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Shells in CO2 clusters†

John W. Niman, a Benjamin S. Kamerin,a Vitaly V. Kresin, a Jan Krohn, b

Ruth Signorell, b Roope Halonen c and Klavs Hansen *cd

Abundance spectra of (CO2)N clusters up to N E 500 acquired under a wide range of adiabatic

expansion conditions are analyzed within the evaporative ensemble framework. The analysis reveals

that the cluster stability functions display a strikingly universal pattern for all expansion conditions. These

patterns reflect the inherent properties of individual clusters. From this analysis the size-dependent

cluster binding energies are determined, shell and subshell closing sizes are identified, and

cuboctahedral packing ordering for sizes above N E 130 is confirmed. It is demonstrated that a few

percent variation in the dissociation energies translates into significant abundance variations, especially

for the larger clusters.

1 Introduction

One of the most striking phenomena associated with clusters is

the strong non-monotonic variation of their properties with

size. Such finite size effects have been observed in a number of

different types of clusters, composed by materials as diverse

as atoms of noble gases1 or simple metals,2,3 as well as in the

all-carbon fullerenes.4 The variations reflect the shell structure

of the clusters, which can be of electronic nature2,5 or arising

out of the packing of atoms.1,6

The shell structures in these systems were discovered in

molecular beams, manifested in the highly irregular variation

of the abundances with cluster size. Shell structure appears in

mass abundance spectra because the size-to-size intensity

variations reflect the cluster binding energies. The connection

between cluster stabilities (i.e., binding energies) and their

abundances is, however, not elementary, and cannot be under-

stood as simple equilibrium distributions with the temperature

set by the source temperature. In many cases involving cluster

beams one finds that the underlying process that shapes

the size-to-size abundance variations is that of evaporative

cascades: internally excited (hot) clusters undergo a series of

evaporation steps resulting in a detected population where the

high cluster intensities reflect lower than average evaporation

rates and vice versa. The high intensity clusters, often labeled

‘‘magic numbers’’, are frequently assigned a special stability.

This is, however, a simplified view that will only hold in special

situations, as the general theory below shows, and this must

be taken into account in the quantitative analysis of cluster

binding energies extracted from such spectra.

Importantly, just a few evaporative steps are sufficient for

the population patterns to acquire the shapes that characterize

the species.7,8 These shapes make it possible to use measure-

ments of relative abundances to extract quantitative informa-

tion about the monomer-by-monomer variations of cluster

binding energies with size. The connection between abun-

dances and binding energies was derived in ref. 8 and is

discussed at length in ref. 9. It has been applied previously to

analyze mass spectra of sodium clusters,10 for which a dedi-

cated experiment unambiguously confirmed the shell energy

amplitudes derived from the abundance spectra.11 It has also

been used for clusters of both light and heavy water,12,13

quantifying in particular the excess stability of the N = 21

protonated cluster that gives rise to the well-known abundance

peak at that size. Finally, it was applied to find the energy

amplitudes of the packing shells which shape the rare gas

cluster mass spectra.14

This work applies the analysis to a large number of abun-

dance spectra of CO2 clusters. The experiments were performed

to study nucleation in supersaturated gases,15 but are equally

useful for the analysis here, in particular because the wide

range of nucleation and detection conditions employed in the

measurements offers an uncommonly rich data set. We will

demonstrate that the analysis of the mass spectra reveals that
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highly universal patterns are present in all observed distribu-

tions. The derived stabilities are assigned to the neutral clusters

produced in the beam.

The plan of the remainder of the paper is as follows. First a

brief description of the experimental procedure is given. Then

the theory of the formation of the abundance spectra and the

analysis are described. Next the dissociation energies extracted

from the analysis are given, followed by a section where these

values are discussed in terms of packing shell structure. The

results are discussed and summarized in the concluding section.

2 Experimental procedure and results

The experimental equipment has been described in detail in

ref. 16 where it was employed for nucleation studies,15–17 and

only a brief summary is given here.

Fig. 1 shows a schematic drawing of the setup. Clusters were

produced by co-expansion of CO2 with argon, which acted as

a carrier gas, through a pulsed Laval nozzle with a throat

diameter of 4.1 mm. The gas expanded from a stagnation

pressure of p0 E 8 � 104 Pa and room temperature. The CO2

mole fraction before expansion was varied between 0.38%

and 5.02%.

At a distance c after the nozzle, the core of the expansion

was sampled with a skimmer and the clusters were single-

photon ionized by 13.8 eV (89.8 nm) photons generated with a

home-built tabletop vacuum ultraviolet (VUV) laser. The laser

operates with 2-color-4-wave mixing in an expanding krypton

gas at a repetition rate of 20 Hz. By varying the distance

between the nozzle exit and the skimmer, the beam could be

sampled at different times in the post-nozzle flow. After ioniza-

tion the clusters were accelerated to 30 keV and the mass

spectra were measured in a linear time-of-flight mass spectro-

meter (TOFMS) equipped with a microchannel plate (MCP)

detector. The resolution of the TOFMS was 800 at m/z =

12 000 u. No sign of multiply charged clusters were observed

in the relevant size range. The appearance size for doubly

charged clusters is N = 4418 and if they had been present odd-

numbered cluster sizes would have been easily seen as nomin-

ally half-integer mass peaks.

Fig. 2 shows three examples of mass spectra recorded with

different CO2 mole fractions and nozzle-TOFMS separations.

These mass spectra were obtained from the raw time-of-flight

data by applying background subtraction and rescaling, as

described in the ESI.† The variation of the average cluster size

with source parameters is discussed in ref. 15 and since average

sizes are not relevant for the analysis here, we will refrain from

a detailed description of this aspect.

The (CO2)N
+ distributions show a clearly visible structure

with periodic intensity modulations with a period on the order

of 10 monomers. The pattern seen in the figure is reproducible

for clusters larger than approximately 130 molecules. It has

been observed previously15,20 and ascribed to shell closings in

cuboctahedral cluster structures. Similar variations have been

seen in anionic clusters.21 In the present paper the focus is on

the important information about cluster structure and in

particular about the magnitude of the underlying stability

variations that can be extracted from these persistent patterns.

3 Data analysis

The minima in the mass spectra, Nmin, are well defined, and for

a first approximate picture of the stability pattern the cube

roots of their positions are plotted vs. their number of appear-

ance. Such plots are shown in Fig. 3 for the three spectra shown

in Fig. 2 (integrated as described below). The nearly equidistant

spacing, here with approximately ten dips for each unity incre-

ment of Nmin
1/3, is a signature of shell structure.6 The numerical

Fig. 1 Outline of the experimental setup. Clusters were generated by the

expansion of a mixture of CO2 and argon as a cooling gas, photoionized,

and detected by a time-of-flight mass spectrometer, as described in the

text. Figure adapted from Fig. 1 of ref. 19 with permission from the PCCP

Owner Societies.

Fig. 2 Three representative cluster mass spectra with different CO2–

argon mixtures and nozzle-TOFMS separations: (a) 1.54% CO2 mole

fraction and 323 mm nozzle-ionization distance, (b) 1.54% CO2 and

403 mm distance, (c) 3.85% CO2 and 403 mm distance. Spectra are

reproduced from data reported in ref. 15.
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value of the spacing indicates that the structure is face centered

cubic, either cuboctahedral (truncated fcc), as already suggested in

ref. 20, or distorted (octahedral) fcc.22

After confirming the assignment of the intensity variations

to shell structure, two questions arise. First, one may inquire

about the precise location of the shells (or subshells), because

these are almost certainly not coincident with the abundance

spectra minima. The second question concerns the energy

amplitude of the shell modulation that is manifested in the

abundance spectra. Both of these questions will be answered by

application of the theory mentioned in the Introduction and

given in detail in ref. 8 and 9.

The analysis of the mass spectra begins with an integration

of the individual mass peaks. As described in detail in the ESI,†

this involves identifying and subtracting a constant baseline

and incorporating a smooth correction for the mass scaling

and photoionization efficiency. Following these steps, the mid-

points between mass peaks are identified and the intensity

between these is integrated. This yields the ion intensities IN as

a function of cluster size N.

Spectra recorded under different source conditions are

made up of a smooth envelope function modulated by the

abundance variations. The latter are shaped by the evaporative

losses and carry the information that is of interest here. The

smooth envelope function, in contrast, is shaped by the precise

parameters of the cluster source. In order to extract the

evaporative abundance variations from the spectra recorded

under different source conditions, the envelope function is

determined for each spectrum and divided out. These envelope

functions, denoted ĨN, were calculated by iterative convolution

of the integrated mass spectra with Gaussian functions,

~IN ¼

P

N0

IN0 exp �ðN �N 0Þ2=2wN
2

� �

P

N0

exp �ðN �N 0Þ2=2wN
2ð Þ

; (1)

where wN = 4N1/3. This is described in more detail in the ESI.†

Examples of the resulting envelope functions are shown in

Fig. 4, plotted together with the individual peak intensities.

After division of the intensity spectra by Ĩ, the thus normal-

ized abundance variation ratios IN/ĨN, referred to as stability

functions, oscillate around unity. The outcome of this analysis

for the three sample spectra from Fig. 2 and 4 with their own

envelope functions is shown in Fig. 5, together with the mean

stability function of all experimental spectra.

Strikingly, the stability functions derived from all the mass

spectra are practically identical in their overlapping regions for

values above N E 130. The good agreement between stability

functions extracted from mass spectra produced under a range

of different conditions allows us to conclude that they reflect

inherent cluster properties, consistent with the hypothesis

that they are shaped by evaporative events after production.

In contrast, the envelope functions differ widely for different

source conditions, as expected from the correspondingly dif-

ferent nucleation parameters.15,23 Indeed, although it cannot

be excluded that clusters may undergo some additional colli-

sions even in the post-skimmer collimated flow, strong size-to-

size intensity oscillations are a hallmark outcome of evaporative

processes.

The next step in the analysis is to relate the stability

function, IN/ĨN, to the cluster energies. The function is

shaped by the clusters’ evaporative activation energies, DN,

which are the main determining factors for the speed of

evaporation that can have a non-monotonic size-to-size variation.

They can be taken to be identical to the cluster dissociation

energies. This identification holds for a molecule-cluster

potential without any barrier to attachment, which can be

safely assumed for CO2.

Fig. 3 The cube root of cluster sizes Nmin corresponding to abundance

minima, plotted in the order of their appearance in the abundance spectra

of Fig. 4 below. Circles, squares, and crosses correspond to spectra

labeled (a), (b), and (c), respectively. The count included in this plot starts

at Nmin = 130.

Fig. 4 Integrated abundance spectra IN derived from the mass spectra in

Fig. 2, and their smooth envelope functions ĨN.
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As mentioned above, the number of molecules which is

required to have evaporated in order to apply the analysis is

small. For the present systems a few evaporative steps suffice.8

This means, in particular, that conclusions about nucleation15

drawn from the data are not in any conflict with the present

analysis and vice versa.

The analysis in ref. 8 established the following relation

between the stability functions and cluster dissociation energies:

IN

~IN

¼
DN þDNþ1

2 ~DN

þ
CN

lnðoNtÞ

DN �DNþ1

~DN

: (2)

Here D̃N is the part of the dissociation energy which varies

smoothly with cluster size. It is analogous to the energy of

Thomson’s drop model9 and to the liquid drop part of

nuclear24,25 and metal cluster26–28 binding energies. It should

be emphasized that in spite of the name, the applicability of

such parametrization is not restricted to liquid phase particles:

the essential point is that the energy has a smoothly varying

size dependence. CN is the vibrational heat capacity of the

cluster (in units of kB) for which the bulk heat capacity of solid

CO2, scaled to the cluster size N, is used. Additional small

corrections for the microcanonical nature of the process29 and

the overall translational and rotational degrees of freedom are

included (see the ESI† for details).

The quantity GN = ln(oNt) is referred to as the Gspann

parameter.30,31 Here t is the time elapsed between the produc-

tion of the clusters and the completion of the mass selection in

the acceleration stage of the TOFMS. The factor oN is the

frequency prefactor in the expression for the unimolecular rate

constant that describes the statistical process of monomer loss

from the clusters. Its value can be estimated from molecular

properties, but a simpler procedure is to extract it from the bulk

vapor pressure together with the molecular area from the

measured bulk density. The procedure is described in detail

in the ESI.† For the cluster sizes studied here, GN is found to

vary between 32 and 35.

With these two parameters known, the difference equation

(2) can be solved numerically. We rewrite it, ignoring the small

difference between D̃N and D̃N+1, as

DN

~DN

¼
1

CN

GN

þ
1

2

IN

~IN

þ
DNþ1

~DNþ1

CN

GN

�
1

2

� �� �

; (3)

and solve this iteratively. The value of DN/D̃N for the largest size

in a spectrum is required as input. Regardless of the precise

value of this starting value, the procedure converges to a stable

set of dissociation energies for lower N. However, the speed of

convergence depends on the chosen starting value. To optimize

the convergence speed we varied this value by minimizing the

deviation from unity of the resulting set of solutions for all sizes

N, as described in the ESI.† In all cases these optimized values

were consistent with values extracted from the procedure

applied to other spectra in overlapping mass regions, confirming

the soundness of the procedure.

4 Dissociation energies

The ratios DN/D̃N derived from the spectra in Fig. 5 are dis-

played in Fig. 6(a–c) and Fig. 6d shows the average of all

spectra. The variations of the DN/D̃ values follow those of the

stability functions with some important differences.

First of all, the amplitudes of the dissociation energy varia-

tions are much smaller than those of the stability functions,

due to the large heat capacity factor multiplying the energy

differences. This will amplify measured abundance variations

very strongly, and more so the larger the clusters. The effect is

known and has been observed previously (see ref. 32 for an

extreme case of this amplification). Conversely, this means that

when clusters of different sizes are observed to display abun-

dance variations of a similar magnitude, the underlying energy

variations are actually larger for the smaller clusters. This

is a direct consequence of the above equations but is worth

highlighting.

The second important difference is that the maxima and

minima of the structure function curves and the energy curves

are shifted relative to each other. This is likewise a consequence

of the fact that the second term in eqn (2) is much larger than

the first, and that high abundances therefore occur where the

dissociation energy experiences a drop with increasing size and

not where it is high.

Fig. 5 Top three panels (a–c): stability functions of the three spectra

shown in Fig. 4. Bottom panel (d): the average stability function derived

from all the mass spectra in the experimental data set (black line) with the

standard error of the mean indicated by a brown field.
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It is useful to convert the results to absolute energies. This is

done by multiplication with the Thomson liquid drop energies,

determined by bulk parameters as

~DN ¼ A�
2

3
BN

�1=3; (4)

where A is the bulk binding energy per molecule, and B is

related to the surface tension, g, via

BN2/3 = 4pr0
2N2/3

g, (5)

where r0 is the molecular averaged radius, defined by the

density.

The experimental enthalpy of sublimation,33 27.2 �

0.4 kJ mol�1 (0.28 eV), is used for the value of A. This is not

precisely the same quantity as A, but the difference involves

only a small difference of thermal energies which can be

ignored for the present purpose. The value is close to the one

found theoretically in ref. 23 where macroscopic parameters

were used to adjust the interaction potentials and simulations

were performed for finite excitation energy clusters in similar

size ranges.

No reliable data have been found for the surface energy of

solid CO2, and we will use the relation

B ¼
2

3
A ¼ 0:188 eV; (6)

which has been found to give fair estimates for a number of

substances, including van der Waals bound solids.9 The 0 K

value derived from ref. 23 is closer to B E A. The difference in

the cluster dissociation energies between these two variants

amounts to a shift downward of about 0.01 eV with very little

effect on the relative variations, and can be ignored without any

major loss of precision. The dissociation energies calculated

from the results in Fig. 6(d) by using these parameters are

shown in Fig. 7.

5 Shell structure

As emphasized above, the positions of shell closings do not

coincide with the abundance (IN) maxima. They also are not

necessarily given by the maxima in the dissociation energies,

DN, at least at finite temperatures where shell closings tend to

spread out over more sizes with increasing amount of thermal

excitations. From experimental results on the shell structure of

sodium clusters11 it was concluded that at finite temperatures the

shell structure’s prototypical sawtooth variation of dissociation

energies with cluster size becomes rounded, and the location of

shell closings in the presence of such rounding can be identified

with the point of steepest descent in the curve of DN/D̃N vs. N.

A discussion of this question, applied to experiments on clusters

of rare gas atoms, can also be found in ref. 34. We will likewise

identify the steepest slope with the shell closing.

The sequence of shell and subshell closings of (CO2)N\130

clusters is determined according to this prescription from the

data in Fig. 6(d). Details of the numerical procedure are

described in the ESI.† The order of occurrence of subshell

closings is quantified with the subshell closing index k0 = Fk,

where F is the number of facets on a closed shell cluster.

This subshell index k0 accounts for individual facets between

Fig. 6 Top three panels (a–c): dissociation energy ratios calculated from

the stability functions in Fig. 5(a–c). Bottom panel (d): dissociation energies

averaged over the full data set (black line) with the standard error of the

mean given by the brown field. Note the large difference between the

scales of the variation of the stability functions and the dissociation

energies. This is due to the large value of the ratio CN/GN for these cluster

sizes.

Fig. 7 Cluster dissociation energies calculated from the ratios shown in

Fig. 6(d) by using eqn (4) for D̃N.
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closed shells given by the index k. The subshell indices for the

obtained closings are tentatively assigned by associating the

observed closing at Ns = 143 with the ideal cuboctahedral

cluster of k = 4 (i.e., N = 147) with the index k0 = 14 � 4 = 56

as illustrated in Fig. 8(a).

As shown in Fig. 9, the cube roots of Ns lie on a straight line

when plotted against the assigned k0. It is worth pointing out

that this identification of the shells structure is more precise

and rigorous than the approximate one based on abundance

minima illustrated in Fig. 3. The obtained slope of the Ns
1/3 vs.

k0 curve, 0.1060 � 0.0002, is in good agreement with the

coefficient for cuboctahedral filling of k0 subshells (see the

ESI,† and refs 20 and 35 for a detailed description of these

subshell closings):

Ns
1=3 � 0:1067ðk0 � 7Þ (7)

Using eqn (7) as the regression equation also minimizes the

y-axis intercept (Ns
1=3 ¼ 0:1060ðk0 � 7Þ þ 0:028). This result

further supports the aforementioned assignment of the sub-

shell closings according to a cuboctahedral cluster.

The very good agreement of the positions of the subshell

closings with those predicted by cuboctahedral structures

notwithstanding, it is still of interest to compare the data with

alternative structures. In the previous structural analysis by

Negishi et al.,20 fcc cubic, octahedral and icosahedral geo-

metries were included in addition to cuboctahedron. From this

set of different structures it is clear that only a cuboctahedral

geometry is able to capture the observed Ns
1/3 vs. k0 behavior of

CO2 clusters. However, their analysis ignored structures such as

Ino (or Marks) decahedra and truncated octahedra illustrated

in Fig. 8(b) and (c), respectively. These are generally plausible

alternatives for larger clusters.36–39 For this reason we extended

the geometric analysis by Negishi et al.20 (and Näher et al.40) to

truncated octahedral and Ino decahedral clusters. The slopes of

the Ns
1/3 vs. k 0 curves are expected to be 0.100 for the Ino

decahedra and 0.110 for the truncated octahedra, which are

substantially closer to the cuboctahedral value than any other

structure considered by Negishi et al.20 To show the general

applicability of the used structure identification via cluster

energy variations, we have carried out test calculations based

on a peeling-off process of the least bound monomers. In short,

these calculations fully support the adequacy of the geometric

analysis of cluster packing used here and in previous studies.

The procedure and the obtained results are discussed in detail

in the ESI.† The conclusion is that the two alternative structures

both give a clearly worse fit of slope of the experimental data,

and that the presented sequence of shell closings of CO2 is best

characterized by the cuboctahedral geometry.

6 Summary and discussion

It is a key result of this work that the systematic inversion

procedure described in Section 3, developed on the basis of

evaporative dynamics, makes it possible to identify universal

underlying patterns and extract intrinsic cluster parameters

from (CO2)N abundance data acquired under a wide range of

generation conditions.

In particular, the cluster stability functions and dissociation

energies derived from different mass spectra are all in close

agreement above N E 130, independent of the precise source

position and nozzle expansion conditions. This confirms the

underlying physical assumption that the size-to-size variations

in the present mass abundance spectra represent the outcome

of clusters undergoing several in-flight evaporation steps.

The analysis presented in this work allowed us to determine

accurate size-to-size relative variations of the cluster binding

energies, to estimate their absolute magnitude, and to identify

the sizes of especially stable clusters. The sequence of these

sizes, i.e., the shell and subshell closings, confirms the geo-

metrical nature of (CO2)N cluster packing, with a cuboctahedral

character for N \ 130. This is consistent with the fcc bulk

structure (see, e.g., ref. 15 and references therein), and with

electron scattering experiments on neutral CO2 clusters.
41

Fig. 8 Shell closings for (a) cuboctahedron with 14 facets (k = 4, N = 147),

(b) regular Ino decahedron with 15 facets (k = 4, N = 147), and (c) truncated

octahedron with 14 facets (k = 3, N = 201). Detailed discussion and analysis

about the geometries of these structures and their (sub)shell closings is

given in the ESI.†

Fig. 9 The cube roots of cluster sizes Ns corresponding to subshell

closings, determined from the plot in Fig. 6(d) as described in the text.
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Implicit in the foregoing discussion has been the assump-

tion that the shell structure and stabilities deduced from the

data are characteristic of the neutral rather than cationic CO2

clusters. In other words, the abundance variations primarily

derive from cluster evaporation which happens en route from

the nozzle to the TOFMS rather than post-ionization. This is

consistent with the observation42 that CO2 clusters require

more than a few microseconds after (electron-impact) ioniza-

tion to evaporate, which exceeds their residence time within the

TOFMS extraction region. Furthermore, abundance modula-

tions observed in beams of (CO2)N
� clusters produced by low-

energy electron attachment20,22 have periodicities similar to

those detected here in the mass spectra of (CO2)N
+ clusters,15

which suggests that a charge is in any case of minor importance.

It should also be mentioned that the contribution to dissociation

energies from a Coulomb term is practically negligible outside the

low-N range, partly because of the suppression by its size depen-

dence (pN�4/3) and partly due to the relatively low polarizability

of the (non-polar) CO2 molecules.

One observation worth pointing out here is the slow

decrease of the amplitude in the variations of the D’s with size.

This suggests that these variations are caused by evaporations

from edges and can be summarized as a nearest neighbor

effect. This in turn suggests that although the observed struc-

tures in the spectra are generated by evaporative processes,

these occur from solid clusters, at least in the final step(s). This

is consistent with the bulk phase diagram where no liquid

phase is present at low pressures and temperatures.

It is not surprising but perhaps still worth mentioning that

the elemental composition of the molecules is not a determin-

ing factor for the structure, as can be seen by comparison with

the structure of CO observed in ref. 43.

The structure of CO2 clusters of sizes below 130 remains

an interesting open question. Even below the clear onset of

cuboctahedral ordering above N E 130 there is also a notable

degree of structure. However, some features appear to evolve

gradually with the nozzle expansion parameters (see the ESI†),

suggesting the presence of structural and phase transforma-

tions in this range.44 In ref. 20 the cuboctahedral structures

were assigned to clusters above N = 80. Those clusters were

anionic and the difference from our observed lower threshold,

maybe due to this difference in the charge state. Interestingly,

electron diffraction studies of neutral clusters41 showed a cubic

structure down to N = 100, a limit defined by the instrumental

resolution, in agreement with the mass spectrometric results

for both negatively and positively charged clusters. The precise

shell closings were not possible to determine in these studies,

unfortunately. The combined experimental and theoretical

study in ref. 44 suggested a somewhat mixed picture with both

icosahedral and cubic elements in N r 100 neutral clusters.

A numerical molecular dynamics study,45 also on neutral

clusters, indicated the potential co-existence of a metastable

icosahedral structure and a stable fcc structure over a range of

sizes below 100. Adding to this already mixed picture is the

observation that for clusters of sizes 50–70, the shell structure

seen in the mass abundance spectra was shown to develop on

the time scales of the mass spectrometer flight times.42 Thus

identification of shapes and phases of CO2 clusters in this size

region requires more study.
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7 U. Näher and K. Hansen, J. Chem. Phys., 1994, 101,

5367.
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J. Chem. Phys., 2016, 145, 211907.

18 O. Echt, K. Sattler and E. Recknagel, Phys. Lett., 1982, 90A,

185–189.

19 J. Krohn, M. Lippe, C. Li and R. Signorell, Phys. Chem. Chem.

Phys., 2020, 22, 15986–15998.

20 Y. Negishi, T. Nagata and T. Tsukuda, Chem. Phys. Lett.,

2002, 364, 127–132.

21 O. Ingolfsson and A. M. Wodtke, J. Chem. Phys., 2002,

117, 3721.

22 O. Ingolfsson and A. M. Wodtke, Chem. Phys. Lett., 2002,

360, 415–421.

23 R. Halonen, V. Tikkanen, B. Reischl, K. K. Dingilian, B. E.
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S-I.  Mass spectrum baseline subtraction and peak integration 

Three sample time-of-flight spectra, with their time axes converted to corresponding mass, are 

shown in Fig. S1. The first step in processing them involves identifying and subtracting a constant 

baseline. As illustrated in Fig. S2, the collected spectra extend far beyond the range shown above. 

It is safe to assume that the distant points contain no actual cluster signal and therefore represent 

the baseline. We extract the last thousand points from the record and use their average as the 

baseline. This value is then subtracted channel-by-channel from the data. A spectrum after baseline 

subtraction is shown in Fig. S3. 

Subsequently, two additional corrections are applied. The first is a Jacobian factor used in a 

transformation from the time-of-flight  variable to the mass variable. This involves a division of 

the spectrum by N1/2. The second one accounts for the cluster size dependence of the photoioniza- 

 

 

Fig. S1.  Raw time-of-flight spectra of CO2 clusters for three different experimental conditions. 
(Spectra are reproduced from data presented in Ref. S1.) The mass spectra in Fig. 2 of the main 
text are derived from these plots following the procedure described in this section. 
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tion cross section via an additional division by N. The net effect is a pointwise division of the 

spectra (such as that in Fig. S3) by N 3/2. The final outcome is illustrated in Fig. 2 in the main text.  

Further potential corrections, such as the detector conversion efficiency or other size dependent 

detection biases, were not included. It is crucial to emphasize that any smooth abundance 

variations are always removed in the next step, described in Section S-II, and therefore impact 

neither the stability functions derived there nor any subsequent portion of the analysis. This point 

follows rigorously from the analysis procedure, and has been verified for the present data. 

Following the above corrections, peaks are detected using Mathematica's FindPeaks 

function, with care taken to ensure that exactly one peak is identified for each (CO2)N cluster. Fig. 

S4 shows an example of peaks identified in a baseline-subtracted and corrected spectrum. 

Once the (CO2)N peak positions are identified, their intensities are determined by numerical 

integration of a linear interpolation of the data points between the region defined by the midpoints 

between consecutive peaks. Since there is some variability in where the maxima are determined in 

the mass spectrum, it is important to normalize the integrated intensity by the distance between the 

consecutive midpoints. Each integrated intensity is then assigned to an integer value of N 

corresponding to the cluster size. Variations of this method of peak integration were tried and 

found to yield similar results. A sample integrated mass spectrum is shown in Fig. S5. 

 

 
Fig. S2.  Full time-of-flight mass spectrum of CO2 clusters with points used to construct 
the baseline function visible in blue at the far end. This plot is an extension of Fig. S1(c). 
(Spectra are reproduced from data presented in Ref. S1.) 
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Fig. S3.  The spectrum from Fig. S1(c) after subtraction of the baseline determined from the 
region highlighted in Fig. S2. (Spectra are reproduced from data presented in Ref. S1.) 

 

 
Fig. S4.  Peaks identified in a segment of the mass spectrum from Fig. 2(c) in the main text. 
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S-II.  Cluster stability functions 

The peak-integrated mass spectra, IN, are used to generate the “cluster stability functions,” 

(𝐼𝑁/𝐼𝑁), which exhibit the size-to-size intensity variations deriving from intrinsic cluster 

properties. The function 𝐼𝑁 represents a smooth envelope of the abundance distribution. Since it 

depends on the source conditions, it is determined separately for each spectrum by means of 

smoothing the abundance function itself, as described below. 

The procedure used here has strong analogies to the determination of shell structure in the field 

of nuclear physics by means of the so-called Strutinski shell correction method. It is not limited to 

nuclei and has been applied to studies of cluster shell and supershell structure as well.S2,S3 

The smoothing is accomplished by convolution of the abundance spectrum with Gaussian 

functions, as given by Eq. (1) in the main text. The denominator of this equation normalizes the 

weight to unity. As mentioned in the main text, the Gaussians’ width is set to wN = 4N1/3. This N1/3 

variation is selected because it matches that of the structures appearing in the mass spectra. Setting 

the coefficient to 4 was found to provide sufficiently broad averaging without washing out the size 

variation of 𝐼𝑁. Other smoothing choices are possible, for example the use of spline functions.S3 

To avoid asymmetric averaging at the high mass end of the spectra, we fit the falling edge of 

the spectra to an exponentially decreasing function of the form αe–βN, extend the spectrum and use 

this for the determination of 𝐼𝑁. These extensions are smooth and therefore will not give rise to 

any spurious signals. We also attempted to fit the tail of the spectra to a pseudo-Voigt function 

with a sigmoidally varying width parameter,S4 and found similar results to using the decaying 

exponential function. The following analysis and the results in the main text utilize the fit to the 

exponentially decreasing function for simplicity.  

A single convolution of this type is not sufficient to remove all traces of the envelope function, 

and the procedure is therefore repeated twice more, using the preceding 𝐼𝑁 as the input spectrum. 

The iterative process leads to stability functions which oscillate about unity.  

Fig. S5 shows such a final envelope function 𝐼𝑁 superimposed onto the integrated mass 

spectrum. This plot is also shown in Fig. 4(c) in the main text, with further examples displayed in 

other panels of the figure.  

Fig. S6 shows an additional series of stability functions calculated for a subset of the 

experimental data by the pointwise division of IN by 𝐼𝑁.  
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Fig. S5.  Dots: integrated intensities of peaks identified in the spectrum of Fig. 2(c) of the 

main text (see also Fig. S4). Smooth solid curve: their envelope obtained by an iterative 

Gaussian convolution. 
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Fig. S6.  Stability functions for a data set corresponding to 403 mm nozzle-ionization distance 

and a range of CO2 concentrations in the nozzle expansion: (a) 0.38%, (b) 0.69%, (c) 0.77%, 

(d) 1.00%, (e) 1.54%, (f) 1.61%, (g) 2.31%, (h) 3.08%, (i) 3.85%, (j) 5.02%. 
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S-III.  Gspann parameter 

The Gspann parameter, defined as GN = ln(ωNt), derives from a comparison between an 

isolated cluster’s evaporative rate constant and its experimental flight time. In this way, it relates 

the maximum microcanonical temperature of an evaporative ensemble to its activation energy.S5,S6 

The rate constant’s frequency prefactor can be written as ωN = σN, where σN is the geometrical 

cross section for the capture of one CO2 molecule by a cluster of N–1 molecules, 
21/3

0 0( 1)N r N r   = − +  . Here r0 is the effective radius of one molecule [cf. Eq. (5) in the main 

text], related to the molecular number density n in the bulk by ( )1 3
04 / 3n r− = . The measured 

densityS7,S8 yields r0  2.2 Å. 

The parameter Ω can be with good accuracy related to the temperature-dependent bulk vapor 

pressure P of the cluster material as follows:S5,S9  

 ( )1/2 /1
8

a T

BP mk T e −= . (S.1) 

Here kB is the Boltzmann constant, m is the molecular mass, and Ω and a are fitting parameters. 

Using the tabulated CO2 pressure data at low temperaturesS8,S10,S11 and plotting ( )ln P T  vs. 1/T 

(Fig. S7) we find from the intercept and the above value of r0 that 2
0r   2.3×1016 s-1.  

We can now compute the value of the Gspann parameter for each cluster N in each data set. 

The flight time t is derived from the specific set’s distance between the nozzle and the mass 
spectrometer’s ionization region, and the measured cluster beam velocity of 540 m/s. For the size 

range 10  N  500 we find that GN varies between 32 and 35.   

 

 

Fig. S7.  A plot of CO2 vapor pressures in the relevant temperature region. 
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Fig. S8.  Dissociation energy ratios derived from the stability functions plotted in Fig. S6. 
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Table S1.  Cluster sizes with subshell closings as determined from the derivative 

of the aggregate dissociation energy curve. 

k' Ns  k' Ns 

55 133 ± 1  69 287 ± 1 

56 143 ± 1  70 301 ± 1 

57 151 ± 1  71 317 ± 1 

58 160 ± 1  72 333 ± 2 

59 170 ± 1  73 346 ± 1 

60 179 ± 1  74 360 ± 1 

61 189 ± 1  75 377 ± 2 

62 200 ± 1  76 397 ± 2 

63 211 ± 1  77 414 ± 1 

64 222 ± 1  78 429 ± 1 

65 235 ± 1  79 446 ± 2 

66 252 ± 3  80 467 ± 3 

67 265 ± 1  81 488 ± 3 

68 274 ± 1      
 

 

 

S-VII.  Geometrical analysis of subshell closings 

Refs. S14-S16 discuss the observed oscillating pattern in cluster spectra due to geometrical 

packing of atoms or molecules. By considering a set of possible polyhedral structures (fcc cube, 

octahedron, decahedron, icosahedron, and cuboctahedron), Negishi et al.S14 concluded that only 

cuboctahedral clusters represent the mass spectrum of CO2 clusters on a satisfactory level. 

However, their analysis neglected shapes such as truncated octahedra and Ino (or Marks) 

decahedra, which are generally plausible structures for larger atomic clusters.S17-S20  

In what follows we present the geometrical estimates of subshell closings for cuboctahedral, 

Ino decahedral, and truncated octahedral clusters with k shells. (Sample clusters for each structure 

are illustrated in Fig. 8 in the main text and in Fig. S10.) 

Cuboctahedron. The total number of monomers in a cuboctahedron with k shells can be 

written asS21  

 3 2
cubo

10 11
( ) 5 1

3 3
N k k k k= − + − . (S.2) 

By means of subshell index k′ = Fk (F being the number of facets on a shell) the cube root of Ncubo 

can be developed as a series for large k′: 
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Fig. S11.  Subshell indexing of small cuboctahedral clusters. (a) Closed-shell cluster with 13 

monomers corresponding to k=1 (and k'=14). Removal of the four monomers on a (100) facet, 

indicated as light gray, results in a cluster with 9 monomers and subshell index k' = 13 [shown in 

(b)]. This procedure can be repeated for the subsequent clusters and their facets (being either 

layers or single monomers) until a single monomer remains (g). The shown sequence of subshell 

configurations (and the shown values of k') demonstrates that the shifting of k' by 7 results in 

correct subshell indexing, as for N=1 the index k'–7 = 1. 

 

 

 

S-VIII.  Simulation of a peeling-off process 

To test the predictive power of the prefactors of the highest-order terms for open-shell 

structures, we study Lennard-Jones (LJ) clusters with a simple simulation strategy. In our model, 

the surface monomers on a closed-shell cluster are peeled off one monomer at a time, and after 

each removal the cluster’s energy is minimized using a conjugate gradient algorithm. The 
monomer to be removed is primarily determined by its coordination number, and secondarily by 

the minimized energy of the cluster after the monomer removal. Thus the most undercoordinated 

monomer, whose removal results in the lowest configurational energy, is selected. Note that in this 

scheme only the surface monomers of the original closed-shell cluster are removed: after a 

complete depletion of surface monomers a new closed shell remains. The routine is then repeated 

for the new uncovered closed-shell cluster. A very similar approach was recently used to study the 

structural motifs of Au clusters.S20 

It should be also noted that the energy minimization scheme employed here conserves the basic 

geometry:  during the minimization the cluster is not able to collapse into the global minimum (or 

any other) structure. In the case of LJ clusters consisting of less than 1000 monomers, the global 

minima exhibit predominantly icosahedral structures.S22 This is the reason for employing a simple 

energy minimization instead of an extensive search in phase space using the Hamiltonian. 
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The stabilities of open-shell clusters are assessed based on the minimized cluster energies EN 

with the standard parametersS21 ∆ and ∆2: 

 b
2/3

( ) NE NE
N

N

−
 =  (S.11) 

and 

 2 1 1( ) 2N N NN E E E+ − = + − . (S.12) 

For a LJ crystal the bulk energy of the fcc lattice per monomer, Eb, is about -8.6 in standard LJ 

energy units. The most stable clusters should be located at the local minima and maxima of ∆(N) 

and ∆2(N), respectively. 

The selected starting closed-shell structures are as follows: a cuboctahedron with 561 

monomers (k = 6), an Ino decahedron with 409 monomers (k = 6 and p = 4), and a truncated 

octahedron with 586 monomers (n = 3). 

The obtained energy parameters ∆ and ∆2 for cluster sizes between N = 85 and 409 are shown 

in Figs. S12(a) and S12(b), respectively. As the peaks appearing in ∆2 are more distinct than the 

minima in ∆, these peak positions are considered as the subshell closings Ns. The obtained values 

of 1/3
sN  as a function of their order of appearance (corresponding to the subshell index k′) are shown 

in Fig. S11(c). Based on the peeling-off calculations, the geometrical predictions for the highest-

order term of N are able to accurately capture the oscillation between the most stable open-shell 

cluster sizes. However, fluctuations in the values of Ns preclude an accurate analysis of the 

residuals. 

We reiterate that the present model analysis is helpful for identifying the relationship between 

geometrical structures and the corresponding periodicities of shell and subshell closings. But it 

should not be used for a direct comparison of cluster configurations and their relative energies 

between model and experiment because the intermolecular interactions within CO2 clusters are not 

sufficiently accurately captured by a coarse-grained LJ model and the peeling-off simulations.  
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Fig. S12.  Results obtained from the peeling-off simulations of LJ clusters having either 

cuboctahedral, Ino decahedral or truncated octahedral geometries.  (a) Energy parameter 

∆ as a function of cluster size N.  (b) Energy parameter ∆2 for the same clusters. For 

clarity, the lines for cuboctahedral and Ino decahedral clusters are shifted by −5 and +5 

energy units, respectively. (c) Cube root of cluster sizes represented by the peaks 

appearing in ∆2, as a function of their order of appearance k′. The calculated slopes, s, are 

given in the legend. The points are arbitrarily shifted so that the largest considered k′ 

considered has a value of either 30, 40, or 50. The theoretical predictions (scubo = 0.107, 

sIno = 0.100, and sTO = 0.110) for these geometries are shown as dashed lines (again 

allocated according to the largest closing).  
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