisphere Publishing Corporation, 1988.

534 [26] F. W. Dittus, L. Boelter, Heat Transfer in Automobile Radiators of the
535 Tubular Type, Technical Report 13, University of California, 1930.

536 [27] Z. Miropol'ski, M. Shitsman, About calculation methods of heat transfer
537 to water and steam at near-critical region (in Russian), Soviet Energy
538 Technology 1 (1958) 8–11.

539 [28] A. Ornatsky, L. Glushchenko, E. Siomin, The research of tempera-
540 ture conditions of small diameter parallel tubes cooled by water un-

541 der supercritical pressures, in: Proceedings of the Fourth International
542 Heat Transfer Conference, Paris-Versailles, France, Elsevier, Amster-
543 dam, 1970.

544 [29] D. M. McEligot, J. D. Jackson, "Deterioration" criteria for convective
545 heat transfer in gas flow through non-circular ducts, Nuclear Engineering
546 and Design 232 (2004) 327–333.