
LDP: Learnable Dynamic Precision for Efficient Deep Neural
Network Training and Inference

Zhongzhi Yu
zy42@rice.edu

Rice University

Houston, Texas, USA

Yonggan Fu
yf22@rice.edu

Rice University

Houston, Texas, USA

Shang Wu
sw99@rice.edu

Rice University

Houston, Texas, USA

Mengquan Li
ml121@rice.edu

Rice University

Houston, Texas, USA

Haoran You
hy34@rice.edu

Rice University

Houston, Texas, USA

Yingyan Lin
yingyan.lin@rice.edu

Rice University

Houston, Texas, USA

ABSTRACT

Low precision deep neural network (DNN) training is one of the

most effective techniques for boosting DNNs’ training efficiency,

as it trims down the training cost from the finest bit level. While

existing works mostly fix the model precision during the whole

training process, a few pioneering works have shown that dynamic

precision schedules help DNNs converge to a better accuracy while

leading to a lower training cost than their static precision training

counterparts. However, existing dynamic low precision training

methods rely on manually designed precision schedules to achieve

advantageous efficiency and accuracy trade-offs, limiting their more

comprehensive practical applications and achievable performance.

To this end, we propose LDP, a Learnable Dynamic Precision DNN

training framework that can automatically learn a temporally and

spatially dynamic precision schedule during training towards op-

timal accuracy and efficiency trade-offs. It is worth noting that

LDP-trained DNNs are by nature efficient during inference. Fur-

thermore, we visualize the resulting temporal and spatial precision

schedule and distribution of LDP trained DNNs on different tasks to

better understand the corresponding DNNs’ characteristics at differ-

ent training stages and DNN layers both during and after training,

drawing insights for promoting further innovations. Extensive ex-

periments and ablation studies (seven networks, five datasets, and

three tasks) show that the proposed LDP consistently outperforms

state-of-the-art (SOTA) low precision DNN training techniques in

terms of training efficiency and achieved accuracy trade-offs. For

example, in addition to having the advantage of being automated,

our LDP achieves a 0.31% higher accuracy with a 39.1% lower com-

putational cost when training ResNet-20 on CIFAR-10 as compared

with the best SOTA method.

ACM Reference Format:

Zhongzhi Yu, Yonggan Fu, ShangWu,Mengquan Li, Haoran You, and Yingyan

Lin. 2022. LDP: Learnable Dynamic Precision for Efficient Deep Neural Net-

work Training and Inference. In Proceedings of tinyML Research Symposium

(tinyML Research Symposium’22). ACM, New York, NY, USA, 8 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

tinyML Research Symposium’22, March 2022, San Jose, CA

© 2022 Copyright held by the owner/author(s).

Pr
ec

is
io

n

Epoch

CPT

LDP

SBM

PFQ

D
eeper

ResNet-38 Block-wise Average PrecisionFW6/BW8 FW7/BW8 FW8/BW8

...

(a) (b)
Epoch

Layer 1

Layer N

Figure 1: (a) A conceptual view of our proposed Learnable

Dynamic Precision DNN training framework vs. (1) static

low precision training (SBM [4]), (2) dynamic low precision

training, (PFQ [11] and (3) CPT [10]). Here, each row shows

the precision schedule for the whole model of the baselines,

where LDP adopts a learned layer-wise dynamic precision

schedule to optimally balance the training efficiency and

accuracy trade-off; and (b) LDP’s learned spatial precision

distribution and temporal precision schedule for ResNet-

38@CIFAR-100, where different curves correspond to spatial

precision distributions of different residual blocks andthe

fractional precision is due to the block-wise average and

moving average among iterations for better visualization.

1 INTRODUCTION

The recent breakthroughs achieved by deep neural networks (DNNs)

rely on massive training data and huge model sizes, imposing pro-

hibitive training costs that have raised environmental concerns and

standing at odds with the growing demand for on-device training

to maintain the model accuracy under dynamic real-world envi-

ronments. For trimming down the training cost, one of the most

promising approaches is low precision training, which adopts a

precision lower than 32-bit floating-point for model weights, ac-

tivations, and gradients during training [4, 30, 50] to reduce the

training cost at the most fine-grained granularity. Additionally,

their resulting DNNs by nature have a lower inference cost than

their floating-point counterparts.

While various low precision training techniques have been pro-

posed to boost DNNs’ training efficiency [4, 30, 42, 50], most of

these techniques adopt a fixed precision allocation strategy through-

out the whole training process, leaving a large room for further

LDP: Learnable Dynamic Precision for Efficient Deep Neural Network Training and Inference tinyML Research Symposium’22, March 2022, San Jose, CA

Table 1: The test accuracy of ResNet-38 trained on CIFAR-100 with different layer-wise precision schedules through the training

process. In each training stage, [𝑎, 𝑏, 𝑐] represents assigning 𝑎-bit, 𝑏-bit, and 𝑐-bit to ResNet-38’s first three blocks, respectively.

Training Stages
Savings over static (%) Accuracy/%

[0-th,30-th] [30-th,60-th] [60-th,90-th] [90-th,160-th]

[4, 6, 8] [6, 8, 4] [8, 4, 6] [8, 8, 8] 1.10 × 10
8

68.88 ± 0.21

[6, 8, 4] [8, 4, 6] [4, 6, 8] [8, 8, 8] 1.10 × 10
8

69.63 ± 0.14

[8, 4, 6] [4, 6, 8] [6, 8, 4] [8, 8, 8] 1.10 × 10
8

69.36 ± 0.16

Table 2: The test accuracy of ResNet-38 on CIFAR-100 with

different frequencies for random precision change.

𝑘 1 10 100 Static

Accuracy/% 68.27 ± 0.32 69.71 ± 0.26 69.40 ± 0.24 69.62 ± 0.10

Training Cost/
1.10 × 10

8
1.10 × 10

8
1.07 × 10

8
1.32 × 10

8

GBitOPs

require different precision schedules during training. Therefore,

identifying the optimal precision allocation can further optimize

the efficiency-accuracy trade-offs. However, it is challenging to de-

cide the best spatial/temporal precision allocation strategy during

training due to the huge search space as shown in the following

experiments.

Preliminary quantitative evaluation. Settings: We conduct

two experiments to (1) evaluate the impact of layer-wise preci-

sion schedules in Table 1, and (2) evaluate how the precision

change frequency affects the trained DNN’s accuracy in Ta-

ble 2. We train ResNet-38 on CIFAR-100 for 160 epochs following

the training setting in [36] for both experiments. Specifically, in

Table 1, we divide the training into four stages: [0-th, 30-th], [30-th,

60-th], [60-th, 90-th], and [90-th, 160-th], and assign different pre-

cisions to different blocks of ResNet-38 in the first three training

stages and adopt a static 8-bit low precision in the last training stage,

in order to evaluate the impact of assigning different precisions

to different layers during training under the same total training

budget of GBitOPs (Gigabit operations). In Table 2, we randomly

assign a precision value from [4, 6, 8]-bit to all layers of the DNNs

every 𝑘 iterations to quantize the DNN weights, activations, and

gradients in the first 90 training epochs. In this experiment, we

evaluate results with different 𝑘 values in [1, 10, 100]. We report

the average accuracy and the standard deviation of three runs for

all experiments above.

Results: We observe that (1) in Table 1, different precision sched-

ules through the training process vary the final accuracy by as

high as 0.75% under the same total training cost; and (2) in Ta-

ble 2, the best precision change frequency leads to (1) as high as a

1.44% higher accuracy over other frequencies and (2) a 0.09% higher

accuracy with a 16% lower training cost than the static precision

training baseline.

Analysis: This set of experiments shows that (1) given the same

total training cost budget, how to allocate the training cost budget

by spatially and temporally scheduling the training precision during

training can significantly impact the finally achieved model accu-

racy; (2) the precision changing frequency also affects the achieved

accuracy and even a naive randomly generated precision schedule

with an adequately selected precision changing frequency can of-

fer a better training efficiency; and (3) there exists no golden rule

for determining the optimal spatial/temporal precision schedule,

which highly relies on manual hyper-parameter tuning in SOTA

methods [10, 11, 24], and it is challenging to automatically derive

the optimal spatial/temporal schedule of training precision given

the huge space of layer-wise precision schedule.

3.2 The Proposed LDP Framework

Existing mixed-precision networks rely on costly trial-and-error

methods (e.g., reinforcement learning-based [35] and evolutionary-

based [44] ones) to determine the layer-wise precision. It is thus

computationally impractical to apply thesemethods in each training

iteration. Therefore, we propose to make the precision be aware

of training states via jointly learning the layer-wise precision with

the model weights in a differentiable manner.

As the precision itself is discrete and non-differentiable to the loss

function, we introduce a continuous layer-wise learnable parameter

𝛽𝑙 for each layer 𝑙 with a quantization step size 𝑠𝑙 defined as:

𝑠𝑙 =
𝑅𝑟𝑎𝑛𝑔𝑒

2Round(𝛽
𝑙×𝑁) − 1

, (1)

where 𝑅𝑟𝑎𝑛𝑔𝑒 is the dynamic range of input parameters, 𝑁 is the

range of the available precision, and Round(.) indicates rounding

the value to the nearest integer. Given a full precision value 𝐼 at

layer 𝑙 , its quantized counterpart 𝑄 with 𝑠𝑙 can be defined as:

𝑄 = Round(
𝐼 − 𝐼𝑍𝑒𝑟𝑜𝑃𝑜𝑖𝑛𝑡

𝑠𝑙
) + 𝐼𝑍𝑒𝑟𝑜𝑃𝑜𝑖𝑛𝑡 , (2)

where 𝐼𝑍𝑒𝑟𝑜𝑃𝑜𝑖𝑛𝑡 is an input-dependent parameter for normalizing

the inputs. In this way, 𝛽𝑙 can be integrated into DNNs’ compu-

tational flow and updated with respect to the loss function in a

differentiable manner.

Loss function. As a higher precision favors more precise gra-

dients and thus increased accuracy, directly updating the afore-

mentioned 𝛽𝑙 in each layer 𝑙 with respect to the task loss 𝐿𝑡𝑎𝑠𝑘
only leads to a monotony increase of 𝛽𝑙 and thus a higher training

cost. This conflicts with the goal of LDP, which is to learn a layer-

wise dynamic precision schedule to better allocate the training cost

within the network and during the training process. To address this

discrepancy, we incorporate a cost loss 𝐿𝑐𝑜𝑠𝑡 into the network’s loss

function to control the trade-off balance between model efficiency

and accuracy, where 𝐿𝑐𝑜𝑠𝑡 is defined as:

𝐿𝑐𝑜𝑠𝑡 =

{

0, if 𝐶 < 𝑇

𝐶, if 𝐶 ≥ 𝑇
(3)

tinyML Research Symposium’22, March 2022, San Jose, CA Zhongzhi Yu, Yonggan Fu, Shang Wu, Mengquan Li, Haoran You, and Yingyan Lin

Table 3: The test accuracy, computational cost, and trained models’ inference cost of ResNet-20/38/74 on CIFAR-10/100.

Datasets CIFAR-100 CIFAR-10

Model Method Precision Acc(%) Training Cost(GBitOps) Inference Cost(GBitOps) Acc(%) Training Cost(GBitOps) Inference Cost(GBitOps)

ResNet-20

SBM FW8/BW8 67.24 0.62e8 1.31 91.86 0.62e8 1.31

PFQ FW3-8/BW8 67.31 0.50e8 1.31 91.75 0.50e8 1.31

LDP FW3-8/BW8 67.88 0.41e8 0.71 92.08 0.41e8 0.70

Improv. +0.57 -18.0% -45.8% +0.22 -33.9% -46.6%

SBM FW8/BW8 67.24 0.62e8 1.31 91.86 0.62e8 1.31

PFQ FW4-8/BW8 67.47 0.51e8 1.31 91.66 0.50e8 1.31

LDP FW4-8/BW8 67.64 0.41e8 0.66 91.86 0.41e8 0.70

Improv. +0.17 -19.6% -49.6% +0.00 -33.9% -46.6%

ResNet-38

SBM FW8/BW8 69.38 1.33e8 2.69 92.69 1.33e8 2.69

PFQ FW3-8/BW8 69.50 1.04e8 2.69 92.55 1.05e8 2.69

LDP FW3-8/BW8 69.77 0.87e8 1.35 92.73 0.86e8 1.36

Improv. +0.27 -16.3% -49.8% +0.04 -35.3% -49.4%

SBM FW8/BW8 69.38 1.33e8 2.69 92.69 1.33e8 2.69

PFQ FW4-8/BW8 69.72 1.07e8 2.69 92.70 1.08e8 2.69

LDP FW4-8/BW8 69.81 0.87e8 1.33 92.69 0.86e8 1.37

Improv. +0.09 -18.7% -50.6% -0.01 -20.4% -49.1%

ResNet-74

SBM FW8/BW8 71.05 2.67e8 5.42 93.30 2.67e8 5.42

PFQ FW3-8/BW8 71.07 2.03e8 5.42 92.74 2.11e8 5.42

LDP FW3-8/BW8 71.28 1.72e8 2.83 93.63 1.72e8 2.82

Improv. +0.21 -15.3% -47.8% +0.33 -35.6% -48.0%

SBM FW8/BW8 71.05 2.67e8 5.42 93.30 2.67e8 5.42

PFQ FW4-8/BW8 71.15 2.16e8 5.42 93.45 2.21e8 5.42

LDP FW4-8/BW8 71.21 1.72e8 2.78 93.50 1.73e8 2.80

Improv. +0.06 -20.4% -48.7% -0.05 -21.7% -48.3%

where 𝑇 is the target iteration-wise training cost and 𝐶 is the for-

ward pass cost in the current iteration defined as:

𝐶 =

𝐿
∑︁

𝑙=1

𝑂𝑙 ×
Round(𝛽𝑙 × 𝑁)

32

2

, (4)

where𝑂𝑙 is the required BitOPs for a full precision forward pass of

layer 𝑙 . However, the scale of 𝐿𝑡𝑎𝑠𝑘 and 𝐿𝑐𝑜𝑠𝑡 can vary significantly

throughout the training process and thus may require a tedious

finetuning process to balance these two loss terms when applying

LDP to different tasks. Thus, we adopt a balance factor 𝛼 to balance

the gradient of each layer’s 𝛽𝑙 with respect to 𝐿𝑡𝑎𝑠𝑘 and 𝐿𝑐𝑜𝑠𝑡 .

Specifically, the overall precision gradients𝐺𝑙 for layer 𝑙 is defined

as:

𝐺𝑙
= 𝐺𝑙

𝑇 + 𝛼 ×𝐺𝑙
𝐶 ×

Mean(Abs(𝐺𝑇))

Mean(Abs(𝐺𝐶)) + 𝜖
, (5)

where Mean(Abs(𝐺𝑇)) and Mean(Abs(𝐺𝐶)) are the network-wise

averaged absolute values for the precision gradients with respect to

𝐿𝑡𝑎𝑠𝑘 and 𝐿𝑐𝑜𝑠𝑡 , respectively, and 𝜖 is a small term to guarantee the

training stability. To effectively prevent the precision from further

growth, it is intuitive to constrain the contribution of 𝐿𝑡𝑎𝑠𝑘 and

𝐿𝑐𝑜𝑠𝑡 to 𝐺𝑙 to the same scale, so we set 𝛼 = 1 in our implemen-

tation. In this way, when the precision is too high and the target

training budget per iteration is exceeded, the cost term can effec-

tively prevent the further increase in training precision without

severely reducing the overall model precision, avoiding unrecover-

able performance degradation. It is worth noting that although we

calculate the gradient separately, it does not introduce additional

computation costs. This is because 𝐺𝑙
𝐶
can be naturally acquired

once the network structure is fixed and does not need to specifically

run backpropagation with respect to 𝐿𝑐𝑜𝑠𝑡 .

Potential hardware supports for LDP. Scalable-precision ar-

chitectures have been extensively studied [17, 20, 25] to support

adaptive-precision execution of DNNs, i.e., select different preci-

sions for different layers/iterations. In addition, it is promising to

deploy LDP on other mixed-precision DNN accelerators [18, 21].

Precision Grad =Grad(𝐿𝑇𝑎𝑠𝑘)+

𝛼 × Grad(𝐿𝐶𝑜𝑠𝑡) ×
Mean(Abs(Grad(𝐿𝑇𝑎𝑠𝑘)))

Mean(Abs(Grad(𝐿𝐶𝑜𝑠𝑡)))

4 EXPERIMENTS

4.1 Experiment Setup

Models, datasets, and baselines. We evaluate our method on

seven models (including four ResNet-based models [16], Vision

Transformer [32], Transformer [33] and an efficient super-resolution

model, PAN [47]) and five datasets across three tasks (including

image classification on CIFAR-10/100 [19], ImageNet [7], image

super-resolution (SR) trained on DIV2K [2] and Flickr2K [31] and

evaluated on Urban-100 [40], and language modeling on WikiText-

103 [22]). Baselines: We benchmark the proposed LDP over SOTA

low precision training methods, including PFQ [11], CPT [10], and

SBM [4]. For a fair comparison, we use the quantizer proposed in

SBM [4] for all our baselines.

LDP: Learnable Dynamic Precision for Efficient Deep Neural Network Training and Inference tinyML Research Symposium’22, March 2022, San Jose, CA

ResNet20@Cifar10 ResNet38@Cifar10 ResNet74@Cifar10

PFQ FW3-6/BW6-8
LDP FW3-6/BW8

SBM FW6/BW8

ResNet20@Cifar100 ResNet38@Cifar100 ResNet74@Cifar100

PFQ FW3-8/BW6-8
LDP FW3-8/BW8

SBM FW8/BW8
PFQ FW4-8/BW6-8
LDP FW4-8/BW8

SBM FW8/BW8

+0.09% Acc
-19.13% Ops

+0.44% Acc
-19.05% Ops

+0.33% Acc
 -35.37% Ops

+0.13% Acc
-29.34% Ops

+0.23% Acc
-39.98% Ops

+0.31% Acc
-39.13% Ops

Figure 3: Benchmarking LDP with the SOTA static low preci-

sion training method SBM and dynamic precision training

method PFQ in terms of model accuracy and training cost on

ResNet-20/38/74 and CIFAR10/100.

Training settings. We follow the standard training setting in

all experiments, i.e., [36] and [16] for CIFAR-10/100 and ImageNet,

respectively, [47] for SR and [3] for language modeling. Unless

specifically specified, we use a learning rate of 0.1 and an SGD

optimizer for learning the precision, i.e., 𝛽𝑙 in Eq. 1, and we set

𝑇 as 60% of the iteration-wise training cost 𝑇𝑠𝑡𝑎𝑡 of the static low

precision training baseline. For LDP, the training precision setting

FW3-8/BW8 means the range of the learnable precision is 3∼8-bit

and the gradient is quantized to 8-bit; for PFQ and CPT, we follow

the definition in their original paper [10, 11].

4.2 Benchmark with SOTA Low Precision
Training Methods

Benchmark on CIFAR-10/100. We first benchmark LDP with

two SOTA low precision training methods: (1) the static low preci-

sion training method SBM [4], and (2) the dynamic low precision

training method PFQ [11] on three different networks, i.e., ResNet-

20/38/74, under two different precision schemes, i.e., FW3-8/BW8

and FW4-8/BW8 on CIFAR-10/100 datasets. The results are shown

in Table 3, where results with the highest accuracy are marked

in bold. The accuracy improvement and training/inference cost

reduction is the difference between LDP and the strongest

baseline with the highest accuracy under the same settings.

From Table 3, we have the following observations: (1) LDP consis-

tently achieves better accuracy-training efficiency trade-offs than

all baseline methods. Specifically, with 20.4% ∼ 39.6% less train-

ing cost, LDP can achieve a comparable or even better accuracy

(−0.16% ∼ +0.56%) on CIFAR-10 and CIFAR-100 datasets; (2) LDP’s

learned precision naturally boosts the inference efficiency, reducing

the inference cost by 29.0% ∼ 68.3% compared with models trained

with SBM or PFQ.

To further evaluate the overall performance of LDP, we evaluate

LDP’s performance under different 𝑇 ∈ [0.5𝑇𝑠𝑡𝑎𝑡 , 0.7𝑇𝑠𝑡𝑎𝑡]. The

results are shown in Fig. 3 and we can observe that: (1) the training

cost can be effectively controlled by the value of 𝑇 , indicating the

Table 4: The test accuracy, training cost, and trained models’

inference cost of ResNet-18 and DeiT-Tiny on ImageNet.

Model Method Precision Acc(%)
Training Cost Inference Cost

(GBitOps) (GBitOps)

ResNet-18

SBM FW8/BW8 69.60 2.86e9 1.46e1

CPT FW4-8/BW8 69.64 1.99e9 1.46e1

PFQ FW4-8/BW6-8 69.12 2.47e9 1.46e1

LDP FW4-8/BW8 69.62 1.83e9 1.01e1

Improv. -0.02 -8.1% -30.8%

DeiT-Tiny

SBM FW8/BW8 71.71 4.74e9 0.96e1

CPT FW4-8/BW8 71.84 3.29e9 0.96e1

PFQ FW4-8/BW6-8 71.70 3.96e9 0.96e1

LDP FW4-8/BW8 71.92 3.08e9 0.67e1

Improv. +0.08 -6.4% -30.2%

Table 5: The PSNR and inference cost of PAN on Urban-100.

Method Precision Urban-100
Inference Cost

(GBitOps)

Half-Precision FW16/BW16 26.01 6.43e1

PFQ FW8-16/BW16 25.99 6.43e1

CPT FW8-16/BW16 26.01 6.43e1

LDP FW8-16/BW16 26.03 5.22e1

Improv. +0.02 -18.8%

Table 6: The test perplexity (the lower, the better) and training

cost of Transformer on WikiText-103.

Method Precision Perplexity Training Cost (GBitOps)

SBM FW8/BW8 31.77 9.87e5

LDP FW4-8/BW8 30.81 7.31e5

Improv. -0.96 -25.9%

easiness to fit LDP onto different training tasks with varied training

budgets, and (2) LDP keeps achieving the best accuracy-efficiency

trade-off under different training cost budgets.

Benchmark on ImageNet. We further verify the scalability

of LDP on the more challenging ImageNet dataset across different

model architectures. As shown in Table 4, LDP still achieves com-

parable accuracy with less training cost compared with the most

competitive baseline methods. Specifically, compared with CPT,

LDP achieves a 0.08% higher accuracy with 10.6% less training cost

to train DeiT-Tiny under FW3-8/BW8. Moreover, the LDP trained

models are still more efficient than models trained with other base-

line methods with an improvement in inference efficiency ranging

between 11.0% ∼ 35.2%.

Benchmark on SR task. We also evaluate LDP on the SR task.

It is noteworthy that given the nature of the relatively smaller

gradient of the SR task, it is non-trivial to train the SR models with

reduced precision. We only quantize the feature extraction part

in PAN with a precision scheme of FW8-16/BW16 and a precision

learning rate of 20 and 𝑇 = 0.85𝑇𝑠𝑡𝑎𝑡 . The results are shown in

Table 5 that LDP achieves a 0.02dB higher peak signal-to-noise

ratio (PSNR) with 18.8% less inference cost on Urban-100 compared

with the original half-precision training, showing LDP’s ability in

further boosting models performance.

LDP: Learnable Dynamic Precision for Efficient Deep Neural Network Training and Inference tinyML Research Symposium’22, March 2022, San Jose, CA

and temporarily, pushing forward the frontier of the trade-off be-

tween task performances and training cost.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation (NSF)

through the MLWiNS program (Award number: 2003137) and the

RTML program (Award number: 1937592).

REFERENCES
[1] Alessandro Achille, Matteo Rovere, and Stefano Soatto. 2018. Critical

learning periods in deep networks. In International Conference on Learning
Representations.

[2] Eirikur Agustsson and Radu Timofte. 2017. Ntire 2017 challenge on single image
super-resolution: Dataset and study. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops. 126ś135.

[3] Alexei Baevski and Michael Auli. 2018. Adaptive input representations for neural
language modeling. arXiv preprint arXiv:1809.10853 (2018).

[4] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. 2018. Scalable methods
for 8-bit training of neural networks. arXiv preprint arXiv:1805.11046 (2018).

[5] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree
Anandkumar. 2018. signSGD: Compressed optimisation for non-convex problems.
In International Conference on Machine Learning. PMLR, 560ś569.

[6] Jungwook Choi, ZhuoWang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijay-
alakshmi Srinivasan, and Kailash Gopalakrishnan. 2018. Pact: Parameterized clip-
ping activation for quantized neural networks. arXiv preprint arXiv:1805.06085
(2018).

[7] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248ś255.

[8] Ahmed T Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Amir
Yazdanbakhsh, and Hadi Esmaeilzadeh. 2020. ReLeQ: A Reinforcement Learning
Approach for Automatic Deep Quantization of Neural Networks. IEEE Micro 40,
5 (2020), 37ś45.

[9] Julian Faraone, Nicholas Fraser, Michaela Blott, and Philip HW Leong. 2018.
Syq: Learning symmetric quantization for efficient deep neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 4300ś4309.

[10] Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, and
Yingyan Lin. 2021. CPT: Efficient Deep Neural Network Training via Cyclic
Precision. arXiv preprint arXiv:2101.09868 (2021).

[11] Yonggan Fu, Haoran You, Yang Zhao, YueWang, Chaojian Li, Kailash Gopalakrish-
nan, Zhangyang Wang, and Yingyan Lin. 2020. Fractrain: Fractionally squeezing
bit savings both temporally and spatially for efficient dnn training. arXiv preprint
arXiv:2012.13113 (2020).

[12] Klaus Greff, Rupesh K Srivastava, and Jürgen Schmidhuber. 2016. Highway
and residual networks learn unrolled iterative estimation. arXiv preprint
arXiv:1612.07771 (2016).

[13] Jianyuan Guo, Kai Han, HanWu, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe
Wang. 2021. Cmt: Convolutional neural networks meet vision transformers. arXiv
preprint arXiv:2107.06263 (2021).

[14] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep learningwith limited numerical precision. In International conference
on machine learning. PMLR, 1737ś1746.

[15] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[16] K. He et al. 2016. Deep residual learning for image recognition. In CVPR. 770ś778.
[17] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and An-

dreas Moshovos. 2016. Stripes: Bit-serial deep neural network computing. In
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1ś12.

[18] ChangHyeon Kim, JinMook Lee, SangHoon Kang, Sang Yeob Kim, Dong Seok Im,
and Hoi Jun Yoo. 2020. 1b-16b variable bit precision dnn processor for emotional
hri system in mobile devices. Journal of Integrated Circuits and Systems 6, 3
(2020).

[19] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[20] Jinmook Lee, Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sangyeob Kim,
and Hoi-Jun Yoo. 2018. UNPU: An energy-efficient deep neural network acceler-
ator with fully variable weight bit precision. IEEE Journal of Solid-State Circuits
54, 1 (2018), 173ś185.

[21] Jinsu Lee, Juhyoung Lee, Donghyeon Han, Jinmook Lee, Gwangtae Park, and
Hoi-Jun Yoo. 2019. 7.7 LNPU: A 25.3 TFLOPS/W sparse deep-neural-network

learning processor with fine-grained mixed precision of FP8-FP16. In 2019 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, 142ś144.

[22] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017. Regularizing
and optimizing LSTM language models. arXiv preprint arXiv:1708.02182 (2017).

[23] Namuk Park and Songkuk Kim. 2022. How Do Vision Transformers Work? arXiv
preprint arXiv:2202.06709 (2022).

[24] Aditya Rajagopal, Diederik Vink, Stylianos Venieris, and Christos-Savvas Bouga-
nis. 2020. Multi-Precision Policy Enforced Training (MuPPET): A precision-
switching strategy for quantised fixed-point training of CNNs. In International
Conference on Machine Learning. PMLR, 7943ś7952.

[25] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas
Chandra, and Hadi Esmaeilzadeh. 2018. Bit fusion: Bit-level dynamically com-
posable architecture for accelerating deep neural network. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). IEEE,
764ś775.

[26] Jianghao Shen, Yue Wang, Pengfei Xu, Yonggan Fu, Zhangyang Wang, and
Yingyan Lin. 2020. Fractional skipping: Towards finer-grained dynamic cnn infer-
ence. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
5700ś5708.

[27] Leslie N Smith. 2017. Cyclical learning rates for training neural networks. In
2017 IEEE winter conference on applications of computer vision (WACV). IEEE,
464ś472.

[28] Zhuoran Song, Bangqi Fu, Feiyang Wu, Zhaoming Jiang, Li Jiang, Naifeng
Jing, and Xiaoyao Liang. 2020. DRQ: dynamic region-based quantization for
deep neural network acceleration. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 1010ś1021.

[29] Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob
Uszkoreit, and Lucas Beyer. 2021. How to train your ViT? Data, Augmentation,
and Regularization in Vision Transformers. arXiv preprint arXiv:2106.10270
(2021).

[30] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkatara-
mani, Vijayalakshmi Viji Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash
Gopalakrishnan. 2019. Hybrid 8-bit floating point (HFP8) training and inference
for deep neural networks. Advances in neural information processing systems
32 (2019), 4900ś4909.

[31] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei
Zhang. 2017. Ntire 2017 challenge on single image super-resolution: Methods and
results. In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops. 114ś125.

[32] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. 2021. Training data-efficient image transformers &
distillation through attention. In International Conference on Machine Learning.
PMLR, 10347ś10357.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998ś6008.

[34] Andreas Veit, Michael Wilber, and Serge Belongie. 2016. Residual net-
works behave like ensembles of relatively shallow networks. arXiv preprint
arXiv:1605.06431 (2016).

[35] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. Haq: Hardware-
aware automated quantization with mixed precision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8612ś8620.

[36] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. 2018.
Skipnet: Learning dynamic routing in convolutional networks. In Proceedings of
the European Conference on Computer Vision (ECCV). 409ś424.

[37] Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei Xu, Tan Nguyen, Richard
Baraniuk, Zhangyang Wang, and Yingyan Lin. 2020. Dual dynamic inference:
Enabling more efficient, adaptive, and controllable deep inference. IEEE Journal
of Selected Topics in Signal Processing 14, 4 (2020), 623ś633.

[38] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, and Hai
Li. 2017. Terngrad: Ternary gradients to reduce communication in distributed
deep learning. arXiv preprint arXiv:1705.07878 (2017).

[39] Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok Veeraraghavan,
and Yingyan Lin. 2018. Deep k-means: Re-training and parameter sharing with
harder cluster assignments for compressing deep convolutions. In International
Conference on Machine Learning. PMLR, 5363ś5372.

[40] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. 2010. Image super-
resolution via sparse representation. IEEE transactions on image processing 19,
11 (2010), 2861ś2873.

[41] Linjie Yang and Qing Jin. 2020. FracBits: Mixed Precision Quantization via
Fractional Bit-Widths. arXiv preprint arXiv:2007.02017 (2020).

[42] Yukuan Yang, Lei Deng, Shuang Wu, Tianyi Yan, Yuan Xie, and Guoqi Li. 2020.
Training high-performance and large-scale deep neural networks with full 8-bit
integers. Neural Networks 125 (2020), 70ś82.

[43] Zhongzhi Yu, Yemin Shi, Tiejun Huang, and Yizhou Yu. 2020. Kernel Quantization
for Efficient Network Compression. arXiv preprint arXiv:2003.05148 (2020).

[44] Yong Yuan, Chen Chen, Xiyuan Hu, and Silong Peng. 2020. Evoq: Mixed pre-
cision quantization of dnns via sensitivity guided evolutionary search. In 2020

tinyML Research Symposium’22, March 2022, San Jose, CA Zhongzhi Yu, Yonggan Fu, Shang Wu, Mengquan Li, Haoran You, and Yingyan Lin

International Joint Conference on Neural Networks (IJCNN). IEEE, 1ś8.
[45] Chiyuan Zhang, Samy Bengio, and Yoram Singer. 2019. Are all layers created

equal? arXiv preprint arXiv:1902.01996 (2019).
[46] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. 2018. Lq-nets:

Learned quantization for highly accurate and compact deep neural networks. In
Proceedings of the European conference on computer vision (ECCV). 365ś382.

[47] Hengyuan Zhao, Xiangtao Kong, Jingwen He, Yu Qiao, and Chao Dong. 2020.
Efficient image super-resolution using pixel attention. In European Conference
on Computer Vision. Springer, 56ś72.

[48] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. Incre-
mental network quantization: Towards lossless cnns with low-precision weights.

arXiv preprint arXiv:1702.03044 (2017).
[49] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang,

Qibin Hou, and Jiashi Feng. 2021. Deepvit: Towards deeper vision transformer.
arXiv preprint arXiv:2103.11886 (2021).

[50] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
2016. Dorefa-net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

[51] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. 2018.
Towards effective low-bitwidth convolutional neural networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 7920ś7928.

	Abstract
	1 Introduction
	2 Related Works
	3 The Proposed LDP Framework
	3.1 Motivating Observations
	3.2 The Proposed LDP Framework

	4 Experiments
	4.1 Experiment Setup
	4.2 Benchmark with SOTA Low Precision Training Methods
	4.3 Visualization of LDP's Learned Precision

	5 Conclusion
	References

