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ABSTRACT
In statistical analysis, researchers often perform coordinatewise Gaussianization such that each variable is
marginally normal. The normal score transformation is a method for coordinatewise Gaussianization and is
widely used in statistics, econometrics, genetics and other areas. However, few studies exist on the theo-
retical properties of the normal score transformation, especially in high-dimensional problems where the
dimension p diverges with the sample size n. In this article, we show that the normal score transformation
uniformly converges to its population counterpart evenwhen log p = o (n/ log n). Our result can justify the
normal score transformation prior to any downstream statistical method to which the theoretical normal
transformation is beneficial. The same results are established for the Winsorized normal transformation,
another popular choice for coordinatewiseGaussianization.Wedemonstrate thebenefits of coordinatewise
Gaussianization by studying its applications to the Gaussian copula model, the nearest shrunken centroids
classifier and distance correlation. The benefits are clearly shown in theory and supported by numerical
studies. Moreover, we also point out scenarios where coordinatewise Gaussinization does not help and
even causes damages. We offer a general recommendation on how to use coordinatewise Gaussianization
in applications. Supplementary materials for this article are available online.
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1. Introduction

In statistical analysis, researchers often perform coordinatewise
Gaussianization such that each variable is marginally normal.
The Gaussianization benefits subsequent analysis in two ways.
On the one hand, there is a rich literature on statistical mod-
els developed under normality assumptions. Guassianization
allows us to borrow the strengths of these works. On the other
hand, normal variables have sub-Gaussian tails. A large num-
ber of high-dimensional methods require variables to be sub-
Gaussian in order to succeed in ultra-high dimensions, while
heavy tails often negatively impact the performance of these
methods. With coordinatewise Gaussianization, these methods
can be readily applied.

We are interested in two closely related and popular methods
for coordinatewise Gaussianization; namely, the normal score
(NS) estimator and the Winsorized estimator. Consider X =
(X1, . . . ,Xp), where Xj ∈ R for j = 1, . . . , p. Recall that, for
any continuous Xj, we have

Tj(Xj) = �−1 ◦ Fj(Xj) ∼ N(0, 1), (1)

where � is the cumulative distribution function (CDF) for the
standard normal random variable, and Fj is the CDF for Xj.
Hence, if we knew Fj and hence, �−1 ◦ Fj, we could transform
our data to be marginally normal according to (1). However, in
practice Fj is generally not available. Consider n independent
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copies of X, Xi, i = 1, . . . , n and let F̂j be the empirical CDF for
Xj. The NS estimator and the Winsorized estimator are defined
as follows:

• The NS estimator:

T̂(ns)
j = �−1 ◦ (

n
n + 1

F̂j); (2)

• The Winsorized estimator:

T̂(w)
j = �−1 ◦ F̂(w)

j , (3)

where, with δn > 0 being a small number chosen by the user,

F̂(w)
j (x) =

⎧⎪⎨⎪⎩
δn, if F̂(w)

j (x) ≤ δn;
F̂(w)
j (x), if δn < F̂(w)

j (x) < 1 − δn;
1 − δn, if F̂(w)

j (x) ≥ 1 − δn.
(4)

Note that both estimators shrink F̂j to prevent it from achiev-
ing 0 or 1, because �−1(1) = ∞ and �−1(0) = −∞. These
two intuitive estimators have a long history, and have become
standard tools in statistics, biostatistics, education and behavior
sciences, among other research fields. For example, the widely
used statistical software SAS and SPSS provide built-in functions
to perform the normal score transformation. In education and
psychology, Glass and Hopkins (1996) discussed in their clas-
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sical book the application of the normal score transformation
in removing skewness and kurtosis. In econometrics, Berkowitz
(2001) demonstrated how to construct more powerful tests
through normal score transformation in forecast evaluation.

Moreover, these estimators are among the rare classical
methods that continue to be applicable in high dimensionswith-
out anymodification, at least empirically.Many researchers have
applied the normal score transformation to high-dimensional
data and observed empirical successes. For example, Cai, Li, and
Liu (2016) demonstrated the application of the normal score
transformation in comparing multiple clinical trial endpoints.
In genetics study, Peng et al. (2007) proposed to apply the
normal score transformation before using variance-components
and regression-based methods to map quantitative trait loci.
Other applications in genetics research includeWu et al. (2002),
Anokhin, Heath, and Ralano (2003), Dixon et al. (2007),
Lambregts-Rommelse et al. (2008), Scuteri et al. (2007), Fan
et al. (2013), Wang et al. (2015), and Nansel et al. (2015),
among others. The Winsorized estimator plays an important
role in various high-dimensional statistics methods, such as the
Gaussian copula model (Liu, Lafferty, and Wasserman 2009;
Xue and Zou 2012), semiparametric discriminant analysis (Mai
and Zou 2015c), principal component analysis (Han and Liu
2014) and sufficient dimension reduction (Mai and Zou 2015b).

However, theoretical supports for these estimators in high
dimensions are much weaker. The existing theoretical studies
for the NS estimator in the literature typically focus on the fixed
p, n → ∞ paradigm. See Klaassen andWellner (1997), Serfling
(2009), and Hoff, Niu, and Wellner (2014) for example. The
theoretical properties of the NS estimator in high dimensions
are generally unknown. On the other hand, the Winsorized
estimator is shown to be consistent when p is larger than n, but
p can only grow at a relatively slow rate of n. For example, Liu,
Lafferty, and Wasserman (2009) established the consistency of
the Winsorized estimator when p grows as a polynomial func-
tion of n, while Mai and Zou (2015c) showed the consistency
when log p = o(n1/3−γ ) for any 0 < γ < 1/3. Note that
we often hope a method to handle dimensions at the rate as
close to log p = o(n) as possible. The relatively lower dimension
that can be handled by the Winsorized estimator has led to
the belief that the estimated transformation fundamentally hurt
the data analysis. Consequently, many statisticians have spent
significant amount of efforts in avoiding the transformation of
data in the Gaussian copulamodel, see the rank-based approach
for estimating the graphical model in Liu et al. (2012) and Xue
and Zou (2012). Despite their success for Gaussian graphical
models, the rank-based approach cannot be easily used for other
applications, such as the nearest shrunken centroid classifier and
the distance correlation.

Contrary to current beliefs, we show in this article that
coordinatewise Gaussianization has a minimal effect on
statistical analysis. We conduct a systematic investigation on
the theoretical properties and applications of coordinatewise
Gaussianization achieved by the NS estimator and the Win-
sorized estimator. With careful calculation, we show that both
estimators are consistent under nearly optimal dimensionality,
log p = o(n/ log n). We further study the implications of our
results in several important applications. In many applications,
coordinatewise Gaussianization removes moment conditions to

deliver strong theoretical results. Our major contributions are
listed below:

• We present theoretical results that the two coordinatewise
Gaussianization estimators T̂(ns)

j and T̂(w)
j uniformly con-

verge to Tj over j = 1, . . . , p when log p = o
(

n
log n

)
. Our

result is very general, without any regard to the downstream
method. Also, the theoretical studies are far from trivial from
the technical aspect. Note that our estimators are composites
of the (shrunken) empirical CDF F̂j and �−1. Although it
is known that F̂j converges to Fj uniformly at a fast rate,
�−1 amplifies the estimation error in F̂j. Our proof involves
intensive study on the variability and bias of the estimated
transformations, which may be useful to other theoretical
studies as well.

• We study the statistical properties of several important statis-
tical methods when they are combined with coordinatewise
Gaussianization, including the Gaussian copula model, the
nearest shrunken centroids classifier and distance correlation
screening. The major findings are listed below.

– For Gaussian copula model, we show that graphical
model estimators after coordinatewise Gaussianization
enjoy similar theoretical properties of the rank-based
estimators, which clarifies a misbelief in the literature.
Previous theories only support the use of coordinate
Gaussianization when the dimension is much lower than
that handled by rank-based estimators.

– For the nearest shrunken centroid classifier, our theory
reveals the fundamental impact of tail behavior on the
performance of the classifier. Heavy tails in the input vari-
ables negatively impacts the nearest shrunken centroid
classifier, while light tails can be helpful. In this case,
coordinatewiseGaussianization prior to fitting the nearest
shrunken centroid classifier is shown to eliminate such
negative impact and hence, improves the classification
performance.

– For the distance correlation application, we propose the
Gaussianized distance correlation and its empirical ver-
sion. It is viewed as the distance correlation after coordi-
natewise Gaussianization. The Gaussianized distance cor-
relation is invariant under any monotone transformation,
a property not shared by the distance correlation. Fur-
thermore, when used for variable screening, Gaussianized
distance correlation screening does not require the sub-
Gaussian tail assumptions that are necessary for distance
correlation screening in order to have the sure screening
property. In this sense, coordinatewise Gaussianiza-
tion improves the robustness of distance correlation
screening.

All the above theoretical findings are supported with empir-
ical experiments as well.

• We clarify the applicability of the normal score trans-
formation in high dimensions with several cautionary
examples. Such explanation sheds light on the different
influences of coordinatewise Gaussianization on low-
dimensional and high-dimensional data analysis. We give
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a general recommendation on how to use coordinatewise
Gaussianization in statistical learning.

The rest of this article is organized as follows. In Section 2 we
present the uniform convergence result for the coordinatewise
Gaussianization. Section 3 gives a general guideline for deter-
mining whether coordinatewise Gaussianization is appropriate.
Section 4 contains the applications of our results to the Gaussian
copula model, nearest shrunken centroid classifier and distance
correlation screening. Numerical studies are presented in Sec-
tion 5. We conclude the article with a discussion. For the sake
of space, additional simulations and all the technical proofs are
relegated to the supplementary materials.

2. Uniform Convergence Rates of Coordinatewise
Gaussianization

2.1. The Normal Score Transformation

Throughout the rest of the article, we assume that X is
continuous, because we rarely directly transform discrete
variable to a continuous one. We make no further distri-
butional assumption on X. The collection of the population
coordinatewise Gaussianization transformations is denoted as
T = (T1, . . . ,Tp), where Tj is defined in (1). Similarly, we
let the collection of the normal score estimator be denoted as
T̂(ns) = (T̂(ns)

1 , . . . , T̂(ns)
p ), and the Winsorized estimator be

denoted as T̂(w) = (T̂(w)
1 , . . . , T̂(w)

p ). We use the capital letter C
to denote a generic constant that could vary from line to line.
Recall that the normal score transformation T̂(ns)

j is defined in
(2). We have the following results for T̂(ns)

j .

Theorem 1. There exists a generic positive constantM that does

not dependonnor p such that, for any ε > 0,whenM
log n√

n
< ε,

for each j = 1, . . . , p, we have

Pr(
1
n

n∑
i=1

|T̂(ns)
j (Xi

j) − Tj(Xi
j)| ≥ ε) ≤ C exp(−C

nε2

log n
). (5)

Consequently,

Pr

(
max
j

{
1
n

n∑
i=1

|T̂(ns)
j (Xi

j) − Tj(Xi
j)|

}
≥ ε

)
≤ Cp exp(−C

nε2

log n
).

(6)

Sketch of proof. Theorem 1 can be shown in the following
steps. Denote aj = 1

n
∑n

i=1 |T̂(ns)
j (Xi

j) − Tj(Xi
j)| and T∗

j (x) =
Tj(x)1(|Tj(x)| ≤ √

2 log n) + sign(Tj(x))
√
2 log n. We have

aj ≤ bj + ej, where

bj = 1
n

n∑
i=1

|T̂(ns)
j (Xi

j) − T∗
j (Xi

j)|, ej = 1
n

n∑
i=1

|T∗
j (Xi

j) − Tj(Xi
j)|.

(7)

Therefore, it suffices to provide bounds for bj and ej. It can
be shown that bj is a function with bounded differences, so
we use McDiarmid’s inequality (McDiarmid 1989) to provide

a bound on bj. Meanwhile, ej is an average of independent
variables closely related to the normal distribution. Hence, we
use properties of the normal distribution to provide a bound for
ej. Combine the bounds for bj and ej and we have (5). Then we
use the union bound argument to show (6).

Theorem 1 is virtually free of assumptions and is thus, widely
applicable. Moreover, Theorem 1 provides bounds on the aver-
age estimation error of T̂(ns)

j over all the Xi
j ’s. Such bounds

guarantee that T̂(ns)(X) is overall an accurate approximation of
T(X), which can be used to show the consistency of the follow-
up analysis. See Section 4 for details. Purely for interpretation
purposes, we translate Theorem 1 to an asymptotic result in the
following corollary.

Corollary 1. If log p = o
(

n
log n

)
and n → ∞, we have

maxj=1,...,p

{
1
n

∑n
i=1 |T̂(ns)

j (Xi
j) − Tj(Xi

j)|
}

= oP(1).

Corollary 1 confirms the consistency of the normal score
transformation when log p = o( n

log n ). When the normal score
transformation is used, the practitioner wishes to treat the com-
puted T̂(ns)(X) as the theoretically normal variables T(X). The-
orem 1 and Corollary 1 show that there is a very small difference
between the actual data to be used for the downstream statistical
method and the theoretically desired data, as long as the dimen-
sion does not grow faster than an exponential rate relative to the
sample size.

Remark 1. In addition to the transformation in (2), a fam-
ily of its variants are widely applied as well. For a constant
c ≥ 0, one could also consider the transformation T̂c

j (x) =
�−1( n

n−2c+1 (̂Fj(x) − c
n
)).

Popular choices of c include 0, 1/3, 3/8, 1/2 (Van der Waerden
1952; Blom 1958; Tukey 1962; Bliss 1967). When c = 0,
we recover the transformation in (2). It has been observed in
practice that the choice of c does not have a noticeable impact
on the analysis (Beasley, Erickson, andAllison 2009). Indeed, we
can rigorously prove that all these choices of c have theoretical
results similar to those in Theorem 1 and Corollary 1. For
simplicity, the readers may focus on c = 0 case to understand
our results.

2.2. TheWinsorized Estimator

Now we turn to the Winsorized estimator. First we need to
choose the Winsorization parameter δn in (4). This choice can
be viewed as a parameter for variance-bias tradeoff. Larger δn
introduces larger bias, while smaller δn inflates the variance. It is
important to use a proper δn in theory. We consider the choice
of δn = 1/n, the reason for which will be discussed after we
present the theoretical results.

Theorem 2. There exists a generic positive constantM that does

not dependonnor p such that, for any ε > 0,whenM
log n√

n
< ε,
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for each j = 1, . . . , p, we have

Pr(
1
n

n∑
i=1

|T̂(w)
j (Xi

j) − Tj(Xi
j)| ≥ ε) ≤ C exp(−C

nε2

log n
). (8)

Consequently,

Pr

(
max
j

{
1
n

n∑
i=1

|T̂(w)
j (Xi

j) − Tj(Xi
j)|

}
≥ ε

)
≤ Cp exp(−C

nε2

log n
).

(9)

We again rewrite Theorem 2 into asymptotic results purely
for interpretation purposes.

Corollary 2. If log p = o
(

n
log n

)
and n → ∞, we have

maxj=1,...,p

{
1
n

∑n
i=1 |T̂(w)

j (Xi
j) − Tj(Xi

j)|
}

= oP(1).

Remark 2. It can be seen that that theWinsorized estimator has
the same theoretical properties as the normal score estimator.
The Winsorized estimator can also handle dimensionality of

log p = o
(

n
log n

)
. We further note that the fast convergence

of the Winsorized estimator is closely related to our choice
of δn. Liu, Lafferty, and Wasserman (2009) considered a
smaller δn and showed the polynomial rate, while Mai and
Zou (2015c) used a larger δn and the rate is shown to be
log p = o(n1/3−γ ). Our choice of δn = 1/n has a higher
convergence rate than both of them, because it strikes a good
balance between the variance and bias. Also, our proof is
fundamentally different from Liu, Lafferty, and Wasserman
(2009) andMai and Zou (2015c). These two papers partition the
real line into several nonoverlapping line segmentsA1, . . . ,AR.
Because

1
n

∑n
i=1 |T̂(w)

j (Xi
j) − Tj(Xi

j)| ≤ 1
n

∑R
r=1 #{Xi

j ∈
Ar} supx∈Ar |T̂j(x) − Tj(x)|, their proofs reduce to finding
bounds for #{Xi

j ∈ Ar} and supx∈Ar |T̂j(x) − Tj(x)|. However,
within Ar , likely many |T̂(w)

j (Xi
j) − Tj(Xi

j)| are much smaller
than supx∈Ar |T̂j(x) − Tj(x)|, and the resulting upper bound
may be loose. In contrast, our Corollary 2 is proved by showing
that the Winsorized estimator is close to the NS estimator, the
properties of which are obtained in Theorem 1. As can be seen
in the sketch of proof for Theorem 1, we never consider the
supreme of the estimation error over line segments. We instead
leverage the stability of theNS estimator (i.e., bj having bounded
difference) to obtain a sharper rate.

Remark 3. Because the normal score estimator and the Win-
sorized estimator have the same theoretical properties, in what
follows we only discuss the application for the normal score
estimator for ease of presentation. But all the results hold for the
Winsorized estimator as well. We also suppress the superscripts
(ns) or (w) to avoid proliferation of notation.

3. Applicability of Coordinatewise Gaussianization

Coordinatewise Gaussianization is only the first step of the
data analysis. The end results also depend on the downstream

statistical method. Since T̂(X) is close to T(X), one could deter-
mine the applicability of the normal score transformation by
investigating if the analysis is appropriate on T(X). If it is easier
to analyze T(X) thanX or the statistical analysis becomes easier
with T(X) than X, then the normal score transformation is
helpful and can be applied. In many applications, it is indeed
beneficial to perform analysis on T(X). For example, in the
Gaussian copulamodel, the conditional independence structure
of T(X) can be fully characterized by the precision matrix. It is
easier to work onT(X) thanXwithout changing the problem. In
nearest shrunken centroid classifier, it is much easier to estimate
the centroids of T(X). In distance correlation screening, the
problem becomes easier on T(X). In these cases, the normal
score transformation often improves the accuracy, because T̂(X)

is a very good approximation of T(X) as justified in Theorem 1.
See Section 4 for rigorous establishment of these statements.

However, there are also scenarios where coordinatewise
Gaussinization does not help and even causes damages. We
discuss two important cases here. First, some methods are
invariant under monotone transformations, and yield exactly
the same results on X and T(X). The large family of tree-based
methods are typical examples of this kind (Hastie, Tibshirani,
and Friedman 2008). When we build trees, we recursively
find points xj and split Xj into two regions Xj ≤ xj and
Xj > xj. Apparently, this is equivalent to splitting Tj(Xj) into
Tj(Xj) ≤ Tj(xj) and Tj(Xj) > Tj(xj). Thus, we do not gain
anything by combining the normal score transformation with
tree-based methods. Second, coordinatewise Gaussinization
forces all the variables to have the same marginal distribution.
Consequently, if a method exploits the difference among
marginal characteristics of variables, it should not be combined
with coordinatewise Gaussinization. For example, Johnstone
and Lu (2009) rank variables by their marginal variance,
and only keep the top ranked ones for principal component
analysis. Apparently, this approach cannot be combined with
coordinatewise Gaussinization, as all variables have variance of
1 afterwards. Another example is the proposal by Jin and Wang
(2016) for high-dimensional clustering. Their method assumes
that important variables have the mixture normal distribution,
while the noise variables are normal. TheKolmogorov–Smirnov
test is used to identify the important variables by checking
for deviation from normality. This method does not work
after coordinatewise Gaussinization because all variables will
be normal after transformation and hence, discarded as noise
features.

The main point here is that one should not use normal
score transformation blindly without thinking about the whole
procedure of statistical analysis from the beginning to the end.
As mentioned before, many statistical methods do benefit from
coordinatewise Gaussianization. We discuss some important
examples of them in the next section.

4. Statistical Learning after the Normal Score
Transformation

4.1. Unsupervised Learning: The Gaussian CopulaModel

4.1.1. Model
Copula models are popular statistical tools for understanding
the dependence among variables. By Sklar (1959), for any
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distribution F on Rp with marginal distribution functions
F1, . . . , Fp, there exists a unique copula, Co : Rp �→ Rp,
such that F(x1, . . . , xp) = Co(F1(x1), . . . , Fp(xp)). The
copula Co is often taken as a summary of the dependence
among X. A particularly interesting copula is the Gaussian
copula. Define �μ,� as the multivariate normal CDF with
parameters μ,�. The Gaussian copula model assumes that,
for any (u1, . . . , up) ∈ [0, 1]p, we have Co(u1, . . . , up) =
�μ,�(�−1(u1), . . . ,�−1(up)).

Because copula models focus on the dependence structure,
the location and the scale of the distribution are generally irrel-
evant. Hence, conventionally it is assumed that μ = 0 and
the diagonal elements of � are all equal to 1. The Gaussian
copula model can also be viewed as a transformation model. If
X follows the Gaussian copula model, then there exist marginal
transformations G = (g1, . . . , gp) such that

G(X) = (g1(X1), . . . , g(Xp)) ∼ N(0,�). (10)

The nonparametric transformation Gmakes the Gaussian cop-
ula model more flexible than the normal model, while the
parametric distribution of G(X) often leads to easy estimation
and interpretation. Many methods have been proposed under
theGaussian copulamodel (Klaassen andWellner 1997; Lin and
Jeon 2003; Chen and Fan 2006; Hoff 2007; Liu, Lafferty, and
Wasserman 2009; Xue and Zou 2012; Liu et al. 2012; Hoff, Niu,
andWellner 2014; Fan, Xue, and Zou 2015; Mai and Zou 2015b,
2015c, Cai and Zhang 2018).

The Gaussian copula model is closely related to the normal
score transformation. It can be shown that, the transformation
G in (10) has to coincide with T = (T1, . . . ,Tp), where Tj =
�−1◦Fj. Therefore, it is straightforward to estimate theGaussian
copula model in two steps: (i) estimateG with the normal score
transformation and (ii) perform normality-based analysis on
the transformed data. Indeed, this was the approach in Klaassen
and Wellner (1997), Serfling (2009) and Hoff, Niu, and Wellner
(2014) in low-dimensional problems. We emphasize though
that the normal score transformation does not require joint
normality on its own. Rather, the joint normality is introduced
by the Gaussian copula model.

4.1.2. Methods
Suppose that X follows the Gaussian copula model in (10).
In graphical learning, our goal is to identify pairs of (Xj,Xk)
that are conditionally independent given all the other variables.
Denote � = �−1. It can be shown that θjk = 0 if and
only if Xj,Xk are conditionally independent given all the other
variables. Therefore, to recover the conditional independence
structure amongX, it suffices to construct a sparse estimator for
the precision matrix �.

In the special case where T is known, (10) reduces to the
Gaussian graphical model on T(X). Many methods have been
proposed for the Gaussian graphical model, including the
neighborhood lasso regression (Meinshausen and Bühlmann
2006), the graphical lasso (Friedman, Hastie, and Tibshirani
2008), SPACE (Peng et al. 2009), the neighborhood Dantzig
selector (Yuan 2010), constrained �1-minimization for inverse
matrix estimation (CLIME; Cai, Liu, and Luo (2011)), the
penalized D-Trace estimator (Zhang and Zou 2014), among
others. When T is unknown, we can first obtain its estimate

T̂, and then apply normality-based methods on T̂(X). We
demonstrate this approach with the graphical lasso, which is
the most popular method for estimating Gaussian graphical
model in practice.

We first describe the method with the oracle information
about T. For any matrix V ∈ Rq1×q2 , define ‖V‖max =
maxi,j |Vij|, ‖V‖∞ = maxi

∑q2
j=1 |Vij|, and ‖V‖1 = maxj

∑q1
i=1

|Vij|. If q1 = q2 = p, Vk ∈ Rp×1 is the kth column of V,
while V(k) ∈ R(p−1)×(p−1) is V excluding the kth row and the
kth column. For any v ∈ Rp, we denote v(k) ∈ Rp−1 as v
excluding vk. Define the oracle covariance estimator that uses
the information of T as �̂

(o) = 1
n

∑n
i=1 T(Xi)(T(Xi))T. We use

λ to denote a positive tuning parameter. The oracle graphical
lasso is defined as follows:

�̂
gl.o = argmin

�
0
{− log det(�) + tr(�̂(o)

�) + λ
∑
i�=j

|θij|}.

Let �̂ be the normal score estimator of �:

�̂ = 1
n

n∑
i=1

T̂(Xi)(T̂(Xi))T. (11)

Then the normal score estimators replace �̂
(o) in the oracle

estimators with �̂. The normal score graphical lasso is defined
as follows:

�̂
gl = argmin

�
0
{− log det(�) + tr(�̂�) + λ

∑
i�=j

|θij|}.

4.1.3. Theories
Our theories for the Gaussian copula model contain two parts.
First, we show that the normal score estimator �̂ converges to
� in an elementwise manner when p grows at an exponential
rate of n. Second, when we combine �̂ with sparse methods, we
obtain consistent estimators of � in ultra-high dimensions.

Theorem 3. Under the Gaussian copula model, there exists
generic constantsM, ε0 that do not depend on n or p such that,

for any 0 < ε < ε0, when M
log n√

n
< ε, we have, for any

j, k = 1, . . . , p,

Pr(|̂σjk − σjk| ≥ ε) ≤ C exp(− Cnε2

log2 n
). (12)

Consequently, Pr(‖�̂ − �‖max ≥ ε) ≤ Cp2 exp
(

− Cnε2

log2 n

)
.

Theorem 3 indicates that ‖�̂ − �‖max = oP(1) as long
as log p = o( n

log2 n ). Theorem 3 is a key step in showing the
consistency of these methods in estimating � later. Now we
present the theoretical properties of the normal score estimators
for �. Define K� = ‖�‖∞,H = � ⊗ � and KH = ‖H−1

AA‖∞.
Define d as the number of nonzero off-diagonal elements in �.
We have the following results.

Theorem 4. Assume
d2 log2 n log p

n
→ 0. If ‖HAAC

(HAA)−1‖∞ < 1 − κ for κ ∈ (0, 1) and
log n

√
log p√
n

� λ <
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1
6(1 + κ/4)K�KHmax{1, (1 + 4/κ)K2

�KH} · 1
d
, then ‖�̂gl −

�‖max = oP(1). The support of �̂
gl exactly recovers that of �

with probability going to 1.

Remark 4. As discussed in Section 1, previously theoretical
studies on the Winsorized estimator for the Gaussian graphical
model can only handle dimensions up to polynomial order (Liu,
Lafferty, and Wasserman 2009) or log p = o(n1/3−γ ) for some
constant γ ∈ (0, 1/3) (Mai and Zou 2015c). Theorem 4 pushes
the dimension limit to log p = O(nγ ) for some constant γ ∈
(0, 1).

Remark 5. The normal score transformation can be combined
with other estimators such as the neighborhoodDantzig selector
and the CLIME estimator. The condition ‖HAAC (HAA)−1‖∞
< 1 − κ is the irrepresentable condition that Ravikumar et al.
(2011) used to study the theoretical properties of the oracle
graphical lasso. This irrepresentable condition is not needed in
the theory if we use the neighborhood Dantzig selector and the
CLIME estimator.WithTheorem3, the convergence rates under
other matrix norms such as Frobenius norm or matrix �1 norm
can be established similarly by using the same arguments in Xue
and Zou (2012).

4.2. Supervised Learning: The Nearest Shrunken Centroids
Classifier

4.2.1. Method and Cautionary Remarks
Supervised learning covers all applications in which we need
to predict an outcome variable (response). Numerous super-
vised learning methods have been developed, such as logistic
regression, nearest neighborhood, neural networks, boosting,
random forest, support vector machines, just to name a few
(Hastie, Tibshirani, and Friedman 2008). The normal score
transformation may be desirable in supervised learning if one
wishes to remove heavy tails in the features. For example, if
we want to use a distance-based classifier, such as the nearest
shrunken centroids classifier (NSC) to be discussed shortly, we
need data to be reasonably light-tailed in order to well estimate
their centroids.

Recall that the application of the normal score transforma-
tion is not universally beneficial in supervised learning. For
example, we discussed in Section 3 that tree-based methods
cannot be improved by the normal score transformation because
they are invariant under monotonemarginal transformations of
X. Hence, the application of the normal score transformation
in supervised learning should be closely tied to the classifier of
interest. An exhaustive study of the normal score transformation
in supervised learning is apparently impossible within the scope
of this manuscript. Instead, we focus on the nearest shrunken
centroids classifier (NSC) (Tibshirani et al. 2002, 2003) as a
demonstration for the potential benefit of the normal score
transformation in supervised learning.

Consider {Y ,X}, where Y ∈ {+1,−1} and X ∈ Rp. Our
goal is to predict Y based on X. Define μ̄j = 1

n
∑n

i=1 Xi
j as the

overall centroid for Xj, sj as the pooled within-class standard
deviation, and μ̃yj = 1

ny
∑

Yi=y Xi
j as the within-class centroid,

where ny is the sample size within Class y. Then d∗
yj = μ̃yj − μ̄j

mysj + s0
estimates the standardized difference between the within-class
centroid and the overall centroid on the j’th predictor, where
my = √

1/ny − 1/n and s0 ≥ 0 is a constant to improve
numeric stability in practice. NSC soft-thresholds d∗

yj by some
user-chosen � > 0 to obtain dyj = sign(d∗

yj)(|d∗
yj| − �)+. Then

the centroids are estimated by the shrunken estimatesμ̂yj =
μ̄j + mysjdyj. A new observation Xnew is classified to Class +1
if and only if

− 2 log
n+
n−

+
p∑

j=1

(Xnew
j − μ̂+j)2

s2j
<

p∑
j=1

(Xnew
j − μ̂−j)2

s2j
,

(13)
where ny are sample sizes of Class y. Note that if dyj = 0,
then μ̂+j = μ̂−j, indicating that Xj is excluded from NSC. In
order to justify this selection schemewe need a statisticalmodel,
to be introduced in Section 4.2.2. Otherwise, NSC selection is
not always consistent and hence, can lead to bias selection and
classification (Mai, Zou, and Yuan 2012).

Apparently, the accuracy of μ̂+, μ̂− is critical to the variable
selection and prediction inNSC.Wewill see later that the behav-
ior of these estimates greatly depends on the tail conditions on
X, and the normal score transformation can be beneficial. To
apply the normal score transformation in NSC, we first obtain
the transformed data T̂(X), and then apply NSC on (Y , T̂(X)).
We refer to this method as NS-NSC. Based on the pseudo
dataset, we obtain η̂y = (̂ηy1, . . . , η̂yp) as the shrunken centroid
of class y. In the transformed space, a feature Xj is important if
and only if η̂+j �= η̂−j.

4.2.2. Theories
To study the statistical properties of NSC and its combination
with the normal score transformation, we consider the follow-
ing invariant contrast in mean or invariant contrast in median
model. We assume that Pr(Y = y) = πy ∈ (0, 1), and within
Class Y = y,

Xj = μyj + εj, (14)

where either εj has mean 0 when Eεj exists or the distribution
of εj is symmetric about 0 when Eεj does not exist. So μyj is
interpreted as either the conditional mean or the conditional
median. We use the acronym ICIM to name the model. The
model in (14) underlines the application of NSC in that the dis-
tribution ofXj only differs in themean across classes (ormedian
when the mean does not exist). We further assume that εj are
independent, because NSC may produce inconsistent variable
selection results when εj are dependent (Mai, Zou, and Yuan
2012). In order to show that the normal score transformation
can help NSC, it only makes sense to have a theoretical setup
where NSC can be a good classifier in principle. Otherwise, the
comparison is meaningless. In the theoretical study of NSC and
NS-NSC we set s0 = 0 because there is no numerical instability
issue in the theoretical analysis.

Under the ICIM model, observations can be classified based
on their distances to the centroids. It is easy to show that only
the variables in D are important for classification, where D =
{j : μ+j �= μ−j}. Denote ηyj = E(Tj(Xj) | Y = y). Note that ηyj
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is always finite because Tj(Xj) is marginally sub-Gaussian. We
have the following invariance result.

Lemma 1. Define D′ = {j : η+j �= η−j}. Then we must have
thatD′ = D.

Lemma 1 indicates that D is invariant under the transfor-
mation of T. This is why we refer to it as the invariant model.
The invariance guarantees that the target setD remains identical
after transformation and hence, on the population level we
can apply the normal score transformation. In other words,
coordinatewise Gaussianization does not change the problem.
Nevertheless, a successful recovery ofD in practice depends on
the accurate estimation ofμy or ηy. The consistent estimation of
μyj typically requires tail conditions on εj, while when data are
heavy-tailed, it is much easier to estimate ηy with the normal
score transformation. We discuss this point in detail in the next
section. First, we present an example to show that NSC can
completely fail while NS-NSC succeeds, which highlights the
importance of the tail behavior of εj critically to the performance
of the original NSC (without any data transformation). Recall
that, NSC selects the set D̂ = {j : μ̂+j �= μ̂−j}.
Lemma 2. If εj are standard Cauchy random variables in the
ICIM model, then for any threshold �, we have Pr(D̂ = D) →
0 as long as d → ∞, p − d → ∞, where d = |D|.

Lemma 2 shows that, if εj follows the Cauchy distribution,
it is impossible to recover D by applying NSC on X directly.
In the next theorem, we further consider the variable selection
consistency of NSC under two different tail conditions on εj. For
simplicity, we assume that the data have been standardized such
that μ̄j = 0, sj = 1 for all j. Define the minimum signal strength
δ > 0 such that minj∈D,y=±1{|μyj|, |ηyj|} ≥ δ. Also recall that
πy = Pr(Y = y).

Theorem 5. Assume that there exists a constant Cπ > 0 such
that πy ≥ Cπ . For any 0 < ρ ≤ 1/2, if ρ

√
nδ ≤ � ≤ (1 −

ρ)
√
nδ, we have that

1. if there exists a positive integer k and a constantM such that
E|εj|l ≤ Ml for all j and l ≤ 2k,

Pr(D̂ = D) ≥ 1 − Cpk2kM2k

(
√
nρδ)2k

− C exp(−Cn). (15)

Consequently, Pr(D̂ = D) → 1 if δ � kp1/(2k)

n1/2
.

2. if there exists σ 2 > 0 such that E exp(tεj) ≤ exp(σ 2t2) for all
t > 0 and j = 1, . . . , p, then

Pr(D̂ = D) ≥ 1− Cp exp(−Cnρ2δ2) − C exp(−Cn). (16)

Consequently, Pr(D̂ = D) → 1 if δ �
√
log p√
n

.

Theorem 5 reveals the effect of the tail behaviors on NSC.
When the predictors are sub-Gaussian, NSC can consistently
select all the important predictors even when log p = o(n)
undermild regularity conditions. However, when the predictors
only have finite kth moments, we are only guaranteed to achieve

variable selection consistency when p grows at a polynomial rate
of the sample size n. Hence, when data are not sub-Gaussian, the
applicability of NSC in high dimensions is limited. This is where
the normal score transformation can provide a great lift.We can
show that, without imposing any tail condition on εjs, NS-NSC
can consistently recover D with an overwhelming probability.
Specifically, write η̂

(o)
yj as the estimated centroid of Tj(Xj)within

Class y given by NSC, and η̂yj as that of T̂j(Xj), where T̂j is the
normal score transformation defined in (2). The estimate η̂

(o)
yj

uses oracle information about Tj, and is hence, only a baseline
for theoretical studies. Define the selected sets by the oracle and
the normal score estimator as D̂(o) and D̂, respectively, where

D̂(o) = {j : η̂(o)
+j �= η̂

(o)
−j }, D̂ = {j : η̂+j �= η̂−j}. (17)

Theorem 6. Assume that there exists a constant Cπ > 0 such
that πy ≥ Cπ . For any 0 < ρ ≤ 1/2, if ρ

√
nδ ≤ � ≤ (1 −

ρ)
√
nδ, we have that

1. for the oracle estimate D̂(o), Pr(D̂(o) = D) ≥ 1 −
Cp exp(−Cnρ2δ2). Consequently, Pr(D̂(o) = D) → 1 if

δ �
√
log p√
n

.

2. for the normal score estimate D̂, Pr(D̂ = D) ≥ 1 −
Cp exp(−Cnρ2δ2/ log n). Consequently, Pr(D̂(o) = D) → 1

if δ �
√
log p log n√

n
.

To see how the influence of the transformations, again con-
sider the case where δ does not change with (n, p). Theorem 6
shows that, when we know the transformation, NS-NSC is con-
sistent if log p = o(n), while if we estimate the transformation,

NS-NSC is consistent if log p = o
(

n
log n

)
. Hence, NS-NSC is

almost optimal up to a factor of log n. Moreover, Theorem 6
requires no tail condition on εj, indicating that NS-NSC is
potentially better than NSC on heavy-tailed data. Recall that
Lemma 1 shows that NSC fails when the error is Cauchy, but
NS-NSC can still perform well according to Theorem 6.

Theorems 5 and 6 are derived under independence assump-
tion on εj. This independence assumption is imposed because
NSC is indifferent to the correlation structure. It sums up the
squared Euclidean distance at each coordinate. The NS trans-
formation modifies the way we evaluate the coordinatewise
Euclidean distance, but still utilizes the total Euclidean distance
for classification, which, after all, is the core of NSC. Empirically,
NS-NSC still works well when a reasonable amount of corre-
lation exists; see Models N5 and N6 in Section 5.1.2 and the
real data analysis in Section 5.2. For theoretical considerations,
if strong correlation is present, NSC and NS-NSC will still
consistently select the set D under respective conditions, but
D may not be the best set for classification. For example, Cai
and Liu (2011), Fan, Feng, and Tong (2012) and Mai, Zou, and
Yuan (2012) showed that when ε ∼ N(0,�), that is, under
the linear discriminant analysis (LDA) model, D could lead to
inferior classification depending on the interplay between� and
μk. One way to resolve the issue of correlation is to combine the
NS transformation with a method, such as LDA, that models
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the correlation. Similar ideas have been explored by Lin and
Jeon (2003) andMai and Zou (2015c), but our results on the NS
transformation could potentially lead to a classifier with better
statistical properties.

4.3. Variable Screening: Distance Correlation Screening

4.3.1. Model and Cautionary Remarks
Variable screening contains a large family of computationally
efficient methods for variable selection in high dimensions.
Consider the response Y ∈ Rq and the predictors X =
(X1, . . . ,Xp), where Xk ∈ Rpk for pk ≥ 1 could either be
univariate or multivariate. In high-dimensional data where p
is very large, we are interested in identifying

D = {k : F(y | Xk) functionally depends on Xk for some y},
(18)

where F(y | Xk) is the conditional CDF of Y givenXk. It is often
assumed that |D| is much smaller than p. Screening methods
aim to detect a set S such thatD ⊂ S . Once screening methods
find an estimate of the set S , denoted as Ŝ , refined analysis will
be applied to the much smaller data matrix, XŜ. This two-stage
approach is shown to produce good results.

Since the second-stage analysis is only applied toXŜ , it is cru-
cial that the first-stage screening should give an Ŝ that includes
all the predictors inD. A screeningmethod that succeeds in this
is said to enjoy the SURE screening property. Fan and Lv (2008)
first proposed the marginal Pearson correlation screening for
the linearmodel, and later researchers have proposed numerous
methods that can handle more complicated models (Fan and
Song 2010; Fan, Feng, and Song 2011; Zhu et al. 2011; Li, Zhong,
and Zhu 2012; Chang, Tang, and Wu 2013; Mai and Zou 2013,
2015a; Cui, Li, and Zhong 2015; Chang, Tang, and Wu 2016,
among others).

Similar to supervised learning, the applicability of coordi-
natewise Gaussianization depends on the specific screening
method we employ. Many screening methods require variables
to be sub-Gaussian; see Fan and Lv (2008) and Li, Zhong,
and Zhu (2012) for example. Such methods can be combined
with coordinatewise Gaussianization, as variables become
sub-Gaussian afterwards. However, there are also several
screeningmethods that are invariant under marginal monotone
transformations. For example, Li et al. (2012) proposed
using Kendall’s τ correlation to perform screening under a
semiparametric single-index model with a monotone link
function. Since Kendall’s τ remains the same whether we
transform the variables or not, coordinatewise Gaussianization
gains nothing when combined with this method. Similarly,
the (fused) Kolmogorov filter (Mai and Zou 2013, 2015a) is
invariant under variable transformation, and there is no need to
perform coordinatewise Gaussianization.

Inwhat follows, we focus on the impact of the coordinatewise
Gaussianization when it is applicable. We choose to consider
its combination with distance correlation screening (DCS, Li,
Zhong, and Zhu (2012)). DCS is a well-known and successful
screening method with the SURE screening property in the
model-free context. Importantly, its nice theoretical properties
hinge on moment conditions. The empirical results in Mai and
Zou (2015a) suggest that the performance of DCS can be poor

without sub-Gaussian assumptions. A direct remedy is to apply
coordinatewise Gaussianization prior to computing distance
correlation. The resulting correlation is named Gaussianized
distance correlation. In what follows, we first briefly review the
distance correlation for the sake of completeness.

4.3.2. Method
We start with the definition of distance correlation (Székely,
Rizzo, and Bakirov 2007). For a complex-valued function f ,
define |f |2 = f · f̄ , where f̄ is the complex conjugate of f . For
a vector t, ‖t‖ is its Euclidean norm. The distance covariance
between Xk and Y is written as dcov(Xk,Y) with

dcov2(Xk,Y) =
∫
Rpk+q

|ψXk,Y(t, s) − ψXk(t)ψY(s)|2w(t, s)dtds,
(19)

where ψXk,Y is the joint characteristic function of (Xk,Y), ψXk
is the characteristic function of Xk, ψY is the characteristic
function of Y, t ∈ Rpk , s ∈ Rq and w(t, s) is a weight function.
With a random sample {Xi,Yi}ni=1, we can find the empirical
distance covariance betweenXk andY, denoted as d̂cov2(Xk,Y),
as in Székely, Rizzo, and Bakirov (2007). Then the empiri-
cal distance correlation between Xk and Y is d̂cor(Xk,Y) =

d̂cov(Xk,Y)√
d̂cov(Xk,Xk)d̂cov(Y,Y)

. The distance correlation screening

(DCS) is applied as follows. For each predictor Xk, we com-
pute ω̂DC

k = d̂cor(Xk,Y). Then we keep the predictors with
large ω̂DC

k . Note that DCS is a model-free screening method.
However, the success of DCS apparently depends on whether
ω̂DC
k accurately approximates ωDC

k . Li, Zhong, and Zhu (2012)
assumed thatXk and Y are sub-Gaussian to establish estimation
consistency when p grows at an exponential rate of n. However,
when data are heavy-tailed, there is no guarantee that DCS
enjoys the SURE screening property. See the simulation results
in Section 5.1.3. To resolve this issue, one could apply coordi-
natewise Gaussianization to remove the heavy tails.We first find
either the normal score estimator or the Winsorized estimator
T̂. Then we compute

ω̂k = d̂cor(T̂Xk(Xk), T̂Y(Y)). (20)
Clearly, ω̂k is the empirical version of the Gaussianized distance
correlation (GDC) defined as

ωk = dcor(TXk(Xk),TY(Y)). (21)
Like DC, zero GDC implies independence. Unlike DC, GDC is
invariant under monotone transformations. Moreover, we can
easily derive the following lemma:

Lemma 3. For ωk defined in (21), we have (i) 0 ≤ ωk ≤ 1;
and(ii) when (Xk,Y) is bivariate normal with Pearson correla-
tion ρk, ωk is a strictly monotone function of |ρk|.

The predictors with large ω̂k’s are regarded as important,
while those with small ω̂k’s are regarded as unimportant. More
specifically, for a threshold γn, the kept subset is Ŝ(γn) = {k :
ω̂k > γn}. Alternatively, we can pick the dnth largest value of ω̂k,
where dn is a predefined positive integer. Hence, for a predefined
dn, the procedure reserves the subset

Ŝ(dn) = {k : ω̂k is among the dnth largest of ω̂j, j = 1, . . . , p}.
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We refer to the above procedure as the Gaussianized distance
correlation screening (GDCS).

4.3.3. Theories
We assume that the dimension of Y, q, is fixed, and the dimen-
sion for each predictorXk, pk, are uniformly bounded above, but
the number of predictors, p, is allowed to diverge with n.

Theorem 7. For some constantsM > 0, 0 ≤ κ < 1/2 and any
0 < γ < 1

2 − κ , we have

Pr(|d̂cor(T̂Xk(Xk), T̂Y(Y)) − dcor(TXk(Xk),TY(Y))| ≥ Mn−κ)

≤ C[exp(−Cn1−2(κ+γ )) + n exp(−Cnγ )]

for any k = 1, . . . , p. Consequently,

Pr( sup
k=1,...,p

|ω̂k − ωk| ≥ Mn−κ) ≤ Cp[exp(−Cn1−2(κ+γ ))

+ n exp(−Cnγ )].
Theorem 7 implies that ω̂k’s uniformly converge to their

population counterparts in ultra-high dimensions without any
condition on the distribution of X or Y. We further compare
the results in Theorem 7 with the convergence rate of DCS
without Gaussianization. Li, Zhong, and Zhu (2012) considered
the following condition:

(C1) There exists a positive constant s0 such that for any 0 <
s < s0, we have

sup
p

max
1≤k≤p

E(exp(s‖Xk‖2)) < ∞, and E(exp(s‖Y‖2)) < ∞.

(22)

Proposition 1. Under Condition (C1), for some constantsM >

0, 0 ≤ κ < 1/2 and any 0 < γ < 1/2 − κ , we have

Pr( sup
k=1,...,p

|ω̂DC
k − ωDC

k | ≥ Mn−κ)

≤ O(p[exp(−Cn1−2(κ+γ )) + n exp(−Cnγ )]). (23)

It is easy to see that GDCS and DCS has the same theoret-
ical properties. However, DCS requires the additional moment
condition in Condition (C1) to achieve such results. When data
are heavy-tailed and (C1) does not hold, there is no longer any
theoretical guarantee for DCS. In contrast, with coordinatewise
Gaussianization, GDCS does not rely on any moment condi-
tions.

Nowwe show the SURE screening properties of GDCS when
we fix dn. For a generic set A, denote �A = mink∈A ωk −
maxk∈AC ωk. We consider the following condition:

(C2) There exists S and c > 0, 0 ≤ κ < 1/2, such that D ⊂ S
and �S > cn−κ .

Theorem 8. Define D̂(dn) = {k : ω̂k is among the dn’th largest}.
Under Condition (C2), for any dn > |S|, 0 < γ < 1/2 − κ , we
have

Pr(D ⊂ D̂(dn)) ≥ 1−Cp[exp(−Cn1−2(κ+γ ))+n exp(−Cnγ )].

Condition (C2) is very similar to the common assumption
in screening literature that assumes a gap between the marginal
signals of true predictors and those of noise predictors (Mai and
Zou 2015a). Note that GDCS does not require Condition (C1)
to enjoy the sure screening property. In the literature, popular
choices of dn are n or c[n/log n], c = 1 or 2.

As suggested by referees, we compare the theoretical prop-
erties for GDCS with the Uniform-transformed distance corre-
lation screening (UDCS; Székely and Rizzo 2009; Zhong et al.
2016; Chen, Chen, and Wang 2018). UDCS first transforms the
variables by the empirical CDFs so that they are roughly uni-
formly distributed, and then computes the distance correlation
on the transformed data. The uniform transformation serves
a similar purpose to the Gaussianization. It removes moment
conditions and improves robustness against heavy tails. As a
result, UDCS has the same SURE screening property as GDCS.1

However, there are some noticeable differences between
UDCS and GDCS. For example, in Section 5.1.3 we test the
performance of UDCS and NS-DCS under a wide range of
models, and GDCS outperforms UDCS empirically. On the
other hand, as shown in Lemma 3, the Gaussianized distance
correlation is a monotone function of the Pearson correlation
when data is jointly normal. This is a desirable property as the
Pearson correlation is a well accepted dependencemeasurement
for normal data. However, it is unclear if UDCS can be
interpreted in the same way for normal data.

5. Numerical Studies

5.1. Simulations

5.1.1. The Gaussian CopulaModel
We illustrate our results for semiparametric graphical lasso by
numerical studies. Following Xue and Zou (2012), in all the
simulated studies we let p = 100, n = 300. Consider the model
T(X) ∼ N(0,�). We are interested in � = �−1. We first
generated V ∼ N(0,�) and then transformed X = T−1(V),
where T−1 = (g1, . . . , g5, g1, . . . , g5, . . .). The selection of gi’s
are as follows:

g1(x) = x, g2(x) = sign(x)
√|x|, g3(x) = �(x),

g4(x) = x3, g5(x) = exp(x)
(24)

Model G1: θii = 1 for i = 1, . . . , p, θi,i+1 = θi+1,i = 0.5 for
i = 1, . . . , 3 and θij = 0 otherwise.

Model G2: θii = 1 for i = 1, . . . , p, θ2i,2i−1 = θ2i−1,2i = 0.5
for i = 1, . . . , 4 and θij = 0 otherwise.

We estimate these two models with the following methods
for comparison: (i) Oracle: The oracle graphical lasso with
oracle information on T; (ii) Raw: Graphical lasso on the raw
data; (iii) Normal score (NS): The normal score estimator; (iv)
Winsorized: TheWinsorized estimator with δn = 1

n . Our results
are based on 500 replicates. The average receiver operating
characteristic (ROC) curves are plotted in Figure 1.We only plot
the results for the NS estimator and the Raw estimator, because
the Oracle estimator and the Winsorized estimator are almost

1To be rigorous, Zhong et al. (2016) proposed to only transform the response
Y , and thus, moment conditions are still imposed on X. But such moment
conditions should be easy to avoid if X is transformed as well.
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Figure 1. Receiver operating characteristic (ROC) curves for Models G1 & G2; x-axis: false positive rate (FPR), y-axis: true positive rate (TPR). The Oracle estimator and the
Winsorized estimator are omitted because they are almost identical to the NS estimator.

identical to the NS estimator. The Raw method, on the other
hand, is notably different from the other three estimators. Such
results are expected based on our theoretical studies.

5.1.2. Nearest Shrunken Centroids Classifier
We present simulation results for normal score transformation
in nearest shrunken centroids classifier. In all the simulations,
we set n = 200, p = 2000, d = 10, where d is the number
of important predictors. We considered the six models, the first
five of which take the form that X = μy + ε if Y = y. Without
loss of generality, we fix μ1 = 0 in all models.

Model N1: ε ∼ N(0, I) and μ2 ∝ (1d, 0p−d). The scale of μ2
is chosen such that the Bayes error is 10%.

Model N2: Each entry εj is an independent t3 random vari-
able and μ2 = (1d, 0p−d).

Model N3: Each entry εj is an independent standard Cauchy
random variable and μ2 = 2 · (1d, 0p−d).

Model N4: Each entry εj is an independent Weibull random
variable with both the shape and scale parameters equal to 1,
and μ2 = 0.5 · (1d, 0p−d).

Model N5: ε ∼ N(0,�), where � = AR(0.5), and μ2 ∝
(1d, 0p−d). The scale of μ2 is chosen such that the Bayes error is
10%.

Model N6: For D = {1, . . . , d}, VD | Y = y ∼
N(μD,y,�D), where �D = AR(0.5), μD,1 = 0,μD,2 ∝ 1d.
The scale ofμ2 is chosen such that the Bayes error is 10%. Then
VDC ⊥ VD . For all the odd numbers j ∈ DC, Vj ∼ N(0, 1)
independently; for all the even numbers j ∈ DC, Vj = δjVj−1,
where δj is an independent Bernoulli random variable with the
parameter 0.5. X = exp(2V).

We considered nearest shrunken centroids classifier on
T(X),X, T̂(X) and the Winsorized data T̂(w)(X), yielding the
oracle-NSC, raw-NSC, NS-NSC and Wins-NSC, respectively.
Tuning parameters are chosen to minimize the 10-fold cross-

validation classification errors. The testing classification errors,
the false negatives and the false positives are presented in
Table 1. Across all models, NS-NSC have classification errors
close to the oracle method, which supports Theorems 1 and 6.
In Models N1 & N5, all the predictors are sub-Gaussian, and all
methods perform similarly. However, in Models N2, N3 & N6,
the predictors are heavy-tailed. Raw-NSC has high classification
errors because the centroids cannot be estimated accurately.
In Model N4, the predictors are heavily skewed, and NS-NSC
andWins-NSC outperform raw-NSC in prediction and variable
selection. Also note that Models N5 &N6 are not ICIMmodels,
but coordinatewise Gaussianization is still beneficial when data
are heavy-tailed in Model N6.

5.1.3. Distance Correlation Screening
We denote GDCS via normal score estimator as NS-DCS, and
GDCS via Winsorized estimator as Wins-DCS. We compare
them with the original DCS (Li, Zhong, and Zhu 2012) and
UDCS that combines the uniform transformation with DCS.
We also compare our methods with many additional screening
methods, but these results are relegated to the supplementary
materials for the sake of space.

We repeat each experiment 200 times and assess the perfor-
mance under the following criteria adopted by Li, Zhong, and
Zhu (2012). (1). M: the minimum model size to include all
the true variables. We report the 5%, 25%, 50%, 75%, and 95%
quantiles of M out of 200 replications. (2). Pa: the proportion
that all true variables are selected for a given model size d in the
200 replications.

We present the simulation results ofPa with d = 2[n/ log n].
We also tried d = [n/ log n] with quite similar outcomes and
hence, omit such results here for the sake of space. The simula-
tion results for Model D1–D6 are summarized in Table 2. The
response in this section is univariate unless otherwise specified.
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Table 1. Simulation results for nearest shrunken centroids classifier.

Oracle Raw NS-NSC Wins-NSC

Model N1
Error(%) 12.9 (0.13) 12.6 (0.11) 13.0 (0.10) 13.2 (0.13)
FN 0 (0) 0 (0) 0 (0) 0 (0)
FP 19 (1.3) 19 (1.5) 21 (1.7) 19 (1.5)

Model N2
Error(%) 17.1 (0.11) 21.9 (0.17) 16.8 (0.10) 17.0 (0.11)
FN 0 (0.0) 0 (0) 0 (0) 0 (0)
FP 22 (1.5) 23 (1.2) 22.5 (1.4) 23 (1.2)

Model N3
Error(%) 13.6 (0.08) 49.6 (0.06) 13.6 (0.11) 13.8 (0.11)
FN 0 (0) 7 (0.5) 0 (0) 0 (0)
FP 23.5 (2.1) 384.5 (42.1) 25 (2.1) 24 (2.1)

Model N4
Error(%) 15.9 (0.14) 31.6 (0.22) 15.4 (0.12) 15.7 (0.14)
FN 0 (0) 1 (0) 0 (0) 0 (0)
FP 24 (1.8) 48.5 (4.1) 24 (1.2) 24 (1.2)

Model N5
Error(%) 12.3 (0.03) 12.2 (0.03) 12.3 (0.03) 12.3 (0.03)
FN 0 (0) 0 (0) 0 (0) 0 (0)
FP 18 (1.9) 21 (3.8) 13 (2.2) 17 (2.7)

Model N6
Error(%) 11.1 (0.02) 25.7 (0.23) 11.3 (0.04) 11.3 (0.03)
FN 0 (0) 0 (0.1) 0 (0) 0 (0)
FP 13 (2.8) 7.5 (2.5) 14 (2.3) 15 (1.9)

NOTE: All the numbers aremedians based on 500 replicates. The standard errors are
in parentheses.

Note that during the computation of GDCS in Model D5, the
categorical response is not transformed.

Model D1: This example is adopted from Li, Zhong, and Zhu
(2012). We generate X = (X1,X2, . . . ,Xp)T from multivariate
normal distribution with zeromean and covariancematrix� =
(σij)p×p, and the error term ε from standard normal distribu-
tion. Here, we consider σij = 0.5|i−j|. The sample size n is set to
be 200, the dimension p is 2000. The response is generated from
the following four submodels:

Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0) + c4β4X22 + ε,
(25)

Y = c1β1X1X2 + c3β21(X12 < 0) + c4β3X22 + ε, (26)
Y = c1β1X1X2 + c3β21(X12 < 0)X22 + ε, (27)
Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0) + exp{c4|X22|}ε,

(28)

where 1(·) is an indicator function. The regression functions
E(Y|X) in (25)–(28) are all nonlinear in X12. Moreover, (26)
and (27) contain interaction terms, and (28) is heteroscedastic.
Following Fan and Lv (2008), we set (c1, c2, c3, c4) = (2, 0.5, 3, 2)
and choose βj = (−1)U(a + |Z|) for j = 1, . . . , 4, where
a = 4 log n/

√
n, U ∼ Bernoulli(0.4) and Z ∼ N(0, 1).

Especially, the parameters (β1,β2,β3,β4) we generated is
(−3.9, 1.8,−2.4,−2.3).

Model D2: (Heavy-tailed single index regression model). As
in Mai and Zou (2015a), we consider

Y = (X1 + X2 + 1)3 + ε, (29)

where Xk’s independently follow the Cauchy distribution and
ε following N(0, 1) is independent of covariates. We let n =
200, p = 5000.

ModelD3: (Additivemodel). Case 1: FollowingMeier, Vande
Geer, and Bühlmann (2009) and Cui, Li, and Zhong (2015), we

define the following four functions: f1(x) = − sin(2x), f2(x) =
x2 − 25/12, f3(x) = x, f4(x) = e−x − 2/5 · sinh(5/2). Then
we consider the following additive model

Y = 3f1(X1) + f2(X2) − 1.5f3(X3) + f4(X4) + ε, (30)

where the predictors are generated independently from
Unif(−2.5, 2.5). To examine the robustness of each screening
approach, we consider two cases for the error term ε: (1)
ε ∼ N(0, 1); (2) ε ∼ t(1).
Case 2: This nonlinear additive model has been analyzed in
Meier, Van de Geer, and Bühlmann (2009) and Fan, Feng, and
Song (2011). Let g1(x) = x, g2(x) = (2x − 1)2, g3(x) =
sin(2πx)/(2 − sin(2πx)), and g4(x) = 0.1 sin(2πx) +
0.2 cos(2πx) + 0.3 sin2(2πx) + 0.4 cos3(2πx) + 0.5 sin3(2πx).
The following model is studied:

Y = 5g1(X1) + 3g2(X2) + 4g3(X3) + 6g4(X4) + √
1.74ε, (31)

where the covariates are independently simulated according to
Unif(0, 1), and ε is independent of the covariates and follows
the standard normal distribution. We let (n, p) = (200, 2000)
for Case 1 and (400, 1000) for Case 2.

Model D4: (Heteroscedastic regression model; Zhu et al.
(2011)). The predictor vector (X1,X2, · · · ,Xp) is generated in
the same way as that in Model D1, the error term ε ∼ N(0, 1),
and (n, p) = (200, 2000). The response is generated from the
following model:

Y = X1+0.8X2+0.6X3+0.4X4+0.2X5+exp(X20+X21+X22)·ε.
(32)

Model D5: (Discriminant analysis model; Cui, Li, and Zhong
(2015)): We generate Yi ∈ {1, 2, . . . ,R} from two different
distributions: (i) balanced, a discrete uniform distribution with
P(Yi = r) = 1/R for every 1 ≤ r ≤ R; (ii) unbalanced,
the sequence of probabilities is an arithmetic progression with
max1≤r≤R pr = 2min1≤r≤R pr . For example, Y is binary when
R = 2 and p1 = 1/3, p2 = 2/3. Given Yi = r, the ith
predictor Xi is generated by letting Xi = μr + εi, where μr =
(0, . . . , 0, 3, 0, . . . , 0) is a p-dimensional vector with rth compo-
nent being 3 but others being all zero, and ε = (εi1, . . . , εip)
is a p-dimensional error term. We consider three cases of the
error term: (1) εij ∼ N(0, 1); (2) εij ∼ t(2); (3) εij ∼ t(1)
independently for every j = 1, . . . , p. We consider (R, n, p) =
(10, 200, 2000), corresponding to a 10-categorical response case.
Because a value of the response Y is a nominal number in this
case, to apply DCS and GDCS for this problem, we transfer
the 10-categorical response to nine dummy binary variables
according to Cui, Li, and Zhong (2015), which are together
considered as a newmultiple response. The active predictors are
X1,X2, . . . ,X10.

Model D6 (The Box-Cox transformation model; (Li et al.
2012)):

H(Y) = XTβ + ε, (33)

In the simulations, we consider the Box-Cox transformation:

H(Y) = |Y|λsgn(Y) − 1
λ

, when λ = 0.25, 0.5, 0.75, 1;

H(Y) = logY , when λ = 0.
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Table 2. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimummodel sizeM out of 200 replications for Model D1–D6, and the proportion ofPa with model size
d = 2[n/ log n].

M Pa M Pa

Model Method 5% 25% 50% 75% 95% Model Method 5% 25% 50% 75% 95%

D1 (25) DCS 4.0 4.0 4.0 6.0 24.2 0.98 D2 DCS 18.0 69.8 212.0 740.5 2285.2 0.26
[4] UDCS 4.0 4.0 5.0 6.0 44.4 0.97 [2] UDCS 2.0 2.0 2.0 2.0 2.0 1.00

NS-DCS 4.0 4.0 4.0 6.0 28.3 0.98 NS-DCS 2.0 2.0 2.0 2.0 2.0 1.00
Wins-DCS 4.0 4.0 4.0 6.0 28.3 0.98 Wins-DCS 2.0 2.0 2.0 2.0 2.0 1.00

(26) DCS 4.0 5.0 7.0 11.0 38.6 0.98 D3 Case 1: DCS 10.0 28.0 53.0 92.2 198.6 0.65
UDCS 6.0 12.0 24.0 50.2 152.6 0.85 [4] ε ∼ N(0, 1) UDCS 11.0 29.8 54.0 94.0 211.0 0.66
NS-DCS 4.0 6.0 9.0 15.2 52.3 0.97 NS-DCS 5.0 13.0 23.5 46.2 108.3 0.90
Wins-DCS 4.0 6.0 9.0 15.2 52.3 0.97 Wins-DCS 5.0 13.0 24.0 47.0 106.2 0.90

(27) DCS 18.9 79.0 211.5 473.2 1274.5 0.25 Case 1: DCS 28.0 95.5 234.0 427.0 1071.8 0.19
UDCS 22.9 88.2 217.5 426.8 976.0 0.18 ε ∼ t(1) UDCS 21.0 79.5 137.0 208.2 403.4 0.23
NS-DCS 22.9 73.8 167.5 365.8 1099.4 0.25 NS-DCS 11.0 43.8 79.0 143.2 361.5 0.48
Wins-DCS 22.0 74.5 166.0 363.2 1085.1 0.25 Wins-DCS 10.0 43.0 77.5 142.2 367.7 0.48

(28) DCS 4.0 7.0 19.5 79.5 400.3 0.73 Case 2 DCS 6.0 15.0 36.0 95.5 262.0 0.80
UDCS 34.9 110.5 211.5 385.2 748.6 0.15 UDCS 6.0 17.8 39.0 100.8 294.1 0.80
NS-DCS 7.0 20.0 39.5 88.2 256.1 0.71 NS-DCS 5.0 8.8 20.0 56.0 215.3 0.89
Wins-DCS 7.0 19.0 37.0 81.0 248.1 0.73 Wins-DCS 5.0 8.8 20.0 56.0 210.5 0.90

D4 DCS 26.0 193.8 413.0 758.8 1393.9 0.13 D5 ε ∼ N(0, 1): DCS 10.0 10.0 10.0 10.0 13.1 1.00
[8] UDCS 14.0 23.0 40.5 108.0 571.9 0.66 [10] Balanced UDCS 10.0 10.0 11.0 20.2 96.1 0.93

NS-DCS 9.0 13.0 23.5 95.8 601.2 0.72 NS-DCS 10.0 10.0 10.0 11.0 31.1 0.98
Wins-DCS 9.0 13.0 23.5 96.0 600.0 0.71 Wins-DCS 10.0 10.0 10.0 11.0 28.0 0.98

D6 λ=0 DCS 192.6 468.5 836.0 1250.5 1748.7 0.00 ε ∼ N(0, 1): DCS 10.0 10.0 12.0 28.5 322.1 0.85
[3] UDCS 5.0 19.8 88.0 267.8 713.7 0.33 Unbalanced UDCS 11.0 20.0 60.5 203.8 828.5 0.55

NS-DCS 4.0 14.0 55.5 179.8 580.8 0.38 NS-DCS 10.0 12.0 25.0 86.2 566.9 0.72
Wins-DCS 4.0 14.0 55.5 174.0 580.9 0.40 Wins-DCS 10.0 12.0 24.0 82.8 545.2 0.73

λ=0.25 DCS 11.0 69.0 173.0 434.0 1001.1 0.16 ε ∼ t(2): DCS 10.0 11.0 16.0 43.8 251.1 0.79
UDCS 6.0 25.0 92.0 304.2 899.3 0.30 Balanced UDCS 11.0 16.0 33.0 84.2 333.4 0.72
NS-DCS 4.0 18.8 66.5 243.2 703.4 0.37 NS-DCS 10.0 12.0 22.0 74.2 266.4 0.75
Wins-DCS 4.0 17.0 65.0 242.0 691.8 0.37 Wins-DCS 10.0 12.0 21.0 70.8 262.1 0.76

λ=0.5 DCS 4.0 14.8 56.0 183.0 759.3 0.41 ε ∼ t(2): DCS 15.0 37.8 154.5 331.2 1033.4 0.36
UDCS 5.0 24.0 101.5 278.2 787.4 0.30 Unbalanced UDCS 22.9 65.5 201.0 429.2 901.2 0.29
NS-DCS 4.0 14.0 71.5 204.0 598.7 0.34 NS-DCS 19.9 60.8 181.5 404.0 981.9 0.30
Wins-DCS 4.0 14.0 70.5 196.8 561.5 0.34 Wins-DCS 19.9 59.8 177.0 400.5 973.5 0.30

λ=0.75 DCS 3.0 10.0 42.0 178.2 514.0 0.43 ε ∼ t(1): DCS 373.9 1194.2 1704.0 1905.2 1987.3 0.01
UDCS 4.0 19.8 86.5 320.2 699.2 0.30 Balanced UDCS 29.0 85.8 201.0 382.5 1045.0 0.21
NS-DCS 4.0 15.0 62.5 234.8 596.5 0.38 NS-DCS 24.0 76.0 198.0 399.5 1024.0 0.25
Wins-DCS 4.0 14.8 61.5 236.2 551.9 0.39 Wins-DCS 23.0 74.8 198.5 398.2 1018.9 0.25

λ=1 DCS 3.0 14.8 51.5 164.0 495.9 0.39 ε ∼ t(1): DCS 540.8 1300.2 1700.5 1911.2 1981.1 0.00
UDCS 4.0 24.0 84.5 305.2 745.0 0.29 Unbalanced UDCS 60.0 200.8 397.5 842.2 1423.9 0.10
NS-DCS 4.0 17.8 64.0 200.2 522.6 0.36 NS-DCS 47.9 189.8 383.5 837.0 1472.2 0.11
Wins-DCS 4.0 16.0 63.0 202.0 507.2 0.36 Wins-DCS 46.9 189.5 381.5 828.5 1470.2 0.11

NOTE: The numbers in the brackets are the true numbers of variables.

The predictor (X1,X2, . . . ,Xp) is generated from a multivariate
normal distribution N(0,�), where � = (σij)p×p has entries
σii = 1, i = 1, . . . , p and σij = 0.5, i �= j. The noise ε follows
the standard normal distribution, β = (3, 1.5, 2, 0, . . . , 0)T , n =
70, p = 2000.

In all the models, GDCS is either comparable to or signifi-
cantly better than UDCS, although UDCS can outperformDCS
when heavy tails are present. For Model D1, in all cases, GDCS
behaves comparably with DCS and better than UDCS. In the
presence of nonlinearity and heavy-tailed data in Model D2,
DCS has much more false discoveries than GDCS and UDCS,
where the latter two are comparable. The variable transforma-
tion approach with DC can handle the issue of heavy-tailed
data well. For Models D3–D6, GDCS is consistently promising
and robust with the best results. In Model D6, it can also be
inferred from the results that GDCS has invariance property
under monotonic transformation. The little difference across
different λ is due to different random errors generated for mod-
els. When the model deviates from a linear model and Y from
normal (λ decreases fromone), the performance ofDCS quickly
deteriorates due to the existence of the nonlinearity and heavy-

tailed response. See Figure S1 in the supplementary materials
for a visual demonstration.

5.2. A Real Dataset Example

We demonstrate the application of NS-NSC with the malaria
dataset (Ockenhouse et al. 2006). This dataset contains mea-
surements of 22,283 gene expressions of 71 human subjects.
Twenty-two of the human subjects are healthy, and the rest
have malaria. Prior knowledge is available on some of the genes
collected in this dataset. For example, the geneIRF1was known
to be related to the immune response of human. Fan and Fan
(2008) proposed to rank the importance of the genes by the
absolute values of their t-statistics. On the original dataset, the
gene IRF1 is ranked as the 125th most important gene by t-
statistics ranking. It is also ranked as the 497th most important
gene by DCS ranking. With the normal score transformation,
IRF1 is recognized as the second most important gene by both
methods. This suggests that the normal score transformation
gives a more meaningful ranking.

To further investigate the effect of normal score transforma-
tion, we randomly split the dataset in a balanced manner with a
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Table 3. The average error rates (%) using RF or LDA combined with different
screening methods in 100 randomly split malaria data, with their standard errors
shown in parentheses.

Methods DCS NS-DCS Win-DCS Methods DCS NS-DCS Win-DCS

RF 5.3 (0.40) 3.8 (0.32) 4.3 (0.36) LDA 15.1 (0.76) 10.2 (0.57) 11.6 (0.69)

1:1 ratio into training and testing datasets. We fit classifiers on
the training set and evaluate the testing error on the testing set.
On the raw dataset, NSC has an error rate of 8.6%, with a stan-
dard error of 1.37%. If we apply the normal score transformation
or Winsorized transformation, both NS-NSC and Wins-NSC
lower the error rate to 5.7% with standard errors of 0.70% and
0.20%, respectively. Paired t-test indicate that the improvement
is significant, with p-values less than 10−4.

In addition, we include the DCS, NS-DCS, Wins-DCS to
carry out the classification for comparison. Again, we randomly
split the dataset in the same way aforementioned, and apply
each screening method to the training set to select top d =
2[ntrain/ log ntrain] genes, where ntrain is the training sample
size. Then, we fit a random forest (RF) or a linear discriminant
analysis (LDA)model using selected features to do classification
and make prediction in the testing set. The above procedure
is repeated 100 times. The average error rates are reported in
Table 3. Paired t-tests indicate that the improvement of error
rate obtained by fitting a RF or LDAmodel after coordinatewise
Gaussianization in the screening stage is significant, with all p-
values less than 10−3. It is also not surprising that DCS cannot
identify the gene IRF1 in those 100 trials while NS-DCS and
Wins-DCS select IRF1 for 66 and 60 times, respectively.

6. Discussion

In this article, we establish the uniform convergence of coordi-
natewise Gaussianization as long as log p = o( n

log n ). This result
is independent of any downstream statistical method to be used
after the variable transformation. We have also provided three
concrete statistical methods to show that when the theoretical
normal transformation is helpful, coordinatewise Gaussianiza-
tion achieves similar performance.

We have considered two methods for coordinatewise Gaus-
sianization: theNS estimator and theWinsorized estimator. The
two methods have identical theoretical properties in ultra-high
dimensions. Throughout our numerical studies, their perfor-
mance also exhibits minimal difference. Hence, if one wishes
to perform coordinatewise Gaussianization in practice, either
of them is expected to achieve the goal. However, we note
that the NS estimator has a much longer history and is more
widely applied in many areas such as statistics, biostatistics,
education and econometrics. In comparison, the Winsorized
estimator was more recently proposed mainly for theoretical
studies. Therefore, if there is no strong reason to prefer the
Winsorized estimator in the problem at hand, the NS estimator
may be more coherent with studies in the past.

We emphasize again that coordinatewise Gaussianization
should be avoided when the theoretical normal transformation
does not help or even harm the downstream statistical method.
For example, popular tree-building algorithms are invariant

under monotone transformations, and coordinatewise Gaus-
sianization does not have any effect in these tree-basedmethods
and ensemble-trees learning. On the other hand, methods that
rely on marginal distribution of the variables usually should not
be combined with the coordinatewise Gaussianization, because
all of them have the same distribution after the transformation.

Based on the above counter-examples, we recommend the
following procedure for using coordinatewise Gaussianization
in applications. We should always do a careful analysis of the
downstream method on the theoretically transformed data to
see if the transformation provides any benefit. Only after get-
ting an affirmative conclusion, we then carry out coordinate-
wise Gaussianization and proceed with the intended statistical
method.

SupplementaryMaterials

For the sake of space, all the technical proofs and additional simulation
results are relegated to the supplementary file.
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