STABILITY OF LODAY CONSTRUCTIONS

AYELET LINDENSTRAUSS AND BIRGIT RICHTER

ABSTRACT. We study the question for which commutative ring spectra A the tensor of a simplicial set
X with A, X ® A, is a stable invariant in the sense that it depends only on the homotopy type of ¥£.X.
We prove several structural properties about different notions of stability, corresponding to different
levels of invariance required of X ® A. We establish stability in important cases, such as complex and
real periodic topological K-theory, KU and KO.

1. INTRODUCTION

For any simplicial set X and any commutative ring spectrum A one can form the tensor of X with
A, X ® A. An important special case of this construction is the topological Hochschild homology of A,
THH(A), which is S ® A. In the following we will often work with commutative R-algebras for some
commutative ring spectrum R. We will sometimes take coefficients in a commutative A-algebra C', which
requires working with pointed simplicial sets X ; we denote the corresponding object (whose definition we
recall in Section 1.1 below) by £E(A;C). Working over the sphere spectrum S with C = A, L3 (A; A)
is just X ® A. When the space is the circle, £E, (4;C) is THHE(A; C).

As topological Hochschild homology is the target of a trace map from algebraic K-theory

(1.1) K(A) — THH(A)

it has been calculated in many cases. Higher order topological Hochschild homology, which is £, (A; C),
has also been determined in many important classes of examples, see for instance [3,8,13,22,24]. In [3]
we develop several tools for calculating L&, (A;C). However, if we want to determine the homotopy
type of E;}(A; (') and X doesn’t happen to be a suspension, then the range of methods is much sparser.

Rognes’ redshift conjecture [1] predicts that applying algebraic K-theory raises chromatic level by
one in good cases. In particular, higher chromatic phenomena could be detected by iterated algebraic
K-theory of rings. If A is a commutative ring spectrum, then so are K(A4) and THH(A), and as the trace
map is a map of commutative ring spectra, one can iterate the trace map from (1.1) to obtain

K(K(A)) — THH(THH(A))

and one doesn’t have to stop at two-fold iterations. As X ® A is the tensor of A with X in the category
of commutative ring spectra [10, chapter VII, §2, §3], one can identify

THH(THH(A)) = S' ® (S' ® A)
with (S' x S') ® A and this is the torus homology of A. Similarly, any n-fold iteration of algebraic
K-theory of A has an iterated trace map to (S')" ® A. There are calculations of torus homology of
HF, for small n by Rognes, Veen [25] and Ausoni-Dundas, but a general result is missing. However, the

homotopy type of S™ @ HF,, is known for every n and for small n, (S')" @ A splits as follows: We have
that $(SH)" ~ (Vi \/(@) S1) and one obtains for small n

(S1)" @ HF, \/ \/ %) @ HF,,.
()

This gave rise to the question whether LE(A;C) is a stable invariant, i.e., whether the homotopy
type of LE(A;C) only depends on the homotopy type of ¥X. There are positive results: LEF(HA) is a
stable invariant if k is a field and A is a commutative Hopf algebra over k [2, Theorem 1.3] or if k is an
arbitrary commutative ring and A is a smooth k-algebra [9, Example 2.6]. But Dundas and Tenti also
show [9, §3.8] that LY 2(HQ[t]/t?) is not a stable invariant. They show that £50,¢,., . (HQ[t]/t?) and
EH 15 g1 (HQ[t]/t?) differ and that reducing the coefficients from HQIt]/t* to HQ doesn’t eliminate this
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discrepancy. If we work over the sphere spectrum 9, since Sp =~ HQ this also implies that £3 (HQI[t]/?)
and L3 (HQ[t]/t?; HQ) are not stable invariants.

Our aim is to investigate the question of stability in a systematic manner. We start by defining several
different notions of stability. Instead of asking for equivalent homotopy types of LE(A;C) and LE(A4;C)
if ¥X ~ XY we are asking when we actually get an equivalence £E(A4;C) ~ LE(A;C) of augmented
commutative C-algebras. There are intermediate notions that ask for less structure to be preserved,
for instance, that the equivalence L& (A;C) ~ LE(A;C) is one of commutative R-algebras or of C- or
R-modules.

We establish that stability is preserved by several constructions such as base-change and products
but we also show which procedures do mot preserve stability. For instance stability is not a transitive
property: if R — A and A — B satisfy stability then this does not imply that R — B has this property.

A central purpose of this paper is to establish new cases where stability holds. For instance for
any regular quotient R — R/(ai,...,ay) of a commutative ring R we obtain stability for the induced
map of commutative ring spectra HR — HR/(ay,...,a,). Free commutative ring spectra generated
by a module spectrum satisfy stability and we suggest a notion of really smooth maps of commutative
ring spectra. These are maps R — A that can be factored as the canonical inclusion of R into a free
commutative R-algebra spectrum followed by a map that satisfies étale descent, so these maps model
the local behaviour of smooth maps in the context of algebra, compare [16, Proposition E.2 (d)]. We
show that really smooth maps satisfy stability. Other examples where stability holds are Thom spectra
as well as S — KU and other spectra of the form S — Rj, = (XW},)[z™!] considered in [5]. Using
Galois descent we also obtain stability for S — KO.

For calculations like that of torus homology, one often doesn’t really need stability, but the property
of the suspension to decompose products is the crucial feature that one wants to have on the level of
ﬁfi)(A; (). Therefore we say that R — A — C decomposes products if

£§XY(A§ C)~ EQVY\/X/\Y(A; C)

for all pointed simplicial sets X and Y. We use Greenlees’ spectral sequence [12, Lemma 3.1] in the
case C' = HEk for k a field to show that this decomposition property is preserved under forming suitable
retracts.

In Section 7 we close with some observations on stability in characteristic zero, using that rationally the
suspension of pointed simply connected simplicial sets splits into a pointed sum of rational spheres and
using [2, Proposition 4.2] where Berest, Ramadoss and Yeung describe the behaviour of representation
homology and higher order Hochschild homology under rational equivalences.

Acknowledgement. We thank Bjgrn Dundas for many helpful discussions and for spotting several
dumb mistakes in earlier versions of this paper. The second named author thanks the Isaac Newton
Institute for Mathematical Sciences for support and hospitality during the programme K-theory, algebraic
cycles and motivic homotopy theory when work on this paper was undertaken. This work was supported
by Simons Collaboration Grant 359565 for the first author and EPSRC grant number EP/R014604/1
for the second.

1.1. Definition of L& (A;C). We denote the category of simplicial sets by sSets and the one of pointed
simplicial sets by sSets,. Let X be a finite pointed simplicial set and let R — A — C be a sequence of
maps of commutative ring spectra. We assume that R is a cofibrant commutative S-algebra and that A
and C are cofibrant commutative R-algebras. The cofibrancy assumptions on R, A and C' will ensure
that the homotopy type of LE(4;C) is well-defined:

The Loday construction with respect to X of A over R with coefficients in C' is the simplicial commu-
tative augmented C-algebra spectrum L% (A; C) whose p-simplices are

cn A
zEXp\*x
where the smash products are taken over R. Here, * denotes the basepoint of X and we place a copy of
C at the basepoint. As the smash product over R is the coproduct in the category of commutative R-
algebra spectra, the simplicial structure is straightforward: Face maps d; on X induce multiplication in
A or the A-action on C' if the basepoint is involved. The degeneracy maps s; on X cause the insertion of
the unit map 74: R — A over all n-simplices which are not hit by s;: X,,—1 — X,,. As defined, L& (4;C)
is a simplicial commutative augmented C-algebra spectrum. We use the same symbol L& (A;C) for its
geometric realization. For C' = A we abbreviate £ (A4; A) by LE(A).
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For X = 5™ we write THH"'%(4; ) for LE.(A;C) and if R =S, then we omit it from the notation,
so THHM (A;C) = L£2,(A;C). For n =1 this gives the classical topological Hochschild homology of A
with coefficients in C, THH(A;C). Note that £E(A) is by definition [10, VII, §2, §3] equal to X ® A
where X ® A is formed in the category of commutative R-algebras.

As we assume that R is a cofibrant commutative S-algebra and that A and C are cofibrant commutative
R-algebras, the simplicial spectrum £ (A; C) is proper in the sense of [10, Definition X.2.2], compare the
argument for THH in [10, Proposition 1X.2.7]. Levelwise weak equivalences of proper simplicial spectra
induce weak equivalences on geometric realizations by [10, Theorem X.2.4]. We will make heavy use of
this fact later.

If X € sSets, is an arbitrary object, then we can write it as the colimit of its finite pointed subcom-
plexes and the Loday construction with respect to X can then also be expressed as the colimit of the
Loday construction for the finite pointed subcomplexes.

2. NOTIONS OF STABILITY
The weakest notion of stability just asks for an abstract equivalence in the stable homotopy category:

Definition 2.1.
(1) Let R — A be a cofibration of commutative S-algebras with R cofibrant. We say that R — A is
stable if for every pair of pointed simplicial sets X and Y an equivalence ¥ X ~ Y implies that
LE(A) ~ LE(A).
(2) Let S — R — A — B be a sequence of cofibrations of commutative S-algebras. Then we say that
(R, A, B) is stable, if for every pair of pointed simplicial sets X and Y an equivalence XX ~ 3Y
in sSets, implies that £&(4; B) ~ LE(A; B).

Examples 2.2.

e Dundas and Tenti show that for any discrete smooth commutative k-algebra A we have that
HEk — HA is stable [9, Example 2.6].

e They show, however, that HQ — HQ[t]/t*> and (HQ, HQI[t]/t?, HQ) are not stable.

e If A is a commutative Hopf algebra over a field &, then Berest, Ramadoss and Yeung prove [2, §5]
that Hk — HA and (Hk, HA, Hk) are stable by comparing higher order Hochschild homology
to representation homology. For a purely homotopy-theoretic proof see [14, Theorem 3.8].

e In [3] we show that for any sequence of cofibrations of commutative S-algebras S — A — B — A
we get that

LR(A) = Lgx (B A)
as augmented commutative A-algebras and hence B — A is stable if B is a cofibrant commutative
augmented A-algebra.

In the above definition we just require an abstract weak equivalence, but one can also pose additional
conditions on the equivalence £ (A4; B) ~ LE(A; B). A strong version of stability is the following:

Definition 2.3.
(1) Let R — A be a cofibration of commutative S-algebras with R cofibrant. We say that R — A
is multiplicatively stable if for every pair of pointed simplicial sets X and Y an equivalence
Y X ~ %Y in sSets, implies that £ (A) ~ LE(A) as commutative augmented A-algebra spectra.

(2) Let S R34 Bhea sequence of cofibrations of commutative S-algebras. Then we
say that R — A — B is multiplicatively stable if for every pair of pointed simplicial sets X and
Y an equivalence ¥X ~ XY in sSets, implies that L (A; B) ~ LE(A; B) and LE(B) ~ LE(B)
as commutative augmented B-algebras such that the diagram

LR(A;B)—=—— LB(4; B)
ﬁé’}(ml Jﬁf% 8)
L (B) ———— £¥(B)

commutes.

Note that we are using different notations, (R, A, B) to denote stability with coefficients and R —
A — B to denote multiplicative stability with coeffieicents.
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Of course, there is a whole hierarchy of notions of stability. Instead of asking that the equivalence
LE(A) ~ LE(A) is one of augmented commutative A-algebras, we could ask for one of augmented
commutative R-algebras or A- or just R-modules.

Definition 2.4. Let R — A be a cofibration of commutative S-algebras with R cofibrant. We call
R — A A-linearly stable if for every pair of pointed simplicial sets X and Y an equivalence XX ~ XY in
sSets, implies that L& (A) ~ LE(A) as A-modules. Similarly, we call R — A R-linearly stable if for every
pair of pointed simplicial sets X and Y an equivalence ¥ X ~ Y in sSets, gives rise to an equivalence

of R-modules LE(A) ~ LE(A).
Remark 2.5. If R — A is A-linearly stable, then (R, A, B) is stable because
LE(A;B) ~ LE(A) Aa B.

If R — A is multiplicatively stable, then so is R — A — B for every cofibrant commutative A-algebra
B.

A converse might not be true: Even if B is faithful as an A-module, we might not know that the
equivalence L% (A)Aa B ~ LE(A) A4 B is of the form f A4 B, so we cannot deduce that LE(A) ~ LE(A).

Let us start with several examples of multiplicative stability.

Proposition 2.6. If B is an augmented commutative A-algebra, then B — A and A — L& (B; A) — A
are multiplicatively stable for all X € sSets,.

Proof. In the augmented case A — B — A, as an equivalence XX ~ XY in sSets, implies that
LA(B;A) ~ L4, (B; A) as augmented commutative A-algebras, we also get that LZ(A) ~ LE(A)
as augmented commutative A-algebras by applying [3, Theorem 3.3] to the sequence of maps A = A —
B — A, so B — A is multiplicatively stable.

For the second claim we observe that there is an equivalence of augmented commutative A-algebras

£¢(‘C§X(B§ A);A) ~ Cé/\EX(B; A) = ESYAX(& A).
As we have that £5(A4) ~ A for all X, the map A — L& (B; A) — A is multiplicatively stable. O
Loday constructions for suspensions are stable:

Theorem 2.7. Let R — A be a cofibration of commutative S-algebras with R cofibrant. Then A —
LE (A) is multiplicatively stable for all X € sSets,.

Proof. We have to show that £} (LE, (A)) only depends on the homotopy type of XY. We first identify
L3(LE(A)) with the help of [3, Lemma 1.3] as an augmented commutative A-algebra as

LP(LEx(A) =LF (L (A)) /\ég(A) A

=Ly s x (A) /\EQ(A) A

ZE?szx)uy*(A)

ﬁﬁﬁAzX(A) = ﬁzR(Y+)/\X(A)~
As X(Y,) ~ XY v St for Y € sSets,, this depends only on XY O
Example 2.8. Applying Theorem 2.7 to HF, and ¥X = 5?2 gives that the map

HF, — THH? (HF,) ~ HF, v ¥*HF,

is multiplicatively stable for all primes p.

As we know from the algebraic setting that smooth algebras are stable, it is natural to consider free
commutative A-algebra spectra. Let M be an A-module spectrum for some commutative S-algebra A.
We consider the free commutative A-algebra on M,

Pa(M) = \/ MAA”/En
n>0

with the usual convention that MAAO/EO = A.

In the following we use several categories, so let’s fix some notation. Let U/ denote the category
of unbased (compactly generated weak Hausdorff) spaces. For a commutative ring spectrum R, Mg
denotes the category of R-module spectra and Cr denotes the category of commutative R-algebras.
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Lemma 2.9. For every simplicial set X and for every M € M 4 there is a weak equivalence of commu-
tative A-algebras
LAPA(M)) ~Pa(X L AM).

Proof. For the proof we use the fact that the category of commutative A-algebras is tensored over
unpointed topological spaces and simplicial sets in a compatible way [10, VII §2, §3]. Note that
LY (P4(M)) = X @4 Pa(M) in the notation of [10].

We have the following chain of bijections for an arbitrary commutative A-algebra B:

Ca(X ®aPa(M),B) 2U(X,Ca(Pa(M), B))
>2U(X, Ma(M,B))
~ Mu(X4 AM,B)
> Cy(Pa(Xy AM),B)

where X A M is the tensor of X with M in the category of A-modules. Hence the Yoneda lemma implies
the claim. (]

Corollary 2.10. In the setting above, if X ~ XY, then L5 (Pa(M)) ~ L (Pa(M)) as commutative
A-algebras.

Proof. If ¥X ~ XY, then XX ~ XY and as X, A M = XX A M this implies that P4 (X4 A M) ~
P4(YL A M) as commutative A-algebras. O

The following example was also considered in [19, Lemma 5.5]. A cofibration A — B of commutative
S-algebras with A cofibrant is called THH-étale if the canonical map B — TH HA(B) is a weak equivalence.

Proposition 2.11. If A — B is THH-étale, then for all connected pointed X the canonical map B —
L3 (B) is an equivalence. Hence, as this map is a map of augmented commutative B-algebras, L5 (B) ~
L(B) for any pair of connected simplicial sets X and Y.

Proof. The proof is by induction on the top dimension of a non-degenerate simplex in a finite connected
simplicial set, and then by taking colimits in the infinite case. A connected 0-dimensional simplicial set
consists of a point, where there is nothing to prove. Any 1-dimensional connected finite simplicial set is
homotopy equivalent to a wedge of circles, so if X ~ S'v Stv...vS! and B ~ L4, B,

LYB~BAgBAp---ApB~B.

Once we know the result for simplicial sets of dimension < n — 1, if we get a simplicial set X with a
finite number of non-degenerate n-cells we proceed by induction on the number of those. As in the proof
of Proposition 8-4 in [3], using the homotopy invariance of the construction and subdivision, if needed,
we can assume that X can be constructed by adding a new non-degenerate simplex with an embedded
boundary to a simplicial set homotopy equivalent to X with one non-degenerate n-cell deleted, for
which the proposition holds by the induction on the number of non-degenerate n-cells. By the inductive
hypothesis it also holds for the embedded boundary 0A"™, and since the new simplex being added is
homotopy equivalent to a point, the proposition holds for it. By the connectivity and by homotopy
invariance we can also assume that the basepoint of X is contained in the boundary of the new simplex
being attached, so the identifications of all three Loday constructions with B are compatible. Then
L4(B)~ BAp B~ B. O

Remark 2.12. Examples of THH-étale maps A — B are Galois extensions in the sense of [21] but also
étale maps in the sense of Lurie [17, Definition 7.5.1.4]. For a careful discussion of these notions and for
comparison results see [18].

3. INHERITANCE PROPERTIES AND DESCENT
With the assumption of multiplicative stability we get a descent result:
Theorem 3.1. If R — A — B is multiplicatively stable, then A — B is multiplicatively stable.

Proof. Let’s assume that XX ~ XY in sSets,. Then by assumption we get that L% (B) ~ L& (B) and
LE(A; B) ~ LE(A; B) as commutative augmented B-algebras, compatibly with the module structure
of the former over the latter. The Juggling Lemma [3, Lemma 3.1] yields an equivalence of augmented
commutative B-algebras
LY(B) = B Arrapy LX(B) and L3H(B) ~ B Agp a;p) L3(B).
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Our assumptions guarantee that therefore £4(B) ~ £4}(B) as commutative augmented B-algebras. [
One can upgrade this slightly and introduce coeflicients:

Corollary 3.2. If S - R — A — B — C is a sequence of cofibrations of commutative A-algebras and
both R -+ A — C and R — B — C are multiplicatively stable, then A — B — C' is multiplicatively stable
as well.

Lemma 3.3. Let A < R — B be cofibrations of commutative S-algebras with R cofibrant. Then L4 (ANR
B) = A Ar LE(B) as simplicial commutative augmented A Ap B-algebras and hence on realizations as
commutative augmented A Ar B-algebras.

Proof. There is a direct isomorphism sending AAg (BAg...AgrB) to (AARB)Aa...Aa(AAR B) and
this isomorphism is compatible with the multiplication. (|

This implies that stability is closed under base-change:

Proposition 3.4. Let A and E be cofibrant commutative R-algebra spectra. If R — A is R-linearly
stable, then so is E — E Agp A. If R — A is multiplicatively stable, then so is E — FE Ar A.

Proof. Assume that ¥X ~ XY in sSets,. Then by assumption £&(A) ~ LE(A) as R-modules or as
augmented commutative A-algebras. But then also E Ap LE(A) ~ E A LE(A) and by Lemma 3.3 this
implies
E)E((E AR A) ~ AC}E/(E AR A)

(I
Remark 3.5. Note that the above implication cannot be upgraded to an equivalence: starting with
the assumption that LE(E Ag A) ~ LE(E Ag A), we get EAg LE(A) ~ E A LE(A). Even if LE(A)
and E@(A) are E-local in the category of R-modules, however, we don’t know that the weak equivalence
E AR LE(A) ~ E Ar LB(A) is of the form E Ag f (or a zigzag of such maps), but for the E-local

Whitehead Theorem [4, Lemma 1.2] we have to have a map and not just an abstract isomorphism of
E.-homology groups.

Smashing with a fixed commutative R-algebra preserves stability:

Lemma 3.6. Let A, B and C be cofibrant commutative R-algebras. Then there is an equivalence of
commutative augmented C' Nr B-algebras

L ANC AR B) ~ C Mg L%(B).
Hence if f: A — B is multiplicatively stable, then so is C Ar f: C AR A — C A\ B.

Proof. The equivalence
LGANC AR B) ~ C Ag L5%(B)
is based on the equivalence
(C AR B) N(CARA) (CARrB)~CAgr(BA4sB).
O

Proposition 3.7. Let R be a commutative ring and let a € R be a reqular element. Then HR — HR/a
is multiplicatively stable.

Proof. We consider the pushout H R/\f{ RJt) H R where the right algebra map R[t] — R sends t to zero and

the left algebra map sends t to a. Note that with respect to both of these maps H R|[t] is an augmented
commutative H R-algebra spectrum. The Kiinneth spectral sequence for m.(HR /\f{ R[] HR) has as its

E?-term Torfi[ﬂ (R, R) and we take the standard free R|[t] resolution

0—— R[t]——R[{]
of R. Applying (—) ®gy R yields

t®id

0 —— RJt] @R[y R —

y

0 R - R.

R[t] ®ppy R




Note, that the regularity of a is needed to ensure injectivity on the left hand side.
We apply Lemma 3.3 and choose a cofibrant model of HR as a commutative H R[t]-algebra and obtain

LER(HR/a) ~ LYR(HR Ay HR) =~ HR Ag gy L4 (HR)

where the right H R[t]-module structure of L’ng (HR) factors through the augmentation map sending
t to 0. Assume that ¥X ~ XY in sSets,. By Proposition 2.6 we have that HR[t] — HR is multi-
plicatively stable, so EgR[t](H R) ~ Ef,{R[t] (HR) as commutative augmented H R-algebras. This yields
an equivalence of commutative augmented HR Ay gyy) HR ~ HR/a-algebras between LZ7(HR/a) and
LHR(HR/a). O

Remark 3.8. The above result can be used for calculating torus homology for instance for HZ — HZ/pZ
for every prime p: We know the homotopy type of [ng (HZ/pZ) by [3, Proposition 5.3] for all k and
therefore we get the homotopy type of E(}gzl)n (HZ/pZ) as smash products over HZ/pZ of (Z) copies of

Eng(HZ/pZ) for1 <k <n.
Corollary 3.9. For every commutative ring R and every regular element a € R the square-zero extension
HR/a — HR/aV XHR/a

is multiplicatively stable. In particular, for every commutative ring R, HR — HRV X HR is multiplica-
tively stable.

Proof. As HR — HR/a is multiplicatively stable we get by Lemma 3.3 that
YR HR/a Ayr HR/a) ~ HR/a Agr LYP(HR/a)

as augmented commutative HR/a Agr HR/a-algebras and hence HR/a — HR/a Agr HR/a is mul-
tiplicatively stable. The Kiinneth spectral sequence yields that m.(HR/a Agr HR/a) = Ag/q(x) with
|z| = 1. By [8, Proposition 2.1] this implies that

HR/aAgr HR/a~ HR/aV XHR/a

as a commutative augmented H R/a-algebra.
Considering the regular element t € R[t] gives that HR — HR V X HR is multiplicatively stable.
O

Stability is inherited by Loday constructions.
Proposition 3.10. If R — A is multiplicatively stable, then so is R — LE(A) for any Z.
Proof. Assume that XX ~¥Y. As X(X x Z) ~ XX VYZVYIX A Z we get that
S(X x Z)~SXVSZVEXAZ~SYVEZVEY AZ ~ (Y x Z)
and thus, as R — A is multiplicatively stable
LR(LE(A)) ~ L, 5(A) = L8, ,(A) ~ LE(LE(A)).
O

Remark 3.11. One can interpret Proposition 3.10 as the statement that Loday constructions preserve
stability because for all Z there is an equivalence of augmented commutative R-algebras R ~ LZ(R).

The Loday construction behaves nicely with respect to pushouts:

Lemma 3.12. If C + A — B is a diagram of cofibrations of commutative R algebras and if A is
cofibrant as a commutative R-algebra, then

LY(C Na B) = LE(C) Mg ay LR (B).

Proof. This equivalence is proven using an exchange of priorities in a colimit diagram based on the
equivalence

(CAaAB)AR(CNAaAB)~(CARC)ANanrpa (B AR B).



Remark 3.13. Beware that the above identification does not imply that multiplicative stability is
closed under pushouts in the category of commutative R-algebras. Knowing that L& (D) ~ LE(D) as
commutative augmented D-algebras for D = A, B and C does not imply that L& (C A4 B) is equivalent
to LE(C A4 B) because we cannot guarantee that the equivalences £ (D) ~ £L£(D) commute with the
structure maps in the pushout diagram.

For example we know that HQ — HQ[t] and HQ — HQJt, z] are multiplicatively stable, but HQ —
HQ[t]/t? is not stable by [9], despite the fact that we can express the latter as a pushout HQ[t] Apqjt,a)
HQIt] where z maps to 2 on the left hand side and to 0 on the right hand side.

In the case of A = R we do get a stability result:
Corollary 3.14. Assume that R — B and R — C' are multiplicatively stable. Then so is R — B Ag C.

Proof. If ¥X ~ %Y in sSets,, then L&(B) ~ L&(B) and LE(C) ~ LE(C) by assumption and these
equivalences are of commutative augmented B- and C-algebras, so in particular of commutative aug-
mented R-algebras. Note that L& (R) ~ R for all pointed X. Hence by Lemma 3.12 we obtain

LE(B AR C) =~ LE(B) Ar LE(C) ~ LE(B) Ag LE(C) ~ LE(B AR C)
and this is an equivalence of commutative augmented B Ar C-algebras. (]

Example 3.15. We know from Proposition 3.7 that HR — HR/a is multipliatively stable for every
commutative ring R and every regular element a € R. Corollary 3.14 implies that HR — HR/a Agr
HR/a is multiplicatively stable and as before we know that HR/a Ayr HR/a ~ HR/a vV YHR/a, so
HR — HR/aVXHR/a is multiplicatively stable. For instance HZ — HZ/pV X HZ/p is multiplicatively
stable for all primes p.

Example 3.16. Taking the coproduct (with a cofibrant model of HZ[t] as a commutative HZ-algebra)
HZ HZ/p

| |

HZ[t| —— HZ[t) \E, HZ/p ~ HZ/pl[t]

shows that HZ — HZ/p[t] is multiplicatively stable.

Corollary 3.17. Let R be a commutative ring and let (a1,...,a,) be a regular sequence in R, then
HR — HR/(ax,...,a,) is multiplicatively stable.

Proof. We use induction. We have shown in Proposition 3.7 that HR — HR/a; is multiplicatively
stable, so we can inductively assume that HR — HR/(a1,...,a,—1) is multiplicatively stable. We use
the fact that the coproduct HR/(a1,...,an_1) N HR/a, of

HR—>HR/(a1,...,an_1)

HR/a,
is HR/(a1,...,an), and then by Corollary 3.14 the claim follows.
This identification of the coproduct can be proven using the Kiinneth spectral sequence
Tor®(R/(ai,...,an-1), R/ay) = m(HR/(a1,...,an_1) Ngp HR/ay,).

The Tor can be calculated by tensoring the standard free resolution 0 —— R "R of R/a, with
R/(a1,...,an,—1) to obtain

id®an
O—)R/(al,...7an_1)®RR R/(al,...,an_l) ®Rr R.
Since multiplication by a, is injective on R/(a1, .. .,a,_1), the E? term of the spectral sequence consists
only of R/(ay,...,a,) and we are done. O

Proposition 3.18. Assume that S — A and S — B are cofibrations of commutative S-algebras such
that S — A and S — B are multiplicatively stable. If X and Y are connected and XX ~ XY, then

L3 (A x B) ~ L3(A x B)

as commutative S-algebras.



Proof. This follows from [3, Proposition 8.4] because L3 (A x B) ~ L3 (A) x L3 (B) as commutative
S-algebras. O

The following notion is investigated in [19,18].

Definition 3.19. Let R — A — B be a sequence of cofibrations of commutative S-algebras with R
cofibrant. Then this sequence satisfies étale descent if for all connected X the canonical map

LR(A) A B LE(B)
is an equivalence.

If R — A — B satisfies étale descent and if X is not connected, so for example X = X7 L X5 with X;
connected for ¢ = 1,2, then the formula becomes

LE(B) =L x,(B) =~ LE (B) N L, (B) = LE (A) Aa B Ar LK (A) A4 B.
The property of satisfying étale descent is closed under smashing with a fixed commutative S-algebra:

Lemma 3.20. If R — A — B satisfies étale descent and if C' is a cofibrant commutative R-algebra,
then C — C AN\r A — C Agr B satisfies étale descent.

Proof. We know from Lemma 3.3 that LG (C Ar A) ~ C Ar LE(A). Therefore an exchange of pushouts
yields
,C?((C Ar A) N(CARA) (C AR B)~(CAg ﬁg}(A)) N(CARA) (C AR B)
~ (C N C) ARARR (£§(A) Aa B)
~ C Ar LE(B) ~ £ (C Ag B).
(]

In the case of étale descent we can extend stable maps and get maps that are stable for connected X:

Proposition 3.21. Let R - A — B be a sequence of cofibrations of commutative S-algebras with
R cofibrant. If R — A is multiplicatively stable and if R — A — B satisfies étale descent, then
if XX =~ XY in sSets, for connected X and Y we can conclude that there is a weak equivalence of
augmented commutative B-algebras

LE(B) ~ LE(B).

Proof. As X and Y are connected and as R — A is stable, the equivalence ¥ X ~ XY in sSets, implies
that LE(A) ~ LE(A) and with étale descent we can upgrade this to

LE(B) ~ LE(A) A4 B~ LE(A) Aa B~ LE(B).
0

Remark 3.22. We know that HQ — HQ[t] is stable and as Q[t]/t? and Q[t] are commutative augmented
Q-algebras, we also know that HQ[t]/t?> — HQ and HQ[t] — HQ are stable, but since HQ — HQI[t]/t?
and HQ — HQ[t]/t? — HQ are not stable, we won’t have general descent results. For instance in the
diagram

Qt)/t?
/ l
€
Q=——=0Q
the maps H(e) and the identity on HQ are (even multiplicatively) stable, but Hn isn’t.

For morphisms that are faithful Galois extensions and satisfy étale descent, we obtain a descent result
for multiplicative stability:

Theorem 3.23. Let A — B be a faithful Galois extension with finite Galois group G and assume that
A — B satisfies étale descent. Assume that XX ~ XY for connected X and Y implies that there is a
G-equivariant equivalence L3 (B) ~ L5 (B) as commutative B-algebras. Then also L5 (A) ~ L5 (A) as
commutative A-algebras.

9



Proof. The base-change result for Galois extensions [21, Lemma 7.1.1] applied to the diagram

A——B

J J

L5 (A) —— B Ag L3(A)

yields that £5(A) — B Aa L3 (A) is a G-Galois extension and by étale descent there is an equivalence
of augmented commutative B-algebras B A4 L5 (A) =~ L5 (B) which is G-equivariant where on the left
hand side the only non-trivial G-action is on the B-factor and on the right hand side G-acts on L5 (B)
by naturality in B. Hence we get a chain of G-equivariant equivalences of commutative B-algebras

B Aa LY (A) ~ L3 (B) ~ L3 (B) ~ B Ay L5 (A).
Taking G-homotopy fixed points then gives an equivalence of augmented commutative A-algebras
L3 (A) ~ L3 (B ~ £5(B)"Y ~ £5.(A).
O

There exist several definitions of smoothness in the literature (see for instance [21,19]) using THH-
étaleness and TAQ-étaleness. Using the local behaviour of smooth commutative k-algebras [16, Appendix
E, Proposition E.2 (d)] as a template we suggest the following variant.

Definition 3.24. We call a map of cofibrant S-algebras ¢: R — A really smooth if it can be factored as

R~ Pr(X) T, A where i is the canonical inclusion, X is an R-module, and RLHP’R(X)#A
satisfies étale descent.

Combining Proposition 3.21 and Corollary 2.10 we get:
Proposition 3.25. If R — A is really smooth then XX ~ XY for connected X andY implies
LR(A) ~ LE(A)
as commutative R-algebras.
The notion of being really smooth is transitive and closed under base change.

Lemma 3.26.
e Ifo: R— A and v: A — B are really smooth, then so is pow: R — B.
o If o: R — A is really smooth and if C is a cofibrant commutative R-algebra, then C' — C Ag A
1s really smooth.

f

Proof. To prove the transitivity, we take the two given factorizations ¢ = R R Pr(X) A and

Pp=A 4 PA(Y) Y B and combine them to give

fARid

R—S5Pr(X VY) ~Pr(X) Ar Pr(Y) AN PR(Y)~PA(Y) 2> B

So it is enough to show that for general maps f: D — A,g: A — B,h: B — C of commutative R-
algebras:

(1) If f satisfies étale descent, then so does f Agide for every commutative R-algebra C.
(2) If g and h satisfy étale descent, then so does ho g.

For (1) let X be connected. As £&(—) commutes with pushouts (see Lemma 3.12), we get that LE(AAR
C) ~ LE(A) A LE(C). As f satisfies étale descent,

LE(A) Ag LE(C) ~ ANp LE(D) AR LE(C) ~ Anp LE(D AR C)

and this in turn is equivalent to (A Ag C) A(papc) LE(D AR C).
The proof of (2) is straightforward because

C Aa LE(A) ~ C Ap (B Aa LE(A))
~C AB EQ(B)
~ LE(0).

10



For the claim about base change consider the diagram

R—""  Pp(X)

|

CHC/\RPR(X).

Adjunction gives that C ARPr(X) ~ Pc(CARX). As R — Pr(X) — A satisfies étale descent we obtain
with Lemma 3.20 that C — C Agr Pr(X) — C Agr A satisfies étale descent. O

4. TRUNCATED POLYNOMIAL ALGEBRAS

Note that we know that the square zero extensions HF, — HF, vV ¥*HF, (Example 2.8) and HF, —
HF,V XHF, (Corollary 3.9) are multiplicatively stable. However, if we place the module HF, in degree
zero, then the following result shows that the square zero extension HF, — HF, V HF, ~ HF,[t]/t? is
not multiplicatively stable for odd primes p. The proof is a direct adaptation of [9, §3.8].

Theorem 4.1. Let p be an odd prime. Then (HF,, HF,[t]/t?, HF,) is not stable.

Corollary 4.2. For an odd prime p, neither is HF, — HTF,[t]/t?> multiplicatively stable nor is it
HT,[t]/t?-linearly stable.

Proof. If it were, then this would imply that (HF,, HF,[t]/t*, HF,) is stable. O
Remark 4.3. In [14, Theorem 4.18] we extend Theorem 4.1 to F,[t]/t" for 2 < n < p.
Proof of Theorem 4.1. We know that

HF

T LT o o (HF[t] /82 HF,) = m LI (HF,[t) /1% HF,) %52 @r m.Lon " (HF,[t])/t%; HF,)

and by [3] we know what the tensor factors are:
moLgr " (HF,[t]/4%; HF,) 22 HHE (F,[t] /1 F,) = Ag, (et) @5, s, (%)
and

. L " (HF,[t]/t%; HF,) = HHEZM > (B, [1] /1% F,)) = Ty, (%t) ® (R)(As, (e0*t) @ s, (0°9F1)).
k

Here, the degrees of the generators are |cw| = 1+ |w]| for any w, |o%¢t| = 2, and |p*w| = p*(2 + p|w|) for
any w.
Torus homology is the total complex of the bicomplex for £Zﬁx g1 (Fp[t]/t%:Fp) as in [9]. In the
bicomplex in bidegree (n,m) we have the term
L3ty Eplt]/ 8 Fp) 2 By @, (Fp[t]/6) DO HD=Y 2 (R [1] /%) (Dm0,

[n]x[m]
In total degree one we have contributions from (0,1) and (1,0) that we call y¥ and y? as in [9, §3.8].
Everything is a cycle here and these elements correspond to 619 and 1 ®t.
From now on we suppress the tensor signs from the notationtand we denote the generators by matrices.
In total degree two there are three possibilities (0,2), (1,1) and (2,0). There are the classes y3 in bidegree
(0,2), and y% in bidegree (2, 0) corresponding to the standard Hochschild generators 1 and (1 t t).
In bidegree (1, 1) there are the following possibilities for non-degenerate cycles: t

G GGG )

11
As we are working over F,, for an odd prime p, 2 is invertible. The boundary of % 1 t]is (1 i),
1t
11
(11 1y, /1 1 . . . 1t
the boundary of 35 is . Finally, we identify as the boundary of [ 1 ¢ ].
1 t t t t t t P

11



1
The element | ¢ 1| ensures that (1 i) is homologous to (1 1), so we are left with the generator

1t
L . 1 1
in bidegree (1, 1) given by 1t
So we get (at most) a 3-dimensional vector space in total degree 2.
In Wgﬁgf\fslvsz (HF,[t]/t?; HF,), however, we get the generators "t @ 1®1, 1 ® ¢p’t @1, et @ et ® 1
and 1 ® 1 ® ot so we have a 4-dimensional vector space. O

Remark 4.4. For odd primes 2 is invertible and this reduces the number of generators in total degree
2 to 3 in the torus homology of F,[t]/t* over F, with F,-coefficients. For p = 2 one can check that there

is an extra class coming from (1 i) which is homologous to <1 1) and to <1 i) so together with

1
total of dimension 4. As Fa[t]/t? is a commutative Hopf algebra over Fy, we know that Fy — Fa[t]/t?
and Fy — Fy[t]/t? — Fy are stable.

the class (1 1) this gives two generators in bidegree (1,1) and the ones in (2,0) and (0,2) giving a

We can model S[t]/t" as S AIL, for the commutative pointed monoid I1y = {+,1,¢,...,t"~!}. Using
the generalization of Theorem 4.1 to all 2 < n < p in [14, Theorem 4.18], we obtain

Corollary 4.5. For every n > 2 the map S — S[t]/t™ is not multiplicatively stable.

Proof. If it were multiplicatively stable, then by Lemma 3.3 HF, — HTF,[t]/t" would be as well. For
n = 2 this contradicts the result above. For higher n, there is a prime p with p > n, and then [14, Theorem
4.18] yields that HF, — HF,[t]/t™ isn’t multiplicatively stable. O

Remark 4.6. Neither stability nor multiplicative stability are transitive: for every commutative ring &
the map k — k[t] is smooth, hence (multiplicatively) stable and k[t] — k[t]/t? is stable by Proposition
3.7, but for k = Q Dundas and Tenti show [9] that Q — Q[t]/#? is not stable and for an odd prime p and
k =F, we know that F, — F,[t]/t? is not multiplicatively stable.

Proposition 4.7. Let k be a field and let 11 be a pointed commutative monoid. If S — Hk and Hk —
HEK[I1,] are multiplicatively stable, then ©X ~ XY in sSets, implies that L3 (HK[I1,]) ~ L3 (HK[I1,])
as augmented commutative Hk-algebras.

Proof. This follows from the splitting of £5(HEK[II,]) as a commutative augmented Hk-algebra [15,
Theorem 7.1] as

(4.1) LY (HE[IL]) =~ L5 (Hk) Ay L (HE[TL]).
O

It is important to know whether S — HE is Hk-linearly stable, because if it is, then for all Hk-linearly
stable Hk — H A that satisfy a splitting formula as in (4.1), such as polynomial algebras, we would get
that S — HA is Hk-linearly stable.

Of course, S — HQ is multiplicatively stable because Sgp ~ HQ and HQ As HQ ~ HQ. We do not
know whether S — HT, is stable. We will discuss Thom spectra and stability in the next section. We
can express HIF, as a Thom spectrum, but this Thom spectrum structure comes from a double loop
map, so it is not of the form needed for Corollary 5.1. So we leave this as an open question:

Is HF, stable?

We close with a family of examples that show that several of the Juggling Formulas from [3] cannot
be generalized to arbitrary pointed simplicial sets because that would contradict certain non-stability
results.

Let k be a field. The case k — k[t] = R — k[t]/t™ = R/t"™ — k = R/t for m > 2 is special in the sense
that the quotient k[t]/t™ is itself a commutative augmented k-algebra, so we can combine our splitting
result for higher order Shukla homology [3, Proposition 7.5] with the Juggling Formula [3, Theorem 3.3].
We have [3, Theorem 7.6]:

(4.2) THHM (k[] /6™ k) ~ THHM (K[]; k) Ag THHEDERE (R[] /67 k)

for all n > 1 and for all m > 2. In this special case we can get the following H k-version of this result:
12



Theorem 4.8. Let k be a field and let m be greater or equal to 2. Then for alln > 1
(4.3) HHIR (k[ /67 k) ~ HHPR (R[] k) AL, THRIDERE (] /ems ).
Proof. Consider the diagram

Hk THHE-HE gy s HHILR (k1) k)

| |

THHEMHRE () f4m k) —— THHIP AR (o) HHPME (k] /o k).

The left-hand square is a homotopy pushout square by [3, Proposition 7.5] and the juggling formula
[3, Theorem 3.3] applied to Hk — Hk[t] — HE[t]/t™ — Hk ensures that the right-hand square is also a
homotopy pushout square because for all n > 1

HHIR (k[ /67 k) = HHPE (k[ k) A

THH[’!L—l],Hk[t]/tnl (k).

This yields that the outer rectangle is also a homotopy pushout square and this was the claim. O

L
THHI[»— 1], Hk[t] (k)

Remark 4.9. Note that there cannot be a version of (4.2) and (4.3) for arbitrary connected X: We
know that Hk[t] — Hk[t]/t* — Hk is multiplicatively stable for all fields k& and we know that Hk —
HEk[t] — Hk is stable. But for any odd prime p we know that HF, — HF,[t]/t* — HF, is not stable
and that there is an actual discrepancy between

ma(Lon? 1 (HE[t]/% HF,)) % mo(Lint g oo (HE, [1] /8% HF,)),

so there cannot be an equivalence between E?F;Sl (HF,[t]/t?*; HF,) and E?vaslvsz (HF,[t]/t?; HF,).

5. THOM SPECTRA AND TOPOLOGICAL K-THEORY

Christian Schlichtkrull gives a closed formula for the Loday construction on Thom spectra [22, The-
orem 1.1]: Let f: W — BF}1 be an E,-map with W grouplike and let T'(f) denote the corresponding
Thom spectrum. Here, BF}; is a model of the classifying space for stable spherical fibrations. Then for
any T'(f)-module spectrum M one has

(5.1) LIT(f); M) =~ M AQ>*(Ew A X) 4

where By is the Omega spectrum associated to W (i.e., W ~ Q¥ Ey). If M is a commutative T'(f)-
algebra spectrum, then the above equivalence is one of commutative T'( f)-algebras. For M = T(f) the
equivalence also respects the augmentation.

An immediate consequence of Schlichtkrull’s result is the following;:

Corollary 5.1. If T(f) is a Thom spectrum as above, then S — T(f) is multiplicatively stable.
Proof. If ¥ X ~ YY in sSets,, then on the level of spectra we obtain

S(EwANX)~Eyw ASX ~Ey ASY 2 X(Ew AY),
but here suspension is invertible, hence Eyw A X ~ Ey A'Y and therefore

LI(T(f) = LI(T(f))-

An equivalence of spectra induces an equivalence of infinite loop spaces and the T'( f)-algebra structure
on T(f)NQ>®°(Ew AX) 4 just comes from the one on T'(f) and the infinite loop structure on Q°°(Ew AX).
This gives the multiplicativity of the stability. t

The case of the suspension spectrum of an abelian topological group is a special case where we take
f: G — BFy; to be the trivial map. Then T'(f) ~ ¥3°(G). Other examples are MU, MO, M SO, MSp
or M Spin.

Remark 5.2. Nima Rasekh, Bruno Stonek, and Gabriel Valenzuela [20, Theorem 4.13] generalize
Schlichtkrull’s calculation to generalized Thom spectra, i.e., Thom spectra that are formed with re-
spect to a map of Fo.-groups f: G — Pic(R) for some commutative ring spectrum R. They note (see
[20, Remark 4.17]) that this implies stability for such Thom spectra.

Remark 5.3. Note that by Corollary 4.5 spherical abelian monoid rings are not stable in general,
whereas spherical abelian group rings are.
13



Bruno Stonek calculates higher THH of periodic complex topological K-theory, KU, and he deter-
mines topological André-Quillen homology of KU [24]. He uses Snaith’s description of KU as the Bott
localization of X°CP>. The latter is a Thom spectrum because CP> = BU(1) can be realized as a
topological abelian group.

Theorem 5.4. If X and Y are connected and XX ~ XY in sSets,, then
LY (KU) ~ LY(KU)
as commutative augmented KU -algebra spectra.

Proof. Let 8 denote the Bott element. Stonek uses Snaith’s identification of KU as XCP>[37!] to
prove [24, Corollary 4.12] that there is a zigzag of equivalences

THH(KU) = THH(S2CP®[371]) ¢+—= THH(EFCP™) Agecpe STCP®[371]

f

(THH(ZCP>))[71].

The same argument yields that for any connected X the localization of ﬁi(Ef(CPOO) at 3 is equivalent
to L3 (SFCP=[3-1]) = L3 (KU).

The localization map X°CP*° — X°CP> [371] satisfies étale descent, and therefore the composite
S — EPCP>® — XPCP>[3~ ! identifies KU as an ¢tale extension of a Thom spectrum. By Proposition
3.21 we obtain multiplicative stability for connected simplicial sets. (I

Corollary 5.5. If X and Y are connected simplicial sets with X ~ XY then L (KO) ~ L5.(KO) as
commutative KO-algebras.

Proof. Rognes shows [21, §5.3] that the complexification map KO — KU is a faithful Cy-Galois extension
of commutative ring spectra and Mathew [18, Example 4.6] deduces from [6, Example 5.9] that it satisfies
étale descent. Schlichtkrull’s equivalence from (5.1) is natural hence it preserves the Co-action. Therefore
the result follows from Theorem 3.23. O

In [5] Hood Chatham, Jeremy Hahn, and Allen Yuan construct interesting examples of E.o-ring
spectra. For a prime p they consider the infinite loop space

Wy, = Q22 Bp(h)

where v(h) = ph;_ll_l

Peterson spectrum BP(h); these spaces were extensively studied by Steve Wilson [26]. On the suspension
spectrum of W}, they invert the generator x of the bottom non-trivial homotopy group ma,(n)(Wa) = Z(y,)
and obtain an F..-ring spectrum

. This is the 2v(h)th space of the Omega spectrum for the h-truncated Brown-

Ry = (S Wh)[z™]

which has remarkable features [5, Theorem 1.13]: Rj has torsion-free homotopy groups that vanish in
odd degrees, it is Landweber exact, and its Morava-K (n) localization L, Ry vanishes if and only if
n > h+1, so Ry is of chromatic height A+ 1. As Wy is CP*°, this recovers Snaith’s construction in this
special case, but there are many more interesting examples. For all of these spectra, the above method
of proof applies, so we obtain.

Theorem 5.6. If X and Y are connected and XX ~ XY in sSets,, then
L (Rp) ~ L5 (Ry)

as commutative augmented Ry -algebra spectra.

6. THE GREENLEES SPECTRAL SEQUENCE

Let k& be a field and let A — B be a morphism of connective commutative S-algebras with an
augmentation to Hk satisfying some mild finiteness assumption. Then by [12, Lemma 3.1] there is a
spectral sequence

Eit = WS(B Na Hk) (S 7Tt(A) = 7Ts+t(B)-
14



Let p be an odd prime. We consider the cofibration S' v S' — 8! x S' — 82 and the associated
pushout diagram

LB, i (HF,[t) /12 HF,) —— LB o (HF,[t]/t% HF,)

| |

HF, LE (HF,[t]/t?; HF,).

Here, R can be S or HF,. For R = S we obtain a Greenlees spectral sequence
(6.1) WS(LEZ (HFp[t]/tZQ HFp)) ®r, 7"'rf('/~:§1v51 (HFp[t]/tZQ HFp)) = 7Ts+t(£§1xsl (HFp[ﬂ/t2§ HFp))
whereas for R = HIF,, the spectral sequence is
HF, HF, HF,
(6~2) 7TS(£S2 (H]Fp[t]/tQ? HIFP)) QF, Wt(ﬂslvsl(H]Fp[t]/tQ? HIFP)) = 7Ts+t(£sl Xsl(HFp[t]/tQ? HFP))'
In (6.1) every term L3 (HF,[t]/t?; HF,) splits as
LS (HF,) Ag, Ly (HE,[t]/1*; HE,)

naturally in X, and going from working over S to working over HF,, simply collapses the L3 (HF,) to

C?F” (HF,) ~ HF,. Therefore we get a surjection of the spectral sequence of (6.1) onto the one of (6.2),

and if all the spectral sequence differentials vanish on the former, they have to vanish on the latter too.

But we know that the rank of WQ(L?l]P‘isl (HTF,[t]/t?; HF,)) is less than the rank of the E*-term in total

degree 2, hence there has to be a non-trivial differential in (6.2) and hence also in (6.1). This implies
the following result.

Theorem 6.1. For every odd prime p, (S, HF,[t]/t?, HF,) is not stable.
With the results of [14, §4] the above result can be generalized to Fp[t]/t" for 2 <n < p.
Instead of stability we can consider the following property of Loday constructions.

Definition 6.2. Let R be a cofibrant commutative ring spectrum and let R — A — C be a sequence of
cofibrations of commutative R-algebras. We say that R — A — C decomposes products if for all pointed
connected simplicial sets X and Y

LRy (45C) = L vy xay (4;C)
Note that the right hand side is equivalent to L (A4;C) Ac LE(A;C) A LE 1 (A;C).

Proposition 6.3. Let R~ A — B — A — Hk be a sequence of commutative S-algebras that turns B
into an augmented commutative A-algebra. Assume that k is a field.
If R — B — Hk decomposess products then so does R — A — Hk.

Proof. The naturality of the Loday construction ensures that the vertical compositions in the diagram

LYy (A Hk) —— LE (A HE) —— Ly (4; HE)

| |

LY,y (B; Hk) —— L+ (B; Hk) —— L5 . (B; Hk)

J J J

LYy (A; Hk) —— LYy (A; HE) —— L5 (A; Hk)
are the identity. Therefore the spectral sequence
Ts (EQAY (A; Hk)) @k m (ﬁg(vY (A; HE)) = Tyt (L‘g( <y (A; HE))

is a direct summand of the one for B. So if the spectral sequence for A has a non-trivial differential,
then the one for B also has to have one, but as B decomposes products, this cannot happen. [l

Note that this gives an additive splitting, but we can’t rule out multiplicative extensions.

If B does not decompose products, then this does not imply that A doesn’t either. A concrete
counterexample is S — HQ — HQ[t]/t? — HQ. Here, S — HQ[t]/t*> does not decompose products,
but S — HQ is even multiplicatively stable.
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7. RATIONAL EQUIVALENCE
The starting point for this section is the following result:

Proposition 7.1. (Berest, Ramadoss, and Yeung [2]) If k is a field of characteristic zero and A is a
commutative Hopf algebra over k, then any rational equivalence f: X — Y between simply connected
spaces induces a weak equivalence

fo: LER(HA) ~ LEF(HA).

If f X =Y is a rational equivalence between simply connected pointed spaces then f induces a weak
equivalence

fo: LEF(HA HE) ~ L8 (HA; HE).

Proof. This follows from [2, Theorem 1.3 (a)] which says that for such k and A and any unbased simplicial
set X,

T LEF(HA) = HR,(2(X4), A)
where HR is representation homology, and from [2, Proposition 4.2], which says that rational equivalences
between simply connected spaces induce isomorphisms on representation homology for such k and A. In
the pointed setting, [2, Theorem 1.3 (b)] applies to give the equivalence

. LEF(HA; HE) = HR.(ZX, A; k)

We can extend Proposition 7.1 to augmented commutative finitely generated k-algebras:

Proposition 7.2. If k is a field of characteristic zero and A is a finitely generated augmented com-
mutative k-algebra, then any rational equivalence f: X — Y of simply connected spaces induces a weak

equivalence
fo: CER(HA; HE) ~ LHF(HA; HE).

Proof. Let A be generated by aq, as, ..., a; as a commutative k-algebra, let e: A — k be its augmentation,
and let n: Kk — A be the unit map. We denote by I the augmentation ideal, I = kere. Then for all
1<i<¥4, a; —n(e(a;)) € I, so we can define a surjection of augmented commutative k-algebras

o k[zy, ...,z = A, o(x;) = a; —n(e(a;)) for all 1 <4 < L.
Here we consider the augmentation of k[z1,. .., x| that sends every x; to zero, so that its augmentation
ideal is (z1,...,x¢).
Since k is a field, k[x1, ..., x¢] is Noetherian so we can find finitely many polynomials fi,..., f,, in

the z; to generate ker ¢. Since oy is the augmentation of k[z1, ..., xz¢], we get that forall 1 < j < m, f;
is an element in (z1,...,x¢). Hence, we can define another map of augmented commutative k-algebras

Y k[ur, . ug] = Elx, .z, Y(ug) = fj forall 1 < j <m,

which maps k[ug, ..., un,] onto ker . The augmentation of k[uq, ..., u] is again the standard one. We
express A as a pushout of commutative augmented k-algebras
P
k[ul, R ,um] — ]41[1‘1,.. . ,xg]
| |
k ! A

where all entries except A are known to be commutative Hopf algebras over k. So for them, f induces a
weak equivalence LK (H(—); Hk) — L¥*(H(-); HE). Since both Li¥(H(—); Hk) and LE*(H(-); Hk)
send pushouts of augmented commutative k-algebras to homotopy pushouts of augmented commutative
Hk-algebras, f also induces a weak equivalence on the pushout. ([l

Let X be a pointed simply connected simplicial set. Then rationally
X~ \/ Sy
icl
for some indexing set I and some k; > 2 (see for instance [11, Theorem 24.5]). In particular,
ki ki—1
\ S~ % (\/ G ) :

i€l i€l
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So with the help of [2, Theorem 1.3] we obtain:

Theorem 7.3. For every pointed simply connected X, every field of characteristic zero k and every
commutative Hopf-algebra A over k, for a suitable indexing set I and integers k; > 2 we get

T L (A k) = w*ﬁ’\f/ i1 (A5 ).

iel PQ

For simply-connected spaces and k and A as above we know by [2, Proposition 4.2] that the homotopy
type of the Loday construction only depends on the rational homotopy type of the suspension, so we can
discard the rationalization in the above statement. This yields, for instance:

Example 7.4. Let X = CP" for some n > 1. Then for every field of characteristic zero k and every
commutative Hopf-algebra A over k, as YCPy =% \/?:1 52t we obtain

TeLEpn(Ark) = mLyn g2 (A F).
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