Technometrics

A Joarmal af Statisti
B e

Technometrics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/utch20

©

Taylor & Francis
Taylor &Francis Group

Fast and Exact Leave-One-Out Analysis of Large-
Margin Classifiers

Boxiang Wang & Hui Zou

To cite this article: Boxiang Wang & Hui Zou (2021): Fast and Exact Leave-One-Out Analysis of
Large-Margin Classifiers, Technometrics, DOI: 10.1080/00401706.2021.1967199

To link to this article: https://doi.org/10.1080/00401706.2021.1967199

A
ﬁ View supplementary material &'

% Published online: 22 Sep 2021.

\J
CJ/ Submit your article to this journal &'

||I| Article views: 248

A
& View related articles &'

@ View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=utch20



TECHNOMETRICS
2021,VOL. 00, NO. 0, 1-8
https://doi.org/10.1080/00401706.2021.1967199

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates ‘

Fast and Exact Leave-One-Out Analysis of Large-Margin Classifiers

Boxiang Wang? and Hui Zou®

2Department of Statistics, Actuarial Science at the University of lowa, lowa City, IA; ®School of Statistics, the University of Minnesota, Minneapolis, MN

ABSTRACT

Motivated by the Golub-Heath-Wahba formula for ridge regression, we first present a new leave-one-out
lemma for the kernel support vector machines (SVM) and related large-margin classifiers. We then use the
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lemma to design a novel and efficient algorithm, named “magicsvm,’for training the kernel SVM and related

large-margin classifiers and computing the exact leave-one-out cross-validation error. By “magicsvm,” the
computational cost of leave-one-out analysis is of the same order of fitting a single SVM on the training
data. We show that “magicsvm” is much faster than the state-of-the-art SVM solvers based on extensive
simulations and benchmark examples. The same idea is also used to boost the computation speed of the

V-fold cross-validation of the kernel classifiers.

1. Introduction

Among many existing classification methods, the kernel support
vector machine (Cortes and Vapnik SVM, 1995; Vapnik SVM,
1995, 1999) is widely recognized as one of the most compet-
itive classifiers. With extensive numerical studies, Fernandez-
Delgado et al. (2014) declared that the kernel SVM is one of
the best among hundreds of popular classifiers, in the same
league as random forest, boosting ensemble, and neural nets.
The statistical view of the SVM reveals its connection to non-
parametric function estimation in a reproducing kernel Hilbert
space (Hastie, Tibshirani, and Friedman RKHS, 2009), which
also suggests a unified derivation of many kernel classifiers
based on a penalized loss formulation. Let y = 1, —1 denote the
class label in a binary classification problem. Given a random
sample (y;,x;)?_;, the kernel SVM can be defined as a function
estimation problem

min
feHk

[%Z(l —yif (), +k|lf||%,[K] (1)

i=1

where (1 — )+ = max(l — u,0) is the so-called hinge loss
and f is found within an RKHS g with reproducing kernel K.
The classification rule for x is sgn(f(x)). One can replace the
hinge loss with other classification calibrated margin-based loss
functions (Bartlett, Jordan, and McAuliffe 2006) in problem (1),
and the resulting classifier is
l n
. 2

jon [; ; L(yf(x)) + AILfIIHK] : )
Some popular margin-based loss functions in the literature
include the logistic regression loss with L(u) = log(1+e~*) and
the squared hinge loss with L(1) = (max(1 — u),0)?, among
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others. For ease of exposition, we do not include the intercept
term throughout the article.

In this article, we consider the leave-one-out analysis of the
kernel classifier defined in problem (2). Specifically, we use f;h
to denote the kernel classifier in problem (2), and use ]A’A[_’] to
denote the leave-one-out classifier,

N, 1
i = argmingegy | =3 L () + Af 3y
j#i

We repeat the above for i = 1,2,...,n. The leave-one-out
analysis is closely tied to jackknife resampling that was pro-
posed for bias and variance estimation of an estimator. Although
bootstrap has replaced jackknife in statistical inference (Efron
1982), the leave-one-out analysis is still widely used in assessing
the predictive accuracy of a model, that is, the cross-validation
method. As early as 1969, it was shown that the leave-one-
out cross-validation yields a nearly unbiased estimator of the
predictor error (Luntz and Brailovsky 1969). In 1979, Golub,
Heath, and Wahba (1979) studied the leave-one-out analysis of
ridge regression. Their result directly motivated us to conduct
the research in this article, so it is necessary to review their work.
argminf[% i i —f(xi))z +
k||ﬂ||§], where f(x;) = x;rﬂ. The solution is ]A‘;L(xi) = H;ry,
where H = XX'X + aD7!X', H; is the ith column
of H, and X is the matrix whose ith row is x;. Consider
the same ridge regression with the ith observation removed:
f{f’] = argminf[% Zj#i(yj —f(xj))2 + Al B1I3], then the mean-
squared leave-one-out cross-validation error is %Z?zl(yi -
]A‘.f’] (x;))?, which is denoted by EZ}OOCV. Golub, Heath, and
Wahba (1979) showed the following Golub-Heath-Wahba
formula:

The ridge regression is ﬁ =
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1y~ 01— i)’
groocv _ 2 i i) 3
* n ; (1 — hip)? ®
where h;; is the ith diagonal element of matrix H. It is important
to see that Equation (3) is directly from the following leave-one-
out residual formula:

yi —Hh(xi)

1 — hi;
which can be extended to a family of linear smoothers includ-
ing smoothing splines and kernel ridge regression (Wahba and
Wold 1975; Wahba 1977; Craven and Wahba 1978; Hastie,
Tibshirani, and Friedman 2009). In other words, the Golub-
Heath-Wahba formula holds for a wide class of nonparametric
regression methods as well. Equation (3) was recently used to
improve the Mallow’s C, (Rosset and Tibshirani 2020). The
leave-one-out analysis was also used as a predictive inference
tool in Barber et al. (2021).

The generalized cross-validation criterion was further pro-
posed by using the average of h;; in place of each h;; in the Golub-
Heath-Wahba formula, to make the criterion more stable and
computationally easier. The generalized cross-validation crite-
rion has been widely used to select the smoothing parameter
in generalized additive model; see discussions in Hastie and
Tibshirani (1990), Wahba (1990) and implementations in the R
packages gam (Hastie 2020), gss (Gu 2014), and mgcv (Wood
2021), among others.

A close inspection of the derivation of the Golub-Heath-
Wahba formula reveals that its proof critically depends on two
facts: (a) the loss function is the squared error loss, and (b)
the regression method is a special linear smoother with the
form y = S,y, where S, is the smoother matrix that only
depends on the prechosen parameter A and the predictors,
and S, has a self-stable property (Fan et al. 2020). In fact, the
Golub-Heath-Wahba formula does not hold for many power-
ful regression models such as random forest, gradient boost-
ing and the SVM regression model because they are not self-
stable linear smoothers. This is why for a long time the Golub-
Heath-Wahba formula is considered as a special property of
some linear smoothers in regression (and not even all linear
smoothers). In the kernel classifier case, the squared error loss
is further replaced with a margin-based loss like the SVM
hinge loss. Wahba (1999) proposed a generalized approximate
cross-validation (GACV) to estimate the leave-one-out cross-
validation error of SVM; however, GACV’s derivation is based
on approximate Taylor’s expansion and a smooth approximation
of the hinge loss. Thus, it basically follows the derivation of
GACV for regression methods. It remains an open problem
how to extend the Golub-Heath-Wahba formula for the kernel
classifiers.

In Section 2, we develop a new leave-one-out lemma that
can essentially generalize the spirit of the Golub-Heath-Wahba
formula to the kernel SVM and related classifiers. In Section 3,
we apply the lemma to design a novel algorithm named mag-
icsvm for computing the kernel classifier and its »n leave-one-
out cross-validated variants in the same order of computations
as the single kernel classifier on the whole training data. We
present numerical examples in Section 4. The technical proofs
are relegated to an appendix .

>

yi—fi ) =

2. The Leave-One-Out Lemma

Lemma 1. Given a nonnegative convex loss function L(-), con-
sider the corresponding margin-based classifier:

. 1 Z“
f)\’ = argminfEHK [; L (yl_f(xl)) + )‘-”.f”’z}-[K} > (4)
i=1

and its leave-one-out solution fk[_i] is

Af_i ) 1
3 = argmingegy | =D L (5 (5) + A,
J#i
Create a response vector !/l by letting yl["] =0and j/][i] = yj for
all j # i. Then we have

n

() + 11

j=1

7= ;
S =argming gy

According to Lemma 1,}‘{7” can be obtained by using Equa-
tion (4) and replacing y; with zero while keeping all other
variables unchanged. Lemma 1 can be easily proven by using
the fact that L(0) = 0, so the proof details are omitted. In the
next section we explain how to exploit this property to design
a new algorithm for doing leave-one-out analysis of the kernel
classifier.

We further recognize that Lemma 1 can be naturally gener-
alized to the leave-m-out validation, m > 1. It is worth noting
that there is no leave-m-out generalization of the Golub-Heath-
Wahba formula for ridge regression. So, this can be seen as an
advantage of the leave-one-out lemma in this article.

Lemma 2. Given a nonnegative convex loss function L(-),
consider the corresponding margin-based classifier ]A‘A that is
defined in problem (4). Let [v] denote a subset of the training
data and there are m observations. Let f){ﬂ’] denote the fitted
margin-based classifier after deleting the set [v] from the train-
ing set, that is,

A[_ 1
f){ v argminfeHK pr— Z L (yjf(xj)) + kl[f||gHK
Jjélv]
, ©)
Create a response vector y"! by letting )71[.’] = 0fori € vand

j/][i] = yj forall j ¢ [v]. Then we have

" . 1 &/
Fi = argmingary | == 3L (7)) + A ey
j=1

Lemma 2 can be used for computing V-fold cross-validation.
The details are given in the next section.

3. The Magic SVM Algorithm
3.1. Motivation

In this section, we show that the leave-one-out lemma enables us
to further boost the computing efficiency of the kernel margin



classifiers including the kernel SVM. We derive a new algo-
rithm for the kernel classifier with a smooth loss function and
then extend it to handle the kernel SVM. Thus, our discussion
mainly focuses on the SVM. Let K(-,-) be the reproducing
kernel function of k. The representer theorem of reproducing
kernels (Wahba 1990) indicates that the solution to problem (1)
isfx) =YL o«?YMK(x;,x) and

1 n
aSYM _ argming cpn |:; Z (1 —)/iK,Toz)Jr + kaTKa:| >
i=1
(6)

where K is the kernel matrix such that the (i,j)th element is
K(xi, %) and K; is the ith column of K. The resulting classifica-
tion rule for Xpey is the sign of Y| &K (Xj, Xnew). We assume
the kernel matrix has full rank.

It is interesting to note that the current state-of-the-art
algorithms typically solve the dual of problem (6) (Hastie,
Tibshirani, and Friedman 2009). The dual problem is solved
either by an interior point algorithm (Vanderbei 1999), which
is implemented in an R package kernlab (Karatzoglou et al.
2004), or by being broken down into a series of smaller prob-
lems, namely sequential minimal optimization (Platt 1999;
Fan, Chen, and Lin 2005), which is implemented in 1ibsvm
(Chang and Lin 2011) and interfaced in an R package e1071
(Meyer et al. 2019).

The “standard” state-of-the-art approaches typically fit the
kernel SVM on the training data separately with the leave-
one-out variants. As a result, a “standard” approach of the
leave-one-out analysis actually applies the same base algorithm
(n + 1) times, and thus the whole computation time is roughly
(n 4+ 1) times as large as the time of a single fit. When n
is not small (e.g., n > 50), the “standard” approach is con-
sidered to be too expensive to be useful in practice. As a
shortcut, people often do V-fold cross-validation with V. = 5
or V = 10.

Based on the leave-one-out lemma, we integrate the training
and tuning of the kernel SVM such that the whole computation
time is of the same order of fitting one classifier on the training
set. Therefore, the leave-one-out analysis is not computationally
prohibitive to do for the kernel classifiers. Note that the current
state-of-the-art algorithms cannot benefit from the leave-one-
out lemma because they work in the dual space. To apply the
lemma, we develop a new algorithm as explained in the follow-
ing subsection.

3.2. Exact Finite Smoothing Principle for SVM

Finding an eflicient algorithm for the kernel SVM is interesting
as the kernel SVM is the most representing example among
the margin-based classifiers. Computing the SVM directly from
problem (6) is typically hard since it is nonsmooth. This is why
the current state-of-the-art algorithms solve the dual problem,
not problem (6). The leave-one-out lemma is on the primal
form of the SVM. After a careful examination of problem (6),
we prove that we can compute the exact SVM solution to
problem (6) by solving a finite number of smoothed version of
problem (6) followed by a projection step.

TECHNOMETRICS (&) 3

For any § > 0, we define a §-smoothed hinge loss function

0 u>1+46,
1

Ls(u) = E[u—(wa)]z 1—-8<u<1+43$,
1—u u<l-—34.

Treat Ls(-) as a new margin-based convex loss and the corre-
sponding classifier in RKHS Hk is

l n
ab = argmin,,  pn |:— ZL(g ()/,K?d) + AaTKoLj| .
n
i=1

Proposition 1. Let Q@) = 13" | L (K] &) + Aa"Ke, then
we have

Qe®) — 8/4 < Q(@™™) < Q).

It is natural to expect that as § approaches zero Ls becomes
closer and closer to the hinge loss, and consequently &’ is
approaching to @Y™, Proposition 1 further quantifies the qual-
ity of &® as an approximate solution of the SVM in terms of the
objective value. When 8§/ (4Q(et®)) < €, whereeisa prespecified
small constant, say € = 102, then the optimal SVM objective
value is within the interval Q(a®)[1 — €,1]. From a practical
perspective, Q(a) reaches the optimal SVM objective at a®.

Furthermore, we can do another step to obtain the exact SVM
solution from a®. For the discussion, we assume there exists
some i such that y;K; 5™ £ 1. The assumption basically says
that not all the training points are support vectors. We can easily
verify this assumption before doing any serious computation. If
yiK &Y™ = 1 for all i, then @5Y™ must be K~y for a positive
definite kernel. By the Karush-Kuhn-Tucker (KKT) conditions
of problem (6), one can see this happens if and only if y;w; €
[o, ﬁ] for all i, where w; is the ith element of K~ ly. By this
simple check step, we either know the SVM solution is indeed
K~y or the assumption holds. In the latter case, we continue to
use the following procedure.

We first need to define several quantities. Define Ey = {i :
[1 —yiKlTotSVM| = 0}. Let §o = min;¢g,{|1 —yiK;rotSVMH >
0 and Cs,/» be the set {oc ;|| Kot — KeeSVM || o > 80/2}. Let
Q(er) be the objective function of problem (6). Define n =
infaccy,,| Q@) — Q@SY™)] > 0 and

8" = min{dy, 4n}. (8)

Lemma 3. Forany0 < § < §*, define l:?g ={i:|1 —yiK;roc3| <
s}and &) = . Fork = 1,2,..., let

1 n
S S
i=1

subjectto 1=yK/a, Vie E}_|
©)

and Ei ={i:|1— yiKlT&i| < §}. Then there exists a finite
k* such that Ei, = Ei,_l

s _ 1 ~8 _ ~68
E° = E;, and @° = aj..

C Ej and &iurl = &i*. We denote

SVM

Lemma 4 is that & will actually equal o once § is less

than §*.
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Lemma 4. Suppose there exists some i such that y;K; a5YM £ 1.
It holds that &° = a5 as long as § < 8*, where 8* is given in
equation (8).

The threshold in theory may well depend on the training
set and is unknown before we have the SVM solution. This
issue can be handled by the following computation procedure.
We solve problem (7) on a decreasing sequence of §: () with
8(d+1) = T8 and 0 < © < 1. For example, T = 1/8 is used in
our implementation. After obtaining &’ @ we solve problem (9)
to get @@ and then check if @@ satisfies the Karush-Kuhn-
Tucker (KKT) condition of the SVM problem (6). If so, then it is
the exact SVM solution. If not, we consider the next §. Lemma 4
guarantees that the iterative process will terminate within a finite
number of iterations. In our experiments, the iterative process
stops after a few iterations. However, it still remains an open
theoretical question to quantify the dependence of the number
of iterations on the sample size.

We now develop an efficient algorithm for solving &’@,
we observe that the first-order derivative of Ls(-) is Lipschitz
continuous:

ILs(t1) — Ly(t2)| < |ty — 2] /K, (10)

where k = 2§. For a given §, we propose to solve problem (7)
using the accelerated proximal gradient descent (Parikh and
Boyd 2014). Define &V to be an initial value. For each k =
1,2,..., the proximal gradient method updates a*+1) by

1
a1V = argmin,, _p. I:AaTKoc + o

2
" Ko — (Ka(k) — n/cz(k)) Hz] ,

where z¥ is an n-vector whose ith element is yiL (yiK;roc(k)) /n.
It is easy to see that

an_ﬁbz_m?mﬂﬁﬁ“+MKM@% where

1
P; (K) = 2AK + —KK. (11)
nK

For a fixed sample size n and kernel matrix K, the proximal
gradient method requires O(1/(ex)) times of the update (11) to
achieve the prescribed precision € with regard to the objective
function.

We can further boost the convergence rate using the Nes-
terov’s acceleration (Nesterov 1983, 2005, 2013; Beck and
Teboulle 2009). Construct a sequence, 7, such that r; = 1 and

rie1 = (1+ /1 + 4r}) /2. Define «© and ™ as initial values.

Foreachk = 1,2,. .., we solve a ¥*D) as

1
a1V = argmin,,_p. [kaTKa + o

2
[ — (k& — i) M ,

where

re—1
&®:a®+(k )@@_Mkw‘
Tk+1

and the ith element of Z¥ is yiL (yiKiT&(k)) /n. The convergence
rate of the Nesterov’s accelerated algorithm is O((ex)~1?2),
which is quadratically faster than the algorithm without Nes-
terov’s acceleration. We note the complexity of the update step
(11) is O(n?). The genuine bottleneck of the algorithm is the
inversion of matrix P; (K), whose complexity is O(1°).

The computation of @@ can be obtained by using essentially
the same proximal gradient descent algorithm in which we use
an additional projection step (Parikh and Boyd 2014) to handle
the equality constraints during the iteration procedure.

3.3. The Integrated Algorithm for Computing SVM and the
Leave-One-Out Analysis

We have shown that the exact SVM solution of problem (6)
can be obtained by solving a finite sequence of problem (7)
with smooth losses. In this section, we shall show that, with
the accelerated proximal gradient descent as the base algorithm,
Lemma 1 enables us to drastically cut down the whole computa-
tion time of fitting SVM on the training set and its leave-one-out
variants.

Let us consider the “standard” approach: the leave-i-out solu-
tion is

i 1 —i i
&1 =argmin, cpn-1 " Z(l —yjaTK][ 1]>+ + e K|,
J#i

for each i = 1,...,n, where KI=/l is the kernel matrix with
the ith row and column removed and K][»*’] is the jth column of

K1, As KI=71 differs for each i, P, (K[~ needs to be inverted
individually, so each inversion requires O(n®) operations.
[—i]

Based on Lemma 1 we know that a can be obtained via

n

1 .
- E (l - y[’]KTa> + ra"Ka
n T

j=1

al=l = argmin,, cpn

(12)
Therefore, for each i, we construct the response y!! as instructed
by Lemma 1, and we subsequently use the accelerated proximal
gradient descent to solve problem (12). It is critically important
to observe that in this process the same kernel matrix K appears
in these slightly different versions of expression (12), namely the
same X and slightly different y/!. Thus, we only invert P; (K)
once and store it, which avoids inverting an (n — 1) x (n — 1)
matrix n times.

Algorithm 1 summarizes the entire integrated algorithm for
training and tuning SVM. We can also have a similar and even
simpler procedure for other margin-based classifiers such as
logistic regression and squared SVM. It is easy to verify that, in
the Lipschitz condition (10), k = 4 for logistic regression and
k = 1/2 for squared SVM. We use the same accelerated proxi-
mal gradient descent algorithm for computing the solution. See
Algorithm 2 for details.

The computation of V-fold cross-validation can be likewise
reduced by applying the leave-m-out formula in Lemma 2. For
sake of space, we opt not to repeat the algorithm here. We
have implemented the magic SVM algorithm in an R package
magicsvm. The package handles the leave-one-out analysis as
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Algorithm 1 Magic SVM Procedure
Require: y, K, and A.
1: Initialize §. Define the smooth function Lg. Let k = 26.
2. Initialize &~ = 0 for i = 1,...,n
3: repeat
4  Compute P; '(K) = 2AK + - KK) .
5 fori=1,...,ndo .
6: Let)?][l] = yjifj # i,and " = 0.

7: Initialize @ = &'~ and o’ = @™, Letr = 1.

8: repeat

9: Compute ' = (14 /14 4r2)/2.

10: Compute & = el 4+ rr;,l(&[_’] —a).

11: Compute Z = (Z1,...,2s) , with zj = }][’]Lg(j/][’]Z .
K]T&) /n.

12: Update o’ < al=,

13: Update @ < & — P, 1(K) (Kz + 2aKa!™).

14: Update r < 7.

15: until the convergence condition is met.

16: Perform the projection step following Lemma 3.

17:  end for
18:  Update § <— §/8, update Ls, and update «.
19: until the KKT conditions of all SVM models are satisfied.

well as V-fold cross-validation for the SVM and related margin-
based classifiers. The link to the R package is given in the
supplementary file to this article.

4. Numerical Examples
4.1. Efficiency of magicsvm

For numerical experiments, we focus on the kernel SVM
because of its prominent status among the kernel classifiers.
We compare the magic SVM algorithm with kernlab and
libsvm. In all examples, we used the Gaussian kernel.

We consider a simulation example in which data are
generated from a mixture Gaussian model that is adopted
from Hastie, Tibshirani, and Friedman (2009). Let p, =
(Wyooos 50,...,0), 0 = (0,...,0,1,...,1), where half

Algorithm 2 Magic LOOCYV for large-margin classifiers with
Lipschitz continuous loss functions

Require: y, K, A, and « (the Lipschitz constant).
1: Compute P; ' (K) = (2AK + - KK) L.
2 fori=1,...,ndo '
n Leti =y ifj #iandj) =0,
4 Initializead = &~ and e’ = @™ Letr = 1.
5. repeat
6: Compute ' = (1 + +/1 + 4r%) /2.
7: '
8

Compute & = &'~ + =L@ — o).
Compute Z = (Z1,...,2,) ', with zj = y}["l Lf@][ﬂ .
K].T&)/n.

9 Update o’ « &=,

1. Updatea ™ < @ — P, 1(K) (Kz + 2AKal™).
11: Update r < 7.

12:  until the convergence condition is met.

13: end for

of the coordinates are zeros. In each example, the pos-
itive class was generated from a mixture Gaussian dis-
tribution 211{0:1 0.IN(ptyy,0I) with each gy, drawn from
N(py,I), and likewise the negative class was assembled by

,1<0=1 0.IN(py_, o) with each p;_ from N(p_,I). Weset u =
2 and 0 = 4. We included 12 examples, with the sample sizes
n varying as {200, 300,400} and the dimensions p = 0.2n and
p =0.5n.

Table 1 compares the computation time of magicsvm
with kernlab and 1ibsvm. We selected A by leave-one-out
cross-validation, and then computed the objective values in
problem (6). We observe that the objective values of the three
packages are exactly the same. We also see that magicsvm is
consistently faster than the two competitors. For example, when
n = 400 and p = 200, 1 ibsvm spent more than three hours to
complete one time of leave-one-out cross-validation. The same
results were obtained by magicsvm using about six minutes.
The superiority of magicsvm is very clear in this example.

We further illustrate the performance of magic LOOCV
algorithm for fitting and tuning large-margin classifiers with
smooth loss functions. We considered kernel logistic regression
and kernel-squared SVM. We used the same simulation data

Table 1. Simulated data: comparison of the three R solvers of kernel SVM: magicsvm, kernlab, and 1ibsvm.

n p Computation time (sec) Objective value in (6)
magicsvm kernlab libsvm magicsvm kernlab libsvm

200 40 27.73 28233 558.23 0.624 0.624 0.624
(0.007) (0.007) (0.007)

100 27.72 429.17 1047.60 0.561 0.561 0.561
(0.006) (0.006) (0.005)

300 60 91.99 822.79 2003.62 0.598 0.598 0.598
(0.006) (0.006) (0.006)

150 94.20 1394.42 3958.16 0.562 0.562 0.562
(0.005) (0.005) (0.005)

400 80 358.25 1936.39 5262.13 0.605 0.605 0.605
(0.004) (0.004) (0.004)

200 363.02 3843.65 11559.47 0.547 0.547 0.547
(0.003) (0.003) (0.003)

NOTES: The run time includes the leave-one-out analysis. The run time and objective values are averaged over 50 independent runs, and the standard errors of the objective
values are given in parentheses. Computations were conducted on an Intel Xeon CPU E5-2680 (2.40GHz) processor.
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Figure 1. Magnitude of speed-up by using the magic LOOCV formula: ratios of the run time of the ordinary LOOCV approach and the run time of the integrated magic
LOOCV approach. The left panel is for kernel logistic regression, and the right panel is for kernel squared SVM. The run time includes both fitting and tuning each method.
The results are based on 20 independent runs. Computations were conducted on an Intel Xeon CPU E5-2680 (2.40GHz) processor.

Table 2. Comparisons of leave-one-out (LOO), 10-fold, 5-fold, and 2-fold CV as
means for estimating the prediction error of the kernel SVM.

n criteria LOO 10 5 2
100 bias —0.08 0.23 1.19 416
Jvar 6.06 5.94 5.98 6.66
RMSE 6.17 6.13 6.42 8.36
200 bias 0.01 0.53 1.34 475
Jvar 3.56 3.52 3.64 461
RMSE 3.85 4,09 4.66 7.35
300 bias 0.44 1.17 1.95 5.29
Jvar 3.30 2.99 3.05 3.88
RMSE 3.58 3.67 420 7.22
400 bias 0.18 0.82 1.67 5.08
Jvar 2.70 275 2.89 3.28
RMSE 3.03 342 4,08 6.71

NOTES: Training data are simulated from the mixture Gaussian distribution. This
table displays the bias, standard deviation (\/vTr), and root mean squared error
(RMSE) of the estimates of the generalization error. The numbers are the average
quantities over ten different A values and over 50 independent runs.

for Table 1. We compared two approaches, (a) fitting each
model using the APG algorithm and employing the ordinary
LOOCV approach to select the tuning parameters, and (b)
fitting and tuning each method using the integrated magic
LOOCYV algorithm introduced in Section 3.3. We plotted the
ratio of the run time of the two approaches in Figure 1 to

visualize the magnitude of speed-up. We observe that the
magic LOOCYV algorithm dramatically accelerates the ordinary
LOOCV approach: for example, when n = 400, the magic
LOOCYV algorithm speeds up the ordinary LOOCV approach
about 10 and 12 times faster. The rate of improvement roughly
grows linearly with the sample size n.

4.2. Comparison Among Different V-Fold Cross-Validation

It is a popular claim that the leave-one-out cross-validation has
very high variance compared with 5- or 10-fold cross-validation.
If we consider the overall bias-variance tradeoff, one should
prefer either 5- or 10-fold cross-validation over the leave-one-
out. However, in the context of regression, many authors show
such a claim is in fact false, for example in Burman (1989) and
Zhang and Yang (2015). In the context of kernel learning, the
comparison is missing, and it is largely because of the expensive
computation brought by the standard leave-one-out analysis.
Due to the leave-one-out lemma and magic SVM algorithm
presented in this work, it is now feasible and desirable to actually
compare the performance of V-fold cross-validation for the
kernel SVM. We shall demonstrate that leave-one-out cross-
validation is better than 10-, 5-, and also 2-fold cross-validation
in kernel learning.

Table 3. Run time (in second) comparison of leave-one-out and 10-fold cross-validation on seven UCI benchmark data.

data n p Loocv 10-fold CV
magicsvm kernlab libsvm magicsvm kernlab libsvm

Arrhythmia 452 191 48.53 866.73 2260.78 440 40.51 89.55
Australian 690 14 129.34 586.95 1085.17 13.60 19.19 28.64
Hepatitis 112 18 0.95 35.11 35.32 0.30 8.39 6.49
LSVT 126 309 1.66 146.67 359.45 0.40 26.75 55.87
Musk 476 166 50.71 853.66 2314.00 4.63 38.03 87.92
Sonar 208 60 5.84 107.88 192.44 0.93 12.92 17.70
Valley 606 100 131.34 1047.19 2861.66 8.44 36.76 83.72

NOTES: All the time are averaged over 50 independent runs. Computations were carried out on an Intel Xeon CPU E5-2680 (2.40GHz) processor.



We used the simulated data from the mixture Gaussian distri-
bution mentioned earlier in this section. In Table 2 we evaluated
the bias, variance and mean squared error of each V-fold cross-
validation error as an estimator of the generalization error of
the kernel SVM. It can be seen that the leave-one-out cross-
validation is the best. It has the least bias (as expected) and also
has similar variance as that of 5- or 10-fold cross-validation.
It is interesting to observe that 2-fold cross-validation actually
has the largest variance, which contradicts the belief than the
variance of cross-validation increases with the number of folds.

4.3. Benchmark Data Applications

We further compared magicsvmwithkernlaband 1ibsvm
on seven benchmark datasets which are available from the UCI
machine learning repository (Dua and Graff 2019). The link
to each data is provided in supplementary Materials. Those
real data examples have various combinations of sample size
and dimension. We randomly split each data into a training
set and a test set with equal sizes. For sake of exposition, we
only presented the computation time because the three pack-
ages give identical results except for small difference due to
implementation. From the left panel of Table 3, we observe
that magicsvm is superior over kernlab and 1ibsvm for
the leave-one-out analysis. Taking the dataset arrhythmia as an
example, the computation time of magicsvmis48.5 sec, which
is more than 15 times faster than kernlab and 40 times faster
than 1ibsvm.

We further used the three R packages to compute 10-
fold cross-validation error, and we observe that magicsvm is
still much faster than the other two competitors. In addition,
we notice that the run time of leave-one-out analysis using
magicsvm is roughly on the same level of using kernlab
or 1ibsvm to compute 10-fold cross-validation. In other word,
magicsvm enables us to conduct leave-one-out with the same
computing resource that originally led to only 10-fold cross-
validation.

5. Discussions

In this article, we have developed leave-one-out and leave-
some-out formula for large-margin classifiers in RKHS, which
leads to the design of a new, exact, and much faster algorithm
magicsvm for training and tuning the kernel SVM and related
classifiers. We have also shown that the LOOCV error, as an
estimator of the generalization error of the SVM with a fixed
regularization parameter, works as well as the 10-fold error or
5-fold CV error. Therefore, with magicsvm the computation
time should not be a factor preventing us from using leave-one-
out cross-validation to estimate the generalization error and
select the regularization parameter of the kernel classifier. The
numerical experiments have clearly demonstrated the advan-
tage of our new algorithm.

Supplementary Material

This file contains all the technical proofs and links to the R packages and
benchmark data.
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