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Fig. 1. We introduce a new theory for computing derivatives of time-gated renderings. Our theory captures high-order light transport effects such as soft
shadows and interreflection, and offers the generality of differentiating with respect to arbitrary scene parameters such as material optical properties and
object geometries. This example consists of a glossy tree model [Telezhkin 2021] that is lit by an area light and casts soft shadows on the ground. We show
steady-state and time-gated renderings with varying path-length importance functions (that encode camera time gates). The corresponding derivative images
with respect to the tree’s rotation about the vertical axis are visualized at the bottom. The color encoding for derivatives is also used in the following figures.

The continued advancements of time-of-flight imaging devices have en-
abled new imaging pipelines with numerous applications. Consequently,
several forward rendering techniques capable of accurately and efficiently
simulating these devices have been introduced. However, general-purpose
differentiable rendering techniques that estimate derivatives of time-of-flight
images are still lacking. In this paper, we introduce a new theory of differ-
entiable time-gated rendering that enjoys the generality of differentiating
with respect to arbitrary scene parameters. Our theory also allows the de-
sign of advanced Monte Carlo estimators capable of handling cameras with
near-delta or discontinuous time gates.

We validate our theory by comparing derivatives generated with our
technique and finite differences. Further, we demonstrate the usefulness of
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our technique using a few proof-of-concept inverse-rendering examples that
simulate several time-of-flight imaging scenarios.
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1 INTRODUCTION

Recently, time-of-flight (ToF) imaging has revolutionized a wide
range of applications in robotics, autonomous navigation, atmo-
spheric sciences, medicine, and entertainment. Unlike conventional
intensity sensors that only record how many photons are received,
the ToF sensors also retain the information about when a photon
arrives (by, for example, weighting each photon differently based on
its time of arrival). With such information, ToF imaging techniques
are capable of recovering geometric and material properties of a
scene more effectively than conventional methods, even when parts
of the scene are not directly visible to the sensor.

Because of the usefulness of time-of-flight sensors, time-gated
rendering techniques have been developed to simulate them in
computer graphics. These techniques utilize a path-length impor-
tance function to model how ToF sensors respond to photons with
varying times of arrival. Early time-gated rendering methods have
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adopted steady-state rendering approaches that neglect lengths of
light transport paths during the path sampling process. Although
these methods work adequately when the path-length importance
is smooth, they become inefficient for path-length importance func-
tions with narrow supports. To address this problem, more advanced
techniques—which are tailored to time-gated rendering—have been
introduced [Jarabo et al. 2014; Pediredla et al. 2019b]. These tech-
niques consider lengths of light paths when sampling them, leading
to significantly better performance when simulating ToF sensors
that accumulate contributions only from small subsets of photons.

Differentiable rendering is concerned with numerically estimating
derivatives of images with respect to differential changes of a scene.
These techniques have a wide array of applications such as enabling
gradient-based optimization for solving inverse-rendering problems.
Recently, great progress has been achieved in differentiable render-
ing theory, algorithms, and systems [Li et al. 2018; Loubet et al. 2019;
Nimier-David et al. 2019; Zhang et al. 2019; Nimier-David et al. 2020;
Zhang et al. 2020; Bangaru et al. 2020; Zhang et al. 2021b; Zeltner
et al. 2021; Vicini et al. 2021]. Unfortunately, all these techniques
are developed for the steady-state configuration only.

In this paper, we bridge this gap by introducing the first general
theory on differentiable time-gated rendering. Our theory offers the
generality to (i) handle complex light transport phenomena (such as
soft shadows and interreflections); and (ii) differentiate with respect
to arbitrary scene parameters such as object geometry and material
optical properties.

Concretely, our contributions include:

e Establishing the theoretical formulation of differential time-gated
path integrals (§4). This formulation introduces a new path-length-
boundary component unique to differentiable time-gated render-
ing (§4.3).

o Developing new Monte Carlo methods to estimate these integrals
in an efficient and unbiased fashion (§5). Specifically, we show
how ellipsoidal change of variable [Pediredla et al. 2019b] and
antithetic sampling [Zhang et al. 2021a] can be used to efficiently
handle cameras with near-delta and discontinuous time gates.

We validate our derivative estimates by comparing with finite-
difference references (Figure 8). Further, to demonstrate the use-
fulness of our theory and algorithms, we use a few simple proof-
of-concept inverse-rendering examples that mimic several time-of-
flight imaging scenarios (Figures 10-17).

2 RELATED WORK

Time-gated imaging. Time-gated sensors' weight the contribu-
tions of individual photons according to their time-of-travel and
find applications in many areas. These sensors were first used in
imaging applications for looking around corners [Kirmani et al.
2009, 2011]. SPAD sensors are used in biology and medical settings
for fluorescence lifetime imaging [Lakowicz et al. 1992], and optical
sectioning of layers within scattering media [Das et al. 1993]. Time-
gated sensors are also used to enhance visibility by, for instance,
imaging through fog and smoke [Satat et al. 2018]. In advanced

!In this paper, we neglect the practical differences between “transient” and “time-gated”
sensors/imaging and use the term “time-gated” to refer to both.
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driver assistance systems (ADAS), time-gated cameras are used to
improve safety by avoiding collision and improving night-time nav-
igation [David et al. 2006; Grauer and Sonn 2015]. Coupled with
machine learning algorithms, time-gated sensors are also used as
alternatives to lidar for dense depth sensing [Gruber et al. 2019].
Lastly, time-gated measurements have also been used for non-line-
of-sight (NLOS) imaging [Laurenzis and Velten 2014; Thrampoulidis
et al. 2018; Pediredla et al. 2017, 2019a; Saunders et al. 2019; Liu et al.
2019, 2020; Lindell et al. 2019; Raskar et al. 2020; Young et al. 2020].

In computer graphics, time-gated imaging has also attracted in-
creased interest for applications including non-line-of-sight imag-
ing [Heide et al. 2014; Tsai et al. 2017; Jarabo et al. 2017; O’Toole
et al. 2018; Heide et al. 2019; Xin et al. 2019; Iseringhausen and
Hullin 2020; Chen et al. 2020], separating light transport compo-
nents [O’Toole et al. 2014], and inverting scattering [Gkioulekas
et al. 2016].

Time-gated forward rendering. The theoretical foundation of time-
gated rendering is provided by the time-resolved versions of the
radiative transfer equation [Chandrasekhar 1960], rendering equa-
tion [Kajiya 1986; Smith et al. 2008], and path-integral formula-
tion of light transport [Veach 1997; Pauly et al. 2000; Jarabo et al.
2014]. Most prior research on time-gated rendering has adapted
steady-state Monte Carlo rendering algorithms for forward simu-
lations [Jarabo 2012; Jarabo et al. 2014; Jarabo and Arellano 2018].
Most of these works directly repurpose conventional steady-state
algorithms such as unidirectional and bidirectional path tracing to
sample light transport paths.

Jarabo et al. [2014] introduced a modified BDPT procedure for
light paths in scattering media. Additionally, biased methods that
trade physical accuracy for computational efficiency, such as photon
mapping [Marco et al. 2019] and instant radiosity [Pan et al. 2019]
have been adopted for time-gated rendering.

Pediredla et al. [2019b] introduced a new path sampling technique
for time-gated rendering of surfaces, which allows precise control
of path lengths. We utilize this technique to develop new Monte
Carlo estimators for differentiable time-gated rendering.

Recent works on ToF imaging [Tsai et al. 2019; Iseringhausen
and Hullin 2020] used a simplified forward-rendering model that
considers time-resolved light transport with up to three reflections.
This model can be implemented efficiently on the GPU and enables
fast NLOS shape reconstruction in an analysis-by-synthesis fashion
with derivatives computed using finite differences. In contrast, our
method not only enjoys the generality to handle various light trans-
port effects (not limited to three bounces), but also allows estimating
scene derivatives in an unbiased and consistent fashion.

Physics-based differentiable rendering. Recently, great progress
has been made in physics-based steady-state differentiable render-
ing. Li et al. [2018] has introduced Monte Carlo edge sampling—a
first general-purpose approach for differentiable rendering of sur-
faces that allows differentiation with respect to arbitrary scene
parameters including object geometries. This framework was later
generalized by Zhang et al. [2019] to handle volumetric light trans-
port. To improve the efficiency of differentiable rendering, sev-
eral techniques that reparameterize the rendering equation have
been developed [Loubet et al. 2019; Bangaru et al. 2020]. Further,
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Fig. 2. Material-form parameterization of a triangle. In this example,
the horizontal translation of this triangle is controlled by a parameter 6. We
choose the reference surface B at some fixed parameter 6, (illustrated in
yellow). The one-to-one mapping X then specifies the translational motion
of the triangle (and hence the name). For each 6, X(+, #) maps each point p
on the reference surface B to one on the actual geometry M (), which is
illustrated in green.

Zhang et al. [2020; 2021b] has introduced the mathematical formu-
lation of differential path integrals, which allows the development
of advanced Monte Carlo methods (beyond unidirectional path trac-
ing) for differentiable rendering. All these techniques, however, are
developed for steady-state rendering only.

On the other hand, a few specialized time-gated rendering tech-
niques have been developed to solve inverse-rendering problems
using time-gated sensors. These techniques, despite being able to
compute derivatives, either lack the generality to compute geomet-
ric derivatives (that is, those with respect to object geometries) [Naik
et al. 2011; Gkioulekas et al. 2016] or the ability to handle complex
light transport effects like interreflection [Tsai et al. 2019].

To bridge this gap, we focus on the establishment of a general
differential theory of time-gated rendering that offers the generality
to differentiate with respect to arbitrary scene parameters (such as
material optical properties and object geometries) and the ability
to handle a wide range of light transport phenomena including
soft shadows and interreflections. While our contribution is primar-
ily theoretical, the results can be used for future development of
efficient practical differentiable time-gated renderers.

3 PRELIMINARIES

In this section, we briefly revisit the mathematical preliminaries
that we will use to devise our theory and algorithms in §4 and §5.
We summarize all commonly used symbols and their definitions in
Table 1.

3.1 Forward Time-Gated Rendering

Given a virtual scene consisting of a set of surfaces M, the radio-
metric response of a time-gated camera can be expressed as the
following time-gated path integral:

1= [ wilsl) ) duca), 8
where x denotes a light transport path, and Q := UﬁleN +
is the path space comprised of all finite-length light paths.? Fur-

ther, given a light path x = (x¢,x1,...,xn), the area-product

2We hyperlink keywords to their definitions.
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measure / is given by
du(x) =TT, dA(xn), @)

with A being the surface-area measure; and the measurement
contribution function f is defined as:

f(x) = Le(xo — x1) G(x0 © x1) ®)
N-1
1_[ fs(xn—1 = xn = xn41) G(xn © xp11) | We(xN-1 = XN),
n=1
where L. and W, capture, respectively, source emission and de-
tector importance; and G is the geometric term given by

In(x) - xg| In(y) - y=|

llx = ylI?
with V being the mutual visibility function, n(x) indicating
the unit surface normal at x, and X7 denoting the unit vector
pointing from x toward y. Lastly, unique to time-gated render-
ing, W; : Rs9 — Ry¢ is the path-length importance with
[|x]| == ny:l [|xp — xp-1]| denoting the total (optical) length of
a light transport path x = (xo, ..., xnN).

Glxeoy =V(x oy . (4)

3.2 Material-Form Parameterization of Virtual Scenes

For a virtual scene controlled by some abstract parameter 6 € R,
when its geometry—namely the object surfaces M—depends on
0, so does the path space Q. This dependency makes differentiat-
ing the time-gated path integral of Eq. (1) with respect to  more
challenging.

To address this problem, Zhang et al. [2020] has introduced a
technique that applies a material-form reparameterization to the
scene geometry M(8). Specifically, let scene geometry M(6) c R3
be parameterized globally via some differentiable mapping X(-, 6)
that transforms some fixed reference surface 8 to the actual scene
geometry M(0) for all 0 (see Figure 2). We will discuss the choice
of reference surfaces later in this section.

Given the reference surface 8, any point p on this surface is
called a material point. Further, the path space Q= UNz: BN+
induced by reference surface 8 is called the material path space
with its elements p € Q termed material light paths.

The smooth mapping X(-, ) : B +— M(0) induces a path-level
map X(-, 0) that transforms any material path p = (p,, ..., py) € Q
to its ordinary counterpart:

X(p.0) = (X(pg. 0)...... X(pn. 0)) € (). ®)

3.3 Ellipsoidal Change of Variable

We now revisit a change-of-variable technique [Pediredla et al.
2019b] capable of efficiently handling cameras with near-delta path-
length importance in forward time-gated rendering.

Assume the reference surface to be represented with polygonal
meshes such that 8 = U; 7;, where 7; indicates a polygonal face for
each i. Given two material points pS, p° € B, each point p € 7; can
be parameterized using two variables as follows. The first variable
7 € Ris used to select a subset E;(r) C 7; that contains all points p
satisfying that the sum of distances from p to p° and pP equals 7.
That is, 8;(r) :== {p € T; : ||p° - pll +11p° - pll = }. It is easy to

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.



1:4 « Wau, Cai, Ramamoorthi, and Zhao

gZ(T)

(ﬂ@l T

Fig. 3. Parameterizing a polygonal face 7; C 8 using (i) the sum 7 of
distances from each material point p € 7; to two given points p° and pP
(which may not belong to 7;); and (ii) another variable ¢ parameterizing
&;(7) that contains all points on the polygon 7; with the same sum of
distances. The set &;(7) is (part of) an ellipse given by the intersection of
an ellipsoid with foci p% and pP and the plane in which 7 resides.

verify that &;(7) is (part of) an ellipse. The second variable is then
used to parameterize the ellipse &;(7), as illustrated in Figure 3.

This parameterization allows us to rewrite any surface integral
over 7; as:

/ h(p) dA(p) = / [ / h(p)Jf(p;pS,pDW(p)] dr, (6)
Ti 0 &i(1)

where h : 77 — R is an arbitrary function, ¢ is the curve-length
measure, and

dA
I (% pP) = ' W()Pc)lr @)
is the corresponding Jacobian determinant. Please refer to the work
by Pediredla et al. [2019b] for the exact form of this term.
Based on Eq. (6), we can rewrite integrals over the full reference
surface B as

/Bh(p) dA(p) 2/000 [Z /s,.m h(p) JS (p; p5, pP) de(p)

=/O°°

where the sum is over each polygonal face 7;, and E(7) := U;E; (7).
Additionally, J¢(p; pS, pP) := Jf (p; p5, pP) for all p € 7.

In practice, Eq. (8) can be computed efficiently using acceleration
structures like BVH to quickly prune polygonal faces that do not
intersect with the ellipsoid (determined by foci p®, pP and sum of
distances 7) [Pediredla et al. 2019a].

dr

/8 " h(p) J¢(p; p°. p°) df<p>] dr, (¥

4 DIFFERENTIABLE TIME-GATED RENDERING THEORY

We now formally establish the mathematical formulation of differ-
ential time-gated path integrals—a generalization of the steady-state
version introduced by Zhang et al. [2020]. Although this formula-
tion has recently been extended to handle volumetric light trans-
port [Zhang et al. 2021b], we focus on the original surface-only
variant.

In what follows, we first reparameterize the time-gated path
integral of Eq. (1) in its material-form in §4.1. Then, we introduce
differential time-gated path integrals—our main result of this section—
in §4.2 and §4.3.
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Table 1. List of symbols commonly used in this paper.

Symbol Definition
x light transport path
M(0) evolving surface
Q path space
Wr path-length importance
f measurement contribution
P material light path
B reference configuration
Q material path space
oQ material boundary path space
f material measurement contribution
Jt Ellipsoidal change of variable Jacobian

4.1 Material-Form Time-Gated Path Integral

Leveraging the material-form parameterization described in §3.2,
applying a change of variable from X to p to Eq. (1) yields the
material-form time-gated path integral:

1= [ Wellsl) F(p) dutp), ©)
Q
where x = X(p, 0), and
£(B) = f() ] (P), (10)
is the material measurement contribution function with
I e e At
2h o) B e | )

n
being the Jacobian determinant capturing this change of variable.

Compared with the original time-gated path integral of Eq. (1), the
material-form variant of Eq. (9) has an integral domain independent
of the scene parameter 6.

Choice of reference. In practice, when rendering the scene at some
given 0 = 0y, it is desired to set the reference surface as the scene ge-
ometry at 6. That is, B = M(6p). In this way, the smooth mapping
X(+, 6p) reduces to the identity map, and the material path space Q
coincides with the ordinary path space Q(6). Also, the Jacobian
determinant J defined in Eq. (11) has unit value for all p at 6 = 6.
We note that J can still have nonzero derivatives with respect to 6.

Ellipsoidal reparameterization. Let QNzZ = UK;ZZBN“ denote
the space containing all material light paths with at least two seg-
ments (and three vertices). The ellipsoidal change of variable of
Eq. (8) allows reparameterizing any material-form path integral via:

AL A [ [ #0 dA(q)] au(p)

- /Q /o ( /8 . F(A)J%q;po,pl)df(q))drdu(p»

where F: Q — Ris an arbitrary integrable function over the mate-
rial path space. Further, given a material light path p = (py, ..., pn),
P, is defined as p with an additional vertex g € B inserted between

po and py. Thatis, p, = (pg. 4, P> - -> PN)-

(12)



4.2 Differential Time-Gated Path Integral

Utilizing the mathematical formulations discussed in §3, we now
differentiate the time-gated path integral of Eq. (9) with respect to
arbitrary scene parameter 0.

To this end, we make the following four continuity assumptions:

A.1 There are no ideal specular surfaces (e.g., perfect mirrors);

A.2 The source emission L., sensor importance We, and BSDFs f;
are all differentiable.

A.3 Discontinuities of the Jacobian determinants J of Eq. (11), if
they exist, are independent of the parameter 6.

A.4 The path-length importance W; : R> — R is smooth almost
everywhere except at a finite set of jump-discontinuity points
which we denote as AR[W,].

We note that, among all the assumptions above, only A.4 is new:
Assumptions A.1 and A.2 are shared by most previous works [Li
et al. 2018; Zhang et al. 2019, 2020, 2021b]; Assumption A.3 follows
the steady-state path-space techniques [Zhang et al. 2020, 2021b].

In the supplemental document, we deviate from Assumption A.4
and discuss the case where the path-length importance W is a Dirac
delta function.

Based on the assumptions above, the derivative dI/d9 of Eq. (9)
can be expressed as the following differential time-gated path
integral comprised of an interior, a visibility-boundary, and a path-
length-boundary component:

interior

%: /Q %[Wr(llill)f(ﬁ) du(p) |+

visibility boundary
[, wellslh 87 @) ot dicp) + (13

path-length boundary

/A AW() f(PL) vr(q) dfir(Py) -
seAr[w,] Y 9% UIx+ 1)

This result is essentially a generalization of the steady-state variant
derived by Zhang et al. [2020]. In what follows, we explain each
component in more detail.

Interior component. In Eq. (13), the interior component is over
the same material path space Q as the ordinary time-gated path
integral. Further, the integrand of this component equals:

& [wein fp)] =

55 e | o)+ wetlath | 55 Fp)| a0
where f is the material measurement contribution defined in Eq. (10),
and p1 is the area-product measure. We note that, in Egs. (13) and
(14), all derivatives with respect to 0 are scene derivatives—a type
of material (or total) derivative that takes into consideration depen-
dencies of function parameters on 6. Additionally, when calculating
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Fig. 4. Evolution of visibility boundaries: This example shows a simple
scene where a surface M is controlled by a parameter 0 (while My and Mj
stay constant). (We omitted the reference B; of M; for a cleaner illustration.)
Under this configuration, for any fixed xx_1 € My, the discontinuity points
(illustrated as orange lines) of the mutual visibility function V(xgx—-; < xk)
(with respect to xg) vary with 6. This makes pr = X! (xk, 0) to also
depend on the parameter 6, and v(pg) in Eq. (13) is given by the scalar
change rate of pg with respect to 0 along the normal direction of the
discontinuity curve on 8B;.

dw;(llx[l)/d6 in Eq. (14), we neglect the (zero-measure) jump dis-
continuities AR[W;] of W; since they will be later handled by the
path-length-boundary component.

Visibility-boundary component. In Eq. (13), the visibility-boundary
integral is identical to the boundary term of the steady-state result
except for the inclusion of the path-length importance W;. In the
following, we describe the definitions of the key terms in this term
for completeness.

The domain of integration aQ is the material boundary path
space consisting of material boundary paths p = (p,,..., py)-
These paths are identical to the ordinary ones from Q except for
containing exactly one material boundary segment py_; px (for
some 0 < K < N) such that xg = X(p, 6) is located on a visibility
boundary with respect to xx_; = X(pg_1,0), and vice versa (see
Figure 4). The measure f associated with the material boundary path
space 0Q is identical to the area-product measure y over Q expect
that, for a boundary path p with boundary segment pr_; pg., the
measure over py is replaced with the curve-length measure ¢:

dip(p) = de(pg) [lnzx dA(py). (15)

At the path level, with vertices p,, fixed for alln # K, py becomes
a jump discontinuity point of the material measurement contribu-
tion f(p). The term Af(p) then captures the difference in f across
this discontinuity boundary.

Unlike the material path space Q that is independent of the scene
parameter 6, the material boundary path space aQ does depend on
0 in general. This is because, given a fixed py_; € 8B, for px_| px
to be a material boundary segment, the other endpoint pg typically
depends on the scene parameter 0. The term v(pg) in Eq. (13) is a
scalar that captures the change rate of pg with respect to 6 along
the normal direction (of the discontinuity boundary). Please refer
to §6 of the work by Zhang et al. [2021b] for more details on how
this term is calculated.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.
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4.3 Path-Length Boundary Integral

Many path-length importance functions have jump discontinuities.
A common example is the (normalized) boxcar function

1/(Tmax*7min)s (Tmin <s< Trnax)

0, (otherwise)

Wr(s) = { (16)
with AR[W;] = {tmin> Tmax} for some Tin, Tmax € Rso.

These discontinuities give rise to a new path integral®—the path-
length-boundary component of Eq. (13). For each discontinuity point
s € Ry of the path-length importance Wz, this integral is over a
new material path-length-boundary space 9Q.(s) that consists
of material paths p, satisfying that the geometric lengths ||x4|| of
the corresponding light paths X, := X(p,, 0) equal s. Precisely,

9 (s) = {p+ €O : |zl :s}. (17)

The measure dji; over af),(s) is similar to that over the material
boundary path space:

diiz (p,) = de(q) [1n dA(py), (18)

forany p, := (po. ¢, p1.- -, PN)-
Additionally, when py, ..., py are fixed, for a material light path

P. = (Py-q. P1>---, pN) to be an element of the material path-
length-boundary space 9Q.(s), the vertex q must reside on a curve:
AB(s, py, - PN) ={q € B : ||x4]| =5}, (19)

which typically depends on the scene parameter 0. If we treat
W (||x+|]) as a function W;(; py, ..., pn) : B = Ry of the ver-
tex q:

We(g: por- - ) = We(l2: ), (20)
it is easy to verify that the curve AB(s, py, ..., py) is comprised of
discontinuity points of this function.

Lastly, in the path-length-boundary component of Eq. (13), AW,
denotes the difference in path-length importance W; across the
discontinuity boundary:

AW (%41 = lim Wr(q+enas(@)ipy.. px) -

. 21
eli)n(')l+ Wf(q+6"AB(q);P0,~~~,PN), @1)

where n g(q) denotes the unit normal of the discontinuity curve
AB(s, py, .- -, pn) at q. Further, v;(q) is a scalar change rate cap-
turing how this curve evolves with respect to 0 (see Figure 5 for
an illustration). In what follows, we provide more details on the
calculation of this change rate.

Calculating v;(q). Let AM(s, py, ..., pn) C M(6) be the image
of AB(s, py, ..., py) defined in Eq. (19) via the mapping X(-, ).
Precisely,

AM(s, pos .-, PN) = {X(q, 0) : g€ AB(s,py, ...

Then, for any 0, each y € AM(s, py, ...

PN} (22)
, pny) must satisfy

N
gl + gl = s = > %=1 %all = 70, (23)

n=2
where |[xy|| := ||x — y|| denotes the length of the line segment
xy, and x,, = X(p,,,0) forn =0,1,...,N. It is easy to verify that

3Please refer to Appendix A for a derivation of this result.
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Fig. 5. Evolution of path-length boundaries: This example shows a
simple scene where the vertical position of a planar surface M; is con-
trolled by a parameter 6 (with everything else held static), as shown on the
right. The corresponding reference configuration is shown on the left. With
Pos P1» - - - fixed, all y € M; such that ||xo ¢l + [|x1 7| equals some fixed
9 € Ry (given by discontinuities of path-length importance W;) form
ellipses AM(7p) illustrated in orange. When mapped back to the reference
configuration using X1 (-, ) : M;(0) — By, these ellipses form the dis-
continuity curve AB(7p) with respect to q. We omit the dependencies of
AM and AB on p,, py, . .. for notational simplicity.

AM(s, py, ..., py) is the intersection between the scene geome-
try M(6) and an ellipsoid (which has foci xg, x; and the sum of
distances 19).

In practice, when the scene geometry is described using polyg-
onal meshes, it is easy to verify that AM(s, p, ..., py) defined
in Eq. (22) takes the form of a set of elliptical arcs. Given a point
y € AM(1o, py, - .., Pn), We can calculate its derivative dy/d by
locally parameterizing the elliptical arc (whose foci and sum of
distances can be obtained in a differentiable fashion). Upon fully
obtaining y and dy/dg, we can calculate the derivative dg/de by differ-
entiating the relation g = X™1(y, 6). Lastly, we calculate the change
rate v using

d
vr(q) = 51 - maz(9). (24)

« 2

where “-” is the dot-product operator.

Relation to Prior Works

Theoretically, our differential time-gated path integral of Eq. (13) is
a significant generalization of the steady-state variant [Zhang et al.
2020]. Specifically, our result has included the path-length impor-
tance Wr into the interior and the visibility-boundary components.
We have also introduced the path-length-boundary integral (§4.3),
which is unique to time-gated differentiable rendering.

In the special case where W;(s) = 1, the path-length-boundary
component vanishes (as AR[W;] = 0), and Eq. (13) reduces to the
steady-state result.

5 MONTE CARLO ESTIMATORS

We now present how the differential time-gated path integral can
be estimated in an unbiased fashion using Monte Carlo integration,
which in turn amounts to estimating the interior and boundary path
integrals in Eq. (13).

Specifically, we focus on the problem of estimating the derivative
dI/do at some user-specified 6 = 6. As discussed in the end of §3,
we set the reference surface to the actual scene geometry at 6y:



Fig. 6. Antithetic sampling: To efficiently handle near-delta path-length
importance functions W, whose derivatives are odd functions, we utilize
antithetic sampling and generate pairs of correlated light paths p, =
(Py @1 PN) and B} = (Po, 7Py pn) With KW (llp, ) =
—%Wr(”f’i”)- To this end, we fix p,, p;,...,px and sample g and g*
from two elliptical curves in a correlated fashion.

B = M(6y). This causes the material path space Q to coincide with
the ordinary one Q(6y).

In what follows, we discuss the estimation of the interior integral
in §5.1 and the boundary components in §5.2 and §5.3.

5.1 Estimating the Interior Integral

Since the interior integral in Eq. (13) is over the same domain—the
material path space Q—as Eq. (9), we use path sampling methods
previously developed for forward time-gated rendering to estimate
this interior integral.

Standard path sampling. A simple solution is to sample material
light paths p—which coincide with the ordinary ones at 8 = 6y—
using standard methods like unidirectional path tracing. Although
this method works adequately when the path-length importance W,
has a wide support, it can become inefficient when W; becomes
concentrated.

Ellipsoidal next-event estimation. To estimate the interior inte-
gral more efficiently when W; is near-delta, we utilize the ellip-
soidal reparameterization of Eq. (12). Specifically, by setting F(p) =
% w:(||1x|) f (p)|, we develop an unidirectional algorithm with

an ellipsoidal next-event estimation (NEE) that works as follows. Note
that the Jacobian determinant J7 from the ellipsoidal reparameteri-
zation is outside of the differentiation operator, so we do not need
to compute its derivatives with respect to the scene parameter 6.
Our technique starts with tracing a material light path pP =
( pOD, pll) ,...) from the detector using standard unidirectional path
tracing. Then, at each vertex p],?, we randomly sample a point pS
on a light source, and a length 7 € R with a probability density
proportional to the path-length importance Wy (i.e., p(7) o« Wz (7)).
With pS and 7 obtained, we aim to find another vertex ¢ € 8
such that the path p, = (p%,q,p2 ..., p]O)) has a total length of 7.
We note that, under our choice of reference surface 8 = M(6y),
the original path %, = X(p_,6p) coincides with p, and has the
same total length 7. In this way, the resulting probability density
for sampling p, will involve a factor of W;(7), canceling this term

(and partially its derivative) in the integrand % [WT(||5c||) f »1-
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be the desired total length of p% —

Py Py
q— p],?A To find a point q satisfying this constraint, we first draw
a polygonal face 7; (that intersects the ellipsoid determined with
foci p® and pE, as well as the sum of distances 7p) and then sample
¢ € R that parameterizes &;(7p) (see Figure 3).

Previously, Pediredla et al. [2019b] used a bidirectional path sam-
pling scheme for forward time-gated rendering. Although our frame-
work of differential time-gated path integral is fully compatible with
bidirectional path sampling, we found the unidirectional version
presented above to work well in all our experiments.

— n
Let 7o :=7— X7,

Antithetic sampling. Many commonly used path-length impor-
tance Wy—such as Gaussian functions—have derivatives dWz(s)/ds
that are odd functions. When W; is near-delta, the derivative in-
volves high-magnitude positive and negative regions that can yield
high variance when estimating the interior integral even with our
ellipsoidal next-event estimation discussed above.

To overcome this, we adopt the antithetic sampling method in-
troduced by Zhang et al. [2021a] for handling near-specular BSDFs.
Assume the derivative dWz(s)/ds to satisfy

iWT(f+s) = —EWT(f—s), (25)
ds ds

for some constant 7 € R and any 0 < s < 7. When performing
our ellipsoidal next-event estimation, after drawing one point p,,
and a length 7 € Ry, we select a second length * = 27 — 7. Then,
we sample two points ¢,g* € B in a correlated fashion (i.e., by
using identical random numbers) such that the two paths p, =
Py P1>---» PN) and P = (po. 4", Py, - - -, pn) have total lengths
r and 7*, respectively (see Figure 6). When W; is near-delta, we will
typically have g, ¢* in close proximity, and

d d

35 Ve UIxl) ~ ==z We (%3 1D, (26)

where X} = X( P, 0). This, in turn, ensures that the contributions
of the two paths p, and pj (to the interior term) largely cancel out
each other.

We will demonstrate the effectiveness of our antithetic sampling
in §6.1.

5.2 Estimating the Visibility-Boundary Integral

We now consider the problem of estimating the boundary integral in
Eq. (13). Unlike the interior integral that can be estimated using path
sampling strategies developed for forward time-gated rendering, this
boundary integral is unique to differentiable time-gated rendering.

In the following, we introduce a new estimator that utilizes a
multi-directional sampling technique introduced by Zhang et al.
[2020] and the ellipsoidal next-event estimation described in §5.1
for near-delta path-length importance functions.

Multi-directional sampling. Recall that the boundary integral is
over the material boundary path space Q comprised of light trans-
port paths p = (p,, ..., py) containing exactly one material bound-
ary segment pr_; px (for some 0 < K < N).

Since the material boundary segment breaks a material boundary
path into a source and a detector subpath, we rename the vertices of

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.
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S
Py

Py

Fig. 7. Multi-directional sampling of boundary paths: To estimate
the boundary integral in its multi-directional form given by Eq. (28), we
sample material boundary paths as follows. We first draw the material

boundary segment pg pOD (illustrated in red) followed by the source subpath

5 (shown in yellow). Based on total length ofpg pOD and pS, we then sample
the detector subpath pP—which equals (pD, p?, g, p?) in this example—
using ellipsoidal next-event estimation.

this path as p = (p$, .. .,pg,pg, ..., PP), where pg p]OD is the ma-
terial boundary segment, p5 = ( pg, . pg) is the source subpath,

, plt)) is the detector subpath. Further, we decom-

pose A f (p)V( pOD) into the product of contributions of pg pg, pS,

and pP = (p(l)),...

and pP, respectively:

M@ VD) =Py 00) £ B%p0) fP@Pip) - @D
-
bound seg. source subpath detector subpath
Please refer to the work by Zhang et al. [2020] for the exact forms
of /B, £S5, and fP in this equation.

Let p(;s and ﬁOD denote the source and detector subpaths with
pg and plo) excluded, respectively. That is, pos = ( pg’, . p?) and
p(P = (pllj, .. .,p][)). Based on Eq. (27), we rewrite the boundary
term in Eq. (13) in its multi-directional form as:

/ We(lxl) AF ) V(pD) di(p)
aQ

= [ e ([ 75 me.p) aps ac(o) anied
(28)
where
h(pg.p%) = [ We(Ixl) fP(pP: py) dpy- (29)
In Egs. (28) and (29), we omit the domains and measures of the path
integrals on pg’ and p(P for notational simplicity.
As demonstrated by Zhang et al. [2020], the multi-directional-

form boundary integral of Eq. (28) allows sampling a material bound-

S
0

ary path p by starting with its boundary segment p.
the need of expensive silhouette detections.

P]o)’ avoiding

Ellipsoidal next-event estimation. Unlike steady-state differen-
tiable rendering, the boundary integral of our differential time-gated
path integral of Eq. (13) involves the path-length importance Wr.
When this function has a narrow support, it is desired to importance
sample the path length 7 when estimating the boundary integral.
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To this end, we leverage the ellipsoidal reparameterization by
applying Eq. (12) to Eq. (29). This allows us to perform the ellipsoidal
next-event estimation presented in §5.1 when building the camera
subpath.

Specifically, to estimate Eq. (28), we first draw a desired total path
length 7 € R based on the path-length importance W;. Then, we
utilize the multi-directional path sampling approach introduce by

Zhang et al. [2020] to draw the boundary segment pg pE followed
by the source subpath pS that starts with pg, In this way, the desired

length of the detector subpath p D equalst’ = 7— ||pg p})) =P S||. To

construct this subpath, we start from pJOD and use our ellipsoidal next-
event estimation to find a subpath satisfying the length constraint
(see Figure 7).

5.3 Estimating the Path-Length-Boundary Integral

We now discuss the Monte Carlo estimation of the path-length-
boundary component in Eq. (13), which is unique to differentiable
time-gated rendering.

Recall that, due to our choice of the reference configuration pre-
sented in §4.1, any material light path p and the corresponding light
path x = X(p, 0p) coincide and have identical geometric lengths (i.e.,
[|pll = l|x]]). Thus, we have

20:(9og, = {Py €@ ¢ 1Bl =5} (30)

for all path length s € AR[W;]. This allows us to sample mate-
rial paths x, € Q. (s) using our ellipsoidal next-event estimation
discussed in §5.1 as follows.

Given a desired length s, we build a light path (py,..., py) us-
ing standard unidirectional path tracing (starting from pp; on the
detector), followed by sampling p, on a light source. Then, we
draw q from an elliptical arc determined by the constraint that
poqll + llp1qll = s - Z],:Izz [p,—1 Pnll = 7. This leads to the
following single-sample Monte Carlo estimator:

AW (s) f(p,) v:(q)
P((py,-- - PN) P(Po) P(q | po p1) |’

where p, = (py.q. p1.-- -, pn)-Further, P((p4, ..., pn)) and P(p,)
are, respectively, probability densities for building the subpath
(py>---> pN) and drawing the point p, on the surface of a light
source. Both of these probability densities are computed based on
the standard unidirectional path tracing process. Lastly, P(q) de-
notes the probability density for drawing q from a path-length
discontinuity curve AB(z, py. ..., pN) C B.

We note that, although the use of ellipsoidal next-event estimation
is optional when estimating the interior and the visibility-boundary
components, its use is mandatory when estimating the path-length-
boundary component due to the need of sampling paths p, with
fixed geometric lengths. Also, since no change of variable is applied,
the Jacobian determinant J from Eq. (6) is absent from Eq. (31).

(1)

Antithetic sampling. Near-delta path-length importances Wy can
also cause high-variance estimates of the path-length-boundary
component when, for example, using boxcar functions of Eq. (16)
with (Tmax — Tmin) being close to zero. Similar to our handling of
the interior component (discussed in §5.1), we address this problem
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(d1) interior (d2) visibility-boundary (d3) path-len.-boundary

Fig. 8. Validation of derivatives estimated with our Monte Carlo estimators. All examples share identical scene configurations except for using varying
path-length importance functions (Gaussian, boxcar, and truncated Gaussian for the top, middle, and bottom rows, respectively). For each example, we show
the ordinary time-gated rendering in (a) and derivatives with respect to the vertical position of the bunny estimated using finite differences in (b) and our
method in (c). Additionally, we visualize the interior, visibility-boundary, and path-length-boundary contributions computed by our estimators in (d1), (d2),
and (d3), respectively. The sum of these contributions give the full derivative estimates in (c).

by building correlated paths. In case of boxcar filters, we build
P+ = (Po: 4. p1----» ) and pi = (po.q", py.- -, py) with total
lengths 7imax and 7y, respectively. This allows the contributions
of these paths given by Eq. (31) to largely cancel out each other,
offering significant variance reduction.

6 RESULTS

In what follows, we validate our implementation in §6.1. Addition-
ally, we demonstrate in §6.2 the potential usefulness of our technique
using proof-of-concept synthetic inverse-rendering examples that
simulate both line-of-sight and non-line-of-sight imaging scenarios.

Please refer to the supplemental material for animated versions
of the inverse-rendering results.

6.1 Validation and Evaluation

Validation. We validate our estimators by comparing derivative
estimates with references generated using finite differences in Fig-
ure 8. In this figure, all results share a scene with a diffuse bunny
inside a Cornell box. We show derivatives (with respect to the ver-
tical position of the bunny) computed using finite differences and
our method in columns (b) and (c), respectively. Additionally, we
demonstrate in (d1)-(d3) how the interior, visibility-boundary, and
path-length-boundary components of our differential time-gated
path integral of Eq. (13) contribute to the final derivatives.

Each row of Figure 8 uses a different type of path-length impor-
tance Wr. Specifically, results in the top row are generated with
a Gaussian path-length importance. In this case, the path-length-
boundary component vanishes as W; is smooth. The second and
third rows have W; being boxcar (16) and truncated Gaussian func-
tions, respectively. In both cases, assuming W; to have the support
(Tmin> Tmax) C R, the path-length-boundary component involves
paths with lengths 7, and 7max. We allocate an equal number
of samples to estimate the interior, visibility-boundary, and path-
length-boundary components and the fraction of running time is
about 1 : 1 : 3, since the ellipsoidal NEE is required for the path-
length-boundary component and it brings more overhead.

Each finite-difference result in Figure 8 takes more than 72 hours
to generate (using an AWS EC2 c5a. 12x1large instance with 48 CPU
cores) but still contains visible Monte Carlo noise. Our technique,
on the other hand, provides cleaner and unbiased gradient estimates
in significantly less time.

Differentiable-rendering evaluation. We demonstrate the effective-
ness of our ellipsoidal next-event estimation and antithetic sampling
(described in §5) in Figure 9. In this example, we show time-gated
rendering of a glossy cube with W; being a truncated Gaussian func-
tion with a narrow support. The top and bottom rows of this figure
show, respectively, estimated interior and path-length-boundary
components. When using standard unidirectional path tracing, as

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.
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Fig. 9. We utilize ellipsoidal next-event estimation and antithetic sampling to efficiently estimate the interior and the path-length-boundary integrals
when the path-length importance W; is near-delta. This example contains a glossy cube lit by an area light, where W7 is a narrow truncated Gaussian function,
and the derivatives are computed with respect to the vertical position of the cube.

shown in Figure 9-b, the estimated interior component suffers from
extremely high noise since the chance for randomly sampling a
path with desired length is very low. Further, the standard path
sampling does not work for the path-length-boundary component
since the estimation requires sampling light paths with specific
lengths. On the contrary, our ellipsoidal next-event estimation pro-
duces estimates with less error in equal time, as shown in Figure 9-c.
When coupled with antithetic sampling by generating correlated
pairs of paths p, and p}, as demonstrated in Figure 9-d, significant
reduction of variance can be obtained.

Inverse-rendering evaluation. Many prior works (e.g., [Isering-
hausen and Hullin 2020]) solve inverse time-gated rendering prob-
lems by considering only low-order reflections (e.g., direct illumi-
nation) and/or estimating derivatives using finite differences. We
demonstrate the importance of supporting full interreflection using
an inverse-rendering example in Figure 10. Using a non-line-of-sight
(NLOS) configuration, this example has a time-of-flight camera lo-
cated at the opening of a corridor that has two segments joined in
the middle. We search for global translations of the four vertices
that are at the far end of the second segment and invisible to the
camera (as illustrated in Figure 10-a). This problem is challenging
as changes of these translations have subtle effects on the time-
of-flight images. Thus, having unbiased and low-variance gradient
estimates is crucial.

We solve this inverse problem using three configurations for
which we use the Adam method [Kingma and Ba 2014] with identical
initializations and learning rates. We also adjust the sample count
so that each iteration takes approximately equal time.

Our first configuration limits the number of reflections to three
(top row). This causes the time-gated renderings to suffer severe
energy loss, causing the inverse-rendering optimization (with gra-
dients estimated with our method) to diverge.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Table 2. Performance statistics for the inverse-rendering results in Fig-
ures 10-17. The “time” numbers indicate average computation time per
iteration (in seconds). The experiments are conducted on an AWS EC2 in-
stance of type c5a.12xlarge.

Scene  Corridor Cube Branch Height Bunny Sofa  Tree
(Fig. 10) (Fig. 11) (Fig. 12) (Fig. 13) (Fig. 15) (Fig. 16) (Fig. 17)

# param. 2 1 1 121 2 59 1
# iter. 200 100 100 500 200 1000 200
time 4.5 5.7 1.0 70.3 17.1 58.2 15.5

The second configuration uses full interreflections and derivatives
computed with finite differences (middle row). Although the forward
renderings are accurate, the optimization still fails to find the correct
solution due to the bias and high variance in gradient estimates.

Our third configuration uses full interreflections with derivatives
estimated using our method (described in §4 and §5). Since our gradi-
ent estimates are unbiased and low-variance, the inverse-rendering
optimization successfully finds the correct result.

Ellipsoidal NEE and antithetic sampling. Lastly, we demonstrate
the effectiveness of our ellipsoidal next-event estimation and an-
tithetic sampling for inverse-rendering applications. As shown in
Figure 11, we use a scene similar to Figure 9. Using four target ToF
images with near-delta Gaussian path-length importance functions,
we search for the vertical position of the glossy cube.

Without our ellipsoidal NEE or antithetic sampling, the standard
method (that relies on binning) suffers from very high variance,
causing the optimization to diverge. In contrast, our ellipsoidal
NEE and antithetic sampling offer significant variance reduction,
allowing the inverse-rendering optimization to converge easily.
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Fig. 10. Inverse-rendering result (corridor): As illustrated on the top of column (a), this example involves a diffuse corridor with two segments, and a small
area light and a ToF camera are located near the opening of the first segment. Taking as input 20 target ToF images with four of them (marked as 1-4) shown at
the bottom of column (a), we search for global translations in x- and z-directions of the four vertices at the end of the second segment. Columns (b-d) contain
time-gated renderings illustrating inverse-rendering optimizations using 3-bounce and full interreflections. For the latter, we further compare optimization
performance with gradients estimated using finite differences (FD) and our method. The running time per iteration of optimizations using 3-bounce (top row),
full interreflections with FD (middle row), and our method (bottom row) are 4.10s, 19.65s, and 4.45s, respectively. Images in (b—d) contain Monte Carlo noise
since we use low-sample (but unbiased) estimates for the optimization. The parameter RMSE information is used only for evaluation and not for optimization.

6.2 Inverse-Rendering Results

We now demonstrate the usefulness of our theory and algorithms
using a few additional proof-of-concept inverse-rendering examples:

o The branches example (Figure 12) is modeled after that from the
work by Zhang et al. [2020]. This scene contains a tree-like object
casting soft shadows on the ground. Using five time-gated render-
ings of the shadow (with four shown in the figure) and Gaussian
path-length importance, we optimize the rotation angle of the
object. We note that, although ordinary time-gated renderings
appear similar across iterations, their derivatives are much more
distinct. Thus, having these derivatives is crucial for efficiently
solving this inverse-rendering problem.

The height field example (Figure 13) includes a diffuse surface lit
by an area light from above. Using 12 time-gated renderings and
Gaussian path-length importance, we jointly optimize the vertical
position of each mesh vertex. The derivative images shown in this
figure have zero values in most pixels because the position of one
vertex only affects a small set of nearby pixels. Additionally, we

show in Figure 14 a reconstruction result obtained using steady-
state renderings (under otherwise identical configurations). In this
case, since only a single steady-state image is used, the problem
becomes significantly more under-constrained than the time-of-
flight variant (Figure 13). This causes the optimization to get stuck
at a local minimum, as demonstrated by the higher parameter
RMSE.

The bunny example (Figure 15) consists of a diffuse box that
contains a bunny lit by a small area light. The bunny is made of
rough glass, necessitating the handling of light transport beyond
three bounces. Both the bunny and the light are blocked from
the camera’s point of view, mimicking a non-line-of-sight (NLOS)
imaging configuration. We use 20 time-gated images with Gauss-
ian path-length importance and optimize the translation of the
bunny (along the x- and y-axis).

The sofa example (Figure 16) uses another NLOS setting where a
diffuse sofa-like object lit by a large area light is placed behind
an occluder (when viewed from the camera). Using 20 time-gated
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Fig. 11. Inverse-rendering result (cube): This example involves a glossy cube lit by an area light from the top. Taking as input four target ToF images (marked
as 1-4) shown at the bottom of column (a), we search for the cube’s vertical position. Without our ellipsoidal next-event estimation or antithetic sampling, the
standard estimator produces very noisy estimates (taking 5.32s per iteration), causing the optimization to diverge (top row). With both techniques, on the
contrary, much cleaner gradient estimates can be obtained (taking 5.73s per iteration), allowing the optimization to converge smoothly (bottom row).
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Fig. 12. Inverse-rendering result (branches): This example is modeled after the work by Zhang et al. [2020] and involves a tree-like object lit by an area
light, casting soft shadows on the ground. We search for the rotation angle of the object, so that the difference (measured in image RMSE) between time-gated
renderings of the shadow and the target time-of-flight (ToF) images is minimized. The initial and target configurations are visualized in (a), and four out of
five target ToF images (generated using Gaussian path-length importance functions with identical variance and different mean) are shown in (e). Columns
(b—d) show four time-gated renderings (marked as 1-4) and the corresponding derivatives produced by our technique during the optimization process.

images with boxcar path-length importance, we jointly optimize we optimize the horizontal position of the area light. Thanks to
the shape and the surface albedo of this object. our ellipsoidal next-event estimation and antithetic sampling (dis-
cussed in §5), we can obtain low-variance derivatives efficiently,

The t le (Fi 17) h 1 t del [Telezhki
* The tree example (Figure 17) has a glossy tree model [Telezhldn allowing the inverse-rendering optimization to converge nicely.

2021] lit by an area light from above. Using 14 time-gated render-
ings and near-delta truncated Gaussian path-length importance,
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Fig. 13. Inverse-rendering result (height field): This example involves a terrain-like object lit by an area light. We search for the vertical position (i.e.,
height) of each mesh vertex using 12 ToF images with Gaussian path-length importance (among which four are shown). Columns (b-d) show four time-gated
renderings (marked as 1-4) and the corresponding derivatives (with respect to one vertex position) produced by our technique during the optimization process.
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Fig. 14. Steady-state reconstruction (height field): When optimizing the height field using a single steady-state image, the problem becomes highly
under-constrained, causing the inverse-rendering optimization to get stuck at a local minimum with high parameter RMSE. Each iteration takes approximately
equal time (76.04s) compared with the above example using ToF images (70.34s). Derivative images are shown in the insets of columns (a—c).

For each example, we take multiple input time-gated renderings as
the target and minimize image root-mean-square errors.

In Figures 12-17, column (a) illustrates the scene configurations
of the initial and target states. Columns (b—d) demonstrate the initial,
intermediate, and final states of our inverse-rendering optimization,
where each column contains four time-gated renderings and the
corresponding derivatives (with respect to one of the parameters).
Lastly, Column (e) contains four target time-gated images and per-
iteration image and parameter RMSE plots. The parameter RMSE
information is used only for evaluation (and not for optimization).

In all five examples, derivatives of time-gated images computed
with our method allow the inverse-rendering optimizations to con-
verge smoothly. Please refer to Table 2 for performance statistics.

7 DISCUSSION AND CONCLUSION

Limitations and future work. Our theory neglects all volumet-
ric light transport phenomena such as subsurface scattering. Thus,

generalizing it to also handle volumetric light transport is an impor-
tant topic for future research. Additionally, when the path-length
importance is a Dirac delta function, as we derive in the supplemen-
tal document, the resulting interior integral involves second-order
derivatives. Developing efficient Monte Carlo estimators for this
case can be an interesting future topic.

Currently, our implementation is CPU-based and uses simple
forward-mode automatic differentiation (autodiff). Developing new
GPU-based systems leveraging reverse-mode autodiff and radia-
tive backpropagation [Nimier-David et al. 2020; Vicini et al. 2021]
will offer much better performance and allow efficient handling of
millions of parameters.

Another important future direction is applying our differentiable
time-gated rendering to real-world large-scale ToF problems involv-
ing complex object shapes and materials. Being able to compute
arbitrary scene derivatives and handle general light transport phe-
nomena, our theory has made the first step toward a gradient-based

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.
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Fig. 15. Inverse-rendering result (bunny): This example contains a rough-glass bunny inside a diffuse box. As illustrated in (a), the bunny is occluded by a
square patch and not directly visible to the time-of-flight camera. We search for the translation of the bunny (along the x- and y-axis), and four out of 20
target ToF images (using Gaussian functions as the path-length importance) are shown in (e). Columns (b-d) show four time-gated renderings (marked as 1-4)
and the corresponding derivatives produced by our technique during the optimization process.
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Fig. 16. Inverse-rendering result (sofa): This example involves a diffuse sofa-like object that is lit by an area light and not directly visible to the camera. We
jointly optimize the shape and surface albedo of this object using 20 ToF images with boxcar path-length importance functions (with four shown). Additionally,
columns (b—d) show four time-gated renderings (top) and re-renderings of the object (bottom).

solution to time-of-flight imaging problems, alleviating constraints
of existing work such as limited light bounces and low-frequency
surface reflectance.

Conclusion. In this paper, we introduced a theory of differentiable
time-gated rendering that offers the generality to differentiate time-
gated images with respect to arbitrary scene parameters including
material optical properties and object geometries. At the core of

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

our theory is the differential time-gated path integral comprised
of an interior and a visibility-boundary component as well as a
path-length-boundary integral unique to differentiable time-gated
rendering. Additionally, we developed new Monte Carlo methods to
estimate these integrals in an unbiased and efficient fashion. We val-
idated our derivative estimates by comparing with finite-difference
references. Further, we demonstrated the practical usefulness of our
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Fig. 17. Inverse-rendering result (tree): This example contains a glossy tree model [Telezhkin 2021] lit by a small area light. We search for the horizontal
position of the light source, and four of 14 target ToF images (using near-delta truncated Gaussian functions as the path-length importance) are shown in (e).
Columns (b-d) show four time-gated renderings (marked as 1-4) and the corresponding derivatives produced by our technique during the optimization

process.

theory and algorithms via a few proof-of-concept inverse-rendering
examples that mimic real-world time-gated imaging settings.
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A DERIVATION OF THE PATH-LENGTH BOUNDARY
COMPONENT

In what follows, we derive the path-length boundary component of
our differential time-gate path integral of Eq. (13).
Given p = (pg, ..., py) With N > 1, let

h(p) ¢=/BWT(II5C+|I)f(i>+)dA(q), (32)

where p, = (pg, ¢, Py, - - -» PN)> and x4 = X(p,. 0).
Differentiating Eq. (32) with respect to the scene parameter 0,
according to the Reynolds transport theorem [Reynolds 1903], yields
an interior integral and a boundary one capturing discontinuities of
the integrand W, f with respect to p,. We now examine disconti-
nuities emerging from W; since those given by f have already been
captured by the visibility-boundary component in Eq. (13):

/ AW (lI%+11) £(P.) 0z () de(q), (33)
AB[Wr]

where AB[W;] c B denotes the jump discontinuity points of
Wz (5 Py, - - -, py) defined in Eq. (20), and v, (q) denotes the scalar
change rate of g with respect to 6 along the normal direction of the
discontinuity curve.

Since the discontinuity curve AB[W;] of W;(:; py, ..., PN) :
B +— Rx¢ are determined by the discontinuities AR[W;] of the
path-length importance Wy : R>o +— Ry, it holds that

ABIW = | ) ABG.pp...pN), (39)
SEAR[W,]
where AB(s, p, ..., py) is defined in Eq. (19).

By integrating Eq. (33) over the material path space Q, we obtain
the path-length-boundary component of Eq. (13):

> [ AW, (121D £(p,) o0 (@) de(q) dy(p)
Q JAB(s,pgs--PN)

SEAR[W, ]

= Y[ AW fp) o @) di(p). 69)
SEAR[W,] ¥ 99 (s
We note that, our derivation above analyzes jump discontinuities
of g with py,..., py fixed. Alternatively, one can also consider
discontinuities of any different path vertex with all the others fixed.
This would result in a different formula but ultimately identical
derivatives.

4We focus on the more general case where N > 1. For the special case with N = 0, a
similar result can be obtained by letting p, := (q, p,).
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