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1. Overview

This talk is a progress report on our efforts to determine meson-baryon and baryon-baryon

scattering parameters in a large number of flavor channels. Preliminary results from correlation

matrices obtained using only one time source are presented for I = 1
2
, 3

2
Nπ amplitudes including

the ∆(1232) resonance and the I = 0 S-wave amplitude with unit strangeness relevant for the

Λ(1405) using the D200 ensemble from the Coordinated Lattice Simulations (CLS) consortium

with mπ = 200 MeV and Nf = 2+ 1 dynamical fermions. Results from correlators estimated using

four time sources will soon be available.

Some motivations for this work are as follows. Meson-baryon amplitudes are useful for a variety

of phenomenological applications both at the physical pion mass m
phys
π and for chiral effective field

theories (EFT) at varying pion masses mπ . The process ∆(1232) → Nπ is sometimes used as

a degree-of-freedom in some EFT’s. The scattering lengths a
I=3/2

Nπ
and a

I=1/2

Nπ
will impact the

discrepancy between lattice QCD and phenomenology determinations for σπN , which is relevant

for dark matter direct detection. Lattice QCD is a good laboratory to study the Λ(1405) by varying

quark masses.

2. Methodology

The finite-volume Lüscher approach[1–4] is employed to determine the lowest few partial

waves from ground- and excited-state energies computed from correlation matrices rotated in a

single pivot using a generalized eigenvector solution. Our implementation of the Lüscher method

uses the “box matrix” B introduced in Ref. [5], along with the scattering K-matrix, to form the

energy quantization condition. Parameters in the K-matrix are determined using the determinant

residual method of Ref. [5]. This analysis requires evaluating matrices of correlation functions

between single- and two-hadron interpolating operators which are projected onto definite spatial

momenta and finite-volume irreducible representations. The stochastic LapH method[6] is used to

estimate all needed quark propagators.

Finite-volume stationary-state energies are obtained from temporal correlations Ci j(t) =

〈0|Oi(t)O j(0)|0〉, where O j(t) are appropriate single- and multi-hadron operators. In finite volume,

such energies are discrete, so the correlators can be expressed in terms of the energies using

Ci j(t) =
∑

n

Z
(n)

i
Z
(n)∗

j
e−En t, Z

(n)

j
= 〈0| O j |n〉, (1)

ignoring negligible effects from the temporal boundary. It is not practical to do fits using the above

form, so we define a new correlation matrix C̃(t) using a single-pivot rotation

C̃(t) = U† C(τ0)
−1/2 C(t) C(τ0)

−1/2 U, (2)

where the columns of U are the eigenvectors of C(τ0)
−1/2 C(τD)C(τ0)

−1/2. We choose τ0 and τD

large enough so that C̃(t) remains diagonal for t > τD and such that the extracted energies are

insensitive to increases in these parameters. Two-exponential fits to the diagonal elements C̃αα(t)

yield the energies Eα and overlaps Z
(n)

j
. However, energy shifts from non-interacting levels can be

more accurately obtained using single-exponential fits to suitable ratios of correlators.
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It is extremely important to use judiciously constructed operators O j(t). Our operator con-

struction is detailed in Refs.[7, 8]. Individual hadron operators are constructed using basic building

blocks which are covariantly-displaced LapH-smeared quark fields. Stout link smearing[9] is used

for the displacements, and Laplacian-Heaviside (LapH) smearing is used for the quark fields:

ψ̃aα(x) = Sab(x, y) ψbα(y), S = Θ
(
σ2
s + ∆̃

)
, (3)

where the three-dimensional gauge-covariant Laplacian ∆̃ is given in terms of the smeared link

variables Ũ, and σs is a smearing cutoff which determines the number Nev of LapH eigenvectors to

retain. The quarks are combined into so-called elemental meson and baryon operators:

Φ
AB

αβ (p, t) =
∑

x eip ·(x+
1
2 (dα+dβ ))δab qB

bβ(x, t) qA
aα(x, t), (4)

Φ
ABC

αβγ (p, t) =
∑

x eip ·xεabc qCcγ(x, t) qB
bβ(x, t) qA

aα(x, t), (5)

then the hadron operators are superpositions of the elemental operators obtained by group-theory

projections onto the irreducible representations (irreps) of the appropriate lattice symmetry group:

M l(t) = c
(l)∗

αβ
Φ

AB

αβ (t) Bl(t) = c
(l)∗

αβγ
Φ

ABC

αβγ (t). (6)

For an operator creating a definite momentum p, our operators transform according to irreps of

the little group of p on a cubic lattice. For multi-hadron operators, it is very important to use

superpositions of products of single-hadron operators of definite momenta. Spatially localized

multi-hadron operators produce signals with large amounts of excited-state contamination. Our

hadron operator construction is very efficient and generalizes to three or more hadrons. Note that

to speed up our computations to achieve the statistics needed for extracting the low-lying energies

required for our baryon-baryon scattering studies, we have not included any single hadron operators

with quarks that are displaced from one another.

Including multi-hadron operators in our correlation matrices requires the use of time-slice to

time-slice quark propagators. To make the calculations feasible, we resort to employing stochastic

estimates of such quark propagators. The stochastic LapH method[6] is used. We introduce NR

vectors of Z4 noise η(r) in the LapH subspace

η
(r)

αk
(t), t = time, α = spin, k = eigenvector number. (7)

We carry out variance reduction using noise dilution, which introduces projectors P(a). Defining

η[a] = P(a)η, X [a]
= D−1η[a], (8)

we obtain Monte Carlo estimates of the quark propagators via

D−1
i j ≈

1

NR

NR∑

r=1

∑

a

X
(r)[a]

i
η
(r)[a]∗

j
. (9)

We define four dilution schemes:

P
(a)

i j
= δi j, a = 0, (none),

P
(a)

i j
= δi jδai, a = 0, 1, . . . , N−1, (full),

P
(a)

i j
= δi jδa,Ki/N, a = 0, 1, . . . ,K−1, (interlace-K),

P
(a)

i j
= δi jδa,i mod k, a = 0, 1, . . . ,K−1, (block-K).

(10)
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Table 1: The various isospin channels we plan to study using the CLS D200 ensemble, and the number of

correlators we will compute in each channel.

Isospin channel D200 Number of Correlators

I = 0, S = 0, NN 8357

I = 0, S = −1, Λ, NK, Σπ (45 SH) 8143

I = 1
2
, S = 0, Nπ 696

I = 1
2
, S = −1, NΛ, NΣ 17816

I = 1, S = 0, NN (66 SH) 7945

I = 3
2
, S = 0, ∆, Nπ 3218

I = 3
2
, S = −1, NΣ 23748

I = 0, S = −2, ΛΛ, NΞ, ΣΣ (66 SH) 16086

I = 2, S = −2, ΣΣ (66 SH) 4589

Single hadrons (SH) 33

We apply dilutions to the time indices (full for fixed sources, interlace for relative sources), the spin

indices (full), and the LapH eigenvector indices (interlace-16).

Our current computations make use of 2000 configurations of the CLS D200 ensemble, which

employs a 643 × 128 lattice with spacing a ∼ 0.065 fm and open boundary conditions in time. The

quark masses are tuned such that mπ ∼ 200 MeV and mK ∼ 480 MeV. For the LapH smearing, we

use Nev = 448. We are currently extending our computations to include the following source times:

t0 = 35 forward, t0 = 64 forward and backward, and t0 = 92 backward. Our Wick contractions

are efficiently performed using tensor contraction software which exploits common subexpression

elimination[10, 11] and makes heavy use of threaded batched BLAS routines. The various isospin

channels that we are computing are listed in Table 1, as well as the total numbers of correlators that

we are computing in each channel.

Scattering parameters are extracted from finite-volume energies using our implementation[5]

of the Lüscher method. We parametrize the inverse of the K-matrix, then determine best-fit values

of the parameters using the determinant residual method[5] in which we minimize

Ω(µ, A) ≡
det(A)

det[(µ2
+ AA†)1/2]

, (11)

with A = 1 − K̃−1B−1, where K̃ is the K-matrix with threshold factors removed, and B is the

so-called box matrix. We typically use µ = 1.

In this talk, we present preliminary results for Nπ scattering in the isoquartet and isodoublet

nonstrange channels using only one time source. Recall that the K-matrix has the form K
(J)

L′S′a′;LSa
.

For one channel, a = a′
= 0, and for Nπ, we have total spin S = S′

=
1
2
. Invariance under parity

requires (−1)L+L
′
= 1 for Nπ, which is tantamount to L = L ′. Hence, we can use the simplified

notation K
(J)

L
. Restricting to L ≤ 2, the (2J, L) partial wave content of various blocks of the

matrix 1 − K̃−1B−1 are listed in Table 2. The elements of the scattering K-matrix which must be

parametrized for L ≤ 2 are also listed in Table 2.

4
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Table 2: (Left) The (2J, L) partial wave content of various blocks of the matrix 1 − K̃−1B−1 labelled by

little group irrep Λ(d2) for Nπ states of I = 1
2
, 3

2
. Note that the integer d2 refers to total momentum

P2
= (2π/Llat)

2d2 for a lattice volume L3
lat

. (Right) The elements of the scattering K-matrix, denoted by

K
(J)

L
, which must be parametrized for L ≤ 2. See Ref. [8] for a description of the irrep labels.

Λ(d2) (2J, L) content for L ≤ 2

Hg(0) (3, 1)

Hu(0) (3, 2), (5, 2)

G1g(0) (1, 1)

G1u(0) (1, 0)

G2g(0)

G2u(0) (5, 2)

G1(1), G1(4) (1, 0), (1, 1), (3, 1), (3, 2), (5, 2)

G2(1), G2(4) (3, 1), (3, 2), (5, 2)

G(2) (1, 0), (1, 1), (3, 1), (3, 2), (5, 2)

F1(3) (3, 1), (3, 2), (5, 2)

F2(3) (3, 1), (3, 2), (5, 2)

G(3) (1, 0), (1, 1), (3, 1), (3, 2), (5, 2)

J K
(J)

L
needed for L ≤ 2

1
2

K
(1/2)

0
, K

(1/2)

1

3
2

K
(3/2)

1
, K

(3/2)

2

5
2

K
(5/2)

2

The finite-volume energies are determined from ratio fits to single-pivot rotated correlators.

Determinations of energy shifts ∆E from non-interacting energies were checked for stability against

variations of the single-pivot times (τ0, τD) and on increasing the number of operators nops. We

parametrized resonant amplitudes with a Breit-Wigner form and used leading-order effective range

expansions for non-resonant amplitudes, that is, parametrizing them with a constant. Covariance

matrices and all statistical errors were estimated using bootstrap resampling with NB = 800 samples.

All elastic levels are included. Any level within 1σ of an inelastic threshold was not included.

Parametrizations were provided for all S- and P-waves. Higher partial waves are ignored for now,

but will be included in our final analyses. For the Λ(1405) channel, we consider coupled channels

with Σπ, NK . Mixing of two-hadrons with stable hadrons is included in the I = 1
2

and I = 0,

S = 1 channels. The relevant stable hadron for I = 1
2

is the nucleon, and for I = 0, S = 1, it is the

Λ(1115).

The finite-volume spectrum for I = 3
2

is shown in Fig. 1, and the scattering phase shifts are

shown in Fig. 2. Seventeen levels across Hg(0), G1u(0), G1(1), G(2), F1(3), F2(3), G1(4), G2(4)

are included in the analysis. The G1g(0) irrep which includes the leading (2J, L) = (1, 1) wave

is not included because the ground state in this irrep is inelastic. A Breit-Wigner form is used to

parametrize K̃
(3/2)

1
(E), and constants are used for K̃

(1/2)

0
(E) and K̃

(1/2)

1
(E). The best-fit results are

m∆

mπ

= 6.380(20), g∆Nπ = 13.7(1.5), χ2/d.o.f. = 1.74,

mπa
J=1/2

0
= −0.254(41), (mπa

J=1/2

1
)−1
= 2.61(44).

The resonance parameters are consistent with a fit to P-wave only irreps.

5
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Figure 1: Center-of-mass energies Ecm as ratios over the pion mass mπ in the isoquartet non-strange sector

for various little group irreps. The dashed horizontal lines show the non-interacting energies of the expected

free two-particle states; the errors in the non-interacting energies are indicated by the gray boxes. The integers

in parentheses in the irreps indicate d2 for total momentum squared P2
= (2π/L)2d2.
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Figure 2: Threshold factors times cotangents of the phase shifts for the P-wave (left) and S-wave (right) for

the isoquartet nonstrange channel against center-of-mass energies Ecm minus the nucleon mass MN as a ratio

over the pion mass mπ . Best-fit functions are shown as solid lines with error bands shown as dashed lines.

Two examples of extracting energy shifts in the isodoublet nonstrange channel are illustrated in

the tmin plots shown in Fig. 3. Each point is a fit using a single-exponential form to the single-pivot

rotated correlator divided by the non-interacting level for time range from the tmin shown on the

horizontal axes to tmax = 25a. Compared with the corresponding levels in the I = 3
2

channel, the

energy shifts are considerably smaller, as expected from the phenomenologically smaller value of

the scattering length. A preliminary estimate of the I = 1
2

scattering length a
1/2

0
is obtained by

6
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Figure 3: tmin plots for the energy shifts from non-interacting two-particle energies in terms of the lattice

spacing a for the isodoublet nonstrange channel for the ground state in G1u(0) (left) and the first-excited state

in G1(1) (right). The single-pivot rotation times τ0, τD are indicated, and nops are the numbers of operators

used in the correlation matrices. Fits using tmin < 8 have χ2/dof > 2.
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Figure 4: Preliminary estimates of the (2J, L) = (1, 0) S-wave scattering amplitude in the I = 0, S = 1

(Lambda) channel. These results are obtained from the leading-partial wave approximate in the G1u(0),

G1(1) and G(2) irreps using only the lowest scattering state, as discussed in the text.

ignoring L ≥ 1 contributions in the quantization conditions for both levels,

(mπa
1/2

0
)−1

= −86.06(72.14), G1u(0), (12)

(mπa
1/2

0
)−1

= 19.82(16.25), G1(1). (13)

Additional statistics and a more complete analysis of the elastic spectrum for I = 1
2

is required.

The final channel presented here is the I = 0, S = 1 channel, which is relevant for studying

the Λ(1405). This channel presents several additional difficulties. First, it may not be appropriate

to truncate the quantization conditions at Lmax = 1 due to the low-lying Λ∗(1520) resonance in the

(2J, L) = (3, 2) wave. Secondly, in order to accurately capture this excitation, it has been demon-

strated [12] that three-quark operators with gauge-covariant derivatives are needed to capture the

orbital structure. Such operators have not been included in our computations. Third, there are

multiple coupled two-hadron scattering channels which are expected to mix significantly, the most

important of which are Σπ and NK . These issues complicate the construction of correlation ma-

trices, the extraction of levels, and the parametrization of the coupled-channel scattering amplitude

in this flavor channel.

7
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All of these difficulties are ignored in this progress report which presents only our preliminary

estimates. Our results for the scattering amplitude using the S-wave approximation are shown in

Fig. 4. Here, we assume that the lowest-lying Σπ state is insensitive to the (2J, L) = (3, 2) wave

in the G1(1) and G(2) irreps, which also contain the (1, 0) and (1, 1) waves. Only the lowest Σπ

scattering state is included in each of the G1u(0), G1(1), and G(2) irreps. As in the I = 1
2

channel,

the ground state in each irrep of non-zero total momenta is the lowest-lying stable Λ, which is

far below the two-particle scattering threshold and so these levels are not included in the analysis.

Despite the large statistical errors, there is some encouraging indication that the Σπ phase shift is

positive.

For all of the results shown in this talk, we will soon present improved estimates using the

increased statistics from including three more time sources and employing more comprehensive

studies of the entire two-hadron spectra below the three-hadron thresholds, including all allowed

types of two-hadron states.
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