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ABSTRACT

In statistical analysis, researchers often perform coordinatewise Gaussianization such that each variable is
marginally normal. The normal score transformation is a method for coordinatewise Gaussianization and is
widely used in statistics, econometrics, genetics and other areas. However, few studies exist on the theo-
retical properties of the normal score transformation, especially in high-dimensional problems where the
dimension p diverges with the sample size n. In this article, we show that the normal score transformation
uniformly converges to its population counterpart even when log p = o (n/ log n). Our result can justify the
normal score transformation prior to any downstream statistical method to which the theoretical normal
transformation is beneficial. The same results are established for the Winsorized normal transformation,
another popular choice for coordinatewise Gaussianization. We demonstrate the benefits of coordinatewise
Gaussianization by studying its applications to the Gaussian copula model, the nearest shrunken centroids
classifier and distance correlation. The benefits are clearly shown in theory and supported by numerical
studies. Moreover, we also point out scenarios where coordinatewise Gaussinization does not help and
even causes damages. We offer a general recommendation on how to use coordinatewise Gaussianization
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in applications. Supplementary materials for this article are available online.

1. Introduction

In statistical analysis, researchers often perform coordinatewise
Gaussianization such that each variable is marginally normal.
The Gaussianization benefits subsequent analysis in two ways.
On the one hand, there is a rich literature on statistical mod-
els developed under normality assumptions. Guassianization
allows us to borrow the strengths of these works. On the other
hand, normal variables have sub-Gaussian tails. A large num-
ber of high-dimensional methods require variables to be sub-
Gaussian in order to succeed in ultra-high dimensions, while
heavy tails often negatively impact the performance of these
methods. With coordinatewise Gaussianization, these methods
can be readily applied.

We are interested in two closely related and popular methods
for coordinatewise Gaussianization; namely, the normal score
(NS) estimator and the Winsorized estimator. Consider X =
(X1,...,Xp), where X; € R forj = 1,...,p. Recall that, for
any continuous Xj, we have

Ti(Xj) = @~ o Fi(Xj) ~ N(0, 1), e))

where ® is the cumulative distribution function (CDF) for the
standard normal random variable, and F; is the CDF for X;.
Hence, if we knew F; and hence, P lo Fj, we could transform
our data to be marginally normal according to (1). However, in
practice F; is generally not available. Consider n independent

copies of X, Xii=1,...,nand letfj be the empirical CDF for
Xj. The NS estimator and the Winsorized estimator are defined
as follows:

o The NS estimator:

T(ns) _ x—1 .
o The Winsorized estimator:
?j(w) — ¢! o’ﬁj(W), (3)

where, with §,, > 0 being a small number chosen by the user,

S if " () < 8
~ ] ~
F'0 =1 E"@, if6 <F"0 <1-8s @)

1=8,  ifFY () =13,

Note that both estimators shrinkﬁj to prevent it from achiev-
ing 0 or 1, because ®~!(1) = oo and ®7!(0) = —oo. These
two intuitive estimators have a long history, and have become
standard tools in statistics, biostatistics, education and behavior
sciences, among other research fields. For example, the widely
used statistical software SAS and SPSS provide built-in functions
to perform the normal score transformation. In education and
psychology, Glass and Hopkins (1996) discussed in their clas-
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sical book the application of the normal score transformation
in removing skewness and kurtosis. In econometrics, Berkowitz
(2001) demonstrated how to construct more powerful tests
through normal score transformation in forecast evaluation.

Moreover, these estimators are among the rare classical
methods that continue to be applicable in high dimensions with-
out any modification, at least empirically. Many researchers have
applied the normal score transformation to high-dimensional
data and observed empirical successes. For example, Cai, Li, and
Liu (2016) demonstrated the application of the normal score
transformation in comparing multiple clinical trial endpoints.
In genetics study, Peng et al. (2007) proposed to apply the
normal score transformation before using variance-components
and regression-based methods to map quantitative trait loci.
Other applications in genetics research include Wu et al. (2002),
Anokhin, Heath, and Ralano (2003), Dixon et al. (2007),
Lambregts-Rommelse et al. (2008), Scuteri et al. (2007), Fan
et al. (2013), Wang et al. (2015), and Nansel et al. (2015),
among others. The Winsorized estimator plays an important
role in various high-dimensional statistics methods, such as the
Gaussian copula model (Liu, Lafferty, and Wasserman 2009;
Xue and Zou 2012), semiparametric discriminant analysis (Mai
and Zou 2015¢), principal component analysis (Han and Liu
2014) and sufficient dimension reduction (Mai and Zou 2015b).

However, theoretical supports for these estimators in high
dimensions are much weaker. The existing theoretical studies
for the NS estimator in the literature typically focus on the fixed
p, n — oo paradigm. See Klaassen and Wellner (1997), Serfling
(2009), and Hoft, Niu, and Wellner (2014) for example. The
theoretical properties of the NS estimator in high dimensions
are generally unknown. On the other hand, the Winsorized
estimator is shown to be consistent when p is larger than n, but
p can only grow at a relatively slow rate of n. For example, Liu,
Lafferty, and Wasserman (2009) established the consistency of
the Winsorized estimator when p grows as a polynomial func-
tion of »n, while Mai and Zou (2015¢) showed the consistency
when logp = o(n'/>77) forany 0 < y < 1/3. Note that
we often hope a method to handle dimensions at the rate as
close tolog p = o(n) as possible. The relatively lower dimension
that can be handled by the Winsorized estimator has led to
the belief that the estimated transformation fundamentally hurt
the data analysis. Consequently, many statisticians have spent
significant amount of efforts in avoiding the transformation of
data in the Gaussian copula model, see the rank-based approach
for estimating the graphical model in Liu et al. (2012) and Xue
and Zou (2012). Despite their success for Gaussian graphical
models, the rank-based approach cannot be easily used for other
applications, such as the nearest shrunken centroid classifier and
the distance correlation.

Contrary to current beliefs, we show in this article that
coordinatewise Gaussianization has a minimal effect on
statistical analysis. We conduct a systematic investigation on
the theoretical properties and applications of coordinatewise
Gaussianization achieved by the NS estimator and the Win-
sorized estimator. With careful calculation, we show that both
estimators are consistent under nearly optimal dimensionality,
logp = o(n/logn). We further study the implications of our
results in several important applications. In many applications,
coordinatewise Gaussianization removes moment conditions to

deliver strong theoretical results. Our major contributions are
listed below:

o We present theoretical results that the two coordinatewise
Gaussianization estimators Tj("s) and Tj(W> uniformly con-

. Our

logn
result is very general, without any regard to the dogwnstream
method. Also, the theoretical studies are far from trivial from
the technical aspect. Note that our estimators are composites
of the (shrunken) empirical CDF E and ®~1. Although it

is known that E converges to F; uniformly at a fast rate,

verge to Tj over j = 1,...,p whenlogp = o(

®~! amplifies the estimation error in ﬁj Our proof involves
intensive study on the variability and bias of the estimated
transformations, which may be useful to other theoretical
studies as well.

o We study the statistical properties of several important statis-
tical methods when they are combined with coordinatewise
Gaussianization, including the Gaussian copula model, the
nearest shrunken centroids classifier and distance correlation
screening. The major findings are listed below.

- For Gaussian copula model, we show that graphical
model estimators after coordinatewise Gaussianization
enjoy similar theoretical properties of the rank-based
estimators, which clarifies a misbelief in the literature.
Previous theories only support the use of coordinate
Gaussianization when the dimension is much lower than
that handled by rank-based estimators.

- For the nearest shrunken centroid classifier, our theory
reveals the fundamental impact of tail behavior on the
performance of the classifier. Heavy tails in the input vari-
ables negatively impacts the nearest shrunken centroid
classifier, while light tails can be helpful. In this case,
coordinatewise Gaussianization prior to fitting the nearest
shrunken centroid classifier is shown to eliminate such
negative impact and hence, improves the classification
performance.

- For the distance correlation application, we propose the
Gaussianized distance correlation and its empirical ver-
sion. It is viewed as the distance correlation after coordi-
natewise Gaussianization. The Gaussianized distance cor-
relation is invariant under any monotone transformation,
a property not shared by the distance correlation. Fur-
thermore, when used for variable screening, Gaussianized
distance correlation screening does not require the sub-
Gaussian tail assumptions that are necessary for distance
correlation screening in order to have the sure screening
property. In this sense, coordinatewise Gaussianiza-
tion improves the robustness of distance correlation
screening.

All the above theoretical findings are supported with empir-
ical experiments as well.

o We clarify the applicability of the normal score trans-
formation in high dimensions with several cautionary
examples. Such explanation sheds light on the different
influences of coordinatewise Gaussianization on low-
dimensional and high-dimensional data analysis. We give



a general recommendation on how to use coordinatewise
Gaussianization in statistical learning.

The rest of this article is organized as follows. In Section 2 we
present the uniform convergence result for the coordinatewise
Gaussianization. Section 3 gives a general guideline for deter-
mining whether coordinatewise Gaussianization is appropriate.
Section 4 contains the applications of our results to the Gaussian
copula model, nearest shrunken centroid classifier and distance
correlation screening. Numerical studies are presented in Sec-
tion 5. We conclude the article with a discussion. For the sake
of space, additional simulations and all the technical proofs are
relegated to the supplementary materials.

2. Uniform Convergence Rates of Coordinatewise
Gaussianization

2.1. The Normal Score Transformation

Throughout the rest of the article, we assume that X is
continuous, because we rarely directly transform discrete
variable to a continuous one. We make no further distri-
butional assumption on X. The collection of the population
coordinatewise Gaussianization transformations is denoted as
T = (T1,...,Tp), where T; is defined in (1). Similarly, we
let the collection of the normal score estimator be denoted as
T (ﬂm), - ,?},’“)), and the Winsorized estimator be

denoted as T® = (’T\fw), . ,?;W)). We use the capital letter C

to denote a generic constant that could vary from line to line.

Recall that the normal score transformation /Y:J.("s) is defined in

(2). We have the following results for /7:]»(”3) .
Theorem 1. There exists a generic positive constant M that does
logn

<,
Jn

not depend on n or p such that, forany € > 0, when M

foreachj=1,...,p, we have

1 " 25(ns) . . 1162
Pr(;;wj (X)) = X z ) = Cexp(=Cien. (5)

Consequently,

1 & ~(ns) i ; ne?
Pr (mjax {ni;wj X)) - TiXDIt = €] < Cpexp(~Cir).

(6)
Sketch of proof. Theorem 1 can be shown in the following
steps. Denote a; = - Y |Tj"s (X)) — Tj(X)| and T} (x) =

Ti0)1(|Tj(x)| < /2logn) + sign(Tj(x))/2logn. We have
aj < bj + ¢j, where
L 508) iy o L i ;
b,:;;wj &) = T (XL, ej=;;|Tj<X;)—T,-(Xj>|.
(7)

Therefore, it suffices to provide bounds for b; and e;. It can
be shown that bj is a function with bounded differences, so
we use McDiarmid’s inequality (McDiarmid 1989) to provide
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a bound on b;. Meanwhile, ¢; is an average of independent
variables closely related to the normal distribution. Hence, we
use properties of the normal distribution to provide a bound for
ej. Combine the bounds for b; and ¢; and we have (5). Then we
use the union bound argument to show (6). O

Theorem 1 is virtually free of assumptions and is thus, widely
applicable. Moreover, Theorem 1 provides bounds on the aver-

age estimation error of /T\j(m) over all the X;’s. Such bounds

guarantee that T (X) is overall an accurate approximation of
T(X), which can be used to show the consistency of the follow-
up analysis. See Section 4 for details. Purely for interpretation
purposes, we translate Theorem 1 to an asymptotic result in the
following corollary.

Corollary 1. If logp = o( ) and n — 00, we have

logn

1 _~ . .
maxj—i,...p {; Y |Tj(”s)(XJ’.) _ Tj(X;)I} = op(1).

Corollary 1 confirms the consistency of the normal score
n

transformation when logp = 0(jogn)- When the normal score
transformation is used, the practitioner wishes to treat the com-
puted T")(X) as the theoretically normal variables T(X). The-
orem 1 and Corollary 1 show that there is a very small difference
between the actual data to be used for the downstream statistical
method and the theoretically desired data, as long as the dimen-
sion does not grow faster than an exponential rate relative to the

sample size.

Remark 1. In addition to the transformation in (2), a fam-
ily of its variants are widely applied as well. For a constant
¢ > 0, one could also consider the transformation Tj‘(x) =

S Y-
o e B — ).

Popular choices of ¢ include 0,1/3,3/8,1/2 (Van der Waerden
1952; Blom 1958; Tukey 1962; Bliss 1967). When ¢ = 0,
we recover the transformation in (2). It has been observed in
practice that the choice of ¢ does not have a noticeable impact
on the analysis (Beasley, Erickson, and Allison 2009). Indeed, we
can rigorously prove that all these choices of ¢ have theoretical
results similar to those in Theorem 1 and Corollary 1. For
simplicity, the readers may focus on ¢ = 0 case to understand
our results.

2.2. The Winsorized Estimator

Now we turn to the Winsorized estimator. First we need to
choose the Winsorization parameter 4, in (4). This choice can
be viewed as a parameter for variance-bias tradeoff. Larger §,
introduces larger bias, while smaller §,, inflates the variance. It is
important to use a proper 8, in theory. We consider the choice
of §, = 1/n, the reason for which will be discussed after we
present the theoretical results.

Theorem 2. There exists a generic positive constant M that does
logn

Jn

not depend on n or p such that, forany e > 0, when M

<€,
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foreachj=1,...,p, we have

1’162

1o ~w) o ;
Pr(;ZITj( (X)) - Tyx)| = €) < Cexp(—~C—). (8)
i=1

logn

Consequently,

1’162

L 20y i
Pr(mjax{n;Tj X)) = Ti(XD| = §Cpexp(—Clogn).
=

&)

We again rewrite Theorem 2 into asymptotic results purely
for interpretation purposes.

Corollary 2. If logp = o< ! ) and n — 00, we have
logn

1 ~ ) .
s, {3 S0 T 0 = T} = orc)

Remark 2. It can be seen that that the Winsorized estimator has
the same theoretical properties as the normal score estimator.
The Winsorized estimator can also handle dimensionality of

logp = o (%) We further note that the fast convergence
ogn

of the Winsorized estimator is closely related to our choice
of §,. Liu, Lafferty, and Wasserman (2009) considered a
smaller 8, and showed the polynomial rate, while Mai and
Zou (2015c) used a larger 8, and the rate is shown to be
logp = o(n'/377). Our choice of 8, = 1/n has a higher
convergence rate than both of them, because it strikes a good
balance between the variance and bias. Also, our proof is
fundamentally different from Liu, Lafferty, and Wasserman
(2009) and Mai and Zou (2015¢). These two papers partition the
real line into several nonoverlapping line segments Ay, . .., Ag.

Because % Y |T].(W) X — G < L3R #XD e
Ar}tsup,c 4, rfj(x) — Tj(x)|, their proofs reduce to finding
bounds for #{X} € A;}and sup, 4, |/T\j(x) — Tj(x)|. However,
within A4, likely many |/7:j(w) (X}) — Y}(X]?)| are much smaller
than sup,c 4, ﬁ}-(x) — Tj(x)|, and the resulting upper bound
may be loose. In contrast, our Corollary 2 is proved by showing
that the Winsorized estimator is close to the NS estimator, the
properties of which are obtained in Theorem 1. As can be seen
in the sketch of proof for Theorem 1, we never consider the
supreme of the estimation error over line segments. We instead
leverage the stability of the NS estimator (i.e., b; having bounded
difference) to obtain a sharper rate.

Remark 3. Because the normal score estimator and the Win-
sorized estimator have the same theoretical properties, in what
follows we only discuss the application for the normal score
estimator for ease of presentation. But all the results hold for the
Winsorized estimator as well. We also suppress the superscripts
(ns) or (w) to avoid proliferation of notation.

3. Applicability of Coordinatewise Gaussianization

Coordinatewise Gaussianization is only the first step of the
data analysis. The end results also depend on the downstream

statistical method. Since :l:(X) is close to T(X), one could deter-
mine the applicability of the normal score transformation by
investigating if the analysis is appropriate on T(X). If it is easier
to analyze T(X) than X or the statistical analysis becomes easier
with T(X) than X, then the normal score transformation is
helpful and can be applied. In many applications, it is indeed
beneficial to perform analysis on T(X). For example, in the
Gaussian copula model, the conditional independence structure
of T(X) can be fully characterized by the precision matrix. It is
easier to work on T(X) than X without changing the problem. In
nearest shrunken centroid classifier, it is much easier to estimate
the centroids of T(X). In distance correlation screening, the
problem becomes easier on T(X). In these cases, the noimal
score transformation often improves the accuracy, because T(X)
is a very good approximation of T(X) as justified in Theorem 1.
See Section 4 for rigorous establishment of these statements.

However, there are also scenarios where coordinatewise
Gaussinization does not help and even causes damages. We
discuss two important cases here. First, some methods are
invariant under monotone transformations, and yield exactly
the same results on X and T(X). The large family of tree-based
methods are typical examples of this kind (Hastie, Tibshirani,
and Friedman 2008). When we build trees, we recursively
find points x; and split Xj into two regions X; < x; and
Xj > xj. Apparently, this is equivalent to splitting T;(Xj) into
Ti(X;) < Tj(xj) and Tj(X;) > T;(xj). Thus, we do not gain
anything by combining the normal score transformation with
tree-based methods. Second, coordinatewise Gaussinization
forces all the variables to have the same marginal distribution.
Consequently, if a method exploits the difference among
marginal characteristics of variables, it should not be combined
with coordinatewise Gaussinization. For example, Johnstone
and Lu (2009) rank variables by their marginal variance,
and only keep the top ranked ones for principal component
analysis. Apparently, this approach cannot be combined with
coordinatewise Gaussinization, as all variables have variance of
1 afterwards. Another example is the proposal by Jin and Wang
(2016) for high-dimensional clustering. Their method assumes
that important variables have the mixture normal distribution,
while the noise variables are normal. The Kolmogorov-Smirnov
test is used to identify the important variables by checking
for deviation from normality. This method does not work
after coordinatewise Gaussinization because all variables will
be normal after transformation and hence, discarded as noise
features.

The main point here is that one should not use normal
score transformation blindly without thinking about the whole
procedure of statistical analysis from the beginning to the end.
As mentioned before, many statistical methods do benefit from
coordinatewise Gaussianization. We discuss some important
examples of them in the next section.

4. Statistical Learning after the Normal Score
Transformation

4.1. Unsupervised Learning: The Gaussian Copula Model

4.1.1. Model
Copula models are popular statistical tools for understanding
the dependence among variables. By Sklar (1959), for any



distribution F on R? with marginal distribution functions
Fi,...,Fp, there exists a unique copula, Co : R +— R,
such that F(xi,...,x) = Co(Fi(x1),...,Fp(xp)). The
copula Co is often taken as a summary of the dependence
among X. A particularly interesting copula is the Gaussian
copula. Define ®, 5 as the multivariate normal CDF with
parameters p, X. The Gaussian copula model assumes that,
for any (u1,...,up) € [0,11P, we have Co(uy,...,up) =
Dpx (P (), .., P (up)).

Because copula models focus on the dependence structure,
the location and the scale of the distribution are generally irrel-
evant. Hence, conventionally it is assumed that ¢ = 0 and
the diagonal elements of X are all equal to 1. The Gaussian
copula model can also be viewed as a transformation model. If
X follows the Gaussian copula model, then there exist marginal
transformations G = (g1, . .., gp) such that

G(X) = (g1(X1),...,8(Xp)) ~ N(0, X).

The nonparametric transformation G makes the Gaussian cop-
ula model more flexible than the normal model, while the
parametric distribution of G(X) often leads to easy estimation
and interpretation. Many methods have been proposed under
the Gaussian copula model (Klaassen and Wellner 1997; Lin and
Jeon 2003; Chen and Fan 2006; Hoff 2007; Liu, Lafferty, and
Wasserman 2009; Xue and Zou 2012; Liu et al. 2012; Hoff, Niu,
and Wellner 2014; Fan, Xue, and Zou 2015; Mai and Zou 2015b,
2015c¢, Cai and Zhang 2018).

The Gaussian copula model is closely related to the normal
score transformation. It can be shown that, the transformation
G in (10) has to coincide with T = (T7,..., Tp), where T; =
@~ oF;. Therefore, it is straightforward to estimate the Gaussian
copula model in two steps: (i) estimate G with the normal score
transformation and (ii) perform normality-based analysis on
the transformed data. Indeed, this was the approach in Klaassen
and Wellner (1997), Serfling (2009) and Hoff, Niu, and Wellner
(2014) in low-dimensional problems. We emphasize though
that the normal score transformation does not require joint
normality on its own. Rather, the joint normality is introduced
by the Gaussian copula model.

(10)

4.1.2. Methods

Suppose that X follows the Gaussian copula model in (10).
In graphical learning, our goal is to identify pairs of (Xj, X¢)
that are conditionally independent given all the other variables.
Denote ® = Xl It can be shown that Ok = 0 if and
only if Xj, Xy are conditionally independent given all the other
variables. Therefore, to recover the conditional independence
structure among X, it suffices to construct a sparse estimator for
the precision matrix ©.

In the special case where T is known, (10) reduces to the
Gaussian graphical model on T(X). Many methods have been
proposed for the Gaussian graphical model, including the
neighborhood lasso regression (Meinshausen and Bithlmann
2006), the graphical lasso (Friedman, Hastie, and Tibshirani
2008), SPACE (Peng et al. 2009), the neighborhood Dantzig
selector (Yuan 2010), constrained £;-minimization for inverse
matrix estimation (CLIME; Cai, Liu, and Luo (2011)), the
penalized D-Trace estimator (Zhang and Zou 2014), among
others. When T is unknown, we can first obtain its estimate
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T, and then apply normality-based methods on T(X). We
demonstrate this approach with the graphical lasso, which is
the most popular method for estimating Gaussian graphical
model in practice.

We first describe the method with the oracle information
about T. For any matrix V e RT'*%, define ||[V|imax =
max;; | Vijl, [Vlloo = max; 32, [Vjl, and V][ = max; Y7
|Vil. f i = g2 = p, Vi € RP*!is the kth column of V,
while V() € RP=D*®=D js V excluding the kth row and the
kth column. For any v € RP?, we denote v, € RP 1 asv
excluding v. Define the oracle covariance estimator that uses

~ 1 . .
the information of T as &) = — Y T(X)(T(XH))T. We use
n
A to denote a positive tuning parameter. The oracle graphical
lasso is defined as follows:
Aslo . S0 B
e = arglgiré{ logdet(®) + tr(X" " ©) + A Z 651}
7]
Let T be the normal score estimator of X:
~ 1 e o~
T =-) TX)TX)T. 11
. ; X (T(X) (1)

Then the normal score estimators replace % in the oracle
estimators with X. The normal score graphical lasso is defined
as follows:

~gl . 3
= —log det tr(X A 0iil}.
Q) argl(})li%{ ogdet(®) + tr(XO) + ,‘%&j 1631}

4.1.3. Theories

Our theories for the Gaussian copula model contain two parts.
First, we show that the normal score estimator % converges to
X in an elementwise manner when p grows at an exponential
rate of n. Second, when we combine X with sparse methods, we
obtain consistent estimators of @ in ultra-high dimensions.

Theorem 3. Under the Gaussian copula model, there exists
generic constants M, € that do not depend on # or p such that,

1
forany 0 < € < €y, when M %87 - €, we have, for any
n
hk=1,...,p
. e
Pr([ojk — ojk| = €) < Cexp(———). (12)
log“ n

~ 5 Cne?
Consequently, Pr(|X — X|lmax > €) < Cp”exp To2n)’
og n

Theorem 3 indicates that ||§ — Zllmax = op(1l) as long
as logp = o(longn). Theorem 3 is a key step in showing the
consistency of these methods in estimating © later. Now we
present the theoretical properties of the normal score estimators
for ©. Define Kz = || X, H= 2 ® ¥ and Kt = [[H ;' |-
Define d as the number of nonzero off-diagonal elements in ©.
We have the following results.

d?log? nlogp
n

Theorem 4. Assume 0. If ||H44c

logn,/logp
Jn

(Ha4) Yoo <1 —«fork € (0,1) and L A<
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1 1 P~
5 - —, then ||®% —
6(1 4+ «/4)Ky Ky max({1, (1 + 4/k)K5Ku} d
O |lmax = op(1). The support of @gl exactly recovers that of @
with probability going to 1.

Remark 4. As discussed in Section 1, previously theoretical
studies on the Winsorized estimator for the Gaussian graphical
model can only handle dimensions up to polynomial order (Liu,
Lafferty, and Wasserman 2009) or logp = o(n'/3~7) for some
constant y € (0,1/3) (Mai and Zou 2015c¢). Theorem 4 pushes
the dimension limit to logp = O(n") for some constant y €
0,1).

Remark 5. The normal score transformation can be combined
with other estimators such as the neighborhood Dantzig selector
and the CLIME estimator. The condition ||[H 4 4c (H 4 ) oo
< 1 — «k is the irrepresentable condition that Ravikumar et al.
(2011) used to study the theoretical properties of the oracle
graphical lasso. This irrepresentable condition is not needed in
the theory if we use the neighborhood Dantzig selector and the
CLIME estimator. With Theorem 3, the convergence rates under
other matrix norms such as Frobenius norm or matrix £; norm
can be established similarly by using the same arguments in Xue
and Zou (2012).

4.2. Supervised Learning: The Nearest Shrunken Centroids
Classifier

4.2.1. Method and Cautionary Remarks

Supervised learning covers all applications in which we need
to predict an outcome variable (response). Numerous super-
vised learning methods have been developed, such as logistic
regression, nearest neighborhood, neural networks, boosting,
random forest, support vector machines, just to name a few
(Hastie, Tibshirani, and Friedman 2008). The normal score
transformation may be desirable in supervised learning if one
wishes to remove heavy tails in the features. For example, if
we want to use a distance-based classifier, such as the nearest
shrunken centroids classifier (NSC) to be discussed shortly, we
need data to be reasonably light-tailed in order to well estimate
their centroids.

Recall that the application of the normal score transforma-
tion is not universally beneficial in supervised learning. For
example, we discussed in Section 3 that tree-based methods
cannot be improved by the normal score transformation because
they are invariant under monotone marginal transformations of
X. Hence, the application of the normal score transformation
in supervised learning should be closely tied to the classifier of
interest. An exhaustive study of the normal score transformation
in supervised learning is apparently impossible within the scope
of this manuscript. Instead, we focus on the nearest shrunken
centroids classifier (NSC) (Tibshirani et al. 2002, 2003) as a
demonstration for the potential benefit of the normal score
transformation in supervised learning.

Consider {Y,X}, where Y € {+1,—1} and X € R’. Our
goal is to predict Y based on X. Define jij = 2 37, XJ’ as the
overall centroid for Xj, s; as the pooled within-class standard

deviation, and fi,; = ni Zyi:y XJ’ as the within-class centroid,
4

Hyj — Kj
mysj + so
estimates the standardized difference between the within-class
centroid and the overall centroid on the j'th predictor, where
my = /1/n,—1/nand sy > 0 is a constant to improve
numeric stability in practice. NSC soft-thresholds dj; by some
user-chosen A > 0 to obtain d; = sign(d;j)(|d;‘j| — A)4.Then
the centroids are estimated by the shrunken estimatesii,; =
itj + mysid,;. A new observation X"V is classified to Class +1
if and only if

where 1, is the sample size within Class y. Then d)",‘j =

-~ 2 - 2
P (X — 1) L4 (X7 — 1))

n
—2log 4+ Y L > ,
n_ ; S5 ; S5
=1 J j=1 J
(13)
where n, are sample sizes of Class y. Note that if d,; = 0,

then fiy; = ji_j, indicating that X; is excluded from NSC. In
order to justify this selection scheme we need a statistical model,
to be introduced in Section 4.2.2. Otherwise, NSC selection is
not always consistent and hence, can lead to bias selection and
classification (Mai, Zou, and Yuan 2012).

Apparently, the accuracy of i, j_ is critical to the variable
selection and prediction in NSC. We will see later that the behav-
ior of these estimates greatly depends on the tail conditions on
X, and the normal score transformation can be beneficial. To
apply the normal score transformation in NSC, we first obtain
the transformed data T(X), and then apply NSC on (Y, T(X)).
We refer to this method as NS-NSC. Based on the pseudo
dataset, we obtain 7, = (1, . . ., 7)yp) as the shrunken centroid
of class y. In the transformed space, a feature X; is important if
and only if 74 # 7—;.

4.2.2. Theories

To study the statistical properties of NSC and its combination
with the normal score transformation, we consider the follow-
ing invariant contrast in mean or invariant contrast in median
model. We assume that Pr(Y = y) = 7, € (0,1), and within
Class Y =y,

Xj = wyj + €, (14)

where either ¢; has mean 0 when Eg; exists or the distribution
of €j is symmetric about 0 when Ee; does not exist. So u,; is
interpreted as either the conditional mean or the conditional
median. We use the acronym ICIM to name the model. The
model in (14) underlines the application of NSC in that the dis-
tribution of X; only differs in the mean across classes (or median
when the mean does not exist). We further assume that ¢; are
independent, because NSC may produce inconsistent variable
selection results when €j are dependent (Mai, Zou, and Yuan
2012). In order to show that the normal score transformation
can help NSC, it only makes sense to have a theoretical setup
where NSC can be a good classifier in principle. Otherwise, the
comparison is meaningless. In the theoretical study of NSC and
NS-NSC we set so = 0 because there is no numerical instability
issue in the theoretical analysis.

Under the ICIM model, observations can be classified based
on their distances to the centroids. It is easy to show that only
the variables in D are important for classification, where D =
{j : u4j # m—j}. Denote ny; = E(Tj(Xj) | Y = ). Note that n,;



is always finite because Tj(X;) is marginally sub-Gaussian. We
have the following invariance result.

Lemma 1. Define D" = {j : ny; # n—j}. Then we must have
that D’ = D.

Lemma 1 indicates that D is invariant under the transfor-
mation of T. This is why we refer to it as the invariant model.
The invariance guarantees that the target set D remains identical
after transformation and hence, on the population level we
can apply the normal score transformation. In other words,
coordinatewise Gaussianization does not change the problem.
Nevertheless, a successful recovery of D in practice depends on
the accurate estimation of u,, or .. The consistent estimation of
Wyj typically requires tail conditions on €;, while when data are
heavy-tailed, it is much easier to estimate 7, with the normal
score transformation. We discuss this point in detail in the next
section. First, we present an example to show that NSC can
completely fail while NS-NSC succeeds, which highlights the
importance of the tail behavior of ¢; critically to the performance
of the original NSC (without any data transformation). Recall
that, NSC selects the set D = {j : fi4j # i}

Lemma 2. 1f €; are standard Cauchy random variables in the
ICIM model, then for any threshold A, we have Pr(D = D) —
Oaslongasd — oo,p —d — oo, whered = |D|.

Lemma 2 shows that, if €; follows the Cauchy distribution,
it is impossible to recover D by applying NSC on X directly.
In the next theorem, we further consider the variable selection
consistency of NSC under two different tail conditions on ;. For
simplicity, we assume that the data have been standardized such
that it; = 0, s; = 1 for all j. Define the minimum signal strength
8 > 0 such that minjep y=+1{|1y;jl, [myj|} > 8. Also recall that
wy = Pr(Y = y).

Theorem 5. Assume that there exists a constant C; > 0 such
that 1, > C;. Forany 0 < p < 1/2,if p/n8 < A < (1 —
0)+/n8, we have that

1. if there exists a positive integer k and a constant M such that
EIEjll <M foralljand ! < 2k,

CkakMZk

W TS

— Cexp(—Cn). (15)

kp!/20

nl/2
2. if there exists o2 > 0 such that E exp(tej) < exp(o2t?) for all
t>0andj=1,...,p, then

Consequently, Pr(ﬁ =D)— 1ifs >

Pr(D = D) > 1 — Cpexp(—Cnp>8?) — Cexp(—Cn). (16)

Vlogp

Consequently, Pr(D = D) — 1ifs > Y28
Jvn

Theorem 5 reveals the effect of the tail behaviors on NSC.
When the predictors are sub-Gaussian, NSC can consistently
select all the important predictors even when logp = o(n)
under mild regularity conditions. However, when the predictors
only have finite kth moments, we are only guaranteed to achieve
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variable selection consistency when p grows at a polynomial rate
of the sample size n. Hence, when data are not sub-Gaussian, the
applicability of NSC in high dimensions is limited. This is where
the normal score transformation can provide a great lift. We can
show that, without imposing any tail condition on ¢;s, NS-NSC
can consistently recover D with an overwhelming probability.

Specifically, write ﬁ)(,;’) as the estimated centroid of T;(X;) within

Class y given by NSC, and 7,; as that of /fj(Xj), where i is the
~(0)
Ty

uses oracle information about Tj, and is hence, only a baseline
for theoretical studies. Define the selected sets by the oracle and

the normal score estimator as D(®) and D, respectively, where

normal score transformation defined in (2). The estimate

Do _ {j: (0)

“Ny (17)

A7) D={j:7y #0)
Theorem 6. Assume that there exists a constant C; > 0 such
that 7, > C;. Forany 0 < p < 1/2,if p/nd < A < (1 —
0)+/n8, we have that

1. for the oracle estimate D, Pr(ﬁ(o) = D) > 1-
Cp exp(—Cnp?82). Consequently, Pr(ﬁ(o) = D) — 1if

Vlogp
N

2. for the normal score estimate D, Pr(ﬁ =D =1~
Cp exp(—Cnpchz/log n). Consequently, Pr(D©@ =D) - 1

JIogplogn
T

To see how the influence of the transformations, again con-
sider the case where § does not change with (#n, p). Theorem 6
shows that, when we know the transformation, NS-NSC is con-
sistent if log p = o(n), while if we estimate the transformation,
NS-NSC is consistent if logp = o (ﬁ) Hence, NS-NSC is
almost optimal up to a factor of logr% Moreover, Theorem 6
requires no tail condition on ¢;, indicating that NS-NSC is
potentially better than NSC on heavy-tailed data. Recall that
Lemma 1 shows that NSC fails when the error is Cauchy, but
NS-NSC can still perform well according to Theorem 6.

Theorems 5 and 6 are derived under independence assump-
tion on ;. This independence assumption is imposed because
NSC is indifferent to the correlation structure. It sums up the
squared Euclidean distance at each coordinate. The NS trans-
formation modifies the way we evaluate the coordinatewise
Euclidean distance, but still utilizes the total Euclidean distance
for classification, which, after all, is the core of NSC. Empirically,
NS-NSC still works well when a reasonable amount of corre-
lation exists; see Models N5 and N6 in Section 5.1.2 and the
real data analysis in Section 5.2. For theoretical considerations,
if strong correlation is present, NSC and NS-NSC will still
consistently select the set D under respective conditions, but
D may not be the best set for classification. For example, Cai
and Liu (2011), Fan, Feng, and Tong (2012) and Mai, Zou, and
Yuan (2012) showed that when € ~ N(0, X), that is, under
the linear discriminant analysis (LDA) model, D could lead to
inferior classification depending on the interplay between X and
;.. One way to resolve the issue of correlation is to combine the
NS transformation with a method, such as LDA, that models

s>

if§ >
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the correlation. Similar ideas have been explored by Lin and
Jeon (2003) and Mai and Zou (2015c), but our results on the NS
transformation could potentially lead to a classifier with better
statistical properties.

4.3. Variable Screening: Distance Correlation Screening

4.3.1. Model and Cautionary Remarks

Variable screening contains a large family of computationally
efficient methods for variable selection in high dimensions.
Consider the response Y € R and the predictors X =
(X1, ...,Xp), where X; € RPk for pp > 1 could either be
univariate or multivariate. In high-dimensional data where p
is very large, we are interested in identifying

D = {k : F(y | Xx) functionally depends on Xj for some y},
(18)
where F(y | Xj) is the conditional CDF of Y given Xj. It is often
assumed that |D| is much smaller than p. Screening methods
aim to detect a set S such that D C S. Once screening methods
find an estimate of the set S, denoted as S, refined analysis will
be applied to the much smaller data matrix, Xg. This two-stage
approach is shown to produce good results.
Since the second-stage analysis is only applied to X ¢, it is cru-

cial that the first-stage screening should give an S that includes
all the predictors in D. A screening method that succeeds in this
is said to enjoy the SURE screening property. Fan and Lv (2008)
first proposed the marginal Pearson correlation screening for
the linear model, and later researchers have proposed numerous
methods that can handle more complicated models (Fan and
Song 2010; Fan, Feng, and Song 2011; Zhu et al. 2011; Li, Zhong,
and Zhu 2012; Chang, Tang, and Wu 2013; Mai and Zou 2013,
2015a; Cui, Li, and Zhong 2015; Chang, Tang, and Wu 2016,
among others).

Similar to supervised learning, the applicability of coordi-
natewise Gaussianization depends on the specific screening
method we employ. Many screening methods require variables
to be sub-Gaussian; see Fan and Lv (2008) and Li, Zhong,
and Zhu (2012) for example. Such methods can be combined
with coordinatewise Gaussianization, as variables become
sub-Gaussian afterwards. However, there are also several
screening methods that are invariant under marginal monotone
transformations. For example, Li et al. (2012) proposed
using Kendall's 7 correlation to perform screening under a
semiparametric single-index model with a monotone link
function. Since Kendalls v remains the same whether we
transform the variables or not, coordinatewise Gaussianization
gains nothing when combined with this method. Similarly,
the (fused) Kolmogorov filter (Mai and Zou 2013, 2015a) is
invariant under variable transformation, and there is no need to
perform coordinatewise Gaussianization.

In what follows, we focus on the impact of the coordinatewise
Gaussianization when it is applicable. We choose to consider
its combination with distance correlation screening (DCS, Li,
Zhong, and Zhu (2012)). DCS is a well-known and successful
screening method with the SURE screening property in the
model-free context. Importantly, its nice theoretical properties
hinge on moment conditions. The empirical results in Mai and
Zou (2015a) suggest that the performance of DCS can be poor

without sub-Gaussian assumptions. A direct remedy is to apply
coordinatewise Gaussianization prior to computing distance
correlation. The resulting correlation is named Gaussianized
distance correlation. In what follows, we first briefly review the
distance correlation for the sake of completeness.

4.3.2. Method

We start with the definition of distance correlation (Székely,
Rizzo, and Bakirov 2007). For a complex-valued function f,
define |f|> = f - f, where f is the complex conjugate of f. For
a vector t, ||t|| is its Euclidean norm. The distance covariance
between X and Y is written as dcov(X, Y) with

deov?(Xp, Y) = /R ory VXY (69 = Ux (OVY(9) Pt s)dtds,

(19)
where Yrx, v is the joint characteristic function of (X, Y), ¥x,
is the characteristic function of Xk, vy is the characteristic
function of Y, t € RPk,;s € RY and w(t, s) is a weight function.
With a random sample {X’, Y}, we can find the empirical

—

distance covariance between X and Y, denoted as dcov? (Xx, Y),

as in Székely, Rizzo, and Bakirov (2007). Then the empiri-

cal distance correlation between Xy and Y is dcor(Xy,Y) =
dcov(Xg, Y)

. The distance correlation screening

\/ dcov(Xy, Xi)dcov(Y, Y)
(DCS) is applied as follows. For each predictor Xy, we com-
pute c?)kDC = dcor(Xg, Y). Then we keep the predictors with
large c?),?c. Note that DCS is a model-free screening method.
However, the success of DCS apparently depends on whether
c?)kDC accurately approximates wl?c. Li, Zhong, and Zhu (2012)
assumed that X and Y are sub-Gaussian to establish estimation
consistency when p grows at an exponential rate of n. However,
when data are heavy-tailed, there is no guarantee that DCS
enjoys the SURE screening property. See the simulation results
in Section 5.1.3. To resolve this issue, one could apply coordi-
natewise Gaussianization to remove the heavy tails. We first find
either the normal score estimator or the Winsorized estimator
T. Then we compute

dx = deor(Tx, (Xp), Ty (Y)). (20)

Clearly, @ is the empirical version of the Gaussianized distance
correlation (GDC) defined as

wy = deor(Tx, (Xp), Ty (Y)). (21)

Like DC, zero GDC implies independence. Unlike DC, GDC is
invariant under monotone transformations. Moreover, we can
easily derive the following lemma:

Lemma 3. For wy defined in (21), we have (i) 0 < wr < 1;
and(ii) when (X, Y) is bivariate normal with Pearson correla-
tion px, wy is a strictly monotone function of | pg|.

The predictors with large @y’s are regarded as important,
while those with small @}’s are regarded as unimportant. More
specifically, for a threshold y,, the kept subset is S (yn) = {k:
@k > yu}. Alternatively, we can pick the d, th largest value of @,
where d,, is a predefined positive integer. Hence, for a predefined
dn, the procedure reserves the subset

S(dy) = {k: oy is among the dyth largest of @;,j = 1,...,p}.



We refer to the above procedure as the Gaussianized distance
correlation screening (GDCS).

4.3.3. Theories

We assume that the dimension of Y, g, is fixed, and the dimen-
sion for each predictor Xy, p, are uniformly bounded above, but
the number of predictors, p, is allowed to diverge with n.

Theorem 7. For some constants M > 0,0 < k < 1/2 and any
0<y< % — k, we have

Pr(|dcor(Tx, (Xg), Ty (Y)) — deor(Tx, (Xx), Ty ()| = Mn~*)
< C[exp(—Cnlfz(’”V)) + nexp(—Cn")]

forany k =1, ..., p. Consequently,
Pr( sup |@ —w,| > Mn™*) < Cplexp(—Cn'72+7))
k=1,..., 5

+ nexp(—Cn”)].

Theorem 7 implies that &’s uniformly converge to their
population counterparts in ultra-high dimensions without any
condition on the distribution of X or Y. We further compare
the results in Theorem 7 with the convergence rate of DCS
without Gaussianization. Li, Zhong, and Zhu (2012) considered
the following condition:

(C1) There exists a positive constant sy such that for any 0 <
s < sg, we have

sup max E(exp(s||Xk]|?)) < oo, and E(exp(s||Y||?)) < oo.
p 1=k=p

(22)

Proposition 1. Under Condition (C1), for some constants M >
0,0 <k <1/2andany0 < y < 1/2 — k, we have

|&p© — @pl = Mn™*)

< O(plexp(—Cn' 2*+1)) + nexp(—Cn?)]).  (23)

It is easy to see that GDCS and DCS has the same theoret-
ical properties. However, DCS requires the additional moment
condition in Condition (C1) to achieve such results. When data
are heavy-tailed and (C1) does not hold, there is no longer any
theoretical guarantee for DCS. In contrast, with coordinatewise
Gaussianization, GDCS does not rely on any moment condi-
tions.

Now we show the SURE screening properties of GDCS when
we fix d,,. For a generic set A, denote A 4 = minge 4 wx —
max;. 4c w. We consider the following condition:

(C2) Thereexists Sandc > 0,0 <k < 1/2,suchthatD Cc S

and Ag > cn™¥.

Theorem 8. Define Zs(dn) = {k : & is among the d,,’th largest}.
Under Condition (C2), for any d, > |S],0 <y < 1/2 — k, we
have

Pr(D C D(d,)) > 1— Cplexp(—Cn' 726+ 4 nexp(—Cn?)].
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Condition (C2) is very similar to the common assumption
in screening literature that assumes a gap between the marginal
signals of true predictors and those of noise predictors (Mai and
Zou 2015a). Note that GDCS does not require Condition (C1)
to enjoy the sure screening property. In the literature, popular
choices of d,, are n or c[n/logn], c = 1 or 2.

As suggested by referees, we compare the theoretical prop-
erties for GDCS with the Uniform-transformed distance corre-
lation screening (UDCS; Székely and Rizzo 2009; Zhong et al.
2016; Chen, Chen, and Wang 2018). UDCS first transforms the
variables by the empirical CDFs so that they are roughly uni-
formly distributed, and then computes the distance correlation
on the transformed data. The uniform transformation serves
a similar purpose to the Gaussianization. It removes moment
conditions and improves robustness against heavy tails. As a
result, UDCS has the same SURE screening property as GDCS.!

However, there are some noticeable differences between
UDCS and GDCS. For example, in Section 5.1.3 we test the
performance of UDCS and NS-DCS under a wide range of
models, and GDCS outperforms UDCS empirically. On the
other hand, as shown in Lemma 3, the Gaussianized distance
correlation is a monotone function of the Pearson correlation
when data is jointly normal. This is a desirable property as the
Pearson correlation is a well accepted dependence measurement
for normal data. However, it is unclear if UDCS can be
interpreted in the same way for normal data.

5. Numerical Studies
5.1. Simulations

5.1.1. The Gaussian Copula Model

We illustrate our results for semiparametric graphical lasso by
numerical studies. Following Xue and Zou (2012), in all the
simulated studies we let p = 100, n = 300. Consider the model
T(X) ~ N(0,X). We are interested in ® = X' We first
generated V. ~ N(0, X) and then transformed X = T-1(V),
where T~! = (g1,...,85.81,.,85-..). The selection of g/s
are as follows:

21(0) = x, (%) = sign(x)/|x], g3(x) = D (x),

(24)
ga(x) = x°, g5(x) = exp(x)

Model G1: 6;; = 1fori=1,...
i=1,...,3and 6; = 0 otherwise.

Model G2: 0;; = 1fori = 1,...,p, 62i2i—1 = 62i—12i = 0.5
fori=1,...,4and 6; = 0 otherwise.

We estimate these two models with the following methods
for comparison: (i) Oracle: The oracle graphical lasso with
oracle information on T; (ii) Raw: Graphical lasso on the raw
data; (iii) Normal score (NS): The normal score estimator; (iv)
Winsorized: The Winsorized estimator with §,, = % Our results
are based on 500 replicates. The average receiver operating
characteristic (ROC) curves are plotted in Figure 1. We only plot
the results for the NS estimator and the Raw estimator, because
the Oracle estimator and the Winsorized estimator are almost

s P> Oiiv1 = Biy1,; = 0.5 for

To be rigorous, Zhong et al. (2016) proposed to only transform the response
Y, and thus, moment conditions are still imposed on X. But such moment
conditions should be easy to avoid if X is transformed as well.
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Figure 1. Receiver operating characteristic (ROC) curves for Models G1 & G2; x-axis: false positive rate (FPR), y-axis: true positive rate (TPR). The Oracle estimator and the
Winsorized estimator are omitted because they are almost identical to the NS estimator.

identical to the NS estimator. The Raw method, on the other
hand, is notably different from the other three estimators. Such
results are expected based on our theoretical studies.

5.1.2. Nearest Shrunken Centroids Classifier

We present simulation results for normal score transformation
in nearest shrunken centroids classifier. In all the simulations,
we set n = 200,p = 2000,d = 10, where d is the number
of important predictors. We considered the six models, the first
five of which take the form that X = p, + € if Y = y. Without
loss of generality, we fix w; = 0 in all models.

Model N1: € ~ N(0,1) and p, o (14,0, 4). The scale of u,
is chosen such that the Bayes error is 10%.

Model N2: Each entry ¢; is an independent #3 random vari-
able and p, = (14,0,_4).

Model N3: Each entry ¢ is an independent standard Cauchy
random variable and u, = 2 - (14,05_4).

Model N4: Each entry ¢; is an independent Weibull random
variable with both the shape and scale parameters equal to 1,
and p, = 0.5 (14,0,—4).

Model N5: € ~ N(0, X), where ¥ = AR(0.5), and p,
(14,05_4). The scale of u, is chosen such that the Bayes error is
10%.

Model N6: For D = {1,...,d}, Vp | Y = y ~
N(pp,y, Xp), where Tp = AR(0.5), up; = O, pupy X 14
The scale of u, is chosen such that the Bayes error is 10%. Then
Vpe L Vop. For all the odd numbers j € D€, V; ~ N(0,1)
independently; for all the even numbers j € DE, Vi = §;Vj-1,
where §; is an independent Bernoulli random variable with the
parameter 0.5. X = exp(2V).

We considered nearest shrunken centroids classifier on
T(X), X, T(X) and the Winsorized data T™ (X), yielding the
oracle-NSC, raw-NSC, NS-NSC and Wins-NSC, respectively.
Tuning parameters are chosen to minimize the 10-fold cross-

validation classification errors. The testing classification errors,
the false negatives and the false positives are presented in
Table 1. Across all models, NS-NSC have classification errors
close to the oracle method, which supports Theorems 1 and 6.
In Models N1 & N5, all the predictors are sub-Gaussian, and all
methods perform similarly. However, in Models N2, N3 & N6,
the predictors are heavy-tailed. Raw-NSC has high classification
errors because the centroids cannot be estimated accurately.
In Model N4, the predictors are heavily skewed, and NS-NSC
and Wins-NSC outperform raw-NSC in prediction and variable
selection. Also note that Models N5 & N6 are not ICIM models,
but coordinatewise Gaussianization is still beneficial when data
are heavy-tailed in Model Né6.

5.1.3. Distance Correlation Screening

We denote GDCS via normal score estimator as NS-DCS, and
GDCS via Winsorized estimator as Wins-DCS. We compare
them with the original DCS (Li, Zhong, and Zhu 2012) and
UDCS that combines the uniform transformation with DCS.
We also compare our methods with many additional screening
methods, but these results are relegated to the supplementary
materials for the sake of space.

We repeat each experiment 200 times and assess the perfor-
mance under the following criteria adopted by Li, Zhong, and
Zhu (2012). (1). M: the minimum model size to include all
the true variables. We report the 5%, 25%, 50%, 75%, and 95%
quantiles of M out of 200 replications. (2). P,: the proportion
that all true variables are selected for a given model size d in the
200 replications.

We present the simulation results of P, with d = 2[n/ log n].
We also tried d = [n/logn] with quite similar outcomes and
hence, omit such results here for the sake of space. The simula-
tion results for Model D1-D6 are summarized in Table 2. The
response in this section is univariate unless otherwise specified.



Table 1. Simulation results for nearest shrunken centroids classifier.

Oracle Raw NS-NSC Wins-NSC
Model N1
Error(%) 129  (0.13) 12,6 (0.11) 13.0 (0.10) 13.2 (0.13)
FN 0 (0) 0 (0) 0 (0) 0 (0)
FP 19 (1.3) 19 (1.5) 21 (1.7) 19 (1.5)
Model N2
Error(%) 171 (0.11) 219 (0.17) 16.8  (0.10) 17.0 (0.11)
FN 0 (0.0) 0 (0) 0 (0) 0 (0)
FP 22 (1.5) 23 (1.2) 225 (1.4) 23 (1.2)
Model N3
Error(%) 13.6  (0.08) 49.6 (0.06) 13.6  (0.11) 13.8  (0.11)
FN 0 (0) 7 (0.5) 0 (0) 0 0
FP 235 (2.1 384.5 (42.1) 25 (2.1) 24 (2.1)
Model N4
Error(%) 15.9 (0.14) 31.6 (0.22) 154  (0.12) 15.7  (0.14)
FN 0 (0) 1 (0) 0 (0) 0 (0)
FP 24 (1.8) 48.5 4.1) 24 (1.2) 24 (1.2)
Model N5
Error(%) 123 (0.03) 12.2 (0.03) 123 (0.03) 123 (0.03)
FN 0 (0) 0 (0) 0 (0) 0 (0)
FP 18 (1.9) 21 (3.8) 13 (2.2) 17 (2.7)
Model N6
Error(%) 1.1 (0.02) 25.7 (0.23) 1.3 (0.04) 1.3 (0.03)
FN 0 (0) 0 (0.1) 0 (0) 0 (0)
FP 13 (2.8) 7.5 (2.5) 14 (2.3) 15 (1.9)

NOTE: All the numbers are medians based on 500 replicates. The standard errors are
in parentheses.

Note that during the computation of GDCS in Model D5, the
categorical response is not transformed.

Model D1: This example is adopted from Li, Zhong, and Zhu
(2012). We generate X = (X1,X,... ,Xp)T from multivariate
normal distribution with zero mean and covariance matrix ¥ =
(0ij)pxp> and the error term € from standard normal distribu-
tion. Here, we consider oj; = 0.5/, The sample size # is set to
be 200, the dimension p is 2000. The response is generated from
the following four submodels:

Y =1 X1+ B2Xs +c3831(X12 < 0) + c4BeXn + 6,

(25)
Y =capiXiXo + c3821(X12 < 0) + caf3 X2 + 6, (26)
Y =ap1XiXo + c36:1(X12 < 0)Xp2 + 6, (27)

Y =181 X1 + 282X0 + c3B31(X12 < 0) + exp{cs|Xa2l}e,
(28)

where 1(-) is an indicator function. The regression functions
E(Y|X) in (25)-(28) are all nonlinear in X;,. Moreover, (26)
and (27) contain interaction terms, and (28) is heteroscedastic.
Following Fan and Lv (2008), we set (c1, ¢2, ¢3,c4) = (2,0.5,3,2)
and choose g; = (-DY%@ + |Z]) forj = 1,...,4, where
a = 4logn/\/n, U ~ Bernoulli(0.4) and Z ~ N(0,1).
Especially, the parameters (B, B2, 03, B4) we generated is
(—3.9,1.8,—2.4, —2.3).

Model D2: (Heavy-tailed single index regression model). As
in Mai and Zou (2015a), we consider

Y=X+X+1D+e, (29)

where X’s independently follow the Cauchy distribution and
€ following N(0,1) is independent of covariates. We let n =
200, p = 5000.

Model D3: (Additive model). Case 1: Following Meier, Van de
Geer, and Bithlmann (2009) and Cui, Li, and Zhong (2015), we
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define the following four functions: fi (x) = —sin(2x), f2(x) =
x* —25/12, f3(x) = x, fa(x) = e * —2/5-sinh(5/2). Then
we consider the following additive model

Y =3(X1) + £(X2) — 1.5/3(X3) + fa(Xy) + ¢, (30)

where the predictors are generated independently from
Unif(—2.5,2.5). To examine the robustness of each screening
approach, we consider two cases for the error term e: (1)
€ ~N(0,1); (2) € ~ t(1).

Case 2: This nonlinear additive model has been analyzed in
Meier, Van de Geer, and Bithlmann (2009) and Fan, Feng, and
Song (2011). Let g1(x) = x, g2(x) = (2x — 1), ;3(x) =
sin2rx)/(2 — sin(2wx)), and g4(x) = 0.1sin(2mwx) +
0.2 cos(2mx) + 0.3 sin® (27 x) + 0.4 cos®> 27 x) + 0.5 sin’ (27 x).
The following model is studied:

Y = 551(X1) + 392(X2) + 493(X3) + 694(Xa) + V' 1.74¢, (31)

where the covariates are independently simulated according to
Unif(0, 1), and € is independent of the covariates and follows
the standard normal distribution. We let (n,p) = (200, 2000)
for Case 1 and (400, 1000) for Case 2.

Model D4: (Heteroscedastic regression model; Zhu et al.
(2011)). The predictor vector (X1, Xp,---,Xp) is generated in
the same way as that in Model D1, the error term € ~ N(0, 1),
and (n,p) = (200,2000). The response is generated from the
following model:

Y = X7140.8X,4-0.6X35+40.4X440.2X54-exp(Xp0+X21+X22) €.
(32)
Model D5: (Discriminant analysis model; Cui, Li, and Zhong
(2015)): We generate Y; € {1,2,...,R} from two different
distributions: (i) balanced, a discrete uniform distribution with
P(Y; = r) = 1/Rforevery 1 < r < R; (ii) unbalanced,
the sequence of probabilities is an arithmetic progression with
maxj<,<p Pr = 2min;<,<g p,. For example, Y is binary when
R = 2and p; = 1/3,p» = 2/3. Given Y; = r, the ith
predictor X; is generated by letting X; = u, + €;, where u, =
,...,0,3,0,...,0) is a p-dimensional vector with rth compo-
nent being 3 but others being all zero, and € = (€j1,...,¢€j)
is a p-dimensional error term. We consider three cases of the
error term: (1) € ~ N(0,1); (2) €5 ~ t(2); (3) € ~ (1)
independently for every j = 1,...,p. We consider (R,n,p) =
(10,200, 2000), corresponding to a 10-categorical response case.
Because a value of the response Y is a nominal number in this
case, to apply DCS and GDCS for this problem, we transfer
the 10-categorical response to nine dummy binary variables
according to Cui, Li, and Zhong (2015), which are together
considered as a new multiple response. The active predictors are
X1,X5,...,X10-
Model D6 (The Box-Cox transformation model; (Li et al.
2012)):
H(Y)=XB+¢, (33)
In the simulations, we consider the Box-Cox transformation:

[Y[*sgn(Y) — 1
A
H(Y) =logY,when A = 0.

H(Y) = ,when % = 0.25,0.5,0.75, 1;
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Table 2. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size M out of 200 replications for Model D1-D6, and the proportion of P4 with model size

d = 2[n/logn].

M Pa M Pg

Model Method 5% 25%  50% 75% @ 95% Model Method 5% 25% 50% 75% 95%
D1 (25) DCS 4.0 4.0 4.0 6.0 242 0.98 D2 DCS 18.0 69.8 212.0 740.5 22852 0.26
[4] ubCS 4.0 4.0 5.0 6.0 444 097 [2] uDcCs 2.0 2.0 2.0 2.0 2.0 1.00
NS-DCS 4.0 4.0 4.0 6.0 283 0.98 NS-DCS 2.0 2.0 20 2.0 2.0 1.00
Wins-DCS 4.0 4.0 4.0 6.0 283 0.98 Wins-DCS 2.0 2.0 20 2.0 2.0 1.00
(26) DCS 4.0 5.0 70 110 386 0.98 D3 Case 1: DCS 10.0 28.0 53.0 922 1986 0.65
ubcCs 6.0 120 240 50.2 152.6 0.85 [4] e ~N(,1) UDCS 11.0 29.8 54.0 940 211.0 0.66
NS-DCS 4.0 6.0 9.0 15.2 523 0.97 NS-DCS 5.0 13.0 235 46.2 108.3 0.90
Wins-DCS 4.0 6.0 9.0 15.2 523 0.97 Wins-DCS 5.0 13.0 24.0 47.0 106.2 0.90
(27) DCS 189 79.0 2115 4732 12745 0.25 Case 1: DCS 28.0 955 2340 427.0 10718 0.19
ubCs 229 88.2 2175 4268 9760 0.18 €~ t(1) uDcCs 21.0 795 137.0 2082 4034 0.23
NS-DCS 229 73.8 1675 3658 1099.4 0.25 NS-DCS 11.0 438 79.0 143.2 3615 048
Wins-DCS  22.0 745 166.0 363.2 1085.1 0.25 Wins-DCS 10.0 43.0 77.5 1422 367.7 048
(28) DCS 4.0 70 195 795 4003 0.73 Case 2 DCS 6.0 15.0 36.0 95.5 262.0 0.80
ubCs 34.9 1105 2115 3852 7486 0.15 uDCsS 6.0 17.8 39.0 100.8 294.1 0.80
NS-DCS 7.0 200 395 882 256.1 0.71 NS-DCS 5.0 8.8 20.0 56.0 2153 0.89
Wins-DCS 7.0 190 370 81.0 2481 0.73 Wins-DCS 5.0 8.8 20.0 56.0 2105 0.90
D4 DCS 26.0 193.8 413.0 7588 13939 0.13 D5 e ~N(,1): DCS 10.0 10.0 10.0 10.0 13.1 1.00
[8] ubcCs 14.0 23.0 40.5 1080 5719 0.66 [10] Balanced uDCs 10.0 10.0 11.0 20.2 96.1 0.93
NS-DCS 9.0 130 235 958 6012 0.72 NS-DCS 10.0 10.0 10.0 11.0 311 098
Wins-DCS 9.0 130 235 960 6000 0.71 Wins-DCS 10.0 10.0 10.0 11.0 28.0 0.98
D6 A=0 DCS 192.6 4685 836.0 1250.5 1748.7 0.00 € ~N(0,1): DCS 10.0 10.0 12.0 285 3221 0.85
[3] ubcCs 5.0 198 88.0 2678 7137 033 Unbalanced UDCS 11.0 20.0 605 203.8 8285 0.5
NS-DCS 4.0 140 555 179.8 580.8 038 NS-DCS 10.0 12.0 25.0 86.2 5669 0.72
Wins-DCS 4.0 140 555 1740 580.9 0.40 Wins-DCS  10.0 12.0 24.0 828 5452 0.73
2=0.25 DCS 11.0 69.0 173.0 4340 1001.1 0.16 € ~t(2): DCS 10.0 11.0 16.0 438 251.1 0.79
ubcCs 6.0 250 920 3042 8993 0.30 Balanced uDCs 11.0 16.0 33.0 842 3334 0.72
NS-DCS 4.0 188 665 2432 7034 037 NS-DCS 10.0 12.0 22.0 742 2664 0.75
Wins-DCS 4.0 170 65.0 2420 6918 037 Wins-DCS 10.0 120 21.0 708 262.1 0.76
A=0.5 DCS 4.0 148 56.0 183.0 7593 041 € ~t(2): DCS 15.0 378 1545 3312 10334 036
uDbCS 5.0 240 1015 2782 7874 030 Unbalanced UDCS 229 65.5 201.0 4292 901.2 0.29
NS-DCS 4.0 140 715 2040 598.7 034 NS-DCS 19.9 60.8 181.5 4040 9819 0.30
Wins-DCS 4.0 140 705 196.8 5615 034 Wins-DCS 19.9 59.8 177.0 4005 9735 0.30
A=0.75 DCS 3.0 100 420 1782 5140 043 €~ t(1): DCS 3739 11942 17040 1905.2 19873 0.01
ubcs 4.0 198 86,5 3202 699.2 030 Balanced uDCs 29.0 858 201.0 3825 1045.0 0.21
NS-DCS 4.0 150 625 2348 5965 0.38 NS-DCS 24.0 76.0 198.0 3995 1024.0 0.25
Wins-DCS 4.0 148 615 236.2 5519 039 Wins-DCS  23.0 74.8 198.5 398.2 10189 0.25
A=1 DCS 3.0 148 515 1640 4959 039 e ~t(1): DCS 540.8 1300.2 1700.5 1911.2 1981.1 0.00
ubCS 4.0 240 845 3052 7450 029 Unbalanced UDCS 60.0 200.8 3975 8422 14239 0.10
NS-DCS 4.0 178 64.0 200.2 5226 036 NS-DCS 479 189.8 3835 837.0 14722 0.1
Wins-DCS 4.0 16,0 63.0 2020 507.2 036 Wins-DCS 469 1895 3815 8285 1470.2 0.11

NOTE: The numbers in the brackets are the true numbers of variables.

The predictor (X1, X5, . ..,X,) is generated from a multivariate
normal distribution N(0, X), where £ = (0jj),xp has entries
oi = 1,i=1,...,pand 0j; = 0.5,i # j. The noise € follows
the standard normal distribution, 8 = (3,1.5,2,0,...,0)T,n =
70, p = 2000.

In all the models, GDCS is either comparable to or signifi-
cantly better than UDCS, although UDCS can outperform DCS
when heavy tails are present. For Model D1, in all cases, GDCS
behaves comparably with DCS and better than UDCS. In the
presence of nonlinearity and heavy-tailed data in Model D2,
DCS has much more false discoveries than GDCS and UDCS,
where the latter two are comparable. The variable transforma-
tion approach with DC can handle the issue of heavy-tailed
data well. For Models D3-D6, GDCS is consistently promising
and robust with the best results. In Model D6, it can also be
inferred from the results that GDCS has invariance property
under monotonic transformation. The little difference across
different A is due to different random errors generated for mod-
els. When the model deviates from a linear model and Y from
normal (A decreases from one), the performance of DCS quickly
deteriorates due to the existence of the nonlinearity and heavy-

tailed response. See Figure S1 in the supplementary materials
for a visual demonstration.

5.2. AReal Dataset Example

We demonstrate the application of NS-NSC with the malaria
dataset (Ockenhouse et al. 2006). This dataset contains mea-
surements of 22,283 gene expressions of 71 human subjects.
Twenty-two of the human subjects are healthy, and the rest
have malaria. Prior knowledge is available on some of the genes
collected in this dataset. For example, the gene IRF1 was known
to be related to the immune response of human. Fan and Fan
(2008) proposed to rank the importance of the genes by the
absolute values of their ¢-statistics. On the original dataset, the
gene IRF1 is ranked as the 125th most important gene by ¢-
statistics ranking. It is also ranked as the 497th most important
gene by DCS ranking. With the normal score transformation,
IRF1 is recognized as the second most important gene by both
methods. This suggests that the normal score transformation
gives a more meaningful ranking.

To further investigate the effect of normal score transforma-
tion, we randomly split the dataset in a balanced manner with a



Table 3. The average error rates (%) using RF or LDA combined with different
screening methods in 100 randomly split malaria data, with their standard errors
shown in parentheses.

Methods DCS  NS-DCS Win-DCS Methods ~ DCS NS-DCS  Win-DCS

RF 5.3(0.40) 3.8 (0.32) 4.3 (0.36) LDA 15.1(0.76) 10.2 (0.57) 11.6 (0.69)

1:1 ratio into training and testing datasets. We fit classifiers on
the training set and evaluate the testing error on the testing set.
On the raw dataset, NSC has an error rate of 8.6%, with a stan-
dard error of 1.37%. If we apply the normal score transformation
or Winsorized transformation, both NS-NSC and Wins-NSC
lower the error rate to 5.7% with standard errors of 0.70% and
0.20%, respectively. Paired t-test indicate that the improvement
is significant, with p-values less than 107%.

In addition, we include the DCS, NS-DCS, Wins-DCS to
carry out the classification for comparison. Again, we randomly
split the dataset in the same way aforementioned, and apply
each screening method to the training set to select top d =
2[Mirain/ 10g Nirain] genes, where #rain is the training sample
size. Then, we fit a random forest (RF) or a linear discriminant
analysis (LDA) model using selected features to do classification
and make prediction in the testing set. The above procedure
is repeated 100 times. The average error rates are reported in
Table 3. Paired t-tests indicate that the improvement of error
rate obtained by fitting a RF or LDA model after coordinatewise
Gaussianization in the screening stage is significant, with all p-
values less than 1073, Tt is also not surprising that DCS cannot
identify the gene IRF1 in those 100 trials while NS-DCS and
Wins-DCS select IRF1 for 66 and 60 times, respectively.

6. Discussion

In this article, we establish the uniform convergence of coordi-
n

natewise Gaussianization as long as logp = o(@). This result
is independent of any downstream statistical method to be used
after the variable transformation. We have also provided three
concrete statistical methods to show that when the theoretical
normal transformation is helpful, coordinatewise Gaussianiza-
tion achieves similar performance.

We have considered two methods for coordinatewise Gaus-
sianization: the NS estimator and the Winsorized estimator. The
two methods have identical theoretical properties in ultra-high
dimensions. Throughout our numerical studies, their perfor-
mance also exhibits minimal difference. Hence, if one wishes
to perform coordinatewise Gaussianization in practice, either
of them is expected to achieve the goal. However, we note
that the NS estimator has a much longer history and is more
widely applied in many areas such as statistics, biostatistics,
education and econometrics. In comparison, the Winsorized
estimator was more recently proposed mainly for theoretical
studies. Therefore, if there is no strong reason to prefer the
Winsorized estimator in the problem at hand, the NS estimator
may be more coherent with studies in the past.

We emphasize again that coordinatewise Gaussianization
should be avoided when the theoretical normal transformation
does not help or even harm the downstream statistical method.
For example, popular tree-building algorithms are invariant
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under monotone transformations, and coordinatewise Gaus-
sianization does not have any effect in these tree-based methods
and ensemble-trees learning. On the other hand, methods that
rely on marginal distribution of the variables usually should not
be combined with the coordinatewise Gaussianization, because
all of them have the same distribution after the transformation.

Based on the above counter-examples, we recommend the
following procedure for using coordinatewise Gaussianization
in applications. We should always do a careful analysis of the
downstream method on the theoretically transformed data to
see if the transformation provides any benefit. Only after get-
ting an affirmative conclusion, we then carry out coordinate-
wise Gaussianization and proceed with the intended statistical
method.

Supplementary Materials

For the sake of space, all the technical proofs and additional simulation
results are relegated to the supplementary file.
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