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ABSTRACT

Low precision deep neural network (DNN) training is one of the

most effective techniques for boosting DNNs’ training efficiency,

as it trims down the training cost from the finest bit level. While

existing works mostly fix the model precision during the whole

training process, a few pioneering works have shown that dynamic

precision schedules help DNNs converge to a better accuracy while

leading to a lower training cost than their static precision training

counterparts. However, existing dynamic low precision training

methods rely on manually designed precision schedules to achieve

advantageous efficiency and accuracy trade-offs, limiting their more

comprehensive practical applications and achievable performance.

To this end, we propose LDP, a Learnable Dynamic Precision DNN

training framework that can automatically learn a temporally and

spatially dynamic precision schedule during training towards op-

timal accuracy and efficiency trade-offs. It is worth noting that

LDP-trained DNNs are by nature efficient during inference. Fur-

thermore, we visualize the resulting temporal and spatial precision

schedule and distribution of LDP trained DNNs on different tasks to

better understand the corresponding DNNs’ characteristics at differ-

ent training stages and DNN layers both during and after training,

drawing insights for promoting further innovations. Extensive ex-

periments and ablation studies (seven networks, five datasets, and

three tasks) show that the proposed LDP consistently outperforms

state-of-the-art (SOTA) low precision DNN training techniques in

terms of training efficiency and achieved accuracy trade-offs. For

example, in addition to having the advantage of being automated,

our LDP achieves a 0.31% higher accuracy with a 39.1% lower com-

putational cost when training ResNet-20 on CIFAR-10 as compared

with the best SOTA method.
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Figure 1: (a) A conceptual view of our proposed Learnable

Dynamic Precision DNN training framework vs. (1) static

low precision training (SBM [4]), (2) dynamic low precision

training, (PFQ [11] and (3) CPT [10]). Here, each row shows

the precision schedule for the whole model of the baselines,

where LDP adopts a learned layer-wise dynamic precision

schedule to optimally balance the training efficiency and

accuracy trade-off; and (b) LDP’s learned spatial precision

distribution and temporal precision schedule for ResNet-

38@CIFAR-100, where different curves correspond to spatial

precision distributions of different residual blocks andthe

fractional precision is due to the block-wise average and

moving average among iterations for better visualization.

1 INTRODUCTION

The recent breakthroughs achieved by deep neural networks (DNNs)

rely on massive training data and huge model sizes, imposing pro-

hibitive training costs that have raised environmental concerns and

standing at odds with the growing demand for on-device training

to maintain the model accuracy under dynamic real-world envi-

ronments. For trimming down the training cost, one of the most

promising approaches is low precision training, which adopts a

precision lower than 32-bit floating-point for model weights, ac-

tivations, and gradients during training [4, 30, 50] to reduce the

training cost at the most fine-grained granularity. Additionally,

their resulting DNNs by nature have a lower inference cost than

their floating-point counterparts.

While various low precision training techniques have been pro-

posed to boost DNNs’ training efficiency [4, 30, 42, 50], most of

these techniques adopt a fixed precision allocation strategy through-

out the whole training process, leaving a large room for further
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Table 1: The test accuracy of ResNet-38 trained on CIFAR-100 with different layer-wise precision schedules through the training

process. In each training stage, [𝑎, 𝑏, 𝑐] represents assigning 𝑎-bit, 𝑏-bit, and 𝑐-bit to ResNet-38’s first three blocks, respectively.

Training Stages
Savings over static (%) Accuracy/%

[0-th,30-th] [30-th,60-th] [60-th,90-th] [90-th,160-th]

[4, 6, 8] [6, 8, 4] [8, 4, 6] [8, 8, 8] 1.10 × 10
8

68.88 ± 0.21

[6, 8, 4] [8, 4, 6] [4, 6, 8] [8, 8, 8] 1.10 × 10
8

69.63 ± 0.14

[8, 4, 6] [4, 6, 8] [6, 8, 4] [8, 8, 8] 1.10 × 10
8

69.36 ± 0.16

Table 2: The test accuracy of ResNet-38 on CIFAR-100 with

different frequencies for random precision change.

𝑘 1 10 100 Static

Accuracy/% 68.27 ± 0.32 69.71 ± 0.26 69.40 ± 0.24 69.62 ± 0.10

Training Cost/
1.10 × 10

8
1.10 × 10

8
1.07 × 10

8
1.32 × 10

8

GBitOPs

require different precision schedules during training. Therefore,

identifying the optimal precision allocation can further optimize

the efficiency-accuracy trade-offs. However, it is challenging to de-

cide the best spatial/temporal precision allocation strategy during

training due to the huge search space as shown in the following

experiments.

Preliminary quantitative evaluation. Settings: We conduct

two experiments to (1) evaluate the impact of layer-wise preci-

sion schedules in Table 1, and (2) evaluate how the precision

change frequency affects the trained DNN’s accuracy in Ta-

ble 2. We train ResNet-38 on CIFAR-100 for 160 epochs following

the training setting in [36] for both experiments. Specifically, in

Table 1, we divide the training into four stages: [0-th, 30-th], [30-th,

60-th], [60-th, 90-th], and [90-th, 160-th], and assign different pre-

cisions to different blocks of ResNet-38 in the first three training

stages and adopt a static 8-bit low precision in the last training stage,

in order to evaluate the impact of assigning different precisions

to different layers during training under the same total training

budget of GBitOPs (Gigabit operations). In Table 2, we randomly

assign a precision value from [4, 6, 8]-bit to all layers of the DNNs

every 𝑘 iterations to quantize the DNN weights, activations, and

gradients in the first 90 training epochs. In this experiment, we

evaluate results with different 𝑘 values in [1, 10, 100]. We report

the average accuracy and the standard deviation of three runs for

all experiments above.

Results: We observe that (1) in Table 1, different precision sched-

ules through the training process vary the final accuracy by as

high as 0.75% under the same total training cost; and (2) in Ta-

ble 2, the best precision change frequency leads to (1) as high as a

1.44% higher accuracy over other frequencies and (2) a 0.09% higher

accuracy with a 16% lower training cost than the static precision

training baseline.

Analysis: This set of experiments shows that (1) given the same

total training cost budget, how to allocate the training cost budget

by spatially and temporally scheduling the training precision during

training can significantly impact the finally achieved model accu-

racy; (2) the precision changing frequency also affects the achieved

accuracy and even a naive randomly generated precision schedule

with an adequately selected precision changing frequency can of-

fer a better training efficiency; and (3) there exists no golden rule

for determining the optimal spatial/temporal precision schedule,

which highly relies on manual hyper-parameter tuning in SOTA

methods [10, 11, 24], and it is challenging to automatically derive

the optimal spatial/temporal schedule of training precision given

the huge space of layer-wise precision schedule.

3.2 The Proposed LDP Framework

Existing mixed-precision networks rely on costly trial-and-error

methods (e.g., reinforcement learning-based [35] and evolutionary-

based [44] ones) to determine the layer-wise precision. It is thus

computationally impractical to apply thesemethods in each training

iteration. Therefore, we propose to make the precision be aware

of training states via jointly learning the layer-wise precision with

the model weights in a differentiable manner.

As the precision itself is discrete and non-differentiable to the loss

function, we introduce a continuous layer-wise learnable parameter

𝛽𝑙 for each layer 𝑙 with a quantization step size 𝑠𝑙 defined as:

𝑠𝑙 =
𝑅𝑟𝑎𝑛𝑔𝑒

2Round(𝛽
𝑙×𝑁 ) − 1

, (1)

where 𝑅𝑟𝑎𝑛𝑔𝑒 is the dynamic range of input parameters, 𝑁 is the

range of the available precision, and Round(.) indicates rounding

the value to the nearest integer. Given a full precision value 𝐼 at

layer 𝑙 , its quantized counterpart 𝑄 with 𝑠𝑙 can be defined as:

𝑄 = Round(
𝐼 − 𝐼𝑍𝑒𝑟𝑜𝑃𝑜𝑖𝑛𝑡

𝑠𝑙
) + 𝐼𝑍𝑒𝑟𝑜𝑃𝑜𝑖𝑛𝑡 , (2)

where 𝐼𝑍𝑒𝑟𝑜𝑃𝑜𝑖𝑛𝑡 is an input-dependent parameter for normalizing

the inputs. In this way, 𝛽𝑙 can be integrated into DNNs’ compu-

tational flow and updated with respect to the loss function in a

differentiable manner.

Loss function. As a higher precision favors more precise gra-

dients and thus increased accuracy, directly updating the afore-

mentioned 𝛽𝑙 in each layer 𝑙 with respect to the task loss 𝐿𝑡𝑎𝑠𝑘
only leads to a monotony increase of 𝛽𝑙 and thus a higher training

cost. This conflicts with the goal of LDP, which is to learn a layer-

wise dynamic precision schedule to better allocate the training cost

within the network and during the training process. To address this

discrepancy, we incorporate a cost loss 𝐿𝑐𝑜𝑠𝑡 into the network’s loss

function to control the trade-off balance between model efficiency

and accuracy, where 𝐿𝑐𝑜𝑠𝑡 is defined as:

𝐿𝑐𝑜𝑠𝑡 =

{

0, if 𝐶 < 𝑇

𝐶, if 𝐶 ≥ 𝑇
(3)
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Table 3: The test accuracy, computational cost, and trained models’ inference cost of ResNet-20/38/74 on CIFAR-10/100.

Datasets CIFAR-100 CIFAR-10

Model Method Precision Acc(%) Training Cost(GBitOps) Inference Cost(GBitOps) Acc(%) Training Cost(GBitOps) Inference Cost(GBitOps)

ResNet-20

SBM FW8/BW8 67.24 0.62e8 1.31 91.86 0.62e8 1.31

PFQ FW3-8/BW8 67.31 0.50e8 1.31 91.75 0.50e8 1.31

LDP FW3-8/BW8 67.88 0.41e8 0.71 92.08 0.41e8 0.70

Improv. +0.57 -18.0% -45.8% +0.22 -33.9% -46.6%

SBM FW8/BW8 67.24 0.62e8 1.31 91.86 0.62e8 1.31

PFQ FW4-8/BW8 67.47 0.51e8 1.31 91.66 0.50e8 1.31

LDP FW4-8/BW8 67.64 0.41e8 0.66 91.86 0.41e8 0.70

Improv. +0.17 -19.6% -49.6% +0.00 -33.9% -46.6%

ResNet-38

SBM FW8/BW8 69.38 1.33e8 2.69 92.69 1.33e8 2.69

PFQ FW3-8/BW8 69.50 1.04e8 2.69 92.55 1.05e8 2.69

LDP FW3-8/BW8 69.77 0.87e8 1.35 92.73 0.86e8 1.36

Improv. +0.27 -16.3% -49.8% +0.04 -35.3% -49.4%

SBM FW8/BW8 69.38 1.33e8 2.69 92.69 1.33e8 2.69

PFQ FW4-8/BW8 69.72 1.07e8 2.69 92.70 1.08e8 2.69

LDP FW4-8/BW8 69.81 0.87e8 1.33 92.69 0.86e8 1.37

Improv. +0.09 -18.7% -50.6% -0.01 -20.4% -49.1%

ResNet-74

SBM FW8/BW8 71.05 2.67e8 5.42 93.30 2.67e8 5.42

PFQ FW3-8/BW8 71.07 2.03e8 5.42 92.74 2.11e8 5.42

LDP FW3-8/BW8 71.28 1.72e8 2.83 93.63 1.72e8 2.82

Improv. +0.21 -15.3% -47.8% +0.33 -35.6% -48.0%

SBM FW8/BW8 71.05 2.67e8 5.42 93.30 2.67e8 5.42

PFQ FW4-8/BW8 71.15 2.16e8 5.42 93.45 2.21e8 5.42

LDP FW4-8/BW8 71.21 1.72e8 2.78 93.50 1.73e8 2.80

Improv. +0.06 -20.4% -48.7% -0.05 -21.7% -48.3%

where 𝑇 is the target iteration-wise training cost and 𝐶 is the for-

ward pass cost in the current iteration defined as:

𝐶 =

𝐿
∑︁

𝑙=1

𝑂𝑙 ×
Round(𝛽𝑙 × 𝑁 )

32

2

, (4)

where𝑂𝑙 is the required BitOPs for a full precision forward pass of

layer 𝑙 . However, the scale of 𝐿𝑡𝑎𝑠𝑘 and 𝐿𝑐𝑜𝑠𝑡 can vary significantly

throughout the training process and thus may require a tedious

finetuning process to balance these two loss terms when applying

LDP to different tasks. Thus, we adopt a balance factor 𝛼 to balance

the gradient of each layer’s 𝛽𝑙 with respect to 𝐿𝑡𝑎𝑠𝑘 and 𝐿𝑐𝑜𝑠𝑡 .

Specifically, the overall precision gradients𝐺𝑙 for layer 𝑙 is defined

as:

𝐺𝑙
= 𝐺𝑙

𝑇 + 𝛼 ×𝐺𝑙
𝐶 ×

Mean(Abs(𝐺𝑇 ))

Mean(Abs(𝐺𝐶 )) + 𝜖
, (5)

where Mean(Abs(𝐺𝑇 )) and Mean(Abs(𝐺𝐶 )) are the network-wise

averaged absolute values for the precision gradients with respect to

𝐿𝑡𝑎𝑠𝑘 and 𝐿𝑐𝑜𝑠𝑡 , respectively, and 𝜖 is a small term to guarantee the

training stability. To effectively prevent the precision from further

growth, it is intuitive to constrain the contribution of 𝐿𝑡𝑎𝑠𝑘 and

𝐿𝑐𝑜𝑠𝑡 to 𝐺𝑙 to the same scale, so we set 𝛼 = 1 in our implemen-

tation. In this way, when the precision is too high and the target

training budget per iteration is exceeded, the cost term can effec-

tively prevent the further increase in training precision without

severely reducing the overall model precision, avoiding unrecover-

able performance degradation. It is worth noting that although we

calculate the gradient separately, it does not introduce additional

computation costs. This is because 𝐺𝑙
𝐶
can be naturally acquired

once the network structure is fixed and does not need to specifically

run backpropagation with respect to 𝐿𝑐𝑜𝑠𝑡 .

Potential hardware supports for LDP. Scalable-precision ar-

chitectures have been extensively studied [17, 20, 25] to support

adaptive-precision execution of DNNs, i.e., select different preci-

sions for different layers/iterations. In addition, it is promising to

deploy LDP on other mixed-precision DNN accelerators [18, 21].

Precision Grad =Grad(𝐿𝑇𝑎𝑠𝑘 )+

𝛼 × Grad(𝐿𝐶𝑜𝑠𝑡 ) ×
Mean(Abs(Grad(𝐿𝑇𝑎𝑠𝑘 )))

Mean(Abs(Grad(𝐿𝐶𝑜𝑠𝑡 )))

4 EXPERIMENTS

4.1 Experiment Setup

Models, datasets, and baselines. We evaluate our method on

seven models (including four ResNet-based models [16], Vision

Transformer [32], Transformer [33] and an efficient super-resolution

model, PAN [47]) and five datasets across three tasks (including

image classification on CIFAR-10/100 [19], ImageNet [7], image

super-resolution (SR) trained on DIV2K [2] and Flickr2K [31] and

evaluated on Urban-100 [40], and language modeling on WikiText-

103 [22]). Baselines: We benchmark the proposed LDP over SOTA

low precision training methods, including PFQ [11], CPT [10], and

SBM [4]. For a fair comparison, we use the quantizer proposed in

SBM [4] for all our baselines.
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Figure 3: Benchmarking LDP with the SOTA static low preci-

sion training method SBM and dynamic precision training

method PFQ in terms of model accuracy and training cost on

ResNet-20/38/74 and CIFAR10/100.

Training settings. We follow the standard training setting in

all experiments, i.e., [36] and [16] for CIFAR-10/100 and ImageNet,

respectively, [47] for SR and [3] for language modeling. Unless

specifically specified, we use a learning rate of 0.1 and an SGD

optimizer for learning the precision, i.e., 𝛽𝑙 in Eq. 1, and we set

𝑇 as 60% of the iteration-wise training cost 𝑇𝑠𝑡𝑎𝑡 of the static low

precision training baseline. For LDP, the training precision setting

FW3-8/BW8 means the range of the learnable precision is 3∼8-bit

and the gradient is quantized to 8-bit; for PFQ and CPT, we follow

the definition in their original paper [10, 11].

4.2 Benchmark with SOTA Low Precision
Training Methods

Benchmark on CIFAR-10/100. We first benchmark LDP with

two SOTA low precision training methods: (1) the static low preci-

sion training method SBM [4], and (2) the dynamic low precision

training method PFQ [11] on three different networks, i.e., ResNet-

20/38/74, under two different precision schemes, i.e., FW3-8/BW8

and FW4-8/BW8 on CIFAR-10/100 datasets. The results are shown

in Table 3, where results with the highest accuracy are marked

in bold. The accuracy improvement and training/inference cost

reduction is the difference between LDP and the strongest

baseline with the highest accuracy under the same settings.

From Table 3, we have the following observations: (1) LDP consis-

tently achieves better accuracy-training efficiency trade-offs than

all baseline methods. Specifically, with 20.4% ∼ 39.6% less train-

ing cost, LDP can achieve a comparable or even better accuracy

(−0.16% ∼ +0.56%) on CIFAR-10 and CIFAR-100 datasets; (2) LDP’s

learned precision naturally boosts the inference efficiency, reducing

the inference cost by 29.0% ∼ 68.3% compared with models trained

with SBM or PFQ.

To further evaluate the overall performance of LDP, we evaluate

LDP’s performance under different 𝑇 ∈ [0.5𝑇𝑠𝑡𝑎𝑡 , 0.7𝑇𝑠𝑡𝑎𝑡 ]. The

results are shown in Fig. 3 and we can observe that: (1) the training

cost can be effectively controlled by the value of 𝑇 , indicating the

Table 4: The test accuracy, training cost, and trained models’

inference cost of ResNet-18 and DeiT-Tiny on ImageNet.

Model Method Precision Acc(%)
Training Cost Inference Cost

(GBitOps) (GBitOps)

ResNet-18

SBM FW8/BW8 69.60 2.86e9 1.46e1

CPT FW4-8/BW8 69.64 1.99e9 1.46e1

PFQ FW4-8/BW6-8 69.12 2.47e9 1.46e1

LDP FW4-8/BW8 69.62 1.83e9 1.01e1

Improv. -0.02 -8.1% -30.8%

DeiT-Tiny

SBM FW8/BW8 71.71 4.74e9 0.96e1

CPT FW4-8/BW8 71.84 3.29e9 0.96e1

PFQ FW4-8/BW6-8 71.70 3.96e9 0.96e1

LDP FW4-8/BW8 71.92 3.08e9 0.67e1

Improv. +0.08 -6.4% -30.2%

Table 5: The PSNR and inference cost of PAN on Urban-100.

Method Precision Urban-100
Inference Cost

(GBitOps)

Half-Precision FW16/BW16 26.01 6.43e1

PFQ FW8-16/BW16 25.99 6.43e1

CPT FW8-16/BW16 26.01 6.43e1

LDP FW8-16/BW16 26.03 5.22e1

Improv. +0.02 -18.8%

Table 6: The test perplexity (the lower, the better) and training

cost of Transformer on WikiText-103.

Method Precision Perplexity Training Cost (GBitOps)

SBM FW8/BW8 31.77 9.87e5

LDP FW4-8/BW8 30.81 7.31e5

Improv. -0.96 -25.9%

easiness to fit LDP onto different training tasks with varied training

budgets, and (2) LDP keeps achieving the best accuracy-efficiency

trade-off under different training cost budgets.

Benchmark on ImageNet. We further verify the scalability

of LDP on the more challenging ImageNet dataset across different

model architectures. As shown in Table 4, LDP still achieves com-

parable accuracy with less training cost compared with the most

competitive baseline methods. Specifically, compared with CPT,

LDP achieves a 0.08% higher accuracy with 10.6% less training cost

to train DeiT-Tiny under FW3-8/BW8. Moreover, the LDP trained

models are still more efficient than models trained with other base-

line methods with an improvement in inference efficiency ranging

between 11.0% ∼ 35.2%.

Benchmark on SR task. We also evaluate LDP on the SR task.

It is noteworthy that given the nature of the relatively smaller

gradient of the SR task, it is non-trivial to train the SR models with

reduced precision. We only quantize the feature extraction part

in PAN with a precision scheme of FW8-16/BW16 and a precision

learning rate of 20 and 𝑇 = 0.85𝑇𝑠𝑡𝑎𝑡 . The results are shown in

Table 5 that LDP achieves a 0.02dB higher peak signal-to-noise

ratio (PSNR) with 18.8% less inference cost on Urban-100 compared

with the original half-precision training, showing LDP’s ability in

further boosting models performance.
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and temporarily, pushing forward the frontier of the trade-off be-

tween task performances and training cost.
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