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ARTICLE INFO ABSTRACT

Keywords: SARS-Cov-2 escape mutations (EM) have been detected and are spreading. Vaccines may need adjustment to
SARS-CoV-2 ) respond to these or future mutations. We designed a population level model integrating both waning immunity
Escape Mutations and EM. We also designed a set of criteria for elaborating and fitting this model to cross-neutralization and other
;\]:;Ei data with a goal of minimizing vaccine decision errors. We formulated four related models. These differ

regarding which strains can drift to escape immunity in the host when that immunity was elicited by different
strains. Across changing waning and escape mutation parameter values, these model variations led to patterns
where: 1) EM are rare in the first epidemic, 2) rebound outbreaks after the first outbreak are accelerated by
increasing waning and by increasing drifting, 3) the long term endemic level of infection is determined mostly by
waning rates with small effects of the drifting parameter, 4) EM caused loss of vaccine effectiveness, and under
some conditions: vaccines induced EM that caused higher levels of infection with vaccines than without them.
The differences and similarities across the four models suggest paths for developing models specifying the epi-
topes where EM act. This model provides a base on which to construct epitope specific evolutionary models using

Population Transmission System Model

new high-throughput assay data from population samples to guide vaccine decisions.

1. Introduction: The nature of the problem we address

SARS-CoV-2 has generated the most devastating pandemic in a
century. Many aspects of SARS-CoV-2 dynamics remain insufficiently
understood, including the risks of and reasons for the reinfections. These
might arise either because of 1) waning of immunity, or 2) escape mu-
tation drifting, in which the virus evolves to escape immunity stimulated
by prior infections or vaccines. How these two factors interact with each
other has not been previously described. Understanding the dynamics of
possible interactions between these causes of reinfection could provide
insights into how SARS-CoV-2 could evolve.

Endemic human coronaviruses provide hints about the future course
of SARS-CoV-2. For such viruses, reinfection is common in all age groups
with an average time to reinfection less than three years for the two
endemic beta coronaviruses (Petrie et al. 2021). But how long it took
those beta coronaviruses to settle into their endemic patterns and what
drove that process is unknown. Exploring models of the process of going
from pandemic to endemic patterns is one way to develop theory about
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that transition. (Kissler et al. 2020) made such model explorations as did
(Lavine et al., 2021). But neither of these efforts formulated the pro-
cesses that drove evolution through transmission enhancing or immune
escape mutations.

In the current SARS-CoV-2 epidemic, transmission increasing muta-
tions were documented early on, but no variants with suspected escape
mutations emerged during most of the first year. Subsequently, rapid
accumulation and wide dissemination of these mutations (Harvey et al.
2021) have occurred. Observations of such mutations and how they
relate to variants of concern are accumulating. This has generated new
theories about what is driving variant emergence (Harvey et al. 2021).
The need for models to integrate all this new knowledge into broader
dynamic models is acknowledged in (Harvey et al. 2021). Such models
could be especially valuable for making decisions about what mutations
to include in vaccines. It is increasingly seeming like modifications of the
early SARS-CoV-2 vaccines will be needed.

For influenza vaccine decisions, the question to be answered by
models is which possible strains currently known to be circulating

Received 17 January 2021; Received in revised form 16 June 2021; Accepted 12 July 2021

Available online 12 July 2021
1755-4365/© 2021 The

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors. Published by Elsevier

B.V. This is an open

access article under the CC BY-NC-ND license


mailto:jkoopman@umich.edu
www.sciencedirect.com/science/journal/17554365
https://www.elsevier.com/locate/epidemics
https://doi.org/10.1016/j.epidem.2021.100484
https://doi.org/10.1016/j.epidem.2021.100484
https://doi.org/10.1016/j.epidem.2021.100484
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epidem.2021.100484&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

J.S. Koopman et al.

should be chosen for inclusion in the next vaccine. Extensive phyloge-
netic data, cross-neutralization assays, and a little transmission system
theory provide the basis for decisions (Huddleston et al. 2020). But for
SARS-CoV-2, new approaches like mRNA vaccines along with extensive
new data, theory, and laboratory methods could provide the basis for
choosing which mutations to include rather than which strains. Models
of processes by which mutations arise and spread are needed for that
approach. We begin here with the exploration of models that integrate
both waning and escape mutation drifting.

2. Methods: How we addressed this problem

We formulate a model with both waning of immunity across multiple
levels and mutations that are captured as strain switches. The mutations
could manifest both immune escape and transmission enhancement. In
this paper, we only address escape mutations. We believe this is the first
model to examine the interactions between waning and drifting in
continuous time. (Andreasen 2003), presented an influenza model with
both elements but with escape mutations occurring only between
epidemic seasons.

Our model is an ordinary differential equation SIR model in a ho-
mogenous well-mixed population. We present the explicit equations of
our model in an appendix. SIR models divide people into three cate-
gories: Susceptible, Infectious, and Recovered (SIR). We stick with this
simplification, but we assume M+1 variants of the virus that can arise
via escape mutations. For ease of exposition, we will often call these
variants “drift levels” or sometimes simply “strains.” We write I(h),
sometimes I, for those currently infected with drift level h. We reserve
h=0 for the strain that initially infects the population. We do, however,
explore introduction of other strains in the supplementary material.
Upon recovery from a strain h infection, the individual moves from
compartment I(h) to compartment R(h,0); the 0 in R(h,0) indicates
complete immunity to strain h. As this immunity wanes, this individual
moves from R(h,0) to R(h,1), later to R(h,2) and eventually to R(h,P). We
assume P + 1 waning states for each drift level.

A key simplification in our model is that all drifting takes place at the
time of transmission. Escape mutations arise during transmissions to
individuals who already have some immunity from which the virus can
escape. We do not follow the levels of virus mutation in the source and
recipient individuals in a transmission, and we ignore how the trans-
mission bottleneck might allow for multiple drifted viruses to be trans-
mitted between hosts. The observations of (Lythgoe et al. 2021) that the
transmission bottleneck is small and that the frequency of variation in
the bottleneck is low indicate that this simplifying assumption is justi-
fied. We assume a common drifting scale between infectors and infect-
ees. In other words, we put both the antigenicity of SARS-CoV-2 and the
immune capacity of someone previously infected with the virus on the
same scale. The infectee has the same position on the drifting scale as
their last infection.

To model how escape mutations arise, we formulate two strain net-
works or patterns. The first of these relates to the strain in the source
case in a transmission. This we denote as the pattern of possible strain
mutations. The second is determined by the pattern of immunity in the
host being reinfected. This pattern describes how immunity in a person
being reinfected affects the realization of a possible strain mutation. Call
this the immunity driving and blocking pattern. Immunity can drive mu-
tation if one of the possible strain mutations in the source case escapes
some of the immunity in the person being reinfected. Immunity blocks a
possible strain mutation if the recipient of a transmission has more im-
munity to the drifted strain than they have to the strain in the source
case that has not drifted.

To model possible strain mutations, we consider the collection of
strains as the vertices or nodes of a network — the “possible strain mu-
tation network” or simply the “strain network.” An edge connects two
strains in this network if one strain can mutate to the other. The “dis-
tance” between any two strains in this network is the minimal number of
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network edges required to move from one strain to the other. Fig. 1
presents the three strain networks we considered. The top shape in Fig. 1
puts strains at the integer points on a line. This line has seven nodes,
beginning with the node for the initial strain 0 on the left.

We examined this linear possible strain mutation network using two
different immunity pattern driving and blocking patterns. The immunity
blocking patterns are identical in all our models. That is because in all
cases, drifting cannot increase the susceptibility of a virus to immunity
in the host being infected. The immunity driving pattern differs between
model 1 and models 2 or 3. Model 1 assumes that all immunity in the
recipient individual that has been stimulated by any previous infection
to one side of the source case strain can drive that source case strain to
drift in the other direction to escape immunity in that individual. Models
2 and 3 assume that only immunity in the source case that was stimu-
lated by a strain no more than one strain different from the source case
strain can drive drifting.

To see if having extreme edges in the network influenced the inter-
action between waning and escape mutation drifting, we built model 3
by turning the line in model 2 into a circle, as pictured in Fig. 1. That
involved changing the possible strain mutation network so that strain 6
can mutate just as easily back to strain O as to strain 5. Models 1-3 are
symmetrical. For models 1 & 2, that means that model behavior is
identical when the introduced strain is at either end. For model three it
means the behavior is identical wherever infection is first introduced.

Models 1-3 represent variations on the SIR differential equation
formulations where all mutations affect the same epitope. These varia-
tions could provide insights for formulating the effects of specific escape
mutations examined molecularly.

In our fourth model, we envisioned immunity related to distinct
epitopes. In the real world, there could be many distinct codons in an
epitope where mutation would change the ability of previously stimu-
lated immunity to prevent an infection. At each codon, changes to
multiple amino acids are possible. We chose a simplification in which
there were only three epitopes involved and only two codons relevant to
only two amino acids for each epitope. These assumptions lead to the
cube network in Fig. 1 with a connection between two nodes if they
differed in the codons for one epitope.

We model the network of possible strain mutations by constructing
an (M+1)(M+1)(M+1) tensor that specifies which escape mutations can
occur for a given strain network. The (h,j,h’) entry in such a drift tensor
is the probability that when an I(h) infects an R(j,k), strain h can mutate
to strain h’ in which case the new infectee enters compartment I(h"). For
example, in model 1, if an infector in I(1) infects a susceptible in R(0,k),
then according to the strain network in Fig. 1, strain 1 can only drift to
strain O or strain 2. But the only possible drift is to strain 2 because of the
residual immunity to strain O in the infectee. In the drift tensor,

1-D,ifh =1
D, ifh’=2
0, otherwise

9(1,0,h) =

where D is the population drift rate. Similarly, an I(2) who infects an R
(0,k) can only yield an I(2) or with probability D an I(3). The immunity
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Fig. 1. The shapes of drifting patterns examined.
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in the R(0,k) will cause any virus that by chance drifted to level 1 to
grow more slowly than the viruses that drifted to level 3 in that person.
The exponential growth process would then effectively extinguish the
level 1 virus in favor of the level 3 virus. For model 2,

¢(h,j,h’) = 0if [h—j| > 1.

For model 3,

@o(h,j,h’y=Donlyifj=h+1landh—h" #h—j, (mod (M +1)).

To illustrate the drift tensor in the 3-epitope model 4 in Fig. 1, sup-
pose an I(aBc) also labled as an I(6) infects an R(ABC, k). By the strain
network in Fig. 1, the aBc can only drift to ABc, aBC, or abc. However,
residual immunity in codon B will impede drifts to ABc or to aBC; so the
only possible immunity-escaping drift is to strain abc. We present drift
tensors for all four models in Tables S1-S4 in the Supplementary
Material.

Finally, we describe how we handle transmission in our model. We
assume an effective contact rate B for transmission of the virus (contact
rate times probability of infection per contact) when an infection in any I
(h) meets a never-before infected susceptible in S. We modify this rate to
B-Z(h,j,k) for encounters between infected individuals I(h) and previ-
ously infected susceptible individuals in R(j,k). The modified probability
of transmission B-Z(h,j,k) increases as the distance dist(h,j) between the
two strains h and j increases and as the susceptible person’s immune
system wanes (higher k). In particular, we used

Z(h,j, k) = <§+ (1 - %) %) %)

where L is a constant > P and Q is at least the maximum distance be-
tween strains in the drift network.

To initialize the epidemic, we introduced one infection per 1 million
into a continuous population nominally scaled to present results per
1000 individuals. All time scales were set to a week. We assume an
average of 2 weeks from onset of infection to full recovery. WesetB =1,
implying a basic reproduction number Ry = 2. We worked with 7 drift
levels in models 1, 2, and 3. In model 4, we assumed there were 3 in-
dependent dichotomous alleles, so that there were 23 = 8 drift levels.
Table S5 in the SM provides some intuition for the effects of varying W.
For example, in model 1, at waning rate W = 0.1, it takes 57 weeks for
half of those entering R(0,0) to reach R(0,6). For W = 0.01, that process
takes 11 years.

Our waning functions have no redundant immunity. This means that
as soon as there is any waning, there is susceptibility. The six waning
steps are of equal size. In the last waning state, the susceptibility of
previously infected individuals is 6/7ths of a fully susceptible, never
infected individual. Drifting is likewise divided into six drifting steps
and 7 drift levels for models 1 and 2. For models 3 and 4, however, there
are only 3 steps to the most distant drift state, so we double the size of
immunity loss for each step while leaving the last state having 6/7ths of
full susceptibility. We took Q = 7 in models 1 and 2, and Q = 3.5 in
models 3 and 4.

Further understanding of the model structure can be gained in two
ways. The first is reading the mathematical description of the model in
the appendix. The second is to read the annotation of the code. The code
is structured so that the influences on each variable change are made
explicit. A list of parameters, their definitions, and values is in the
appendix.

3. Results: Model behaviors observed across the four models:
without vaccination

In the absence of vaccination, the behavior of the four different
models was remarkably similar. In particular, without waning there was
no drifting no matter how high the drifting parameter was set. In the
absence of waning, it took 78 years of new susceptible births before a
second epidemic appeared. With tiny amounts of waning but no drifting
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(W =0.000001, D = 0), results were similar. (See Figs. S1 and S2 in SM.)
But with just an equally tiny amount of drifting (W=D = 0.000001), the
first rebound epidemic followed just a few years after the first. See the
bottom right panel of Figs. 2-5. So, at low levels of waning, the joint
effects of waning and drifting are far greater than multiplicative. That is
because drifting adds to the susceptibility of the population. While
waning affects only those experiencing the waning, drifting status is
transmitted and affects many others.

A notable outcome across all four models is the identical pattern of
the first epidemic wave across all waning and drifting patterns. The
assumptions of population homogeneity with random contacts and no
behavior change lie behind these identical patterns. But the key element
is that drifting only occurs with reinfections. There are some minor
imperceptible differences at the highest waning and drifting rates as
some reinfections begin appearing late in the first epidemic, especially
in model 4.

Only at the highest waning rates given the lowest drifting rates
(bottom left in the 4 figures) do we see a rebound epidemic after the first
epidemic where the rebound epidemic has the same strain as the first
epidemic. For W = 0.1 there is no prolonged interval of low infection
rates between the first epidemic peak and the second.

For waning levels W of 0.01 or lower (columns 2,3,4), all four models
show distinct epidemics where the second epidemic has different strains
from the first. These epidemics are separated by a period of low inci-
dence after the first epidemic. The lowest incidence period occurs be-
tween the first epidemic and the first rebound epidemic. For W = 0.01
and D = 0.0001, the prevalence of infection is low enough for stochastic
die out to be likely in all models except for model 4. But the levels are not
extremely low in any case. A more detailed presentation of this is found
in the supplementary material.

There are some ways that models 2 and 3 differ from models 1 and 4.
At waning rates of 0.01 or lower, models 1 and 4 have only sequential
epidemics with the second epidemic wave dominated the strain most
distant from the first. Models 2 and 3 have less predictable strain oc-
currences and less predictable epidemic patterns.

The four models have different intensities of new escape mutations.
They are ordered as models 4, 1, 3, and 2 in this regard. There is no
simple scaling of model parameters that can make the patterns between
any two pairs of models identical. Model 4 has the most drifting because
it has many different paths of three short steps to almost complete loss of
immunity. The large difference between model 1 and 2 is explained by
the fact that for model 2 only a small fraction of encounters with pre-
viously infected persons that drive drifting in model 1 continue to do so
in model 2. The higher rates of drifting in model 3 compared to model 2
(which both have drifting driven only by the nearest strain difference) is
partly explained by each strain in model 2 having two strains that are
maximally different. Recall from expression (1) that maximally distant
strains have the lowest cross-immunity to each other. A further expla-
nation is that each escape mutation makes a larger reduction in immu-
nity in model 3 since it takes only 3 steps to get maximally different in
model 3 but 6 in model 2. A difference between model 2 and the others is
that at waning rates of 0.01 or less the first rebound epidemic does not
have the most distant strain from the original epidemic.

Further comparisons of the different models across some of the
higher parameter values with comparisons across all four models in the
same graph are presented in the Supplemental Material.

3.1. Equilibrium infection levels

Prevalence reaches an equilibrium in all four models, for all
parameter values. At that equilibrium in the four models we examined,
all strains mixed evenly with all other strains. Endemic equilibrium
infection levels are an increasing function of the waning rate W and are
mostly unaffected by the drifting parameter D. The drifting parameters
accelerate the attainment of equilibrium, but for the most part they do
not change equilibrium levels. As seen in Fig. 6, the equilibrium
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Fig. 2. Effects of large changes in the waning and drifting parameters on infection patterns during the first 500 weeks for model 1 specifying strain series. The values
on the x-axis are weeks from 0 to 500; the values on the y-axis are number of those infected at time x.
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Fig. 3. Effects of large changes in the waning and drifting parameters on the number infection (y-axis) during the first 500 weeks (x-axis) for model 2, specifying

strain series. Axes are identical to model 1.

infection levels were identical for models 1 and 2 and nearly identical to
these values for model 4. But they were considerably higher for model 3;
in model 3 each drift level has two different drift levels that are maxi-
mally different from it. For all the other models, each drift level has only
one. Overall, the endemic reinfection levels at the higher waning
parameter values are in the ranges observed by (Petrie et al. 2021).

4. Model behaviors observed across the four models: with
vaccination

Vaccination effects were explored by beginning vaccination at the
end of the first epidemic and keeping it constant thereafter. Vaccination
rates of 0.25 and 1.0 per person per year were examined. The vaccine in

our model generated the same immunity as an infection. The immunity
is against infection; there is no immunity against disease given infection
in this model. Specifically, vaccination moves a susceptible to state R
(0,0), where drift level 0 is the initial infecting level — the one that
thoroughly dominates the epidemic wave that precedes the introduction
of the vaccine. The models discussed here have a small number of epi-
topes and no redundant immunity. That makes the insights generated by
our analysis relevant for constructing more realistically detailed models,
but less relevant for interpreting real world vaccine patterns.

When both the waning rate and drifting rate are at 0.1 as in Fig. 7, we
see for all models that vaccination has small but beneficial effects on the
first rebound epidemic for models 1 and 4 with larger effects for models
2 and 3. The effects on endemic levels are more uniform across models;
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Strain series 7 overlies series 2, 6 overlies 3, 5 overlies 4 in all cases

Fig. 4. Effects of large changes in the waning and drifting parameters on the number infection (y-axis) during the first 500 weeks (x-axis) for model 3, specifying

strain series. Axes are identical to model 1.

Model 4
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Fig. 5. Effects of large changes in the waning and drifting parameters on the number infection (y-axis) during the first 500 weeks (x-axis) for model 4, specifying

strain series. Axes are identical to model 1.

vaccination decreases infection prevalence at equilibrium.

When the waning rate is decreased to 0.01 as in Fig. 8, however, we
see small but positive vaccine effects when the vaccination rate is only
about a quarter of the population per year. However, when the vacci-
nation rate goes up to 1 per year, vaccination has negative effects. It
increases the frequency of rebound epidemics and raises the equilibrium
levels of infection.

Similar patterns are seen in Figs. S6 and S7 where the drifting level is
lowered to 0.01. At waning rate 0.1 vaccines reduce infection levels a
little at both vaccination rates. At waning rate 0.01 the low vaccination
rate slightly lowers endemic infection levels. At the high vaccination
rates, endemic infection levels are higher than without vaccination.

These effects of high vaccination rates raising endemic infection

levels occur in all cases because high levels of vaccination eliminate
strains with drift levels like those of the original pandemic strain and the
vaccine. This leads to more rapid evolution away from the original strain
and results in an increase in the frequency of individuals that have the
highest levels of susceptibility to the original drift level to which the
vaccine was constructed. For example, in the first column of Fig. 8 —
Model 1 with W = 0.01, when there is no vaccination, extreme strains
0 and 6 alternate domination of subsequent epidemic waves. Full
vaccination strengthens the population’s immunity to strain 0 so that in
this case all epidemic waves after the first are dominated by strain 6. In
this scenario, a recently recovered individual - in some R(j,k) — is more
likely to encounter an infector in I(6) than they would in the no-
vaccination situation. As seen in the susceptibility function (1), these I
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First Infection and Reinfection Risks of Infection Per Person Per
Year at Equilibrium Across 4 Models

Drift Parameter = 0.01

1
_ 09
g 0.8 —M1First
807 —M1Reinf
5 06 M2First
gos M2Reinf
<04 emn
"_6 0.3 —M3First
502 —M3Relnf
o

0.1 —MA4First
0 —M4Relnf
0 0.005 0.01 0.015 0.02

Waning Parameter Rate Per Week

Fig. 6. Graphs of the risk of first infection and risk of reinfection at equilibrium
for all 4 models as the waning rate W increases. The top two graphs are for
model 3, the bottom two are for models 1, 2, and 4. In each case, the risk of first
infection is greater than the risk of reinfection. M4First overlays M1First and
MZ2First. M2Reinf overlays M1Reinf.

(6) encounters lead to higher total population susceptibility than would
be encountered with a wider distribution of strains. Vaccination in
Model 4 has similar effects for W = 0.01. Without vaccination, strains
0 (ABC) and 7 (abc) dominate alternate epidemic waves. With full
vaccination, strain 7 dominates every wave after the first, leading to
higher population susceptibility.

Model 3 is less subject to these effects for the same reasons it stood
out regarding parameter effects when there was no vaccination. In
model 3, the number of escaped strains that can take advantage of im-
munity levels stimulated by the vaccine or pandemic strain is greater so
the vaccine has fewer individuals it can drive into the most drifted state.

Figs. S8 and S9 make it easier to see the differences in vaccine effects
when the waning rate changes from 0.01 to 0.1 by putting all three
vaccination rates in the same figure.

The effects of other parameter changes such as the transmission
parameter, the place in the drifting matrices that pandemic transmission
begins, and how much immunity loss occurs during drifting are
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discussed in supplementary material section 6.

5. Generation of cross-neutralization assay and epitope specific
serology results

Cross neutralization assays have long been used to determine
whether new strains of viruses have developed escape mutations. But
these assays have not previously been used to fit waning and drifting
parameters of population models.

A strength of our model formulation is that it generates population
patterns of immunity. As a result, our model can be fit to population
level serology data and thus inform decisions about which epitope
conformations to include in updated vaccines. Describing how cross
neutralization tables are generated by the model and how they change
over time given different parameter values illustrates the potential of
fitted models to be used in vaccine composition decisions.

At a population level, cross-neutralization analyses are performed on
a sample of individuals from a population. These indicate the strains to
which a population is most susceptible. Each individual’s sample is
assayed separately against each strain. The procedure in the lab is to
divide each sample of sera into 10 titers by dilution. Titer 1 is undiluted;
titer 2 is diluted 1-1; titer 3 is titer 2 diluted 1-1, and so on. Each of these
titers is mixed with a sample of the first virus. For each individual, the
highest numbered (weakest) titer that neutralizes the virus is recorded.
These same serum samples are also mixed with the second virus and the
highest numbered neutralizing titer is also recorded for each individual.
The joint distribution of the two is then analyzed.

SARS-CoV-2 neutralization titers differ markedly across individuals.
That is true even when everyone is assayed at the same time after
infection or vaccination (Dan et al. 2021). Waning across different times
since last infection adds to the variation between individuals. But the
variation between individuals is balanced out statistically. If there is a
statistically significant difference in the mean titers for two different
viruses, then the viruses have drifted to provide an escape mutation. If
the times when different viruses circulated in the population sampled is
known, both waning and drifting can be assessed.

To generate cross neutralization data from our models’ output, we
use the Z(h,j,k) function as formulated by equation (1) to calculate the

Vaccination Effects for Waning W = 0.1 and Escape Mutation Drifting D = 0.1
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Vaccination Effects for Waning = 0.01 and EM Drifting = 0.1
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Fig. 8. This is the analog of Fig. 7, but with the waning rate W at 0.01 instead of 0.1. Full vaccination is more problematic here than in Fig. 7.

susceptibility of all individuals (or more correctly population segments
since we model continuous populations rather than individuals) who
have recovered from a previous infection. Since the Z function is a
transmission parameter, it corresponds to the inverse of the neutralizing
level. To make that number correspond to a titer, we divide the interval
[0,1] into 10 equal subintervals: Yy, ..., Y19, where Y; = [0,.1]. At time T
and within drift level h;, we assign to each susceptible individual a “titer
number for time T and drift level h;” as follows. For an individual in R(j,
k) at time T, assign as “titer number” the number m for which subin-
terval Yy, contains Z(h;,j,k), as in expression (1). Assign number 1 to
those in S. Similarly, construct for each susceptible a titer number for
time T and drift level hy. Form a 10 x 10 matrix whose (i,j)th entry is the
number of population who had titer number i for strain h; and titer
number j for strain hy at time T. This matrix is the basis of our cross-
neutralization analysis. We present an example of such a construction
in the Supplementary Material.

Comparison of model-generated cross-neutralization tables and
corresponding tables from serology labs can be used to fit the model
waning and drifting parameters. Such model fits can then be used to
project how the immunity levels in the population will affect the spread
of new virus variants with escape mutations. They can also be used to
project how quickly further escape mutations might emerge. The val-
idity of such projections requires more models that specify a series of
specific potential escape mutations. The type of data generated by
(Shrock et al. 2020) in combination with the type of data generated by
(Greaney et al. 2021) could be helpful in this regard.

There are many epitopes and a wide a variety of immune responses to
those epitopes. Thus, a model to capture all that information extensively
enough to validate a vaccine decision will be complex. Consequently,
deciding how to best validate a vaccine decision is a crucial issue.

6. Using the model and data to make decisions about vaccine
composition

The model we have presented is a first step to make decisions about
vaccine composition. Next steps involve further model elaboration and
analysis as well as fitting the model to data. Two types of data would be
useful: 1) the rate of fixation of mutations at a population level, and 2)
acquired population immunity data. For the first, key parameters to fit

involve increased transmissibility and immune escape. To estimate those
parameters, the specific epitopes and the specific mutations of those
epitopes that have been observed need to be specified in the model
structure. For example, the prominent transmission enhancing or im-
munity escaping mutations described in (Harvey et al. 2021) could be
individually specified in the model. Then prior probabilities for the
transmission and immune escaping parameters could be established
using laboratory based deep mutational scanning for attachment to the
ACE2 receptor or the attachment of epitope specific antibodies to the
observed mutations as done by (Greaney et al. 2021). Finally, the model
could be fit by ABC-SMC to patterns of infection in the population to
different strains. Even better data may be coming soon from single cell
sequencing of FACS selected immune cells that determine the epitopes to
which SARS-CoV-2 immune responses have been developed.

The presence of strains with escape mutations is only one factor
affecting the choice of mutations to include in vaccines. Another is the
immunity levels in the population against different mutations. These
determine which strains, and which specific escape mutations, will
circulate. It would not be optimal to include a mutation in a vaccine if
the targeted mutation is expected to have low levels of circulation in the
absence of the vaccine. Data on who has immunity directed to specific
mutation states involving original or altered amino acids would serve to
better estimate many model parameters.

6.1. Integrating models and data to improve decisions

There is no way to validate one model for informing all decisions. A
process is needed that accommodates the model to available data and
identifies the most informative data that is lacking. Focusing on two
sources of model-based decision errors can bring the data and models
into a favorable balance for making decisions. These are:

1 A simplifying assumption, if realistically relaxed, would change the
decision

2 An unrecognized alternative model parameter set that fits the data
would change the decision

Practical identifiability analyses are key to addressing these two
sources of error. The first step is to identify the parameter space of the
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model that leads to a decision. The decision could be multifaceted with
different parts of parameter space favoring different vaccine modifica-
tions and some parts favoring no change to the vaccine. To simplify our
description, in Fig. 9 we make the space binary with the grey area fa-
voring modification A and the yellow area favoring modification B. In a
second step, the model space that is consistent with the data is demar-
cated. Three possible demarcations are illustrated. Identifiable decisions
could favor either A or B or have part of their space consistent with A and
a different part be consistent with B. In this latter case the decision is not
identifiable.

Subsequent steps are different depending upon whether the decision
is identifiable or not. If it is, then the robustness of the decision should be
assessed by realistically relaxing assumptions in the model to see if that
changes a decision should be pursued. In general, that will decrease
identifiability. When the decision is not identifiable, then new data or
better use of the existing data should be sought. If the decision is just to
accept a scientific theory, then this process should go on forever. But if
there is a deadline to make a vaccine for a coming season, then profes-
sional judgement is needed. We believe that better decisions will be
made when that judgement is focused on potential robustness of de-
cisions to realistic relaxation of simplifying assumptions and on identi-
fiability of decisions rather than on the weight of evidence for one
decision or the other just using the current model.

We believe that epitope specific models and data can feasibly be
developed. More thoughts on that issue are presented in the supple-
mental material.

7. Discussion

The main reason for changing SARS-CoV-2 vaccine composition in
the future is the emergence of escape mutations. The emergence of new
SARS-CoV-2 immune escape mutations in our model is like that seen in
the real world. Escape mutations did not appear until there were op-
portunities for reinfections. Transmission enhancing mutations like
D614 G, on the other hand, were almost immediate. This speaks to the
importance of modeling escape mutations as occurring upon reinfection.
Models of that process describe how waning and escape mutations
interact. We have laid out an ODE model structure for such an
interaction.

Building on the foundational work establishing the discipline of
phylodynamics (Grenfell et al. 2004), the potential effects of
SARS-CoV-2 escape mutations have been abstractly imputed by
Saad-Roy and colleagues (Saad-Roy et al. 2021; Saad-Roy et al. 2020).
The model we present here, extends the theoretical foundations for such
an analysis and enables direct computation of effects.

We are extending the theoretical foundations of our model in several
ways. An individual based stochastic formulation elaborates the trans-
mission process with virus excretion rates, environmental survival, up
take rates, and dose response formulations. It also allows for including

Identifiable Identifiable

ot
ifiable

Fig. 9. Defining decision identifiability: The grey area is consistent with one
decision, the yellow area with another. Possible areas consistent with data are
illustrated for two data sets where the parameter sets show identifiable
parameter sets and one where the parameter sets do not lead to an identifi-
able decisions.
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many more distinct episodes and can be formulated to integrate muta-
tions in the same epitope as well as large numbers of epitopes. In both
ODE and individual based models, the natural history of immunity has
been elaborated so that reinfection does not eliminate previously ac-
quired immunity as the model presented here does. These new models
will facilitate exploring the implications of diverse patterns of waning
and escape mutation drifting within and between epitopes.

Perhaps the number of possible escape mutations with little cost to
transmissibility is limited. That would be consistent with the laboratory-
based induction of mutations by (Greaney et al. 2021) where most
mutations that escaped the effects of monoclonal antibodies or conva-
lescent sera also decreased binding to the ACE2 receptor. In that case,
future escape mutations could increasingly be associated with lower
transmissibility.

As the number of escape mutations increases and their co-occurrence
with mutations that decrease transmission increases, the task of making
good vaccine composition choices for future vaccines will become more
complicated. One complicating factor is that the low rate of SARS-CoV-2
escape mutations means that different mutations will emerge in
different parts of the world. When travel brings those mutations
together, their interaction effects will have to be predicted. We have laid
out a path for addressing such complications that includes both realistic
relaxation of simplifying assumptions and searches for data that make
decisions more identifiable.

However, the differences we have observed between simple models
with few potential mutations indicate great potential complexity in the
generation of multiple mutations. As we build models with more po-
tential mutations that differ not only in their drift matrices but also in
how they affect transmissibility and how immune responses to them
generate joint effects with other mutations (Koopman 1985) this
complexity will grow. But the potential for unique and highly effective
vaccine constructs might also grow.
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Appendix A. Mathematical formulation details

In this Appendix, we present the SIR differential equation system of
our SARS-CoVid-2 models 1&2. Recall from our discussion in the main
text that the compartments in our model are:

e S, never infected susceptibles,

e I(h) or In, those infected with strain h, h =0, 1,...,M,

e R(j,k), previously infected susceptibles whose last infection was
strain j and whose level of immunity to strainjis k, fork =0,1, ..., P.
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So, there are M + 1 strains with strain 0 being the original strain and P + 1 levels of immunity, with level 0 that of full immunity.

The effective contact rate — roughly the probability of transmission — between a susceptible in S and an infective in I(h) is B. Three important
processes in the dynamic are the strain network, the drift tensor ¢(h,j,h’), and the transmissibility function Z(h,j,k). The strain network is a network
whose nodes are the strains in the system with two strains connected by an edge if one can mutate to the other. The expression ¢(h,j,h’) gives the
probability that when an individual in R(j,k) is infected by an individual in I(h), strain h will drift to strain h’. The transmissibility function Z(j,h,k)
when multiplied by B gives the effective contact rate for an encounter between a possible infector in I(j) and a susceptible in R(h,k):

BeZ(j,h,k) = BK%) + (1 —%) (diSI(Lh’j)> } (1)

This formulates independent joint effects of waning and drifting on infection risk with drifting adding susceptibility beyond the current level of
waning. It implies that drifting and waning operate on the same scale in terms of ability to increase susceptibility.

Note that Z increases with the level of waning k in the susceptible and the distance between the strains j and h in the strain network.

Vaccination occurs at the end of the first epidemic wave when strain 0 still dominates. A vaccinated susceptible moves to compartment R(0,0) with
temporary complete immunity to strain 0. The default vaccination rate is v = 0.02/week, which is more than one person per year. We also consider a
weaker vaccination program with v = 0.005/week.

das
E_MN mS — BSZ

/O
dl, B M M P B
=N th—&-ZZZZ(wk p(i,j, )Ry | — (g +m)ly, h=0,....M

j=0 =0 %=0
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Here, for any subset Y of a set X, dy(x) = {O ifx ¢ Y.

1,ifk =0 1,ifk=0,...,P—1
S0, 810y (k) = {0 otherwise’ # 0.p- (k) = {O, otherwise, i.e.,k =P

. Liffj=k=0
S0y (- k) = { 0, otherwise.

The first equation describes the infection and vaccination of never infected susceptible individuals. The second set of equations describes the
dynamics of those infected with drift level h — the I,’s, who recover at rate g and die at rate m. New Iy’s rise when an I infects an S, infects any Ry
without drifting, or when an [; drifts to an I upon infecting an Rj. The probability of the latter occurrence is the probability Z(i,j k) that any given I; will
infect an Rj times the probability ¢ (i,j,h) from the drift tensor that the I; will drift to an I, upon such an infection. Models 1 and 2 differ only with
regard to this drift tensor.

In the third set of equations, Rjy’s increase when an I; recovers or when an R;jx.; wanes. Rj’s decrease when they wane to an Rjx1 or upon
vaccination. The last line in the above equations keeps track of the vaccination process when the newly vaccinated enter Ryo.

We simulated the model using the Berkeley Madonna Software (Madonna 2021) always checking to see that the shortening the step size did not
change the results. For the simulations in this report we set effective weekly transmission rate parameter B = 1 or 1.5 and weekly rate of recovery g =
0.5, so that the underlying basic reproduction number is Ry = 2 or 3. The birth and death rates were set at 1/(75 x 52). All time scales were set to a
week. We introduced one infection per 10 million into a continuous population denoted as having size 1000. Numerical solution of the model used
Runge-Kutta 4 and the stability of numerical solutions were evaluated across smaller time steps.

Symbol Summary

S Never infected susceptibles

I(h), I, Those currently infected with strain h, h = 0 initial strain

R(,k), Rjk Formerly infected susceptibles, whose previous infection

was strain j and whose level of immunity to strain j is k

M 41 Number of drift levels (“strains”). Initial strain = strain 0.

P +1 Number of immunity (waning) levels; Level 0 is full immunity

m weekly rate of birth (into S) and of background death

u value of m in the Madonna runs

B effective contact rate for contacts between those in S and

those in any I(h)

N Total population, N = S+ Y I(h) + > R(j,k)

v Vaccination rate per week

Z(i,j,k) Transmissibility function (1). Multiplier of B for contact between

Infected in I(h) and susceptible in R(j,k)
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Q Denominator in Z for waning level: Q > P

Epidemics 36 (2021) 100484

L Denominator in Z for drift level: L > max distance between any 2 strains
¢(i,j, h) Probability that when an infected in I(i) infects a susceptible in R(,k)

the newly infected will be in I(h); the infecting strain will drift from

Ito h.

D probability that a drift away from infecting strain i occurs at all.
Wi weekly rate of waning from waning level k to level k+1.

g Rate of recovering from infection: I(h) —> R(h,0).

T Time in weeks

Symbol values in Madonna runs:

S: Initial S(0) = 999.9999

I(h): Initial values I(0) = 0.0001 at time 0, all other I(h) = O at time 0.

R(,k): all initial values = 0.

N = 1,000 for all t.

g=0.5

B =1 (= 1.5 in some SM runs)

V = 0, 0.005, 0.02 for no vaccination, partial vaccination, full vaccination, respectively.
Wi=W, constant for all waning levels k. Values varied from 0.1 to 0.000001

D takes on varying values from 0.1 to 0.000001
uorm: 1/(75 x 52)

Appendix B. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.epidem.2021.100484.
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