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Abundance spectra of (CO,)y clusters up to N ~ 500 acquired under a wide range of adiabatic
expansion conditions are analyzed within the evaporative ensemble framework. The analysis reveals
that the cluster stability functions display a strikingly universal pattern for all expansion conditions. These
patterns reflect the inherent properties of individual clusters. From this analysis the size-dependent
shell identified,
cuboctahedral packing ordering for sizes above N ~ 130 is confirmed. It is demonstrated that a few
percent variation in the dissociation energies translates into significant abundance variations, especially

cluster binding energies are determined, and subshell closing sizes are and

rsc.li/pccp for the larger clusters.

1 Introduction

One of the most striking phenomena associated with clusters is
the strong non-monotonic variation of their properties with
size. Such finite size effects have been observed in a number of
different types of clusters, composed by materials as diverse
as atoms of noble gases’ or simple metals,* as well as in the
all-carbon fullerenes.” The variations reflect the shell structure
of the clusters, which can be of electronic nature®® or arising
out of the packing of atoms."°

The shell structures in these systems were discovered in
molecular beams, manifested in the highly irregular variation
of the abundances with cluster size. Shell structure appears in
mass abundance spectra because the size-to-size intensity
variations reflect the cluster binding energies. The connection
between cluster stabilities (i.e., binding energies) and their
abundances is, however, not elementary, and cannot be under-
stood as simple equilibrium distributions with the temperature
set by the source temperature. In many cases involving cluster
beams one finds that the underlying process that shapes
the size-to-size abundance variations is that of evaporative
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cascades: internally excited (hot) clusters undergo a series of
evaporation steps resulting in a detected population where the
high cluster intensities reflect lower than average evaporation
rates and vice versa. The high intensity clusters, often labeled
“magic numbers”, are frequently assigned a special stability.
This is, however, a simplified view that will only hold in special
situations, as the general theory below shows, and this must
be taken into account in the quantitative analysis of cluster
binding energies extracted from such spectra.

Importantly, just a few evaporative steps are sufficient for
the population patterns to acquire the shapes that characterize
the species.””® These shapes make it possible to use measure-
ments of relative abundances to extract quantitative informa-
tion about the monomer-by-monomer variations of cluster
binding energies with size. The connection between abun-
dances and binding energies was derived in ref. 8 and is
discussed at length in ref. 9. It has been applied previously to
analyze mass spectra of sodium clusters,'® for which a dedi-
cated experiment unambiguously confirmed the shell energy
amplitudes derived from the abundance spectra.'’ It has also
been used for clusters of both light and heavy water,'>"?
quantifying in particular the excess stability of the N = 21
protonated cluster that gives rise to the well-known abundance
peak at that size. Finally, it was applied to find the energy
amplitudes of the packing shells which shape the rare gas
cluster mass spectra.™*

This work applies the analysis to a large number of abun-
dance spectra of CO, clusters. The experiments were performed
to study nucleation in supersaturated gases,'® but are equally
useful for the analysis here, in particular because the wide
range of nucleation and detection conditions employed in the
measurements offers an uncommonly rich data set. We will
demonstrate that the analysis of the mass spectra reveals that
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highly universal patterns are present in all observed distribu-
tions. The derived stabilities are assigned to the neutral clusters
produced in the beam.

The plan of the remainder of the paper is as follows. First a
brief description of the experimental procedure is given. Then
the theory of the formation of the abundance spectra and the
analysis are described. Next the dissociation energies extracted
from the analysis are given, followed by a section where these
values are discussed in terms of packing shell structure. The
results are discussed and summarized in the concluding section.

2 Experimental procedure and results

The experimental equipment has been described in detail in
ref. 16 where it was employed for nucleation studies,>™"” and
only a brief summary is given here.

Fig. 1 shows a schematic drawing of the setup. Clusters were
produced by co-expansion of CO, with argon, which acted as
a carrier gas, through a pulsed Laval nozzle with a throat
diameter of 4.1 mm. The gas expanded from a stagnation
pressure of p, & 8 x 10" Pa and room temperature. The CO,
mole fraction before expansion was varied between 0.38%
and 5.02%.

At a distance / after the nozzle, the core of the expansion
was sampled with a skimmer and the clusters were single-
photon ionized by 13.8 eV (89.8 nm) photons generated with a
home-built tabletop vacuum ultraviolet (VUV) laser. The laser
operates with 2-color-4-wave mixing in an expanding krypton
gas at a repetition rate of 20 Hz. By varying the distance
between the nozzle exit and the skimmer, the beam could be
sampled at different times in the post-nozzle flow. After ioniza-
tion the clusters were accelerated to 30 keV and the mass
spectra were measured in a linear time-of-flight mass spectro-
meter (TOFMS) equipped with a microchannel plate (MCP)
detector. The resolution of the TOFMS was 800 at m/z =
12000 u. No sign of multiply charged clusters were observed
in the relevant size range. The appearance size for doubly
charged clusters is N = 44'® and if they had been present odd-
numbered cluster sizes would have been easily seen as nomin-
ally half-integer mass peaks.
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Fig. 1 Outline of the experimental setup. Clusters were generated by the
expansion of a mixture of CO, and argon as a cooling gas, photoionized,
and detected by a time-of-flight mass spectrometer, as described in the
text. Figure adapted from Fig. 1 of ref. 19 with permission from the PCCP
Owner Societies.
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Fig. 2 Three representative cluster mass spectra with different CO,—

argon mixtures and nozzle-TOFMS separations: (a) 1.54% CO, mole

fraction and 323 mm nozzle-ionization distance, (b) 1.54% CO, and

403 mm distance, (c) 3.85% CO, and 403 mm distance. Spectra are

reproduced from data reported in ref. 15.

Fig. 2 shows three examples of mass spectra recorded with
different CO, mole fractions and nozzle-TOFMS separations.
These mass spectra were obtained from the raw time-of-flight
data by applying background subtraction and rescaling, as
described in the ESI.{ The variation of the average cluster size
with source parameters is discussed in ref. 15 and since average
sizes are not relevant for the analysis here, we will refrain from
a detailed description of this aspect.

The (CO,)y' distributions show a clearly visible structure
with periodic intensity modulations with a period on the order
of 10 monomers. The pattern seen in the figure is reproducible
for clusters larger than approximately 130 molecules. It has
been observed previously'>2° and ascribed to shell closings in
cuboctahedral cluster structures. Similar variations have been
seen in anionic clusters.”* In the present paper the focus is on
the important information about cluster structure and in
particular about the magnitude of the underlying stability
variations that can be extracted from these persistent patterns.

3 Data analysis

The minima in the mass spectra, Npyn, are well defined, and for
a first approximate picture of the stability pattern the cube
roots of their positions are plotted vs. their number of appear-
ance. Such plots are shown in Fig. 3 for the three spectra shown
in Fig. 2 (integrated as described below). The nearly equidistant
spacing, here with approximately ten dips for each unity incre-
ment of Np,i,'?, is a signature of shell structure.® The numerical
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Fig. 3 The cube root of cluster sizes N, corresponding to abundance
minima, plotted in the order of their appearance in the abundance spectra
of Fig. 4 below. Circles, squares, and crosses correspond to spectra
labeled (a), (b), and (c), respectively. The count included in this plot starts
at Npin = 130.

value of the spacing indicates that the structure is face centered
cubic, either cuboctahedral (truncated fcc), as already suggested in
ref. 20, or distorted (octahedral) fcc.”

After confirming the assignment of the intensity variations
to shell structure, two questions arise. First, one may inquire
about the precise location of the shells (or subshells), because
these are almost certainly not coincident with the abundance
spectra minima. The second question concerns the energy
amplitude of the shell modulation that is manifested in the
abundance spectra. Both of these questions will be answered by
application of the theory mentioned in the Introduction and
given in detail in ref. 8 and 9.

The analysis of the mass spectra begins with an integration
of the individual mass peaks. As described in detail in the ESL, ¥
this involves identifying and subtracting a constant baseline
and incorporating a smooth correction for the mass scaling
and photoionization efficiency. Following these steps, the mid-
points between mass peaks are identified and the intensity
between these is integrated. This yields the ion intensities Iy as
a function of cluster size N.

Spectra recorded under different source conditions are
made up of a smooth envelope function modulated by the
abundance variations. The latter are shaped by the evaporative
losses and carry the information that is of interest here. The
smooth envelope function, in contrast, is shaped by the precise
parameters of the cluster source. In order to extract the
evaporative abundance variations from the spectra recorded
under different source conditions, the envelope function is
determined for each spectrum and divided out. These envelope
functions, denoted Iy, were calculated by iterative convolution
of the integrated mass spectra with Gaussian functions,

% Iyrexp(—(N = N')?/2wp?)
S exp(—(V = NP/

Iy =

1)
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Fig. 4 Integrated abundance spectra I derived from the mass spectra in

Fig. 2, and their smooth envelope functions Ty.

where wy = 4N'?. This is described in more detail in the ESL{
Examples of the resulting envelope functions are shown in
Fig. 4, plotted together with the individual peak intensities.

After division of the intensity spectra by I, the thus normal-
ized abundance variation ratios Iy/Iy, referred to as stability
functions, oscillate around unity. The outcome of this analysis
for the three sample spectra from Fig. 2 and 4 with their own
envelope functions is shown in Fig. 5, together with the mean
stability function of all experimental spectra.

Strikingly, the stability functions derived from all the mass
spectra are practically identical in their overlapping regions for
values above N ~ 130. The good agreement between stability
functions extracted from mass spectra produced under a range
of different conditions allows us to conclude that they reflect
inherent cluster properties, consistent with the hypothesis
that they are shaped by evaporative events after production.
In contrast, the envelope functions differ widely for different
source conditions, as expected from the correspondingly dif-
ferent nucleation parameters.'>** Indeed, although it cannot
be excluded that clusters may undergo some additional colli-
sions even in the post-skimmer collimated flow, strong size-to-
size intensity oscillations are a hallmark outcome of evaporative
processes.

The next step in the analysis is to relate the stability
function, Iy/Iy, to the cluster energies. The function is
shaped by the clusters’ evaporative activation energies, Dy,
which are the main determining factors for the speed of
evaporation that can have a non-monotonic size-to-size variation.
They can be taken to be identical to the cluster dissociation
energies. This identification holds for a molecule-cluster
potential without any barrier to attachment, which can be
safely assumed for CO,.
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Fig. 5 Top three panels (a—c): stability functions of the three spectra
shown in Fig. 4. Bottom panel (d): the average stability function derived
from all the mass spectra in the experimental data set (black line) with the
standard error of the mean indicated by a brown field.

As mentioned above, the number of molecules which is
required to have evaporated in order to apply the analysis is
small. For the present systems a few evaporative steps suffice.?
This means, in particular, that conclusions about nucleation*®
drawn from the data are not in any conflict with the present
analysis and vice versa.

The analysis in ref. 8 established the following relation
between the stability functions and cluster dissociation energies:

Iy _ Dy + Dy
Iy 2Dy

Cy

Dy — Dy
ln(th) D '

Dy

(2)

Here Dy is the part of the dissociation energy which varies
smoothly with cluster size. It is analogous to the energy of
Thomson’s drop model’ and to the liquid drop part of
nuclear’*** and metal cluster®®>® binding energies. It should
be emphasized that in spite of the name, the applicability of
such parametrization is not restricted to liquid phase particles:
the essential point is that the energy has a smoothly varying
size dependence. Cy is the vibrational heat capacity of the
cluster (in units of kg) for which the bulk heat capacity of solid
CO,, scaled to the cluster size N, is used. Additional small
corrections for the microcanonical nature of the process*® and
the overall translational and rotational degrees of freedom are
included (see the ESIt for details).
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The quantity Gy = In(wat) is referred to as the Gspann
parameter.***! Here ¢ is the time elapsed between the produc-
tion of the clusters and the completion of the mass selection in
the acceleration stage of the TOFMS. The factor wy is the
frequency prefactor in the expression for the unimolecular rate
constant that describes the statistical process of monomer loss
from the clusters. Its value can be estimated from molecular
properties, but a simpler procedure is to extract it from the bulk
vapor pressure together with the molecular area from the
measured bulk density. The procedure is described in detail
in the ESL{ For the cluster sizes studied here, Gy is found to
vary between 32 and 35.

With these two parameters known, the difference equation
(2) can be solved numerically. We rewrite it, ignoring the small
difference between Dy and Dy, 4, as

Dy (CN 1)}
(N ), 3
Dy Gy 2 ( )

and solve this iteratively. The value of Dy/Dy, for the largest size
in a spectrum is required as input. Regardless of the precise
value of this starting value, the procedure converges to a stable
set of dissociation energies for lower N. However, the speed of
convergence depends on the chosen starting value. To optimize
the convergence speed we varied this value by minimizing the
deviation from unity of the resulting set of solutions for all sizes
N, as described in the ESI.{ In all cases these optimized values
were consistent with values extracted from the procedure
applied to other spectra in overlapping mass regions, confirming
the soundness of the procedure.

Dy 1 [y
Dy Cn  Iliy
Gy 2

4 Dissociation energies

The ratios Dy/Dy derived from the spectra in Fig. 5 are dis-
played in Fig. 6(a-c) and Fig. 6d shows the average of all
spectra. The variations of the Dy/D values follow those of the
stability functions with some important differences.

First of all, the amplitudes of the dissociation energy varia-
tions are much smaller than those of the stability functions,
due to the large heat capacity factor multiplying the energy
differences. This will amplify measured abundance variations
very strongly, and more so the larger the clusters. The effect is
known and has been observed previously (see ref. 32 for an
extreme case of this amplification). Conversely, this means that
when clusters of different sizes are observed to display abun-
dance variations of a similar magnitude, the underlying energy
variations are actually larger for the smaller clusters. This
is a direct consequence of the above equations but is worth
highlighting.

The second important difference is that the maxima and
minima of the structure function curves and the energy curves
are shifted relative to each other. This is likewise a consequence
of the fact that the second term in eqn (2) is much larger than
the first, and that high abundances therefore occur where the
dissociation energy experiences a drop with increasing size and
not where it is high.

This journal is © the Owner Societies 2022
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Fig. 6 Top three panels (a—c): dissociation energy ratios calculated from
the stability functions in Fig. 5(a—c). Bottom panel (d): dissociation energies
averaged over the full data set (black line) with the standard error of the
mean given by the brown field. Note the large difference between the
scales of the variation of the stability functions and the dissociation
energies. This is due to the large value of the ratio Cn/Gy for these cluster
sizes.

It is useful to convert the results to absolute energies. This is
done by multiplication with the Thomson liquid drop energies,
determined by bulk parameters as

. 2
Dy=A- §BN"/3, (4)

where A is the bulk binding energy per molecule, and B is
related to the surface tension, y, via

BN = amr,2N*3y, (5)

where r, is the molecular averaged radius, defined by the
density.

The experimental enthalpy of sublimation,® 27.2 +
0.4 k] mol™" (0.28 eV), is used for the value of A. This is not
precisely the same quantity as A4, but the difference involves
only a small difference of thermal energies which can be
ignored for the present purpose. The value is close to the one
found theoretically in ref. 23 where macroscopic parameters
were used to adjust the interaction potentials and simulations
were performed for finite excitation energy clusters in similar
size ranges.
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No reliable data have been found for the surface energy of
solid CO,, and we will use the relation

2
B=3A=0188¢V, (6)

which has been found to give fair estimates for a number of
substances, including van der Waals bound solids.” The 0 K
value derived from ref. 23 is closer to B & A. The difference in
the cluster dissociation energies between these two variants
amounts to a shift downward of about 0.01 eV with very little
effect on the relative variations, and can be ignored without any
major loss of precision. The dissociation energies calculated
from the results in Fig. 6(d) by using these parameters are
shown in Fig. 7.

5 Shell structure

As emphasized above, the positions of shell closings do not
coincide with the abundance (Iy) maxima. They also are not
necessarily given by the maxima in the dissociation energies,
Dy, at least at finite temperatures where shell closings tend to
spread out over more sizes with increasing amount of thermal
excitations. From experimental results on the shell structure of
sodium clusters'" it was concluded that at finite temperatures the
shell structure’s prototypical sawtooth variation of dissociation
energies with cluster size becomes rounded, and the location of
shell closings in the presence of such rounding can be identified
with the point of steepest descent in the curve of Dy/Dy vs. N.
A discussion of this question, applied to experiments on clusters
of rare gas atoms, can also be found in ref. 34. We will likewise
identify the steepest slope with the shell closing.

The sequence of shell and subshell closings of (CO,)yx= 130
clusters is determined according to this prescription from the
data in Fig. 6(d). Details of the numerical procedure are
described in the ESI.tf The order of occurrence of subshell
closings is quantified with the subshell closing index k' = Fk,
where F is the number of facets on a closed shell cluster.
This subshell index k' accounts for individual facets between

0.27 |

Dy (eV)

0.26 |

100 200 300 400 500
N

Fig. 7 Cluster dissociation energies calculated from the ratios shown in
Fig. 6(d) by using eqn (4) for Dy.
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Fig. 8 Shell closings for (a) cuboctahedron with 14 facets (k = 4, N = 147),
(b) regular Ino decahedron with 15 facets (k = 4, N = 147), and (c) truncated
octahedron with 14 facets (k = 3, N = 201). Detailed discussion and analysis
about the geometries of these structures and their (sub)shell closings is
given in the ESL¥

closed shells given by the index k. The subshell indices for the
obtained closings are tentatively assigned by associating the
observed closing at Ny = 143 with the ideal cuboctahedral
cluster of k = 4 (i.e., N = 147) with the index k' = 14 X 4 = 56
as illustrated in Fig. 8(a).

As shown in Fig. 9, the cube roots of Ny lie on a straight line

when plotted against the assigned &'. It is worth pointing out
that this identification of the shells structure is more precise
and rigorous than the approximate one based on abundance
minima illustrated in Fig. 3. The obtained slope of the N, v.
k' curve, 0.1060 + 0.0002, is in good agreement with the
coefficient for cuboctahedral filling of &' subshells (see the
ESI,i and refs 20 and 35 for a detailed description of these
subshell closings):

N3~ 0.1067(k' —7) (7)

Using eqn (7) as the regression equation also minimizes the
y-axis intercept (N,!/3 =0.1060(k’ —7) +0.028). This result

5 £ S S S I S S S S AN TN S ST SN (N S T ST SN AN S S ST S B

55 60 65 70 75 80
Subshell Index, £’

Fig. 9 The cube roots of cluster sizes Ng corresponding to subshell
closings, determined from the plot in Fig. 6(d) as described in the text.
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further supports the aforementioned assignment of the sub-
shell closings according to a cuboctahedral cluster.

The very good agreement of the positions of the subshell
closings with those predicted by cuboctahedral structures
notwithstanding, it is still of interest to compare the data with
alternative structures. In the previous structural analysis by
Negishi et al.,>® fcc cubic, octahedral and icosahedral geo-
metries were included in addition to cuboctahedron. From this
set of different structures it is clear that only a cuboctahedral
geometry is able to capture the observed N, vs. k' behavior of
CO, clusters. However, their analysis ignored structures such as
Ino (or Marks) decahedra and truncated octahedra illustrated
in Fig. 8(b) and (c), respectively. These are generally plausible
alternatives for larger clusters.***° For this reason we extended
the geometric analysis by Negishi et al.>® (and Niher et al.*®) to
truncated octahedral and Ino decahedral clusters. The slopes of
the N, vs. k' curves are expected to be 0.100 for the Ino
decahedra and 0.110 for the truncated octahedra, which are
substantially closer to the cuboctahedral value than any other
structure considered by Negishi et al.*® To show the general
applicability of the used structure identification via cluster
energy variations, we have carried out test calculations based
on a peeling-off process of the least bound monomers. In short,
these calculations fully support the adequacy of the geometric
analysis of cluster packing used here and in previous studies.
The procedure and the obtained results are discussed in detail
in the ESI.1 The conclusion is that the two alternative structures
both give a clearly worse fit of slope of the experimental data,
and that the presented sequence of shell closings of CO, is best
characterized by the cuboctahedral geometry.

6 Summary and discussion

It is a key result of this work that the systematic inversion
procedure described in Section 3, developed on the basis of
evaporative dynamics, makes it possible to identify universal
underlying patterns and extract intrinsic cluster parameters
from (CO,)y abundance data acquired under a wide range of
generation conditions.

In particular, the cluster stability functions and dissociation
energies derived from different mass spectra are all in close
agreement above N ~ 130, independent of the precise source
position and nozzle expansion conditions. This confirms the
underlying physical assumption that the size-to-size variations
in the present mass abundance spectra represent the outcome
of clusters undergoing several in-flight evaporation steps.

The analysis presented in this work allowed us to determine
accurate size-to-size relative variations of the cluster binding
energies, to estimate their absolute magnitude, and to identify
the sizes of especially stable clusters. The sequence of these
sizes, ie., the shell and subshell closings, confirms the geo-
metrical nature of (CO,)y cluster packing, with a cuboctahedral
character for N 2 130. This is consistent with the fcc bulk
structure (see, e.g., ref. 15 and references therein), and with
electron scattering experiments on neutral CO, clusters.""

This journal is © the Owner Societies 2022
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Implicit in the foregoing discussion has been the assump-
tion that the shell structure and stabilities deduced from the
data are characteristic of the neutral rather than cationic CO,
clusters. In other words, the abundance variations primarily
derive from cluster evaporation which happens en route from
the nozzle to the TOFMS rather than post-ionization. This is
consistent with the observation** that CO, clusters require
more than a few microseconds after (electron-impact) ioniza-
tion to evaporate, which exceeds their residence time within the
TOFMS extraction region. Furthermore, abundance modula-
tions observed in beams of (CO,)y clusters produced by low-
energy electron attachment®®*” have periodicities similar to
those detected here in the mass spectra of (CO,)y" clusters,"?
which suggests that a charge is in any case of minor importance.
It should also be mentioned that the contribution to dissociation
energies from a Coulomb term is practically negligible outside the
low-N range, partly because of the suppression by its size depen-
dence (cc N~*?) and partly due to the relatively low polarizability
of the (non-polar) CO, molecules.

One observation worth pointing out here is the slow
decrease of the amplitude in the variations of the D’s with size.
This suggests that these variations are caused by evaporations
from edges and can be summarized as a nearest neighbor
effect. This in turn suggests that although the observed struc-
tures in the spectra are generated by evaporative processes,
these occur from solid clusters, at least in the final step(s). This
is consistent with the bulk phase diagram where no liquid
phase is present at low pressures and temperatures.

It is not surprising but perhaps still worth mentioning that
the elemental composition of the molecules is not a determin-
ing factor for the structure, as can be seen by comparison with
the structure of CO observed in ref. 43.

The structure of CO, clusters of sizes below 130 remains
an interesting open question. Even below the clear onset of
cuboctahedral ordering above N ~ 130 there is also a notable
degree of structure. However, some features appear to evolve
gradually with the nozzle expansion parameters (see the ESIT),
suggesting the presence of structural and phase transforma-
tions in this range.** In ref. 20 the cuboctahedral structures
were assigned to clusters above N = 80. Those clusters were
anionic and the difference from our observed lower threshold,
maybe due to this difference in the charge state. Interestingly,
electron diffraction studies of neutral clusters*' showed a cubic
structure down to N = 100, a limit defined by the instrumental
resolution, in agreement with the mass spectrometric results
for both negatively and positively charged clusters. The precise
shell closings were not possible to determine in these studies,
unfortunately. The combined experimental and theoretical
study in ref. 44 suggested a somewhat mixed picture with both
icosahedral and cubic elements in N < 100 neutral clusters.
A numerical molecular dynamics study,” also on neutral
clusters, indicated the potential co-existence of a metastable
icosahedral structure and a stable fcc structure over a range of
sizes below 100. Adding to this already mixed picture is the
observation that for clusters of sizes 50-70, the shell structure
seen in the mass abundance spectra was shown to develop on

This journal is © the Owner Societies 2022
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the time scales of the mass spectrometer flight times.*> Thus
identification of shapes and phases of CO, clusters in this size
region requires more study.
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S-I. Mass spectrum baseline subtraction and peak integration

Three sample time-of-flight spectra, with their time axes converted to corresponding mass, are
shown in Fig. S1. The first step in processing them involves identifying and subtracting a constant
baseline. As illustrated in Fig. S2, the collected spectra extend far beyond the range shown above.
It is safe to assume that the distant points contain no actual cluster signal and therefore represent
the baseline. We extract the last thousand points from the record and use their average as the

baseline. This value is then subtracted channel-by-channel from the data. A spectrum after baseline
subtraction is shown in Fig. S3.

Subsequently, two additional corrections are applied. The first is a Jacobian factor used in a
transformation from the time-of-flight variable to the mass variable. This involves a division of
the spectrum by N'2. The second one accounts for the cluster size dependence of the photoioniza-

(a)

Intensity (arb. nnits)

10}

0 100 200 300 400 500
Cluster Size, N
Fig. S1. Raw time-of-flight spectra of CO; clusters for three different experimental conditions.

(Spectra are reproduced from data presented in Ref. S1.) The mass spectra in Fig. 2 of the main
text are derived from these plots following the procedure described in this section.
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tion cross section via an additional division by N. The net effect is a pointwise division of the
spectra (such as that in Fig. S3) by N*2. The final outcome is illustrated in Fig. 2 in the main text.

Further potential corrections, such as the detector conversion efficiency or other size dependent
detection biases, were not included. It is crucial to emphasize that any smooth abundance
variations are always removed in the next step, described in Section S-II, and therefore impact
neither the stability functions derived there nor any subsequent portion of the analysis. This point
follows rigorously from the analysis procedure, and has been verified for the present data.

Following the above corrections, peaks are detected using Mathematica's FindPeaks
function, with care taken to ensure that exactly one peak is identified for each (CO2)w cluster. Fig.
S4 shows an example of peaks identified in a baseline-subtracted and corrected spectrum.

Once the (COz)y peak positions are identified, their intensities are determined by numerical
integration of a linear interpolation of the data points between the region defined by the midpoints
between consecutive peaks. Since there is some variability in where the maxima are determined in
the mass spectrum, it is important to normalize the integrated intensity by the distance between the
consecutive midpoints. Each integrated intensity is then assigned to an integer value of N
corresponding to the cluster size. Variations of this method of peak integration were tried and
found to yield similar results. A sample integrated mass spectrum is shown in Fig. S5.

1.8

1.6

Intensity (arb. units)

14

12}

. 1 1 1 | 1 1 1 1 | 1 . 1 1 | . 1 1 1 | 1 1 . 1 | 1
0 5000 10000 15000 20000 25000
N

Fig. S2. Full time-of-flight mass spectrum of CO; clusters with points used to construct
the baseline function visible in blue at the far end. This plot is an extension of Fig. S1(c).
(Spectra are reproduced from data presented in Ref. S1.)
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Fig. S3. The spectrum from Fig. S1(c) after subtraction of the baseline determined from the
region highlighted in Fig. S2. (Spectra are reproduced from data presented in Ref. S1.)
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Fig. S4. Peaks identified in a segment of the mass spectrum from Fig. 2(c) in the main text.
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S-II. Cluster stability functions

The peak-integrated mass spectra, Iy, are used to generate the “cluster stability functions,”
(Iy/Iy), which exhibit the size-to-size intensity variations deriving from intrinsic cluster
properties. The function Iy represents a smooth envelope of the abundance distribution. Since it
depends on the source conditions, it is determined separately for each spectrum by means of
smoothing the abundance function itself, as described below.

The procedure used here has strong analogies to the determination of shell structure in the field
of nuclear physics by means of the so-called Strutinski shell correction method. It is not limited to

nuclei and has been applied to studies of cluster shell and supershell structure as well 553

The smoothing is accomplished by convolution of the abundance spectrum with Gaussian
functions, as given by Eq. (1) in the main text. The denominator of this equation normalizes the
weight to unity. As mentioned in the main text, the Gaussians’ width is set to wy = 4N, This N3
variation is selected because it matches that of the structures appearing in the mass spectra. Setting
the coefficient to 4 was found to provide sufficiently broad averaging without washing out the size
variation of I. Other smoothing choices are possible, for example the use of spline functions.3

To avoid asymmetric averaging at the high mass end of the spectra, we fit the falling edge of
the spectra to an exponentially decreasing function of the form ae”", extend the spectrum and use
this for the determination of I. These extensions are smooth and therefore will not give rise to
any spurious signals. We also attempted to fit the tail of the spectra to a pseudo-Voigt function
with a sigmoidally varying width parameter,>* and found similar results to using the decaying
exponential function. The following analysis and the results in the main text utilize the fit to the
exponentially decreasing function for simplicity.

A single convolution of this type is not sufficient to remove all traces of the envelope function,
and the procedure is therefore repeated twice more, using the preceding Iy as the input spectrum.
The iterative process leads to stability functions which oscillate about unity.

Fig. S5 shows such a final envelope function I superimposed onto the integrated mass
spectrum. This plot is also shown in Fig. 4(c) in the main text, with further examples displayed in
other panels of the figure.

Fig. S6 shows an additional series of stability functions calculated for a subset of the
experimental data by the pointwise division of Iy by Iy.
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Intensity (arb. units)

0.1

0.0

Fig. S5. Dots: integrated intensities of peaks identified in the spectrum of Fig. 2(c) of the
main text (see also Fig. S4). Smooth solid curve: their envelope obtained by an iterative
Gaussian convolution.
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S-III. Gspann parameter

The Gspann parameter, defined as Gy = In(wyt), derives from a comparison between an
isolated cluster’s evaporative rate constant and its experimental flight time. In this way, it relates
the maximum microcanonical temperature of an evaporative ensemble to its activation energy.5>S°

The rate constant’s frequency prefactor can be written as wy = )2, where oy is the geometrical
cross section for the capture of one CO: molecule by a cluster of N—1 molecules,
oy = ﬁ[rO(N -7 +r, ]2 . Here r is the effective radius of one molecule [cf. Eq. (5) in the main
text], related to the molecular number density n in the bulk by n™' =(47/3)r; . The measured
density>”S® yields ry ~ 2.2 A.

The parameter Q can be with good accuracy related to the temperature-dependent bulk vapor

pressure P of the cluster material as follows:5>5°

P=Q(tzmk,T)"” . (S.1)

Here k3 is the Boltzmann constant, m is the molecular mass, and Q and a are fitting parameters.

Using the tabulated CO» pressure data at low temperatures®®51%5!! and plotting In (P/ JT ) vs. 1/T
(Fig. S7) we find from the intercept and the above value of ry that z7; Q~ 2.3x10'° s,

We can now compute the value of the Gspann parameter for each cluster N in each data set.
The flight time ¢ is derived from the specific set’s distance between the nozzle and the mass
spectrometer’s ionization region, and the measured cluster beam velocity of 540 m/s. For the size
range 10 < N < 500 we find that Gy varies between 32 and 35.

In(P/T"?

1 1 1 1 1 1 1 1 1 1 1
0.005 0.010 0.015
/T

Fig. S7. A plot of CO; vapor pressures in the relevant temperature region.
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S-1V. Heat capacities

Determination of cluster binding energies from the stability functions requires a knowledge of
their heat capacities. These are taken from the molar heat capacity!? of bulk CO»: C = 4.6kz per
molecule at 7~ 90 K.

The temperature estimate above is based on using the relation®%¢ Ty ~ Dy/Gy and setting
Dy=A4, see Eq. (4) in the main text. While variation of the temperature with cluster size could

potentially complicate matters, an earlier analysis for water clusters showed that it can be ignored

to a good approximation.S'?

For use in Eq. (1) in the main text we extrapolate the aforementioned bulk heat capacity to
finite clusters sizes by setting it to C(N-2) for a cluster of N molecules. The correction in
parentheses corresponds to the subtraction of the six rotational and translational degrees of
freedom of the whole cluster.

By taking the average of the precursor (N+1 molecules) and detected (N molecules) clusters
heat capacities, and remembering that the microcanonical heat capacity of isolated clusters in a

beam is one k3 less than the canonical value®'® we obtain C,, ~C (N —%)—kB :

In Egs. (2) and (3) in the main text this is employed in dimensionless form, i.e.,
Cy~4.6(N-2)-1.

S-V. Dissociation energies

As described in the main text, Eq. (3) is solved recursively by starting with the value of 7,, / I v
for the largest cluster in the data set, and proceeding downward in size. The energy ratio
D,.,/D,., is assigned a starting value near unity, and the equation is iterated to find the energy
ratios for all the lower sizes. The procedure converges quickly, and within the space of a few tens
of molecules the solutions become insensitive to the precise seed value of the energy ratio. For

maximum consistency, we select the seed as follows. It is set to values between 0.90 and 1.10 with
an increment of 0.0001, and a corresponding set of energy ratios is computed for each of these

values. The set which has the smallest average absolute deviation of D, / DN from unity for sizes

N>100 is selected. We found that the seed values optimized in this way did not deviate from unity
by more than a couple of percent.

Fig. S8 shows the energy ratios D, / DN derived from the data in Fig. S6.
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Fig. S8. Dissociation energy ratios derived from the stability functions plotted in Fig. S6.
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S-VI. Subshell closings

Fig. S9(a) shows the aggregate set of energy ratios D, / DN from Fig. 6(d) in the main text in

the region N > 130. The points of steepest descent are found from this curve by computing the
finite difference between successive points, followed by Gaussian smoothing and finally locating
the minima, as shown in Fig. S9(b). These cluster sizes, corresponding to sequential facet
fillings,3'* are listed in Table S1 and plotted in Fig. 8 in the main text. These values are the averages
of minima candidates obtained by varying the smoothing kernel, and the stated uncertainties derive
from the standard deviation of the candidates. A more complicated method involving

differentiation of a third order interpolation of the D, / [)N curve yielded equivalent results.

(a)

S

1.00 -

0.99 -

0.006

(b)

0.004

0.0021-

Derivative

0.000

0.0021 Lf !
(

0.004

L | \ . | L . | L | L L | 1
200 300 400 500
N

Fig. S9. (a) Energy ratios averaged over the complete data set [Fig. 6(b) in the main text].

(b) Derivative of the plot in the top panel (black curve), its Gaussian smoothing (blue curve) and
the minimum points of the latter (yellow dots), identifying the points of steepest descent and
thereby the subshell closings.
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Table S1. Cluster sizes with subshell closings as determined from the derivative
of the aggregate dissociation energy curve.

k' N, k' N,
55 133 + 1 69 | 287 + 1
56 143 + 1 70 [301 + 1
57 151 + 1 71 317 + 1
58 160 + 1 72 333 2
59 170 + 1 73 346 + 1
60 179 + 1 74 | 360 + 1
61 189 + 1 75 377 + 2
62 | 200 + 1 76 | 397 & 2
63 | 211 + 1 77 | 414 + 1
64 | 222 + 1 78 | 429 ¢ 1
65 | 235 + 1 79 | 446 + 2
66 | 252 + 3 80 | 467 * 3
67 | 265 + 1 81 | 488 + 3
68 | 274 + 1

S-VII. Geometrical analysis of subshell closings

Refs. S14-S16 discuss the observed oscillating pattern in cluster spectra due to geometrical
packing of atoms or molecules. By considering a set of possible polyhedral structures (fcc cube,
octahedron, decahedron, icosahedron, and cuboctahedron), Negishi et al.5'* concluded that only
cuboctahedral clusters represent the mass spectrum of CO: clusters on a satisfactory level.
However, their analysis neglected shapes such as truncated octahedra and Ino (or Marks)
decahedra, which are generally plausible structures for larger atomic clusters.5!7-520

In what follows we present the geometrical estimates of subshell closings for cuboctahedral,
Ino decahedral, and truncated octahedral clusters with & shells. (Sample clusters for each structure
are illustrated in Fig. 8 in the main text and in Fig. S10.)

Cuboctahedron. The total number of monomers in a cuboctahedron with £ shells can be

written asS?!

N, (k)= ?/ﬁ — 5k +%k—1 . (S.2)

By means of subshell index k' = Fk (F being the number of facets on a shell) the cube root of Ncuvo
can be developed as a series for large k'
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10/3)" 49 7
N LU0 gy ® f T , S.3
cubo F ( ) 902/3Fk Fk ( )

where the coefficient preceding the first term is about 0.1067 for F'= 14. The last term of Eq. (S.3)
is smaller than 0.05 for the cluster sizes studied here (k24).

Ino decahedron. Ino decahedra are also characterized by the shell index & with an additional
parameter p (a positive integer). Geometrically, £ and p are the numbers of monomers on the edges
between (100) and (111) facets and two (100) facets, respectively [see Fig. S10(b)]. The number
of monomers in an Ino decahedron is given by

N, (k)== k3—§k2+§k (Skz—glﬁl)—l. (S.4)

When p = £, a regular Ino decahedron has the number of monomers as a cuboctahedron of & shells.
But with /=15 instead of 14, the cube root of N, can be expressed to good accuracy by

v 0 (10/3)

~ k'—17.5). S.5
Ino 15 ( ) ( )

Thus the prefactor is about 0.100 and the residual term is about 0.05. However, the energetically
more favorable clusters have p < k due to a reduced number of monomers on the costly (100)
facets. For such Ino decahedra, the highest order term has again a coefficient of ~0.100, but the
residual terms for the studied cluster sizes are smaller than ~0.025.

Truncated octahedron. The composition of a truncated octahedron differs slightly from the
other geometries, and for sake of simplicity an index » (> 0) is used instead of the shell index £.

@000

(a) Cuboctahedron: F' = 14, k = 6, (b) Ino decahedron: F = 15, k = 6, (¢) Truncated octahedron: F = 14,
N =561 p=4, N =409 n =23, N =586

Fig. S10. Examples of the three analyzed geometrical structures. The surface
monomers are shown as dark spheres and the core monomers (with a coordination
number of 12) as bright ones. The complete structure is shown on the left, and the
cross-sectional view is given on the right.
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The number of monomers in an “nth” regular truncated octahedron (TO) is
Nyo(n) =161 +151° +6n+1, (S.6)

and the number of monomers with a coordination number of 12 (i.e., the number of core
monomers) is

Ny (n) =161’ 151" +6n-1. (S.7)

Based on these two equations and a simple geometrical inspection, the complete depletion of
monomers from the surface of the nth truncated octahedron does not produce the (n—1)st
octahedron but a cluster with Nto(n) — 30n*> — 2 monomers. Thus extra facets are effectively

depleted during a full transition from 7n to (n—1) closed-shell cluster. After the 14 facets are
depleted, the amount of excess surface monomers, AN, is

AN = Ny (1) = Ny (n—1) =18(r* =n)+5.. (S.8)

The number of monomers on a subshell of the intermediate cluster can be taken as the average
of subshell monomers of the two adjacent closed-shell clusters:

N

2 . 2
_30n +2+30(n-1) +2~2(n2_n).

~ S.9
2x14 (59

Thus the number of effective facets between the intermediate cluster and the (n—1)st cluster is

approximately AN/N = 9. The total number of facets between two regular truncated octahedra is

F'=23. For truncated octahedral clusters the cube root of Nto is approximately

N1 % 0.110(n +7) + 2222+ 007, (S.10)
n
where the index 7' corresponds to 4'-14. Thus Eq. (S.10) has a (k£'-7) factor similar to Egs. (S.3)

and (S.5). Again the residual term is very small for the relevant cluster sizes (nz2).

The geometric analysis for each of the considered structures [Eqgs. (S.3), (S.5), and (S.10)]
suggests that the subshell index £' is scaled by a factor of F/2. This scaling can be explained as
resulting from the imperfect indexing of the subshells of the smallest closed-shell cluster. This is
demonstrated for the cuboctahedral clusters of £'<14 in Fig. S11. Indeed, as shown in the main
text, the positions of the subshell closings follow the “cuboctahedral indexing” of £'-7.
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(a) (b) (c) (d) (e) (f) ()

)!. ’ Q @
) 4 3

N: 13 2 IL
k' 14 12 11 10 9 8
K —T: 7 6 5 4 3

Fig. S11. Subshell indexing of small cuboctahedral clusters. (a) Closed-shell cluster with 13
monomers corresponding to k=1 (and £'=14). Removal of the four monomers on a (100) facet,
indicated as light gray, results in a cluster with 9 monomers and subshell index &' = 13 [shown in
(b)]. This procedure can be repeated for the subsequent clusters and their facets (being either
layers or single monomers) until a single monomer remains (g). The shown sequence of subshell
configurations (and the shown values of £') demonstrates that the shifting of &' by 7 results in
correct subshell indexing, as for N=1 the index £'-7 = 1.

S-VIII. Simulation of a peeling-off process

To test the predictive power of the prefactors of the highest-order terms for open-shell
structures, we study Lennard-Jones (LJ) clusters with a simple simulation strategy. In our model,
the surface monomers on a closed-shell cluster are peeled off one monomer at a time, and after
each removal the cluster’s energy is minimized using a conjugate gradient algorithm. The
monomer to be removed is primarily determined by its coordination number, and secondarily by
the minimized energy of the cluster after the monomer removal. Thus the most undercoordinated
monomer, whose removal results in the lowest configurational energy, is selected. Note that in this
scheme only the surface monomers of the original closed-shell cluster are removed: after a
complete depletion of surface monomers a new closed shell remains. The routine is then repeated
for the new uncovered closed-shell cluster. A very similar approach was recently used to study the
structural motifs of Au clusters.5*

It should be also noted that the energy minimization scheme employed here conserves the basic
geometry: during the minimization the cluster is not able to collapse into the global minimum (or
any other) structure. In the case of LJ clusters consisting of less than 1000 monomers, the global
minima exhibit predominantly icosahedral structures.5?? This is the reason for employing a simple
energy minimization instead of an extensive search in phase space using the Hamiltonian.
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The stabilities of open-shell clusters are assessed based on the minimized cluster energies Ey
with the standard parameters®' A and Au:
E,, — NE
A(N)=—"——2 NE,

2/3
N

(S.11)

and

A(N)=E, +E, —2E,. (S.12)

For a LJ crystal the bulk energy of the fcc lattice per monomer, Eb, is about -8.6 in standard LJ
energy units. The most stable clusters should be located at the local minima and maxima of A(N)
and Ax(N), respectively.

The selected starting closed-shell structures are as follows: a cuboctahedron with 561
monomers (k = 6), an Ino decahedron with 409 monomers (k = 6 and p = 4), and a truncated
octahedron with 586 monomers (n = 3).

The obtained energy parameters A and A; for cluster sizes between N = 85 and 409 are shown
in Figs. S12(a) and S12(b), respectively. As the peaks appearing in Az are more distinct than the
minima in A, these peak positions are considered as the subshell closings Ns. The obtained values
of N!” as a function of their order of appearance (corresponding to the subshell index ') are shown

in Fig. S11(c). Based on the peeling-off calculations, the geometrical predictions for the highest-
order term of N are able to accurately capture the oscillation between the most stable open-shell
cluster sizes. However, fluctuations in the values of Ns preclude an accurate analysis of the
residuals.

We reiterate that the present model analysis is helpful for identifying the relationship between
geometrical structures and the corresponding periodicities of shell and subshell closings. But it
should not be used for a direct comparison of cluster configurations and their relative energies
between model and experiment because the intermolecular interactions within CO; clusters are not
sufficiently accurately captured by a coarse-grained LJ model and the peeling-off simulations.
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Fig. S12. Results obtained from the peeling-off simulations of LJ clusters having either
cuboctahedral, Ino decahedral or truncated octahedral geometries. (a) Energy parameter
A as a function of cluster size N. (b) Energy parameter A, for the same clusters. For
clarity, the lines for cuboctahedral and Ino decahedral clusters are shifted by —5 and +5
energy units, respectively. (c) Cube root of cluster sizes represented by the peaks
appearing in A, as a function of their order of appearance k'. The calculated slopes, s, are
given in the legend. The points are arbitrarily shifted so that the largest considered &’
considered has a value of either 30, 40, or 50. The theoretical predictions (Scubo = 0.107,
Smo = 0.100, and sto = 0.110) for these geometries are shown as dashed lines (again

allocated according to the largest closing).
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