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1 Introduction

The era of three-particle spectroscopy in lattice QCD (LQCD) has recently begun, with
several studies of three-meson systems at maximal isospin appearing in the literature [1–10].
These works make use of advances in numerical methods [11, 12] for determining the
finite-volume spectrum from LQCD, as well as in the theoretical formalism needed to
relate the spectrum to infinite-volume scattering amplitudes [13–39] (the latter reviewed in
refs. [40, 41]). These studies have shown the expected result that the major determinant of
the three-particle spectrum is the interaction between pairs of particles. By contrast, the
determination of three-particle scattering quantities has been found to be more challenging
— their contribution is suppressed by an additional volume factor. Indeed, while some
work finds evidence for a nonzero three-particle interaction [3, 6], other studies find no
significant signal [7, 8, 10].

In this paper, we study two- and three-particle systems composed either of pions or
kaons at maximal isospin, specifically 2π+, 3π+, 2K+, and 3K+. We aim to significantly
advance the study of multiparticle systems by including a much larger number of frames
and a range of quark masses, and employing state-of-the-art methods, such as the stochas-
tic LapH method [11], to obtain excited spectral levels with increased precision. We use
the three-particle formalism developed in the generic relativistic field theory (RFT) ap-
proach [14, 15], which is the only method that has been explicitly worked out including
higher partial waves [19]. With hundreds of levels available — an increase of about an order
of magnitude over previous work — we are able to determine elements of the three-particle
K-matrix that were previously unexplored.

We use three Nf = 2+1 CLS ensembles that follow a chiral trajectory where the trace
of the quark mass matrix is kept constant. The lightest pion mass is Mπ ' 200MeV, and
the corresponding kaon mass isMK ' 480MeV. This allows us to study the dependence on
quark (or pion/kaon) masses of the various scattering observables, allowing a comparison
with the expectations of chiral perturbation theory (ChPT). As will be seen later, our
results also indicate that we need to include not only the leading-order s-wave interactions,
but also d-wave two-particle interactions as well as three-particle interactions in which pairs
are in a relative d wave.1

This paper is organized as follows. In section 2, we describe how we determine the
finite-volume spectrum using LQCD. Section 3 contains a compilation of necessary theo-
retical background: the finite-volume formalism, the strategy for fitting the spectrum with
the quantization conditions, the parametrizations that we use for two- and three-particle
K-matrices, and the results from ChPT to which we compare. We present our fits of the
quantization conditions to the spectrum in section 4, and interpret the results in section 5.
We summarize our main conclusions in section 6. Appendix A collects some necessary
group-theoretical results, appendix B summarizes the operators used in this work, and
appendix C lists the energy levels used in our fits.

1We stress that the total angular momentum of the three-particle interaction is not required to be
nonzero when a pair sub-interaction is in a d wave, because the relative angular momentum between the
pair and the third particle can be nonzero.
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2 Computation of finite-volume energies

The computational methods follow closely those employed in ref. [2], and we review only
the high-level features in this section.

2.1 Interpolating operators

In order to extract the finite-volume spectrum reliably from LQCD, it is imperative to
include interpolating operators with good overlap onto the states of interest. Operators
annihilating a two-pion and three-pion state are given by a sum over products of single-pion
annihilation operators, each projected to definite momentum pi,

ππ(P,Λ) = c
(P,Λ)
p1,p2πp1πp2 , (2.1)

πππ(P,Λ) = c
(P,Λ)
p1,p2,p3πp1πp2πp3 . (2.2)

The corresponding creation operators are obtained by taking the Hermitian conjugate of
the annihilation operators. The momentum combinations encoded in the Clebsch-Gordan
coefficients c(P,Λ) are chosen such that the resulting operators transform according to the
irreducible representation (irrep) Λ of the little group of the total momentum P =

∑
i pi.

In this basis, the finite-volume Hamiltonian assumes a block-diagonal form, reflecting the
symmetry of the cubic spatial volume or its boosted deformations, thus greatly simplifying
the extraction of the spectrum.

In addition to the total momenta d2 = L2/(2π)2P2 ≤ 4 commonly used in previous
work, total momenta up to d2 ≤ 9 are included in the present work (excluding momentum
of type d = [122]). In particular, the trivial irrep with total momentum of type d = [003]
proves to be useful in the three-particle sector, since it provides an additional data point
in the threshold region purely on kinematical grounds. The group-theoretical projection of
meson-meson operators proceeds along the lines of refs. [42–44]. Our choices for represen-
tation matrices of the elements of the little group of the newly included momentum classes
d = [012] and d = [112] are given in appendix A. Three-pion operators are then obtained
by iteratively applying the two-meson coupling procedure [2, 45], and all interpolators used
in this work are tabulated in appendix B.

Two-kaon and three-kaon annihilation operators are given by replacing the constituent
pion annihilation operators with kaon annihilation operators in eqs. (2.1) and (2.2), with
the Clebsch-Gordan coefficients unchanged.

2.2 Correlation functions

Calculating correlation functions of operators of the form of eqs. (2.1) and (2.2) requires a
method to handle quark propagation from all spatial sites on the source time slice to all
spatial sites on the sink time slice in order to be able to perform the momentum projection
for each constituent hadron individually. Such a method is furnished by distillation [12],
which treats quark propagation in a low-dimensional subspace that encodes the information
relevant for hadronic physics.

The distillation subspace is spanned by the Nev lowest-lying eigenvectors of the three-
dimensional gauge-covariant Laplacian on each time slice of the lattice. The projection
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of quark fields into this subspace is equivalent to a smearing of the quark fields with an
approximately Gaussian profile having a characteristic smearing radius. In order to keep
the smearing width constant as the physical spatial volume of the lattice is increased,
the number of retained eigenvectors needs to be scaled linearly with the volume. The
concomitant increase in computational cost can be ameliorated by employing stochastic
estimators in the distillation subspace [11]. In this so-called stochastic LapH method, a
valence quark line is estimated stochastically,

Qaα,bβ(x, y) = lim
Nr→∞

1
Nr

∑
r,d

φ(r,d)
aα (x)ρbβ(y)(r,d)∗, (2.3)

using Nr independent sets of diluted [46] stochastic combinations of LapH eigenvectors
as sources ρ(y) and corresponding solutions of the Dirac equation Dφ = ρ, where r and
d = 1, . . . , Ndil denote the noise and dilution indices, respectively, a, b are color indices,
and α, β are Dirac spin indices.

This method to treat quark propagation affords great flexibility as the computationally-
expensive solutions of the Dirac equation can be re-used across several spectroscopy
projects. In a subsequent step, quark sources and solutions are combined into meson
functions with support only on the source or sink time slice [11]. The meson functions are
rank-two tensors with two open dilution indices and a compound label identifying their
spin and spatial structure, meson momentum, and pair of quark noises.

The final step in computing correlation functions consists of performing tensor con-
tractions over dilution indices of sets of meson functions according to the Wick contractions
of quark fields [11], and forming the linear combinations of individual momentum assign-
ments governed by the group-theoretical projections discussed in section 2.1. This step
becomes more computationally expensive as systems of an increasing number of valence
quarks are considered, and with a naive implementation the associated cost completely
dominates that of the whole calculation already for three-meson systems. A significant
speedup can be achieved by systematically eliminating all redundant computation through
common subexpression elimination [47]. The application of this idea in the present LQCD
context was described in ref. [2]. The publicly available implementation2 is not restricted
to systems of mesons and was used recently to speed up a calculation of two-baryon sys-
tems by nearly three orders of magnitude [48]. In the present work, these improvements
enable the computation of up to 20,000 distinct correlation functions per gauge configura-
tion and source time, encompassing the evaluation of up to one billion individual diagrams
(as defined in ref. [2]).

2.3 Ensemble details

Calculations in this study are performed on three ensembles at a fixed lattice spacing gen-
erated through the CLS effort [49]. The simulations use Nf = 2+1 nonperturbatively O(a)-
improved Wilson fermions and the Lüscher-Weisz gauge action with tree-level coefficients.
They are performed along a chiral trajectory keeping the trace of the quark mass matrix

2https://github.com/laphnn/contraction_optimizer.
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(L/a)3 × (T/a) Mπ [MeV] MK [MeV] Ncfg tsrc Nev dilution Nr(l/s)
N203 483 × 128 340 440 771 32, 52 192 (LI12,SF) 6/3
N200 483 × 128 280 460 1712 32, 52 192 (LI12,SF) 6/3
D200 643 × 128 200 480 2000 35, 92 448 (LI16,SF) 6/3

Table 1. Overview of the lattice geometry, approximate pseudoscalar masses, number of gauge
configurationsNcfg, fixed source-time positions tsrc, number of Laplacian eigenvectorsNev, employed
dilution scheme, and number of independent quark noises Nr used to estimate light and strange
quark propagation for ensembles used in this work. The dilution scheme notation is explained in
ref. [11]. All ensembles share the same lattice spacing a ≈ 0.064 fm.

Mπ/Fπ MK/FK

N203 3.4330(89) 4.1530(72)
N200 2.964(10) 4.348(11)
D200 2.2078(67) 4.5132(93)

Table 2. Pion and kaon decay constants determined in ref. [51].

fixed, so a heavier-than-physical light quark mass implies a lighter-than-physical strange
quark mass. An overview of the three ensembles used in this work as well as the computa-
tional setup is given in table 1. The lattice spacing on these ensembles was determined to
be a = 0.06426(76) fm using the linear combination 2

3(FK + 1
2Fπ) of decay constants to set

the scale [50]. In addition, the decay constants used in this work were computed in ref. [51]
and are reproduced in table 2 for convenience. Open temporal boundary conditions were
imposed when generating the ensembles to avoid topological charge freezing at fine lattice
spacings [52]. Consequently, translation invariance in the temporal direction is broken, and
the position of source operators is fixed to the values given in table 1 rather than being
randomized on each gauge configuration. The effect of the boundary conditions on spectral
quantities is expected to decay exponentially with the distance from the boundary, with
the decay constant governed by the lightest state with vacuum quantum numbers, which
is expected to be a two-pion state for the quark masses used in this work. They are thus
expected to be most pronounced on the ensemble with the lightest pion mass, the D200
ensemble in the set used in this work. In a previous study on the same ensemble, tsrc = 32
was found to have negligible temporal boundary effects [53]. The sources placed in the
bulk of the lattice for this study are thus expected to be sufficiently far away from the
boundary. Additionally, the correlators are always constructed such that the sink times
are toward the center of the lattice with respect to the source position. Therefore, the
additional source at tsrc = 92 for the D200 ensemble required backward-time correlators.
The operators used for the backward-time correlators are related to the operators in the
forward-time correlators by a parity and charge-conjugation transformation.

Except for a twofold increase in statistics on the D200 ensemble and the use of an
improved dilution scheme on the N200 ensemble, solutions of the Dirac equation for the
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aMπ MπL tfit χ2
red aMK MKL tfit χ2

red

N203 0.11261(20) 5.4053(96) [20–40] 3.20 0.14392(15) 6.9082(72) [16–40] 3.49
N200 0.09208(22) 4.420(11) [15–36] 1.62 0.15052(14) 7.2250(67) [17–40] 1.89
D200 0.06562(19) 4.200(12) [18–40] 1.54 0.15616(12) 9.9942(77) [23–40] 1.42

Table 3. Single-hadron energies at rest, determined from single-exponential fits. The range of
time separations included in the fit is given by tfit. The high χ2

red for N203 is discussed in the text.

light quark are re-used from a previous spectroscopic calculation supporting the lattice
determination of the hadronic vacuum polarization contribution to the anomalous magnetic
moment of the muon [54].

2.4 Analysis of correlation functions

Matrices of correlation functions are computed for a wide range of total momenta and
irreps. In a first step, the data is averaged over equivalent momenta, irrep rows, and
source times on each gauge-field configuration. The subsequent analysis is performed using
jackknife resampling and for each total momentum-squared/irrep separately. We provide
the jackknife samples of the resulting spectrum in HDF5 format as supplementary material
attached to this paper.

2.4.1 Single-hadron energies

Pion and kaon correlators are computed in each momentum frame, and then used to
extract the single-hadron energies for each total momentum-squared. We employ a single-
exponential correlated-χ2 fit to these correlation functions. The results for the kaon and
pion energies at rest are given in table 3. The high χ2

red ≡ χ2/dof for the single-hadron
fits on N203 could be reduced by rebinning the data (as was done on N200 and D200).
However, due to the smaller number of configurations for N203, rebinning of the data leads
to an unstable covariance matrix when fitting the full set of multi-hadron energies to the
quantization condition (an issue discussed further below).

When fitting the multi-hadron spectrum to the quantization condition, the continuum
dispersion relation is assumed to be valid for the pion and kaon, and therefore only the
energies for the single hadrons at rest are actually needed. We can test this assumption
by studying the dispersion relation of our single-hadron states. The results, shown in
figure 1, show no appreciable disagreement with the continuum dispersion, suggesting that
discretization effects are small.

2.4.2 Multi-hadron spectrum extraction

In order to extract not only ground states but also a tower of excited states in each irrep,
the eigenvectors vn determined from the generalized eigenvalue problem (GEVP) [55, 56]

C(td)vn = λnC(t0)vn, (2.4)

– 5 –
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Figure 1. Single-pion (top row) and single-kaon (bottom row) energies vs. d2 for the frames we
use. The continuum dispersion relations from the energies at rest are shown as black lines.

are used to form the correlation functions of rotated operators with ‘optimal’ overlap onto
the nth state in the spectrum,

Ĉn(t) = (vn, C(t)vn), (2.5)

where the parentheses denote an inner product over the operator indices. The diagonal-
ization is performed for a single (t0, td) only, keeping t0 & td/2 [57], but we checked for a
range of sensible values that the resulting spectrum is independent of that choice.

Two- and three-pion finite-volume energies are extracted from single-exponential corre-
lated-χ2 fits to the ratios

Rn(t) = Ĉn(t)∏
iCπ(p2

i , t)
, (2.6)

where the product in the denominator is over two or three single-pion correlation functions,
respectively, with momenta chosen to match the closest noninteracting energy to the nth
state. The ratio eq. (2.6) gives access to the energy splitting between the interacting
and noninteracting state at sufficiently large time separation, and the lattice energy is
reconstructed using the single-pion mass and dispersion relation. Fits are performed to the
ratio data in the time separation range [tmin − tmax] with tmax = 40 fixed on all ensembles
(with the exception of the pion spectra on N200, for which tmax = 36 led to a more
consistent analysis). The lower bound of the fit window is chosen such that the residual
excited-state contamination is subdominant compared to the statistical uncertainty. The
analysis of the two-kaon and three-kaon data proceeds analogously with the product in the
denominator of eq. (2.6) replaced with single-kaon correlation functions.

Fitting to the ratio of correlators, rather than directly to the rotated correlator, gen-
erally allows for an earlier choice of tmin and thus a more precise energy extraction. The
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Figure 2. The extracted energy shift in the lab frame as a function of the smallest time separation
included in the fit, tmin, for the three-kaon A2(9) ground state energy on each ensemble. The fits
are to the correlator ratio, and a single-exponential is used for the model. The central value and
error of the energy shift for the chosen fit is indicated with the horizontal black solid and dashed
lines, respectively.

dependence of these fits on the choice of tmin is shown in figure 2 for the three-kaon A2(9)
ground-state energy on each ensemble. The earlier plateau in the correlator ratio can be un-
derstood as coming from a partial cancellation of correlations and excited states between
the numerator and denominator. However, one disadvantage is the loss of a monotonic
decrease in the effective energy of the correlator ratio. Therefore, we verify consistency
between the results from the ratio fit and direct fits to the rotated correlators.

The resulting energy splitting a∆E from the fits to the correlator ratio are converted
to absolute energies in the center-of-momentum frame aE∗ by using the extracted single-
hadron energies at rest with the continuum dispersion relation. All of the extracted three-
kaon and three-pion energies on N200 are shown in figure 3, along with the energies re-
sulting from a global fit using the two- and three-particle quantization condition, to be
described below.

The global fits account for the correlations between all levels, i.e., those with both two
and three particles of a given type. Since there are many levels in a given fit (up to 77) one
might be concerned about the reliability of our determination of the covariance matrix. To
assess this, we compared fits to the spectrum with both bootstrap and jackknife resampling
and found them to be consistent. On N200 and D200, we also found consistency for the
central values of our fits when rebinning the data by 2 and 3, with the errors increasing
due to autocorrelations. On N203, we found that rebinning the data leads to inconsistent
fits, which can be explained by the much smaller number of configurations as compared
to N200 and D200. In fact, using a smaller subset of energies on N203, such that the
covariance matrix is stable with the rebinned data, still gives consistent results with the
same subset of energies without rebinning, suggesting the rebinning is not necessary in the
final analysis on N203. With our final choices of rebinning (3 for both N200 and D200,
and none for N203), the number of bins is roughly consistent across all ensembles. This
is approximately an order of magnitude larger than the number of energies going into our
largest fits. All of our consistency checks suggest this is sufficient for a reliable estimate of
the covariance matrix.
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Figure 3. Center-of-mass energies of three pions (top) and three kaons (bottom) on N200. The
various irreps and momentum-squared are listed at the bottom. The dashed lines specify the
free energy levels, and the open circles denote the interacting energies. Free energy levels may be
degenerate — see appendix B. Several thresholds are indicated with dotted lines. The colored circles
indicate the central values of the resulting energies from a global fit to the two- and three-particle
quantization condition; we use the parameters from fit 3 of table 5 and fit 4 of table 10 for the pion
and kaon spectra, respectively. The teal and orange circles correspond to energies included and not
included, respectively, in the fit.
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3 Formalism and fitting strategy

In this section we summarize the formalism that we use to fit the spectrum, describe our
overall fitting strategy, and present the parametrizations of the K-matrices that are used
to describe the two- and three-particle interactions. In addition we collect various results
from ChPT that are needed to analyze the mass dependence of our results.

3.1 Quantization conditions

To relate the finite-volume spectrum to infinite-volume scattering parameters, we need
both two- and three-particle quantization conditions. The former is standard — the orig-
inal Lüscher quantization condition [58, 59] generalized to moving frames in a relativistic
formalism [60, 61]. For the latter, we use the results of the relativistic field theory (RFT)
approach. This formalism, developed in ref. [14], holds for three identical, spinless parti-
cles within the kinematic range for which only a single three-particle channel can go on
shell. It applies for relativistic particles, and leads to Lorentz-invariant scattering ampli-
tudes as long as one uses the relativistic form of the kinematic functions (a point discussed
extensively in ref. [22]). Practical implementation of the quantization condition requires
truncating the angular momentum of the interactions between pairs of particles. We fol-
low refs. [19, 20] and include both s and d waves (p waves being forbidden for identical
particles). Where we break new ground is the inclusion of s and d waves in moving frames;
previous work in the RFT approach with moving frames was restricted to s waves [3].

We present here only a summary of the formalism and its implementation, since most
of the details are the same as in refs. [3, 19, 20]. The formalism is derived for a generic con-
tinuum effective field theory restricted to a cubic spatial box of length L. Thus the allowed
total momenta are drawn from the finite volume set: P = (2π/L)d, where d ∈ Z3. For a
given choice of P and L, the two-particle spectrum is given by the energies E2 that solve

det
[
F (E2,P , L)−1 +K2(E∗2)

]
= 0 , (3.1)

where E∗2 =
√
E2

2 − P 2 is the center-of-mass frame (CMF) energy, F is a kinematical func-
tion to be discussed shortly, and K2 is the two-particle K-matrix given in eq. (3.5) below.
The three-particle spectrum is given by the energies E that solve

det
[
F3(E,P , L)−1 +Kdf,3(E∗)

]
= 0 , (3.2)

where E∗ =
√
E2 − P 2, F3 will be discussed shortly, and Kdf,3 is a three-particle K-matrix

discussed around eq. (3.13). The quantization conditions hold up to exponentially sup-
pressed corrections, which should be small for our values of MπL and MKL.

Although the two quantization conditions have a similar form, they differ substantially
in the details. The determinant in eq. (3.1) runs over indices {`,m}, which denote the
angular momentum of the two particles in their CMF, while that in eq. (3.2) runs over
{k`m}, where k represents the three-momentum of one of the particles, k, which is drawn
from the finite-volume set, while {`,m} are the relative angular momenta of the other two
particles in their CMF. The formalism has a built-in cutoff, such that only a finite number
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of values of k contribute, but the sum over {`,m} in both quantization conditions must be
truncated by hand. As noted above, here we consider `max = 2.

Another difference between eqs. (3.1) and (3.2) concerns the first entry in the deter-
minants. For two particles, the matrix F is a purely kinematic function (a “Lüscher zeta
function”), which encodes the effect of working in finite volume, and, for a general moving
frame, couples s and d waves. We use the form given in appendix A of ref. [19], extended to
moving frames. For three particles, F3 contains not only kinematical functions (F , together
with an additional function, G), but also the two-particle K-matrix. Again, the details are
given in ref. [19], except here extended to moving frames. The extension of the implemen-
tation of the s-wave-only formalism to moving frames is described in the supplementary
material to ref. [3]. The generalization to include d waves is straightforward.

The final difference between the two quantization conditions concerns the second term
in the determinants. For two particles, the K2 that appears is a version of the two-particle
K-matrix, differing from the standard choice by some additional cutoff terms (discussed
below). It is an infinite-volume quantity that is algebraically related to the physical two-
particle scattering amplitude M2. For the three-particle quantization condition, what
appears instead is a three-particle K-matrix, Kdf,3, which is an infinite-volume but cutoff-
dependent amplitude, related to the physical three-particle amplitudeM3 through integral
equations [15]. What matters here is that Kdf,3 is a real, analytic function of Lorentz
invariants, and thus can be simply parametrized, as discussed below.

Both quantization conditions can be block-diagonalized by projecting onto irreps of
the appropriate symmetry group for the given choice of P . This is the little group LG(P ),
composed of elements of the cubic group Oh that leave P invariant. We implement this
projection using the formalism developed in ref. [19], extended in ref. [3], and here general-
ized to allow for the inclusion of two-particle d waves in moving frames. For given choices
of K2 and Kdf,3, the solutions to the quantization condition are obtained by tracking the
small eigenvalues of the matrices in the determinants, irrep by irrep, and numerically de-
termining where they cross zero. This procedure has been independently implemented in
two Python codes, and in a (much slower) Mathematica code, so that all numerical results
presented below have been cross-checked.

As noted in previous implementations of the RFT approach, there are choices of the
functions K2 and Kdf,3, as well as of MπL and MKL, for which there are unphysical
solutions to the three-particle quantization condition [17, 19]. Their source is not fully
understood, but is likely due to a combination of numerically enhanced exponentially sup-
pressed errors (which are not controlled in the derivation) and the use of overly restrictive
choices for K2 and Kdf,3. We have checked that, for the fits presented in the next section,
there are no unphysical solutions in the energy range considered.

Another source of error that we do not systematically control is due to discretization
effects. Strictly speaking, the quantization conditions hold only in the continuum limit,
since we are assuming relativistic dispersion relations for intermediate particles, and re-
strict the two- and three-particle interactions using Lorentz invariance. The potential size
of discretization errors is unclear. On the one hand, the dispersion relations shown in
figure 1 show no indication of large discretization effects, consistent with the findings of
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an investigation of resonant I = 1 pion scattering on ensembles with the same action [53].
On the other hand, a recent study of two-baryon scattering amplitudes from LQCD serves
as a cautionary tale about potentially large discretization effects in these types of calcula-
tions [62]. What is clear is that more work, involving multiple lattice spacings, is needed
to demonstrate control over discretization effects.

3.2 Fitting strategy

We now describe the overall strategy used for fitting. An important consideration is that
there is not a one-to-one relationship between the energy levels and the K-matrices — this
holds only for the two-particle spectrum in the approximation of a single partial wave. Thus
one must parametrize the K-matrices and perform a global fit to the whole set of levels.
We perform such fits to the two-particle spectrum alone, and to the combined two- and
three-particle spectra. We note that, on a given ensemble, these two spectra are correlated,
as are the individual levels, and we perform a fully correlated fit. More precisely, our fits
to the spectrum are carried out by minimizing the following χ2 function with respect to
the parameters in the K-matrices, {pn},

χ2({pn}) =
∑
ij

(
Ei − EQC

i ({pn})
)
C−1
ij

(
Ej − EQC

j ({pn})
)
, (3.3)

where Ej are the measured energy levels, with covariance matrix C, and EQC
i ({pn}) are

the energy levels predicted by the quantization conditions for a given choice of {pn}. The
model functions yielding the EQC

i ({pn}) depend on the data through the particle masses
and box length L, so the covariance of the residuals ri = Ei − EQC

i ({pn}) does not equal
cov(Ei, Ej) [63]. However, we use Cij = cov(Ei, Ej) instead of cov(ri, rj) since it makes
little difference to the final fit parameters but significantly simplifies the analysis. We
estimate C by means of jackknife samples, ignoring the sample to sample variations in
Mπ and MK , which are very small effects compared to the variations in the Ei. We do
not apply the correction discussed in ref. [64] since any resulting changes to the final fit
parameters are expected to be insignificant.

In order to estimate the uncertainties of the best fit parameters, we use the derivative
method. This uses the matrix of covariances between the parameters pn and pm, given by

Vnm =

∂EQC
i

∂pn
C−1
ij

∂EQC
j

∂pm

−1

, (3.4)

where the partial derivatives are evaluated numerically at the minimum of χ2. The main
advantage of this approach is that one avoids refitting the spectrum in each sample, which
is computationally very expensive for the three-particle case. To ensure the validity of this
procedure, we have checked for two-particle fits that it yields almost identical uncertainty
estimates as obtained with the standard jackknife method. We have also checked that using
bootstrap instead of jackknife samples does not lead to significant changes in the results.

One might have thought that, instead of a global fit, a better procedure would be to
fix K2 from fits to the two-particle spectrum, and then use the result as input into the
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three-particle spectrum, so as to determine Kdf,3. Such a procedure would, however, fail
to make use of the constraints on two-particle interactions arising from the interactions of
pairs in the three-particle system. Indeed, the three-particle spectrum provides significant
additional constraints on two-particle interactions, since there are three interacting pairs.

As a final comment on fitting, we consider the appropriate range of E∗ to use. Since
we are considering isosymmetric QCD, G parity is an exact symmetry, and there are no
transitions between sectors with even and odd numbers of pions. Thus, for two pions, the
range of validity of the quantization condition is 0 < E∗ < 4Mπ, while for three pions
it is Mπ < E∗ < 5Mπ. For kaons, by contrast, there is no constraint from G parity,
and the process K+K+ → K+K+π0 is allowed, for example if the kaons are in a relative
d wave. Also allowed is K+K+ → K+K0π+. Because of this, the upper bounds on
the validity of the quantization conditions for two and three kaons are, strictly speaking,
2MK +Mπ and 3MK +Mπ, respectively. We expect, however, the coupling to the channels
with an additional pion to be very small. This is because these transitions are induced
by the chiral anomaly, and thus, in ChPT, by the Wess-Zumino-Witten (WZW) term.
However, the WZW term itself does not lead to a K+K+ → K+K0π+ transition, due to
its antisymmetry; the closest transition that is induced is K+K0 → K+K0π0. To obtain
the desired transition requires an additional loop (which attaches a K0K+ → K0K+

vertex). This implies that the process is at least of next-to-next-to-leading order (NNLO)
in ChPT, since the WZW term is itself of next-to-leading order (NLO). Thus we expect the
coupling to an additional pion to turn on only far above threshold, where the p4 suppression
is less significant. On the other hand, we do not include mixed-flavor operators in our
calculations to capture these extra levels above threshold. Although this could result in
unreliable energy extractions in this region, we expect that the overlap of our operators
with these mixed-flavor states is small enough to still obtain an accurate determination of
the desired energies. Because of this we have included in the fits to 2K+ and 3K+ some
levels that lie slightly above the strict threshold. Details are given in the next section.

3.3 Parametrizations of K-matrices

We now summarize the parametrizations that we use for K2 and Kdf,3. The former is
given by

K2(E∗2)`′m′;`m = δ`′`δm′mK
(`)
2 (E∗2) , (3.5)

where the subscript on E∗2 emphasizes that this is the CMF energy of a two-particle system,
and

K(`)
2 (E∗2) = 16πE∗2

q cot δ`(q) + |q|[1−H(q2)] . (3.6)

Here q is the magnitude of the three-momentum of each of the two particles in their CMF,

4(q2 +M2) = E∗22 , (3.7)

and H(q2) is a smooth cutoff function that equals unity for physical scattering (q2 ≥ 0).
We follow all previous work implementing the RFT formalism and use the form of H(q2)
from ref. [14]. We stress that the term proportional to [1 − H(q2)] vanishes identically
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for physical scattering. It is not necessary for the two-particle quantization condition,
although it can be included (H dependence for subthreshold two-particle finite-volume
states is cancelled by the corresponding dependence of F ), but it is essential for the three-
particle case, where subthreshold momenta are included down to q2 = −M2. We also note
that the additional scheme dependence in K2 introduced in ref. [20] is not needed here as
there are no resonances.

To complete the parametrization of the two-particle phase shifts we need to specify
the forms we use for cot δ`. For s-wave scattering we consider two choices. The first is
motivated by the ChPT expressions for the scattering of identical pseudo-Goldstone bosons
(e.g., π+π+ and K+K+), which includes the Adler zero below threshold:

q

M
cot δ0(q) = ME∗2

E∗22 − 2z2M2

(
B0 +B1

q2

M2 +B2
q4

M4

)
. (3.8)

This contains the dimensionless parameters z2, B0, B1, and B2. We stress that, here and
below, the full expressions contain an infinite set of higher order terms in q2 that we are
setting to zero. We use this expression for both pions and kaons, with M = Mπ and MK ,
respectively. At lowest order in ChPT, z2 = 1, and we perform both fits with z2 fixed to this
value, and others allowing it to vary. We also do fits with and without the parameter B2.

The second form is the effective-range expansion (ERE)

q

M
cot δ0(q) = − 1

Ma0
+ r0q2

2M + P0r3
0q

4

M
, (3.9)

given in terms of the scattering length a0, effective range r0, and quadratic parameter
P0. We use the sign convention in which the scattering length is positive for repulsive
interactions. In principle, the radius of convergence of the ERE is given by the position
of the Adler zero, although this form has been used beyond this radius in many previous
LQCD-based analyses of above-threshold scattering. The parameters in eq. (3.8) are related
to those of the ERE through

Ma0 = −2− z2

B0
, M2a0r0 = 2 + z2

2− z2 −
2B1
B0

. (3.10)

We use the combination M2a0r0 rather than Mr0 alone, since the former does not diverge
in the chiral limit, whereas the latter can [see eq. (3.16) below].

For d-wave scattering we use a simpler, one-parameter form,

q5

M5 cot δ2 = E∗2
2MD0 − 1 , (3.11)

as we find that this provides an adequate description of our data. The overall factor of
E∗2 =

√
s is adopted from standard continuum analyses (see, e.g., refs. [65, 66]) and implies

that higher-order terms in the ERE for δ2 are present, although with fixed coefficients. The
factor of −1 is chosen to avoid unphysical poles in the subthreshold scattering amplitude,
which is given by

M(`)
2 = 16πE∗2

q cot δ` + |q| (q2 < 0) . (3.12)
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Such poles arise for |q| ≈M from theD0 term alone if the interactions are repulsive (as they
are here). The use of this ad hoc factor is adapted from that used in continuum analyses of
s-wave scattering [65]. The d-wave scattering length is then given by M5a2 = −1/(D0−1),
using the conventional definition in which a1/5

2 has dimensions of length, and the same sign
convention as for a0.

For the three-particle K-matrix we use the threshold expansion worked out in ref. [19].
This expands Kdf,3(p′1,p′2,p′3; p1,p2,p3) in powers of ∆ = (E∗2 − 9M2)/(9M2) and re-
lated quantities, where pi (p′i) are the initial (final) momenta for on-shell three-to-three
scattering. We use the expansion through quadratic order,

Kdf,3 = Kiso,0
df,3 +Kiso,1

df,3 ∆ +Kiso,2
df,3 ∆2 +KA∆A +KB∆B , (3.13)

where Kiso,0
df,3 , K

iso,1
df,3 , K

iso,2
df,3 , KA, and KB are real constants. The first three terms depend

only on the overall CMF energy, but not otherwise on the momenta of the particles, and
are referred to as “isotropic” contributions. The final two terms do depend on momenta
through the dimensionless quantities ∆A and ∆B, which are defined in ref. [19], and are
of quadratic order in ∆. Eq. (3.13) is the most general form consistent with Lorentz
symmetry, time-reversal, parity, and particle exchange symmetry. To use this result in
the quantization condition, eq. (3.2), one must decompose Kdf,3 into the {k`m} basis
discussed above. How to do so for the rest frame (P = 0) is explained in ref. [19], and the
generalization to moving frames is straightforward. We also note that, when decomposed
into irreps of the little group of the various frames, the Kiso

df,3 and KA terms contribute only
to trivial irreps, while the KB term can also contribute to nontrivial irreps, and does so to
all the nontrivial irreps included in our fits. It is for this reason that KB can be determined
more easily than KA. In fact, in our minimal fits we use only the three parameters Kiso,0

df,3 ,
Kiso,1

df,3 , and KB.
In the two-particle context, it is standard to consider the total angular momentum J

of the system, and we have done that above when distinguishing s- and d-wave choices for
K2, which have J = 0 and 2, respectively. The finite-volume irreps do not uniquely pick
out values of J , but do restrict them. For example, the two-particle E+

g irrep in the rest
frame contains J = 2, 4, . . . but not J = 0, while trivial irreps in all frames contain J = 0
as well as higher values. The relation between irreps and J or helicity components is given,
for example, in table II of ref. [67].

In infinite volume, one can also classify the three-particle interactions by their total
angular momentum. Although this is not discussed in ref. [19], it is straightforward to see
from the explicit forms of ∆A and ∆B that the KA term contains only J = 0, as do the
isotropic terms, while ∆B contains J = 0, 1 and 2 components. The presence of these
higher angular momenta provides an alternative way of understanding why only the KB
term contributes to nontrivial reps, since these require J > 0. We note that a total J = 2,
say, can arise both from an ` = 2 contribution to the pair sub-interaction combined with a
relative s-wave between the pair and the remaining particle, and from an ` = 0 contribution
combined with a pair-spectator relative d-wave, as well as from other options.
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3.4 Results from chiral perturbation theory

We collect in this subsection the results from ChPT that we need when fitting the depen-
dence of the quantities derived from fits versus M2

π . We use both SU(2) and SU(3) ChPT.
For SU(2) ChPT to be valid, we need bothM2

π/(4πFπ)2 � 1 andM2
π/M

2
K � 1. The former

is indeed small, ranging up to 0.075 on our ensembles. The latter is significantly larger, with
the values {0.18, 0.38, 0.61} on the D200, N200, and N203 ensembles, respectively. Thus
SU(2) ChPT is of borderline applicability for the N203 ensemble. The rapid rise in this ra-
tio is due to the path along which we take the chiral limit, namely with mav = (2mq+ms)/3
fixed (with mq the common up- and down-quark mass and ms the strange-quark mass). At
leading order (LO) in ChPT, this implies thatM2

0 = (2M2
K+M2

π)/3 is constant, so thatMK

decreases as Mπ increases. The use of this trajectory does, however, improve the range of
validity of SU(3) ChPT, compared to the traditional choice of fixing ms = mphys

s . The rel-
evant quantity is M2

K/(4πFπ)2, which takes the values {0.18, 0.15, 0.12} on our ensembles.
In the following, we use the abbreviations

xπ = M2
π

F 2
π

and xK = M2
K

F 2
K

, (3.14)

where Fπ and FK are the physical pion and kaon decays constants, in the Fπ ' 92MeV
convention. We work mostly at NLO, and do not indicate the higher-order terms that are
dropped.

We begin with the expression for the pion scattering length in SU(2) ChPT [68] (choos-
ing the form commonly used in the lattice community and given in ref. [69])

Mπa
ππ
0 = xπ

16π

[
1− xπ

32π2

(
`ππ + 1− 3 log xπ2

)]
. (3.15)

Here `ππ is a low-energy coefficient (LEC) evaluated at the scale
√

2Fπ. A subtlety here
concerns the chiral trajectory that we follow. In SU(2) ChPT, `ππ depends implicitly on
ms, and so has, in principle, different values for our three ensembles, none of which equal
the standard value, which has ms = mphys

s . Since `ππ is a smooth function of ms, the
difference between the values on our ensembles and the standard value is proportional to
ms −mphys

s = 2(mphys
q −mq), and thus proportional to M2

π . As the `ππ term is itself of
NLO, the part proportional to M2

π is effectively of NNLO (or higher order), and can be
consistently dropped.

The expression for the effective range in SU(2) ChPT is [70]

M2
πr

ππ
0 aππ0 = 3 + xπ

C3
2 + 11

24π2xπ log xπ2 , (3.16)

where C3 is an LEC, and is evaluated at the scale
√

2Fπ. Similarly to `ππ, C3 can be
treated as a constant in an NLO expression.

One can also obtain the NLO expression for the position of the Adler zero in pion
scattering. Rewriting the result of ref. [71], we have

z2 = 1− xπ
32π2

[
`z + 1

6 −
11
3 log xπ2

]
, (3.17)
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where `z is an LEC evaluated at
√

2Fπ, which is related to the standard SU(2) ChPT LECs
(see, e.g., ref. [69]) by

3`3 + 8`2 = 3`z − 11 log(xπ/2) . (3.18)

The d-wave I = 2 pion amplitude vanishes at LO in ChPT. Although a NNLO
expression exists in the literature, our results are insufficient to attempt a fit to this form.
Furthermore, there is a subtlety related to a change in sign of the phase shift at physical
pion masses just above threshold, an issue we discuss below when we analyze our results.

Expressions in SU(3) ChPT for the pion and kaon scattering lengths can be obtained
from refs. [72, 73]. The NLO terms depend not only on the pion and kaon masses, but also
on that of the η meson. Within these terms, it is consistent to rewrite the η mass using
the LO expression 3M2

η = 4M2
K −M2

π , and also to treat Fπ and FK as interchangeable. In
this way, we can write the results as functions of xπ and xK alone, finding

Mπa
ππ
0 = xπ

16π

[
1 + xπ

16π2

(3
2 log xπ

16π2 + 1
18 log 4xK − xπ

48π2 − 4
9 − 256π2Lππ

)]
, (3.19)

MKa
KK
0 = xK

16π

[
1 + xK

16π2

(
log xK

16π2 −
xπ

4(xK − xπ) log xπ
16π2

+ 20xK − 11xπ
36(xK − xπ) log 4xK − xπ

48π2 − 7
9 − 256π2Lππ

)]
.

(3.20)

These two expressions contain only a single LEC, Lππ, which is here evaluated at the scale
4πFπ. We stress that, in SU(3) ChPT, there is no subtlety due to our choice of chiral
trajectory, since all dependence on ms is explicit. In other words, the trajectory is encoded
into the values of xπ and xK .

Expressions in SU(3) ChPT for the kaon effective range and Adler zero position could,
in principle, be extracted from the results given in ref. [8] for the K−K− scattering ampli-
tude. We have not done so, however, as our simulation results for M2

Ka
KK
0 rKK0 presented

below lie close to unity, and thus very far from the LO chiral prediction of 3. This indicates
very large NLO corrections, and a breakdown in convergence.

An alternative would be to use SU(2) ChPT, treating the kaon as a heavy source for
pions, following ref. [74]. However, the analysis for kaon scattering has not been carried out
(and would require methods similar to that used to study NN scattering in EFT). Thus we
use simple analytic parametrizations of MKa

KK
0 , M2

Ka
KK
0 rKK0 , and 1/DKK

0 , fitting them
to linear functions of xπ.

Finally, we turn to the chiral predictions for the three-particle K-matrix. At tree level
(LO) Kdf,3 is purely isotropic, with only Kiso,0

df,3 and Kiso,1
df,3 being nonzero [3]

M2Kiso,0
df,3 = 18M

4

F 4 = 18(16πMa0)2 , M2Kiso,1
df,3 = 27M

4

F 4 = 27(16πMa0)2 . (3.21)

These expressions hold both for three-π+ and three-K+ systems, using the corresponding
masses and scattering lengths. The other constants in eq. (3.13) (Kiso,2

df,3 ,KA, and KB)
can appear first at NLO, and thus are suppressed by at least one additional power of
1/F 2 ∝Ma0.
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4 Fitting the spectrum

In this section, we present the results of fits to the two- and three-particle spectra, describ-
ing in turn the results for pions and kaons. The parametrizations explained in section 3.3
are used. We comment on the main features of the fit, such as goodness of fit and which
parameters are needed, but leave the interpretation of the results for the fit parameters
themselves to the following section. An example of these fits on the N200 ensemble was
already shown in figure 3. We also note that the precise set of levels used in the fits of this
section is given in appendix C.

4.1 Fits to the spectrum of two and three pions

We start with fits to the energy levels in the 2π+ and 3π+ sectors. For the two-pion s-wave
interaction, we use the Adler-zero form, given in eq. (3.8), rather than the ERE form. The
former has been found previously to provide a better description for light pions [6, 19],
and we confirm this result below. When d waves are included, we use the expression in
eq. (3.11). For Kdf,3, we consider only three of the terms in eq. (3.13): the leading two
isotropic ones, Kiso,0

df,3 ,K
iso,1
df,3 (referred to below as s-wave terms), and KB (referred to as a

d-wave term). We find that this choice provides a good description of the levels, whereas
the other parameters in Kdf,3 are poorly determined if included.

We present results for the following set of representative fits:

1. A fit solely to two-particle energies, including both s- and d-wave interactions. This
fit shows the information that can be extracted from the two-particle spectrum alone,
and thus is a useful point of comparison for three-particle fits.

2. A combined fit to two- and three-pion energies including only levels in the trivial
irreps in each frame, and with only s-wave contributions for both two- and three-
particle interactions. Furthermore, the position of the Adler zero is fixed to its LO
ChPT value (z2 = 1). This is the type of fit used in previous work [6, 19], albeit to
fewer frames than available here.

3. A combined fit to all two- and three-pion levels, including all irreps, and including
both s- and d-wave interactions. We again fix z2 = 1, and do not include the quadratic
parameter B2 from eq. (3.8). We call this the “minimal” complete fit.

4. An extension of the minimal fit in which we do not fix the position of the Adler zero.
The goal is to check the validity of the z2 = 1 hypothesis.

5. An extension of the minimal fit in which we keep z2 = 1, but allow B2 to vary in
order to test whether this can improve the fit. This fit also gives information on the
convergence of the q2 expansion in the Adler-zero form.

The fits can, in principle, extend in the CMF energy up to the inelastic thresholds, which are
4Mπ and 5Mπ, respectively, for two- and three-pion spectra. In practice, we quote results
from fits to a smaller energy range on two of the three ensembles to avoid possible issues
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with the estimate of the covariance matrix. Fits to levels within varying energy ranges
yield compatible results, even though χ2

red increases as more levels are included. This
χ2
red behavior is to be expected; we parameterize the K-matrices by expanding about the

appropriate thresholds, so it is no surprise that our models become less accurate if too many
high-energy levels are included in fits. This may indicate that the threshold expansions
used in our parametrizations are breaking down for higher values of the CMF energy.

The results of the fits are shown in tables 4 to 6, in each case ordered from left to
right as in the list above. The tables give the number of degrees of freedom, from which
the number of levels included in the fits can be seen. For example, on the N203 ensemble,
we fit to 38 two-particle levels and 35 three-particle levels. In addition to quoting results
for the fit parameters themselves, we also quote, in the last two rows, the results for the
s-wave scattering length and effective range, obtained using eq. (3.10), to facilitate a more
direct comparison of the results of the fits.

We draw several global conclusions from the results in the tables.

a. The values of χ2
red for the best fits are generally reasonable, although always larger

than unity. Such values are typical in the analysis of lattice spectra [6, 7, 10], and
may indicate the relevance of neglected systematic uncertainties, e.g., discretization
effects, or exponentially suppressed effects in the quantization condition. Goodness
of fit becomes poorer for lighter pion masses, possibly indicating a reduction in the
range of validity of our truncated threshold expansions.

b. The inclusion of two- and three-particle d-wave interactions yields a better description
of the data, as shown by the smaller χ2

red compared to fits of type 2. This result is
particularly striking as the levels included in this fit type are those in the trivial irreps,
which are the least sensitive to d-wave interactions. Were we to attempt a fit to all
irreps without including the d-wave terms, a significantly higher χ2

red would result,
as shown by the significance of the parameter D0 in the fits in which it is included.
We will further elaborate on these points when discussing fits to the kaon spectra.

c. The results for Mπa
ππ
0 and M2

πa
ππ
0 rππ0 are consistent across all five fits on all en-

sembles (with the fit 1 result for M2
πa

ππ
0 rππ0 on the N203 ensemble being the only

outlier), indicating that we are obtaining a consistent description of the two-particle
interactions from two- and three-pion levels.

d. A comparison of the results of fits 1 and 4 suggests that the addition of the three-
particle levels improves the precision with which we can extract two-particle interac-
tions, most notably for the d-wave parameter Dππ

0 .

e. The minimal fits (fit 3) have essentially the same χ2
red as those of fits 4 and 5, and the

results for z2 (in fit 4) and B2 (in fit 5) are consistent with unity and zero, respec-
tively. Thus we conclude that the minimal description is adequate for our dataset,
and use the parameters from this fit in our investigation of quark-mass dependence
in the following subsection.
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N203(π)
(2π, ` ≤ 2) (2π/3π, ` = 0) (2π/3π, ` ≤ 2)

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5
z2 0.78(13) 1.0(fixed) 1.0(fixed) 0.90(10) 1.0(fixed)
B0 −5.85(56) −4.88(9) −4.86(8) −5.24(39) −4.77(10)
B1 −1.70(23) −2.27(12) −2.06(10) −1.92(17) −2.41(24)
B2 — — — 0.20(13)
Dππ

0 −154(23) — −137(16) −137(16) −136(16)

M2
πK

iso,0
df,3 — 240(210) 650(210) 540(240) 520(230)

M2
πK

iso,1
df,3 — −1690(330) −2100(470) −1950(490) −2000(470)

M2
πKB — — −2400(800) −2500(800) −2500(800)
dof 38-4 54-4 73-6 73-7 73-7
χ2

red 1.02 1.87 1.39 1.40 1.37
Mπa

ππ
0 0.2082(51) 0.2050(38) 0.2059(34) 0.2092(47) 0.2097(42)

M2
πa

ππ
0 rππ0 1.70(24) 2.06(6) 2.15(5) 1.92(22) 1.99(12)

Table 4. Fit results for pions on the N203 ensemble with MπL = 5.405365, using the Adler-zero
form for the s-wave phase shift. Each fit contains all 2π+ and 3π+ energy levels (in the appropriate
irreps) below E∗

2,max = 3.46Mπ and E∗
max = 4.46Mπ, respectively.

We close this section by showing the results of two additional fits to the N203 ensemble
that motivate the choice of fits presented above. First, we test whether the s-wave param-
eters in Kdf,3 that we previously set to zero, Kiso,2

df,3 and KA, are relevant for a description
of our data. We use the ensemble with the heaviest pion mass for this test, since these
parameters are of higher order in the chiral expansion than those we keep in our standard
fits. We show in table 7 the result of a fit in which all ten parameters in both the two-
and three-particle interactions are turned on. We observe that the additional parameters
do not lead to a reduction in χ2

red, but do lead to much larger uncertainties in the fit pa-
rameters associated with s-wave interactions. Since we have not added additional d-wave
parameters, we expect the results for these parameters to be unchanged, which is confirmed
by the fit. Not visible from the table is the fact that the correlation between the additional
fit parameters is substantial. We conclude that there is no need to include the additional
parameters in order to represent our data.

Our second goal is to check whether the use of the Adler-zero form remains appropriate
at heavier pion masses. To study this, we perform a minimal fit to the N203 data using the
ERE form for the two-particle s-wave interaction, eq. (3.9). We find, as shown in table 8,
that this fit is significantly disfavored compared to the Adler-zero form.

4.2 Fits to two and three kaons

We now turn to the fits of the 2K+ and 3K+ levels. We first use the same five fits as
for pions, listed in the previous section, with results given in tables 9 to 11. Note that we
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N200(π)
(2π, ` ≤ 2) (2π/3π, ` = 0) (2π/3π, ` ≤ 2)

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5
z2 0.96(13) 1(fixed) 1(fixed) 0.96(11) 1(fixed)
B0 −7.00(70) −6.54(18) −6.45(16) −6.67(58) −6.33(19)
B1 −1.70(27) −2.06(19) −1.90(15) −1.83(23) −2.26(36)
B2 — — — — 0.15(14)
Dππ

0 −280(80) — −241(52) −240(52) −237(50)

M2
πK

iso,0
df,3 — 460(160) 500(160) 470(170) 480(160)

M2
πK

iso,1
df,3 — −1000(230) −1040(330) −1030(330) −1060(330)

M2
πKB — — −840(550) −890(560) −930(560)
dof 39-4 53-4 72-6 72-7 72-7
χ2
red 0.83 1.38 1.17 1.19 1.17

Mπa
ππ
0 0.1481(62) 0.1528(43) 0.1550(40) 0.1565(56) 0.1579(48)

M2
πa

ππ
0 rππ0 2.37(37) 2.37(7) 2.41(6) 2.28(32) 2.29(13)

Table 5. Fit results for pions on the N200 ensemble using MπL = 4.419849, with notation as
in table 4. Each fit contains all 2π+ and 3π+ energy levels (in the appropriate irreps) below
E∗

2,max = 4Mπ and E∗
max = 5Mπ, respectively.

choose E∗max to be slightly above the relevant inelastic thresholds, which are 2MK + Mπ

and 3MK + Mπ, respectively, for two and three kaons. The values of Mπ/MK for our
ensembles can be determined from table 3.

Our observations concerning the fits are similar to those described above for the pion
fits. In particular, the inclusion of d-wave interactions remains crucial to obtain reasonable
fits, even if considering only trivial irreps. To illustrate this, we do a simple exercise using
the N203 ensemble of table 9. Taking the best fit parameters of fit 3 in the set of energy
levels of fit 2, we get χred = 1.46. This is much lower than that of fit 2, and thus a
significantly better description of the levels in trivial irreps is achieved when D0 and KB
are included.

The trend of χ2
red with the pion mass is opposite to that for the pion fits, but this

can be perhaps understood because the kaon mass increases as the pion mass decreases.
Another small difference is that the significance of the difference z2−1, while still less than
2σ, is greater on the N203 and D200 ensembles than for pions. For this reason we choose
our canonical fit in the next section to be fit 4, i.e. with z2 left free.

As noted in the introduction, the dominant contribution to the shift in energies from
their noninteracting values is due to two-particle interactions. Although our fits indicate
that including the terms in Kdf,3, in particular KB, leads to improved fits, it is interesting
to have a visual representation of the contribution of Kdf,3 to the shifts. To show this, we
have used the quantization conditions to determine the spectrum on the N200 ensemble
taking all the parameters from fit 4 except that we set Kdf,3 to zero. The resulting energy
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D200(π)
(2π, ` ≤ 2) (2π/3π, ` = 0) (2π/3π, ` ≤ 2)

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5
z2 0.83(21) 1.0(fixed) 1.0(fixed) 0.81(18) 1.0(fixed)
B0 −13.0(1.7) −11.56(62) −11.64(56) −13.0(1.5) −11.1(7)
B1 −1.7(6) −2.49(41) −2.19(38) −1.8(6) −3.2(1.0)
B2 — — — — 0.34(33)
Dππ

0 −690(380) — −640(280) −640(290) −620(270)

M2
πK

iso,0
df,3 — −150(190) −100(190) −150(190) −130(190)

M2
πK

iso,1
df,3 — 20(180) 10(210) 40(210) 40(210)

M2
πKB — — −180(240) −190(240) −150(240)
dof 28-4 41-4 52-6 52-7 52-7
χ2
red 2.29 1.99 1.67 1.68 1.68

Mπa
ππ
0 0.0899(71) 0.0866(47) 0.0859(41) 0.0913(63) 0.0898(56)

M2
πa

ππ
0 rππ0 2.16(51) 2.57(9) 2.62(8) 2.10(44) 2.44(20)

Table 6. Fit results for pions on the D200 ensemble using MπL = 4.199492, with notation as in
table 4. Each fit contains all 2π+ energy levels (in the appropriate irreps) below E∗

2,max = 3.74Mπ

and most 3π+ levels (in the appropriate irreps) below E∗
max = 4.74Mπ; we have discarded some

high-energy 3π+ levels with unusually large errors, only including the lowest two d2 = 6 levels and
lowest three d2 = 8 levels in the A2 irrep.

shifts for the 23 three-kaon levels included in the fits are shown in figure 4, along with those
for fits 2 and 4, as well as the results from the simulations. Note that the four levels in
nontrivial irreps are not included in fit 2. We draw several conclusions. First, the shifts due
to Kdf,3 are comparable to our present statistical errors. Second, one can see, particularly
from the levels on the right half of the plot, that including Kdf,3 improves the fit more
often than not. Third, for the trivial irreps (the first 19 in the plot), the difference between
fits 2 and 4 is again comparable to our errors. Finally, although one cannot determine
the goodness of fit from this figure, since only diagonal errors are shown, we can obtain
quantitative comparisons by calculating χ2 for the complete two- and three-kaon fits for
various choices of level. We find that, if we keep only the 41 levels of fit 2, then fit 4 yields
χ2 = 52.5, while fit 4 with Kdf,3 = 0 gives χ2 = 180, to be compared to 101 for fit 2. We
also note that fit 4 with Kdf,3 = 0 yields χ2 = 192 on the complete set of levels, to be
compared to χ2 = 64 from the full fit 4.

In ChPT, kaon interactions are generally stronger than those of pions due to their
heavier mass. Thus the higher-order parameters in Kdf,3 might have more impact here.
We have tested this with a full 10-parameter fit on the N200 ensemble, chosen as it has
the greatest statistical significance for the lower-order terms in Kdf,3. The resulting fit
parameters are given in table 12. Comparing to the standard fits in table 10, we see that
adding more parameters does lead to a better fit (unlike for pions), with the result for
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N203(π)
(2π/3π, ` ≤ 2)

Full fit
z2 0.96(21)
B0 −5.0(1.0)
B1 −2.2(8)
B2 0.1(3)
Dππ

0 −140(17)

M2
πK

iso,0
df,3 80(390)

M2
πK

iso,1
df,3 100(1500)

M2
πK

iso,2
df,3 −1700(1200)

M2
πKA 1300(1300)

M2
πKB −2900(800)
dof 73-10
χ2
red 1.37

Mπa
ππ
0 0.2086(48)

M2
πa

ππ
0 rππ0 1.95(32)

Table 7. Fit for pions on the N203 ensemble
including all possible parameters at the order
we are working, with MπL and levels as in
fits 3–5 of table 4.

N203(π)
(2π/3π, ` ≤ 2)

ERE fit
−(Mπa

ππ
0 )−1 −4.47(8)

Mπr
ππ
0 0.89(8)

M3
π(rππ0 )3P ππ0 −0.57(7)
Dππ

0 −144(18)

M2
πK

iso,0
df,3 −160(230)

M2
πK

iso,1
df,3 −840(470)

M2
πKB −3400(800)
dof 73-7
χ2
red 1.88

Mπa
ππ
0 0.2238(39)

M2
πa

ππ
0 rππ0 0.80(6)

Table 8. Fit for pions on the N203 ensemble
using the ERE form of the s-wave phase shift,
with MπL and levels as in fits 3–5 of table 4.

common parameters being consistent with those from the standard fits. However, the large
diagonal errors, and the large correlations (not shown), indicate that there are redundant
directions in parameter space, so it is difficult to extract conclusions. The only exception
is that there is an indication of a nonzero KA.

Finally, a natural question to ask is whether is it justified to include the Adler zero in
the parametrization of two-kaon interactions. This is the case at the SU(3)-flavor symmetric
point, since the kaon interactions there are identical to those of pions. However, the
situation whenMK �Mπ is unclear. To study this, we have performed fits on all ensembles
using the standard ERE parametrization of the s-wave phase shift, both for the two-kaon
spectrum alone and for the combined two- and three-kaon spectra. The results are given,
respectively, in tables 13 and 14.

The results indicate that the ensemble N203, closest to the SU(3) point, seems to be
better fit by an Adler-zero parametrization. By contrast, results from N200 and D200 are
equally well described by the ERE form, with the resulting fit parameters being similar.
This differs from what we found with pions, where the ERE form was disfavored. One
reason for this difference might be that the kaon fits are over a smaller energy range, and
thus lie within the range of convergence of the ERE.
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Figure 4. Shifts from the noninteracting levels for three-kaon states included in our fits on the
N200 ensemble. Each energy is labeled at the bottom by the irrep, total momentum-squared, and
the energy level (with 0 indicating the lowest level in the channel, etc.). For each level, the shifts
determined from the lattice simulation are given by the open circles with error bars, followed to the
right by the predictions of fit 2 (teal), fit 4 (orange), and fit 4 with Kdf,3 = 0 (red), respectively.
The predictions for fit 2 are absent for the four nontrivial irreps on the right, as these levels were
not included in this fit. See text for further discussion.

5 Discussion of results

We now turn to an analysis of the K-matrix parameters obtained from the fits presented
in the preceding section. We compare their dependence on Mπ and MK to the predictions
from ChPT described in section 3.4. We discuss the parameters for pion and kaon scattering
in two separate subsections.

We begin with some general comments. First, in all fits, we consider only the uncer-
tainty in the scattering parameters (the y coordinates), treating the x coordinates (which
are related to Mπ/Fπ and MK/FK) as error-free. This is justified because the relative
uncertainty in x coordinates is about an order of magnitude smaller than those in the y
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N203(K)
(2K, ` ≤ 2) (2K/3K, ` = 0) (2K/3K, ` ≤ 2)

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5
z2 1.01(10) 1(fixed) 1(fixed) 1.13(7) 1(fixed)
B0 −3.29(30) −3.37(4) −3.28(4) −2.88(21) −3.30(4)
B1 −2.30(17) −2.29(9) −2.23(8) −2.43(13) −2.09(16)
B2 — — — — −0.16(16)
DKK

0 −54(6) — −45(4) −45(4) −45(4)

Kiso,0
df,3 — −570(190) −250(190) −10(220) −130(220)

Kiso,1
df,3 — −3700(500) −3800(800) −4500(900) −4000(800)
KB — — −5300(2700) −5600(2700) −5100(2700)
dof 33-4 46-4 62-6 62-7 62-7
χ2
red 1.29 3.03 1.57 1.55 1.58

Mπa
KK
0 0.3009(49) 0.2972(38) 0.3047(38) 0.3012(44) 0.3032(41)

M2
πa

KK
0 rKK0 1.64(20) 1.64(6) 1.64(6) 1.92(19) 1.73(11)

Table 9. Fit results for kaons on the N203 ensemble with MKL = 6.908149, using the Adler-zero
form for the s-wave phase shift. Each fit contains all 2K+ and 3K+ energy levels (in the appropriate
irreps) below E∗

2,max = 2.9MK and E∗
max = 3.9MK , respectively, except that we only include the

lowest 2K+ level in the A1 irrep in the d2 = 9 frame, as the two higher-energy levels have unusually
large errors.

coordinates (see table 2). Second, in our fit results and chiral extrapolations, we quote
only the statistical uncertainty and the systematic uncertainty due to the choice of fit. We
do not account for discretization errors, which are of O(a2) and thus could be ∼ 5%, as
is the case for the decay constants [50]. We also neglect volume dependence of the form
exp(−MπL) (likely to be at or below the percent level). Thus our results have systematic
errors that are not fully controlled, but break new ground by providing the first lattice re-
sults for some quantities. Finally, when we present extrapolations to the physical point, we
use the physical charged pion and kaon masses (139.57 and 493.677MeV, respectively [75])
and the corresponding decay constants (130.2 and 155.7MeV, respectively [75]).

5.1 Results for multi-pion systems

We start with the quantities that describe two- and three-pion scattering amplitudes. In
the two-pion sector, we will discuss the threshold parameters, the mass dependence of the
position of the Adler zero, and d-wave interactions. We compare our results for three pions
with previous work that included only s-wave interactions, and discuss the chiral behavior
of the components of Kdf,3.
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N200(K)
(2K, ` ≤ 2) (2K/3K, ` = 0) (2K/3K, ` ≤ 2)

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5
z2 1.18(12) 1(fixed) 1(fixed) 1.04(13) 1(fixed)
B0 −2.47(34) −3.00(4) −2.97(4) −2.87(37) −2.98(4)
B1 −2.67(19) −2.70(12) −2.52(10) −2.57(20) −2.44(18)
B2 — — — — −0.10(22)
DKK

0 −44(7) — −50(7) −50(7) −51(7)

Kiso,0
df,3 — −210(350) 110(350) 170(400) 220(410)

Kiso,1
df,3 — −9200(900) −9300(1100) −9500(1200) −9600(1200)

KB — — -42(5) · 103 −24(5) · 103 −24(5) · 103

dof 28-4 41-4 51-6 51-7 51-7
χ2
red 1.79 2.72 1.43 1.46 1.46

MKa
KK
0 0.3322(55) 0.3327(43) 0.3366(42) 0.3358(50) 0.3355(47)

M2
Ka

KK
0 rKK0 1.72(31) 1.21(9) 1.30(8) 1.36(23) 1.36(14)

Table 10. Fit results for kaons on the N200 ensemble using MKL = 7.225143, with notation as in
table 9. Each fit contains all 2K+ energy levels (in the appropriate irreps) below E∗

2,max = 2.75MK

and all 3K+ levels (in the appropriate irreps) below E∗
max = 3.75MK .

D200(K)
(2K, ` ≤ 2) (2K/3K, ` = 0) (2K/3K, ` ≤ 2)

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5
z2 0.73(35) 1.0(fixed) 1.0(fixed) 0.47(42) 1.0(fixed)
B0 −3.50(94) −2.89(4) −2.78(4) −4.2(1.1) −2.75(4)
B1 −2.12(49) −2.58(13) −2.50(10) −1.8(6) −2.92(26)
B2 — — — — 0.7(4)
DKK

0 −20(3) — −20(2) −20(2) −20(2)

Kiso,0
df,3 — −880(900) −340(900) −900(1000) −1000(1000)

Kiso,1
df,3 — −10000(3500) −6100(4900) −3900(4900) −4300(4600)

KB — — −6(24) · 103 −10(24) · 103 −10(24) · 103

dof 40-4 54-4 77-6 77-7 77-7
χ2
red 1.32 1.84 1.34 1.31 1.31

MKa
KK
0 0.3612(66) 0.3459(51) 0.3591(50) 0.3648(59) 0.3641(58)

M2
Ka

KK
0 rKK0 0.95(30) 1.22(11) 1.20(9) 0.77(24) 0.88(21)

Table 11. Fit results for kaons on the D200 ensemble using MKL = 9.994083, with notation
as in table 9. Each fit contains all 2K+ and 3K+ energy levels (in the appropriate irreps) below
E∗

2,max = 2.53MK and E∗
max = 3.53MK , respectively.
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N200(K)
(2K/3K, ` ≤ 2)

Full fit
z2 0.95(50)
B0 −3.1(1.5)
B1 −2.2(1.3)
B2 −0.3(8)
DKK

0 −45(6)

Kiso,0
df,3 1200(600)

Kiso,1
df,3 −10(5) · 103

Kiso,2
df,3 6(10) · 103

KA −12(4) · 103

KB −11(8) · 103

dof 51-10
χ2
red 1.34

MKa
KK
0 0.3355(52)

M2
Ka

KK
0 rKK0 1.41(37)

Table 12. Fit results for kaons on the N200 ensemble including all possible parameters at the
order we are working, with MKL and levels as in fits 3–5 of table 10.

D200(K) N200(K) N203(K)
(2K, ` ≤ 2) (2K, ` ≤ 2) (2K, ` ≤ 2)

−(MKa
KK
0 )−1 −2.76(5) −2.96(4) −3.27(5)

MKr
KK
0 0.53(14) 0.71(9) 0.84(8)

M3
K(rKK0 )3PKK0 −0.97(42) −1.17(18) −1.14(14)

DKK
0 −20(3) −49(9) −58(7)

MKL 9.994083 7.225143 6.908149
E∗2,max 2.53MK 2.75MK 2.90MK

dof 40-4 28-4 33-4
χ2
red 1.32 1.88 1.41

MKa
KK
0 0.3623(62) 0.3377(49) 0.3057(45)

M2
Ka

KK
0 rKK0 0.76(19) 0.95(11) 1.03(9)

Table 13. Fit results for two kaons using the ERE form of the s-wave phase shift. We stress that
here MKL is a fixed input to the quantization condition, chosen to be consistent with the lattice
results in table 3.

– 26 –



J
H
E
P
1
0
(
2
0
2
1
)
0
2
3

D200(K) N200(K) N203(K)
(2K/3K, ` ≤ 2) (2K/3K, ` ≤ 2) (2K/3K, ` ≤ 2)

−(MKa
KK
0 )−1 −2.74(4) −2.94(4) −3.21(4)

MKr
KK
0 0.46(12) 0.61(7) 0.80(6)

M3
K(rKK0 )3PKK0 −0.73(34) −1.00(15) −1.07(11)

DKK
0 −20(2) −55(9) −48(4)

Kiso,0
df,3 −1000(1000) −220(410) −750(210)

Kiso,1
df,3 −3200(4900) −8500(1200) −2100(900)

KB −10(24) · 103 −27(5) · 103 −3400(2800)
MKL 9.994083 7.225143 6.908149

E∗2,max, E∗max 2.53MK , 3.53MK 2.75MK , 3.75MK 2.90MK , 3.90MK

dof 77-7 51-7 62-7
χ2
red 1.30 1.47 2.05

MKa
KK
0 0.3654(55) 0.3400(45) 0.3116(39)

M2
Ka

KK
0 rKK0 0.67(16) 0.82(9) 1.00(7)

Table 14. Fit results for kaons using the ERE form of the s-wave phase shift. Here MKL is a
fixed input to the quantization condition, as in table 13.

5.1.1 Two-pion threshold parameters

Here we analyze the threshold parameters of two pions at maximal isospin, the scattering
length, aππ0 , and the effective range, rππ0 . This system has been studied using LQCD in
many earlier works [3, 6, 70, 76–87]. Threshold parameters have been obtained using two
approaches: (i) applying the threshold expansion to order L−5 to extract the scattering
length; and (ii) using the full spectrum to determine the phase shift as a function of q2.
We use the latter approach, which is required to obtain the effective range, and uses the
input from many more spectral levels.

As explained in the previous section, we take the results from the minimal fit (fit 3).
We add a systematic uncertainty associated with the dependence on choice of fit, taken
to be the standard deviation of the results of fits 3–5. The inputs to the chiral fits are
summarized in table 15, where we also include the leading-order ChPT predictions for
comparison.

We fit these results to the SU(2) ChPT expressions, given in eqs. (3.15) and (3.16).
The fit to the scattering length yields

`ππ = 7.6(4) , χ2/dof = 0.22/(3− 1) , (5.1)

while for the effective range we obtain

C3 = −0.29(2) , χ2/dof = 1.7/(3− 1) . (5.2)
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N203(π) 0.2059(34)st(21)fit 0.2345(12) 2.15(5)st(12)fit 3
N200(π) 0.1550(40)st(15)fit 0.1747(12) 2.41(6)st(7)fit 3
D200(π) 0.0859(41)st(28)fit 0.0970(6) 2.62(8)st(26)fit 3

Table 15. Two-pion threshold parameters used for chiral fits, obtained as described in the text,
along with the leading-order predictions of ChPT.
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Figure 5. Chiral fits of the threshold parameters of the isospin-2 ππ system. Solid lines correspond
to the LO ChPT predictions, which have no free parameters. The dashed line is a NLO fit to
eqs. (3.15) and (3.16). We also include the 1σ region as a shaded area. Circles mark our data
points, while squares denote the extrapolated values at the physical point.

We plot these fits in figure 5, which show the complete consistency with the ChPT expres-
sions. The extrapolation to the physical point yields

(Mπa
ππ
0 )phys = 0.0429(1) , (M2

πr
ππ
0 aππ0 )phys = 2.68(2) , (5.3)

also shown in the figures. We stress again that the errors do not include all sources of
systematic uncertainty, so that these numbers cannot be quantitatively compared to those
from other works. However, we do note that the result for the scattering length agrees
within ∼ 3% with the only fully controlled result (according the FLAG review [69]),

(Mπa
ππ
0 )phys = 0.0442(2)(4

0) , [ref. [77]] . (5.4)

5.1.2 Position of the Adler zero

In the context of LQCD determinations of the isospin-2 ππ s-wave phase shift, it was
proposed in ref. [3] to use the Adler-zero parametrization, eq. (3.8), in place of the ERE
form used previously, eq. (3.9). Explicit inclusion of the Adler zero extends the range
of validity in q2, and is particularly important when including subthreshold amplitudes
(q2 < 0), which is unavoidable when fitting the three-particle spectrum [13]. Indeed, it was
found in ref. [3], and subsequently supported by the results of ref. [6], that the Adler-zero
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Figure 6. NLO chiral fit to the position of the Adler zero. Notation as in figure 5.

form led to better fits than those using the ERE. However, in most fits done to date, the
position of the Adler zero has been fixed to its leading-order value in ChPT, z2 = 1. Since
our fits are more precise than those done previously, we can attempt to study the chiral
behavior of the Adler zero, and compare to the NLO prediction from ChPT, eq. (3.17).

We use the results from our fits in which z2 is a free parameter (fit 4 in tables 4 to 6
above). We find

`z = 8.5(2.2), χ2/dof = 0.6/(3− 1) , (5.5)

and show the fit in figure 6. The extrapolation to the physical point yields

(z2)phys = 0.94(2) . (5.6)

Nevertheless, at the level of precision achieved here, it is reasonable to set z2 = 1, as
the magnitude of the NLO correction is smaller than the statistical uncertainty in our
determination of z2.

5.1.3 Two-pion d-wave scattering length

We next analyze our results for d-wave interactions. While the s-wave interaction in the
I = 2 channel has been studied extensively on the lattice, much less is known for the d-wave
interaction, which to our knowledge has only been extracted in refs. [6, 67, 88].

At physical quark masses, the isospin-2 d-wave phase shift exhibits an interesting
feature: dispersion relations, Roy equations, and chiral perturbation theory predict a
change of sign near threshold. It starts out positive (attractive) for very small q2 and
then passes through zero and becomes increasingly negative (repulsive) [66, 89–92]. In
terms of k5 cot δ2, this behavior implies a pole slightly above threshold. It is unclear, how-
ever, whether this phenomenon persists for heavier pion masses. Indeed, ref. [93] studied
δ2 using ChPT, and found poor convergence for the region of pion masses of relevance here.

In practice, probing the near-threshold dependence of δ2 using the Lüscher method
is difficult for two reasons. First, δ2 is small close to threshold due to its scaling as q5,
resulting in tiny shifts of the energy spectrum. Second, the energy levels most sensitive to
the d-wave interaction lie well above threshold for typical values of MπL currently used,
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Figure 7. Dependence of the d-wave scattering length on (Mπ/Fπ)4. We include a linear fit based
on chiral expectations, and indicate the position of the physical point.

and are thus sensitive to δ2 only in the region where the phase shift is expected to be
negative. For this reason we opt to use the simple one-parameter form eq. (3.11), which
implies a uniformly negative phase shift in all our fits, with D0 < 0. As noted in section 3.4,
δ2 vanishes at LO in ChPT. We therefore expect the d-wave scattering length to behave as

M5
πa

ππ
2 = − 1

Dππ
0 − 1 ∝

(
M2
π

F 2
π

)2

, (5.7)

up to logarithmic corrections, and choose to fit to this simple power-law dependence.
As shown in figure 7, our results are in excellent agreement with this behavior. Given

the possibility discussed above of rapid changes in δ2 near threshold, we refrain from quoting
a value extrapolated to the physical point.

We can make a qualitative comparison to the results of ref. [6]. The values of the
scattering lengths in the two works are of the same order of magnitude, but those from
ref. [6] do not show the same monotonic chiral behavior. The largest tension is at our
heaviest pion mass, which is comparable to the heaviest pion mass used in ref. [6]. We
note that our results are based on a global fit including many two- and three-pion levels in
irreps that are sensitive to the d-wave amplitude, whereas those from ref. [6] are from just
a few two-pion levels in the nontrivial irreps. Another difference is that ref. [6] employs
an Nf = 2 simulation, compared to ours that uses Nf = 2 + 1 sea quarks. Relative cutoff
effects may also be significant, given that our lattice spacing is significantly finer. Thus we
view our results as more reliable, although further work will be needed to understand the
differences.

5.1.4 Comparison to previous s-wave three-pion fits

The three-pion coupling at maximal isospin has been extracted in the RFT approach [3,
6, 7], the FVU approach [10, 35], and via the threshold expansion [1, 9]. All these studies
have included only s-wave contributions to the two- and three-pion interactions. In this
section, we compare results that we have obtained from fits that closely match those used in
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Fit B0 B1 M2
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πK
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df,3 χ2

red Mπa
ππ
0 M2
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ππ
0 aππ0

This work −12.8(8) −2.2(4) −380(190) 220(160) 0.85 0.078(5) 2.66(8)
ref. [3] −11.1(7) −2.4(3) 550(330) −280(290) 1.45 0.090(5) 2.57(8)

Table 16. Global fits to the two- and three-pion spectrum of D200 including only s-wave interac-
tions. We use the 22 energy levels as in ref. [3]: eleven 2π+ levels (all in trivial irreps), and eleven
3π+ levels, including three in nontrivial irreps.

these previous studies, i.e., restricted to s-wave interactions and using only a subset of the
moving frames and levels. Specifically, we compare to the RFT results of refs. [3, 6], which
use the same fit model as this work, allowing for a direct comparison. We stress, however,
that, as seen in section 4, fitting without including d-wave terms leads to poorer fits (even
if only trivial irreps are included). Thus, the present comparison must be understood as a
consistency check.

We start with a direct comparison to ref. [3]. That work used the two- and three-
pion spectra of ref. [2], which were calculated on the D200 ensemble also used here. The
present determination of the spectrum differs in several ways: (i) we increased statistics by
including measurements on more gauge configurations as well as adding a second source
time per configuration; (ii) we rebin data in blocks of three configurations to ameliorate
autocorrelation; (iii) following these changes, we re-assessed the excited-state systematics
of the spectrum extraction. The fit results are shown in table 16, along with those from
ref. [3]. Note that this is a new fit, different from those presented in section 4.1. We stress
that we are fitting to the same set of levels, so differences in fit parameters result solely
from updates in the energies of the levels. We observe a substantial difference between
the two fits, which, including correlations, is about 3σ. In particular, the determination of
M2
πK

iso,0
df,3 , which was found to be different from zero at the 2σ level in ref. [3], is called into

question in view of the change of sign in the new fit.
Our interpretation of the discrepancy is the following. First, a larger rebinning reduces

the impact of the autocorrelation between samples, and leads to more reliable determina-
tions of the energy levels. Second, the increase in statistics enables the use of larger values
of tmin, which reduces the contamination from excited states. In summary, we now think
that there may be systematic errors in the spectrum of ref. [2] that have not been accounted
for. Since the impact of three-particle interactions on the spectrum is small, such effects
can lead to significant systematic errors in the parameters in Kdf,3. Note that in our pre-
ferred fit which includes d-wave interactions, the value of M2

πK
iso,0
df,3 is shifted by more than

one standard deviation — compare table 16 and fit 3 in table 6. This is another indication
of the challenge in determining these parameters.

We end this discussion with a plot comparing the determinations of the s-wave com-
ponents of Kdf,3 from this work with those from ref. [6], as well as ref. [3]. Here we use the
results of the full s-wave-only fits (fit 2), since these use the same fit functions as refs. [3, 6].
There are however some differences between our fit 2 and refs. [3, 6]: (i) fit 2 includes only
trivial irreps, while refs. [3, 6] include both trivial and nontrivial irreps in the three-pion
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Figure 8. Three-particle scattering quantities from fits using the RFT formalism, and the s-
wave-only parametrization. For our work this is fit 2 in tables 4 to 6. Results for refs. [3, 6] are
also shown.

sector, and (ii) here we use more moving frames than in previous work. The comparison
is shown in figure 8, which also shows the LO predictions from ChPT from eq. (3.21). For
this figure alone we use Mπa

ππ
0 for the x axis, as this has been used in the prior works. As

a consequence the error bars now become ellipses.
We first note that, for the two higher-mass ensembles, most of our results (red ellipses)

are statistically different from zero, unlike for the D200 ensemble. The figure also shows
that the just-discussed tension with ref. [3] (blue ellipses) remains when we use a fit to
levels in the trivial irrep in all frames. What we see in addition is a significant tension at
the heaviest pion mass with the results from the ETMC collaboration [6] (orange ellipses).
Just as for the difference in the d-wave scattering length, it is difficult to understand this
tension. Possible sources of difference are that the two calculations correspond to different
lattice regularizations, and thus have different O(a2) discretization errors, and the fact that
the ETMC result is for Nf = 2, while our N203 ensemble is close to the SU(3)-symmetric
point. More investigation will be needed to understand how these effects enter in Kdf,3.

5.1.5 Results for Kdf,3 from full fits including d waves

We conclude the discussion for pions by presenting our final results for the terms in Kdf,3,
which are obtained from fits to levels in all irreps including d-wave interactions. We recall
that such fits provide a much better description of the spectrum than fit 2, the results from
which are discussed in the previous section for comparative purposes. We have results for
Kiso,0

df,3 ,K
iso,1
df,3 , and KB, and, as before, use fit 3 for our central values.

The chiral dependence of the isotropic parameters is shown in figure 9. We observe
statistically significant deviations from zero at heavier pion masses. Our results are consis-
tent with a linear chiral dependence on (Mπ/Fπ)4 as expected from ChPT, see eq. (3.21).
However, the respective slopes are in significant tension with the ChPT predictions, hinting
at a possible breakdown in the convergence of ChPT. Indeed, as noted already in ref. [3],
there are reasons to expect large NLO corrections to Kdf,3. A final comment concerns the
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Figure 9. Results for the isotropic parameters in Kdf,3 for pion scattering plotted against the
expected leading chiral behavior, (Mπ/Fπ)4. Notation as in figure 5. We show the LO ChPT result
for comparison.
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Figure 10. Chiral scaling of KB for pions as a function of (Mπ/Fπ)6, including a linear fit.
Notation as in figure 5.

results extrapolated to the physical point: since Kdf,3 vanishes rapidly towards the chiral
limit, it will be very difficult in practice to extract the three-pion interaction directly at
this point.

We now turn to KB. As explained in section 3.4, while no ChPT prediction is available,
we expect the chiral scaling

M2
πKB ∝

(
Mπ

Fπ

)6
, (5.8)

up to logarithms. This expectation is borne out by our results shown in figure 10. The
extraction of KB, despite being of quadratic order in the threshold expansion, is aided by it
being the only contribution from Kdf,3 to a set of energy levels in nontrivial irreps. Similarly
to the isotropic parameters, the extrapolation indicates a very small value for KB at the
physical point, which will presumably be difficult to extract directly from simulations with
close-to-physical quark masses.
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)LO
N203 0.3012(44)st(18)fit 0.3431(12) 1.92(19)st(14)fit 3
N200 0.3358(50)st(21)fit 0.3761(19) 1.36(23)st(26)fit 3
D200 0.3648(59)st(29)fit 0.4052(16) 0.77(24)st(23)fit 3

Table 17. Two-kaon threshold parameters from fit 4 in tables 9 to 11, with systematic errors due
to choice of fit obtained as discussed in the text.
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Figure 11. Results for the s-wave two-kaon scattering length and effective range. Notation as in
figure 5, except that in the left panel we include, with an empty triangle, the result for the chiral
extrapolation from an SU(3) ChPT fit to both kaon and pion scattering lengths.

5.2 Results for multi-kaon systems

Unlike for the isospin-2 ππ system, there are relatively few studies of two kaons at maximal
isospin [8, 86, 94, 95]. Furthermore, the three-kaon K-matrix has yet to be explored, as
the only other study of three kaons at maximal isospin set it to zero [8]. Thus we provide
here the first exploration of this quantity.

The remainder of this section has a similar structure to that for pions. As discussed in
section 4.2, we use fit 4, which includes the position of the Adler zero as a free parameter,
as our reference fit.

5.2.1 Two-kaon threshold parameters

As in the two-pion case, we start by looking at the two-kaon threshold parameters. The
results are summarized in table 17, along with the LO chiral predictions. The central values
are from fit 4 in tables 9 to 11, while the systematic uncertainty is given by the standard
deviation of the results from all the fit models, including the ERE fits on the D200 and
N200 ensembles. The deviation from LO ChPT is more pronounced for kaons than for
pions (table 15), indicating poorer convergence of the chiral expansion.

The results for the scattering length and effective range are shown in figure 11. For
both quantities we perform a linear fit in (Mπ/Fπ)2, motivated by SU(2) ChPT as explained
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in section 3.4, leading to the following values at the physical point(
MKa

KK
0

)
phys

= 0.390(9) ,
(
M2
Kr

KK
0 aKK0

)
phys

= 0.3(4) , (5.9)

where the quoted uncertainties are only statistical.
We can also perform a simultaneous SU(3) ChPT fit to the kaon and pion scattering

lengths using the NLO results eqs. (3.19) and (3.20). We stress that a single, common LEC
enters in both expressions, so that we have one free parameter to describe six data points.
In the fit, we ignore the (small) uncertainties in (Mπ/Fπ)2 — as we do for all fits presented
in this section — as well as the correlations between aKK0 and aππ0 evaluated on the same
ensemble. The resulting percent-level determination of

Lππ(µ = 4πFπ) = −1.13(3) · 10−3, χ2/dof = 0.98/(6− 1), (5.10)

does not reflect that there is a family of NLO ChPT expressions, which differ only by higher-
order terms, but lead to slightly different results for Lππ. Here we use the form in which
both equations are written as functions of just xπ and xK , but it would be equally valid,
for example, to replace FK → Fπ in the NLO terms. Comparing the results from fitting
with different allowed NLO forms, we find that the resultant Lππ varies at the 10% level.
We thus assign a systematic error of this size, which we interpret as due to missing NNLO
terms. Including this uncertainty, the results of extrapolating to the physical point are

(Mπa
ππ
0 )phys = 0.04291(4)st(20)NNLO ,

(
MKa

KK
0

)
phys

= 0.352(3)st(13)NNLO . (5.11)

The kaon result is also shown in figure 11a. We see that the statistical error is dominated
by the systematic error from NNLO effects.

The result for the physical pion scattering length in eq. (5.11) is in complete agreement
with that from the SU(2) ChPT extrapolation, given in eq. (5.3). For the kaon scattering
length, however, the result from the linear fit, eq. (5.9), disagrees significantly with that
based on SU(3) ChPT, eq. (5.11). This difference can be seen also in figure 11a.

We think that this roughly 10% difference is mainly due to discretization effects. In
particular, we note that, along our chiral trajectory, the ratio MK/FK is expected to
increase monotonically towards physical quark masses, yet its value on our most chiral
ensemble 4.513(9) (see table 2) is larger than the physical value 4.472. Indeed, sizeable
discretization effects of 3–4% were observed in similar ratios in ref. [50]. Since the expression
forMKa

KK
0 , eq. (3.20), is proportional to (MK/FK)2, the discretization errors in the SU(3)

physical-point prediction could be as big as 6–8%, and thus largely explain the discrepancy
between the extrapolations based on SU(2) and SU(3) ChPT.

5.2.2 Two-kaon d-wave interactions

We now turn to the d-wave two-kaon interaction, which to our knowledge has not been
previously studied in lattice calculations. In our fits, this is described by a single parameter,
D0, which is constrained quite well by both two- and three-kaon levels in nontrivial irreps.
Our results for the d-wave scattering length, M5

Ka
KK
2 , are shown in figure 12. Since we
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Figure 12. Results for M5
Ka

KK
2 . Notation as in figure 5.

do not know of an SU(2) ChPT expression for this quantity, we perform a simple linear
fit, which represents the data rather poorly. The conclusion is that there is some evidence
that the d-wave scattering length increases as one approaches the physical point.

5.2.3 Results for Kdf ,3 for three kaons

Our final results are for the parameters of the three-kaon K-matrix: Kiso,0
df,3 , K

iso,1
df,3 , and

KB, which have not previously been determined. In order to simplify the notation, we use
the same symbols for these parameters as for pions, although they are different physical
quantities.

The results for Kiso,0
df,3 and Kiso,1

df,3 are shown in figure 13. From the left panel, we see
that Kiso,0

df,3 is consistent with zero for all masses, and also after linear extrapolation to the
physical point. For Kiso,1

df,3 , by contrast, nonzero values are found for the two heaviest pion
masses, and a linear extrapolation to a nonzero value at the physical point is reasonable.
The only theoretical guidance we have is from the LO ChPT result of eq. (3.21), which
predicts proportionality to M4

K/F
4
K . Given our chiral trajectory, this would lead to an

increase as we move to smaller values of M2
π/F

2
π . However, the values predicted by LO

ChPT are very far from those we find. For instance, on the N203 ensemble the results are

M2
KK

iso,0
df,3

∣∣∣∣
LO

= 4100(100), M2
KK

iso,1
df,3

∣∣∣∣
LO

= 6200(200), (5.12)

which do not even appear in the plot ranges.
Our results for KB are shown in figure 14. As can be seen, the result on the D200

ensemble has by far the largest statistical errors. This is because the large value of MKL ∼
10 suppresses the contribution to shifts in the spectrum from interactions that are of higher
order in the threshold expansion. Our results are consistent with an increase in KB as we
approach the physical point.

6 Conclusion

In this work we have extended the application of LQCD to multihadron systems by uti-
lizing state-of-the-art numerical methods to determine an order of magnitude more two-
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Figure 13. Results for the isotropic parameters in Kdf,3 for kaon scattering. Notation as in
figure 5.
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Figure 14. Results for KB for kaon scattering. Notation as in figure 5.

and three-particle spectral levels than in previous work. On each ensemble we have de-
termined, for both pions and kaons, 50–80 levels below the relevant inelastic thresholds,
roughly equally split between those for two and three particles. The energies of the levels
have been determined to a precision of 1–5%, with the shifts from the corresponding free
energies determined with errors of 5–15%. This unprecedented number of levels with such
high precision has been made possible with stochastic LapH and advanced contraction
algorithms. The jackknife samples of all energies extracted in this work are provided in
HDF5 format as supplementary material attached to this paper.

We have found that these levels can be described well by the two- and three-particle
quantization conditions using a relatively small number of underlying parameters. Since
the major contribution to the energy shifts to three-particle levels arises from two-particle
interactions, our strategy has been to do a simultaneous fit to two- and three-particle levels,
including all correlations. We find that this leads to a better determination of the two-
particle scattering parameters than a fit to the two-particle levels alone. The goodness of
the fits is reasonable, with χ2

red = 1.2–1.7.
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The 3π+ and 3K+ systems are nonresonant, with repulsive two-particle interactions
that are expected to have mild energy dependence. This allows the two-particle interactions
to be described by relatively few parameters in the relevant energy range. Our fits have been
able to determine these parameters accurately. For example, the pion and kaon scattering
lengths are determined with statistical errors of 1–2%. These systems thus provide a good
testbed for studying the significance of three-particle interactions, which themselves make
only a small impact on the energy levels. Previous work has either found no statistical
evidence for such interactions, or a barely significant signal.

Our main conclusions are as follows. First, we find that a parametrization of the
two-pion K-matrix that includes the Adler zero expected from chiral symmetry is favored,
compared to an effective range expansion. For our lightest kaons, the presence of the Adler
zero is also preferred. In this regard, we stress that the three-particle quantization condition
involves contributions from subthreshold two-particle scattering, and thus is more sensitive
to the Adler zero. We also find that the position of the Adler zero is consistent with the
expectations of ChPT, albeit with relatively large errors.

Our second conclusion is that reasonable fits require the presence of d-wave parameters,
both for two- and three-particle interactions. In the two-particle sector, we determine the
d-wave scattering length with 10–20% statistical errors, and observe the expected chiral
behavior. For three particles, our results provide the first determination of the d-wave
three-particle parameter, KB. We note that, once d-wave parameters are included, there
is no longer a one-to-one connection between levels and scattering parameters, even in the
two-particle sector. Thus a global fit is required.

Our final conclusion is that the determination of three-particle interactions requires
the use of many energy levels, in a variety of irreps, determined with sufficient accuracy.
In particular, to extract d-wave contributions it is important to use levels in nontrivial
irreps. We find nonzero results not only for KB, but also the s-wave parameters Kiso,0

df,3
and Kiso,1

df,3 in most of the cases. The statistical significance of these results vary, but is
greater than in previous studies, exceeding 3σ in several cases. For pions, the s-wave part
of Kdf,3 has the expected linear dependence on M4

π , but the coefficient is in disagreement
with leading order ChPT. The d-wave part KB also has the expected M6

π dependence, but
in this case a ChPT prediction for the coefficient is not available. For both quantities our
chiral extrapolations indicate that it will be very difficult to determine the three-particle
interaction for physical quark masses. We also observe some tensions between our results
for Kiso,0

df,3 and Kiso,1
df,3 and those of previous work [6].

A noteworthy feature of our fits using the quantization conditions is that they continue
to work quite well above the energies that we have included in the fits (see figure 3). This
shows that we have not forced the fits to work in a limited energy range only to have
them quickly fail outside that range, and thus supports the applicability of the threshold
expansion that we have used for the K-matrices. In particular, for three kaons, these extra
levels lie outside the range that can be rigorously described by the quantization condition,
indicating that, as expected, anomaly-induced transitions and overlaps onto mixed-flavor
states are suppressed.
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There are many exciting directions in which this work can be extended. Most straight-
forward is to the maximal charge systems with hybrid flavor content, e.g. π+π+K+ and
π+K+K+. The formalism for analyzing such “2 + 1” systems has very recently been de-
veloped [25]. More challenging are systems of three pions or kaons with isospin less than
the maximal value, which involve quark annihilation diagrams and, in some cases, resonant
behavior. The relevant formalism has been derived in ref. [21]. We hope to study such
systems in the near future.

Another future direction is to extend the study of 3π+ and 3K+ interactions to en-
sembles with different lattice spacings and volumes. This will provide a direct check on
the importance of discretization errors, and on whether our fits can accurately describe
the volume dependence. The former have been shown to be relevant in two-baryon sys-
tems [62]. In the latter regard, we note that the formalism that we use drops corrections
proportional to e−mπL, and there is no expectation in the short term that such terms could
be included in a rigorous way. Thus we must assume that they are small, and the only
consistency check that we have on this is to compare results at different volumes.

Finally, we note that, to obtain the three-particle S-matrix elements from the K-
matrices determined here, one needs to solve the integral equations presented in ref. [15].
To do so in the presence of d-wave interactions requires a generalization of the methods
developed in refs. [7, 96].
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A Little-group representation matrices

Our approach to designing the single-hadron and multi-hadron operators used in this work
has been described in detail in ref. [44]. However, single-hadron operators with momenta
in directions such as (0, 1, 2) and (1, 1, 2), where Cartesian components are used, were not
treated in ref. [44]. Hence, we provide specific details concerning only these additional
operators in this appendix.

For each class of momenta, we choose one representative reference momentum direction
pref . We then construct operators that transform irreducibly under the little group of pref .
Recall that the little group of pref is the subset of the symmetry operations that leave the
reference momentum pref invariant. For each momentum direction p in a class of momenta,
we select one reference rotation Rp

ref that transforms pref into p. As long as the selected
rotation transforms pref into p, it does not matter which group element is chosen, but a
choice must be made in order to specific all phases between the single-hadron operators
of different momentum directions. These phases must be known in order to properly
construct the multi-hadron operators. All single-hadron operators having a momentum in
the direction of p are then obtained by applying the reference rotation to the corresponding
operators constructed using the momentum in the direction of pref . Our choices of reference
momenta directions and reference rotations for the additional operators used in this work
are listed in table 18.

The little groups associated with the additional momentum directions used in this work
are listed in table 19. Although this work involves only mesons, we wish to provide details
concerning both the single-valued and double-valued representations for possible future
calculations with baryons. The double-valued representations of a group G are constructed
by extending the group elements to form the so-called “double group” GD. The elements of
the double groups associated with our choices of additional reference momentum directions
are explicitly presented in table 19, grouped into their conjugacy classes.

The characters of the irreducible representations (irreps) of the little group Cs for the
additional momenta directions are presented in table 20. The one-dimensional single-valued
irreps are labeled by A, and the one-dimensional double-valued irreps are denoted by F .
Since all of the irreps are one dimensional, the characters are the representation matrices.

B Tables of interpolating operators

The three- and two-hadron operators used in this work are listed in tables 21 to 31 below.
The notation for the irreps follows the conventions in ref. [44]. The subscripts g/u denote
even/odd parity, and the superscripts +/− denote even/odd G-parity. The Clebsch-Gordan
coefficients that fully define each operator are not given, but are available upon request.
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pref direction p direction Rp
ref p direction Rp

ref

(0, 1, 2) (0, 1, 2) E (0, 1,−2) C2y

(0, 2, 1) C2e (0,−2, 1) C4x

(1, 0, 2) C−1
4z (1, 0,−2) C2a

(2, 0, 1) C3δ (−2, 0, 1) C3γ

(1, 2, 0) C−1
3δ (1,−2, 0) C−1

3α

(2, 1, 0) C4y (−2, 1, 0) C−1
4y

(0,−1, 2) C2z (0,−1,−2) C2x

(0, 2,−1) C−1
4x (0,−2,−1) C2f

(−1, 0, 2) C4z (−1, 0,−2) C2b

(2, 0,−1) C3β (−2, 0,−1) C3α

(−1, 2, 0) C−1
3γ (−1,−2, 0) C−1

3β

(2,−1, 0) C2c (−2,−1, 0) C2d

(1, 1, 2) (1, 1, 2) E (1,−2, 1) C4x

(−1, 1, 2) C4z (−1,−2, 1) C−1
3β

(1,−1, 2) C−1
4z (1,−2,−1) C−1

3α
(−1,−1, 2) C2z (−1,−2,−1) C2f

(1, 1,−2) C2a (2, 1, 1) C3δ

(−1, 1,−2) C2y (2,−1, 1) C2c

(1,−1,−2) C2x (2, 1,−1) C4y

(−1,−1,−2) C2b (2,−1,−1) C3β

(1, 2, 1) C−1
3δ (−2, 1, 1) C−1

4y

(−1, 2, 1) C2e (−2,−1, 1) C3γ

(1, 2,−1) C−1
4x (−2, 1,−1) C3α

(−1, 2,−1) C−1
3γ (−2,−1,−1) C2d

Table 18. Our choices for the reference momentum pref directions and the reference rotations Rp
ref

for each of the additional momentum p directions that we use. See table II of ref. [44] for all other
momentum directions used. See ref. [44] for definitions of the rotation operators Cnj below. E is
the identity element.
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pref Conjugacy classes
(0, 1, 2) C1 = {E}

C2 = {IsC2x}
C3 = {IsC2x}
C4 = {E}

(1, 1, 2) C1 = {E}
C2 = {IsC2b}
C3 = {IsC2b}
C4 = {E}

Table 19. The little groups corresponding to reference momentum directions (0, 1, 2) and (1, 1, 2)
are isomorphic to Cs. The elements of the double groups CDs for these momenta directions are
listed above, grouped into conjugacy classes. E is the identity element, E represents a rotation by
2π about any axis, and G = EG for each element G in Cs. Spatial inversion is denoted by Is.

χΛ
1 χΛ

2 χΛ
3 χΛ

4
A1 1 1 1 1
A2 1 −1 −1 1
F1 1 i −i −1
F2 1 −i i −1

Table 20. Characters χΛ for the single-valued and double-valued irreducible representations Λ of
the group Cs. χΛ

n denotes the character of Λ for all group elements in class Cn. See table 19 for the
definitions of the classes Cn. Since all of the representations are one dimensional, the characters
are the representation matrices.
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~dref [d2
1, d

2
2, d

2
3]

Efree/Mπ operatorsN203 N200 D200
(0, 0, 0) [0, 0, 0] 3.0 3.0 3.0 A−1u

[0, 1, 1] 4.0667 4.4761 4.5989 A−1u ⊕ E−u
[0, 2, 2] 4.8483 A−1u ⊕ E−u ⊕ T

−
2u

[1, 1, 2] 4.9909 A−1u ⊕ E−u ⊕ T
−
1g ⊕ T

−
2g ⊕ T

−
2u

(0, 0, 1) [0, 0, 1] 3.3367 3.4572 3.4925 A−2
[0, 1, 2] 4.3033 4.7763 4.917 A−2 ⊕B

−
2 ⊕ E−

[1, 1, 1] 4.4508 5.0166 5.1869 2A−2 ⊕B
−
2

[0, 1, 4] 4.9289 A−2
[0, 2, 3] 5.0399 A−2 ⊕B

−
1 ⊕ E−

[1, 1, 3] 5.1861 A−2 ⊕B
−
1 ⊕ E−

[1, 2, 2] 5.2547 A−1 ⊕ 4A−2 ⊕ 2B−1 ⊕ 3B−2 ⊕ 3E−

(0, 1, 1) [0, 0, 2] 3.5632 3.7392 3.7895 A−2
[0, 1, 1] 3.7197 3.9992 4.0834 A−2
[0, 1, 3] 4.4899 5.007 5.16 A−2 ⊕B

−
2

[0, 2, 2] 4.5611 5.1094 A−1 ⊕A
−
2

[1, 1, 2] 4.7124 A−1 ⊕ 4A−2 ⊕ 3B−1 ⊕B
−
2

[0, 1, 5] 5.0579 A−2 ⊕B
−
1

[0, 2, 4] 5.2013 A−2 ⊕B
−
1

(1, 1, 1) [0, 0, 3] 3.7406 3.9535 4.0137 A−2
[0, 1, 2] 3.9769 4.3326 4.4386 A−2 ⊕ E−

[1, 1, 1] 4.1361 4.5961 4.7358 A−2
[1, 1, 3] 4.9186 2A−2 ⊕ 2E−

[1, 2, 2] 4.9909 A−1 ⊕ 2A−2 ⊕ 3E−

[0, 1, 6] 5.1732 A−2 ⊕ E−

Table 21. Three-pion operators with ~d 2
ref ≤ 3 used in this study. Each row specifies all linearly-

independent operators corresponding to a particular free energy-level. Ensembles with a missing
value for the energy of the free level Efree did not use those operators. For each set of momenta
that are equivalent up to allowed rotations, one representative integer momentum specifying the
total momentum of the operator ~P = (2π/L)~dref is given. The integer momentum squared of the
individual single particles in each operator is given by d2

i .
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~dref [d2
1, d

2
2, d

2
3] Efree/Mπ operatorsN203 N200 D200

(0, 0, 2) [0, 1, 1] 3.3367 3.4572 3.4925 A−
2

[0, 0, 4] 3.8888 4.1298 4.1975 A−
2

[0, 2, 2] 4.2546 4.6973 4.8283 A−
2 ⊕B

−
2

[1, 1, 2] 4.4164 4.965 5.1302 A−
2 ⊕B

−
2 ⊕ E−

[0, 1, 5] 4.7833 A−
2 ⊕B

−
2 ⊕ E−

[0, 3, 3] 4.9801 A−
2 ⊕B

−
1

[1, 1, 4] 5.0919 2A−
2 ⊕B

−
2

[1, 2, 3] 5.2104 A−
1 ⊕ 2A−

2 ⊕ 2B−
1 ⊕B

−
2 ⊕ 3E−

[2, 2, 2] 5.2836 A−
2 ⊕B

−
1 ⊕ E−

(0, 1, 2) [0, 1, 2] 3.6213 3.838 3.9019 A−
2

[1, 1, 1] 3.7954 4.1332 4.237 A−
2

[0, 0, 5] 4.0174 4.2812 4.355 A−
2

[0, 1, 4] 4.3462 4.7937 4.9256 A−
2

[0, 2, 3] 4.4716 4.9739 5.1219 A−
1 ⊕A

−
2

[1, 1, 3] 4.6358 5.2456 A−
1 ⊕A

−
2

[1, 2, 2] 4.7124 2A−
1 ⊕ 5A−

2
[0, 1, 6] 4.9051 A−

1 ⊕A
−
2

[0, 2, 5] 5.0831 A−
1 ⊕ 2A−

2
[1, 1, 5] 5.2427 A−

1 ⊕ 6A−
2

(1, 1, 2) [0, 1, 3] 3.8412 4.1215 4.204 A−
2

[0, 2, 2] 3.9242 4.2453 4.3401 A−
2

[1, 1, 2] 4.099 4.5398 4.6737 A−
1 ⊕ 2A−

2
[0, 0, 6] 4.1317 4.4149 4.4937 A−

2
[0, 1, 5] 4.4919 4.9723 5.1134 A−

1 ⊕A
−
2

[0, 2, 4] 4.6529 5.2012 A−
2

[1, 1, 4] 4.8192 A−
2

[1, 2, 3] 4.9443 3A−
1 ⊕ 3A−

2
[2, 2, 2] 5.0214 2A−

1 ⊕ 2A−
2

[0, 2, 6] 5.2154 A−
1 ⊕A

−
2

(0, 2, 2) [0, 2, 2] 3.5632 3.7392 3.7895 A−
2

[1, 1, 2] 3.7549 4.0704 4.1674 A−
2

[0, 1, 5] 4.1803 4.5478 4.6552 A−
2 ⊕B

−
1

[0, 0, 8] 4.3297 4.6447 4.732 A−
2

[0, 3, 3] 4.4042 4.8696 5.0062 A−
2

[1, 1, 4] 4.5302 5.0944 A−
2 ⊕B

−
1

[1, 2, 3] 4.663 A−
1 ⊕ 2A−

2 ⊕B
−
1 ⊕ 2B−

2
[2, 2, 2] 4.7447 A−

1 ⊕A
−
2

[0, 2, 6] 4.9495 A−
1 ⊕A

−
2 ⊕B

−
1 ⊕B

−
2

[0, 4, 4] 5.0924 A−
2

[1, 1, 6] 5.1198 A−
1 ⊕A

−
2 ⊕B

−
1 ⊕B

−
2

Table 22. Same as table 21 except for the three-pion operators with 4 ≤ ~d 2
ref ≤ 8.
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~dref [d2
1, d

2
2, d

2
3] Efree/Mπ operatorsN203 N200 D200

(0, 0, 3) [1, 1, 1] 3.0 3.0 3.0 A−2
[0, 1, 4] 3.6721 3.8596 3.9127 A−2
[1, 2, 2] 4.099 4.5398 4.6737 A−2 ⊕B

−
2

[0, 0, 9] 4.4171 4.7456 4.8365 A−2
[0, 2, 5] 4.5203 5.0078 5.1505 A−2 ⊕B

−
2 ⊕ E−

[1, 1, 5] 4.6991 A−2 ⊕B
−
2 ⊕ E−

[1, 2, 4] 4.8682 A−2 ⊕B
−
2 ⊕ E−

[1, 3, 3] 4.9186 A−2 ⊕B
−
1

[2, 2, 3] 5.0005 A−2 ⊕B
−
1 ⊕ E−

[0, 3, 6] 5.2058 A−2 ⊕B
−
1 ⊕ E−

Table 23. Same as table 21 except for the three-pion operators with ~d 2
ref = 9.

~dref [d2
1, d

2
2, d

2
3] Efree/MK operatorsN203 N200 D200

(0, 0, 0) [0, 0, 0] 3.0 3.0 3.0 A1u
[0, 1, 1] 3.7035 3.6505 3.3624 A1u ⊕ Eu
[0, 2, 2] 4.2585 4.1702 3.6762 A1u ⊕ Eu ⊕ T2u
[1, 1, 2] 4.3328 4.2356 3.7005 A1u ⊕ Eu ⊕ T1g ⊕ T2g ⊕ T2u

(0, 0, 1) [0, 0, 1] 3.226 3.2095 3.1185 A2
[0, 1, 2] 3.8757 3.8124 3.4627 A2 ⊕B2 ⊕ E
[1, 1, 1] 3.9519 3.8795 3.4874 2A2 ⊕B2
[0, 1, 4] 4.3331 4.2433 3.7352 A2
[0, 2, 3] 4.3062 3.7644 A2 ⊕B1 ⊕ E
[1, 1, 3] 4.3729 3.789 A2 ⊕B1 ⊕ E
[1, 2, 2] 4.4105 3.8058 A1 ⊕ 4A2 ⊕ 2B1 ⊕ 3B2 ⊕ 3E

(0, 1, 1) [0, 0, 2] 3.3937 3.3676 3.2175 A2
[0, 1, 1] 3.473 3.4371 3.2427 A2
[0, 1, 3] 4.0168 3.946 3.55 A2 ⊕B2
[0, 2, 2] 4.0596 3.9847 3.567 A1 ⊕A2
[1, 1, 2] 4.1374 4.0531 3.5921 A1 ⊕ 4A2 ⊕ 3B1 ⊕B2
[0, 1, 5] 4.341 3.8038 A2 ⊕B1
[0, 2, 4] 4.4236 3.8431 A2 ⊕B1
[1, 1, 4] 3.8681 A2 ⊕B1

Table 24. Same as table 21 except for the three-kaons operators with ~d 2
ref ≤ 2.
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2
2, d

2
3] Efree/MK operatorsN203 N200 D200

(1, 1, 1) [0, 0, 3] 3.5304 3.4974 3.3036 A2
[0, 1, 2] 3.6561 3.6086 3.3466 A2 ⊕ E
[1, 1, 1] 3.7368 3.6794 3.3722 A2
[1, 1, 3] 4.2893 4.1963 3.6832 2A2 ⊕ 2E
[1, 2, 2] 4.3328 4.2356 3.7005 A1 ⊕ 2A2 ⊕ 3E
[0, 1, 6] 4.4294 3.867 A2 ⊕ E

(0, 0, 2) [0, 1, 1] 3.226 3.2095 3.1185 A2
[0, 0, 4] 3.6474 3.609 3.3803 A2
[0, 2, 2] 3.8505 3.7902 3.4545 A2 ⊕B2
[1, 1, 2] 3.9324 3.862 3.4803 A2 ⊕B2 ⊕ E
[0, 1, 5] 4.2447 4.1632 3.6985 A2 ⊕B2 ⊕ E
[0, 3, 3] 4.2758 3.7517 A2 ⊕B1
[1, 1, 4] 4.3198 3.7645 2A2 ⊕B2
[1, 2, 3] 4.3861 3.7948 A1 ⊕ 2A2 ⊕ 2B1 ⊕B2 ⊕ 3E
[2, 2, 2] 4.4258 3.8123 A2 ⊕B1 ⊕ E

(0, 1, 2) [0, 1, 2] 3.4223 3.3926 3.2263 A2
[1, 1, 1] 3.5084 3.4677 3.2528 A2
[0, 0, 5] 3.7504 3.7076 3.4497 A2
[0, 1, 4] 3.9328 3.8705 3.5172 A2
[0, 2, 3] 4.0088 3.9393 3.5482 A1 ⊕A2
[1, 1, 3] 4.0919 4.0121 3.5743 A1 ⊕A2
[1, 2, 2] 4.1374 4.0531 3.5921 2A1 ⊕ 5A2
[0, 1, 6] 4.2552 3.7634 A1 ⊕A2
[0, 2, 5] 4.3575 3.8123 A1 ⊕ 2A2
[1, 1, 5] 4.4291 3.8382 A1 ⊕ 6A2
[1, 2, 4] 3.879 A1 ⊕ 4A2

(1, 1, 2) [0, 1, 3] 3.5813 3.542 3.3198 A2
[0, 2, 2] 3.6293 3.5851 3.3381 A2
[1, 1, 2] 3.7161 3.661 3.3649 A1 ⊕ 2A2
[0, 0, 6] 3.8429 3.7964 3.5135 A2
[0, 1, 5] 4.0451 3.9774 3.59 A1 ⊕A2
[0, 2, 4] 4.1442 4.0673 3.6316 A2
[1, 1, 4] 4.2283 4.141 3.658 A2
[1, 2, 3] 4.3046 4.2101 3.6892 3A1 ⊕ 3A2
[2, 2, 2] 4.2515 3.7071 2A1 ⊕ 2A2

Table 25. Same as table 21 except for the three-kaons operators with 3 ≤ ~d 2
ref ≤ 6.
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~dref [d2
1, d

2
2, d

2
3] Efree/MK operatorsN203 N200 D200

(0, 2, 2) [0, 2, 2] 3.3937 3.3676 3.2175 A2
[1, 1, 2] 3.4864 3.4482 3.2453 A2
[0, 1, 5] 3.8352 3.7824 3.4782 A2 ⊕B1
[0, 3, 3] 3.9715 3.906 3.5348 A2
[0, 0, 8] 4.005 3.9523 3.6277 A2
[1, 1, 4] 4.0279 3.9541 3.5483 A2 ⊕B1
[1, 2, 3] 4.1079 4.0265 3.5805 A1 ⊕ 2A2 ⊕B1 ⊕ 2B2
[2, 2, 2] 4.156 4.0697 3.5989 A1 ⊕A2
[0, 2, 6] 4.2822 3.7766 A1 ⊕A2 ⊕B1 ⊕B2
[1, 1, 6] 4.3574 3.8034 A1 ⊕A2 ⊕B1 ⊕B2
[0, 4, 4] 4.3675 3.8194 A2
[1, 2, 5] 3.854 2A1 ⊕ 4A2 ⊕ 4B1 ⊕ 2B2

(0, 0, 3) [1, 1, 1] 3.0 3.0 3.0 A2
[0, 1, 4] 3.4868 3.4577 3.2848 A2
[1, 2, 2] 3.7161 3.661 3.3649 A2 ⊕B2
[0, 2, 5] 4.0647 3.9954 3.599 A2 ⊕B2 ⊕ E
[0, 0, 9] 4.0773 4.0219 3.6795 A2
[1, 1, 5] 4.1538 4.0733 3.6264 A2 ⊕B2 ⊕ E
[1, 2, 4] 4.2575 4.1673 3.6695 A2 ⊕B2 ⊕ E
[1, 3, 3] 4.2893 4.1963 3.6832 A2 ⊕B1
[2, 2, 3] 4.2398 3.7018 B1 ⊕ E

Table 26. Same as table 21 except for the three-kaons operators with 8 ≤ ~d 2
ref ≤ 9.

~dref [d2
1, d

2
2] Efree/Mπ operatorsN203 N200 D200

(0, 0, 0) [0, 0] 2.0 2.0 2.0 A+
1g

[1, 1] 3.0667 3.4761 3.5989 A+
1g ⊕ E+

g

[2, 2] 3.8483 A+
1g ⊕ E+

g ⊕ T+
2g

(0, 0, 1) [0, 1] 2.2509 2.3401 2.3662 A+
1

[1, 2] 3.2563 3.7211 3.8598 A+
1 ⊕B

+
1 ⊕ E+

[1, 4] 3.8944 A+
1

(0, 1, 1) [0, 2] 2.4183 2.5477 2.5846 A+
1

[1, 1] 2.5889 2.8358 2.9114 A+
1

[1, 3] 3.4054 3.9089 4.0585 A+
1 ⊕B

+
1

[2, 2] 3.4795 4.0155 A+
1 ⊕A

+
2

(1, 1, 1) [0, 3] 2.5487 2.7046 2.7486 A+
1

[1, 2] 2.8109 3.1313 3.2283 A+
1 ⊕ E+

Table 27. Same as table 21 except for the two-pion operators with ~d 2
ref ≤ 3.
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~dref [d2
1, d

2
2] Efree/Mπ operatorsN203 N200 D200

(0, 0, 2) [1, 1] 2.0 2.0 2.0 A+
1

[0, 4] 2.6574 2.8333 2.8826 A+
1

[2, 2] 3.0667 3.4761 3.5989 A+
1 ⊕B

+
1

[1, 5] 3.6391 4.1982 A+
1 ⊕B

+
1 ⊕ E+

[3, 3] 3.8483 A+
1 ⊕B

+
2

(0, 1, 2) [1, 2] 2.28 2.4007 2.4384 A+
1

[0, 5] 2.7513 2.9435 2.9971 A+
1

[1, 4] 3.1243 3.5322 3.6542 A+
1

[2, 3] 3.2636 3.7328 3.8728 A+
1 ⊕A

+
2

[1, 6] 3.7359 A+
1 ⊕A

+
2

[2, 5] 3.9268 2A+
1 ⊕A

+
2

(1, 1, 2) [1, 3] 2.4883 2.6826 2.7422 A+
1

[2, 2] 2.5889 2.8358 2.9114 A+
1

[0, 6] 2.8347 3.0407 3.0979 A+
1

[1, 5] 3.2466 3.6855 3.8164 A+
1 ⊕A

+
2

[2, 4] 3.4263 3.9413 4.0944 A+
1

(0, 2, 2) [2, 2] 2.0 2.0 2.0 A+
1

[1, 5] 2.7997 3.0889 3.1764 A+
1 ⊕B

+
2

[0, 8] 2.9788 3.2072 3.2704 A+
1

[3, 3] 3.0667 3.4761 3.5989 A+
1

[2, 6] 3.6897 A+
1 ⊕A

+
2 ⊕B

+
1 ⊕B

+
2

[4, 4] 3.8483 A+
1

(0, 0, 3) [1, 4] 2.0872 2.096 2.0979 A+
1

[0, 9] 3.0423 3.2803 3.3461 A+
1

[2, 5] 3.1647 3.5948 3.7235 A+
1 ⊕B

+
1 ⊕ E+

[3, 6] 3.9457 A+
1 ⊕B

+
2 ⊕ E+

Table 28. Same as table 21 except for the two-pion operators with 4 ≤ ~d 2
ref ≤ 9.

~dref [d2
1, d

2
2] Efree/MK operatorsN203 N200 D200

(0, 0, 0) [0, 0] 2.0 2.0 2.0 A1g
[1, 1] 2.7035 2.6505 2.3624 A1g ⊕ Eg
[2, 2] 3.2585 3.1702 2.6762 A1g ⊕ Eg ⊕ T2g
[3, 3] 3.7319 A1g ⊕ T2g

Table 29. Same as table 21 except for the two-kaon operators with ~d 2
ref = 0.
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~dref [d2
1, d

2
2] Efree/MK operatorsN203 N200 D200

(0, 0, 1) [0, 1] 2.1688 2.1565 2.0886 A1
[1, 2] 2.8389 2.7774 2.4396 A1 ⊕B1 ⊕ E
[1, 4] 3.3047 3.216 2.7159 A1
[2, 3] 3.3748 3.2798 2.7454 A1 ⊕B2 ⊕ E
[2, 5] 3.7879 A1 ⊕B1 ⊕ E

(0, 1, 1) [0, 2] 2.2931 2.2738 2.1624 A1
[1, 1] 2.3779 2.3479 2.1887 A1
[1, 3] 2.9494 2.8818 2.5066 A1 ⊕B1
[2, 2] 2.9939 2.9219 2.5242 A1 ⊕A2
[1, 5] 3.3817 3.2895 2.767 A1 ⊕B2
[2, 4] 3.4746 3.3742 2.8072 A1 ⊕B2
[2, 6] 3.8627 A1 ⊕A2 ⊕B1 ⊕B2
[3, 5] 3.927 A1 ⊕A2 ⊕B1 ⊕B2

(1, 1, 1) [0, 3] 2.3941 2.3698 2.2264 A1
[1, 2] 2.5308 2.4902 2.2718 A1 ⊕ E
[1, 6] 3.4512 3.3559 2.814 A1 ⊕ E
[2, 5] 3.5628 3.4579 2.8632 A1 ⊕A2 ⊕ 2E
[3, 4] 3.6132 2.8864 A1 ⊕ E

(0, 0, 2) [1, 1] 2.0 2.0 2.0 A1
[0, 4] 2.4802 2.452 2.2832 A1
[2, 2] 2.7035 2.6505 2.3624 A1 ⊕B1
[1, 5] 3.1275 3.0509 2.6203 A1 ⊕B1 ⊕ E
[3, 3] 3.2585 3.1702 2.6762 A1 ⊕B2
[2, 6] 3.6423 A1 ⊕B2 ⊕ E

(0, 1, 2) [1, 2] 2.1795 2.1654 2.0906 A1
[0, 5] 2.5559 2.5245 2.3346 A1
[1, 4] 2.759 2.7051 2.4073 A1
[2, 3] 2.8426 2.7806 2.4406 A1 ⊕A2
[1, 6] 3.2026 3.1225 2.6699 A1 ⊕A2
[2, 5] 3.3225 3.2318 2.7216 2A1 ⊕A2
[3, 6] 3.7977 A1 ⊕A2
[4, 5] 3.8364 A1

(1, 1, 2) [1, 3] 2.3217 2.2977 2.1684 A1
[2, 2] 2.3779 2.3479 2.1887 A1
[0, 6] 2.6237 2.5897 2.3817 A1
[1, 5] 2.8508 2.7921 2.4649 A1 ⊕A2
[2, 4] 2.9604 2.8914 2.5099 A1
[2, 6] 3.4076 3.3125 2.7757 A1 ⊕A2
[3, 5] 3.4802 3.3793 2.8092 A1 ⊕A2
[4, 6] 3.9303 A1 ⊕A2
[5, 5] 3.9473 A1 ⊕A2

Table 30. Same as table 21 except for the two-kaon operators with 1 ≤ ~d 2
ref ≤ 6.
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~dref [d2
1, d

2
2] Efree/MK operatorsN203 N200 D200

(0, 2, 2) [2, 2] 2.0 2.0 2.0 A1
[1, 5] 2.5441 2.5066 2.2989 A1 ⊕B2
[3, 3] 2.7035 2.6505 2.3624 A1
[0, 8] 2.7423 2.7038 2.4658 A1
[2, 6] 3.1555 3.0758 2.6294 A1 ⊕A2 ⊕B1 ⊕B2
[4, 4] 3.2585 3.1702 2.6762 A1
[5, 5] 3.7319 A1 ⊕A2

(0, 0, 3) [1, 4] 2.0744 2.0718 2.0529 A1
[2, 5] 2.7803 2.7239 2.4138 A1 ⊕B1 ⊕ E
[0, 9] 2.795 2.7546 2.5039 A1
[3, 6] 3.3337 3.2418 2.7257 A1 ⊕B2 ⊕ E

Table 31. Same as table 21 except for the two-kaon operators with 8 ≤ ~d 2
ref ≤ 9.
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C Energy levels used in fits

~dref Type N203 N200 D200

(0,0,0)

2π 2A+
1g + E+

g 2A+
1g + E+

g 2A+
1g + E+

g

3π 2A−
1u + E−

u 2A−
1u + E−

u A−
1u + E−

u

2K 2A1g + Eg 2A1g + Eg 2A1g + Eg

3K 2A1u + Eu 2A1u + Eu 2A1u + Eu

(0,0,1)

2π 2A+
1 +B+

1 + E+ 2A+
1 +B+

1 + E+ A+
1

3π A−
2 +B−

2 + E− 2A−
2 +B−

2 + E− A−
2

2K A1 +B1 + E A1 2A1 +B1 + E

3K A2 A2 3A2 + 2B2 + E

(0,1,1)

2π 3A+
1 + E+ 3A+

1 +B+
1 2A+

1

3π 2A−
2 2A−

2 2A−
2

2K 2A1 2A1 3A1 +A2 +B1

3K 2A2 2A2 2A2

(1,1,1)

2π 2A+
1 + E+ 2A+

1 + E+ 2A+
1 + E+

3π 3A−
2 + E− 3A−

2 + E− 2A−
2 + E−

2K 2A1 + E 2A1 + E 2A1 + E

3K 3A2 + E 2A2 + E 3A2 + E

(0,0,2)

2π 3A+
1 +B+

1 3A+
1 +B+

1 3A+
1 +B+

1

3π 3A−
2 +B−

2 3A−
2 +B−

2 2A−
2

2K 3A1 +B1 3A1 +B1 3A1 +B1

3K 2A2 +B2 2A2 3A2 + 2B2 + E

(0,1,2)

2π 4A+
1 +A+

2 4A+
1 +A+

2 3A+
1

3π 4A−
2 4A−

2 3A−
2

2K 4A1 +A2 3A1 4A1 +A2

3K 3A2 2A2 3A2

(1,1,2)

2π 4A+
1 +A+

2 5A+
1 +A+

2 3A+
1

3π 5A−
2 +A−

1 2A−
2 +A−

1 4A−
2 +A−

1

2K 4A1 +A2 3A1 5A1 +A2

3K 5A2 +A1 3A2 +A1 4A2 +A1

(0,2,2)

2π 4A+
1 +B+

2 4A+
1 +B+

2 4A+
1 +B+

2

3π 4A−
2 +B−

1 3A−
2 +B−

1 2A−
2 +B−

1

2K 4A1 +B2 4A1 +B2 4A1 +B2

3K 2A2 +B1 2A2 3A2 +B1

(0,0,3)

2π 3A+
1 +B+

1 + E+ 3A+
1 +B+

1 + E+ 2A+
1 +B+

1 + E+

3π 3A−
2 +B−

2 4A−
2 +B−

2 2A−
2 +B−

2

2K A1 +B1 + E 2A1 +B1 + E 3A1 +B1 + E

3K 3A2 +B2 3A2 +B2 3A2 +B2

Table 32. Energy levels used in the fits of this work. Notation is as follows: “2A−
1u + E−

u ” means
the lowest two levels in the A−

1u irrep, and the lowest in the E−
u irrep.
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