2021 IEEE Real-Time Systems Symposium (RTSS) | 978-1-6654-2802-6/21/$31.00 ©2021 IEEE | DOI: 10.1109/RTSS52674.2021.00031

2021 IEEE Real-Time Systems Symposium (RTSS)

Event-Triggered and Time-Triggered Duration
Calculus for Model-Free Reinforcement Learning

Kalyani Dole*, Ashutosh Gupta*, John Komp', Shankaranarayanan Krishna*, Ashutosh Trivedit
* Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India

Email: {kalyanid,akg krishnas}@cse.iitb.ac.in
T Department of Computer Science, University of Colorado Boulder, Boulder (CO), USA
Email: {john.komp,ashutosh.trivedi} @colorado.edu

Abstract—Reinforcement Learning (RL) is a sampling based
approach to optimization, where learning agents rely on scalar
reward signals to discover optimal solutions. The specification
of learning objectives as scalar rewards is tedious and error
prone, and more so for real-time systems with complex time-
critical requirements. This paper advocates the use of Duration
Calculus (DC)—a highly expressive real-time logic with duration
and length modalities—in expressing the learning objectives in
model-free RL for stochastic real-time systems. On the other
hand, to model stochastic real-time environments, we consider
probabilistic timed automata (PTA)—Markov decision processes
extended with clock variables—that provide an expressive yet
computationally decidable formalism to capture real-time con-
straints over nondeterministic and probabilistic behaviors.

The key hurdle in developing a convergent RL algorithm for
DC specifications is the undecidability of the synthesis problem
for PTA against general DC specifications. Inspired by the di-
chotomy between event-triggered and time-triggered approaches
to the design of real-time systems, we present two variants of
DC logic—that we dub event-triggered duration calculus (EDC)
and time-triggered duration calculus (TDC)—and identify their
subclasses with appealing theoretical properties. We study the
decidability (and exact complexity) of the satisfiability of these
calculi as well as the controller synthesis against PTA models.
Based on these results, we propose a reward scheme for RL
agents in such a way that guarantees that any RL algorithm
maximizing rewards is guaranteed to maximize the probability of
satisfaction for the given DC specification. The effectiveness of the
proposed approach is demonstrated via grid-world benchmarks
and a proof-of-concept case study for synthesizing control for
simple cardiac pacemaker directly from a set of DC specifications.

Index Terms—Duration Calculus, Probabilistic Timed Au-
tomata, Model-free Reinforcement Learning, Event-Triggered
and Time-Triggered Real-Time Systems

I. INTRODUCTION

Reinforcement learning (RL) [32] is an approach to con-
troller synthesis where agents rely on reward signals to choose
actions aimed at achieving prescribed objectives. This paper
investigates the use of RL to search for controllers satis-
fying complex real-time specifications on probabilistic real-
time systems where the environment may not be completely
known (but can be learned via sampling). Towards this goal,
a key objective of this paper is a model-free reduction of the
real-time specifications (Duration Calculus) to scalar reward

This material is based upon work supported by the National Science
Foundation under grant no. 2009022.

signals used in model-free RL that is both formally correct
(reward-optimal policy is specification-optimal) and effective
(RL algorithms consistently converge toward optimal value).
The key contribution is an identification of precise conditions
on two natural subclasses of DC that enjoy these properties.

The controller synthesis for real-time and stochastic systems
against formal requirements is an important and challenging
problem. The workhorse temporal logics of LTL and CTL [4]
can reason about discrete ordering of events, but are incapable
of expressing dense-time relationship between various events
of interest; for instance, specifying a region of time where
events should or should not occur or specifying the number of
events within a given time interval. Similarly, while Markov
decision processes (MDPs) [27] is an expressive formalism
to model systems with stochastic behavior, it cannot express
real-time constraints over system events. Duration Calculus
(DC) [9] is a highly expressive and succinct logic, which
can capture specifications involving durations. On the other
hand, probabilistic timed automata (PTAs) [21] generalize
MDPs with time-measuring variables (called clocks) to enable
modeling of systems with real-time and stochastic behavior.
This paper develops RL-based controller synthesis for systems
modeled as PTAs against DC specifications.

Duration Calculus. DC formulae are interpreted over the
signals and a given interval. DC extends propositional logic
with the “chop” operator (), a special symbol ¢ for the
interval length, and operators [P and > P measuring the
duration of time when the property P was true and the number
of times proposition P was true, respectively. Furthermore, the
modalities [P] and [P]® express the fact that a propositional
formula P was true over an interval and point interval,
respectively. The chop operator fuses the behavior of systems
over time intervals, enabling composition. For example, the
property “each of the propositions p, q,r are true exactly once”
can be expressed as:

/\ [(true™ [2]° " true)

ze{p,q,r}
A =(true™ [z 7 [2]° 7 [—a] 7 [2]° " true)],

To express the same in LTL (and its real-time generalizations
such as MTL or STL) we have to capture all the permutations
in which p, g, may be true in a behaviour, along with the

978-1-6654-2802-6/21/$31.00 ©2021 IEEE 240
DOI 10.1109/RTSS52674.2021.00031

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

condition that they do not hold true more than once. This
example demonstrates that DC can potentially be exponentially
more succinct than LTL and its variants. The classical temporal
modalities (1P (P holds forever in the interval) and QP (P
holds sometimes within the interval) can be derived in DC
using the chop modality (See, Section II-C).

Example 1.1: Consider a safety property for a closed-loop
pacemaker system expressing that the minimum and maximum
heart rate: “within every minute, the heart beats must be within
the range 60 and 100”. This requirement can be expressed as:

O[(¢ = 60) — (60 < Y hy < 100)],
where hy, is a proposition which is true every time instant with
a heart beat.

Event-Triggered and Time-Triggered DC. The high ex-
pressiveness of DC comes with an undecidable satisfiability
[9], making it difficult to have automated tools to verify DC
properties. One way to recover decidability is to work on
discrete time, thereby stripping away the real time duration
measurements offered by £ > ¢ and [P < c. The discrete du-
ration calculus [25] is decidable, and the tool DCVALID [10]
checks satisfiability of such formulae by translating it into
deterministic finite automata (DFA). Another approach [3] to
a decidable verification for timed automata against dense-time
DC requirements is to consider the bounded-time fragment of
DC against strongly non-Zeno timed automata (akin to the
acyclicity assumption in the bounded-time setting).

We consider two subclasses of DC to regain decidability, by
restricting the usage of the measurement constructs. The first
subclass restricts all measurements to begin from some ob-
served event; we call this subclass event-triggered DC (EDC).
The second subclass, that we dub time-triggered DC (TDC),
restricts the measurements to start from a globally integral time
point. When restricted to only the ¢ > ¢ measurement (i.e.,
disallowing the [P modality), the decidability of these logic
subclasses (EDC[/] and TDCJ¢]) is obtained by translating
them to event clock automata [2] and integer-reset timed
automata [31] respectively.

Probabilistic Timed Automata. Probabilistic timed automata
(PTA) [21] enable modeling of systems with both stochastic
and nondeterministic behavior. The popular formal verification
tool PRISM [20] permits modeling systems as PTAs and
provides automatic verification and controller synthesis for a
subclass of PCTL properties. In this work, we are interested
in controller synthesis for PTAs against DC specifications.
In particular, we characterize subclasses of EDC and TDC
calculi for which controller synthesis problem for PTA models
remain decidable. We will then propose and solve the unknown
model setting where the probabilistic transition structure of
the PTA is not explicitly known but can be sampled. We will
propose a model-free reinforcement learning (RL) scheme to
synthesize optimal strategies for DC specifications. We provide
a convergent RL algorithm for PTAs when the specifications
are from the decidable fragment of EDC and TDC calculi.

241

Logic and Reinforcement Learning. RL algorithms have
been extended [28], [12], [14], [15], [23], [8] to work with
formal specification given as w-regular objectives instead of
scalar reward signals. These approaches are model-free, i.e.
RL agent does not explicitly learn a model of the underlying
system, but instead directly computes the optimal strategy and
hence can be adapted to work with highly scalable artificial
neural networks based RL (deep RL) algorithms [29], [32].
The key idea behind these approaches is that they trans-
late the formal objective into a monitor automata (finite
automata [23], Biichi automata [12], [15], [8], Rabin au-
tomata [28], or parity automata [14]) and device an interpreter
that observes the traces of the system for satisfaction using the
monitor automata and provide scalar rewards to the learning
agent in such a way that the learning agent maximizing
an appropriate expected reward objective [13] results in a
guaranteed convergence to an optimal policy maximizing the
probability of satisfaction of the formal specification. Our RL
algorithm is based on a similar model-free RL scheme where
we reduce the time-triggered and event-triggered specifications
into various variants of timed/stopwatch automata and design
an interpreter that executes these automata over the traces
resulting from the agent’s choices to scalar rewards.

Key Challenges. There are two key challenges in designing
a convergent model-free RL algorithm for synthesis problem
for PTA against DC: 1) the state space of PTA is uncountably
infinite; hence convergent RL approaches are not directly
applicable, and 2) the controller synthesis for the general
time- and event-triggered DC specifications reduce to non-
deterministic stopwatch automata and due to non-determinism
are not convenient for providing deterministic rewards.

We overcome these issues by considering subclasses of
EDC and ADC without the [P modality. As discussed earlier,
EDC[/] and TDC[{] can be compiled into event-clock and
integer-reset timed automata, respectively; both of these sub-
classes belong to determinizable subclasses of timed automata.
It is a well-known result [30], [16] for probabilistic timed
automata that search for the optimal strategy in PTA against
determinizable timed automata specifications can be reduced
to a digital-clock abstraction [16] where the variables are
restricted to take only integer values (closely related to the
region graph [1] and corner-point abstraction [7]). We empha-
size that the proposed approach does not assume discrete-
time semantics. Instead, it characterizes DC subclasses and
conditions in such a way that the search for an optimal
controller can be limited to controllers with integral delays.

‘When the model is unknown, it is not feasible to construct a
digital-clock model explicitly, however, we implicitly construct
this abstraction by restricting RL-agent to choose timed actions
with integral time delays. In addition, the RL agent abstracts
the observed state to the nearest integral value of the clocks
and updates the corresponding Q-value. The finiteness of the
MDP corresponding to the digital clock abstraction of the PTA
and the specification automata guarantees the convergence of
the Q-learning.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

Contributions. The key contributions of this paper are sum-
marized below.

1) It introduces event-triggered (EDC) and time-triggered
(TDC) subclasses of DC and presents a translation of
these calculi into subclasses of stopwatch automata.

It further investigates subclasses EDC[¢] and TDC[/]
of EDC and TDC, respectively, that disallow the [P
modality. For these subclasses, the paper presents a trans-
lation to determinizable subclasses event-clock (timed)
automata and integer-rest timed automata, respectively.
This translation provides us the decidability of the satis-
fiability as well as controller synthesis for logics EDC[/]
and TDCJ[/] against PTA models.

The paper details the first RL-based algorithm to learn
optimal strategy against EDC[/] and TDCJ[/] specifica-
tions for unknown PTA.

Finally, the paper presents an implementation of the pro-
posed RL algorithm as part of the extensible formal RL
tool MUNGOJERRIE and demonstrate the effectiveness of
the proposed approach over some grid-world benchmarks
and an artificial pacemaker based case study.

2)

3)

4)

Organization. The paper is organized as follows. In Section II
we formalize the problem by introducing necessary definitions
and stating some known results. We introduce probabilistic
stopwatch automata (PSA) as a general automatic structure and
define various subclasses of interest such as PTAs, stopwatch
automata, and timed automata. We also formally introduce the
DC logic, and state the key synthesis problem. In Section III
and IV, we propose two variants of duration calculus, time-
triggered DC (TDC) and event-triggered DC (EDC) and study
their theoretical properties. In section V we present the details
of our RL algorithms to solve the synthesis problem for
unknown PTAs. In section VI, we present the results of our
implementation using some benchmarks.

II. PROBLEM DEFINITION

We write N and N> for the set of nonnegative and positive
integers. Similarly, we write R and R for the set of reals and
nonnegative reals, respectively. Let [k]r denote the set of reals
in [0, k], while [k]y denotes the set of naturals {0,1,...,k}.
We write > for any of the operator in {>,>,=, <, <}.

In this paper, we model real-time systems as probabilistic
timed automata with unknown probability distributions and
express their properties using subclass of duration calculus
(DC) formulae. The DC formulae will be compiled into stop-
watch, and timed automata, and these automatic structures will
then be used in model-free reinforcement learning algorithms
to design appropriate reward schemes. We begin this section
by first formally defining the semantics of Markov decision
processes (Section II-A), followed by the definitions of var-
ious subclasses of stochastic timed and stopwatch automata
(Section II-B). We then introduce our specification formalism
Duration calculus (Section II-C).

242

A. Markov Decision Processes

A discrete probability distribution over a (possibly count-
able) set S is a function d : S—[0,1] such that 3 s d(s) =1
and supp(d) = {s € S | d(s)>0} is at most countable. We
say that d : S—0,1] is a point distribution if d(s) = 1 for
some s € S. Let D(S) be the set of distributions over S.

A Markov decision process M is a tuple (S,sp,A,T)
where: S is a (potentially uncountable) set of states, sg € S is
the initial state, A is a (potentially uncountable) set of actions,
and T': S x A — D(S) is the probabilistic transition function.
We say that the MDP M is finite if both S and A are finite.
Abusing notation, we call an MDP a finite automaton if 7'(s, a)
is a point distribution for all s € S and a € A.

For any state s € S, we let A(s) denote the set of actions
that can be selected in state s. For states s,s’ € S and a €
A(s), we write p(s'|s,a) for T(s,a)(s’). A run of M is a
finite sequence (sg, a1, 51, ...,5,) € S x (A x S)* such that
P(Sit1]8i, ai41)>0 for all 0 < i < n. We write Runs™ for
the set of runs of the MDP M and Runs™(s) for the set of
runs starting from state s. We write last(r) for the last state
of a finite run r and len(r) for the number of transitions in r.
A strategy in M is a function 7 : FRuns — D(A) such that
supp(m(r)) C A(last(r)). Let Runs’(s) denote the subset
of runs Runs”"(s) that correspond to strategy 7 with initial
state s. Let 1Ty be the set of all strategies. A strategy 7 is
deterministic if w(r) is a point distribution for all runs r €
FRuns™ and we say that 7 is stationary if last(r) = last (1)
implies 7(r) = m(r’) for all runs 7, 7" € FRuns’'. A strategy
is positional if it is both pure and stationary.

The behavior of an MDP M under a strategy = is defined
on a probability space (Runs!(s), F RunsM (s): PrM(s)) over
the set of runs of 7 with starting state s. Given a real-valued
random variable over the set of infinite runs f : Runs™ — R,
we denote by EM(s) {f} the expectation of f over the runs
of M originating at s following .

A rewardful MDP is a pair (M, p), where M is an MDP
and p : S x A — R is a reward function assigning utility to
state-action pairs. A rewardful MDP (M, p) under a strategy
7 determines a sequence of random rewards p(X;_1,Y;) i>1
where X; and Y; are the random variables denoting the i-th
state and action, respectively. Given a target set S; C S, the
reachability probability Reach(St)ﬂM(s) is defined as

Reach(St)WM(s) {({s,a1,s1,...) € Runs™(s) : Ji.s; € Se}.

The optimal reachability probability Reach(St)i\A (s) from s €
S is defined as Reach(St)fA(s) = SUDP,crr,, Reach(St)ﬂM(s).
We say that a strategy m € IIxg is optimal if the
Reach(St)ﬁM(s) = Reach(Sy)™(s) for all s€S.

B. Modeling Stochastic Real-Time Systems

We fix a finite set X of (clock or stopwatch) variables. A
valuation is a function v : X — R>q. We write O for the
valuation x € X — 0. An integer valuation is a function
v: X — N. For k € N, we say that an integer valuation v
is k-bounded if v(x) < k for all z € X. We write V, Vy,

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

and Vl{]“ for the set of all valuations, integer valuations, and
k-bounded integer valuations, respectively.

Let v : X — {0,1} be a rate-configuration characterizing
paused ({z€X :~(x)=0}) and ticking ({zeX :~(x)=1})
variables. For v € V, rate-configuration <, and time step
t € R>o, we write v @, t for the valuation after time ¢, i.e.

(v ©y t)(z) = v(z) + -1,

for all x € X. We write v + ¢ for v &, t when vy equals
x+ 1. For X C X, we write v[X:=0] for the valuation after
resetting variables in X C X, i.e.

0 ifreX

v(z) otherwise.

v[X:=0](z) = {

The set of constraints over X is the set of conjunctions
of constraints of the form = < ¢ or x—a’ > ¢, where
z,x’ € X,i € N. For every v € V, let SCC(v) be the set of
constraints that hold in v. A region is a maximal set n C V,
such that SCC(v)=SCC(v') for all v, € n. Every region is
an equivalence class of the indistinguishability-by-constraints
relation, and vice versa. A zone is a convex set of valuations,
that is a union of a set of regions. We write Z for the set of
zones. For any zone W and valuation v, we use the notation
v € W to denote that [v] C . A set of valuations is a zone
if and only if it is definable by a constraint.

Definition 2.1: A probabilistic stopwatch automaton (PSA)
is a tuple T = (Q, g0, %, X, 7, E, 0, F) where

e @ is the finite set of locations,

e o € Q is the initial location,

e X is a finite alphabet of actions,

o X is the finite set of (clock or stopwatch) variables,

e 7:Q xX — (X — {0,1}) is the rate function

e E:Q x X — Z is the action guard,

e §:Q x X — D(2XxQ) is the transition function

e and F' C @ is the set of final locations.

The following are some important subclasses of PSA:

1) We say that a PSA is a probabilistic timed automaton
(PTA) if for all ¢ € Q, a € 3, and x € X we have that
~v(q,a)(z) = 1. For a PTA, we omit the description of
the rate configuration function and represent it as a tuple
(Q,1,%, X, E, 4, F) and refer to its variables as clocks.

2) We say that a PSA is a (non-probabilistic) stopwatch
automaton (SA) if for all ¢ € Q, a € X, and ¢ € Z,
we have that 0(g, a) is a point distribution.

3) We say that a PSA is a timed automaton (TA) if it satisfies
both of the previous conditions, i.e. all of the variables
are clocks and transitions are non-probabilistic.

A configuration of a PSA T is a pair (g, v), where ¢ € @ is

a location and v € V is a valuation. Informally, the behavior
of a PSA is as follows: In configuration (¢,v) time passes
before an available action from X is enabled, after which a
discrete probabilistic transition occurs. An action a € X can
be chosen after time ¢ elapses only if the action a is enabled in
the configuration reached after ¢ time, i.e. v® (4,0t € £(q, a).
Both the time and the action chosen are nondeterministic. If

an action a is chosen, then the probability of moving to a
location ¢’ and resetting all of the variables in X C X to 0 is
given by 6(q,a)(X,q’). Formally, the semantics of a PSA is
an MDP with uncountable states and actions.

The semantics of PSA T = (Q,qo,I,%, X,v, E,§, F) is
given as an MDP [T] = (S, s0, A,T) where: S C QxV is
the set of states; so = (¢o,0) C @QxV is the initial state;
A = RsoxAct is the set of (timed) actions; T : S x A —
D(S) is such that for (¢,v) € S and (¢t,a) € A, we have
T((q,v),(t,a)) = d if and only if v @ (4.q)t € E(q,a) and

d(((]’,y’>)= Z 6(q’ a)(X, q/)
XCX
(V@—y(q,a)t)[X::()]:l,/

for all (¢/,v’) € S. From this semantics, a run of a PSA is
defined as a sequence of configurations and timed actions, i.e.
((q0,v0), (t1,a1), (q1,v1)s -, (qn, vn)) where vy = 0. The
concept of strategy and optimal reachability probability are
naturally defined based on its MDP semantics.

C. Duration Calculus

Let Var be a finite set of atomic propositions. We in-
terpret DC formulae over timed traces generated from runs
of systems modeled as a probabilistic stopwatch automaton
T=(Q,q,I,%,X,7,E,8F), £ =2V For every timed
run v = ((qo,v0), (t1,a1), (@1, 1), -+, (qn,vn)) of T we
associate its timed trace o = ((So,70), (51,71),-- -+ (Sn, Tn))
where 79 = 0 and for every 0 < ¢ < n we have 7, = 7,1 +;
and s; = a; forall 0 <17 <n.

Definition 2.2 (Duration Calculus: Syntax): Given the set
Var, we define the syntax of DC formulae as follows:

P false | true | x € Var | PA P | =P
D == [P]|[P|*|DAD|-D|D"D|M
M == EMC|/PMC|ZPMC

DC formulae are evaluated over timed traces ¢ and a refer-
ence interval I = [b, e] where b < e and b,e € N range over
the indices 0, ..., n of the timed trace o = (S0, 70) - - - (Sn, Tn)-
The satisfaction of a DC formula 1) evaluated on timed trace
o = {(s0,70),(81,71),...) with respect to an interval [b, €]
and is denoted as (o, [b, €]) | .

For a timed trace 0 = ((s0,70)(s1,71) ... (Sn,Ts)) and
propositional formula P, we say (o,i) = P iff s; = P. The
satisfaction of other DC formulae is defined inductively:

1) (o,[b,e]) = [P] iff b<e, and (o,t) = P for all b<t<e;

2) (o,[b,e€]) E [P]*® iff b=e and (o,b) = P;

3) (o,[b,e]) E D1ADy iff (0, [b,€]) |E D1,(o,[b,e]) E Da;

4) (o,[b,e]) E —D iff (o,[b,€]) | D;

5) (o,[b,e€]) |E D1 Do iff there exists a point b < z < e s.t.
(0,[b,2]) E Dy and (o, [2,€]) E Do;

6) (o,[b,e]) E £xciff (1o — 1) < ¢ holds;

7) (o,[be]) E [P<ciff Y {rqy1—7 : (0,i) E P} =g

8) (o,[b,e]) EXPiciff|{i : (0,i) F P}|>=ec

We often refer to the measurement operators (3P, [P, ()
collectively as mt. The subclass of DC, which does not use [P

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

and / operators, is known as discrete duration calculus (DDC).
The tool QDDC [25] works with this discrete subclass of DC,
devoid of real time measurements.

Using the chop modality —, we can derive the following
syntactic sugar: eventually modality ¢.D < true™ D" true and
globally modality (0D £ =(—D. We also define the integral
duration modality ¢ € N to denote an integral interval, that is,
(0,[b,€]) = € € N iff 7. — 7, € N. Given a DC formulae ¢,
the DC satisfiability problem is to decide whether there exists
a timed trace o and interval [such that (o,1) = ¢.

Theorem 2.3: [Chaochen, Hansen, and Sestoft [9]] The DC
satisfiability problem is undecidable.

The undecidability can easily be shown by reducing the
halting problem of the two-counter (Minsky) machines to the
satisfiability of DC. One can use the measurement construct
£ > ¢ to encode configurations of a two counter machine,
along with the chop operator as well as [p] for propositional
variables p. The fact that measurement operators can be used
in an unrestricted manner forms the core of the undecidability.
This motivates the need for a class of DC (other than DDC,
over discrete time [25]) which has a decidable satisfiability.

D. Synthesis for Unknown PTA against DC Specifications

Given a PTA 7 = (Q,I,%, X, E,§, F), set of atomic
propositions Var, labeling function £ : @@ — Var, and
DC specification ¢, the controller synthesis problem is to
compute a strategy m € Il that maximizes the probability of
satisfaction of ¢. We are also interested in the unknown PTA
setting where the probability distribution d(g, a) is not known
but can be learned from repeated sampling of the environment.
The following is an easy corollary of Theorem 2.3.

Theorem 2.4: The controller synthesis problem for PTA
against DC specifications in undecidable.

In view of this negative result, we present two subclasses
of DC—that we dub event-triggered and time-triggered DC.
We present a reduction of these calculi to stopwatch automata
and present further restrictions to recover decidability for the
satisfiability as well as the controller synthesis problem for
PTA. In Section V, these results will form the basis of our
convergent RL algorithm for controller synthesis of these
subclasses against unknown PTA.

III. EVENT-TRIGGERED AND TIME-TRIGGERED DC

One of the ways to recover decidability is to work with
bounded time. This means that we work with formulae of the
form D A (¢ < K) for some time bound K. The formula
D can be an arbitrary DC formula. However, the conjunct
¢ < K ensures that we only observe behaviours over time
intervals of length at most K. We call this variant bounded
DC. The decidability of model checking DC formulae in [3] is
in this spirit. In contrast, this work presents an alternative way
to recover decidability without imposing time-boundedness by
designing practical, expressive yet decidable subclasses of DC.

244

A. Event-Triggered Duration Calculus (EDC)

Oftentimes the start of various tasks or processes is
prompted by the arrival of an external event (e.g., an interrupt)
from the environment or by the progress (termination) of
the preceding task. We refer to systems where all tasks are
triggered by such events as an event-triggered system. Our
key observation is that for event-triggered systems, restricted
use of the measurement operators suffices to express prop-
erties. We argue that time since the arrival of an event is
an important requirement for such systems. Consider, for
instance, the case of online transactions where in the event of
a purchase, an OTP (one time password) gets generated. This
OTP remains valid only for a specific time from the purchase.
Measuring the time since the purchase happened, therefore,
is important for checking the validity of the transaction via
OTP. Yet another example is in accessing secure information
like logging into one’s account: once the user name/account
number has been provided (this is the event), the password/PIN
must be correctly entered within some time duration. The
number of trials allowed in such high security applications
is also limited, after which the account gets blocked either
temporarily or permanently. These examples motivate using
£ c¢and [P > cin a guarded fashion by attaching them
to the arrival of some fixed event. We express such modality
by mt 1% ¢ to indicate that we evaluate mt € {¢, [P} since
the last time some proposition B was true. The semantics of
mt < c is defined as follows. Given a timed word o, and a
point interval [e, e], we say that (o, [e, €]) = mt % c iff

Jb<e s.t. (0,b) = B and (o, [b,€]) = ([-B] Amt<c).

This restriction breaks the undecidability result for DC as
the Theorem 2.3 requires measuring durations arbitrarily and
not since the last occurrence of some proposition.

Definition 3.1 (Event-Triggered Duration Calculus): Given
the set of variables Var, we define the syntax of event
triggered DC (EDC) as follows:

P == false|true|z € Var | PAP|-P
D u= [P]|[P]*|DAD]|-D|D" D | Mec
Mepe == fm},c\/PmbﬂZPlx]c

Let EDC[/] denote the subclass of EDC which uses only
measurement constructs £ <i; ¢ and Y P < c.

The semantics of the event-triggered DC can be given in a
similar fashion as that for DC.

B. Time Triggered DC (TDC)

In time-triggered systems, the start of the task is triggered by
the progression of a global notion of time, i.e., when the global
time reaches a specified value. The notion of time-triggered
systems finds a natural motivation in the time-triggered system
architectures such as [18] and [19]. Kopetz [18] defines time-
triggered systems as distributed systems where a system-wide
global time base of known precision is provided at every
node to trigger the execution of significant computational and

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

communication tasks. So while time is dense and global, all
tasks work with global but sparse time base where dense time
is broken into granular intervals of time of fixed precision.

This notion motivates the globally available set of reference
time points to all nodes and motivates the subclass of DC
where we restrict measurements M = mtopc only from
such global reference time points. We consider these reference
points as globally integral points of time. This is written as
mt 2, c to indicate that we evaluate mt € {/, [P} since a
globally integral time. The semantics of mt ©<g; . c is defined
as follows. Given a timed word o, and a point interval [e, €],
we say that o, [e, €] = mt <, c iff

tic

db<e, 0,[0,b] ELEN, (0,b,e]) Emtxc

Once again, it can be seen that the undecidability result of
Theorem 2.3 needs to use measurement constructs not just
from globally integral time points.

Definition 3.2 (Time-Triggered Duration Calculus): Given
the set of variables Var, we define the syntax of time-triggered
DC (TDC) as follows:

P = false|true|xz € Var| PAP|-P
D [P]|[P]*| DAD| =D | D™D | M
Mo == £l><1;icc|/Pl><1;icc|ZPl><1c

Let TDC[/] denote the subclass of TDC which uses only
measurement constructs £ >, ¢ and > P > c.

Again, the semantics of the time-triggered DC can be given
in a similar fashion as that for DC.

IV. THEORETICAL PROPERTIES OF EDC AND TDC

A formula D € EDC (TDC) having measurement constructs
P15 -5 pn With o; = mit >y c; (mt >,), mt € {¢, [P},
will be denoted by D(g1,...,¢,) in our algorithms. The
key result of this section are algorithms to check for the
satisfiability of EDC[¢] and TDC[/).

Given a set of propositional variables Var = {p1,...,pn},
and a proposition P (a Boolean combination of variables from
Var), let Varp denote subsets s of Var which satisfy P, i.e.

Varp ={s CVar|s = P}.

A. Automata based characterization

Definition 4.1 (Event-Driven Stopwatch Automata (ESA)):
We use alphabet ¥ = 2V%" where Var is a finite set of
propositional variables. We unify the FE,~,d in Definition
2.1 and denote transitions as (q,a, Yy, ®,%a,q") € 6, where
a € X,p € E(q,a), v, is the rate mapping, and Y, C X is
the set of variables reset. An event-driven stopwatch automaton
is a stopwatch automaton 7 = (Q, qo, 2, X, v, E, §, F') with
following properties:

1) The variables X in the ESA are tied to Var; that is, for
each p € Var, we allow clock, stopwatch variables c,, s,
such that X' = (¢ v, (¢p Wsp,) where ¢, s, respectively
are the clock, stopwatch variables associated to p.

245

2) Further, events (symbols from) drive the transi-
tions. We succinctly write a transition as the tuple
(g,a,Ya,©,%a,q") where E(g,a) = ¢ and d(g,a) =
(Ya,¢') and v(g,a) = ~,. Since transitions are driven
by events, an ESA is event recording. On any transition
(¢:0,Ya,¢,%,4) €9,

o the reset set Y, is determined by a &€ X. There is
a mapping reset : ¥ +— 2% which assigns to each
a € X, the set of variables Y, € X which are reset
each time a transition on a happens. Thus, the resets
are determined by the symbol from 3 on which the
transition is taken.

« the rate mapping v, is determined by a € X. Thus,
for the set of stopwatch variables S = UpE Var Op>

Yo = Y, C S determines the subset Y, of stopwatch

variables which have rate 1, whenever a transition on

a is taken. For instance, if v, = {p,q}, then all

transitions on a will assign rate 1 to stopwatches s, s,

and rate O to other stopwatches. The clocks have rate

1 on all transitions.

Clearly, ESAs extend Event Clock Automata (ECA) [2] which
are a well behaved subclass of timed automata. ECAs are
known to be determinizable, complementable and have a
decidable universality and inclusion, unlike general timed
automata [1]. When the ESA has only clock variables (no
stopwatches), then it is an ECA. ESAs also demonstrate some
of the nice properties of ECAs. As expected,

Lemma 1: ESA are determinizable.
However, surprisingly,

Theorem 4.2: The reachability for ESAs is undecidable.

Definition 4.3 (Integer Reset Timed Automata (IRTA)): An
IRTA is a timed automaton 7 = (Q, qo, 2, X, E, 0, F') where
clock resets happen only on transitions where the global time
elapsed so far is integral. The main characteristics of IRTA are
defined by the transitions, which have the form (¢, a,Y, ¢, ¢');
note that we drop v since all clocks have rate 1. On any
transition (q,a,Y, ¢, q') where Y # (), the constraint ¢ must
be of the form (x = ¢) A ¢ where ¢ € N and ¢ is some
constraint. 1 can also be true (given by y > 0 for y € X).
IRTAs [31] are well behaved class of timed automata as they
are determinizable and closed under all Boolean operations.

Recall that any run begins at time O when all clocks have
value 0. The condition on resets ensures that when a reset
happens, the time elapsed so far is integral. Consider the first
time a reset happens in a run. Clearly, after the reset, some
clocks have value 0 (since they were reset), and all others
have the same value ¢ (for some ¢ € N). This is the c that has
been used in the constraint © = c¢ of the resetting transition
for some x € X. Notice that all clocks are integral when the
reset happens. Since resets happen only when a constraint of
the form = = c is fulfilled, clearly, resets happen only after
integral time elapses. This ensures that all clocks have aligned
fractional parts always since they always keep ticking.

Theorem 4.4: [31] IRTA are a determinizable class of timed
automata and have a decidable reachability.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 1 ElimMeasure(D) : Eliminate Measurement Con-
structs from D, D € EDC

Input: EDC formula D(¢1, ..., ¢,) over Var, with measure-
ment constructs @1, ..., ¢y, each ¢; = B; © M;.

Output: DDC+Past formula D’ with no measurement con-
structs, over Var'=Varw{E,..., E,}

1: for each ¢; do

2 Introduce a new propositional variable F;

3 Replace ¢; by W; = [E;1* A ([B;]* A [=B;])

4

5

: end for

B. Reduction from EDC[{] to ECA

We show that we can compile an EDC[/] into an ECA. The
decidability of reachability for ECA gives the decidability of
the satisfiability for EDC[/]. The translation is given by Al-
gorithms 1, 2 and 3. Note that we can encode the whole logic
EDC into ESA; however, since ESA does not have a decidable
reachability, we discuss only the EDC[¢] to ECA translation
here. The full translation is available in the extended version
of the paper.

Below, we explain the algorithms and illustrate them with
examples. We begin with an EDC[{] formula D over Var
consisting of measurement constructs 1, ..., @,, each ¢; of
the form (¢ >d% c;). We use the shorthand Past([B;]® A
[-B;]) to assert at a point e that, there is a point b < e
such that B; is true at b, and [—B] is true in [b, e]. That is,
(o,]e,€]) E Past([B;]* A [-B;]) iff

3b<67 U7b':Bi7 O',[b,@] ': I—_'BZ.|

Algorithm 1 does the following : for each measurement
construct ; in D, it introduces a fresh propositional variable
E;, and replaces ¢; with [E;]® A Past([B;]®* A [-B;]).
This helps in obtaining a simpler formula devoid of mea-
surement constructs, over a larger set of variables Var’ =
Var W {E1,...,E,}. Note that the resultant formula is a
DDC formula enhanced with the Past macro, that is, it is
a DDC+Past formula.

Example 4.1 (Illustration of Algorithm 1): Consider the
EDC formula

D(p1) = ([=p]* " [p] = true™ (£ <2, 60))

which says that p cannot be true for longer than 60 time units.
Recall the semantics of /¢ SLP 60, which when asserted at a
point [e, €], says that there is a point b < e where [—p]®
is true, and [p] holds in [b, €], while ensuring that real time
duration of [b,e] is < 60. It has the measurement construct
p1=(¢ <%, 60) over Var={p}. Using the fresh variable F;
we obtain the formula

D'=([=p]*~ [p] = true™ [[Ey]® A Past([-p]® A [p]))

over Var’ = {p, E1 }.
Let us proceed to Algorithm 2. This converts the DDC+Past
formula D’ into deterministic finite automata (DFA). The

Algorithm 2 Formula2Aut(D’): Convert DDC+Past formula
D’ without measurements to automata A(D’)

Input: DDC+Past Formula D’ over Var’ with no measure-
ment constructs.
Output: Automaton A(D’) s.t. L(A(D"))=Untime(L(D")).
1: if D’ = [P]° then
2 A(D)= ~O"0" v
3 Determinize A(D’)
4: end if
5. if D' = [P] then
o AD)O0moea
7: Determinize A(D')
8: end if
9: if D'=Past([B]°A[-B]) then
10 AD)="O"=>0"3Cer,
11 Determinize A(D’)
12: end if
13: if D' = D1 D, then

15: Determinize A(D')

16: end if

17: if D' = D1 A Dy then A(D) = A(Dl) n A(DQ)
18: end if

19: if D' = —D; then A(D) = A(Dl)

20: end if

translation is done inductively starting from the atomic for-
mulae [p]®, [p] and then proceeding to handle chop as well
as Boolean operations. The macro Past is handled separately
as well. Once this is done, we know that we can always obtain
a DFA. The DFA A(D’) constructed corresponding to the
DDC+Past formula D’ has the following property : for any
w € L(D"), Untime(w) € L(A(D’)). Untime(w) removes
the time stamps from w. This is the first step before obtaining
the ECA corresponding to D’.

Example 4.2 (Illustration of Algorithm 2): Let us continue
from where we left off in Example 4.1, from the formula D’.
The automaton corresponding to D’ is in the left of Figure 1.

Let us now proceed to Algorithm 3. The deterministic finite
automaton A (referred to as A(D') in Example 4.1) obtained
from Algorithm 2 is converted into a ECA. This is done by
Algorithm 3. We introduce clocks z; into A to check the
measurement constructs ¢; = £ l><1]°3i ¢; (line 2, Algorithm
3). ; must hold good at the point where its witness variable
FE; is true in A. We must check the time elapsed since the last
B;, say t is such that ¢ < c. In the automaton A, we reset
x; on each transition where B; is true (line 7, Algorithm 3).
Then, on each transition of A where F; is true, we check the
constraint x; >4 c¢ (lines 10-14, Algorithm 3). The clock z;
measures the time elapsed since the last B;; we check if this
value is < ¢ when we reach the transition with FE;. Since
FE; is the witness for ;, satisfaction of z; > ¢ on the

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

Figure 1: EDC[{] to ECA : running example. On the left is A(D’) for D’ from Example 4.1. Recall that for p € Var, Var,
is the set of all subsets of Var containing p. In A(D’), the label on the edge from g5 to g4 is immaterial since the LHS
[-p]®* " [p] of D’ has already been violated, leading to acceptance. On the right is the ECA obtained from A(D’). z1 := 0
denotes reset of x1 and (z1 < 60) is the constraint. For brevity, we have not put the constraint —~(x; < 60) on edges not
containing E;. For example, the edge from g to g3 is labeled Var, : this expands to two transitions on {p} as well as {p, E1 }.
On the former, the guard is —(x; < 60), while on the latter it is (z7 < 60).

transitions of A where FE; is true amounts to checking ¢; on
those transitions.

Algorithm 3 Aut2ECA(A): Convert automaton A over Var’
to event clock automata EC' A(A)

Input: Automaton A over Var/, such that L(A)
Untime(L(D")) for DDC+Past formula D’ over Var’.
Output: ECA(A) such that L(ECA(A)) = L(D’).
1: for each p; = ¢ [><1'Bi c; do

2: Introduce a clock variable z;

3: end for

4; for each transition ¢ = ¢’ in A, a C Var' do
5: Introduce guard ¢ and reset Y C{x1,...,z,} as :
6: P < true

7: if a ':BZ then, Y:YU{ZEZ}

8: end if

o: for 1 <i<ndo

10: if (a = E;) A pi=({ <%, c) then

11 V=9PA(x; > ¢)

12: end if

13: if (a ¥ E;) N\ pi=({ =} c) then

14: =9 A-(z; X ¢

15: end if

16: end for

17: end for

18: Replacing all transitions of A, ECA(A) is obtained.

Example 4.3 (Illustration of Algorithm 3): We continue
with our running example, and convert the automaton A(D")
obtained in Example 4.2 to an ECA. We introduce a clock
x1 for ¢1. The clock 1 is reset on the transition of A(D’)
where —p is true. On the edges where F; is true, we check
the constraint ; < 60. As mentioned in Figure 1, each of the
labels on edges represent several transitions : as an example,
Var-, represents transitions of all subsets of Var which do
not contain p.

Theorem 4.5: EDC and EDCJ[/] respectively can be encoded
as language preserving ESA and ECA.

247

C. Reduction from TDC[{] to IRTA

Next, we show that we can encode TDC[/] into IRTA. The
decidability of reachability for IRTA gives the decidability of
the satisfiability for TDC[{]. The translation is performed by
Algorithms 4, 2 and 5 in order.

We begin with a TDC[{] formula D over Var consist-
ing of measurement constructs ¢i,...,®,, each ¢; of the
form ¢ ©<g;. c. As seen in the case of EDC[{], first we
use Algorithm 4 which replaces all measurement constructs
w; = €<, ¢; with [E;]® where E; is a fresh propositional
variable. This results in obtaining a DDC formula D’ devoid of
measurements, over Var and the fresh propositional variables
added by Algorithm 4. We then convert D’ into a deterministic
finite automaton A using Algorithm 2 (omitting lines 7-9, since
we do not need them for TDC). From this DFA A, we obtain
IRTA(A) as given by Algorithm 5.

Algorithm 4 replaces measurement constructs ¢ ><g,. ¢;
with the point formulae [F;]°®, where F; is a fresh propo-
sitional variable. By the semantics of ¢ p<f;. ¢;, we check
the duration from a globally integer time, and see if it agrees
with > ¢;. For measuring the duration, we will use a clock
x; corresponding to £ <g;. ¢; (line 2, Algorithm 5). In the
automaton A’ obtained from Algorithm 2 (i) reset x; at any
globally integer time, and (ii) check the constraint x; > ¢;
on edges where F; is true. To check if a global time is
integral or not, we use a new global clock z, which is reset
to O each time it reaches 1. Thus, each time =z 0, we
know that the global time is integral. All transitions of A’
are duplicated by adding constraints z = 0O or 0 < z < 1
(lines 9-11 of Algorithm 5). Note that the duplication is done
to enable transitions to happen at integral times as well as
non integral times depending on the time elapse. We can reset
x; on any transition having the guard z = 0 since it is a
global integer time; we can reset any subset of {z1, ..., 2, } on
these transitions (lines 13-19 of Algorithm 5). Point (i) above,
namely, resetting x; at globally integral times, is implemented
like this. Point (ii) which checks x; 0 ¢; is implemented in
lines 25-29 of Algorithm 5. On edges where E; is true, we
check the constraint z; < ¢;, and on edges where E; is not

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

true, we check the negation —(z; > ¢;) .
Theorem 4.6: TDC[{] can be encoded as language preserv-
ing IRTA. Hence the satisfiability for TDC[{] is decidable.

EDC is a fragment of logic LIDL [26] without the exis-
tential quantifiers. The addition of existential quantifiers to
EDC[¢] and TDC[{] gives logics that are equivalent to event
recording timed automata as well as IRTA respectively.

D. Controller Synthesis for PTA against EDC[{] and TDC[{]

We consider controller synthesis problem for a PTA T,
a labelling function £ : @ — 2V, an EDC[{] or TDC[/]
formula ¢ compiled as a deterministic timed automaton Ag.
We can restrict our focus to a finite MDP abstraction of 7 and
a finite automaton abstraction of .44. We will make use of the
k-bounded digital clock abstraction of PTAs. Our presentation
is similar to the classical region-graph construction but, for the
sake of clarity of presentation, ignores complications due to
strict guards. The strict constraints can be accommodated in a
slight generalization of the digital-clock abstraction known as
the boundary region graph [11]. The boundary region graph
replaces every thick clock region with two regions (mimicking
the inf and sup boundaries).

Definition 4.7 (Digital-Clocks Abstraction [16]): The k-
bounded digital-clocks abstraction of a probabilistic timed
automaton 7 = (Q, qo, I, %, X,v, E, 0, F) is a finite Markov
decision process [T]; = (S, s9, A, T) where:

« S C Q><VN’“, the set of states;

e 50 = (go,0) C QxV, the set of states;

o A =NxAct is the set of (integral timed) actions;

e : S xA — D(S) is such that for (¢,v) € S and
(t,a) € A, we have T((¢q,v), (t,a)) = d if and only if
v+t € E(g,a) and

>

(¢, v")=

(v+¢)[X:=0]=v’

for all (¢/,v') € S.
Note that if 7 is a timed automaton, then [7]} is a finite
automaton.
Theorem 4.8 (Digital-Clock Abstraction [30], [17]): Given
aPTA 7T = (Q,q0,1,%2,X,v,E,§,F) and a reachability
probability objective, there exists a k& € N such that the optimal

(g, a)(X,q)

Algorithm 4 ElimMeasure(D) : Eliminate Measurement Con-
structs from D, D € TDC[/]

Input: TDC[{] formula D(¢1,...,p,) over Var, with mea-
surement constructs @i, .. ., ¥y, each ¢; = £ g, ¢;.
Output: DDC formula D’ with no measurement constructs,

over Var'=Varw{FE,...,E,}
1: for each ¢; do
2 Introduce a new propositional variable E;
3: Replace p; by [F;]°®
4
5

: end for

248

Algorithm 5 Aut2IRTA(A): Convert automaton A (from Algo-
rithm 2) over Var’ to integer reset timed automata 7 RT A(A)

Input: Automaton A over Var’ = Varw{E,..., E,}, such
that L(A)=Untime(L(D")) for DDC D’ over Var'.
Output: IRTA(A) such that L(IRT A(A)) = L(D").
: for each p; = <t c; do
Introduce a clock variable z;
: end for
Add an extra clock variable z to track global integral time
. for each location ¢ in A do
Add a loop on ¢ which checks z=1 and resets z to 0
end for
. for each transition ¢ — ¢’ in A, a C Var’ do
Replace with 2 transitions (q,a,0,2=0,q') and
(q,a,0,0<2<1,¢)
(q,a,0,2=0,q") takes places at globally integral times
(q,a,0,0<z<1,q’) takes places at globally non inte-
gral times
: end for
cfor 1 <i:<2"—1do
Y; < nonempty subset of {z1,...,z,} s.t. ¥; # Y
for i # j.
: end for
. for each transition (¢,a,0,2z =0,q’) do

R A A S

17: replicate into 2" transitions

18: (¢,a,Y1,2=0,¢"),...,(q,a,Yan,2=0,q"),
19: end for

20: for each transition (q,a,Y,%,q’) do

21: Replace as follows

22: ifa = E; then, Y < Y U {z;}

23: end if

24: for 1 <i<ndo

25: if (a |E E;) then ¢ = ¢ A (z; op ¢)
26: end if

27: if (a ¥ E;) then ¢p = ¢ A —(z; op ¢)
28: end if

29: end for

30: end for

31: Replacing all transitions of A, IRTA(A) is obtained.

reachability probability in [7] equals the optimal reachability
probability in [7]3, and optimal strategy in [T]}, can be used
to characterize an optimal policy in 7.

Let 7 be a PTA and ¢ be a DC specification in EDC[¢]
or TDC[/] subclasses and 74 be the corresponding timed
automaton. Consider the finite MDP M = [T]} and the
finite automaton A = [75]%. Given an MDP M = (S, A, T),
a labeling function £ : S — 2V and a finite automaton
A (8", A 2Ver T"), the product M x A is an
MDP (5%, A*,T*) where S* = S x §', A* = A, and
T* : 5% x A* — D(S5%*) is such that

(s,a)(q)

if T'(q, L(s)) = ¢’
otherwise.

T ((s.0).)5) = {f

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

Theorem 4.9 (Correctness [4]): Given an MDP M and a
property automaton A, the optimal probability of satisfaction
of A is equal to the optimal probability of reaching the
accepting states in M x A. Moreover, optimal reachability
probability strategy in M x A gives an optimal (memoryful)
strategy in M to satisfy A with optimal probability.

Corollary 1: The controller synthesis problem for PTA
against EDC[¢] and TDC[/] specifications is decidable.

V. REINFORCEMENT LEARNING

In this section, we study a learning based algorithm for
controller synthesis for unknown PTAs with DC specifications.
We say that a PTA 7 = (Q, g0, 2, X, 7, E, d, F) is “unknown”
if the probability distribution of the transition function § :) X
¥ — D(2% x Q) is not explicitly known in advance, but can be
sampled. From Theorem 4.9, the controller synthesis problem
reduces to optimal reachability problem for a finite MDP. We
first show how to solve this problem for finite MDPs in the
next subsection, and present our algorithm in section V-B.

A. Optimizing Reachability Probability using Q-learning

The optimal reachability probability and corresponding op-
timal strategies were introduced in Section II-A. We will use
average- and discounted- reward objectives as tools to find
the optimal policy for the reachability probability problem.
Let (M = (S,A,T),p) be a rewardful MDP. For a strategy
o and state s € S we define its average reward as

1
Avga (’5) -]\;E}/éoEcr (S) N = p(XZ—h}/Z))

and, for A € [0,1), its discounted objective as

Disct(\)M(s) = Jim EX(s)
—00

> NT(Xil,Y)

1<i<N

The optimal average reward Avgf/l(s) and optimal discounted
reward Disct™ (s), and corresponding optimal strategies are
defined as supremum over all strategies.

The problem of learning an optimal strategy for the reach-
ability probability objective for a finite MDP can be approx-
imated by the problem of computing an optimal strategy for
the discounted reward objective. The key idea is that one can
modify the reward signal such that once the target states are
reached, every step given a reward of 1 unit, while transitions
before reaching the target states get a reward of O unit. With
this construction, it is easy to see that if a trace reaches a
target state, its average reward-per-transition is 1, while if it
never reaches a target state average reward-per-transition is
0, i.e. the average reward with this modification is equal to
the reachability probability for the trace. Hence, a strategy
maximizing the average expected reward will also maximize
reachability probability. While there are RL algorithms to
solve the expected average reward problem, they require
weakly communicating assumptions [32] on the MDP. It is
well-known that for every finite MDP, there exists a discount

249

factor A < 1 such that A-discount optimal strategies are
also average optimal. Hence, leaving the discount factor as
a hyperparameter, in practice discounted RL algorithms are
used to compute average reward optimal strategies. Hence,
we focus our RL presentation on discounted objective.

The optimal discounted value Disct(\)M =V : § = R
in a reward MDP (M, p) can be characterized [27] using the
following Bellman optimality equations:

{

Exploiting Banach’s fixed point theorem [5], these values
can be approximated by the following sequence of iterates:

Vi(s)

max
acA(s)

p(s,a) +A Y p(s' | s,a) - V(s
s’eS

Qupi(s,a) = p(s,a)+ A D p(s' | s,a)- Vi(s))
s'esS
Viti(s) = Jnax Qi+1(s,a).
Let Q.(s,a) = lim oo Qi(s,a) for all s,a € SxA.

The -learning algorithm of Watkins [32] is a simple and
popular RL algorithm for discounted reward objectives. The
QQ-learning algorithm assumes that instead of knowing the
MDP beforehand, we are given data samples of the form
(8¢, a, 741, St41) € SXAxRx S fort =0,1,2,... such that
p(st+1 | 8t,a) > 0and p(st, ar) = riy1. Q-learning iteratively
applies the following update to the state-action value function:

Qi+1(s,a) = (1—ar)Q:(s, a)

+ ag(rep1+A max Qt(st+17a,))7
a’€A(s)

if (s,a)=(st,a:) and Q:41(s,a) = Q+(s, a) otherwise; here
0 < ay < 1 is the learning-rate at the step ¢ > 0. The Q-
learning is known to converge to the optimal value in the limit
under suitable constraints on the learning rate.

Theorem 5.1 (Convergence [33]): For finite MDPs with
bounded rewards |r;|<B and learning rates 0<c;<1 satisfying

9]
D on=
t=0

we have that Q;(s,a) — Q. (s,a) as t — oo for all s,a €
Sx A almost surely.

oo
oo and E a? < oo,
t=0

B. Q-learning for PTAs against DC specifications

Since we do not have access to the states of the PTA, we
cannot take the product of the PTA with the automaton. How-
ever, we can simulate this product by using the timed automata
as a monitor, and provide rewards to the RL agent every time
an accepting state is visited. A RL agent maximizing this
reward signal will converge towards a policy that maximizes
the probability of satisfaction of the DC specification. Our RL
scheme is sketched as Algorithm 6.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 6 RLDC: RL Scheme for DC Specifications

Input: Access to a simulation engine for the unknown
PTA [T} (S,A,T) and property automaton A =
(Q,%, A, F); algorithm parameters step size « and dis-
count factor § € (0,1).

Output: Optimal @) values for each state action pair.

1: Initialize Q((s,q), (t,a)) = 0 for all s € S, ¢ € Q and
t € Ng and a € A.
2: for each episode do

3: S = ((60,0),QQ)

4: for each step of episode do

5: Choose (t,a) from Q-table using e-greedy policy
6: Take action (¢, a) observe (¢/,1).

7: Set ¢’ = A(q, L({)).

8: Set R=1if ¢ € F else set R = 0.

9: Set S' = ((¢,v'),q")

10: Q(S, A)+=a[R + Amax4 Q(S’', A’) — Q(S, A)]
11 Set ' = S.

12: end for

13: end for

VI. CASE STUDY

We present here two case studies. The first uses variations
of the standard frozen lake benchmark modified to add time
delays along with some dense-time specifications expressed in
DC. The second case study applies the RL algorithm to a real-
world model of a simplified cardiac pacemaker with real-time
requirements.

A. Benchmark 1. Timed Frozen Lake

Frozen lake (see Figure 2)is a simple grid-world example
where the goal of the agent is to move from the starting
location (yellow grid) to the goal (green grid) without ever
moving to a trap (red grids). At each step, the agent picks
one of the cardinal directions as their move. The frozen lake
environment is stochastic, where there is a probability the
agent will move in the desired direction or to one of the
adjacent directions. For example, the agent may select to move
south, but due to noisy dynamics may end up moving to the
cells to the east or west of the current cell with some fixed but
unknown probabilities (1/3). Figure 2 shows three frozen-lake
arenas with variable grid sizes used in our case study.

The requirement specifications or rules for each case study
are shown in Table I, and they are additive, so Case 2 includes
all Case 1 rules. Each case study is progressively more compli-
cated than the previous, requiring the discovery of more subtle
strategies. The process of creating a case study starts with the

Table I: Frozen Lake Case Study Requirements

Study Requirements
1 Standard Frozen Lake with no modifications
2 Adds “delay” action to mimic then no move is made; The

agent may not take any action consecutively
Adds time limit; Agent must complete within 60 time units
Same as 3a except probabilities changed to 1/4:1/2:1/4

3a
3b

250

Pl

(CY)

(b)

Figure 2: Frozen Lake grids used in case study

(©)

ick_one nVeVsVuwl®
P

no_con flict ([n]® = [me Ans A—w A —wait]*) A ([e]® = [-n A —s A ~w A ~wait][*)A
([s1® = [-n A —e A —~w A ~wait]®) A ([w]® = [-n A —e A s A —wait]®)A

([wait]® = [-n A —e A =s A —~w]®)

[reach_goal] O(—goal) ™ true™ [goal A =trap]®

no_consecutive_req O((TnT* " true = £=3 1~ [-n]*) A (Te]* " true = (£ =

([s]* " true = (£ =2 1)"[=s]*) A ([w]®* " true = (£ =

el

D™ [=el*)A
D7 [-w]*)

=3

trp O[—trap]

no_con_wait O(Twait]* " true = (£ =3 ,;, 1)~ [~wait]®)

Specification: pick_one A no_con flict A\ reach_goal\

no_consecutive_req A trp A no_con_wait

Table II: Frozen Lake Case 2 : EDC[/] specification

encoding of the rules specification into a series of DC formulas
which were then processed using DCVALID [10] into the
Hanoi omega automata format. The automaton was then used
as an input to MUNGOJERRIE [24] tool for reinforcement
learning as well as computing the probability of the strategies
learned. The specification for Case 2 is given in Table II as
an example. The results are summarized in Table III

Table III: Frozen Lake Case Study Results

Grid Rule Size of Prob of Satisfaction Episode RL Train
Size Set Product MC RL Length Number Time(secs)
4x4 1 311 0.780 0.780 1000 300,000 84.0
4x4 2 877 0.780 0.776 1000 300,000 59.2
4x4 3a 138,286 0.388 0.313 1000 75,000,000 10038.3
4x4 3b 138,286 0.454 0.382 1000 75,000,000 11,841.7
5x5 1 545 1.00 0.939 1000 300,000 147.3
5x5 2 1511 1.00 0.997 1000 300,000 729
5x5 3a 289,320 0.996 0.788 400 15,000,000 3501.2
6x6 1 820 1.00 0.947 2000 900,000 440.5
6x6 2 2270 1.00 0.982 2000 900,000 227.1
6x6 3a 431,655 0.999 0.876 400 15,000,000 3880.1
8x8 1 1424 1.00 1.00 2000 600,000 550.0
8x8 2 2984 0.23 0.0 1000 75,000,000 22.5

B. Benchmark II: Artificial Pacemaker

Our second case study models a simple cardiac pacemaker
operating in VVI [6] mode. Such a device paces only the
ventricle while also monitoring the ventricle for intrinsic heart
activity. In standard pacing therapy, it is desired to pace the
minimum required and rely on the patient’s natural heart
rhythm when present. This is both physiologically better for
the patient and conserves the pacemaker battery for better
longevity. In the absence of intrinsic activity, VVI mode
outputs a ventricular pacing pulse (VP) at the end of a fixed
interval. If heart activity is sensed, the pacemaker needs to de-
cide if the sensed event can be considered a valid contraction,
a ventricular sense (VS), or if it came in the earlier, refractory
period of the cardiac cycle where the myocardium has not
yet recovered from previous activity, a refractory ventricular
sense (VR). The VR response makes for an interesting case
study. When a VR occurs, the refractory period is reset and
will continue to reset on every VR until a VS or VP occurs.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

lowvp [VPT*"true = (({ =Y p (pace — 1)) AO[=V P])
onlyref =3, pace)A
D=2, rep) AD[VS AV — (e =2, (ref +1)~[-VS]*)
pacereq (=5, pace) TVPT)
no_pace_req (£ =38, pace —1) A (d[-VP])
repeatvp O(([VPT*" true) A onlyref = pace_req)

[(TVST* " true) Aonlyref) = pace_req] A[(JVS]* true —> no_pace_req)]
O[((€ =3, re) AO(-VS AVP])) = ((€ =5, ref + 1) vstrigger)]
((onlyref = pace_req) A (€ =y, pace — LADO[=VP]))
lowvp A repeatvp A repeatvs A boot

vstrigger
repeatvs
boot.
Specification:

Table IV: Pacemaker : EDC[¢] and TDC[¢] specifications

We designed a set of DC specifications from the VVI
requirements detailed in [22]. This is a simple pacemaker
model, which will pace at a specified interval, inhibiting that
scheduled pace should a non-refractory intrinsic ventricular
pace occur. For this model, the pacing interval and refractory
period are fixed, and there are no modern features such as
rate or activity response. The DC model specification shown
in Table IV consists of four parts. The first part lowvp says
that the pace actions should not happen more often that a
certain time period. The second part repeatvp says that a pace
action must be followed by another pace action if there are no
non-refractory intrinsic heart events, which is encoded in the
formula onlyref. The onlyref specification says that if an
intrinsic event comes closer than refractory period to another
one, then it is not a true intrinsic beat. The third part repeatvs
says that an intrinsic beat must be followed by a pacing event
at the pacing interval rate unless a non-refractory event occurs
during the pacing interval. The fourth part boot states that the
pacemaker observes the heart for non-refractory intrinsic heart
events and then pace action must occur after pacing interval.

The heart environment is a PTA model written in the PRISM
language [20]. The maximum time between two intrinsic
heart beats is set to a fixed duration. At the start of each
cardiac cycle, the model stochastically selects when during the
intrinsic period it will beat. It then counts the time until the
beat time is reached and an intrinsic beat signal is generated
and the MDP resets the cardiac cycle. The heart MDP also
resets immediately and begins a new cardiac cycle whenever
the pace signal is asserted by the pacemaker model.

The results of this case study are given in Table V. For
demonstration purposes, the pacing intervals and refractory
periods were set to small values, easing the processing time.
For training, the pacemaker model was not provided with the
interval or period and was required to identify those values
based on rewards received from the RL algorithm.

Table V: Pacemaker Case Study Results

Case Refractory V-V Size of Prob of Satisfaction Episode RL Train
Period Interval Product MC RL Length Number Time(secs)
Vvi-2-6 2 6 120 1.00 1.00 1000 100,000 3.78
wvi-3-8 3 8 270 1.00 1.00 1000 100,000 3.14
wvi-4-10 4 10 884 1.00 1.00 1000 250.000 6.65
vvi-5-14 5 14 2882 1.00 1.00 1000 5,000,000 171.3
wvi-6-16 6 16 4360 1.00 0.00 1000 10,000,000 8.85

C. Discussion

In the frozen lake case study, the RL was required to
discover that moving in the desired direction was not the
best option, in most cases, and using the edge of the board
constrained the number of random directions the agent would

251

move. Growing the 4x4 grid by one row and column, as seen
in Figure 2b, resulted in a less complicated path to the goal,
moving along the top and right grid edges. While the number
of moves to win had grown, the simpler path resulted in an
increased learning rate, as can be seen when comparing the
episodes and time required for learning between the rule 3a
cases of the 4x4 and 5x5 cases. The 5x5 case was significantly
faster. This improvement is of limited value though as the
grid continues to grow. This can be seen with the 8x8 case
where the rule preventing consecutive actions (ruleset 2) was
sufficient to baffle the tabular Q-Learning algorithm. This test
case was unable to find any valid path over 15 million tries
leading to a very short run time due to each episode quickly
failing to meet a rule. In each case where the RL’s probability
of satisfaction did not match the model checker, the RL was
shown to still be learning and, given additional time, should
match the exact values (MC computed using model checking).
This can be seen in the simpler cases where the two values
matched exactly or nearly exacting.

The pacemaker case study provided a very different chal-
lenge. The RL was not given any hint to the specification
requirements. Given only a signal when the heart intrinsically
paced and a reward when it operated properly, the pacemaker
had to discern the pacing interval and refractory period. Table
V shows that this was achievable through the number of
episodes and time required quickly grew as the number of
counts representing a complete pacing interval increased. It
should be noted that the pacemaker model is being used as
an exemplar of a practical real-time system with hard timing
requirements. Any life sustaining medical device, no matter
how coded, must demonstrate to the FDA that it is safe and
effective before it can be brought to market.

VII. CONCLUSION

This paper presented a learning-based synthesis approach
for systems modeled as probabilistic timed automata against
two subclasses of DC specifications. The subclasses of DC
presented in the paper are expressive enough to capture
interesting case studies; moreover, their translation to well
behaved subclasses of timed automata has been crucial in the
convergence of the proposed RL algorithm.

The theoretical result enables the translation of real-time
specifications to scalar rewards in a way that is correct (reward
optimization implies optimization of specification satisfaction)
and effective (reduce the problem to RL over finite MDPs).
This allows one to exploit reward-maximizing learning algo-
rithms to maximize property satisfaction. Unfortunately, when
the model is not known, one can not a priori bound the number
of learning episodes. We add the caveat, however, that the
proposed approach should not be confused with the correct-
by-construction synthesis approach where the goal is to design
a formally correct controller from specifications. In contrast,
our approach must be complemented with rigorous V&V of
the learned designs.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

(1]

[10

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183-235, Apr. 1994.

R. Alur, L. Fix, and T. A. Henzinger, “Event-clock automata: A
determinizable class of timed automata,” Theor. Comput. Sci., vol. 211,
no. 1-2, pp. 253-273, 1999.

J. An, N. Zhan, X. Li, M. Zhang, and W. Yi, “Model checking bounded
continuous-time extended linear duration invariants,” in Proceedings of
the 21st International Conference on Hybrid Systems: Computation and
Control (part of CPS Week), HSCC 2018, Porto, Portugal, April 11-13,
2018, 2018, pp. 81-90.

C. Baier and J.-P. Katoen, Principles of Model Checking.
2008.

S. Banach, “Sur les opérations dans les ensembles abstraits et leur
application aux équations intégrales,” Fundamenta Mathematicae, no. 1,
pp. 133-181, 1922. [Online]. Available: http://eudml.org/doc/213289
A. D. Bernstein, J.-C. Daubert, R. D. Fletcher, D. L. Hayes, B. Liideritz,
D. W. Reynolds, M. H. Schoenfeld, and R. Sutton, “The revised
NASPE/BPEG generic code for antibradycardia, adaptive-rate, and mul-
tisite pacing,” Pacing and clinical electrophysiology, vol. 25, no. 2, pp.
260-264, 2002.

P. Bouyer, T. Brihaye, V. Bruyere, and J.-F. Raskin, “On the optimal
reachability problem on weighted timed automata,” Formal Methods in
System Design, vol. 31, no. 2, pp. 135-175, 2007.

A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Control
synthesis from linear temporal logic specifications using model-free
reinforcement learning,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 10349-10355.

Z. Chaochen, M. R. Hansen, and P. Sestoft, “Decidability and un-
decidability results for duration calculus,” in STACS 93, 10th Annual
Symposium on Theoretical Aspects of Computer Science, Wiirzburg,
Germany, February 25-27, 1993, Proceedings, 1993, pp. 58-68.
“DCVALID-a tool for modelchecking Duration Calculus Formulae,”
accessed: 05/28/2021. [Online]. Available: http://www.tcs.tifr.res.in/
~pandya/dcvalid103.html

V. Forejt, M. Kwiatkowska, G. Norman, and A. Trivedi, “Expected
reachability-time games,” Theor. Comput. Sci., vol. 631, pp. 139-160,
2016.

E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and
D. Wojtczak, “Omega-regular objectives in model-free reinforcement
learning,” in Tools and Algorithms for the Construction and Analysis of
Systems, 2019, pp. 395412, INCS 11427.

——, “Faithful and effective reward schemes for model-free reinforce-
ment learning of omega-regular objectives,” in Automated Technology for
Verification and Analysis, D. V. Hung and O. Sokolsky, Eds. ~Cham:
Springer International Publishing, 2020, pp. 108—124.

, “Model-free reinforcement learning for stochastic parity games,”
in 31st International Conference on Concurrency Theory, CONCUR
2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), ser.
LIPIcs, I. Konnov and L. Kovics, Eds., vol. 171. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2020, pp. 21:1-21:16.

M. Hasanbeig, A. Abate, and D. Kroening, “Cautious reinforcement
learning with logical constraints,” in Proceedings of the 19th
International Conference on Autonomous Agents and Multiagent
Systems, AAMAS °20, Auckland, New Zealand, May 9-13, 2020,
A. E. F Seghrouchni, G. Sukthankar, B. An, and N. Yorke-
Smith, Eds. International Foundation for Autonomous Agents
and Multiagent Systems, 2020, pp. 483-491. [Online]. Available:
https://dl.acm.org/doi/abs/10.5555/3398761.3398821

T. A. Henzinger, Z. Manna, and A. Pnueli, “What good are digital
clocks?” in Automata, Languages and Programming, W. Kuich, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 545-558.

M. Jurdzinski, M. Z. Kwiatkowska, G. Norman, and A. Trivedi,
“Concavely-priced probabilistic timed automata,” in CONCUR 2009 -
Concurrency Theory, 20th International Conference, CONCUR 2009,
Bologna, Italy, September 1-4, 2009. Proceedings, ser. Lecture Notes
in Computer Science, M. Bravetti and G. Zavattaro, Eds., vol. 5710.
Springer, 2009, pp. 415-430.

H. Kopetz, “Time-triggered real-time computing,” Annu. Rev. Control.,
vol. 27, no. 1, pp. 3-13, 2003. [Online]. Available: https://doi.org/10.
1016/S1367-5788(03)00002-6

H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 112-126, 2003.

MIT Press,

252

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Computer Aided Verification
(CAV), Jul. 2011, pp. 585-591, INCS 6806.

M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston, “Automatic
verification of real-time systems with discrete probability distributions,”
Theoretical Computer Science, vol. 282, pp. 101-150, June 2002.

S. Q. R. Laboratory, “Pacemaker system specification,”
http://sqrl.mcmaster.ca/_SQRLDocuments/PACEMAKER .pdf, 2007,
accessed: 2020-11-1.

A. Lavaei, F. Somenzi, S. Soudjani, A. Trivedi, and M. Zamani,
“Formal controller synthesis for continuous-space mdps via model-free
reinforcement learning,” in //th ACM/IEEE International Conference
on Cyber-Physical Systems, ICCPS 2020, Sydney, Australia, April 21-
25, 2020. 1IEEE, 2020, pp. 98-107.

“Mungojerrie—formal reinforcement learning,” accessed: 05/28/2021.
[Online]. Available: https://plv.colorado.edu/wwwmungojerrie/

P. K. Pandya, “Specifying and deciding quantified discrete-time duration
calculus formulae using dcvalid: An automata theoretic approach,” in
Proceedings of RTTOOLS, 2001.

“Interval duration logic: Expressiveness and decidability,”
Electron. Notes Theor. Comput. Sci., vol. 65, no. 6, pp. 254-272, 2002.
[Online]. Available: https://doi.org/10.1016/S1571-0661(04)80480-8
M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. New York, NY, USA: John Wiley & Sons, Inc.,
1994.

D. Sadigh, E. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia, “A learning
based approach to control synthesis of Markov decision processes for
linear temporal logic specifications,” in IEEE Conference on Decision
and Control (CDC), Dec. 2014, pp. 1091-1096.

D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, pp. 484—489, Jan. 2016.

J. Sproston, “Discrete-time verification and control for probabilistic
rectangular hybrid automata,” in 2011 Eighth International Conference
on Quantitative Evaluation of SysTems, 2011, pp. 79-88.

P. V. Suman, P. K. Pandya, S. N. Krishna, and L. Manasa, “Timed
automata with integer resets: Language inclusion and expressiveness,’
in Formal Modeling and Analysis of Timed Systems, 6th International
Conference, FORMATS 2008, Saint Malo, France, September 15-17,
2008. Proceedings, 2008, pp. 78-92.

R. S. Sutton and A. G. Barto, Reinforcement Learnging: An Introduction,
2nd ed. MIT Press, 2018.

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279-292, 1992.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 01,2022 at 17:46:11 UTC from |IEEE Xplore. Restrictions apply.

